prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
""" ====================== Find Photodiode Events ====================== In this example, we use ``pd-parser`` to find photodiode events and align them to behavior. Then, we save the data to BIDS format. """ # Authors: <NAME> <<EMAIL>> # # License: BSD (3-clause) ############################################################################### # Simulate data and use it to make a raw object # # We'll make an `mne.io.Raw object` so that we can save out some random # data with a photodiode event channel in it in `fif` format (a commonly used # electrophysiology data format). import os.path as op import numpy as np import mne from mne.utils import _TempDir import pd_parser from pd_parser.parse_pd import _read_raw, _to_tsv out_dir = _TempDir() print(f'After running this example, you can find the data here: {out_dir}') # simulate photodiode data n_events = 300 prop_corrupted = 0.01 raw, beh, events, corrupted_indices = \ pd_parser.simulate_pd_data(n_events=n_events, prop_corrupted=prop_corrupted) # make fake electrophysiology data info = mne.create_info(['ch1', 'ch2', 'ch3'], raw.info['sfreq'], ['seeg'] * 3) raw2 = mne.io.RawArray(np.random.random((3, raw.times.size)) * 1e-6, info) raw2.info['lowpass'] = raw.info['lowpass'] # these must match to combine raw.add_channels([raw2]) # bids needs these data fields raw.info['dig'] = None raw.info['line_freq'] = 60 fname = op.join(out_dir, 'sub-1_task-mytask_raw.fif') raw.save(fname) # roundtrip so that raw is properly loaded from disk and has a filename raw = _read_raw(fname) ############################################################################### # Make behavior data # # We'll make a dictionary with lists for the events that are time-stamped when # the photodiode was turned on and other events relative to those events. # We'll add some noise to the time-stamps so that we can see how behavior # might look in an experimental setting. # Let's make a task where there is a fixation stimulus, then a go cue, # and a then response as an example.
np.random.seed(12)
numpy.random.seed
import pandas as pd import tqdm, os, glob, json, re, time import numpy as np from nltk.corpus import stopwords from sklearn.model_selection import train_test_split import enchant import pickle as pkl BASEPATH = '/Users/Janjua/Desktop/Projects/Octofying-COVID19-Literature/dataset' stop_words = set(stopwords.words('english')) engDict = enchant.Dict("en_US") root_path = '/Users/Janjua/Desktop/Projects/Octofying-COVID19-Literature/dataset/CORD-19-research-challenge/' def retrieve_data_from_json(file_path): """ Reads the json file and returns the necessary items. # Arguments: file_path: the path to the .json file """ with open(file_path) as file: data = json.loads(file.read()) abstract, full_text = [], [] abstract = str([x['text'] for x in data['abstract']]) full_text = str([x['text'] for x in data['body_text']]) paper_id = data['paper_id'] return (paper_id, abstract, full_text) def prepare_dataset(): """ Reads the downloaded .csv file and performs some pre-processing on the data. # Returns: A dataframe file is returned which has cleaned data columns by removing the un-necessary information from the previous csv file. # Credits: Some aspects of code borrowed from: https://www.kaggle.com/ivanegapratama/covid-eda-initial-exploration-tool """ data = pd.read_csv(BASEPATH + "/CORD-19-research-challenge/metadata.csv") json_files = glob.glob(BASEPATH + "/CORD-19-research-challenge/*/*/*.json", recursive=True) covid_data_dict = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'journal': []} for idx, entry in enumerate(json_files): if idx % (len(json_files) // 10) == 0: print('Processing: {} of {}'.format(idx, len(json_files))) paper_id, abstract, full_text = retrieve_data_from_json(entry) meta = data.loc[data['sha'] == paper_id] if len(meta) == 0: continue covid_data_dict['paper_id'].append(paper_id) covid_data_dict['abstract'].append(abstract) covid_data_dict['body_text'].append(full_text) try: authors = meta['authors'].values[0].split(';') if len(authors) > 2: covid_data_dict['authors'].append(authors[:1] + "...") else: covid_data_dict['authors'].append(". ".join(authors)) except: covid_data_dict['authors'].append(". ".join(authors)) covid_data_dict['title'].append(meta['title'].values[0]) covid_data_dict['journal'].append(meta['journal'].values[0]) covid_df = pd.DataFrame(covid_data_dict, columns=['paper_id', 'abstract', 'body_text', \ 'authors', 'title', 'journal']) covid_df['abstract_word_count'] = covid_df['abstract'].apply(lambda x: len(x.strip().split())) covid_df['body_text_word_count'] = covid_df['body_text'].apply(lambda x: len(x.strip().split())) # Removing preposition marks covid_df['body_text'] = covid_df['body_text'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','', x)) covid_df['abstract'] = covid_df['abstract'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','', x)) # Convert to lower case covid_df['body_text'] = covid_df['body_text'].apply(lambda x: x.lower()) covid_df['abstract'] = covid_df['abstract'].apply(lambda x: x.lower()) covid_df.to_csv(BASEPATH + '/COVID_19_Lit.csv', encoding='utf-8', index=False) print(covid_df.head()) print("Written dataframe to .csv file.") def to_one_hot(data_point_index, vocab_size): """ Converts numbers to one hot vectors # Returns: a one hot vector temp # Credits: Function taken from: https://gist.github.com/aneesh-joshi/c8a451502958fa367d84bf038081ee4b """ temp = np.zeros(vocab_size) temp[data_point_index] = 1 return temp def load_data_for_training_w2v(): """ Loads the data for training and testing for the word2vec model. """ data = pd.read_csv(BASEPATH + '/COVID_19_Lit.csv') corpus = data.drop(["paper_id", "abstract", "abstract_word_count", "body_text_word_count", "authors", "title", "journal"], axis=1) print(corpus.head(1)) words, n_gram = [], [] print(len(corpus)) start = time.time() for ix in range(0, len(corpus)): words.append(str(corpus.iloc[ix]['body_text'][1:-1]).split(" ")) print('Word Length: ', len(words)) for word in words: for i in range(len(word)-2+1): word1, word2 = word[i:i+2] if word1 != "" and word2 != "": if engDict.check(word1) == True and engDict.check(word2) == True: n_gram.append("".join(word[i:i+2])) end = time.time() print("Prepared n-grams in: {}s".format(end-start)) print("N-gram length: ", len(n_gram)) n_gram = n_gram[:100000] print("Reducing size to: ", len(n_gram)) word2int, int2word = {}, {} print("N-gram length: ", len(n_gram)) start = time.time() for i, word in enumerate(n_gram): word2int[word] = i int2word[i] = word word_with_neighbor = list(map(list, zip(n_gram, n_gram[1:]))) end = time.time() print("Computed neighbours in: {}s".format(end-start)) X, y = [], [] vocab_size = max(word2int.values()) + 1 print("Vocab size: ", vocab_size) start = time.time() for idx, word_neigh in enumerate(word_with_neighbor): if idx % (len(word_with_neighbor) // 10) == 0: print('Processing: {} of {}'.format(idx, len(word_with_neighbor))) X.append(to_one_hot(word2int[word_neigh[0]], vocab_size)) y.append(to_one_hot(word2int[word_neigh[1]], vocab_size)) X = np.asarray(X) y = np.asarray(y) end = time.time() print("Prepared the data vectors: {}s".format(end-start)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train = np.asarray(X_train) y_train = np.asarray(y_train) X_test = np.asarray(X_test) y_test = np.asarray(y_test) print("Shapes: \nX_train: {}\ny_train: {}\nX_test: {}\ny_test: {}".format(X_train.shape, y_train.shape, X_test.shape, y_test.shape)) np.save('arrays/X_train_w2v.npy', X_train) np.save('arrays/y_train_w2v.npy', y_train) np.save('arrays/X_test_w2v.npy', X_test) np.save('arrays/y_test_w2v.npy', y_test) print("Saved arrays!") def read_arrays_and_return(): """ Reads the prepared numpy arrays # Returns: the read np arrays """ X_train = np.load('arrays/X_train_w2v.npy') y_train = np.load('arrays/y_train_w2v.npy') X_test =
np.load('arrays/X_test_w2v.npy')
numpy.load
from os.path import abspath, dirname, join, isdir import numpy as np import datetime from .. import skyvec2ins from ..gui import get_aperture TARGETS_DIR = abspath(join(dirname(__file__), 'targets')) START_DATE = datetime.datetime(2018, 10, 1) NPOINTS = 360 NROLLS = 20 MAXVROLL = 10.0 def _save_test_case(test_case_name, aperture, ra, dec, pa1, pa2, pa3, separation_as1, separation_as2, separation_as3): """Compute skyvec2ins outputs for test case and save to seperate .csv files. Parameters ---------- test_case_name : str Name of the test case aperture : jwxml.Aperture object Aperture as loaded from the instrument SIAF ra : float Right ascension of science target in decimal degrees (0-360). dec : float Declination of science target in decimal degrees (-90, 90). pa1, pa2, pa3 : float Position angles of target companions in degrees east of north. separation_as1, separation_as2, separation_as3 : float Separations of target companions in arcseconds. """ case_path = join(TARGETS_DIR, test_case_name) arrnames = ( 'x', 'observable', 'elongation_rad', 'roll_rad', 'c1_x', 'c1_y', 'c2_x', 'c2_y', 'c3_x', 'c3_y', 'n_x', 'n_y', 'e_x', 'e_y' ) computed = skyvec2ins.skyvec2ins( ra=ra, dec=dec, pa1=pa1, separation_as1=separation_as1, pa2=pa2, separation_as2=separation_as2, pa3=pa3, separation_as3=separation_as3, aper=aperture, start_date=START_DATE, npoints=NPOINTS, nrolls=NROLLS, maxvroll=MAXVROLL, ) for name, arr in zip(arrnames, computed): outpath = join(case_path, '{}.csv'.format(name)) np.savetxt(outpath, arr, delimiter=',') print('Saved', outpath) def _generate_test_outputs(): """Generate skyvec2ins outputs for each test case.""" # Fomalhaut _save_test_case( 'Fomalhaut', get_aperture('NIRCam', 'NRCA2_MASK210R'), ra=344.41269, dec=-29.62224, pa1=325, pa2=0, pa3=0, separation_as1=10, separation_as2=0, separation_as3=0, ) # 1RXSJ160929p1-210524 _save_test_case( '1RXSJ160929p1-210524', get_aperture('NIRCam', 'NRCB3_MASKSWB'), ra=242.37628, dec=-21.08304, pa1=20, pa2=0, pa3=0, separation_as1=3, separation_as2=0, separation_as3=0, ) # HR8799 _save_test_case( 'HR8799', get_aperture('MIRI', 'MIRIM_MASK1065'), ra=346.86965, dec=21.13425, pa1=45, separation_as1=1.7, pa2=325, separation_as2=1, pa3=190, separation_as3=0.65, ) # NGC 6543 _save_test_case( 'NGC6543', get_aperture('MIRI', 'MIRIM_MASKLYOT'), ra=269.63926, dec=66.63320, pa1=0, separation_as1=0, pa2=0, separation_as2=0, pa3=0, separation_as3=0, ) def _load_test_case(test_case_name): """Load the output files for a given test case. Parameters ---------- test_case_name: str Name of the test case. Returns ------- Loaded test case outputs. """ case_path = join(TARGETS_DIR, test_case_name) assert isdir(case_path) arrs = ( 'x', 'observable', 'elongation_rad', 'roll_rad', 'c1_x', 'c1_y', 'c2_x', 'c2_y', 'c3_x', 'c3_y', 'n_x', 'n_y', 'e_x', 'e_y' ) return (np.genfromtxt(join(case_path, '{}.csv'.format(n)), delimiter=',') for n in arrs) def _compare_outputs(reference, computed): """Compare computed outputs to the reference outputs (those on file). Parameters ---------- reference : tuple Reference outputs for test case. computed : tuple Computed outputs for test case. """ ( x, observable, elongation_rad, roll_rad, c1_x, c1_y, c2_x, c2_y, c3_x, c3_y, n_x, n_y, e_x, e_y ) = reference ( t_x, t_observable, t_elongation_rad, t_roll_rad, t_c1_x, t_c1_y, t_c2_x, t_c2_y, t_c3_x, t_c3_y, t_n_x, t_n_y, t_e_x, t_e_y ) = computed assert np.allclose(x, t_x) assert np.allclose(elongation_rad, t_elongation_rad) assert np.allclose(roll_rad, t_roll_rad, atol=2e-6) assert not np.any((observable == 1) ^ (t_observable == 1)) nircam_pixelscale = 0.0311 # for short-wavelen channels, SIAF PRDDEVSOC-D-012, 2016 April siaf_transform_epsilon = nircam_pixelscale / 100 # rationale: comparison of the SIAF transforms shows they should be # mathematically correct in both implementations, but numerical errors are # somehow being compounded to result in errors that are nevertheless small # relative to the size of a pixel (<< 0.01 px). We set the tolerance at # 1/100 of a NIRCam pixel. # n.b. the residuals are larger in Y for this test case # see https://github.com/mperrin/jwxml/issues/4 assert np.allclose(c1_x, t_c1_x, atol=siaf_transform_epsilon) assert
np.allclose(c1_y, t_c1_y, atol=siaf_transform_epsilon)
numpy.allclose
import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline from scipy.fftpack import fft from combined_functions import check_ft_grid from scipy.constants import pi, c, hbar from numpy.fft import fftshift from scipy.io import loadmat from time import time import sys import matplotlib.pyplot as plt from scipy.integrate import simps def fv_creator(fp, df, F, int_fwm): """ Cretes frequency grid such that the estimated MI-FWM bands will be on the grid and extends this such that to avoid fft boundary problems. Inputs:: lamp: wavelength of the pump (float) lamda_c: wavelength of the zero dispersion wavelength(ZDW) (float) int_fwm: class that holds nt (number of points in each band) betas: Taylor coeffiencts of beta around the ZDW (Array) M : The M coefficient (or 1/A_eff) (float) P_p: pump power Df_band: band frequency bandwidth in Thz, (float) Output:: fv: Frequency vector of bands (Array of shape [nt]) """ f_centrals = [fp + i * F for i in range(-1, 2)] fv1 = np.linspace(f_centrals[0], f_centrals[1], int_fwm.nt//4 - 1, endpoint=False) df = fv1[1] - fv1[0] fv2 = np.linspace(f_centrals[1], f_centrals[2], int_fwm.nt//4) try: assert df == fv2[1] - fv2[0] except AssertionError: print(df, fv2[1] - fv2[0]) fv0, fv3 = np.zeros(int_fwm.nt//4 + 1),
np.zeros(int_fwm.nt//4)
numpy.zeros
from time import time start = time() import numpy as np import pandas as pd import glob import PIL import matplotlib.pyplot as plt import cv2 from sklearn.cluster import KMeans from sklearn.utils import shuffle from scipy.ndimage import median_filter, gaussian_filter import sys def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image path_name = 'test5.jpg' img = cv2.imread(path_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) w, h, d = original_shape = tuple(img.shape) #print("Loading image ...") # Median Filtering img = median_filter(img, 1) # Canny Edge Detection gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 1) edges = cv2.Canny(blurred, 20, 200) #plt.imshow(edges) # Color Quantization using KMeans Clustering imag = np.array(img, dtype=np.float64) / 255 img_array = np.reshape(imag, (w*h, d)) img_array_sample = shuffle(img_array, random_state=0)[:10000] kmeans = KMeans(n_clusters=50, random_state=42).fit(img_array_sample) labels = kmeans.predict(img_array) new_image = recreate_image(kmeans.cluster_centers_, labels, w, h) #plt.imshow(new_image) ## Applying dilation thrice kernel = np.ones((3,3),np.uint8) dl_img = cv2.dilate(edges, kernel, iterations=1) kernel =
np.ones((2,2),np.uint8)
numpy.ones
# plotting import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns # numpy import numpy as np # scipy import scipy as sp import scipy.interpolate from scipy.special import erfinv, erf from scipy.stats import poisson as pss import scipy.fftpack import scipy.sparse # jit from numba import jit import ctypes import astropy import astropy as ap from astropy.convolution import convolve_fft, AiryDisk2DKernel import pickle # multiprocessing import multiprocessing as mp from copy import deepcopy # utilities import os, time, sys, glob, fnmatch, inspect, traceback, functools # HealPix import healpy as hp # ignore warnings if not in diagnostic mode import warnings #seterr(divide='raise', over='raise', invalid='raise') #seterr(all='raise') #seterr(under='ignore') #warnings.simplefilter('ignore') #np.set_printoptions(linewidth=180) #sns.set(context='poster', style='ticks', color_codes=True) import h5py # utilities # secondaries ## Symbolic Jacobian calculation #import sympy # tdpy import tdpy from tdpy.util import summgene # photometry related ### find the spectra of sources def retr_spec(gdat, flux, sind=None, curv=None, expc=None, sindcolr=None, elin=None, edisintp=None, sigm=None, gamm=None, spectype='powr', plot=False): if gdat.numbener == 1: spec = flux[None, :] else: if plot: meanener = gdat.meanpara.enerplot else: meanener = gdat.meanpara.ener if gmod.spectype == 'gaus': spec = 1. / edis[None, :] / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis[None, :])**2) if gmod.spectype == 'voig': args = (gdat.meanpara.ener[:, None] + 1j * gamm[None, :]) / np.sqrt(2.) / sigm[None, :] spec = 1. / sigm[None, :] / np.sqrt(2. * pi) * flux[None, :] * real(scipy.special.wofz(args)) if gmod.spectype == 'edis': edis = edisintp(elin)[None, :] spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'pvoi': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'lore': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'powr': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) if gmod.spectype == 'colr': if plot: spec = np.zeros((gdat.numbenerplot, flux.size)) else: spec = np.empty((gdat.numbener, flux.size)) for i in gdat.indxener: if i < gdat.indxenerpivt: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i]) elif i == gdat.indxenerpivt: spec[i, :] = flux else: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i-1]) if gmod.spectype == 'curv': spec = flux[None, :] * meanener[:, None]**(-sind[None, :] - gdat.factlogtenerpivt[:, None] * curv[None, :]) if gmod.spectype == 'expc': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) * np.exp(-(meanener - gdat.enerpivt)[:, None] / expc[None, :]) return spec ### find the surface brightness due to one point source def retr_sbrtpnts(gdat, lgal, bgal, spec, psfnintp, indxpixlelem): # calculate the distance to all pixels from each point source dist = retr_angldistunit(gdat, lgal, bgal, indxpixlelem) # interpolate the PSF onto the pixels if gdat.kernevaltype == 'ulip': psfntemp = psfnintp(dist) if gdat.kernevaltype == 'bspx': pass # scale by the PS spectrum sbrtpnts = spec[:, None, None] * psfntemp return sbrtpnts def retr_psfnwdth(gdat, psfn, frac): ''' Return the PSF width ''' wdth = np.zeros((gdat.numbener, gdat.numbevtt)) for i in gdat.indxener: for m in gdat.indxevtt: psfntemp = psfn[i, :, m] indxanglgood = np.argsort(psfntemp) intpwdth = max(frac * np.amax(psfntemp), np.amin(psfntemp)) if intpwdth >= np.amin(psfntemp[indxanglgood]) and intpwdth <= np.amax(psfntemp[indxanglgood]): wdthtemp = sp.interpolate.interp1d(psfntemp[indxanglgood], gdat.binspara.angl[indxanglgood], fill_value='extrapolate')(intpwdth) else: wdthtemp = 0. wdth[i, m] = wdthtemp return wdth # lensing-related def samp_lgalbgalfromtmpl(gdat, probtmpl): indxpixldraw = np.random.choice(gdat.indxpixl, p=probtmpl) lgal = gdat.lgalgrid[indxpixldraw] + randn(gdat.sizepixl) bgal = gdat.bgalgrid[indxpixldraw] + randn(gdat.sizepixl) return lgal, bgal ## custom random variables, pdfs, cdfs and icdfs ### probability distribution functions def retr_lprbpois(data, modl): lprb = data * np.log(modl) - modl - sp.special.gammaln(data + 1) return lprb ### probability density functions def pdfn_self(xdat, minm, maxm): pdfn = 1. / (maxm - minm) return pdfn def pdfn_expo(xdat, maxm, scal): if (xdat > maxm).any(): pdfn = 0. else: pdfn = 1. / scal / (1. - np.exp(-maxm / scal)) * np.exp(-xdat / scal) return pdfn def pdfn_dexp(xdat, maxm, scal): pdfn = 0.5 * pdfn_expo(np.fabs(xdat), maxm, scal) return pdfn def pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr): if np.isscalar(xdat): xdat = np.array([xdat]) faca = 1. / (brek**(sloplowr - slopuppr) * (brek**(1. - sloplowr) - minm**(1. - sloplowr)) / \ (1. - sloplowr) + (maxm**(1. - slopuppr) - brek**(1. - slopuppr)) / (1. - slopuppr)) facb = faca * brek**(sloplowr - slopuppr) / (1. - sloplowr) pdfn = np.empty_like(xdat) indxlowr = np.where(xdat <= brek)[0] indxuppr = np.where(xdat > brek)[0] if indxlowr.size > 0: pdfn[indxlowr] = faca * brek**(sloplowr - slopuppr) * xdat[indxlowr]**(-sloplowr) if indxuppr.size > 0: pdfn[indxuppr] = faca * xdat[indxuppr]**(-slopuppr) return pdfn def pdfn_powr(xdat, minm, maxm, slop): norm = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) pdfn = norm * xdat**(-slop) return pdfn def pdfn_logt(xdat, minm, maxm): pdfn = 1. / (np.log(maxm) - np.log(minm)) / xdat return pdfn def pdfn_igam(xdat, slop, cutf): pdfn = sp.stats.invgamma.pdf(xdat, slop - 1., scale=cutf) return pdfn def pdfn_lnor(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_gaus(xdat, mean, stdv): pdfn = 1. / np.sqrt(2. * pi) / stdv * np.exp(-0.5 * ((xdat - mean) / stdv)**2) return pdfn def pdfn_lgau(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_atan(para, minmpara, maxmpara): pdfn = 1. / (para**2 + 1.) / (np.arctan(maxmpara) - np.arctan(minmpara)) return pdfn def cdfn_paragenrscalbase(gdat, strgmodl, paragenrscalbase, thisindxparagenrbase): gmod = getattr(gdat, strgmodl) scalparagenrbase = gmod.scalpara.genrbase[thisindxparagenrbase] if scalparagenrbase == 'self' or scalparagenrbase == 'logt' or scalparagenrbase == 'atan': listminmparagenrscalbase = gmod.minmpara.genrbase[thisindxparagenrbase] factparagenrscalbase = gmod.factparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'self': paragenrscalbaseunit = cdfn_self(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'logt': paragenrscalbaseunit = cdfn_logt(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'atan': gmod.listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[thisindxparagenrbase] paragenrscalbaseunit = cdfn_atan(paragenrscalbase, listminmparagenrscalbase, gmod.listmaxmparagenrscalbase) elif scalparagenrbase == 'gaus' or scalparagenrbase == 'eerr': gmod.listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[thisindxparagenrbase] gmod.liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'eerr': gmod.cdfnlistminmparagenrscalbaseunit = gmod.cdfnlistminmparagenrscalbaseunit[thisindxparagenrbase] gmod.listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[thisindxparagenrbase] paragenrscalbaseunit = cdfn_eerr(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase, \ gmod.cdfnlistminmparagenrscalbaseunit, gmod.listparagenrscalbaseunitdiff) else: paragenrscalbaseunit = cdfn_gaus(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase) elif scalparagenrbase == 'pois': paragenrscalbaseunit = paragenrscalbase if gdat.booldiagmode: if paragenrscalbaseunit == 0: print('Warning. CDF is zero.') return paragenrscalbaseunit def icdf_paragenrscalfull(gdat, strgmodl, paragenrunitfull, indxparagenrfullelem): gmod = getattr(gdat, strgmodl) # tobechanged # temp -- change zeros to empty paragenrscalfull = np.zeros_like(paragenrunitfull) for scaltype in gdat.listscaltype: listindxparagenrbasescal = gmod.listindxparagenrbasescal[scaltype] if len(listindxparagenrbasescal) == 0: continue paragenrscalfull[listindxparagenrbasescal] = icdf_paragenrscalbase(gdat, strgmodl, paragenrunitfull[listindxparagenrbasescal], scaltype, listindxparagenrbasescal) if not np.isfinite(paragenrscalfull).all(): raise Exception('') if indxparagenrfullelem is not None: for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: indxparagenrfulltemp = indxparagenrfullelem[l][gmod.namepara.genrelem[l][g]] if indxparagenrfulltemp.size == 0: continue paragenrscalfull[indxparagenrfulltemp] = icdf_trap(gdat, strgmodl, paragenrunitfull[indxparagenrfulltemp], paragenrscalfull, \ gmod.listscalparagenrelem[l][g], gmod.namepara.genrelem[l][g], l) if gdat.booldiagmode: if not np.isfinite(paragenrscalfull[indxparagenrfulltemp]).all(): raise Exception('') if not np.isfinite(paragenrscalfull).all(): raise Exception('') return paragenrscalfull def icdf_paragenrscalbase(gdat, strgmodl, paragenrunitbase, scaltype, indxparagenrbasescal): gmod = getattr(gdat, strgmodl) if scaltype == 'self' or scaltype == 'logt' or scaltype == 'atan': minmparagenrscalbase = gmod.minmpara.genrbase[indxparagenrbasescal] factparagenrscalbase = gmod.factpara.genrbase[indxparagenrbasescal] if scaltype == 'self': paragenrscalbase = tdpy.icdf_self(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'logt': paragenrscalbase = tdpy.icdf_logt(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'atan': listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_atan(paragenrunitbase, minmparagenrscalbase, listmaxmparagenrscalbase) elif scaltype == 'gaus' or scaltype == 'eerr': listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[indxparagenrbasescal] liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[indxparagenrbasescal] if scaltype == 'eerr': cdfnminmparagenrscalbaseunit = gmod.cdfnminmparagenrscalbaseunit[indxparagenrbasescal] listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_eerr(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase, cdfnminmparagenrscalbaseunit, listparagenrscalbaseunitdiff) else: paragenrscalbase = tdpy.icdf_gaus(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase) elif scaltype == 'pois': paragenrscalbase = paragenrunitbase if gdat.booldiagmode: if not np.isfinite(paragenrscalbase).all(): print('scaltype') print(scaltype) print('paragenrscalbase') print(paragenrscalbase) print('type(paragenrscalbase)') print(type(paragenrscalbase)) print('paragenrscalbase.dtype') print(paragenrscalbase.dtype) raise Exception('') return paragenrscalbase def icdf_trap(gdat, strgmodl, cdfn, paragenrscalfull, scalcomp, nameparagenrelem, l): gmod = getattr(gdat, strgmodl) if scalcomp == 'self' or scalcomp == 'powr' or scalcomp == 'dpowslopbrek' or scalcomp == 'logt': minm = getattr(gmod.minmpara, nameparagenrelem) if scalcomp != 'self': maxm = getattr(gmod.maxmpara, nameparagenrelem) if scalcomp == 'powr': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio%spop%d' % (nameparagenrelem, l))] if gdat.booldiagmode: if not np.isfinite(slop): raise Exception('') if maxm < minm: raise Exception('') icdf = tdpy.icdf_powr(cdfn, minm, maxm, slop) if scalcomp == 'dpowslopbrek': distbrek = paragenrscalfull[getattr(gmod.indxpara, 'brekprio' + nameparagenrelem)[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + nameparagenrelem)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + nameparagenrelem)[l]] icdf = tdpy.icdf_dpow(cdfn, minm, maxm, distbrek, sloplowr, slopuppr) if scalcomp == 'expo': sexp = getattr(gmod, nameparagenrelem + 'distsexppop%d' % l) icdf = tdpy.icdf_expo(cdfn, maxm, sexp) if scalcomp == 'self': fact = getattr(gmod.factpara, nameparagenrelem) icdf = tdpy.icdf_self_fact(cdfn, minm, fact) if scalcomp == 'logt': icdf = tdpy.icdf_logt(cdfn, minm, fact) if scalcomp == 'dexp': scal = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] icdf = tdpy.icdf_dexp(cdfn, maxm, scal) if scalcomp == 'lnormeanstdv': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_lnor(cdfn, distmean, diststdv) if scalcomp == 'igam': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem)[l]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) icdf = tdpy.icdf_igam(cdfn, slop, cutf) if scalcomp == 'gaus': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_gaus(cdfn, distmean, diststdv) if gdat.booldiagmode: if not np.isfinite(icdf).all(): print('icdf') print(icdf) raise Exception('') return icdf def cdfn_trap(gdat, gdatmodi, strgmodl, icdf, indxpoplthis): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmod.listscalparagenrelem = gmod.listscalparagenrelem[indxpoplthis] cdfn = np.empty_like(icdf) for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[indxpoplthis]): if gmod.listscalparagenrelem[k] == 'self' or gmod.listscalparagenrelem[k] == 'dexp' or gmod.listscalparagenrelem[k] == 'expo' \ or gmod.listscalparagenrelem[k] == 'powr' or gmod.listscalparagenrelem[k] == 'dpowslopbrek': minm = getattr(gdat.fitt.minm, nameparagenrelem) if gmod.listscalparagenrelem[k] == 'powr': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) slop = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cdfn[k] = cdfn_powr(icdf[k], minm, maxm, slop) elif gmod.listscalparagenrelem[k] == 'dpowslopbrek': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) brek = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[indxpoplthis]] sloplowr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[indxpoplthis]] slopuppr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[indxpoplthis]] cdfn[k] = cdfn_dpow(icdf[k], minm, maxm, brek, sloplowr, slopuppr) else: fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) cdfn[k] = cdfn_self(icdf[k], minm, fact) if gmod.listscalparagenrelem[k] == 'lnormeanstdv': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_lnor(icdf[k], distmean, slop) if gmod.listscalparagenrelem[k] == 'igam': slop = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) cdfn[k] = cdfn_igam(icdf[k], slop, cutf) if gmod.listscalparagenrelem[k] == 'gaus': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_gaus(icdf[k], distmean, diststdv) return cdfn ### update sampler state def updt_stat(gdat, gdatmodi): if gdat.typeverb > 1: print('updt_stat()') # update the sample and the unit sample vectors gdatmodi.this.lpritotl = gdatmodi.next.lpritotl gdatmodi.this.lliktotl = gdatmodi.next.lliktotl gdatmodi.this.lpostotl = gdatmodi.next.lpostotl gdatmodi.this.paragenrscalfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrscalfull[gdatmodi.indxsampmodi]) gdatmodi.this.paragenrunitfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrunitfull[gdatmodi.indxsampmodi]) if gdatmodi.this.indxproptype > 0: gdatmodi.this.indxelemfull = deepcopy(gdatmodi.next.indxelemfull) gdatmodi.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdatmodi.this.indxelemfull, 'fitt') def initcompfromstat(gdat, gdatmodi, namerefr): for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): minm = getattr(gdat.fitt.minmpara, nameparagenrelem) maxm = getattr(gdat.fitt.maxmpara, nameparagenrelem) try: comp = getattr(gdat, namerefr + nameparagenrelem)[l][0, :] if gmod.listscalparagenrelem[l][g] == 'self' or gmod.listscalparagenrelem[l][g] == 'logt': fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) if gmod.listscalparagenrelem[l][g] == 'self': compunit = cdfn_self(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'logt': compunit = cdfn_logt(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'expo': scal = getattr(gdat.fitt, 'gangdistsexp') maxm = getattr(gdat.fitt.maxm, nameparagenrelem) compunit = cdfn_expo(icdf, maxm, scal) if gmod.listscalparagenrelem[l][g] == 'powr' or gmod.listscalparagenrelem[l][g] == 'igam': slop = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[l]] if gmod.listscalparagenrelem[l][g] == 'powr': compunit = cdfn_powr(comp, minm, maxm, slop) if gmod.listscalparagenrelem[l][g] == 'igam': cutf = getattr(gdat, 'cutf' + nameparagenrelem) compunit = cdfn_igam(comp, slop, cutf) if gmod.listscalparagenrelem[l][g] == 'dpowslopbrek': brek = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[l]] sloplowr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[l]] slopuppr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[l]] compunit = cdfn_powr(comp, minm, maxm, brek, sloplowr, slopuppr) if gmod.listscalparagenrelem[l][g] == 'gaus': distmean = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[l]] diststdv = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[l]] compunit = cdfn_gaus(comp, distmean, diststdv) except: if gdat.typeverb > 0: print('Initialization from the reference catalog failed for %s. Sampling randomly...' % nameparagenrelem) compunit = np.random.rand(gdatmodi.this.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int)) gdatmodi.this.paragenrunitfull[gdatmodi.this.indxparagenrfullelem[l][nameparagenrelem]] = compunit ### find the set of pixels in proximity to a position on the map def retr_indxpixlelemconc(gdat, strgmodl, dictelem, l): gmod = getattr(gdat, strgmodl) lgal = dictelem[l]['lgal'] bgal = dictelem[l]['bgal'] varbampl = dictelem[l][gmod.nameparagenrelemampl[l]] if gmod.typeelemspateval[l] == 'locl': listindxpixlelem = [[] for k in range(lgal.size)] for k in range(lgal.size): indxpixlpnts = retr_indxpixl(gdat, bgal[k], lgal[k]) indxfluxproxtemp = np.digitize(varbampl[k], gdat.binspara.prox) if indxfluxproxtemp > 0: indxfluxproxtemp -= 1 if indxfluxproxtemp == gdat.binspara.prox.size - 1: print('Warning! Index of the proximity pixel list overflew. Taking the largest list...') indxfluxproxtemp -= 1 indxpixlelem = gdat.indxpixlprox[indxfluxproxtemp][indxpixlpnts] if isinstance(indxpixlelem, int): indxpixlelem = gdat.indxpixl listindxpixlelem[k] = indxpixlelem listindxpixlelemconc = np.unique(np.concatenate(listindxpixlelem)) else: listindxpixlelemconc = gdat.indxpixl listindxpixlelem = gdat.indxpixl return listindxpixlelem, listindxpixlelemconc ### find the distance between two points on the map def retr_angldistunit(gdat, lgal, bgal, indxpixlelem, retranglcosi=False): if gdat.typepixl == 'heal': xdat, ydat, zaxi = retr_unit(lgal, bgal) anglcosi = gdat.xdatgrid[indxpixlelem] * xdat + gdat.ydatgrid[indxpixlelem] * ydat + gdat.zaxigrid[indxpixlelem] * zaxi if retranglcosi: return anglcosi else: angldist = np.arccos(anglcosi) return angldist else: angldist = np.sqrt((lgal - gdat.lgalgrid[indxpixlelem])**2 + (bgal - gdat.bgalgrid[indxpixlelem])**2) return angldist ### find the pixel index of a point on the map def retr_indxpixl(gdat, bgal, lgal): if gdat.typepixl == 'heal': indxpixl = gdat.pixlcnvt[hp.ang2pix(gdat.numbsideheal, np.pi / 2. - bgal, lgal)] if gdat.booldiagmode: if (indxpixl == -1).any(): raise Exception('pixlcnvt went negative!') if gdat.typepixl == 'cart': indxlgcr = np.floor(gdat.numbsidecart * (lgal - gdat.minmlgaldata) / 2. / gdat.maxmgangdata).astype(int) indxbgcr = np.floor(gdat.numbsidecart * (bgal - gdat.minmbgaldata) / 2. / gdat.maxmgangdata).astype(int) if np.isscalar(indxlgcr): if indxlgcr < 0: indxlgcr = 0 if indxlgcr >= gdat.numbsidecart: indxlgcr = gdat.numbsidecart - 1 else: indxlgcr[np.where(indxlgcr < 0)] = 0 indxlgcr[np.where(indxlgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 if np.isscalar(indxbgcr): if indxbgcr < 0: indxbgcr = 0 if indxbgcr >= gdat.numbsidecart: indxbgcr = gdat.numbsidecart - 1 else: indxbgcr[np.where(indxbgcr < 0)] = 0 indxbgcr[np.where(indxbgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 indxpixl = indxlgcr * gdat.numbsidecart + indxbgcr # convert to an index of non-zero exposure pixels #indxpixl = gdat.indxpixlroficnvt[indxpixl] return indxpixl ## obtain count maps def retr_cntp(gdat, sbrt): cntp = sbrt * gdat.expo * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] return cntp ## plotting ### construct path for plots def retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgplot, nameinte=''): if strgmodl == 'true' or strgstat == '': path = gdat.pathinit + nameinte + strgplot + '.pdf' elif strgstat == 'pdfn' or strgstat == 'mlik': path = gdat.pathplotrtag + strgpdfn + '/finl/' + nameinte + strgstat + strgplot + '.pdf' elif strgstat == 'this': path = gdat.pathplotrtag + strgpdfn + '/fram/' + nameinte + strgstat + strgplot + '_swep%09d.pdf' % gdatmodi.cntrswep return path ### determine the marker size def retr_mrkrsize(gdat, strgmodl, compampl, nameparagenrelemampl): gmod = getattr(gdat, strgmodl) minm = getattr(gdat.minmpara, nameparagenrelemampl) maxm = getattr(gdat.maxmpara, nameparagenrelemampl) mrkrsize = (np.sqrt(compampl) - np.sqrt(minm)) / (np.sqrt(maxm) - np.sqrt(minm)) * (gdat.maxmmrkrsize - gdat.minmmrkrsize) + gdat.minmmrkrsize return mrkrsize ## experiment specific def retr_psfphubb(gmod): # temp gmod.psfpexpr = np.array([0.080, 0.087]) / gdat.anglfact def retr_psfpchan(gmod): # temp #gmod.psfpexpr = np.array([0.25, 0.3, 0.4, 0.6, 0.7]) / gdat.anglfact if gdat.numbenerfull == 5: gmod.psfpexpr = np.array([0.424 / gdat.anglfact, 2.75, 0.424 / gdat.anglfact, 2.59, 0.440 / gdat.anglfact, 2.47, 0.457 / gdat.anglfact, 2.45, 0.529 / gdat.anglfact, 3.72]) if gdat.numbenerfull == 2: gmod.psfpexpr = np.array([0.427 / gdat.anglfact, 2.57, 0.449 / gdat.anglfact, 2.49]) #gdat.psfpchan = gmod.psfpexpr[(2 * gdat.indxenerincl[:, None] + np.arange(2)[None, :]).flatten()] #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, # 0.30 / gdat.anglfacti\ # 0.40 / gdat.anglfacti\ # 0.60 / gdat.anglfacti\ # 0.70 / gdat.anglfacti #gmod.psfpexpr = np.array([0.35 / gdat.anglfact, 2e-1, 1.9, 0.5 / gdat.anglfact, 1.e-1, 2.]) #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, 2.0e-1, 1.9, \ # 0.30 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.40 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.60 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.70 / gdat.anglfact, 1.0e-1, 2.0]) def retr_psfpsdyn(gmod): gmod.psfpexpr = np.array([0.05]) def retr_psfpferm(gmod): if gdat.anlytype.startswith('rec8'): path = gdat.pathdata + 'expr/irfn/psf_P8R2_SOURCE_V6_PSF.fits' else: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' irfn = astropy.io.fits.getdata(path, 1) minmener = irfn['energ_lo'].squeeze() * 1e-3 # [GeV] maxmener = irfn['energ_hi'].squeeze() * 1e-3 # [GeV] enerirfn = np.sqrt(minmener * maxmener) numbpsfpscal = 3 numbpsfpform = 5 fermscal = np.zeros((gdat.numbevtt, numbpsfpscal)) fermform = np.zeros((gdat.numbener, gdat.numbevtt, numbpsfpform)) strgpara = ['score', 'gcore', 'stail', 'gtail', 'ntail'] for m in gdat.indxevtt: if gdat.anlytype.startswith('rec8'): irfn = astropy.io.fits.getdata(path, 1 + 3 * gdat.indxevttincl[m]) fermscal[m, :] = astropy.io.fits.getdata(path, 2 + 3 * gdat.indxevttincl[m])['PSFSCALE'] else: if m == 1: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_front.fits' elif m == 0: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' else: continue irfn = astropy.io.fits.getdata(path, 1) fermscal[m, :] = astropy.io.fits.getdata(path, 2)['PSFSCALE'] for k in range(numbpsfpform): fermform[:, m, k] = sp.interpolate.interp1d(enerirfn, np.mean(irfn[strgpara[k]].squeeze(), axis=0), fill_value='extrapolate')(gdat.meanpara.ener) # convert N_tail to f_core for m in gdat.indxevtt: for i in gdat.indxener: fermform[i, m, 4] = 1. / (1. + fermform[i, m, 4] * fermform[i, m, 2]**2 / fermform[i, m, 0]**2) # calculate the scale factor gdat.fermscalfact = np.sqrt((fermscal[None, :, 0] * (10. * gdat.meanpara.ener[:, None])**fermscal[None, :, 2])**2 + fermscal[None, :, 1]**2) # store the fermi PSF parameters gmod.psfpexpr = np.zeros(gdat.numbener * gdat.numbevtt * numbpsfpform) for m in gdat.indxevtt: for k in range(numbpsfpform): indxfermpsfptemp = m * numbpsfpform * gdat.numbener + gdat.indxener * numbpsfpform + k gmod.psfpexpr[indxfermpsfptemp] = fermform[:, m, k] def retr_refrchaninit(gdat): gdat.indxrefr = np.arange(gdat.numbrefr) gdat.dictrefr = [] for q in gdat.indxrefr: gdat.dictrefr.append(dict()) gdat.refr.namepara.elemsign = ['flux', 'magt'] gdat.refr.lablelem = ['Xue+2011', 'Wolf+2008'] gdat.listnamerefr += ['xu11', 'wo08'] setattr(gdat, 'plotminmotyp', 0.) setattr(gdat, 'plottmaxmotyp', 1.) setattr(gmod.lablrootpara, 'otyp', 'O') setattr(gdat, 'scalotypplot', 'self') setattr(gmod.lablrootpara, 'otypxu11', 'O') for name in gdat.listnamerefr: setattr(gdat, 'plotminmotyp' + name, 0.) setattr(gdat, 'plotmaxmotyp' + name, 1.) if gdat.strgcnfg == 'pcat_chan_inpt_home4msc': with open(gdat.pathinpt + 'ECDFS_Cross_ID_Hsu2014.txt', 'r') as thisfile: for k, line in enumerate(thisfile): if k < 18: continue rasccand =line[2] declcand =line[2] gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'otyp', 'lumi'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'magt', 'reds', 'otyp'] def retr_refrchanfinl(gdat): booltemp = False if gdat.anlytype.startswith('extr'): if gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] = 1490 gdat.numbpixlbgalshft[0] = 1430 else: booltemp = True elif gdat.anlytype.startswith('home'): gdat.numbpixllgalshft[0] = 0 gdat.numbpixlbgalshft[0] = 0 if gdat.numbsidecart == 600: pass elif gdat.numbsidecart == 100: indxtile = int(gdat.anlytype[-4:]) numbsidecntr = int(gdat.anlytype[8:12]) numbtileside = numbsidecntr / gdat.numbsidecart indxtilexaxi = indxtile // numbtileside indxtileyaxi = indxtile % numbtileside gdat.numbpixllgalshft[0] += indxtilexaxi * gdat.numbsidecart gdat.numbpixlbgalshft[0] += indxtileyaxi * gdat.numbsidecart elif gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] += 150 gdat.numbpixlbgalshft[0] += 150 else: booltemp = True else: booltemp = True if booltemp: raise Exception('Reference elements cannot be aligned with the spatial axes!') ## WCS object for rotating reference elements into the ROI if gdat.numbener == 2: gdat.listpathwcss[0] = gdat.pathinpt + 'CDFS-4Ms-0p5to2-asca-im-bin1.fits' else: gdat.listpathwcss[0] = gdat.pathinpt + '0.5-0.91028_flux_%sMs.img' % gdat.anlytype[4] # Xue et al. (2011) #with open(gdat.pathinpt + 'chancatl.txt', 'r') as thisfile: pathfile = gdat.pathinpt + 'Xue2011.fits' hdun = pf.open(pathfile) hdun.info() lgalchan = hdun[1].data['_Glon'] / 180. * pi bgalchan = hdun[1].data['_Glat'] / 180. * pi fluxchansoft = hdun[1].data['SFlux'] fluxchanhard = hdun[1].data['HFlux'] objttypechan = hdun[1].data['Otype'] gdat.refrlumi[0][0] = hdun[1].data['Lx'] # position gdat.refr.dictelem[0]['lgal'] = lgalchan gdat.refr.dictelem[0]['bgal'] = bgalchan # spectra gdat.refrspec = [[np.zeros((3, gdat.numbener, lgalchan.size))]] if gdat.numbener == 2: gdat.refrspec[0][0, 0, :] = fluxchansoft * 0.624e9 gdat.refrspec[0][0, 1, :] = fluxchanhard * 0.624e9 / 16. else: gdat.refrspec[0][0, :, :] = 2. * fluxchansoft[None, :] * 0.624e9 gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] # fluxes gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] # spectral indices if gdat.numbener > 1: gdat.refrsind[0] = -np.log(gdat.refrspec[0][0, 1, :] / gdat.refrspec[0][0, 0, :]) / np.log(np.sqrt(7. / 2.) / np.sqrt(0.5 * 2.)) ## object type objttypechantemp = np.zeros(lgalchan.size) - 1. indx = np.where(objttypechan == 'AGN')[0] objttypechantemp[indx] = 0.165 indx = np.where(objttypechan == 'Galaxy')[0] objttypechantemp[indx] = 0.495 indx = np.where(objttypechan == 'Star')[0] objttypechantemp[indx] = 0.835 gdat.refrotyp[0][0] = objttypechantemp # Wolf et al. (2011) path = gdat.pathdata + 'inpt/Wolf2008.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['_Glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - pi) % (2. * pi)) - pi gdat.refrbgal[1] = np.deg2rad(data['_Glat']) gdat.refrmagt[1][0] = data['Rmag'] gdat.refrreds[1][0] = data['MCz'] #listname = [] #for k in range(data['MCclass'].size): # if not data['MCclass'][k] in listname: # listname.append(data['MCclass'][k]) listname = ['Galaxy', 'Galaxy (Uncl!)', 'QSO (Gal?)', 'Galaxy (Star?)', 'Star', 'Strange Object', 'QSO', 'WDwarf'] gdat.refrotyp[1][0] = np.zeros_like(gdat.refrreds[1][0]) - 1. for k, name in enumerate(listname): indx = np.where(data['MCclass'] == name)[0] gdat.refrotyp[1][0][indx] = k / 10. # error budget for name in ['lgal', 'bgal', 'sind', 'otyp', 'lumi', 'magt', 'reds']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_refrferminit(gdat): gdat.listnamerefr += ['ac15', 'ma05'] gdat.indxrefr = np.arange(gdat.numbrefr) gdat.refr.lablelem = ['Acero+2015', 'Manchester+2005'] gdat.refr.namepara.elemsign = ['flux', 'flux0400'] setattr(gmod.lablrootpara, 'curvac15', '%s_{3FGL}' % gdat.lablcurv) setattr(gmod.lablrootpara, 'expcac15', 'E_{c,3FGL}') for name in gdat.listnamerefr: setattr(gdat.minmpara, 'curv' + name, -1.) setattr(gdat.maxmpara, 'curv' + name, 1.) setattr(gdat.minmpara, 'expc' + name, 0.1) setattr(gdat.maxmpara, 'expc' + name, 10.) gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'curv', 'expc', 'tvar', 'etag', 'styp', 'sindcolr0001', 'sindcolr0002'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'flux0400', 'per0', 'per1'] def retr_refrfermfinl(gdat): gdat.minmstyp = -0.5 gdat.maxmstyp = 3.5 gdat.lablstyp = 'S' gmod.scalstypplot = 'self' gdat.minmtvar = 0. gdat.maxmtvar = 400. gdat.labltvar = 'T' gmod.scaltvarplot = 'logt' # Acero+2015 path = gdat.pathdata + 'expr/pnts/gll_psc_v16.fit' fgl3 = astropy.io.fits.getdata(path) gdat.refr.dictelem[0]['lgal'] = np.deg2rad(fgl3['glon']) gdat.refr.dictelem[0]['lgal'] = np.pi - ((gdat.refr.dictelem[0]['lgal'] - np.pi) % (2. * np.pi)) gdat.refr.dictelem[0]['bgal'] = np.deg2rad(fgl3['glat']) gdat.refr.numbelemfull = gdat.refr.dictelem[0]['lgal'].size gdat.refrspec = [np.empty((3, gdat.numbener, gdat.refr.dictelem[0]['lgal'].size))] gdat.refrspec[0][0, :, :] = np.stack((fgl3['Flux300_1000'], fgl3['Flux1000_3000'], fgl3['Flux3000_10000']))[gdat.indxenerincl, :] / gdat.deltener[:, None] fgl3specstdvtemp = np.stack((fgl3['Unc_Flux100_300'], fgl3['Unc_Flux300_1000'], fgl3['Unc_Flux1000_3000'], fgl3['Unc_Flux3000_10000'], \ fgl3['Unc_Flux10000_100000']))[gdat.indxenerincl, :, :] / gdat.deltener[:, None, None] gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 0] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 1] gdat.refrspec[0][np.where(np.isfinite(gdat.refrspec[0]) == False)] = 0. gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] gdat.refrsindcolr0001[0] = -np.log(gdat.refrspec[0][:, 1, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[1] / gdat.enerpivt) gdat.refrsindcolr0002[0] = -np.log(gdat.refrspec[0][:, 2, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[2] / gdat.enerpivt) fgl3axisstdv = (fgl3['Conf_68_SemiMinor'] + fgl3['Conf_68_SemiMajor']) * 0.5 fgl3anglstdv = np.deg2rad(fgl3['Conf_68_PosAng']) # [rad] fgl3lgalstdv = fgl3axisstdv * abs(np.cos(fgl3anglstdv)) fgl3bgalstdv = fgl3axisstdv * abs(np.sin(fgl3anglstdv)) gdat.refretag[0] = np.zeros(gdat.refr.dictelem[0]['lgal'].size, dtype=object) for k in range(gdat.refr.dictelem[0]['lgal'].size): gdat.refretag[0][k] = '%s, %s, %s' % (fgl3['Source_Name'][k], fgl3['CLASS1'][k], fgl3['ASSOC1'][k]) gdat.refrtvar[0] = fgl3['Variability_Index'] gdat.refrstyp[0] = np.zeros_like(gdat.refr.dictelem[0]['lgal']) - 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PowerLaw ')] = 0 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'LogParabola ')] = 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLExpCutoff ')] = 2 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLSuperExpCutoff')] = 3 indx = np.where(gdat.refrstyp[0] == -1)[0] if indx.size > 0: raise Exception('') gdat.refrsind[0] = fgl3['Spectral_Index'] gdat.refrcurv[0] = fgl3['beta'] gdat.refrexpc[0] = fgl3['Cutoff'] * 1e-3 gdat.refrcurv[0][np.where(np.logical_not(np.isfinite(gdat.refrcurv[0])))] = -10. gdat.refrexpc[0][np.where(np.logical_not(np.isfinite(gdat.refrexpc[0])))] = 0. gdat.refrsind[0] = np.tile(gdat.refrsind[0], (3, 1)) gdat.refrcurv[0] = np.tile(gdat.refrcurv[0], (3, 1)) gdat.refrexpc[0] = np.tile(gdat.refrexpc[0], (3, 1)) # Manchester+2005 path = gdat.pathdata + 'inpt/Manchester2005.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - np.pi) % (2. * np.pi)) - np.pi gdat.refrbgal[1] = np.deg2rad(data['glat']) gdat.refrper0[1] = data['P0'] gdat.refrper1[1] = data['P1'] gdat.refrflux0400[1] = data['S400'] #gdat.refrdism[1] = data['DM'] #gdat.refrdlos[1] = data['Dist'] # error budget for name in ['lgal', 'bgal', 'per0', 'per1', 'flux0400', 'tvar', 'styp']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_singgaus(scaldevi, sigc): psfn = 1. / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_singking(scaldevi, sigc, gamc): psfn = 1. / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) return psfn def retr_doubgaus(scaldevi, frac, sigc, sigt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_gausking(scaldevi, frac, sigc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_doubking(scaldevi, frac, sigc, gamc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) + \ (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_lgalbgal(gang, aang): lgal = gang * np.cos(aang) bgal = gang * np.sin(aang) return lgal, bgal def retr_gang(lgal, bgal): gang = np.arccos(np.cos(lgal) * np.cos(bgal)) return gang def retr_aang(lgal, bgal): aang = np.arctan2(bgal, lgal) return aang def show_paragenrscalfull(gdat, gdatmodi, strgstat='this', strgmodl='fitt', indxsampshow=None): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) print('strgmodl: ' + strgmodl) print('strgstat: ' + strgstat) print('%5s %20s %30s %30s %15s' % ('index', 'namepara', 'paragenrunitfull', 'paragenrscalfull', 'scalpara')) for k in gmod.indxparagenrfull: if indxsampshow is not None and not k in indxsampshow: continue if gmod.numbparaelem > 0: booltemp = False for l in gmod.indxpopl: if k == gmod.indxparagenrelemsing[l][0]: booltemp = True if booltemp: print('') print('%5d %20s %30g %30g %15s' % (k, gmod.namepara.genrfull[k], gmodstat.paragenrunitfull[k], gmodstat.paragenrscalfull[k], gmod.scalpara.genrfull[k])) def prop_stat(gdat, gdatmodi, strgmodl, thisindxelem=None, thisindxpopl=None, brth=False, deth=False): if gdat.typeverb > 1: print('prop_stat()') #indxproptype # within, birth, death, split, merge # 0, 1, 2, 3, 4 gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodthis = getattr(gdatobjt, 'this') gmodnext = getattr(gdatobjt, 'next') if gmod.numbparaelem > 0: if gdat.booldiagmode: for l in gmod.indxpopl: if len(gmodthis.indxelemfull[l]) > len(set(gmodthis.indxelemfull[l])): raise Exception('Repeating entry in the element index list!') thisindxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodthis.indxelemfull, strgmodl) setattr(gmodthis, 'indxparagenrfullelem', thisindxparagenrfullelem) else: thisindxparagenrfullelem = None gdatmodi.this.boolpropfilt = True # index of the population in which a transdimensional proposal will be attempted if gmod.numbparaelem > 0: if thisindxpopl is None: gdatmodi.indxpopltran = np.random.choice(gmod.indxpopl) else: gdatmodi.indxpopltran = thisindxpopl numbelemtemp = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # forced death or birth does not check for the prior on the dimensionality on purpose! if gmod.numbparaelem > 0 and (deth or brth or np.random.rand() < gdat.probtran) and \ not (numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if brth or deth or np.random.rand() < gdat.probbrde or \ numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == 1 or numbelemtemp == 0: ## births and deaths if numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] or deth: gdatmodi.this.indxproptype = 2 elif numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or brth: gdatmodi.this.indxproptype = 1 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 1 else: gdatmodi.this.indxproptype = 2 else: ## splits and merges if numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or numbelemtemp < 2: gdatmodi.this.indxproptype = 3 elif numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]: gdatmodi.this.indxproptype = 4 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 3 else: gdatmodi.this.indxproptype = 4 else: if gdat.booldiagmode and (gdatmodi.stdp > 1e2).any(): raise Exception('') thisindxparagenrfullelemconc = [] for l in gmod.indxpopl: thisindxparagenrfullelemconc.append(thisindxparagenrfullelem[l]['full']) # get the indices of the current parameter vector if gmod.numbparaelem > 0: thisindxsampfull = np.concatenate([gmod.indxparagenrbasestdv] + thisindxparagenrfullelemconc) else: thisindxsampfull = gmod.indxparagenrbasestdv thisstdp = gdatmodi.stdp[gdat.indxstdppara[thisindxsampfull]] if not np.isfinite(thisstdp).all(): raise Exception('') gdatmodi.this.indxproptype = 0 if gdat.booldiagmode and gdat.probspmr == 0 and gdatmodi.this.indxproptype > 2: raise Exception('') if gdat.typeverb > 1: print('gdatmodi.this.indxproptype') print(gdatmodi.this.indxproptype) if gdatmodi.this.indxproptype == 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = gmodthis.indxelemfull if gdatmodi.this.indxproptype > 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) gmodnext.paragenrscalfull = np.copy(gmodthis.paragenrscalfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = deepcopy(gmodthis.indxelemfull) if gdatmodi.this.indxproptype == 0: ## proposal scale if False: # amplitude-dependent proposal scale for l in gmod.indxpopl: thiscompampl = gmodthis.paragenrscalfull[thisindxparagenrfullelem[indxelemfull][gmod.nameparagenrelemampl[l]][l]] compampl = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] minmcompampl = getattr(gmod.minmpara, gmod.nameparagenrelemampl[l]) thiscompunit = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] compunit = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] if nameparagenrelem == gmod.nameparagenrelemampl[l]: # temp -- this only works if compampl is powr distributed gdatmodi.this.stdp = stdpcomp / (thiscompampl / minmcompampl)**2. gdatmodi.this.stdv = stdpcomp / (compampl / minmcompampl)**2. gdatmodi.this.ltrp += np.sum(0.5 * (nextcompunit - thiscompunit)**2 * (1. / gdatmodi.this.stdv**2 - 1. / gdatmodi.this.stdv**2)) else: gdatmodi.this.stdp = stdpcomp / (np.minimum(thiscompampl, compampl) / minmcompampl)**0.5 ## propose a step diffparagenrunitfull = np.random.normal(size=thisindxsampfull.size) * thisstdp gmodnext.paragenrunitfull[thisindxsampfull] = gmodthis.paragenrunitfull[thisindxsampfull] + diffparagenrunitfull if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') indxsamplowr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] < 0.)[0] if indxsamplowr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr] = abs(gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr]) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') indxsampuppr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] > 1.)[0] if indxsampuppr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] = (gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] - 1.) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') gmodnext.paragenrscalfull = icdf_paragenrscalfull(gdat, strgmodl, gmodnext.paragenrunitfull, thisindxparagenrfullelem) if gdat.booldiagmode: if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') if np.amin(gmodnext.paragenrunitfull[gmod.numbpopl:]) < 0.: raise Exception('') if np.amax(gmodnext.paragenrunitfull[gmod.numbpopl:]) > 1.: raise Exception('') if not np.isfinite(gmodnext.paragenrscalfull).all(): raise Exception('') if gdatmodi.this.indxproptype > 0: gdatmodi.indxsamptran = [] if gdatmodi.this.indxproptype == 1: gdatmodi.this.auxipara = np.random.rand(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) elif gdatmodi.this.indxproptype != 2: gdatmodi.this.auxipara = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: # find an empty slot in the element list for u in range(gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if not u in gdatmodi.this.indxelemfull[gdatmodi.indxpopltran]: break gdatmodi.indxelemmodi = [u] gdatmodi.indxelemfullmodi = [gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)] # sample indices to add the new element gdatmodi.indxparagenrfullelemaddd = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemaddd) gmodnext.indxelemfull[gdatmodi.indxpopltran].append(gdatmodi.indxelemmodi[0]) if gdatmodi.this.indxproptype == 1: # sample auxiliary variables gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.this.auxipara # death if gdatmodi.this.indxproptype == 2: # occupied element index to be killed if thisindxelem is None: dethindxindxelem = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) else: dethindxindxelem = thisindxelem # element index to be killed gdatmodi.indxelemmodi = [] gdatmodi.indxelemfullmodi = [] if gdat.typeverb > 1: print('dethindxindxelem') print(dethindxindxelem) gdatmodi.indxelemmodi.append(gmodthis.indxelemfull[gdatmodi.indxpopltran][dethindxindxelem]) gdatmodi.indxelemfullmodi.append(dethindxindxelem) # parameter indices to be killed indxparagenrfullelemdeth = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(indxparagenrfullelemdeth) gdatmodi.this.auxipara = gmodthis.paragenrscalfull[indxparagenrfullelemdeth] if gdatmodi.this.indxproptype > 2: gdatmodi.comppare = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compfrst = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compseco = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) # split if gdatmodi.this.indxproptype == 3: # find the probability of splitting elements gdatmodi.indxelemfullsplt = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) gdatmodi.indxelemsplt = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullsplt] gdatmodi.indxelemfullmodi.insert(0, gdatmodi.indxelemfullsplt) gdatmodi.indxelemmodi.insert(0, gdatmodi.indxelemsplt) # sample indices for the first element gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.insert(0, gdatmodi.indxparagenrfullelemfrst) # sample indices for the second element gdatmodi.indxsampseco = gdatmodi.indxparagenrfullelemaddd # take the parent element parameters for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gdatmodi.comppare[k] = np.copy(gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]]) # draw the auxiliary parameters for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.auxipara[g] = np.random.randn() * gdat.radispmr elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = np.random.rand() else: gdatmodi.this.auxipara[g] = icdf_trap(gdat, strgmodl, np.random.rand(), gmodthis.paragenrscalfull, gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], l) # determine the new parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[1]) * gdatmodi.this.auxipara[0] else: gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[0] gdatmodi.compfrst[1] = gdatmodi.comppare[1] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[1] gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[1] * gdatmodi.this.auxipara[0] else: gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[0] gdatmodi.compseco[1] = gdatmodi.comppare[1] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[1] gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] for g in range(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.compfrst[g] = gdatmodi.comppare[g] gdatmodi.compseco[g] = gdatmodi.this.auxipara[g] # place the new parameters into the sample vector gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compfrst, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.compfrst gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compseco, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = gdatmodi.compseco # check for prior boundaries if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): if np.fabs(gdatmodi.compfrst[0]) > gdat.maxmelin or np.fabs(gdatmodi.compseco[0]) > gdat.maxmelin: gdatmodi.this.boolpropfilt = False else: if np.fabs(gdatmodi.compfrst[0]) > maxmlgal or np.fabs(gdatmodi.compseco[0]) > maxmlgal or \ np.fabs(gdatmodi.compfrst[1]) > maxmbgal or np.fabs(gdatmodi.compseco[1]) > maxmbgal: gdatmodi.this.boolpropfilt = False if gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]) or \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: if not gdatmodi.this.boolpropfilt: print('Rejecting the proposal due to a split that falls out of the prior...') if gdatmodi.this.indxproptype == 4: # determine the index of the primary element to be merged (in the full element list) gdatmodi.indxelemfullmergfrst = np.random.choice(np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran]))) ## first element index to be merged gdatmodi.mergindxelemfrst = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergfrst] # find the probability of merging this element with the others probmerg = retr_probmerg(gdat, gdatmodi, gmodthis.paragenrscalfull, thisindxparagenrfullelem, gdatmodi.indxpopltran, 'seco', typeelem=gmod.typeelem) indxelemfulltemp = np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran])) if gdat.booldiagmode: if indxelemfulltemp.size < 2: raise Exception('') gdatmodi.indxelemfullmergseco = np.random.choice(np.setdiff1d(indxelemfulltemp, np.array([gdatmodi.indxelemfullmergfrst])), p=probmerg) gdatmodi.indxelemfullmodi = np.sort(np.array([gdatmodi.indxelemfullmergfrst, gdatmodi.indxelemfullmergseco])) # parameters of the first element to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## first gdatmodi.compfrst[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]] # determine indices of the modified elements in the sample vector ## first element # temp -- this would not work for multiple populations ! gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemfrst) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemfrst) ## second element index to be merged gdatmodi.mergindxelemseco = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergseco] ## second element gdatmodi.indxparagenrfullelemseco = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemseco) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemseco) # parameters of the elements to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## second gdatmodi.compseco[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[1]]] # indices of the element to be merged gdatmodi.indxelemmodi = [gdatmodi.mergindxelemfrst, gdatmodi.mergindxelemseco] # auxiliary parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] else: gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] gdatmodi.this.auxipara[1] = gdatmodi.compseco[1] - gdatmodi.compfrst[1] gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] / \ (gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = gdatmodi.compseco[g] # merged element gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] > getattr(gdat, 'maxm' + gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: print('Proposal rejected due to falling outside the prior.') return if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[1]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) else: gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) gdatmodi.comppare[1] = gdatmodi.compfrst[1] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[1] - gdatmodi.compfrst[1]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ (gdatmodi.compseco[g] - gdatmodi.compfrst[g]) elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + gdatmodi.compseco[g] else: gdatmodi.comppare[g] = gdatmodi.compfrst[g] gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.comppare, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.comppare # calculate the proposed list of pairs if gdat.typeverb > 1: print('mergindxfrst: ', gdatmodi.mergindxelemfrst) print('gdatmodi.indxelemfullmergfrst: ', gdatmodi.indxelemfullmergfrst) print('mergindxseco: ', gdatmodi.mergindxelemseco) print('gdatmodi.indxelemfullmergseco: ', gdatmodi.indxelemfullmergseco) print('indxparagenrfullelemfrst: ', gdatmodi.indxparagenrfullelemfrst) print('indxparagenrfullelemseco: ', gdatmodi.indxparagenrfullelemseco) if gdat.typeverb > 1 and (gdatmodi.this.indxproptype == 3 or gdatmodi.this.boolpropfilt and gdatmodi.this.indxproptype == 4): if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): print('elinfrst: ', gdatmodi.compfrst[0]) print('amplfrst: ', gdatmodi.compfrst[1]) print('elinseco: ', gdatmodi.compseco[0]) print('amplseco: ', gdatmodi.compseco[1]) print('elinpare: ', gdatmodi.comppare[0]) print('fluxpare: ', gdatmodi.comppare[1]) print('auxipara[0][0]: ', gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdatmodi.this.auxipara[1]) else: print('lgalfrst: ', gdat.anglfact * gdatmodi.compfrst[0]) print('bgalfrst: ', gdat.anglfact * gdatmodi.compfrst[1]) print('amplfrst: ', gdatmodi.compfrst[2]) print('lgalseco: ', gdat.anglfact * gdatmodi.compseco[0]) print('bgalseco: ', gdat.anglfact * gdatmodi.compseco[1]) print('amplseco: ', gdatmodi.compseco[2]) print('lgalpare: ', gdat.anglfact * gdatmodi.comppare[0]) print('bgalpare: ', gdat.anglfact * gdatmodi.comppare[1]) print('fluxpare: ', gdatmodi.comppare[2]) print('auxipara[0][0]: ', gdat.anglfact * gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdat.anglfact * gdatmodi.this.auxipara[1]) print('auxipara[0][2]: ', gdatmodi.this.auxipara[2]) if gmod.numbparaelem > 0 and gdatmodi.this.indxproptype > 0 and gdatmodi.this.boolpropfilt: # change the number of elements if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] + 1 if gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] - 1 gmodnext.paragenrunitfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # remove the element from the occupied element list if (gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4): for a, indxelem in enumerate(gdatmodi.indxelemmodi): if a == 0 and gdatmodi.this.indxproptype == 2 or a == 1 and gdatmodi.this.indxproptype == 4: gmodnext.indxelemfull[gdatmodi.indxpopltran].remove(indxelem) if gdatmodi.this.indxproptype == 0: gdatmodi.indxsampmodi = thisindxsampfull else: if gdatmodi.this.indxproptype == 1: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gdatmodi.this.indxproptype == 2: gdatmodi.indxsampmodi = [gmod.indxpara.numbelem[gdatmodi.indxpopltran]] if gdatmodi.this.indxproptype == 3: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), \ gdatmodi.indxsamptran[0], gdatmodi.indxsamptran[1])) if gdatmodi.this.indxproptype == 4: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gmod.numbparaelem > 0: if gdatmodi.this.indxproptype == 0: indxparagenrfullelem = thisindxparagenrfullelem else: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodnext.indxelemfull, strgmodl) if gdat.typeverb > 1: print('gdatmodi.indxsampmodi') print(gdatmodi.indxsampmodi) if gmod.numbparaelem > 0: print('gmodthis.indxelemfull') print(gmodthis.indxelemfull) print('gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)') print(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)) if gdatmodi.this.indxproptype > 0: print('gdatmodi.indxelemmodi') print(gdatmodi.indxelemmodi) print('gdatmodi.indxelemfullmodi') print(gdatmodi.indxelemfullmodi) print('gdatmodi.this.boolpropfilt') print(gdatmodi.this.boolpropfilt) print('indxparagenrfullelem') print(indxparagenrfullelem) if gdatmodi.this.indxproptype == 1: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0][g]] = icdf_trap(gdat, strgmodl, gdatmodi.this.auxipara[g], gmodthis.paragenrscalfull, \ gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gdatmodi.indxpopltran) if gdat.booldiagmode: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]]): print('l') print(l) print('gmod.indxpara.numbelem') print(gmod.indxpara.numbelem) print('gmodthis.paragenrunitfull') print(gmodthis.paragenrunitfull) raise Exception('') if gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if strgmodl == 'fitt': diffparagenrscalfull = abs(gmodnext.paragenrscalfull - gmodthis.paragenrscalfull) #size = np.where(((gmodthis.paragenrscalfull == 0.) & (diffparagenrscalfull > 0.)) | ((gmodthis.paragenrscalfull != 0.) & (diffparagenrscalfull / gmodthis.paragenrscalfull > 0)))[0].size size = np.where(diffparagenrscalfull != 0.)[0].size if gdatmodi.this.indxproptype == 1: if size - 1 != gmod.numbparagenrelemsing[gdatmodi.indxpopltran]: raise Exception('') def calc_probprop(gdat, gdatmodi): gmod = gdat.fitt # calculate the factor to multiply the acceptance rate, i.e., ## probability of the auxiliary parameters, if gdatmodi.this.indxproptype == 0: gdatmodi.this.lpau = 0. elif gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau = gdatmodi.next.lpritotl - gdatmodi.this.lpritotl lpautemp = 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[gdatmodi.indxpopltran] if gdatmodi.this.indxproptype == 1: gdatmodi.this.lpau += lpautemp if gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau -= lpautemp elif gdatmodi.this.indxproptype == 3 or gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau = 0. dictelemtemp = [dict()] for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.lpau += -0.5 * np.log(2. * np.pi * gdat.radispmr**2) - 0.5 * (gdatmodi.this.auxipara[g] / gdat.radispmr)**2 elif g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: dictelemtemp[0][nameparagenrelem] = gdatmodi.this.auxipara[g] gdatmodi.this.lpau += retr_lprielem(gdat, 'fitt', gdatmodi.indxpopltran, g, \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gdatmodi.this.paragenrscalfull, dictelemtemp, [1]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau *= -1. if gdatmodi.this.indxproptype > 2 and gdatmodi.this.boolpropfilt: ## the ratio of the probability of the reverse and forward proposals, and if gdatmodi.this.indxproptype == 3: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.next.paragenrscalfull, gdatmodi.next.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran] + 1) + np.log(gdatmodi.this.probmergtotl) else: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.this.paragenrscalfull, gdatmodi.this.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = -np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran]) - np.log(gdatmodi.this.probmergtotl) ## Jacobian if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.ljcb = np.log(gdatmodi.comppare[1]) else: gdatmodi.this.ljcb = np.log(gdatmodi.comppare[2]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.ljcb *= -1. else: gdatmodi.this.ljcb = 0. gdatmodi.this.ltrp = 0. for l in gmod.indxpopl: if gdatmodi.this.indxproptype > 0: setattr(gdatmodi, 'auxiparapop%d' % l, gdatmodi.this.auxipara) def retr_indxparagenrfullelem(gdat, indxelemfull, strgmodl): gmod = getattr(gdat, strgmodl) ## element parameters if gmod.numbparaelem > 0: indxparagenrfullelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: indxparagenrfulltemp = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + np.array(indxelemfull[l], dtype=int) * gmod.numbparagenrelemsing[l] cntr = tdpy.cntr() indxparagenrfullelem[l] = dict() for nameparagenrelem in gmod.namepara.genrelem[l]: indxparagenrfullelem[l][nameparagenrelem] = indxparagenrfulltemp + cntr.incr() indxparagenrfullelem[l]['full'] = np.repeat(indxparagenrfulltemp, gmod.numbparagenrelemsing[l]) + np.tile(gmod.indxparagenrelemsing[l], len(indxelemfull[l])) if gdat.booldiagmode: for l in gmod.indxpopl: if len(indxparagenrfullelem[l]['full']) > 0: if np.amax(indxparagenrfullelem[l]['full']) > gmod.numbparagenrelem[l] + gmod.numbparagenrbase: print('strgmodl') print(strgmodl) print('strgstat') print(strgstat) print('gmod.numbparagenrbase') print(gmod.numbparagenrbase) print('gmod.numbparagenrelem[l]') print(gmod.numbparagenrelem[l]) print('indxparagenrfullelem[l][full]') summgene(indxparagenrfullelem[l]['full']) print('gdat.fitt.minmpara.numbelempop0') print(gdat.fitt.minmpara.numbelempop0) print('gdat.fitt.maxmpara.numbelempop0') print(gdat.fitt.maxmpara.numbelempop0) raise Exception('Element parameter indices are bad.') else: indxparagenrfullelem = None return indxparagenrfullelem def retr_weigmergodim(gdat, elin, elinothr): weigmerg = np.exp(-0.5 * ((elin - elinothr) / gdat.radispmr)**2) return weigmerg def retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr): weigmerg = np.exp(-0.5 * (((lgal - lgalothr) / gdat.radispmr)**2 + ((bgal - bgalothr) / gdat.radispmr)**2)) return weigmerg def retr_probmerg(gdat, gdatmodi, paragenrscalfull, indxparagenrfullelem, indxpopltran, strgtype, typeelem=None): # calculate the weights if strgtype == 'seco': numb = 1 if strgtype == 'pair': numb = 2 listweigmerg = [] for a in range(numb): if gmod.typeelem[indxpopltran].startswith('lghtline'): elintotl = paragenrscalfull[indxparagenrfullelem['elin'][indxpopltran]] elin = elintotl[gdatmodi.indxelemfullmodi[0]] elinothr = np.concatenate((elintotl[:gdatmodi.indxelemfullmodi[0]], elintotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergodim(gdat, elin, elinothr) else: lgaltotl = paragenrscalfull[indxparagenrfullelem['lgal'][indxpopltran]] bgaltotl = paragenrscalfull[indxparagenrfullelem['bgal'][indxpopltran]] lgal = lgaltotl[gdatmodi.indxelemfullmodi[0]] bgal = bgaltotl[gdatmodi.indxelemfullmodi[0]] lgalothr = np.concatenate((lgaltotl[:gdatmodi.indxelemfullmodi[0]], lgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) bgalothr = np.concatenate((bgaltotl[:gdatmodi.indxelemfullmodi[0]], bgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr) listweigmerg.append(weigmerg) # determine the probability of merging the second element given the first element if strgtype == 'seco': probmerg = listweigmerg[0] / np.sum(listweigmerg[0]) # determine the probability of merging the pair if strgtype == 'pair': if gmod.typeelem[indxpopltran].startswith('lghtline'): weigpair = retr_weigmergtdim(gdat, elin, elintotl[gdatmodi.indxelemfullmodi[1]]) else: weigpair = retr_weigmergtdim(gdat, lgal, lgaltotl[gdatmodi.indxelemfullmodi[1]], bgal, bgaltotl[gdatmodi.indxelemfullmodi[1]]) probmerg = weigpair / np.sum(listweigmerg[0]) + weigpair / np.sum(listweigmerg[1]) if gdat.booldiagmode: if not np.isfinite(probmerg).all(): raise Exception('Merge probability is infinite.') return probmerg def retr_indxparaelem(gmod, l, u): indxsamppnts = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + u * gmod.numbparagenrelemsing[l] + gmod.indxparagenrelemsing[l] return indxsamppnts def gang_detr(): gang, aang, lgal, bgal = sympy.symbols('gang aang lgal bgal') AB = sympy.matrices.Matrix([[a1*b1,a1*b2,a1*b3],[a2*b1,a2*b2,a2*b3],[a3*b1,a3*b2,a3*b3]]) def retr_psfn(gdat, psfp, indxenertemp, thisangl, typemodlpsfn, strgmodl): gmod = getattr(gdat, strgmodl) indxpsfpinit = gmod.numbpsfptotl * (indxenertemp[:, None] + gdat.numbener * gdat.indxevtt[None, :]) if gdat.typeexpr == 'ferm': scalangl = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(thisangl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] scalanglnorm = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(gdat.binspara.angl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] else: scalangl = thisangl[None, :, None] if typemodlpsfn == 'singgaus': sigc = psfp[indxpsfpinit] sigc = sigc[:, None, :] psfn = retr_singgaus(scalangl, sigc) elif typemodlpsfn == 'singking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigc = sigc[:, None, :] gamc = gamc[:, None, :] psfn = retr_singking(scalangl, sigc, gamc) elif typemodlpsfn == 'doubking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigt = psfp[indxpsfpinit+2] gamt = psfp[indxpsfpinit+3] frac = psfp[indxpsfpinit+4] sigc = sigc[:, None, :] gamc = gamc[:, None, :] sigt = sigt[:, None, :] gamt = gamt[:, None, :] frac = frac[:, None, :] psfn = retr_doubking(scalangl, frac, sigc, gamc, sigt, gamt) if gdat.typeexpr == 'ferm': psfnnorm = retr_doubking(scalanglnorm, frac, sigc, gamc, sigt, gamt) # normalize the PSF if gdat.typeexpr == 'ferm': fact = 2. * np.pi * np.trapz(psfnnorm * np.sin(gdat.binspara.angl[None, :, None]), gdat.binspara.angl, axis=1)[:, None, :] psfn /= fact return psfn def retr_unit(lgal, bgal): xdat = np.cos(bgal) * np.cos(lgal) ydat = -np.cos(bgal) * np.sin(lgal) zaxi = np.sin(bgal) return xdat, ydat, zaxi def retr_psec(gdat, conv): # temp conv = conv.reshape((gdat.numbsidecart, gdat.numbsidecart)) psec = (abs(scipy.fftpack.fft2(conv))**2)[:gdat.numbsidecarthalf, :gdat.numbsidecarthalf] * 1e-3 psec = psec.flatten() return psec def retr_psecodim(gdat, psec): psec = psec.reshape((gdat.numbsidecarthalf, gdat.numbsidecarthalf)) psecodim = np.zeros(gdat.numbsidecarthalf) for k in gdat.indxmpolodim: indxmpol = np.where((gdat.meanpara.mpol > gdat.binspara.mpolodim[k]) & (gdat.meanpara.mpol < gdat.binspara.mpolodim[k+1])) psecodim[k] = np.mean(psec[indxmpol]) psecodim *= gdat.meanpara.mpolodim**2 return psecodim def retr_eerrnorm(minmvarb, maxmvarb, meanvarb, stdvvarb): cdfnminm = 0.5 * (sp.special.erf((minmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfnmaxm = 0.5 * (sp.special.erf((maxmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfndiff = cdfnmaxm - cdfnminm return cdfnminm, cdfndiff def retr_condcatl(gdat): # setup ## number of stacked samples numbstks = 0 indxtupl = [] indxstks = [] indxstksparagenrscalfull = [] for n in gdat.indxsamptotl: indxstks.append([]) indxstkssamptemp = [] for l in gmod.indxpopl: indxstks[n].append([]) for k in range(len(gdat.listpostindxelemfull[n][l])): indxstks[n][l].append(numbstks) indxstkssamptemp.append(numbstks) indxtupl.append([n, l, k]) numbstks += 1 indxstkssamp.append(np.array(indxstkssamptemp)) if gdat.typeverb > 1: print('indxstks') print(indxstks) print('indxtupl') print(indxtupl) print('indxstkssamp') print(indxstksparagenrscalfull) print('numbstks') print(numbstks) cntr = 0 arrystks = np.zeros((numbstks, gmod.numbparagenrelemtotl)) for n in gdat.indxsamptotl: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdat.listpostindxelemfull[n], 'fitt') for l in gmod.indxpopl: for k in np.arange(len(gdat.listpostindxelemfull[n][l])): for m, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): arrystks[indxstks[n][l][k], m] = gdat.listpostparagenrscalfull[n, gmodstat.indxparagenrfullelem[l][nameparagenrelem][k]] if gdat.typeverb > 0: print('Constructing the distance matrix for %d stacked samples...' % arrystks.shape[0]) timeinit = gdat.functime() gdat.distthrs = np.empty(gmod.numbparagenrelemtotl) for k, nameparagenrelem in enumerate(gmod.namepara.elem): # temp l = 0 gdat.distthrs[k] = gdat.stdp[getattr(gdat, 'indxstdppop%d' % l + nameparagenrelem)] # construct lists of samples for each proposal type listdisttemp = [[] for k in range(gmod.numbparagenrelemtotl)] indxstksrows = [[] for k in range(gmod.numbparagenrelemtotl)] indxstkscols = [[] for k in range(gmod.numbparagenrelemtotl)] thisperc = 0 cntr = 0 for k in gmod.indxparagenrelemtotl: for n in range(numbstks): dist = np.fabs(arrystks[n, k] - arrystks[:, k]) indxstks = np.where(dist < gdat.distthrs[k])[0] if indxstks.size > 0: for j in indxstks: cntr += 1 listdisttemp[k].append(dist[j]) indxstksrows[k].append(n) indxstkscols[k].append(j) nextperc = np.floor(100. * float(k * numbstks + n) / numbstks / gmod.numbparagenrelemtotl) if nextperc > thisperc: thisperc = nextperc if cntr > 1e6: break listdisttemp[k] = np.array(listdisttemp[k]) indxstksrows[k] = np.array(indxstksrows[k]) indxstkscols[k] = np.array(indxstkscols[k]) if cntr > 1e6: break listdist = [[] for k in range(gmod.numbparagenrelemtotl)] for k, nameparagenrelem in enumerate(gmod.namepara.elem): listdist[k] = scipy.sparse.csr_matrix((listdisttemp[k], (indxstksrows[k], indxstkscols[k])), shape=(numbstks, numbstks)) listindxstkspair = [] indxstksleft = [] if gdat.typeverb > 0: timefinl = gdat.functime() indxstksleft = range(numbstks) # list of sample lists of the labeled element indxstksassc = [] cntr = 0 gdat.prvlthrs = 0.05 while len(indxstksleft) > 0: # count number of associations numbdist = np.zeros(numbstks, dtype=int) - 1 for p in range(len(indxstksleft)): indxindx = np.where((listdist[0][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmlgal < gdat.anglassc) & \ (listdist[1][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmbgal < gdat.anglassc))[0] numbdist[indxstksleft[p]] = indxindx.size prvlmaxmesti = np.amax(numbdist) / float(gdat.numbsamptotl) if prvlmaxmesti < gdat.prvlthrs: break # determine the element with the highest number of neighbors indxstkscntr = np.argmax(numbdist) indxsamptotlcntr = indxtupl[indxstkscntr][0] indxpoplcntr = indxtupl[indxstkscntr][1] indxelemcntr = indxtupl[indxstkscntr][2] # add the central element sample indxstksassc.append([]) indxstksassc[cntr].append(indxstkscntr) indxstksleft.remove(indxstkscntr) if gdat.typeverb > 1: print('Match step %d' % cntr) print('numbdist') print(numbdist) print('indxstkscntr') print(indxstkscntr) print('indxstksleft') print(indxstksleft) # add the associated element samples if len(indxstksleft) > 0: for n in gdat.indxsamptotl: indxstkstemp = np.intersect1d(np.array(indxstksleft), indxstksparagenrscalfull[n]) if n == indxsamptotlcntr: continue if indxstkstemp.size > 0: totl = np.zeros_like(indxstkstemp) for k in gmod.indxparagenrelemtotl: temp = listdist[k][indxstkscntr, indxstkstemp].tonp.array()[0] totl = totl + temp**2 indxleft = np.argsort(totl)[0] indxstksthis = indxstkstemp[indxleft] thisbool = True for k in gmod.indxparagenrelemtotl: if listdist[k][indxstkscntr, indxstksthis] > gdat.distthrs[k]: thisbool = False if thisbool: indxstksassc[cntr].append(indxstksthis) indxstksleft.remove(indxstksthis) # temp #if gdat.makeplot: # gdatmodi = tdpy.gdatstrt() # gdatmodi.this.indxelemfull = deepcopy(listindxelemfull[n]) # for r in range(len(indxstksassc)): # calc_poststkscond(gdat, indxstksassc) # gdatmodi.this.indxelemfull = [[] for l in gmod.indxpopl] # for indxstkstemp in indxstksleft: # indxsamptotlcntr = indxtupl[indxstkstemp][0] # indxpoplcntr = indxtupl[indxstkstemp][1] # indxelemcntr = indxtupl[indxstkstemp][2] # gdatmodi.this.paragenrscalfull = gdat.listparagenrscalfull[indxsamptotlcntr, :] # gdatmodi.this.indxelemfull[].append() # plot_genemaps(gdat, gdatmodi, 'this', 'cntpdata', strgpdfn, indxenerplot=0, indxevttplot=0, cond=True) cntr += 1 gdat.dictglob['poststkscond'] = [] gdat.dictglob['liststkscond'] = [] # for each condensed element for r in range(len(indxstksassc)): gdat.dictglob['liststkscond'].append([]) gdat.dictglob['liststkscond'][r] = {} gdat.dictglob['poststkscond'].append([]) gdat.dictglob['poststkscond'][r] = {} for strgfeat in gmod.namepara.genrelem: gdat.dictglob['liststkscond'][r][strgfeat] = [] # for each associated sample associated with the central stacked sample for k in range(len(indxstksassc[r])): indxsamptotlcntr = indxtupl[indxstksassc[r][k]][0] indxpoplcntr = indxtupl[indxstksassc[r][k]][1] indxelemcntr = indxtupl[indxstksassc[r][k]][2] for strgfeat in gmod.namepara.genrelem: temp = getattr(gdat, 'list' + strgfeat) if temp[indxsamptotlcntr][indxpoplcntr].size > 0: temp = temp[indxsamptotlcntr][indxpoplcntr][..., indxelemcntr] gdat.dictglob['liststkscond'][r][strgfeat].append(temp) for r in range(len(gdat.dictglob['liststkscond'])): for strgfeat in gmod.namepara.genrelem: arry = np.stack(gdat.dictglob['liststkscond'][r][strgfeat], axis=0) gdat.dictglob['poststkscond'][r][strgfeat] = np.zeros(([3] + list(arry.shape[1:]))) gdat.dictglob['poststkscond'][r][strgfeat][0, ...] = median(arry, axis=0) gdat.dictglob['poststkscond'][r][strgfeat][1, ...] = percennp.tile(arry, 16., axis=0) gdat.dictglob['poststkscond'][r][strgfeat][2, ...] = percennp.tile(arry, 84., axis=0) gdat.numbstkscond = len(gdat.dictglob['liststkscond']) gdat.indxstkscond = np.arange(gdat.numbstkscond) gdat.prvl = np.empty(gdat.numbstkscond) for r in gdat.indxstkscond: gdat.prvl[r] = len(gdat.dictglob['liststkscond'][r]['deltllik']) gdat.prvl /= gdat.numbsamptotl gdat.minmprvl = 0. gdat.maxmprvl = 1. retr_axis(gdat, 'prvl') gdat.histprvl = np.histogram(gdat.prvl, bins=gdat.binspara.prvl)[0] if gdat.makeplot: pathcond = getattr(gdat, 'path' + strgpdfn + 'finlcond') for k, nameparagenrelem in enumerate(gmod.namepara.elem): path = pathcond + 'histdist' + nameparagenrelem listtemp = np.copy(listdist[k].tonp.array()).flatten() listtemp = listtemp[np.where(listtemp != 1e20)[0]] tdpy.mcmc.plot_hist(path, listtemp, r'$\Delta \tilde{' + getattr(gmod.lablrootpara, nameparagenrelem) + '}$') path = pathcond + 'histprvl' tdpy.mcmc.plot_hist(path, gdat.prvl, r'$p$') gdat.prvlthrs = 0.1 gdat.indxprvlhigh = np.where(gdat.prvl > gdat.prvlthrs)[0] gdat.numbprvlhigh = gdat.indxprvlhigh.size def retr_conv(gdat, defl): defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) # temp conv = abs(np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0) + np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) / 2. conv = conv.flatten() return conv def retr_invm(gdat, defl): # temp defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) invm = (1. - np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0)) * (1. - np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) - \ np.gradient(defl[:, :, 0], gdat.sizepixl, axis=1) * np.gradient(defl[:, :, 1], gdat.sizepixl, axis=0) invm = invm.flatten() return invm def setp_indxswepsave(gdat): gdat.indxswep = np.arange(gdat.numbswep) gdat.boolsave = np.zeros(gdat.numbswep, dtype=bool) gdat.indxswepsave = np.arange(gdat.numbburn, gdat.numbburn + gdat.numbsamp * gdat.factthin, gdat.factthin) gdat.boolsave[gdat.indxswepsave] = True gdat.indxsampsave = np.zeros(gdat.numbswep, dtype=int) - 1 gdat.indxsampsave[gdat.indxswepsave] = np.arange(gdat.numbsamp) def retr_cntspnts(gdat, listposi, spec): cnts = np.zeros((gdat.numbener, spec.shape[1])) if gdat.boolbinsspat: lgal = listposi[0] bgal = listposi[1] indxpixlpnts = retr_indxpixl(gdat, bgal, lgal) else: elin = listposi[0] indxpixlpnts = np.zeros_like(elin, dtype=int) for k in range(spec.shape[1]): cnts[:, k] += spec[:, k] * gdat.expototl[:, indxpixlpnts[k]] if gdat.enerdiff: cnts *= gdat.deltener[:, None] cnts = np.sum(cnts, axis=0) return cnts def retr_mdencrit(gdat, adissour, adishost, adishostsour): mdencrit = gdat.factnewtlght / 4. / np.pi * adissour / adishostsour / adishost return mdencrit def retr_massfrombein(gdat, adissour, adishost, adishostsour): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) massfrombein = np.pi * adishost**2 * mdencrit return massfrombein def retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) fracacutasca = acut / asca factmcutfromdefs = np.pi * adishost**2 * mdencrit * asca * retr_mcutfrommscl(fracacutasca) return factmcutfromdefs def retr_mcut(gdat, defs, asca, acut, adishost, mdencrit): mscl = defs * np.pi * adishost**2 * mdencrit * asca fracacutasca = acut / asca mcut = mscl * retr_mcutfrommscl(fracacutasca) return mcut def retr_mcutfrommscl(fracacutasca): mcut = fracacutasca**2 / (fracacutasca**2 + 1.)**2 * ((fracacutasca**2 - 1.) * np.log(fracacutasca) + fracacutasca * np.pi - (fracacutasca**2 + 1.)) return mcut def retr_negalogt(varb): negalogt = sign(varb) * np.log10(np.fabs(varb)) return negalogt def retr_gradmaps(gdat, maps): # temp -- this does not work with vanishing exposure maps = maps.reshape((gdat.numbsidecart, gdat.numbsidecart)) grad = np.dstack((np.gradient(maps, gdat.sizepixl, axis=0), np.gradient(maps, gdat.sizepixl, axis=1))).reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) grad = grad.reshape((gdat.numbpixlcart, 2)) return grad def retr_spatmean(gdat, inpt, boolcntp=False): listspatmean = [[] for b in gdat.indxspatmean] listspatstdv = [[] for b in gdat.indxspatmean] for b, namespatmean in enumerate(gdat.listnamespatmean): if boolcntp: cntp = inpt[gdat.listindxcubespatmean[b]] else: cntp = inpt[gdat.listindxcubespatmean[b]] * gdat.expo[gdat.listindxcubespatmean[b]] * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] spatmean = np.mean(np.sum(cntp, 2), axis=1) / gdat.apix spatstdv = np.sqrt(np.sum(cntp, axis=(1, 2))) / gdat.numbdata / gdat.apix if gdat.boolcorrexpo: spatmean /= gdat.expototlmean spatstdv /= gdat.expototlmean if gdat.enerdiff: spatmean /= gdat.deltener spatstdv /= gdat.deltener listspatmean[b] = spatmean listspatstdv[b] = spatstdv return listspatmean, listspatstdv def retr_rele(gdat, maps, lgal, bgal, defs, asca, acut, indxpixlelem, absv=True, cntpmodl=None): grad = retr_gradmaps(gdat, maps) defl = retr_defl(gdat, indxpixlelem, lgal, bgal, defs, asca=asca, acut=acut) prod = grad * defl if cntpmodl is not None: prod /= cntpmodl[:, None] dotstemp = np.sum(prod, 1) if absv: dotstemp = np.fabs(dotstemp) else: dotstemp = dotstemp dots = np.mean(dotstemp) return dots def retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn, strgmome='pmea', indxvarb=None, indxlist=None): if strgvarb.startswith('cntpdata'): varb = getattr(gdat, strgvarb) elif strgvarb.startswith('histcntpdata'): varb = getattr(gdat, strgvarb) else: if strgmodl == 'true': gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) varb = getattr(gmodstat, strgvarb) if strgmodl == 'fitt': if strgstat == 'this': if strgmome == 'errr': varb = getattr(gdatmodi, strgstat + 'errr' + strgvarb) else: varb = getattr(gdatmodi, strgstat + strgvarb) if strgstat == 'pdfn': varb = getattr(gdat, strgmome + strgpdfn + strgvarb) if indxlist is not None: varb = varb[indxlist] if indxvarb is not None: if strgmome == 'errr': varb = varb[[slice(None)] + indxvarb] else: varb = varb[indxvarb] return np.copy(varb) def setp_indxpara(gdat, typesetp, strgmodl='fitt'): print('setp_indxpara(): Building parameter indices for model %s with type %s...' % (strgmodl, typesetp)) gmod = getattr(gdat, strgmodl) if typesetp == 'init': if strgmodl == 'fitt': gmod.lablmodl = 'Model' if strgmodl == 'true': gmod.lablmodl = 'True' # transdimensional element populations gmod.numbpopl = len(gmod.typeelem) gmod.indxpopl = np.arange(gmod.numbpopl) if gdat.typeexpr != 'user': # background component gmod.numbback = 0 gmod.indxback = [] for c in range(len(gmod.typeback)): if isinstance(gmod.typeback[c], str): if gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): namebfun = gmod.typeback[c][:8] ordrexpa = int(gmod.typeback[c][8:]) numbexpa = 4 * ordrexpa**2 indxexpa = np.arange(numbexpa) del gmod.typeback[c] for k in indxexpa: gmod.typeback.insert(c+k, namebfun + '%04d' % k) gmod.numbback = len(gmod.typeback) gmod.indxback = np.arange(gmod.numbback) gmod.numbbacktotl = np.sum(gmod.numbback) gmod.indxbacktotl = np.arange(gmod.numbbacktotl) # galaxy components gmod.indxsersfgrd = np.arange(gmod.numbsersfgrd) # name of the generative element parameter used for the amplitude gmod.nameparagenrelemampl = [[] for l in gmod.indxpopl] gmod.indxparagenrelemampl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmod.nameparagenrelemampl[l] = 'per0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.nameparagenrelemampl[l] = 'lum0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtline'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 1 elif gmod.typeelem[l].startswith('lghtpnts'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtgausbgrd'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l].startswith('clus'): gmod.nameparagenrelemampl[l] = 'nobj' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' if gmod.typeelem[l] == 'clus': gmod.nameparagenrelemampl[l] = 'nobj' if len(gmod.nameparagenrelemampl[l]) == 0: raise Exception('Amplitude feature undefined.') for featpara in gdat.listfeatpara: for strggrop in gdat.liststrggroppara: setattr(gmod, 'list' + featpara + 'para' + strggrop, []) if typesetp == 'finl': # number of elements in the current state of the true model if strgmodl == 'true': gmod.numbelem = np.zeros(gmod.numbpopl) for l in gmod.indxpopl: gmod.numbelem[l] += getattr(gmod.maxmpara, 'numbelempop%d' % l) gmod.numbelemtotl = np.sum(gmod.numbelem) # element setup ## flag to calculate the kernel approximation errors boolcalcerrr = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelemspateval[l] == 'locl' and gdat.numbpixlfull < 1e5: # temp boolcalcerrr[l] = False else: boolcalcerrr[l] = False setp_varb(gdat, 'boolcalcerrr', valu=boolcalcerrr, strgmodl=strgmodl) # maximum number of elements for each population gmod.maxmpara.numbelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = getattr(gmod.maxmpara, 'numbelempop%d' % l) # maximum number of elements summed over all populations gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) ## sorting feature nameparaelemsort = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # feature to be used to sort elements if gmod.typeelem[l].startswith('lght'): nameparaelemsort[l] = 'flux' if gmod.typeelem[l] == 'lens': nameparaelemsort[l] = 'defs' if gmod.typeelem[l].startswith('clus'): nameparaelemsort[l] = 'nobj' ## label extensions gmod.lablelemextn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{fps}' if gmod.typeelem[l] == 'lghtgausbgrd': gmod.lablelemextn[l] = r'\rm{bgs}' else: if gmod.typeelem[l].startswith('lghtpntspuls'): gmod.lablelemextn[l] = r'\rm{pul}' if gmod.typeelem[l].startswith('lghtpntsagnn'): gmod.lablelemextn[l] = r'\rm{agn}' elif gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{pts}' if gmod.typeelem[l] == 'lens': gmod.lablelemextn[l] = r'\rm{sub}' if gmod.typeelem[l].startswith('clus'): gmod.lablelemextn[l] = r'\rm{cls}' if gmod.typeelem[l].startswith('lghtline'): gmod.lablelemextn[l] = r'\rm{lin}' gmod.indxpoplgrid = [[] for y in gdat.indxgrid] for y in gdat.indxgrid: for indx, typeelemtemp in enumerate(gmod.typeelem): # foreground grid (image plane) -- the one np.where the data is measured if y == 0: if typeelemtemp.startswith('lght') and not typeelemtemp.endswith('bgrd') or typeelemtemp.startswith('clus'): gmod.indxpoplgrid[y].append(indx) # foreground mass grid if y == 1: if typeelemtemp.startswith('lens'): gmod.indxpoplgrid[y].append(indx) # background grid (source plane) if y == 2: if typeelemtemp.endswith('bgrd'): gmod.indxpoplgrid[y].append(indx) indxgridpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for y in gdat.indxgrid: if l in gmod.indxpoplgrid[y]: indxgridpopl[l] = y calcelemsbrt = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts'): calcelemsbrt = True if 'lghtgausbgrd' in gmod.typeelem: calcelemsbrtbgrd = True else: calcelemsbrtbgrd = False if gmod.boollenssubh: calcelemdefl = True else: calcelemdefl = False ## element Boolean flags gmod.boolelemlght = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.boolelemlght[l] = True else: gmod.boolelemlght[l] = False gmod.boolelemlghtanyy = True in gmod.boolelemlght gmod.boolelemlens = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lens'): gmod.boolelemlens = True gmod.boolelemsbrtdfnc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0 and (gmod.typeelem[l].startswith('lght') and not gmod.typeelem[l].endswith('bgrd') or gmod.typeelem[l].startswith('clus')): gmod.boolelemsbrtdfnc[l] = True else: gmod.boolelemsbrtdfnc[l] = False gmod.boolelemsbrtdfncanyy = True in gmod.boolelemsbrtdfnc gmod.boolelemdeflsubh = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': gmod.boolelemdeflsubh[l] = True else: gmod.boolelemdeflsubh[l] = False gmod.boolelemdeflsubhanyy = True in gmod.boolelemdeflsubh gmod.boolelemsbrtextsbgrd = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l].endswith('bgrd'): gmod.boolelemsbrtextsbgrd[l] = True else: gmod.boolelemsbrtextsbgrd[l] = False gmod.boolelemsbrtextsbgrdanyy = True in gmod.boolelemsbrtextsbgrd if gmod.boolelemsbrtextsbgrdanyy: gmod.indxpopllens = 1 else: gmod.indxpopllens = 0 gmod.boolelemsbrtpnts = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l] != 'lghtline' or gmod.typeelem[l] == 'clus': gmod.boolelemsbrtpnts[l] = True else: gmod.boolelemsbrtpnts[l] = False gmod.boolelemsbrtpntsanyy = True in gmod.boolelemsbrtpnts # temp -- because there is currently no extended source gmod.boolelemsbrt = gmod.boolelemsbrtdfnc gmod.boolelempsfn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts') or gmod.typeelem[l] == 'clus': gmod.boolelempsfn[l] = True else: gmod.boolelempsfn[l] = False gmod.boolelempsfnanyy = True in gmod.boolelempsfn spectype = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.boolelemlght[l]: spectype[l] = 'powr' else: spectype[l] = 'none' setp_varb(gdat, 'spectype', valu=spectype, strgmodl=strgmodl) minmgwdt = 2. * gdat.sizepixl maxmgwdt = gdat.maxmgangdata / 4. setp_varb(gdat, 'gwdt', minm=minmgwdt, maxm=maxmgwdt, strgmodl=strgmodl) setp_varb(gdat, 'aerr', minm=-100, maxm=100, strgmodl=strgmodl, popl='full') if gmod.boolelemlghtanyy: # flux if gdat.typeexpr == 'ferm': minmflux = 1e-9 maxmflux = 1e-6 if gdat.typeexpr == 'tess': minmflux = 1. maxmflux = 1e3 if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': minmflux = 1e4 maxmflux = 1e7 else: minmflux = 3e-9 maxmflux = 1e-6 if gdat.typeexpr == 'gene': minmflux = 0.1 maxmflux = 100. if gdat.typeexpr == 'hubb': minmflux = 1e-20 maxmflux = 1e-17 if gdat.typeexpr == 'fire': minmflux = 1e-20 maxmflux = 1e-17 setp_varb(gdat, 'flux', limt=[minmflux, maxmflux], strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'brekprioflux', limt=[3e-9, 1e-6], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'sloplowrprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'slopupprprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) if gdat.boolbinsener: ### spectral parameters if gdat.typeexpr == 'ferm': sind = [1., 3.] minmsind = 1. maxmsind = 3. if gdat.typeexpr == 'chan': minmsind = 0.4 maxmsind = 2.4 sind = [0.4, 2.4] if gdat.typeexpr == 'hubb': minmsind = 0.5 maxmsind = 2.5 sind = [0.4, 2.4] if gdat.typeexpr != 'fire': setp_varb(gdat, 'sind', limt=[minmsind, maxmsind], strgmodl=strgmodl) setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) setp_varb(gdat, 'expc', limt=[0.1, 10.], strgmodl=strgmodl) setp_varb(gdat, 'sinddistmean', limt=sind, popl='full', strgmodl=strgmodl) #### standard deviations should not be too small setp_varb(gdat, 'sinddiststdv', limt=[0.3, 2.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdistmean', limt=[-1., 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdiststdv', limt=[0.1, 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdistmean', limt=[1., 8.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdiststdv', limt=[0.01 * gdat.maxmener, gdat.maxmener], popl='full', strgmodl=strgmodl) for i in gdat.indxenerinde: setp_varb(gdat, 'sindcolr0001', limt=[-2., 6.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr0002', limt=[0., 8.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr%04d' % i, limt=[-5., 10.], strgmodl=strgmodl) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': setp_varb(gdat, 'gang', limt=[1e-1 * gdat.sizepixl, gdat.maxmgangdata], strgmodl=strgmodl) setp_varb(gdat, 'geff', limt=[0., 0.4], strgmodl=strgmodl) setp_varb(gdat, 'dglc', limt=[10., 3e3], strgmodl=strgmodl) setp_varb(gdat, 'phii', limt=[0., 2. * np.pi], strgmodl=strgmodl) setp_varb(gdat, 'thet', limt=[0., np.pi], strgmodl=strgmodl) setp_varb(gdat, 'per0distmean', limt=[5e-4, 1e1], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdistmean', limt=[1e7, 1e16], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'per0diststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdiststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'gangslop', limt=[0.5, 4.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'dglcslop', limt=[0.5, 2.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'spatdistcons', limt=[1e-4, 1e-2], popl='full') setp_varb(gdat, 'bgaldistscal', limt=[0.5 / gdat.anglfact, 5. / gdat.anglfact], popl='full', strgmodl=strgmodl) if gmod.typeelem[l] == 'lghtpntsagnntrue': setp_varb(gdat, 'dlos', limt=[1e7, 1e9], strgmodl=strgmodl) setp_varb(gdat, 'dlosslop', limt=[-0.5, -3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0', limt=[1e43, 1e46], strgmodl=strgmodl) setp_varb(gdat, 'lum0distbrek', limt=[1e42, 1e46], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0sloplowr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0slopuppr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) # construct background surface brightness templates from the user input gmod.sbrtbacknorm = [[] for c in gmod.indxback] gmod.boolunifback = np.ones(gmod.numbback, dtype=bool) for c in gmod.indxback: gmod.sbrtbacknorm[c] = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gmod.typeback[c] == 'data': gmod.sbrtbacknorm[c] = np.copy(gdat.sbrtdata) gmod.sbrtbacknorm[c][np.where(gmod.sbrtbacknorm[c] == 0.)] = 1e-100 elif isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c] elif isinstance(gmod.typeback[c], list) and isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = retr_spec(gdat, np.array([gmod.typeback[c]]), sind=np.array([gmod.typeback[c]]))[:, 0, None, None] elif isinstance(gmod.typeback[c], np.ndarray) and gmod.typeback[c].ndim == 1: gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c][:, None, None] elif gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): indxexpatemp = int(gmod.typeback[c][8:]) indxterm = indxexpatemp // ordrexpa**2 indxexpaxdat = (indxexpatemp % ordrexpa**2) // ordrexpa + 1 indxexpaydat = (indxexpatemp % ordrexpa**2) % ordrexpa + 1 if namebfun == 'bfunfour': ampl = 1. func = gdat.meanpara.bgalcart if namebfun == 'bfunwfou': functemp = np.exp(-0.5 * (gdat.meanpara.bgalcart / (1. / gdat.anglfact))**2) ampl = np.sqrt(functemp) func = functemp argslgal = 2. * np.pi * indxexpaxdat * gdat.meanpara.lgalcart / gdat.maxmgangdata argsbgal = 2. * np.pi * indxexpaydat * func / gdat.maxmgangdata if indxterm == 0: termfrst = np.sin(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 1: termfrst = np.sin(argslgal) termseco = ampl * np.cos(argsbgal) if indxterm == 2: termfrst = np.cos(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 3: termfrst = np.cos(argslgal) termseco = ampl * np.cos(argsbgal) gmod.sbrtbacknorm[c] = (termfrst[None, :] * termseco[:, None]).flatten()[None, :, None] * \ np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) else: path = gdat.pathinpt + gmod.typeback[c] gmod.sbrtbacknorm[c] = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': if not gdat.boolforccart: if gmod.sbrtbacknorm[c].shape[2] != gdat.numbsidecart: raise Exception('Provided background template must have the chosen image dimensions.') gmod.sbrtbacknorm[c] = gmod.sbrtbacknorm[c].reshape((gmod.sbrtbacknorm[c].shape[0], -1, gmod.sbrtbacknorm[c].shape[-1])) if gdat.typepixl == 'cart' and gdat.boolforccart: sbrtbacknormtemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtbacknormtemp[i, :, m] = tdpy.retr_cart(gmod.sbrtbacknorm[c][i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gmod.sbrtbacknorm[c] = sbrtbacknormtemp # determine spatially uniform background templates for i in gdat.indxenerfull: for m in gdat.indxevttfull: if np.std(gmod.sbrtbacknorm[c][i, :, m]) > 1e-6: gmod.boolunifback[c] = False boolzero = True gmod.boolbfun = False for c in gmod.indxback: if np.amin(gmod.sbrtbacknorm[c]) < 0. and isinstance(gmod.typeback[c], str) and not gmod.typeback[c].startswith('bfun'): booltemp = False raise Exception('Background templates must be positive-definite every where.') if not np.isfinite(gmod.sbrtbacknorm[c]).all(): raise Exception('Background template is not finite.') if np.amin(gmod.sbrtbacknorm[c]) > 0. or gmod.typeback[c] == 'data': boolzero = False if isinstance(gmod.typeback[c], str) and gmod.typeback[c].startswith('bfun'): gmod.boolbfun = True if boolzero and not gmod.boolbfun: raise Exception('At least one background template must be positive everynp.where.') # temp -- does not take into account dark hosts gmod.boolhost = gmod.typeemishost != 'none' # type of PSF evaluation if gmod.maxmpara.numbelemtotl > 0 and gmod.boolelempsfnanyy: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'full' else: # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'kern' else: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is convolved by a kernel, no point source exists typeevalpsfn = 'conv' else: # the background is not convolved by a kernel, no point source exists typeevalpsfn = 'none' setp_varb(gdat, 'typeevalpsfn', valu=typeevalpsfn, strgmodl=strgmodl) if gdat.typeverb > 1: print('gmod.typeevalpsfn') print(gmod.typeevalpsfn) gmod.boolapplpsfn = gmod.typeevalpsfn != 'none' ### PSF model if gmod.typeevalpsfn != 'none': if gmod.typemodlpsfn == 'singgaus': numbpsfpform = 1 elif gmod.typemodlpsfn == 'singking': numbpsfpform = 2 elif gmod.typemodlpsfn == 'doubgaus': numbpsfpform = 3 elif gmod.typemodlpsfn == 'gausking': numbpsfpform = 4 elif gmod.typemodlpsfn == 'doubking': numbpsfpform = 5 gmod.numbpsfptotl = numbpsfpform if gdat.boolpriopsfninfo: for i in gdat.indxener: for m in gdat.indxevtt: meansigc = gmod.psfpexpr[i * gmod.numbpsfptotl + m * gmod.numbpsfptotl * gdat.numbener] stdvsigc = meansigc * 0.1 setp_varb(gdat, 'sigcen%02devt%d' % (i, m), mean=meansigc, stdv=stdvsigc, lablroot='$\sigma$', scal='gaus', \ strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': meangamc = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 1] stdvgamc = meangamc * 0.1 setp_varb(gdat, 'gamcen%02devt%d' % (i, m), mean=meangamc, stdv=stdvgamc, strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking': meansigt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 2] stdvsigt = meansigt * 0.1 setp_varb(gdat, 'sigten%02devt%d' % (i, m), mean=meansigt, stdv=stdvsigt, strgmodl=strgmodl) meangamt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 3] stdvgamt = meangamt * 0.1 setp_varb(gdat, 'gamten%02devt%d' % (i, m), mean=meangamt, stdv=stdvgamt, strgmodl=strgmodl) meanpsff = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 4] stdvpsff = meanpsff * 0.1 setp_varb(gdat, 'psffen%02devt%d' % (i, m), mean=meanpsff, stdv=stdvpsff, strgmodl=strgmodl) else: if gdat.typeexpr == 'gene': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'ferm': minmsigm = 0.1 maxmsigm = 10. if gdat.typeexpr == 'hubb': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'chan': minmsigm = 0.1 / gdat.anglfact maxmsigm = 2. / gdat.anglfact minmgamm = 1.5 maxmgamm = 20. setp_varb(gdat, 'sigc', minm=minmsigm, maxm=maxmsigm, lablroot='$\sigma_c$', ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'sigt', minm=minmsigm, maxm=maxmsigm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamc', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamt', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'psff', minm=0., maxm=1., ener='full', evtt='full', strgmodl=strgmodl) # background ## number of background parameters numbbacp = 0 for c in gmod.indxback: if gmod.boolspecback[c]: numbbacp += 1 else: numbbacp += gdat.numbener ## background parameter indices gmod.indxbackbacp = np.zeros(numbbacp, dtype=int) indxenerbacp = np.zeros(numbbacp, dtype=int) cntr = 0 for c in gmod.indxback: if gmod.boolspecback[c]: gmod.indxbackbacp[cntr] = c cntr += 1 else: for i in gdat.indxener: indxenerbacp[cntr] = i gmod.indxbackbacp[cntr] = c cntr += 1 # indices of background parameters for each background component gmod.indxbacpback = [[] for c in gmod.indxback] for c in gmod.indxback: gmod.indxbacpback[c] = np.where((gmod.indxbackbacp == c))[0] # list of names of diffuse components gmod.listnamediff = [] for c in gmod.indxback: gmod.listnamediff += ['back%04d' % c] if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: gmod.listnamediff += ['hostisf%d' % e] if gmod.boollens: gmod.listnamediff += ['lens'] # list of names of emission components listnameecom = deepcopy(gmod.listnamediff) for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: if strgmodl == 'true' and gmod.numbelem[l] > 0 or strgmodl == 'fitt' and gmod.maxmpara.numbelem[l] > 0: if not 'dfnc' in listnameecom: listnameecom += ['dfnc'] if not 'dfncsubt' in listnameecom: listnameecom += ['dfncsubt'] gmod.listnameecomtotl = listnameecom + ['modl'] for c in gmod.indxback: setp_varb(gdat, 'cntpback%04d' % c, lablroot='$C_{%d}$' % c, minm=1., maxm=100., scal='logt', strgmodl=strgmodl) gmod.listnamegcom = deepcopy(gmod.listnameecomtotl) if gmod.boollens: gmod.listnamegcom += ['bgrd'] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: gmod.listnamegcom += ['bgrdgalx', 'bgrdexts'] numbdiff = len(gmod.listnamediff) convdiff = np.zeros(numbdiff, dtype=bool) for k, namediff in enumerate(gmod.listnamediff): if not (gdat.boolthindata or gmod.typeevalpsfn == 'none' or gmod.typeevalpsfn == 'kern'): if namediff.startswith('back'): indx = int(namediff[-4:]) convdiff[k] = not gmod.boolunifback[indx] else: convdiff[k] = True # element parameters that correlate with the statistical significance of the element gmod.namepara.elemsign = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.namepara.elemsign[l] = 'flux' if gmod.typeelem[l] == 'lens': gmod.namepara.elemsign[l] = 'defs' if gmod.typeelem[l].startswith('clus'): gmod.namepara.elemsign[l] = 'nobj' if gdat.typeverb > 0: if strgmodl == 'true': strgtemp = 'true' if strgmodl == 'fitt': strgtemp = 'fitting' print('Building elements for the %s model...' % strgtemp) # define the names and scalings of element parameters gmod.namepara.genrelem = [[] for l in gmod.indxpopl] gmod.listscalparagenrelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] = ['elin'] gmod.listscalparagenrelem[l] = ['logt'] elif gmod.typespatdist[l] == 'diskscal': gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'dexp'] elif gmod.typespatdist[l] == 'gangexpo': gmod.namepara.genrelem[l] = ['gang', 'aang'] gmod.listscalparagenrelem[l] = ['expo', 'self'] elif gmod.typespatdist[l] == 'glc3': gmod.namepara.genrelem[l] = ['dglc', 'thet', 'phii'] gmod.listscalparagenrelem[l] = ['powr', 'self', 'self'] else: gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'self'] # amplitude if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['lum0'] gmod.listscalparagenrelem[l] += ['dpowslopbrek'] elif gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['per0'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] elif gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['flux'] gmod.listscalparagenrelem[l] += [gmod.typeprioflux[l]] elif gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['defs'] gmod.listscalparagenrelem[l] += ['powr'] elif gmod.typeelem[l].startswith('clus'): gmod.namepara.genrelem[l] += ['nobj'] gmod.listscalparagenrelem[l] += ['powr'] # shape if gmod.typeelem[l] == 'lghtgausbgrd' or gmod.typeelem[l] == 'clusvari': gmod.namepara.genrelem[l] += ['gwdt'] gmod.listscalparagenrelem[l] += ['powr'] if gmod.typeelem[l] == 'lghtlinevoig': gmod.namepara.genrelem[l] += ['sigm'] gmod.listscalparagenrelem[l] += ['logt'] gmod.namepara.genrelem[l] += ['gamm'] gmod.listscalparagenrelem[l] += ['logt'] # others if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['magf'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] gmod.namepara.genrelem[l] += ['geff'] gmod.listscalparagenrelem[l] += ['self'] elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['dlos'] gmod.listscalparagenrelem[l] += ['powr'] if gdat.numbener > 1 and gmod.typeelem[l].startswith('lghtpnts'): if gmod.spectype[l] == 'colr': for i in gdat.indxener: if i == 0: continue gmod.namepara.genrelem[l] += ['sindcolr%04d' % i] gmod.listscalparagenrelem[l] += ['self'] else: gmod.namepara.genrelem[l] += ['sind'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'curv': gmod.namepara.genrelem[l] += ['curv'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'expc': gmod.namepara.genrelem[l] += ['expc'] gmod.listscalparagenrelem[l] += ['self'] if gmod.typeelem[l] == 'lens': if gdat.variasca: gmod.namepara.genrelem[l] += ['asca'] gmod.listscalparagenrelem[l] += ['self'] if gdat.variacut: gmod.namepara.genrelem[l] += ['acut'] gmod.listscalparagenrelem[l] += ['self'] # names of element parameters for each scaling gmod.namepara.genrelemscal = [{} for l in gmod.indxpopl] for l in gmod.indxpopl: for scaltype in gdat.listscaltype: gmod.namepara.genrelemscal[l][scaltype] = [] for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if scaltype == gmod.listscalparagenrelem[l][k]: gmod.namepara.genrelemscal[l][scaltype].append(nameparagenrelem) # variables for which whose marginal distribution and pair-correlations will be plotted gmod.namepara.derielemodim = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.derielemodim[l] = deepcopy(gmod.namepara.genrelem[l]) gmod.namepara.derielemodim[l] += ['deltllik'] if gdat.boolbinsspat: if not 'lgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['lgal'] if not 'bgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['bgal'] if not 'gang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['gang'] if not 'aang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['aang'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.derielemodim[l] += ['cnts'] if gdat.typeexpr == 'ferm': gmod.namepara.derielemodim[l] + ['sbrt0018'] if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.derielemodim[l] += ['reds'] gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] gmod.namepara.derielemodim[l] += ['mass'] gmod.namepara.derielemodim[l] += ['dlos'] if gmod.typeelem[l] == 'lens': gmod.namepara.derielemodim[l] += ['mcut', 'diss', 'rele', 'reln', 'relk', 'relf', 'relm', 'reld', 'relc'] #for k in range(len(gmod.namepara.derielemodim[l])): # gmod.namepara.derielemodim[l][k] += 'pop%d' % l # check later # temp #if strgmodl == 'fitt': # for q in gdat.indxrefr: # if gmod.nameparagenrelemampl[l] in gdat.refr.namepara.elem[q]: # gmod.namepara.derielemodim[l].append('aerr' + gdat.listnamerefr[q]) if gdat.typeverb > 1: print('gmod.namepara.derielemodim') print(gmod.namepara.derielemodim) # derived element parameters gmod.namepara.derielem = gmod.namepara.derielemodim[:] if gdat.typeverb > 1: print('gmod.namepara.derielem') print(gmod.namepara.derielem) # derived parameters gmod.listnameparaderitotl = [temptemp for temp in gmod.namepara.derielem for temptemp in temp] #gmod.listnameparaderitotl += gmod.namepara.scal for namediff in gmod.listnamediff: gmod.listnameparaderitotl += ['cntp' + namediff] if gdat.typeverb > 1: print('gmod.listnameparaderitotl') print(gmod.listnameparaderitotl) if strgmodl == 'fitt': # add reference element parameters that are not available in the fitting model gdat.refr.namepara.elemonly = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] gmod.namepara.extrelem = [[] for l in gmod.indxpopl] for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for name in gdat.refr.namepara.elem[q]: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and (name == 'defs' or name == 'acut' or name == 'asca' or name == 'mass'): continue if gmod.typeelem[l] == ('lens') and (name == 'cnts' or name == 'flux' or name == 'spec' or name == 'sind'): continue if not name in gmod.namepara.derielemodim[l]: nametotl = name + gdat.listnamerefr[q] if name == 'etag': continue gmod.namepara.derielemodim[l].append(nametotl) if gdat.refr.numbelem[q] == 0: continue gdat.refr.namepara.elemonly[q][l].append(name) if not nametotl in gmod.namepara.extrelem[l]: gmod.namepara.extrelem[l].append(nametotl) #if name == 'reds': # for nametemp in ['lumi', 'dlos']: # nametemptemp = nametemp + gdat.listnamerefr[q] # if not nametemptemp in gmod.namepara.extrelem[l]: # gmod.namepara.derielemodim[l].append(nametemp + gdat.listnamerefr[q]) # gmod.namepara.extrelem[l].append(nametemptemp) if gdat.typeverb > 1: print('gdat.refr.namepara.elemonly') print(gdat.refr.namepara.elemonly) if gdat.typeexpr == 'chan' and gdat.typedata == 'inpt': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpnts': gmod.namepara.extrelem[l].append('lumiwo08') gmod.namepara.derielemodim[l].append('lumiwo08') if gdat.typeverb > 1: print('gmod.namepara.extrelem') print(gmod.namepara.extrelem) # defaults gmod.liststrgpdfnmodu = [[] for l in gmod.indxpopl] gmod.namepara.genrelemmodu = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0.: if l == 1: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] if l == 2: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for liststrg in [gmod.namepara.genrelem[l], gmod.namepara.derielemodim[l]]: for strgthis in liststrg: if not strgthis in gmod.namepara.elem[l]: gmod.namepara.elem[l].append(strgthis) # temp for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] += ['spec'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['spec', 'specplot'] if gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['deflprof'] #gmod.namepara.genrelemeval = [[] for l in gmod.indxpopl] #for l in gmod.indxpopl: # if gmod.typeelem[l].startswith('clus'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'nobj'] # if gmod.typeelem[l] == 'clusvari': # gmod.namepara.genrelemeval[l] += ['gwdt'] # if gmod.typeelem[l] == 'lens': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'defs', 'asca', 'acut'] # if gmod.typeelem[l].startswith('lghtline'): # gmod.namepara.genrelemeval[l] = ['elin', 'spec'] # elif gmod.typeelem[l] == 'lghtgausbgrd': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'gwdt', 'spec'] # elif gmod.typeelem[l].startswith('lght'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'spec'] ## element legends lablpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': lablpopl[l] = 'FPS' if gmod.typeelem[l] == 'lghtgausbgrd': lablpopl[l] = 'BGS' else: if gmod.typeelem[l] == 'lghtpntspuls': lablpopl[l] = 'Pulsar' elif gmod.typeelem[l].startswith('lghtpntsagnn'): lablpopl[l] = 'AGN' elif gmod.typeelem[l].startswith('lghtpnts'): lablpopl[l] = 'PS' if gmod.typeelem[l] == 'lens': lablpopl[l] = 'Subhalo' if gmod.typeelem[l].startswith('clus'): lablpopl[l] = 'Cluster' if gmod.typeelem[l].startswith('lghtline'): lablpopl[l]= 'Line' setp_varb(gdat, 'lablpopl', valu=lablpopl, strgmodl=strgmodl) if strgmodl == 'true': gmod.indxpoplassc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.numbpopl == 3 and gmod.typeelem[1] == 'lens': gmod.indxpoplassc[l] = [l] else: gmod.indxpoplassc[l] = gmod.indxpopl # variables for which two dimensional histograms will be calculated gmod.namepara.genrelemcorr = [[] for l in gmod.indxpopl] if gdat.boolplotelemcorr: for l in gmod.indxpopl: for strgfeat in gmod.namepara.derielemodim[l]: gmod.namepara.genrelemcorr[l].append(strgfeat) # number of element parameters if gmod.numbpopl > 0: gmod.numbparagenrelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcuml = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcumr = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: # number of generative element parameters for a single element of a specific population gmod.numbparagenrelemsing[l] = len(gmod.namepara.genrelem[l]) # number of derived element parameters for a single element of a specific population gmod.numbparaderielemsing[l] = len(gmod.namepara.derielem[l]) # number of element parameters for a single element of a specific population gmod.numbparaelemsing[l] = len(gmod.namepara.elem[l]) # number of generative element parameters for all elements of a specific population gmod.numbparagenrelem[l] = gmod.numbparagenrelemsing[l] * gmod.maxmpara.numbelem[l] # number of generative element parameters up to the beginning of a population gmod.numbparagenrelemcuml[l] = np.sum(gmod.numbparagenrelem[:l]) # number of generative element parameters up to the end of a population gmod.numbparagenrelemcumr[l] = np.sum(gmod.numbparagenrelem[:l+1]) # number of derived element parameters for all elements of a specific population gmod.numbparaderielem[l] = gmod.numbparaderielemsing[l] * gmod.numbelem[l] # number of element parameters for all elements of a specific population gmod.numbparaelem[l] = gmod.numbparaelemsing[l] * gmod.numbelem[l] # number of generative element parameters summed over all populations gmod.numbparagenrelemtotl = np.sum(gmod.numbparagenrelem) # number of derived element parameters summed over all populations gmod.numbparaderielemtotl = np.sum(gmod.numbparaderielem) # number of element parameters summed over all populations gmod.numbparaelemtotl = np.sum(gmod.numbparaderielem) gmod.indxparagenrelemsing = [] for l in gmod.indxpopl: gmod.indxparagenrelemsing.append(np.arange(gmod.numbparagenrelemsing[l])) gmod.indxparaderielemsing = [] for l in gmod.indxpopl: gmod.indxparaderielemsing.append(np.arange(gmod.numbparaderielemsing[l])) gmod.indxparaelemsing = [] for l in gmod.indxpopl: gmod.indxparaelemsing.append(np.arange(gmod.numbparaelemsing[l])) # size of the auxiliary variable propobability density vector if gmod.maxmpara.numbelemtotl > 0: gmod.numblpri = 3 + gmod.numbparagenrelem * gmod.numbpopl else: gmod.numblpri = 0 if gdat.penalpridiff: gmod.numblpri += 1 indxlpri = np.arange(gmod.numblpri) # append the population tags to element parameter names #for l in gmod.indxpopl: # gmod.namepara.genrelem[l] = [gmod.namepara.genrelem[l][g] + 'pop%d' % l for g in gmod.indxparagenrelemsing[l]] gmod.boolcompposi = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.boolcompposi[l] = np.zeros(gmod.numbparagenrelemsing[l], dtype=bool) if gmod.typeelem[l].startswith('lghtline'): gmod.boolcompposi[l][0] = True else: gmod.boolcompposi[l][0] = True gmod.boolcompposi[l][1] = True # list of strings across all populations ## all (generative and derived) element parameters gmod.numbparaelem = len(gmod.namepara.elem) gmod.indxparaelem = np.arange(gmod.numbparaelem) # flattened list of generative element parameters gmod.listnameparagenfelem = [] for l in gmod.indxpopl: for nameparagenrelem in gmod.namepara.genrelem[l]: gmod.listnameparagenfelem.append(nameparagenrelem + 'pop%d' % l) # concatenated list of flattened generative and derived element parameters gmod.listnameparatotlelem = gmod.listnameparagenfelem + gmod.namepara.derielem gmod.numbparaelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.numbparaelem[l] = len(gmod.namepara.elem[l]) numbdeflsubhplot = 2 numbdeflsingplot = numbdeflsubhplot if gmod.numbparaelem > 0: numbdeflsingplot += 3 gmod.convdiffanyy = True in convdiff cntr = tdpy.cntr() if gmod.boollens: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost massfrombein = retr_massfrombein(gdat, adissour, adishost, adishostsour) mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) # object of parameter indices gmod.indxpara = tdpy.gdatstrt() # define parameter indices if gmod.numbparaelem > 0: # number of elements #gmod.indxpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: indx = cntr.incr() setattr(gmod.indxpara, 'numbelempop%d' % l, indx) #gmod.indxpara.numbelem[l] = indx # hyperparameters ## mean number of elements if gmod.typemodltran == 'pois': #gmod.indxpara.meanelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: indx = cntr.incr() setattr(gmod.indxpara, 'meanelempop%d' % l, indx) #gmod.indxpara.meanelem[l] = indx ## parameters parametrizing priors on element parameters liststrgvarb = [] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: for strgpdfnelemgenr, strgfeat in zip(gmod.listscalparagenrelem[l], gmod.namepara.genrelem[l]): if strgpdfnelemgenr == 'expo' or strgpdfnelemgenr == 'dexp': liststrgvarb += [strgfeat + 'distscal'] if strgpdfnelemgenr == 'powr': liststrgvarb += ['slopprio' + strgfeat + 'pop%d' % l] if strgpdfnelemgenr == 'dpow': liststrgvarb += [strgfeat + 'distbrek'] liststrgvarb += [strgfeat + 'sloplowr'] liststrgvarb += [strgfeat + 'slopuppr'] if strgpdfnelemgenr == 'gausmean' or strgpdfnelemgenr == 'lnormean': liststrgvarb += [strgfeat + 'distmean'] if strgpdfnelemgenr == 'gausstdv' or strgpdfnelemgenr == 'lnorstdv': liststrgvarb += [strgfeat + 'diststdv'] if strgpdfnelemgenr == 'gausmeanstdv' or strgpdfnelemgenr == 'lnormeanstdv': liststrgvarb += [nameparagenrelem + 'distmean', nameparagenrelem + 'diststdv'] for strgvarb in liststrgvarb: setattr(gmod.indxpara, strgvarb, np.zeros(gmod.numbpopl, dtype=int) - 1) for l in gmod.indxpopl: strgpopl = 'pop%d' % l if gmod.maxmpara.numbelem[l] > 0: for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if gmod.listscalparagenrelem[l][k] == 'self': continue indx = cntr.incr() if gmod.listscalparagenrelem[l][k] == 'dpow': for nametemp in ['brek', 'sloplowr', 'slopuppr']: strg = '%s' % nametemp + nameparagenrelem setattr(gmod.indxpara, strg, indx) setattr(gmod.indxpara, strg, indx) else: if gmod.listscalparagenrelem[l][k] == 'expo' or gmod.listscalparagenrelem[l][k] == 'dexp': strghypr = 'scal' if gmod.listscalparagenrelem[l][k] == 'powr': strghypr = 'slop' if gmod.listscalparagenrelem[l][k] == 'gausmean' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnormean' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'mean' if gmod.listscalparagenrelem[l][k] == 'gausstdv' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnorstdv' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'stdv' strg = strghypr + 'prio' + nameparagenrelem + 'pop%d' % l setattr(gmod.indxpara, strg, indx) # group PSF parameters if gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full': for m in gdat.indxevtt: for i in gdat.indxener: setattr(gmod.indxpara, 'sigcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': setattr(gmod.indxpara, 'gamcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking': setattr(gmod.indxpara, 'sigten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'gamten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'ffenen%02devt%d' % (i, m), cntr.incr()) gmod.indxpara.psfp = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith('sigce') or strg.startswith('sigte') or strg.startswith('gamce') or strg.startswith('gamte') or strg.startswith('psffe'): gmod.indxpara.psfp.append(valu) gmod.indxpara.psfp = np.array(gmod.indxpara.psfp) gmod.numbpsfptotlevtt = gdat.numbevtt * gmod.numbpsfptotl gmod.numbpsfptotlener = gdat.numbener * gmod.numbpsfptotl numbpsfp = gmod.numbpsfptotl * gdat.numbener * gdat.numbevtt indxpsfpform = np.arange(numbpsfpform) indxpsfptotl = np.arange(gmod.numbpsfptotl) indxpsfp = np.arange(numbpsfp) gmod.indxpara.psfp = np.sort(gmod.indxpara.psfp) gmod.indxparapsfpinit = gmod.indxpara.psfp[0] # group background parameters gmod.indxpara.bacp = [] for c in gmod.indxback: if gmod.boolspecback[c]: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04d' % c, indx) gmod.indxpara.bacp.append(indx) else: for i in gdat.indxener: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04den%02d' % (c, i), indx) gmod.indxpara.bacp.append(indx) gmod.indxpara.bacp = np.array(gmod.indxpara.bacp) # temp #gmod.indxpara.anglsour = [] #gmod.indxpara.anglhost = [] #gmod.indxpara.angllens = [] if gmod.typeemishost != 'none': gmod.indxpara.specsour = [] gmod.indxpara.spechost = [] if gmod.boollens: gmod.indxpara.lgalsour = cntr.incr() gmod.indxpara.bgalsour = cntr.incr() gmod.indxpara.fluxsour = cntr.incr() if gdat.numbener > 1: gmod.indxpara.sindsour = cntr.incr() gmod.indxpara.sizesour = cntr.incr() gmod.indxpara.ellpsour = cntr.incr() gmod.indxpara.anglsour = cntr.incr() if gmod.typeemishost != 'none' or gmod.boollens: for e in gmod.indxsersfgrd: if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'lgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'bgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'fluxhostisf%d' % e, cntr.incr()) if gdat.numbener > 1: setattr(gmod.indxpara, 'sindhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'sizehostisf%d' % e, cntr.incr()) if gmod.boollens: setattr(gmod.indxpara, 'beinhostisf%d' % e, cntr.incr()) if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'ellphostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'anglhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'serihostisf%d' % e, cntr.incr()) if gmod.boollens: gmod.indxpara.sherextr = cntr.incr() gmod.indxpara.sangextr = cntr.incr() gmod.indxpara.sour = [] if gmod.boollens and gmod.typeemishost == 'none': raise Exception('Lensing cannot be modeled without host galaxy emission.') # collect groups of parameters if gdat.typeexpr == 'hubb': gmod.listnamecomplens = ['hostlght', 'hostlens', 'sour', 'extr'] for namecomplens in gmod.listnamecomplens: setattr(gmod, 'liststrg' + namecomplens, []) setattr(gmod.indxpara, namecomplens, []) if gmod.boollens or gmod.typeemishost != 'none': gmod.liststrghostlght += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] gmod.liststrghostlens += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] if gmod.typeemishost != 'none': gmod.liststrghostlght += ['fluxhost', 'sizehost', 'serihost'] if gdat.numbener > 1: gmod.liststrghostlght += ['sindhost'] if gmod.boollens: gmod.liststrghostlens += ['beinhost'] gmod.liststrgextr += ['sherextr', 'sangextr'] gmod.liststrgsour += ['lgalsour', 'bgalsour', 'fluxsour', 'sizesour', 'ellpsour', 'anglsour'] if gdat.numbener > 1: gmod.liststrgsour += ['sindsour'] for strg, valu in gmod.__dict__.items(): if isinstance(valu, list) or isinstance(valu, np.ndarray): continue if gdat.typeexpr == 'hubb': for namecomplens in gmod.listnamecomplens: for strgtemp in getattr(gmod, 'liststrg' + namecomplens): if strg[12:].startswith(strgtemp): if isinstance(valu, list): for valutemp in valu: gmod['indxparagenr' + namecomplens].append(valutemp) else: gmod['indxparagenr' + namecomplens].append(valu) # remove indxpara. from strg strg = strg[12:] if strg.startswith('fluxsour') or strg.startswith('sindsour'): gmod.indxpara.specsour.append(valu) if strg.startswith('fluxhost') or strg.startswith('sindhost'): gmod.indxpara.spechost.append(valu) if gmod.boollens or gmod.boolhost: gmod.indxpara.host = gmod.indxparahostlght + gmod.indxparahostlens gmod.indxpara.lens = gmod.indxpara.host + gmod.indxpara.sour + gmod.indxpara.extr ## number of model spectral parameters for each population #numbspep = np.empty(gmod.numbpopl, dtype=int) #liststrgspep = [[] for l in range(gmod.numbpopl)] #for l in gmod.indxpopl: # if gdat.numbener > 1: # liststrgspep[l] += ['sind'] # if gmod.spectype[l] == 'expc': # liststrgspep[l] += ['expc'] # if gmod.spectype[l] == 'curv': # liststrgspep[l] = ['curv'] # numbspep[l] = len(liststrgspep[l]) def setp_paragenrscalbase(gdat, strgmodl='fitt'): ''' Setup labels and scales for base parameters ''' print('setp_paragenrscalbase(): Building the %s model base paremeter names and scales...' % strgmodl) gmod = getattr(gdat, strgmodl) listlablback = [] listlablback = [] for nameback in gmod.listnameback: if nameback == 'isot': listlablback.append('Isotropic') listlablback.append(r'$\mathcal{I}$') if nameback == 'fdfm': listlablback.append('FDM') listlablback.append(r'$\mathcal{D}$') if nameback == 'dark': listlablback.append('NFW') listlablback.append(r'$\mathcal{D}_{dark}$') if nameback == 'part': listlablback.append('Particle Back.') listlablback.append(r'$\mathcal{I}_p$') # background templates listlablsbrt = deepcopy(listlablback) numblablsbrt = 0 for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: listlablsbrt.append(gmod.lablpopl[l]) listlablsbrt.append(gmod.lablpopl[l] + ' subt') numblablsbrt += 2 if gmod.boollens: listlablsbrt.append('Source') numblablsbrt += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listlablsbrt.append('Host %d' % e) numblablsbrt += 1 if gmod.numbpopl > 0: if 'clus' in gmod.typeelem or 'clusvari' in gmod.typeelem: listlablsbrt.append('Uniform') numblablsbrt += 1 listlablsbrtspec = ['Data'] listlablsbrtspec += deepcopy(listlablsbrt) if len(listlablsbrt) > 1: listlablsbrtspec.append('Total Model') numblablsbrtspec = len(listlablsbrtspec) # number of generative parameters per element, depends on population #numbparaelem = gmod.numbparagenrelem + numbparaelemderi # maximum total number of parameters #numbparagenrfull = gmod.numbparagenrbase + gmod.numbparaelem #numbparaelemkind = gmod.numbparagenrbase #for l in gmod.indxpopl: # numbparaelemkind += gmod.numbparagenrelemsing[l] #nameparagenrbase #gmod.namepara.genrelem #listnameparaderifixd #listnameparaderielem #gmod.namepara.genrelemextd = gmod.namepara.genrelem * maxm.numbelem #listnameparaderielemextd = gmod.namepara.genrelem * maxm.numbelem gmod.listindxparakindscal = {} for scaltype in gdat.listscaltype: gmod.listindxparakindscal[scaltype] = np.where(scaltype == gmod.listscalparakind)[0] # ## stack ## gmod.listnameparastck #gmod.listnameparastck = np.zeros(gmod.maxmnumbpara, dtype=object) #gmod.listscalparastck = np.zeros(gmod.maxmnumbpara, dtype=object) # #gmod.listnameparastck[gmod.indxparagenrbase] = gmod.nameparagenrbase #gmod.listscalparastck[gmod.indxparagenrbase] = gmod.listscalparagenrbase #for k in range(gmod.numbparaelem): # for l in gmod.indxpopl: # if k >= gmod.numbparagenrelemcuml[l]: # indxpopltemp = l # indxelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) // gmod.numbparagenrelemsing[indxpopltemp] # gmod.indxparagenrelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) % gmod.numbparagenrelemsing[indxpopltemp] # break # gmod.listnameparastck[gmod.numbparagenrbase+k] = '%spop%d%04d' % (gmod.namepara.genrelem[indxpopltemp][gmod.indxparagenrelemtemp], indxpopltemp, indxelemtemp) # gmod.listscalparastck[gmod.numbparagenrbase+k] = gmod.listscalparagenrelem[indxpopltemp][gmod.indxparagenrelemtemp] # # #if np.where(gmod.listscalpara == 0)[0].size > 0: # print('gmod.listscalpara[gmod.indxparagenrbase]') # print(gmod.listscalpara[gmod.indxparagenrbase]) # raise Exception('') # ## labels and scales for variables if gmod.boollens: setattr(gmod.lablrootpara, 'masssubhintg', r'$M_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhdelt', r'$\rho_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhintgbein', r'$M_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhdeltbein', r'$\rho_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhintgunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'masssubhintgbeinunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltbeinunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'fracsubhintg', r'f_{\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhdelt', r'f_{\rho,\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhintgbein', r'$f_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'fracsubhdeltbein', r'$f_{\rho,\rm{sub,E}}$') for e in gmod.indxsersfgrd: setattr(gmod.lablrootpara, 'masshostisf%dbein' % e, r'$M_{\rm{hst,%d,C}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintg' % e, r'$M_{\rm{hst,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddelt' % e, r'$M_{\rm{hst,%d}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintgbein' % e, r'$M_{\rm{hst,E,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddeltbein' % e, r'$M_{\rm{hst,E,%d}}$' % e) for namevarb in ['fracsubh', 'masssubh']: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scal' + namevarb + strgcalcmasssubh + nameeval, 'logt') for e in gmod.indxsersfgrd: setattr(gdat, 'scalmasshostisf%d' % e + 'bein', 'logt') for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scalmasshostisf%d' % e + strgcalcmasssubh + nameeval, 'logt') # scalar variable setup gdat.lablhistcntplowrdfncsubten00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncsubten00evt0 = 'N_{pix,h}' gdat.lablhistcntplowrdfncen00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncen00evt0 = 'N_{pix,h}' gdat.lablbooldfncsubt = 'H' gdat.lablpriofactdoff = r'$\alpha_{p}$' gmod.scalpriofactdoff = 'self' gdat.minmreds = 0. gdat.maxmreds = 1.5 gdat.minmmagt = 19. gdat.maxmmagt = 28. gmod.scalpara.numbelem = 'logt' gmod.scalpara.lliktotl = 'logt' gdat.lablener = 'E' #gdat.lablenertotl = '$%s$ [%s]' % (gdat.lablener, gdat.strgenerunit) # width of the Gaussian clusters gdat.lablgwdt = r'\sigma_G' gdat.lablgang = r'\theta' gdat.lablaang = r'\phi' gdat.labllgalunit = gdat.lablgangunit gdat.lablbgalunit = gdat.lablgangunit gdat.lablanglfromhost = r'\theta_{\rm{0,hst}}' gdat.lablanglfromhostunit = gdat.lablgangunit gdat.labldefs = r'\alpha_s' gdat.lablflux = 'f' gdat.lablnobj = 'p' gdat.lablelin = r'\mathcal{E}' gdat.lablsbrt = r'\Sigma' gdat.labldeflprof = r'\alpha_a' gdat.labldeflprofunit = u'$^{\prime\prime}$' gdat.strgenerkevv = 'keV' gdat.strgenergevv = 'GeV' gdat.strgenerergs = 'erg' gdat.strgenerimum = '\mu m^{-1}' gdat.labldefsunit = u'$^{\prime\prime}$' gdat.lablprat = 'cm$^{-2}$ s$^{-1}$' ### labels for derived fixed dimensional parameters if gdat.boolbinsener: for i in gdat.indxener: setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubten%02d' % i, 'f_{D/ST,%d}' % i) else: gmod.lablrootpara.fracsdenmeandarkdfncsubt = 'f_{D/ST}' setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubt', 'f_{D/ST}') ### labels for background units if gdat.typeexpr == 'ferm': for nameenerscaltype in ['en00', 'en01', 'en02', 'en03']: for labltemptemp in ['flux', 'sbrt']: # define the label if nameenerscaltype == 'en00': strgenerscal = '%s' % labltemp if nameenerscaltype == 'en01': strgenerscal = 'E%s' % labltemp if nameenerscaltype == 'en02': strgenerscal = 'E^2%s' % labltemp if nameenerscaltype == 'en03': strgenerscal = '%s' % labltemp labl = '%s' % strgenerscal for nameenerunit in ['gevv', 'ergs', 'kevv', 'imum']: strgenerunit = getattr(gdat, 'strgener' + nameenerunit) if nameenerscaltype == 'en00': strgenerscalunit = '%s$^{-1}$' % strgenerunit if nameenerscaltype == 'en01': strgenerscalunit = '' if nameenerscaltype == 'en02': strgenerscalunit = '%s' % strgenerunit if nameenerscaltype == 'en03': strgenerscalunit = '%s' % strgenerunit # define the label unit for namesoldunit in ['ster', 'degr']: if labltemptemp == 'flux': lablunit = '%s %s' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'lablflux' + nameenerscaltype + nameenerunit + 'unit', lablunit) else: if namesoldunit == 'ster': lablunit = '%s %s sr$^{-1}$' % (strgenerscalunit, gdat.lablprat) if namesoldunit == 'degr': lablunit = '%s %s deg$^{-2}$' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'sbrt' + nameenerscaltype + nameenerunit + namesoldunit + 'unit', lablunit) if gdat.boolbinsener: gdat.lablfluxunit = getattr(gmod.lablunitpara, 'fluxen00' + gdat.nameenerunit + 'unit') gdat.lablsbrtunit = getattr(gmod.lablunitpara, 'sbrten00' + gdat.nameenerunit + 'sterunit') gdat.lablexpo = r'$\epsilon$' gdat.lablexpounit = 'cm$^2$ s' gdat.lablprvl = '$p$' gdat.lablreds = 'z' gdat.lablmagt = 'm_R' gdat.lablper0 = 'P_0' gmod.scalper0plot = 'logt' gdat.labldglc = 'd_{gc}' gmod.scaldglcplot = 'logt' gdat.labldlos = 'd_{los}' gmod.scaldlosplot = 'logt' if gdat.typeexpr == 'ferm': gdat.labldlosunit = 'kpc' gdat.labllumi = r'L_{\gamma}' if gdat.typeexpr == 'chan': gdat.labldlosunit = 'Mpc' gdat.labllumi = r'L_{X}' gdat.labllum0 = r'L_{X, 0}' gdat.lablgeff = r'\eta_{\gamma}' gmod.scalgeffplot = 'logt' gmod.scallumiplot = 'logt' gdat.labllumiunit = 'erg s$^{-1}$' gdat.labllum0unit = 'erg s$^{-1}$' gdat.lablthet = r'\theta_{gc}' gmod.scalthetplot = 'self' gdat.lablphii = r'\phi_{gc}' gmod.scalphiiplot = 'self' setattr(gmod.lablrootpara, 'magf', 'B') setattr(gdat, 'scalmagfplot', 'logt') setattr(gmod.lablrootpara, 'per1', 'P_1') if gdat.typedata == 'inpt': gdat.minmpara.per0 = 1e-3 gdat.maxmpara.per0 = 1e1 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.flux0400 = 1e-1 gdat.maxmpara.flux0400 = 1e4 setattr(gdat, 'scalper1plot', 'logt') setattr(gmod.lablrootpara, 'flux0400', 'S_{400}') setattr(gdat, 'scalflux0400plot', 'logt') for q in gdat.indxrefr: setattr(gmod.lablrootpara, 'aerr' + gdat.listnamerefr[q], '\Delta_{%d}' % q) gdat.lablsigm = '\sigma_l' gdat.lablgamm = '\gamma_l' gdat.lablbcom = '\eta' gdat.lablinfopost = 'D_{KL}' gdat.lablinfopostunit = 'nat' gdat.lablinfoprio = 'D_{KL,pr}' gdat.lablinfopriounit = 'nat' gdat.labllevipost = '\ln P(D)' gdat.labllevipostunit = 'nat' gdat.lablleviprio = '\ln P_{pr}(D)' gdat.labllevipriounit = 'nat' gdat.lablsind = 's' if gdat.boolbinsener: for i in gdat.indxenerinde: setattr(gmod.lablrootpara, 'sindcolr%04d' % i, 's_%d' % i) gdat.lablexpcunit = gdat.strgenerunit gdat.labllliktotl = r'\ln P(D|M)' gdat.labllpripena = r'\ln P(N)' gdat.lablasca = r'\theta_s' gdat.lablascaunit = gdat.lablgangunit gdat.lablacut = r'\theta_c' gdat.lablacutunit = gdat.lablgangunit gdat.lablmcut = r'M_{c,n}' gdat.lablmcutunit = r'$M_{\odot}$' gdat.lablmcutcorr = r'\bar{M}_{c,n}' gdat.lablmcutcorrunit = r'$M_{\odot}$' gdat.lablspec = gdat.lablflux gdat.lablspecunit = gdat.lablfluxunit gdat.lablspecplot = gdat.lablflux gdat.lablspecplotunit = gdat.lablfluxunit gdat.lablcnts = 'C' gdat.labldeltllik = r'\Delta_n \ln P(D|M)' gdat.labldiss = r'\theta_{sa}' gdat.labldissunit = gdat.lablgangunit gdat.lablrele = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_l| \rangle' gdat.lablrelc = r'\langle\vec{\alpha}_n \cdot \vec{\nabla} k_l \rangle' gdat.lablreld = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_d| \rangle' gdat.lablreln = r'\langle \Delta \theta_{pix} |\hat{\alpha}_n \cdot \vec{\nabla} k_l| / \alpha_{s,n} \rangle' gdat.lablrelm = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelk = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelf = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle / k_m' for q in gdat.indxrefr: for l in gmod.indxpopl: setp_varb(gdat, 'fdispop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$F_{%d%d}$' % (l, q)) setp_varb(gdat, 'cmplpop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$C_{%d%d}$' % (l, q)) if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.minmspec = 1e-2 gdat.maxmspec = 1e1 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 if gdat.typeexpr == 'ferm': gdat.minmlumi = 1e32 gdat.maxmlumi = 1e36 elif gdat.typeexpr == 'chan': if gdat.typedata == 'inpt': gdat.minmlum0 = 1e42 gdat.maxmlum0 = 1e46 gdat.minmlumi = 1e41 gdat.maxmlumi = 1e45 try: gdat.minmdlos except: if gdat.typeexpr == 'chan': gdat.minmdlos = 1e7 gdat.maxmdlos = 1e9 else: gdat.minmdlos = 6e3 gdat.maxmdlos = 1.1e4 if gdat.typeexpr == 'ferm': gdat.minmcnts = 1e1 gdat.maxmcnts = 1e5 if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: gdat.minmcnts = 1e4 gdat.maxmcnts = 1e8 else: gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'hubb': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'fire': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 gdat.minmspecplot = gdat.minmspec gdat.maxmspecplot = gdat.maxmspec gdat.minmdeltllik = 1. gdat.maxmdeltllik = 1e3 gdat.minmdiss = 0. gdat.maxmdiss = gdat.maxmgangdata * np.sqrt(2.) gdat.minmrele = 1e-3 gdat.maxmrele = 1e1 gdat.minmreln = 1e-3 gdat.maxmreln = 1. gdat.minmrelk = 1e-3 gdat.maxmrelk = 1. gdat.minmrelf = 1e-5 gdat.maxmrelf = 1e-1 gdat.minmrelm = 1e-3 gdat.maxmrelm = 1e1 gdat.minmreld = 1e-3 gdat.maxmreld = 1e1 gdat.minmrelc = 1e-3 gdat.maxmrelc = 1. gdat.minmmcut = 3e7 gdat.maxmmcut = 2e9 gdat.minmmcutcorr = gdat.minmmcut gdat.maxmmcutcorr = gdat.maxmmcut if gdat.boolbinsspat: gdat.minmbein = 0. gdat.maxmbein = 1. / gdat.anglfact # scalar variables if gdat.boolbinsspat: gdat.minmdeflprof = 1e-3 / gdat.anglfact gdat.maxmdeflprof = 0.1 / gdat.anglfact #gdat.minmfracsubh = 0. #gdat.maxmfracsubh = 0.3 #gmod.scalfracsubh = 'self' #gdat.minmmasshost = 1e10 #gdat.maxmmasshost = 1e13 #gmod.scalmasshost = 'self' # #gdat.minmmasssubh = 1e8 #gdat.maxmmasssubh = 1e10 #gmod.scalmasssubh = 'self' # collect groups of parameter indices into lists ## labels and scales for base parameters gmod.nameparagenrbase = [] for name, k in gmod.indxpara.__dict__.items(): if not np.isscalar(k): print('name') print(name) print('temp: no nonscalar should be here!') continue gmod.nameparagenrbase.append(name) gmod.numbparagenrbase = len(gmod.nameparagenrbase) gmod.indxparagenrbase = np.arange(gmod.numbparagenrbase) gmod.indxparagenrbasestdv = gmod.indxparagenrbase[gmod.numbpopl:] ## list of scalar variable names gmod.namepara.scal = list(gmod.nameparagenrbase) gmod.namepara.scal += ['lliktotl'] # derived parameters print('Determining the list of derived, fixed-dimensional parameter names...') gmod.namepara.genrelemextd = [[[] for g in gmod.indxparagenrelemsing[l]] for l in gmod.indxpopl] gmod.namepara.derielemextd = [[[] for k in gmod.indxparaderielemsing[l]] for l in gmod.indxpopl] gmod.namepara.genrelemflat = [] gmod.namepara.derielemflat = [] gmod.namepara.genrelemextdflat = [] gmod.namepara.derielemextdflat = [] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: gmod.namepara.genrelemflat.append(gmod.namepara.genrelem[l][g] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.genrelemextd[l][g].append(gmod.namepara.genrelem[l][g] + 'pop%d' % l + '%04d' % d) gmod.namepara.genrelemextdflat.append(gmod.namepara.genrelemextd[l][g][d]) for k in gmod.indxparaderielemsing[l]: gmod.namepara.derielemflat.append(gmod.namepara.derielem[l][k] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.derielemextd[l][k].append(gmod.namepara.derielem[l][k] + 'pop%d' % l + '%04d' % d) gmod.namepara.derielemextdflat.append(gmod.namepara.derielemextd[l][k][d]) # list of element parameter names (derived and generative), counting label-degenerate element parameters only once gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.elem[l].extend(gmod.namepara.genrelem[l]) gmod.namepara.elem[l].extend(gmod.namepara.derielem[l]) gmod.namepara.elemflat = [] for l in gmod.indxpopl: gmod.namepara.elemflat.extend(gmod.namepara.elem[l]) gmod.namepara.genrelemdefa = deepcopy(gmod.namepara.elemflat) if gmod.boolelemlghtanyy: for strgfeat in ['sind', 'curv', 'expc'] + ['sindcolr%04d' % i for i in gdat.indxenerinde]: if not strgfeat in gmod.namepara.genrelemdefa: gmod.namepara.genrelemdefa.append(strgfeat) # list of flattened generative element parameter names, counting label-degenerate element parameters only once gmod.namepara.genrelemkind = gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparagenrelemkind = len(gmod.namepara.genrelemkind) #gmod.inxparagenrscalelemkind = np.arange(gmod.numbparagenrelemkind) gmod.inxparagenrscalelemkind = tdpy.gdatstrt() gmod.numbparagenrelemextdflat = len(gmod.namepara.genrelemextdflat) gmod.indxparagenrelemextdflat = np.arange(gmod.numbparagenrelemextdflat) # list of parameter names (derived and generative), counting label-degenerate element parameters only once, element lists flattened gmod.namepara.kind = gmod.nameparagenrbase + gmod.listnameparaderitotl + gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparakind = len(gmod.namepara.kind) gmod.indxparakind = np.arange(gmod.numbparakind) # list of generative parameter names, separately including all label-degenerate element parameters, element lists flattened gmod.namepara.genrscalfull = gmod.nameparagenrbase + gmod.namepara.genrelemextdflat gmod.namepara.genrscalfull = np.array(gmod.namepara.genrscalfull) gmod.numbparagenrfull = len(gmod.namepara.genrscalfull) gmod.indxparagenrfull = np.arange(gmod.numbparagenrfull) # list of generative parameter names, counting label-degenerate element parameters only once, element lists flattened gmod.listnameparagenrscal = gmod.nameparagenrbase + gmod.namepara.genrelemflat gmod.numbparagenr = len(gmod.listnameparagenrscal) gmod.indxparagenr = np.arange(gmod.numbparagenr) # list of parameter names (derived and generative), element lists flattened gmod.listnameparatotl = gmod.nameparagenrbase + gmod.listnameparaderitotl + \ gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.nameparagenrbase = np.array(gmod.nameparagenrbase) for e in gmod.indxsersfgrd: gmod.namepara.scal += ['masshost' + strgsersfgrd + 'bein'] for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masshost' + strgsersfgrd + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: if gmod.boollenssubh: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masssubh' + strgcalcmasssubh + 'bein', 'fracsubh' + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: gmod.namepara.scal += ['lpripena'] if False and gmod.boolelemsbrtdfncanyy: for strgbins in ['lowr', 'higr']: gmod.namepara.scal += ['histcntp%sdfncen00evt0' % strgbins] gmod.namepara.scal += ['histcntp%sdfncsubten00evt0' % strgbins] for i in gdat.indxener: gmod.namepara.scal += ['fracsdenmeandarkdfncsubten%02d' % i] gmod.namepara.scal += ['booldfncsubt'] if gmod.numbparaelem > 0: for q in gdat.indxrefr: if gdat.boolasscrefr[q]: for l in gmod.indxpopl: gmod.namepara.scal += ['cmplpop%dpop%d' % (l, q)] gmod.namepara.scal += ['fdispop%dpop%d' % (q, l)] gmod.numbvarbscal = len(gmod.namepara.scal) gmod.indxvarbscal = np.arange(gmod.numbvarbscal) # determine total label gmod.listnameparaglob = gmod.namepara.kind + gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.listnameparaglob += ['cntpmodl'] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: if not gmod.namepara.genrelem[l][g] in gmod.listnameparaglob: gmod.listnameparaglob.append(gmod.namepara.genrelem[l][g]) gmod.listnameparaglob.append(gmod.namepara.derielem[l][g]) for name in gmod.listnameparaglob: lablroot = getattr(gmod.lablrootpara, name) lablunit = getattr(gmod.lablunitpara, name) labltotl = tdpy.retr_labltotlsing(lablroot, lablunit) setattr(gmod.labltotlpara, name, labltotl) # define fact for l in gmod.indxpopl: for k in gmod.indxparakind: name = gmod.namepara.kind[k] scal = getattr(gmod.scalpara, name) if scal == 'self' or scal == 'logt': minm = getattr(gmod.minmpara, name) maxm = getattr(gmod.maxmpara, name) if scal == 'self': fact = maxm - minm if scal == 'logt': fact = np.log(maxm / minm) if fact == 0: print('name') print(name) raise Exception('') setattr(gmod.factpara, name, fact) if gmod.numbparaelem > 0: gmod.indxparagenrfulleleminit = gmod.indxparagenrbase[-1] + 1 else: gmod.indxparagenrfulleleminit = -1 ## arrays of parameter features (e.g., minm, maxm, labl, scal, etc.) for featpara in gdat.listfeatparalist: gmodfeat = getattr(gmod, featpara + 'para') ### elements #for strgtypepara in gdat.liststrgtypepara: # listname = getattr(gmod.namepara, strgtypepara + 'elem') # listfeat = [[] for l in gmod.indxpopl] # listfeatflat = [] # for l in gmod.indxpopl: # # numb = getattr(gmod, 'numbpara' + strgtypepara + 'elemsing')[l] # listfeat[l] = [[] for k in range(numb)] # for k in range(numb): # scal = getattr(gmod.scalpara, listname[l][k]) # if featpara == 'fact' and not (scal == 'self' or scal == 'logt'): # continue # if featpara == 'mean' and (scal != 'gaus' and scal != 'lnor'): # continue # if featpara == 'stdv' and (scal != 'gaus' and scal != 'lnor'): # continue # # if strgtypepara == 'genr': # strgextn = 'pop%d' % l # else: # strgextn = '' # print('featpara') # print(featpara) # print('listname') # print(listname) # listfeat[l][k] = getattr(gmodfeat, listname[l][k] + strgextn) # listfeatflat.append(listfeat[l][k]) # setattr(gmodfeat, strgtypepara + 'elem', listfeat) # setattr(gmodfeat, strgtypepara + 'elemflat', listfeatflat) ### groups of parameters inside the parameter vector ### 'base': all fixed-dimensional generative parameters ### 'full': all generative parameters for strggroppara in ['base', 'full']: indx = getattr(gmod, 'indxparagenr' + strggroppara) feat = [0. for k in indx] for attr, valu in gmod.indxpara.__dict__.items(): if not np.isscalar(valu): continue scal = getattr(gmod.scalpara, attr) if not (scal == 'self' or scal == 'logt') and featpara == 'fact': continue if scal != 'gaus' and (featpara == 'mean' or featpara == 'stdv'): print('Mean or Std for non-Gaussian') continue if featpara == 'name': feat[valu] = attr else: feat[valu] = getattr(gmodfeat, attr) feat = np.array(feat) setattr(gmodfeat, 'genr' + strggroppara, feat) #print('gmod.minmpara') #for attr, varb in gmod.minmpara.__dict__.items(): # print(attr, varb) #print('gmod.maxmpara') #for attr, varb in gmod.maxmpara.__dict__.items(): # print(attr, varb) #print('gmod.scalpara') #for attr, varb in gmod.scalpara.__dict__.items(): # print(attr, varb) #raise Exception('') ## population groups ### number of elements for strgvarb in ['numbelem', 'meanelem']: listindxpara = [] if strgmodl == 'true': listpara = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith(strgvarb + 'p'): listindxpara.append(valu) if strgmodl == 'true': listpara.append(getattr(gmod.this, strg)) listindxpara = np.array(listindxpara) setattr(gmod.indxpara, strgvarb, listindxpara) if strgmodl == 'true': listpara = np.array(listpara) setattr(gmod, strgvarb, listpara) ### parameters of priors for element parameters gmod.indxpara.prioelem = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg == 'dist' and np.isscalar(valu): gmod.indxpara.prioelem.append(valu) gmod.indxpara.prioelem = np.array(gmod.indxpara.prioelem) ### hyperparameters if gmod.typemodltran == 'pois': gmod.indxpara.hypr = np.array(list(gmod.indxpara.prioelem) + list(gmod.indxpara.meanelem)) else: gmod.indxpara.hypr = gmod.indxpara.prioelem ## generative base parameter indices for each scaling gmod.listindxparagenrbasescal = dict() for scaltype in gdat.listscaltype: gmod.listindxparagenrbasescal[scaltype] = np.where(np.array(gmod.scalpara.genrbase) == scaltype)[0] if gdat.booldiagmode: if np.where(gmod.scalpara.genrfull == 0)[0].size > 0: raise Exception('') def plot_lens(gdat): if gmod.boolelemdeflsubh: xdat = gdat.binspara.angl[1:] * gdat.anglfact lablxdat = gdat.labltotlpara.gang listdeflscal = np.array([4e-2, 4e-2, 4e-2]) / gdat.anglfact listanglscal = np.array([0.05, 0.1, 0.05]) / gdat.anglfact listanglcutf = np.array([1., 1., 10.]) / gdat.anglfact listasym = [False, False, False] listydat = [] for deflscal, anglscal, anglcutf, asym in zip(listdeflscal, listanglscal, listanglcutf, listasym): listydat.append(retr_deflcutf(gdat.binspara.angl[1:], deflscal, anglscal, anglcutf, asym=asym) * gdat.anglfact) for scalxdat in ['self', 'logt']: path = gdat.pathinitintr + 'deflcutf' + scalxdat + '.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat=scalxdat, scalydat='logt', lablxdat=lablxdat, \ lablydat=r'$\alpha_n$ [$^{\prime\prime}$]', limtydat=[1e-3, 1.5e-2], limtxdat=[None, 2.]) # pixel-convoltuion of the Sersic profile # temp -- y axis labels are wrong, should be per solid angle xdat = gdat.binspara.lgalsers * gdat.anglfact for n in range(gdat.numbindxsers + 1): for k in range(gdat.numbhalfsers + 1): if k != 5: continue path = gdat.pathinitintr + 'sersprofconv%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, gdat.sersprof[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) #path = gdat.pathinitintr + 'sersprofcntr%04d%04d.pdf' % (n, k) #tdpy.plot_gene(path, xdat, gdat.sersprofcntr[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], scalxdat='logt', \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) xdat = gdat.binspara.angl * gdat.anglfact listspec = np.array([1e-19, 1e-18, 1e-18, 1e-18]) / gdat.anglfact listsize = np.array([0.3, 1., 1., 1.]) / gdat.anglfact listindx = np.array([4., 2., 4., 10.]) listydat = [] listlabl = [] for spec, size, indx in zip(listspec, listsize, listindx): listydat.append(spec * retr_sbrtsersnorm(gdat.binspara.angl, size, indxsers=indx)) listlabl.append('$R_e = %.3g ^{\prime\prime}, n = %.2g$' % (size * gdat.anglfact, indx)) path = gdat.pathinitintr + 'sersprof.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, \ listlegd=listlegd, listhlin=1e-7, limtydat=[1e-8, 1e0]) minmredshost = 0.01 maxmredshost = 0.4 minmredssour = 0.01 maxmredssour = 2. numbreds = 200 retr_axis(gdat, 'redshost') retr_axis(gdat, 'redssour') gdat.meanpara.adishost = np.empty(numbreds) for k in range(numbreds): gdat.meanpara.adishost[k] = gdat.adisobjt(gdat.meanpara.redshost[k]) asca = 0.1 / gdat.anglfact acut = 1. / gdat.anglfact minmmass = np.zeros((numbreds + 1, numbreds + 1)) maxmmass = np.zeros((numbreds + 1, numbreds + 1)) for k, redshost in enumerate(gdat.binspara.redshost): for n, redssour in enumerate(gdat.binspara.redssour): if redssour > redshost: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) minmmass[n, k] = np.log10(factmcutfromdefs * gdat.minmdefs) maxmmass[n, k] = np.log10(factmcutfromdefs * gdat.maxmdefs) #valulevl = np.linspace(7.5, 9., 5) valulevl = [7.0, 7.3, 7.7, 8., 8.6] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, minmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=20, fmt='%.3g') axis.set_xlabel(r'$z_{\rm{hst}}$') axis.set_ylabel(r'$z_{\rm{src}}$') axis.set_title(r'$M_{c,min}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsminm.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) valulevl = np.linspace(9., 11., 20) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.imshow(maxmmass, extent=[minmredshost, maxmredshost, minmredssour, maxmredssour], aspect='auto', vmin=9., vmax=11.) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, maxmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=15, fmt='%.3g') axis.set_xlabel('$z_{hst}$') axis.set_ylabel('$z_{src}$') axis.set_title(r'$M_{c,max}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsmaxm.pdf' plt.colorbar(imag) plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * gdat.sizepixl * 1e-3) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * 2. * gdat.maxmgangdata * 1e-3) axis.set_xlabel('$z_h$') axis.set_yscale('log') axis.set_ylabel(r'$\lambda$ [kpc]') path = gdat.pathinitintr + 'wlenreds.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) fracacutasca = np.logspace(-1., 2., 20) mcut = retr_mcutfrommscl(fracacutasca) axis.lognp.log(fracacutasca, mcut) axis.set_xlabel(r'$\tau_n$') axis.set_ylabel(r'$M_{c,n} / M_{0,n}$') axis.axhline(1., ls='--') path = gdat.pathinitintr + 'mcut.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) def retr_listrtagprev(strgcnfg, pathpcat): # list of PCAT run plot outputs pathimag = pathpcat + '/imag/' listrtag = fnmatch.filter(os.listdir(pathimag), '2*') listrtagprev = [] for rtag in listrtag: strgstat = pathpcat + '/data/outp/' + rtag if chec_statfile(pathpcat, rtag, 'gdatmodipost', typeverb=0) and strgcnfg + '_' + rtag[16:].split('_')[-1] == rtag[16:]: listrtagprev.append(rtag) listrtagprev.sort() return listrtagprev def make_legd(axis, offs=None, loca=1, numbcols=1, ptch=None, line=None): hand, labl = axis.get_legend_handles_labels() legd = axis.legend(hand, labl, fancybox=True, frameon=True, bbox_to_anchor=offs, bbox_transform=axis.transAxes, ncol=numbcols, loc=loca, labelspacing=1, handlelength=2) legd.get_frame().set_fill(True) legd.get_frame().set_facecolor('white') def setp_namevarbsing(gdat, gmod, strgmodl, strgvarb, popl, ener, evtt, back, isfr, iele): if popl == 'full': indxpopltemp = gmod.indxpopl elif popl != 'none': indxpopltemp = [popl] if ener == 'full': indxenertemp = gdat.indxener elif ener != 'none': indxenertemp = [ener] if evtt == 'full': indxevtttemp = gdat.indxevtt elif evtt != 'none': indxevtttemp = [evtt] if back == 'full': gmod.indxbacktemp = gmod.indxback elif isinstance(back, int): gmod.indxbacktemp = np.array([back]) liststrgvarb = [] if iele != 'none': for l in gmod.indxpopl: if iele == 'full': listiele = np.arange(gmod.maxmpara.numbelem) else: listiele = [iele] for k in listiele: liststrgvarb.append(strgvarb + 'pop%d%04d' % (l, k)) if popl != 'none' and ener == 'none' and evtt == 'none' and back == 'none' and iele == 'none': for l in indxpopltemp: liststrgvarb.append(strgvarb + 'pop%d' % l) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr != 'none': for e in indxisfrtemp: liststrgvarb.append(strgvarb + 'isf%d' % e) if popl == 'none' and ener != 'none' and evtt != 'none' and back == 'none': for i in indxenertemp: for m in indxevtttemp: liststrgvarb.append(strgvarb + 'en%02devt%d' % (i, m)) if popl == 'none' and ener != 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: for i in indxenertemp: liststrgvarb.append(strgvarb + 'back%04den%02d' % (c, i)) if popl == 'none' and ener == 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: liststrgvarb.append(strgvarb + 'back%04d' % c) if popl == 'none' and ener != 'none' and evtt == 'none' and back == 'none': for i in indxenertemp: liststrgvarb.append(strgvarb + 'en%02d' % i) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr == 'none': liststrgvarb.append(strgvarb) if gdat.booldiagmode: for strgvarb in liststrgvarb: if liststrgvarb.count(strgvarb) != 1: print('liststrgvarb') print(liststrgvarb) print('popl') print(popl) print('ener') print(ener) print('evtt') print(evtt) print('back') print(back) print('isfr') print(isfr) print('iele') print(iele) raise Exception('') return liststrgvarb def setp_varb(gdat, strgvarbbase, valu=None, minm=None, maxm=None, scal='self', lablroot=None, lablunit='', mean=None, stdv=None, cmap=None, numbbins=10, \ popl='none', ener='none', evtt='none', back='none', isfr='none', iele='none', \ boolinvr=False, \ strgmodl=None, strgstat=None, \ ): ''' Set up variable values across all models (true and fitting) as well as all populations, energy bins, event bins, background components, and Sersic components ''' # determine the list of models if strgmodl is None: if gdat.typedata == 'mock': liststrgmodl = ['true', 'fitt', 'plot'] else: liststrgmodl = ['fitt', 'plot'] else: if strgmodl == 'true' or strgmodl == 'plot' or strgmodl == 'refr': liststrgmodl = [strgmodl] else: liststrgmodl = ['fitt', 'plot'] print('liststrgmodl') print(liststrgmodl) for strgmodl in liststrgmodl: if strgmodl == 'plot': gmod = gdat.fitt gmodoutp = gdat else: gmod = getattr(gdat, strgmodl) gmodoutp = gmod # get the list of names of the variable liststrgvarbnone = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, 'none') if iele != 'none': liststrgvarb = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, iele) else: liststrgvarb = liststrgvarbnone # set the values of each variable in the list for strgvarb in liststrgvarb: if minm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.minmpara, strgvarb, minm) if maxm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.maxmpara, strgvarb, maxm) if mean is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, mean) if stdv is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, stdv) if valu is not None: if strgstat is None: print('strgvarb') print(strgvarb) print('strgmodl') print(strgmodl) print('valu') print(valu) print('') setp_varbcore(gdat, strgmodl, gmodoutp, strgvarb, valu) elif strgstat == 'this': setp_varbcore(gdat, strgmodl, gmodoutp.this, strgvarb, valu) if scal is not None: setp_varbcore(gdat, strgmodl, gmodoutp.scalpara, strgvarb, scal) if lablroot is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablrootpara, strgvarb, lablroot) if lablunit is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablunitpara, strgvarb, lablunit) if cmap is not None: setp_varbcore(gdat, strgmodl, gmodoutp.cmappara, strgvarb, cmap) setp_varbcore(gdat, strgmodl, gmodoutp.numbbinspara, strgvarb, numbbins) # create limt, bins, mean, and delt if minm is not None and maxm is not None or mean is not None and stdv is not None: # determine minima and maxima for Gaussian or log-Gaussian distributed parameters if mean is not None: minm = mean - gdat.numbstdvgaus * stdv maxm = mean + gdat.numbstdvgaus * stdv # uniformly-distributed if scal == 'self' or scal == 'pois' or scal == 'gaus': binsunif = np.linspace(minm, maxm, numbbins + 1) if scal == 'logt' or scal == 'powr': binsunif = np.linspace(np.log10(minm), np.log10(maxm), numbbins + 1) if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsunif = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numbbins + 1) if boolinvr: binsunif = binsunif[::-1] meanparaunif = (binsunif[1:] + binsunif[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanpara = meanparaunif bins = binsunif minmunif = minm maxmunif = maxm if scal == 'logt' or scal == 'powr': meanpara = 10**meanparaunif bins = 10**binsunif minmunif = np.log10(minm) maxmunif = np.log10(maxm) if scal == 'asnh': meanpara = np.sinh(meanparaunif) bins = np.sinh(binsunif) minmunif = np.arcsinh(minm) maxmunif = np.arcsinh(maxm) delt = np.diff(bins) limt = np.array([minm, maxm]) # 'self' is not yet defined if scal == 'asnh' or scal == 'logt' or scal == 'powr': listvalutickmajr, listlabltickmajr, listvalutickminr, listlabltickminr = tdpy.retr_valulabltick(minm, maxm, scal) setattr(gmodoutp.labltickmajrpara, strgvarb, listlabltickmajr) setattr(gmodoutp.valutickmajrpara, strgvarb, listvalutickmajr) setattr(gmodoutp.labltickminrpara, strgvarb, listlabltickminr) setattr(gmodoutp.valutickminrpara, strgvarb, listvalutickminr) #labltick = np.empty(gdat.numbtickcbar, dtype=object) #for k in range(gdat.numbtickcbar): # if scal == 'asnh': # valutick[k] = np.sinh(tickunif[k]) # if scal == 'logt' or scal == 'powr': # valutick[k] = 10**(tickunif[k]) # # avoid very small, but nonzero central values in the residual count color maps # if strgcbar == 'cntpresi' and np.fabs(valutick[k]) < 1e-5: # valutick[k] = 0. # if strgcbar == 'cntpdata' and np.amax(valutick) > 1e3: # labltick[k] = '%d' % valutick[k] # else: # labltick[k] = '%.3g' % valutick[k] setattr(gmodoutp.limtpara, strgvarb, limt) setattr(gmodoutp.binspara, strgvarb, bins) setattr(gmodoutp.meanpara, strgvarb, meanpara) setattr(gmodoutp.deltpara, strgvarb, delt) def retr_ticklabltemp(gdat, strgcbar): minm = getattr(gdat.minmpara, strgcbar) maxm = getattr(gdat.maxmpara, strgcbar) scal = getattr(gdat.scalpara, strgcbar) numb = gdat.numbtickcbar - 1 retr_axis(gdat, strgcbar, numb=numb) minmscal = minm if scal == 'asnh': minmscal = np.arcsinh(minmscal) if scal == 'logt': minmscal = np.log10(minmscal) maxmscal = maxm if scal == 'asnh': maxmscal = np.arcsinh(maxmscal) if scal == 'logt': maxmscal = np.log10(maxmscal) tickscal = np.linspace(minmscal, maxmscal, gdat.numbtickcbar) labl = np.empty(gdat.numbtickcbar, dtype=object) tick = np.copy(tickscal) for k in range(gdat.numbtickcbar): if scal == 'asnh': tick[k] = np.sinh(tickscal[k]) elif scal == 'logt': tick[k] = 10**(tickscal[k]) # avoid very small, but nonzero central values in the residual count color maps if strgcbar == 'cntpresi' and np.fabs(tick[k]) < 1e-5: tick[k] = 0. if strgcbar == 'cntpdata' and np.amax(tick) > 1e3: labl[k] = '%d' % tick[k] else: labl[k] = '%.3g' % tick[k] setattr(gdat.tickpara, strgcbar, tick) def retr_axistemp(gdat, strgvarb, strgmodl=None, boolinvr=False): if strgmodl is None: listgdattemp = [gdat] for strgmodl in gdat.liststrgmodl: listgdattemp.append(getattr(gdat, strgmodl)) elif strgmodl == 'fitt' or strgmodl == 'true': listgdattemp = [getattr(gdat, strgmodl)] elif strgmodl == 'allm': listgdattemp = [] for strgmodl in gdat.liststrgmodl: listgdattemp = getattr(gdat, strgmodl) for gdattemp in listgdattemp: minm = getattr(gdattemp.minmpara, strgvarb) maxm = getattr(gdattemp.maxmpara, strgvarb) numb = getattr(gdattemp.numbbinspara, strgvarb) scal = getattr(gdattemp.scalpara, strgvarb) if scal == 'self' or scal == 'pois' or scal == 'gaus': binsscal = np.linspace(minm, maxm, numb + 1) if scal == 'logt': print('minm') print(minm) print('maxm') print(maxm) print('strgvarb') print(strgvarb) binsscal = np.linspace(np.log10(minm), np.log10(maxm), numb + 1) print('') if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsscal = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numb + 1) if boolinvr: binsscal = binsscal[::-1] meanvarbscal = (binsscal[1:] + binsscal[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanvarb = meanvarbscal bins = binsscal if scal == 'logt': meanvarb = 10**meanvarbscal bins = 10**binsscal if scal == 'asnh': meanvarb = np.sinh(meanvarbscal) bins = np.sinh(binsscal) delt = np.diff(bins) limt = np.array([np.amin(bins), np.amax(bins)]) setattr(gdattemp.limtpara, strgvarb, limt) setattr(gdattemp.binspara, strgvarb, bins) setattr(gdattemp.meanpara, strgvarb, meanvarb) setattr(gdattemp.deltpara, strgvarb, delt) def setp_varbcore(gdat, strgmodl, gdattemp, strgvarbtemp, valu): # check if the variable is defined by the user try: valutemp = getattr(gdattemp, strgvarbtemp) if valutemp is None: raise if gdat.typeverb > 0: print('Received custom value for %s, %s: %s' % (strgvarbtemp, strgmodl, valutemp)) # if not defined or defined as None, define it except: setattr(gdattemp, strgvarbtemp, valu) def intp_sinc(gdat, lgal, bgal): intpsinc = 4. * gdat.numbsidepsfn**2 * np.sum(gdat.temppsfn * sinc(gdat.numbsidepsfn * (gdat.gridpsfnlgal + lgal) - gdat.gridpsfnlgal) * \ sinc(gdat.numbsidepsfn * (gdat.gridpsfnbgal + bgal) - gdat.gridpsfnbgal)) return intpsinc def retr_fluxbrgt(gdat, lgal, bgal, flux): if lgal.size == 0: fluxbrgt = np.array([0.]) fluxbrgtassc = np.array([0.]) else: indxbrgt = np.argmax(flux) fluxbrgt = flux[indxbrgt] return fluxbrgt, fluxbrgtassc def init_figr(gdat, gdatmodi, strgpdfn, strgplot, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot): figrsize = (gdat.sizeimag, gdat.sizeimag) figr, axis = plt.subplots(figsize=figrsize) nameplot = strgplot if gdat.numbener > 1: nameplot += 'en%02d' % gdat.indxenerincl[indxenerplot] if gdat.numbener > 1: if indxevttplot == -1: nameplot += 'evtA' else: nameplot += 'evt%d' % gdat.indxevttincl[indxevttplot] if gdat.fitt.numbpopl > 1: if indxpoplplot == -1: nameplot += 'popA' else: nameplot += 'pop%d' % indxpoplplot path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, nameplot) print('gdat.fitt.labltotlpara.lgalpop0') print(gdat.fitt.labltotlpara.lgalpop0) print('gdat.fitt.labltotlpara.bgalpop0') print(gdat.fitt.labltotlpara.bgalpop0) axis.set_xlabel(gdat.fitt.labltotlpara.lgalpop0) axis.set_ylabel(gdat.fitt.labltotlpara.bgalpop0) titl = '' if indxenerplot is not None and gdat.numbener > 1 and strgplot.endswith('cnts'): titl = gdat.strgener[indxenerplot] if indxevttplot is not None and gdat.numbevtt > 1 and strgplot.endswith('cnts'): titl += ' ' + gdat.strgevtt[indxevttplot] axis.set_title(titl) return figr, axis, path def draw_frambndr(gdat, axis): outr = max(gdat.frambndrmodl, gdat.frambndrdata) axis.set_xlim([-outr, outr]) axis.set_ylim([-outr, outr]) innr = min(gdat.frambndrmodl, gdat.frambndrdata) axis.axvline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axvline(-innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(-innr, ls='--', alpha=gdat.alphbndr, color='black') def retr_imag(gdat, axis, maps, strgstat, strgmodl, strgcbar, indxenerplot=None, indxevttplot=-1, booltdim=False, imag=None): draw_frambndr(gdat, axis) # take the relevant energy and PSF bins if indxenerplot is not None: if indxevttplot == -1: maps = np.sum(maps[indxenerplot, ...], axis=1) else: maps = maps[indxenerplot, :, indxevttplot] # project the map to 2D if gdat.typepixl == 'heal': maps = tdpy.retr_cart(maps, indxpixlrofi=gdat.indxpixlrofi, numbsideinpt=gdat.numbsideheal, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata) if gdat.typepixl == 'cart': shap = [gdat.numbsidecart] + list(maps.shape) shap[1] = gdat.numbsidecart shapflat = list(maps.shape) shapflat[0] = gdat.numbpixlfull mapstemp = np.zeros(shapflat) if maps.size == gdat.indxpixlrofi.size: mapstemp[gdat.indxpixlrofi, ...] = maps else: mapstemp[:, ...] = maps maps = mapstemp.reshape(shap).swapaxes(0, 1) # temp -- this is needed to bring the Fermi-LAT map to the right direction #maps = fliplr(maps) # rescale the map if strgmodl is not None: gmod = getattr(gdat, strgmodl) else: gmod = gdat scal = getattr(gdat.scalpara, strgcbar) cmap = getattr(gdat.cmappara, strgcbar) vmin = getattr(gdat.minmpara, strgcbar) vmax = getattr(gdat.maxmpara, strgcbar) if scal == 'asnh': maps = np.arcsinh(maps) if scal == 'logt': maps = np.log10(maps) if imag is None: imag = axis.imshow(maps, cmap=cmap, origin='lower', extent=gdat.exttrofi, interpolation='nearest', vmin=vmin, vmax=vmax, alpha=gdat.alphmaps) return imag else: imag.set_data(maps) def make_cbar(gdat, axis, imag, strgvarb): # make a color bar valutickmajr = getattr(gdat.valutickmajrpara, strgvarb) labltickmajr = getattr(gdat.labltickmajrpara, strgvarb) print('valutickmajr') print(valutickmajr) print('labltickmajr') print(labltickmajr) cbar = plt.colorbar(imag, ax=axis, fraction=0.05, aspect=15) cbar.set_ticks(valutickmajr) cbar.set_ticklabels(labltickmajr) return cbar def make_legdmaps(gdat, strgstat, strgmodl, axis, mosa=False, assc=False): gmod = getattr(gdat, strgmodl) # transdimensional elements if strgmodl == 'fitt' and (strgstat == 'pdfn' and gdat.boolcondcatl or strgstat == 'this') and gmod.numbparaelem > 0: for l in gmod.indxpopl: colr = retr_colr(gdat, strgstat, strgmodl, l) if strgstat == 'pdfn': labl = 'Condensed %s %s' % (gmod.legd, gmod.legdpopl[l]) else: labl = 'Sample %s %s' % (gmod.legd, gmod.legdpopl[l]) if not gmod.maxmpara.numbelem[l] == 0: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=labl, marker=gmod.listelemmrkr[l], lw=gdat.mrkrlinewdth, color=colr) for q in gdat.indxrefr: if not np.amax(gdat.refr.numbelem[q]) == 0: if assc: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=gdat.refr.lablhits[q], marker=gdat.refr.listmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablmiss[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) else: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablelem[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) # fixed-dimensional objects if strgmodl == 'fitt': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gmod.lablmodl, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gmod.lablmodl, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gdat.typedata == 'mock': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gdat.refr.labl, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gdat.refr.labl, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) temphand, temp = axis.get_legend_handles_labels() numblabl = len(temp) if numblabl == 4: numbcols = 2 else: numbcols = 3 if mosa: axis.legend(bbox_to_anchor=[1., 1.15], loc='center', ncol=numbcols) else: axis.legend(bbox_to_anchor=[0.5, 1.15], loc='center', ncol=numbcols) def supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis, indxpoplplot=-1, assc=False): gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) # associations with the reference elements for q in gdat.indxrefr: if gdat.refr.numbelem[q] > 0: if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: reframpl = gdat.refr.dictelem[q][gdat.refr.nameparagenrelemampl[q]][0, :] mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl, gdat.refr.nameparagenrelemampl[q]) lgal = np.copy(gdat.refr.dictelem[q]['lgal'][0, :]) bgal = np.copy(gdat.refr.dictelem[q]['bgal'][0, :]) numbelem = int(gdat.refr.numbelem[q]) if gdatmodi is not None and gmod.numbparaelem > 0 and assc: ### hit indx = gdatmodi.this.indxelemrefrasschits[q][l] if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, label=gdat.refr.lablhits, \ marker=gdat.refrlistmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) ### missed indx = gdatmodi.this.indxelemrefrasscmiss[q][l] else: indx = np.arange(lgal.size) if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.listlablmiss, marker=gdat.refr.listmrkrmiss[q], \ lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) sizexoff = gdat.maxmgangdata * 0.05 * gdat.anglfact sizeyoff = gdat.maxmgangdata * 0.05 * gdat.anglfact if 'etag' in gdat.refr.namepara.elem[q]: for k in range(indx.size): axis.text(gdat.anglfact * lgal[indx[k]] + sizexoff, gdat.anglfact * bgal[indx[k]] + sizeyoff, gdat.refretag[q][indx[k]], \ verticalalignment='center', horizontalalignment='center', \ color='red', fontsize=1) # temp -- generalize this to input refrlgalhost vs. if gdat.typedata == 'mock': ## host galaxy position if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: lgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost, gdat.anglfact * bgalhost, facecolor='none', alpha=0.7, \ label='%s Host %d' % (gdat.refr.labl, e), s=300, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.boollens: ## host galaxy Einstein radius for e in gmod.indxsersfgrd: truelgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] truebgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] truebeinhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * truelgalhost, \ gdat.anglfact * truebgalhost), \ gdat.anglfact * truebeinhost, \ edgecolor=gdat.refr.colr, facecolor='none', lw=gdat.mrkrlinewdth)) if gmod.boollens: ## source galaxy position axis.scatter(gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.lgalsour], \ gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.bgalsour], \ facecolor='none', \ alpha=0.7, \ #alpha=gdat.alphelem, \ label='%s Source' % gdat.refr.labl, s=300, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) # model catalog if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: if gdatmodi is not None: if gmod.numbparaelem > 0: colr = retr_colr(gdat, strgstat, strgmodl, l) mrkrsize = retr_mrkrsize(gdat, strgmodl, gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[gmod.nameparagenrelemampl[l]][l]], gmod.nameparagenrelemampl[l]) if 'lgal' in gdatmodi.this.indxparagenrfullelem: lgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['lgal']] bgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['bgal']] else: gang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['gang']] aang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['aang']] lgal, bgal = retr_lgalbgal(gang, aang) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, alpha=gdat.alphelem, label='Sample', marker=gmod.listelemmrkr[l], \ lw=gdat.mrkrlinewdth, color=colr) ## source if gmod.boollens: lgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.bgalsour] axis.scatter(gdat.anglfact * lgalsour, gdat.anglfact * bgalsour, facecolor='none', \ alpha=gdat.alphelem, \ label='%s Source' % gmod.lablpara, s=300, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': ## host lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e], facecolor='none', \ alpha=gdat.alphelem, \ label='%s Host' % gmod.lablpara, s=300, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.boollens: beinhost = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e]), \ gdat.anglfact * beinhost, edgecolor=gmod.colr, facecolor='none', \ lw=gdat.mrkrlinewdth, ls='--')) # temp if strgstat == 'pdfn' and gdat.boolcondcatl and gmod.numbparaelem > 0: lgal = np.zeros(gdat.numbprvlhigh) bgal = np.zeros(gdat.numbprvlhigh) ampl = np.zeros(gdat.numbprvlhigh) cntr = 0 for r in gdat.indxstkscond: if r in gdat.indxprvlhigh: lgal[cntr] = gdat.dictglob['poststkscond'][r]['lgal'][0] bgal[cntr] = gdat.dictglob['poststkscond'][r]['bgal'][0] # temp -- this does not allow sources with different spectra to be assigned to the same stacked sample ampl[cntr] = gdat.dictglob['poststkscond'][r][gmod.nameparagenrelemampl[l]][0] cntr += 1 mrkrsize = retr_mrkrsize(gdat, strgmodl, ampl, gmod.nameparagenrelemampl[l]) colr = retr_colr(gdat, strgstat, strgmodl, l) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ label='Condensed', marker=gmod.listelemmrkr[l], color='black', lw=gdat.mrkrlinewdth) for r in gdat.indxstkscond: lgal = np.array([gdat.dictglob['liststkscond'][r]['lgal']]) bgal = np.array([gdat.dictglob['liststkscond'][r]['bgal']]) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ marker=gmod.listelemmrkr[l], color='black', alpha=0.1, lw=gdat.mrkrlinewdth) def retr_colr(gdat, strgstat, strgmodl, indxpopl=None): if strgmodl == 'true': if indxpopl is None: colr = gdat.refr.colr else: colr = gdat.refr.colrelem[indxpopl] if strgmodl == 'fitt': if strgstat == 'this' or strgstat == 'pdfn': if indxpopl is None: colr = gmod.colr else: colr = gmod.colrelem[indxpopl] if strgstat == 'mlik': colr = 'r' return colr def retr_levipost(listllik): minmlistllik = np.amin(listllik) levipost = np.log(np.mean(1. / np.exp(listllik - minmlistllik))) + minmlistllik return levipost def retr_infofromlevi(pmeallik, levi): info = pmeallik - levi return info def retr_jcbn(): fluxpare, lgalpare, bgalpare, fluxauxi, lgalauxi, bgalauxi = sympy.symbols('fluxpare lgalpare bgalpare fluxauxi lgalauxi bgalauxi') matr = sympy.Matrix([[ fluxpare, fluxauxi, 0, 0, 0, 0], \ [-fluxpare, 1 - fluxauxi, 0, 0, 0, 0], \ [-lgalauxi, 0, 1, 1 - fluxauxi, 0, 0], \ [-lgalauxi, 0, 1, -fluxauxi, 0, 0], \ [-bgalauxi, 0, 0, 0, 1, 1 - fluxauxi], \ [-bgalauxi, 0, 0, 0, 1, -fluxauxi]]) jcbn = matr.det() return jcbn # f1 = uf f0 # f2 = (1 - uf) f0 # x1 = x0 + (1 - uf) ux # x2 = x0 - uf ux # y1 = y0 + (1 - uf) uy # y2 = y0 - uf uy # f1/uf f1/f0 f1/x0 f1/ux f1/y0 f1/uy # f2/uf f2/f0 f2/x0 f2/ux f2/y0 f2/uy # x1/uf x1/f0 x1/x0 x1/ux x1/y0 x1/uy # x2/uf x2/f0 x2/x0 x2/ux x2/y0 x2/uy # y1/uf y1/f0 y1/x0 y1/ux y1/y0 y1/uy # y2/uf y2/f0 y2/x0 y2/ux y2/y0 y2/uy # f0 uf 0 0 0 0 # -f0 1 - uf 0 0 0 0 # -ux 0 1 1 - uf 0 0 # -ux 0 1 -uf 0 0 # -uy 0 0 0 1 1 - uf # -uy 0 0 0 1 -uf # f0 #retr_jcbn() def retr_angldist(gdat, lgalfrst, bgalfrst, lgalseco, bgalseco): # temp -- heal does not work when the dimension of lgalfrst is 1 if gdat.typepixl == 'heal': dir1 = np.array([lgalfrst, bgalfrst]) dir2 = np.array([lgalseco, bgalseco]) angldist = hp.rotator.angdist(dir1, dir2) else: angldist = np.sqrt((lgalfrst - lgalseco)**2 + (bgalfrst - bgalseco)**2) return angldist def retr_deflextr(gdat, indxpixlelem, sher, sang): factcosi = sher * np.cos(2. * sang) factsine = sher * np.cos(2. * sang) defllgal = factcosi * gdat.lgalgrid[indxpixlelem] + factsine * gdat.bgalgrid[indxpixlelem] deflbgal = factsine * gdat.lgalgrid[indxpixlelem] - factcosi * gdat.bgalgrid[indxpixlelem] return np.vstack((defllgal, deflbgal)).T def readfile(path): print('Reading %s...' % path) filepick = open(path + '.p', 'rb') filearry = h5py.File(path + '.h5', 'r') gdattemptemp = pickle.load(filepick) for attr in filearry: setattr(gdattemptemp, attr, filearry[attr][()]) filepick.close() filearry.close() if 'gdatfinl' in path or 'gdatinit' in path: if hasattr(gdattemptemp, 'edis') and gdattemptemp.edis is not None and hasattr(gdattemptemp, 'binsener'): gdattemptemp.edisintp = sp.interpolate.interp1d(gdattemptemp.binsener, gdattemptemp.edis, fill_value='extrapolate') gdattemptemp.adisobjt = sp.interpolate.interp1d(gdattemptemp.redsintp, gdattemptemp.adisintp, fill_value='extrapolate') gdattemptemp.redsfromdlosobjt = sp.interpolate.interp1d(gdattemptemp.adisintp * gdattemptemp.redsintp, \ gdattemptemp.redsintp, fill_value='extrapolate') return gdattemptemp def init_stat(gdat): # construct the initial state if gdat.typeverb > 0: print('Initializing the sampler state...') print('inittype') print(gdat.inittype) gmod = gdat.fitt ## initialization ### initialize the unit sample vector randomly gmod.this.paragenrunitfull = np.random.rand(gmod.numbparagenrfull) gmod.this.paragenrscalfull = np.empty(gmod.numbparagenrfull) ## impose user-specified initial state ### number of elements ## create dummy indxparagenrfullelem gmod.this.indxparagenrfullelem = None if gmod.numbparaelem > 0: if gdat.inittype == 'refr': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] else: for l in gmod.indxpopl: if gmod.typemodltran == 'pois': meanelemtemp = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, \ gmod.this.indxparagenrfullelem)[gmod.indxpara.meanelem[l]] print('temp -- user input is not working for numbelem') #namevarb = 'numbelempop%d' % l #initvalu = getattr(gmod.init, namevarb) #if initvalu > gmod.maxmpara.numbelem[l] or initvalu < gmod.minmpara.numbelem[l]: # raise Exception('Bad initial number of elements...') #gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = initvalu if gmod.typemodltran == 'pois': gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = np.random.poisson(meanelemtemp) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = round(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ min(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.maxmpara.numbelem[l]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ max(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.minmpara.numbelem[l]) gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] = gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] if gdat.booldiagmode: if gdat.typedata == 'mock' and gdat.inittype == 'refr': for l in gmod.indxpopl: if gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] > gmod.maxmpara.numbelem[l]: raise Exception('') if gmod.numbparaelem > 0: gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.inittype == 'reco': if gdat.namerecostat is not None: strgcnfg = gdat.namerecostat else: strgcnfg = gdat.strgcnfg path = gdat.pathoutp + 'stat_' + strgcnfg + '.h5' if os.path.exists(path): boolinitreco = True thisfile = h5py.File(path, 'r') if gdat.typeverb > 0: print('Initializing from the state %s...' % path) print('Likelihood:') print(thisfile['lliktotl'][...]) # find the number of populations provided maxmindxpopl = 0 for l in range(10): for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) if gmod.indxpopl > maxmindxpopl: maxmindxpopl = gmod.indxpopl numbpoplinpt = maxmindxpopl + 1 if numbpoplinpt != gmod.numbpopl: print('State file and fitting metamodel have different number of populations.') # find the number of elements provided cntr = np.zeros(gmod.numbpoplinpt, dtype=int) for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) cntr[indxpopl] += 1 if gdat.typeverb > 0: print('Number of elements found:') print(cntr) for attr in thisfile: for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase == attr: if gmod.nameparagenrbase.startswith('numbelem'): try: indxpopltemp = int(gmod.nameparagenrbase[-1]) initnumbelem = getattr(gdat, 'initnumbelempop%d' % indxpopltemp) print('Initial condition for the number of elements conflicts with the state file. Defaulting to the argument...') except: initnumbelem = thisfile[attr][()] gmod.this.paragenrunitfull[k] = initnumbelem else: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', thisfile[attr][()], k) if gmod.this.paragenrunitfull[k] == 0.: print('Warning CDF is zero.') if not np.isfinite(thisfile[attr][()]): raise Exception('Retreived state parameter is not finite.') if (gmod.numbparaelem == 0 or gmod.numbparaelem > 0 and not k in gmod.indxpara.numbelem) and \ (not np.isfinite(gmod.this.paragenrunitfull[k]) or gmod.this.paragenrunitfull[k] < 0. or \ gmod.this.paragenrunitfull[k] > 1.): raise Exception('CDF of the retreived state parameter is bad.') if gmod.numbparaelem > 0: for l in gmod.indxpopl: maxm.numbelem = getattr(gdat.fitt.maxm, 'numbelempop%d' % l) if gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] > maxm.numbelem: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = maxm.numbelem if gdat.typeverb > 0: print('Tapering off the element list...') gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) if gdat.typeverb > 0: print('gmod.this.paragenrunitfull[gmod.indxpara.numbelem]') print(gmod.this.paragenrunitfull[gmod.indxpara.numbelem]) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if (gmod.this.paragenrunitfull == 0).all(): raise Exception('Bad initialization.') if gmod.numbparaelem > 0 and gmod.this.indxparagenrfullelem is not None: for nameparagenrelem in gmod.namepara.elem: initcomp = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: initcomp[l] = np.empty(len(gmod.this.indxelemfull[l])) for k in range(len(gmod.this.indxelemfull[l])): namefiel = '%spop%d%04d' % (nameparagenrelem, l, k) for attr in thisfile: if namefiel == attr: initcomp[l][k] = thisfile[namefiel][()] setattr(gdat, 'init' + nameparagenrelem, initcomp) initcompfromstat(gdat, gdatmodi, 'init') thisfile.close() else: boolinitreco = False if gdat.typeverb > 0: print('Could not find the state file, %s, to initialize the sampler.' % path) if gdat.inittype == 'refr': if gdat.typedata == 'inpt': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gdat.refr.numbelem[l] if gdat.typedata == 'mock': for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if not (gdat.inittype == 'pert' and gmod.nameparagenrbase.startswith('numbelem')) and \ gmod.nameparagenrbase in gmod.nameparagenrbase: gmod.indxpara.true = np.where(gmod.nameparagenrbase == gmod.nameparagenrbase)[0] gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmodstat.paragenrscalfull[gmod.indxpara.true], k) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.typeverb > 1: show_paragenrscalfull(gdat, gdatmodi) if gmod.this.indxparagenrfullelem is not None: print('Initializing elements from the reference element parameters...') show_paragenrscalfull(gdat, gdatmodi) gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) show_paragenrscalfull(gdat, gdatmodi) initcompfromstat(gdat, gdatmodi, 'refr') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) ## impose user-specified individual initial values for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase.startswith('numbelem'): continue if gdat.inittype == 'reco' or gdat.inittype == 'refr' or gdat.inittype == 'pert': try: getattr(gdat, 'init' + gmod.nameparagenrbase) print('Conflicting initial state arguments detected, init keyword takes precedence.') except: pass try: raise Exception('') initvalu = getattr(gdat, 'init' + gmod.nameparagenrbase) gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', initvalu, k) if gdat.typeverb > 0: print('Received initial condition for %s: %.3g' % (gmod.nameparagenrbase, initvalu)) except: pass ## PSF if gdat.initpsfp is not None: print('Initializing the metamodel PSF from the provided initial state...') if gdat.initpsfp.size != gmod.indxpara.psfp.size: raise Exception('') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gdat.initpsfp[k-gmod.indxpara.psfp[0]], k) if gdat.initpsfprefr: print('Initializing the metamodel PSF from the reference state...') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmod.psfpexpr[k-gmod.indxpara.psfp[0]], k) if gdat.inittype == 'rand' or gdat.inittype == 'reco' and not boolinitreco: if gdat.typeverb > 0: print('Initializing from a random state...') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') # check the initial unit sample vector for bad entries if gmod.numbparaelem > 0: indxsampdiff = np.setdiff1d(gmod.indxparagenrfull, gmod.indxpara.numbelem) if np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])).any(): raise Exception('') indxsampbaddlowr = np.where((gmod.this.paragenrunitfull[indxsampdiff] <= 0.) | np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])))[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull[indxsampdiff] >= 1.)[0] indxsampbaddlowr = indxsampdiff[indxsampbaddlowr] indxsampbadduppr = indxsampdiff[indxsampbadduppr] else: indxsampbaddlowr = np.where(gmod.this.paragenrunitfull <= 0.)[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull >= 1.)[0] indxsampbadd = np.concatenate((indxsampbaddlowr, indxsampbadduppr)) if indxsampbadd.size > 0: print('Initial value caused unit sample vector to go outside the unit interval...') show_paragenrscalfull(gdat, gdatmodi, indxsampshow=indxsampbadd) gmod.this.paragenrunitfull[indxsampbadd] = np.random.rand(indxsampbadd.size) raise Exception('') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) indxbadd = np.where(np.logical_not(np.isfinite(gmod.this.paragenrscalfull)))[0] if indxbadd.size > 0: raise Exception('') def writfile(gdattemp, path): filepick = open(path + '.p', 'wb') filearry = h5py.File(path + '.h5', 'w') gdattemptemp = tdpy.gdatstrt() for attr, valu in gdattemp.__dict__.items(): if attr.endswith('psfnintp'): continue if isinstance(valu, np.ndarray) and valu.dtype != np.dtype('O') and valu.dtype != np.dtype('<U4'):# or isinstance(valu, str) or \ #isinstance(valu, float) or isinstance(valu, bool) or isinstance(valu, int) or isinstance(valu, np.float): filearry.create_dataset(attr, data=valu) else: # temp -- make sure interpolation objects are not written. if attr != 'adisobjt' and attr != 'redsfromdlosobjt' and attr != 'edisintp': setattr(gdattemptemp, attr, valu) print('Writing to %s...' % path) pickle.dump(gdattemptemp, filepick, protocol=pickle.HIGHEST_PROTOCOL) filepick.close() filearry.close() def retr_deflcutf(angl, defs, asca, acut, asym=False): fracanglasca = angl / asca deflcutf = defs / fracanglasca # second term in the NFW deflection profile fact = np.ones_like(fracanglasca) indxlowr = np.where(fracanglasca < 1.)[0] indxuppr = np.where(fracanglasca > 1.)[0] fact[indxlowr] = np.arccosh(1. / fracanglasca[indxlowr]) / np.sqrt(1. - fracanglasca[indxlowr]**2) fact[indxuppr] = np.arccos(1. / fracanglasca[indxuppr]) / np.sqrt(fracanglasca[indxuppr]**2 - 1.) if asym: deflcutf *= np.log(fracanglasca / 2.) + fact else: fracacutasca = acut / asca factcutf = fracacutasca**2 / (fracacutasca**2 + 1)**2 * ((fracacutasca**2 + 1. + 2. * (fracanglasca**2 - 1.)) * fact + \ np.pi * fracacutasca + (fracacutasca**2 - 1.) * np.log(fracacutasca) + np.sqrt(fracanglasca**2 + fracacutasca**2) * (-np.pi + (fracacutasca**2 - 1.) / fracacutasca * \ np.log(fracanglasca / (np.sqrt(fracanglasca**2 + fracacutasca**2) + fracacutasca)))) deflcutf *= factcutf return deflcutf def initchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime()) def stopchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime() - getattr(gdatmodi.this, 'chro' + name)) def retr_defl(gdat, indxpixlelem, lgal, bgal, angllens, ellp=None, angl=None, rcor=None, asca=None, acut=None): # translate the grid lgaltran = gdat.lgalgrid[indxpixlelem] - lgal bgaltran = gdat.bgalgrid[indxpixlelem] - bgal if acut is not None: defs = angllens angl = np.sqrt(lgaltran**2 + bgaltran**2) defl = retr_deflcutf(angl, defs, asca, acut) defllgal = lgaltran / angl * defl deflbgal = bgaltran / angl * defl else: bein = angllens # rotate the grid lgalrttr = np.cos(angl) * lgaltran - np.sin(angl) * bgaltran bgalrttr = np.sin(angl) * lgaltran + np.cos(angl) * bgaltran axisrati = 1. - ellp facteccc = np.sqrt(1. - axisrati**2) factrcor = np.sqrt(axisrati**2 * lgalrttr**2 + bgalrttr**2) defllgalrttr = bein * axisrati / facteccc * np.arctan(facteccc * lgalrttr / factrcor) deflbgalrttr = bein * axisrati / facteccc * np.arctanh(facteccc * bgalrttr / factrcor) # totate back vector to original basis defllgal = np.cos(angl) * defllgalrttr + np.sin(angl) * deflbgalrttr deflbgal = -np.sin(angl) * defllgalrttr + np.cos(angl) * deflbgalrttr defl = np.vstack((defllgal, deflbgal)).T return defl def retr_lpriselfdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_self(feat, minm, maxm))) return lpri def retr_lprilogtdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_logt(feat, minm, maxm))) return lpri def retr_lpripowrdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): gmod = getattr(gdat, strgmodl) minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + strgfeat + 'pop%d' % l)] lpri = np.sum(np.log(pdfn_powr(feat, minm, maxm, slop))) return lpri def retr_lpridpowdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) brek = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distbrek')[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + strgfeat)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + strgfeat)[l]] lpri = np.sum(np.log(pdfn_dpow(feat, minm, maxm, brek, sloplowr, slopuppr))) return lpri def retr_lprigausdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): distmean = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'diststdv')[l]] lpri = np.sum(np.log(pdfn_gaus(feat, distmean, diststdv))) return lpri def retr_lpriigamdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): slop = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'slop')[l]] cutf = getattr(gmod, 'cutf' + strgfeat) lpri = np.sum(np.log(pdfn_igam(feat, slop, cutf))) return lpri def traptdim(gdat, arry): s1 = arry[0, 0] + arry[-1, 0] + arry[0, -1] + arry[-1, -1] s2 = np.sum(arry[1:-1, 0]) + np.sum(arry[1:-1, -1]) + np.sum(arry[0, 1:-1]) + np.sum(arry[-1, 1:-1]) s3 = np.sum(arry[1:-1, 1:-1]) summ = (s1 + 2*s2 + 4*s3) * gdat.apix return summ def retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons=None): pdfnspatprio = pdfnspatpriotemp if spatdistcons is not None: pdfnspatprio += spatdistcons summ = traptdim(gdat, pdfnspatprio) pdfnspatprio /= summ lpdfspatprio = np.log(pdfnspatprio) lpdfspatprioobjt = sp.interpolate.RectBivariateSpline(gdat.binspara.bgalcart, gdat.binspara.lgalcart, lpdfspatprio) return lpdfspatprio, lpdfspatprioobjt def retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=False): if strgmodl == 'true': gdatobjt = gdat.true elif strgmodl == 'fitt' and boolinit: gdatobjt = gdat.fitt else: gdatobjt = gdatmodi return gdatobjt def proc_samp(gdat, gdatmodi, strgstat, strgmodl, fast=False, boolinit=False): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=boolinit) gmodstat = getattr(gdatobjt, strgstat) initchro(gdat, gdatmodi, 'pars') # grab the sample vector indxpara = np.arange(gmodstat.paragenrscalfull.size) if gdat.booldiagmode: if not np.isfinite(gmodstat.paragenrscalfull).all(): raise Exception('') if gmod.typeevalpsfn != 'none' and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): psfp = gmodstat.paragenrscalfull[gmod.indxpara.psfp] if gdat.booldiagmode: if np.where(psfp == 0)[0].size == psfp.size: raise Exception('') setattr(gmodstat, 'psfp', psfp) bacp = gmodstat.paragenrscalfull[gmod.indxpara.bacp] if gmod.numbparaelem > 0: # temp -- this may slow down execution gmodstat.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodstat.indxelemfull, strgmodl) gmodstat.numbelem = np.empty(gmod.numbpopl, dtype=int) indxelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) indxelem[l] = np.arange(gmodstat.numbelem[l]) gmodstat.numbelem[l] = np.sum(gmodstat.numbelem[l]) gmodstat.numbelemtotl = np.sum(gmodstat.numbelem) gmodstat.dictelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.dictelem[l] = dict() for strgfeat in gmod.namepara.genrelemdefa: gmodstat.dictelem[l][strgfeat] = [] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem] = gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]] if gdat.booldiagmode: if ((abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) < 1e-100 ) & (abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) > 0.)).any(): raise Exception('') if gmodstat.numbelem[l] != len(gmodstat.dictelem[l][nameparagenrelem]): print('l') print(l) print('numbelem') print(numbelem) print('gmodstat.dictelem') print(gmodstat.dictelem) print('nameparagenrelem') print(nameparagenrelem) raise Exception('') if gdat.boolbinsener: if gdat.typeverb > 2: print('Calculating element spectra...') initchro(gdat, gdatmodi, 'spec') for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], \ edisintp=gdat.edisintp, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'spec') if gdat.typeverb > 2: print('Element features:') for l in gmod.indxpopl: print('l') print(l) for strgfeat in gmod.namepara.genrelem[l]: print(strgfeat) print(gmodstat.dictelem[l][strgfeat]) if gdat.booldiagmode: for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if (gmod.listscalparagenrelem[l][g] != 'gaus' and not gmod.listscalparagenrelem[l][g].startswith('lnor')) and \ (gmod.listscalparagenrelem[l][g] != 'expo' and (gmodstat.dictelem[l][nameparagenrelem] < getattr(gmod.minmpara, nameparagenrelem)).any()) or \ (gmodstat.dictelem[l][nameparagenrelem] > getattr(gmod.maxmpara, nameparagenrelem)).any(): print('l, g') print(l, g) print('nameparagenrelem') print(nameparagenrelem) print('gmodstat.dictelem[l][nameparagenrelem]') summgene(gmodstat.dictelem[l][nameparagenrelem]) print('getattr(gmod, minm + nameparagenrelem)') print(getattr(gmod.minmpara, nameparagenrelem)) print('getattr(gmod, maxm + nameparagenrelem)') print(getattr(gmod.maxmpara, nameparagenrelem)) print('gmod.listscalparagenrelem[l][g]') print(gmod.listscalparagenrelem[l][g]) raise Exception('') # calculate element spectra # temp if gdat.booldiagmode: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gdat.variasca: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['acut']] < 0.)[0] if indx.size > 0: raise Exception('') if gdat.variacut: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['asca']] < 0.)[0] if indx.size > 0: raise Exception('') for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): # evaluate horizontal and vertical position for elements whose position is a power law in image-centric radius if gmod.typespatdist[l] == 'glc3': gmodstat.dictelem[l]['dlos'], gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'] = retr_glc3(gmodstat.dictelem[l]['dglc'], \ gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii']) if gmod.typespatdist[l] == 'gangexpo': gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], = retr_lgalbgal(gmodstat.dictelem[l]['gang'], \ gmodstat.dictelem[l]['aang']) if gdat.booldiagmode: if gmodstat.numbelem[l] > 0: if np.amin(gmodstat.dictelem[l]['lgal']) < gmod.minmlgal or \ np.amax(gmodstat.dictelem[l]['lgal']) > gmod.maxmlgal or \ np.amin(gmodstat.dictelem[l]['bgal']) < gmod.minmbgal or \ np.amax(gmodstat.dictelem[l]['bgal']) > gmod.maxmbgal: raise Exception('Bad coordinates!') if gmod.typespatdist[l] == 'los3': gmodstat.dictelem[l]['dglc'], gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii'] = retr_los3(gmodstat.dictelem[l]['dlos'], \ gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) # evaluate flux for pulsars if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['lumi'] = retr_lumipuls(gmodstat.dictelem[l]['geff'], gmodstat.dictelem[l]['magf'], gmodstat.dictelem[l]['per0']) if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) gmodstat.dictelem[l]['lumi'] = gmodstat.dictelem[l]['lum0'] * (1. + gmodstat.dictelem[l]['reds'])**4 if gmod.typeelem[l] == 'lghtpntspuls' or gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['flux'] = retr_flux(gdat, gmodstat.dictelem[l]['lumi'], gmodstat.dictelem[l]['dlos']) # evaluate spectra if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], edisintp=gdat.edisintp, spectype=gmod.spectype[l]) else: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'pars') ### loglikelihood initchro(gdat, gdatmodi, 'modl') if gmod.boollens: lgalsour = gmodstat.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gmodstat.paragenrscalfull[gmod.indxpara.bgalsour] if gdat.typeverb > 2: print('Evaluating the likelihood...') # process a sample vector and the occupancy list to calculate secondary variables if gmod.boollens: fluxsour = gmodstat.paragenrscalfull[gmod.indxpara.fluxsour] if gdat.numbener > 1: sindsour = gmodstat.paragenrscalfull[gmod.indxpara.sindsour] sizesour = gmodstat.paragenrscalfull[gmod.indxpara.sizesour] ellpsour = gmodstat.paragenrscalfull[gmod.indxpara.ellpsour] anglsour = gmodstat.paragenrscalfull[gmod.indxpara.anglsour] if gmod.typeemishost != 'none': lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] fluxhost = [[] for e in gmod.indxsersfgrd] if gdat.numbener > 1: sindhost = [[] for e in gmod.indxsersfgrd] sizehost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % e)] bgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % e)] fluxhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'fluxhostisf%d' % e)] if gdat.numbener > 1: sindhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sindhostisf%d' % e)] sizehost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sizehostisf%d' % e)] if gmod.boollens: beinhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: beinhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % e)] if gmod.typeemishost != 'none': ellphost = [[] for e in gmod.indxsersfgrd] anglhost = [[] for e in gmod.indxsersfgrd] serihost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: ellphost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'ellphostisf%d' % e)] anglhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'anglhostisf%d' % e)] serihost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'serihostisf%d' % e)] if gmod.boollens: numbpixltemp = gdat.numbpixlcart defl = np.zeros((numbpixltemp, 2)) # determine the indices of the pixels over which element kernels will be evaluated if gdat.boolbinsspat: if gmod.numbparaelem > 0: listindxpixlelem = [[] for l in gmod.indxpopl] listindxpixlelemconc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: listindxpixlelem[l], listindxpixlelemconc[l] = retr_indxpixlelemconc(gdat, strgmodl, gmodstat.dictelem, l) if gmod.boollens: sherextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sherextr')] sangextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sangextr')] ## host halo deflection initchro(gdat, gdatmodi, 'deflhost') deflhost = [[] for e in gmod.indxsersfgrd] indxpixlmiss = gdat.indxpixlcart for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the deflection field due to host galaxy %d' % e) print('lgalhost[e]') print(lgalhost[e]) print('bgalhost[e]') print(bgalhost[e]) print('beinhost[e]') print(beinhost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) deflhost[e] = retr_defl(gdat, indxpixlmiss, lgalhost[e], bgalhost[e], beinhost[e], ellp=ellphost[e], angl=anglhost[e]) if gdat.booldiagmode: indxpixltemp = slice(None) setattr(gmodstat, 'deflhostisf%d' % e, deflhost[e]) if gdat.typeverb > 2: print('deflhost[e]') summgene(deflhost[e]) defl += deflhost[e] if gdat.typeverb > 2: print('After adding the host deflection...') print('defl') summgene(defl) if gdat.booldiagmode: if not np.isfinite(deflhost).all(): raise Exception('') stopchro(gdat, gdatmodi, 'deflhost') ## external shear initchro(gdat, gdatmodi, 'deflextr') deflextr = [] indxpixltemp = gdat.indxpixlcart deflextr = retr_deflextr(gdat, indxpixltemp, sherextr, sangextr) defl += deflextr if gdat.typeverb > 2: print('After adding the external deflection...') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'deflextr') # Boolean flag to indicate that the object to convolve the image will be needed boolneedpsfnconv = gdat.typepixl == 'cart' and (gmod.typeevalpsfn == 'conv' or gmod.typeevalpsfn == 'full') ## Boolean flag to indicate that the object to convolve the image will be constructed boolcalcpsfnconv = strgmodl == 'true' or boolinit or gdat.boolmodipsfn # get the convolution object if boolneedpsfnconv and boolcalcpsfnconv: initchro(gdat, gdatmodi, 'psfnconv') if gdat.typeverb > 2: print('Evaluating the PSF convolution kernel...') psfnconv = [[[] for i in gdat.indxener] for m in gdat.indxevtt] if gdat.typepixl == 'cart': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) for mm, m in enumerate(gdat.indxevtt): for ii, i in enumerate(gdat.indxener): if gmod.typemodlpsfn == 'singgaus': sigm = psfp[i+m*gdat.numbener] else: sigm = fwhm[i, m] / 2.355 gmodstat.psfnconv[mm][ii] = AiryDisk2DKernel(sigm / gdat.sizepixl) stopchro(gdat, gdatmodi, 'psfnconv') if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and gmod.numbparaelem > 0: if strgmodl == 'true' or boolinit or gdat.boolmodipsfn: if gdat.typepixl == 'heal': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gdat.typepixl == 'cart': if gdat.kernevaltype == 'ulip': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') if gdat.booldiagmode: if not np.isfinite(gmodstat.psfnintp(0.05)).all(): raise Exception('') if gdat.kernevaltype == 'bspx': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.anglcart.flatten(), gmod.typemodlpsfn, strgmodl) # side length of the upsampled kernel gdat.numbsidekernusam = 100 # side length of the original kernel gdat.numbsidekern = gdat.numbsidekernusam / factkernusam gdat.indxsidekern = np.arange(gdat.numbsidekern) # pad by one row and one column #psf = np.zeros((gdat.numbsidekernusam+1, gdat.numbsidekernusam+1)) #psf[0:gdat.numbsidekernusam, 0:gdat.numbsidekernusam] = psf0 # make design matrix for each factkernusam x factkernusam region nx = factkernusam + 1 y, x = mgrid[0:nx, 0:nx] / float(factkernusam) x = x.flatten() y = y.flatten() kernmatrdesi = np.array([full(nx*nx, 1), x, y, x*x, x*y, y*y, x*x*x, x*x*y, x*y*y, y*y*y]).T # output np.array of coefficients gmodstat.psfnintp = np.empty((gdat.numbsidekern, gdat.numbsidekern, kernmatrdesi.shape[1])) # solve p = kernmatrdesi psfnintp for psfnintp for iy in gdat.indxsidekern: for ix in gdat.indxsidekern: p = psf[iy*factkernusam:(iy+1)*factkernusam+1, ix*factkernusam:(ix+1)*factkernusam+1].flatten() gmodstat.psfnintp[iy, ix, :] = dot(linalg.inv(dot(kernmatrdesi.T, kernmatrdesi)), dot(kernmatrdesi.T, p)) else: gmodstat.psfnintp = gdat.fitt.this.psfnintp sbrt = dict() for name in gmod.listnamediff: sbrt[name] = [] if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: sbrtdfnc = [] if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = [] if gmod.boolelemdeflsubhanyy: deflsubh = [] # retrieve or initialize state variable if gmod.boolelemsbrtdfncanyy: sbrtdfnc = np.zeros_like(gdat.expo) if gmod.boolelemdeflsubhanyy: deflsubh = np.zeros((gdat.numbpixl, 2)) if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = np.zeros_like(gdat.expo) # element kernel evaluation if gmod.boolelemsbrtdfncanyy: initchro(gdat, gdatmodi, 'elemsbrtdfnc') sbrt['dfnc'] = [] for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: for k in range(gmodstat.numbelem[l]): if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] if gmod.typeelem[l] == 'clusvari': sbrtdfnc[0, listindxpixlelem[l][k], 0] += gmodstat.dictelem[l]['nobj'][k] / 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[listindxpixlelem[l][k]])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[listindxpixlelem[l][k]])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) if gmod.boolelempsfn[l]: print('sbrtdfnc') summgene(sbrtdfnc) sbrtdfnc[:, listindxpixlelem[l][k], :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) if gmod.typeelem[l].startswith('lghtline'): sbrtdfnc[:, 0, 0] += gmodstat.dictelem[l]['spec'][:, k] sbrt['dfnc'] = sbrtdfnc if gdat.booldiagmode: if not np.isfinite(sbrtdfnc).all(): raise Exception('Element delta function brightness not finite.') setattr(gmodstat, 'sbrtdfnc', sbrt['dfnc']) if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['dfnc']) numbelemtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: numbelemtemp += np.sum(gmodstat.numbelem[l]) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtdfnc') if gmod.boolelemdeflsubhanyy: initchro(gdat, gdatmodi, 'elemdeflsubh') if gdat.typeverb > 2: print('Perturbing subhalo deflection field') for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': for kk, k in enumerate(indxelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] if gmod.typeelemspateval[l] == 'locl': indxpixl = listindxpixlelem[l][kk] else: indxpixl = gdat.indxpixl deflsubh[indxpixl, :] += retr_defl(gdat, indxpixl, \ gmodstat.dictelem[l]['lgal'][kk], gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['defs'][kk], \ asca=asca, acut=acut) # temp -- find out what is causing the features in the element convergence maps #for kk, k in enumerate(indxelem[l]): # indxpixlpnts = retr_indxpixl(gdat, gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['lgal'][kk]) # if deflsubh[listindxpixlelem[l][kk], :] if gdat.typeverb > 2: print('deflsubh') summgene(deflsubh) setattr(gmodstat, 'deflsubh', deflsubh) if gdat.booldiagmode: if not np.isfinite(deflsubh).all(): raise Exception('Element deflection is not finite.') defl += deflsubh if gdat.typeverb > 2: print('After adding subhalo deflection to the total deflection') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'elemdeflsubh') if gmod.boolelemsbrtextsbgrdanyy: initchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if strgstat == 'this': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtgausbgrd': for k in range(gmodstat.numbelem[l]): sbrtextsbgrd[:, listindxpixlelem[l][k], :] += gmodstat.dictelem[l]['spec'][:, k, None, None] / \ 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[None, listindxpixlelem[l][k], None])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[None, listindxpixlelem[l][k], None])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) setattr(gmodstat, 'sbrtextsbgrd', sbrtextsbgrd) sbrt['extsbgrd'] = [] sbrt['extsbgrd'] = sbrtextsbgrd if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['extsbgrd']) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if gdat.typeverb > 2: print('Element related state variables after perturbations...') if gmod.boolelemsbrtdfncanyy: print('sbrtdfnc') summgene(sbrtdfnc) if gmod.boolelemdeflsubhanyy: print('deflsubh') summgene(deflsubh) if gmod.boolelemsbrtextsbgrdanyy: print('sbrtextsbgrd') summgene(sbrtextsbgrd) if gmod.boollens: # lensed surface brightness initchro(gdat, gdatmodi, 'sbrtlens') if gdat.typeverb > 2: print('Evaluating lensed surface brightness...') if strgstat == 'this' or gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrd'] = [] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrdgalx'] = [] if gdat.numbener > 1: specsour = retr_spec(gdat, np.array([fluxsour]), sind=np.array([sindsour])) if gdat.typeverb > 2: print('sindsour') print(sindsour) else: specsour = np.array([fluxsour]) if gdat.typeverb > 2: print('lgalsour') print(lgalsour) print('bgalsour') print(bgalsour) print('sizesour') print(sizesour) print('ellpsour') print(ellpsour) print('anglsour') print(anglsour) print('fluxsour') print(fluxsour) print('specsour') print(specsour) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.typeverb > 2: print('Interpolating the background emission...') sbrt['bgrdgalx'] = retr_sbrtsers(gdat, gdat.lgalgrid[indxpixlelem[0]], gdat.bgalgrid[indxpixlelem[0]], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) if gdat.typeverb > 2: print('sbrt[bgrdgalx]') summgene(sbrt['bgrdgalx']) print('sbrtextsbgrd') summgene(sbrtextsbgrd) sbrt['bgrd'] = sbrt['bgrdgalx'] + sbrtextsbgrd sbrt['lens'] = np.empty_like(gdat.cntpdata) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): sbrtbgrdobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ sbrt['bgrd'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) bgalprim = gdat.bgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 1] lgalprim = gdat.lgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 0] # temp -- T? sbrt['lens'][ii, :, m] = sbrtbgrdobjt(bgalprim, lgalprim, grid=False).flatten() else: if gdat.typeverb > 2: print('Not interpolating the background emission...') sbrt['lens'] = retr_sbrtsers(gdat, gdat.lgalgrid - defl[gdat.indxpixl, 0], \ gdat.bgalgrid - defl[gdat.indxpixl, 1], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) sbrt['bgrd'] = retr_sbrtsers(gdat, gdat.lgalgrid, \ gdat.bgalgrid, \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) setattr(gmodthis, 'sbrtlens', sbrt['lens']) if gdat.booldiagmode: if not np.isfinite(sbrt['lens']).all(): raise Exception('Lensed emission is not finite.') if (sbrt['lens'] == 0).all(): raise Exception('Lensed emission is zero everynp.where.') stopchro(gdat, gdatmodi, 'sbrtlens') ### background surface brightness sbrtback = [] # temp #sbrtback = np.empty((numbback, gdat.numbener, indxpixlelem[yy].size, gdat.numbevtt)) # evaluate host galaxy surface brightness if gmod.typeemishost != 'none': initchro(gdat, gdatmodi, 'sbrthost') for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the host galaxy surface brightness...') if gdat.numbener > 1: spechost = retr_spec(gdat, np.array([fluxhost[e]]), sind=np.array([sindhost[e]])) else: spechost = np.array([fluxhost[e]]) if gdat.typeverb > 2: print('lgalhost[e]') print(lgalhost[e] * gdat.anglfact) print('bgalhost[e]') print(bgalhost[e] * gdat.anglfact) print('spechost') print(spechost) print('sizehost[e]') print(sizehost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) print('serihost[e]') print(serihost[e]) sbrt['hostisf%d' % e] = retr_sbrtsers(gdat, gdat.lgalgrid, gdat.bgalgrid, lgalhost[e], \ bgalhost[e], spechost, sizehost[e], ellphost[e], anglhost[e], serihost[e]) setattr(gmodstat, 'sbrthostisf%d' % e, sbrt['hostisf%d' % e]) #sbrthost = sbrt['host'] if gdat.typeverb > 2: for e in gmod.indxsersfgrd: print('e') print(e) print('sbrt[hostisf%d]') summgene(sbrt['hostisf%d' % e]) stopchro(gdat, gdatmodi, 'sbrthost') ## model emission initchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('Summing up the model emission...') sbrt['modlraww'] = np.zeros((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt)) for name in gmod.listnamediff: if name.startswith('back'): gmod.indxbacktemp = int(name[4:8]) if gdat.typepixl == 'heal' and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv') and not gmod.boolunifback[gmod.indxbacktemp]: sbrttemp = getattr(gmod, 'sbrtbackhealfull')[gmod.indxbacktemp] else: sbrttemp = gmod.sbrtbacknorm[gmod.indxbacktemp] if gmod.boolspecback[gmod.indxbacktemp]: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp]] else: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp][gdat.indxener]][:, None, None] sbrt['modlraww'] += sbrt[name] if gdat.booldiagmode: if np.amax(sbrttemp) == 0.: raise Exception('') if gdat.typeverb > 2: print('name') print(name) print('sbrt[name]') summgene(sbrt[name]) if gdat.typeverb > 2: for ii, i in enumerate(gdat.indxener): print('ii, i') print(ii, i) for mm, m in enumerate(gdat.indxevtt): print('mm, m') print(mm, m) print('sbrt[modlraww][ii, :, mm]') summgene(sbrt['modlraww'][ii, :, mm]) # convolve the model with the PSF if gmod.convdiffanyy and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv'): sbrt['modlconv'] = [] # temp -- isotropic background proposals are unnecessarily entering this clause if gdat.typeverb > 2: print('Convolving the model image with the PSF...') sbrt['modlconv'] = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): if gdat.strgcnfg == 'pcat_ferm_igal_mock_test': print('Convolving ii, i, mm, m') print(ii, i, mm, m) if gdat.typepixl == 'cart': if gdat.numbpixl == gdat.numbpixlcart: sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrt['modlraww'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)), \ psfnconv[mm][ii]).flatten() else: sbrtfull = np.zeros(gdat.numbpixlcart) sbrtfull[gdat.indxpixlrofi] = sbrt['modlraww'][ii, :, mm] sbrtfull = sbrtfull.reshape((gdat.numbsidecart, gdat.numbsidecart)) sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrtfull, psfnconv[mm][ii]).flatten()[gdat.indxpixlrofi] indx = np.where(sbrt['modlconv'][ii, :, mm] < 1e-50) sbrt['modlconv'][ii, indx, mm] = 1e-50 if gdat.typepixl == 'heal': sbrt['modlconv'][ii, :, mm] = hp.smoothing(sbrt['modlraww'][ii, :, mm], fwhm=fwhm[i, m])[gdat.indxpixlrofi] sbrt['modlconv'][ii, :, mm][np.where(sbrt['modlraww'][ii, :, mm] <= 1e-50)] = 1e-50 setattr(gmodstat, 'sbrtmodlconv', sbrt['modlconv']) # temp -- this could be made faster -- need the copy() statement because sbrtdfnc gets added to sbrtmodl afterwards sbrt['modl'] = np.copy(sbrt['modlconv']) else: if gdat.typeverb > 2: print('Skipping PSF convolution of the model...') sbrt['modl'] = np.copy(sbrt['modlraww']) if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ## add PSF-convolved delta functions to the model if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gdat.typeverb > 2: print('Adding delta functions into the model...') print('sbrt[dfnc]') summgene(sbrt['dfnc']) sbrt['modl'] += sbrt['dfnc'] stopchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ### count map initchro(gdat, gdatmodi, 'expo') cntp = dict() cntp['modl'] = retr_cntp(gdat, sbrt['modl']) if gdat.booldiagmode: setattr(gmodstat, 'cntpmodl', cntp['modl']) stopchro(gdat, gdatmodi, 'expo') # mock data specific if strgmodl == 'true' and strgstat == 'this': # generate count data cntptemp = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for i in gdat.indxener: for j in gdat.indxpixl: for m in gdat.indxevtt: cntptemp[i, j, m] = np.random.poisson(cntp['modl'][i, j, m]) setattr(gdat, 'cntpdata', cntptemp) if not gdat.boolsqzeexpo and np.amax(cntptemp) == 0: print('cntp[modl]') summgene(cntp['modl']) print('gdat.boolsqzeexpo') print(gdat.boolsqzeexpo) print('cntptemp') summgene(cntptemp) raise Exception('Data is zero.') proc_cntpdata(gdat) ## diagnostics if gdat.booldiagmode: frac = cntp['modl'] / np.mean(cntp['modl']) if np.amin(frac) < -1e-3 and np.amin(cntp['modl']) < -0.1: raise Exception('') indxcubebadd = np.where(cntp['modl'] < 0.)[0] if indxcubebadd.size > 0: print('Warning! Model prediction is negative. Correcting to 1e-20...') cntp['modl'][indxcubebadd] = 1e-20 stopchro(gdat, gdatmodi, 'modl') # log-prior initchro(gdat, gdatmodi, 'lpri') if gdat.typeverb > 2: print('Evaluating the prior...') lpri = np.zeros(gmod.numblpri) if gmod.numbparaelem > 0: for l in gmod.indxpopl: lpri[0] -= 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[l] * gmodstat.numbelem[l] if gdat.penalpridiff: sbrtdatapnts = gdat.sbrtdata - sbrt['dfnc'] if gdat.typepixl == 'heal': raise Exception('') if gdat.typepixl == 'cart': psecodimdatapnts = np.empty((gdat.numbener, gdat.numbsidecarthalf, gdat.numbevtt)) psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) sigm = fwhm / 2.355 psecodimdatapntsprio = np.exp(-2. * gdat.meanpara.mpolodim[None, :, None] / (0.1 / sigm[:, None, :])) lpridiff = 0. for i in gdat.indxener: for m in gdat.indxevtt: psecdatapnts = retr_psec(gdat, sbrtdatapnts[i, :, m]) psecodimdatapnts[i, :, m] = retr_psecodim(gdat, psecdatapnts) psecodimdatapnts[i, :, m] /= psecodimdatapnts[i, 0, m] lpridiff += -0.5 * np.sum((psecodimdatapnts[i, :, m] - psecodimdatapntsprio[i, :, m])**2) setattr(gmodstat, 'psecodimdatapntsen%02devt%d' % (i, m), psecodimdatapnts[i, :, m]) setattr(gmodstat, 'psecodimdatapntsprioen%02devt%d'% (i, m), psecodimdatapntsprio[i, :, m]) lpri[1] = lpridiff setattr(gmodstat, 'lpridiff', lpridiff) if gmod.typemodltran == 'pois': meanelem = gmodstat.paragenrscalfull[gmod.indxpara.meanelem] for l in gmod.indxpopl: lpri[2] += retr_lprbpois(gmodstat.numbelem[l], meanelem[l]) for l in gmod.indxpopl: for g, (strgfeat, strgpdfn) in enumerate(zip(gmod.namepara.genrelem[l], gmod.listscalparagenrelem[l])): indxlpritemp = 3 + l * gmod.numbparagenrelem + g lpri[indxlpritemp] = retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, gmodstat.paragenrscalfull, gmodstat.dictelem, gmodstat.numbelem) lpritotl = np.sum(lpri) if gdat.typeverb > 1: print('lpritotl') print(lpritotl) ### log-likelihood initchro(gdat, gdatmodi, 'llik') llik = retr_llik(gdat, strgmodl, cntp['modl']) if gdat.typeverb > 2: print('cntp[modl]') summgene(cntp['modl']) print('np.sum(cntp[modl], (1, 2))') print(np.sum(cntp['modl'], (1, 2))) print('np.sum(gdat.cntpdata, (1, 2))') print(np.sum(gdat.cntpdata, (1, 2))) if gdat.booldiagmode: if not np.isfinite(llik).all(): raise Exception('Likelihood is not finite.') gmodstat.lliktotl = np.sum(llik) if gdat.booldiagmode: if isinstance(gmodstat.lliktotl, np.ndarray): raise Exception('') if not np.isfinite(gmodstat.lliktotl).all(): raise Exception('') numbdoff = gdat.numbdata - gmod.numbparagenrbase if gmod.numbparaelem > 0: for l in gmod.indxpopl: numbdoff -= len(gmodstat.indxparagenrfullelem[l]['full']) setattr(gmodstat, 'llik', llik) setattr(gmodstat, 'llikmean', gmodstat.lliktotl / gdat.numbdata) setattr(gmodstat, 'llikcmea', gmodstat.lliktotl / (gdat.numbdata - numbdoff)) if gdat.typeverb > 2: print('llik') summgene(llik) if gdat.typeverb > 1: print('gmodstat.lliktotl') print(gmodstat.lliktotl) stopchro(gdat, gdatmodi, 'llik') lpostotl = lpritotl + gmodstat.lliktotl if gdat.typeverb > 1: print('lpostotl') print(lpostotl) setattr(gmodstat, 'lpritotl', lpritotl) setattr(gmodstat, 'gmodstat.lliktotl', gmodstat.lliktotl) setattr(gmodstat, 'lpostotl', lpostotl) stopchro(gdat, gdatmodi, 'lpri') if strgstat == 'next': return initchro(gdat, gdatmodi, 'tert') setattr(gmodstat, 'lpri', lpri) if gmod.numbparaelem > 0: setattr(gmodstat, 'lpripena', lpri[0]) dicttert = {} ## load necessary variables ## derived variables ## residual count map cntp['resi'] = [] cntp['resi'] = gdat.cntpdata - cntp['modl'] setattr(gmodstat, 'cntpmodl', cntp['modl']) setattr(gmodstat, 'cntpresi', cntp['resi']) setattr(gmodstat, 'llik', llik) #if gmod.boollens: # setattr(gmodstat, 'deflhost', deflhost) if gmod.boollens: setattr(gmodstat, 'defl', defl) for e in gmod.indxsersfgrd: masshostbein = massfrombein * beinhost[e]**2 setattr(gmodstat, 'masshostisf%dbein' % e, masshostbein) ### sort with respect to deflection at scale radius if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: indxelemsortampl = np.argsort(gmodstat.dictelem[l][nameparaelemsort[l]])[::-1] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem + 'sort'] = gmodstat.dictelem[l][nameparagenrelem][indxelemsortampl] deflsing = np.zeros((gdat.numbpixlcart, 2, numbdeflsingplot)) conv = np.zeros((gdat.numbpixlcart)) convpsec = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecodim = np.zeros((gdat.numbsidecarthalf)) if gmod.numbparaelem > 0: if boolelemlens: gmod.indxpopllens = gmod.typeelem.index('lens') numbdeflsing = 2 if gmod.numbparaelem > 0: if boolelemlens: if numbelem[indxpopllens] > 0: numbdeflsing += min(numbdeflsubhplot, numbelem[indxpopllens]) numbdeflsing += 1 for k in range(numbdeflsing): indxpixltemp = gdat.indxpixlcart if k == 0: # temp -- should take other sersics into account deflsing[indxpixltemp, :, k] = deflhost[0] elif k == 1: deflsing[indxpixltemp, :, k] = deflextr elif k == 2: deflsing[indxpixltemp, :, k] = defl - deflextr - deflhost[0] else: asca = gmodstat.dictelem[indxpopllens]['ascasort'][None, k-3] acut = gmodstat.dictelem[indxpopllens]['acutsort'][None, k-3] deflsing[listindxpixlelem[indxpopllens][k], :, k] = retr_defl(gdat, listindxpixlelem[indxpopllens][k], \ gmodstat.dictelem[indxpopllens]['lgalsort'][None, k-3], gmodstat.dictelem[indxpopllens]['bgalsort'][None, k-3], \ gmodstat.dictelem[indxpopllens]['defssort'][None, k-3], asca=asca, acut=acut) # convergence ## total conv[:] = retr_conv(gdat, defl) convhost = np.zeros((gmod.numbsersfgrd, gdat.numbpixlcart)) for e in gmod.indxsersfgrd: convhost[e, :] = retr_conv(gdat, deflhost[e]) ### power spectrum #### two dimensional convpsec[:] = retr_psec(gdat, conv[:]) #### one dimensional convpsecodim[:] = retr_psecodim(gdat, convpsec[:]) setattr(gmodstat, 'convpsec', convpsec) setattr(gmodstat, 'convpsecodim', convpsecodim) setattr(gmodstat, 'conv', conv[...]) for e in gmod.indxsersfgrd: setattr(gmodstat, 'convisf%d' % e, convhost[e, ...]) ## subhalos if gmod.numbparaelem > 0: if boolelemlens: convelem = np.zeros((gdat.numbpixl)) convpsecelem = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecelemodim = np.zeros((gdat.numbsidecarthalf)) ### convergence convelem[:] = retr_conv(gdat, deflsubh) ### power spectrum ##### two dimensional convpsecelem[:] = retr_psec(gdat, convelem[:]) ##### one dimensional convpsecelemodim[:] = retr_psecodim(gdat, convpsecelem[:]) setattr(gmodstat, 'convpsecelem', convpsecelem) setattr(gmodstat, 'convpsecelemodim', convpsecelemodim) setattr(gmodstat, 'convelem', convelem[...]) setattr(gmodstat, 'defl', defl) ### magnification magn = np.empty((gdat.numbpixlcart)) histdefl = np.empty((gdat.numbdefl)) if gmod.numbparaelem > 0 and boolelemlens: histdeflsubh = np.empty((gdat.numbdefl)) deflsingmgtd = np.zeros((gdat.numbpixlcart, numbdeflsingplot)) magn[:] = 1. / retr_invm(gdat, defl) histdefl[:] = np.histogram(defl, bins=gdat.binspara.defl)[0] if gmod.numbparaelem > 0: if boolelemlens: histdeflsubh[:] = np.histogram(deflsubh, bins=gdat.binspara.deflsubh)[0] deflsingmgtd[:, :] = np.sqrt(np.sum(deflsing[...]**2, axis=1)) if gmod.numbparaelem > 0: if boolelemlens: setattr(gmodstat, 'histdeflsubh', histdeflsubh) setattr(gmodstat, 'histdefl', histdefl) setattr(gmodstat, 'magn', magn[...]) setattr(gmodstat, 'deflsing', deflsing[...]) setattr(gmodstat, 'deflsingmgtd', deflsingmgtd[...]) ## element related if gmod.numbparaelem > 0: if gdat.numbpixl == 1: for l in gmod.indxpopl: for k in range(gmodstat.numbelem[l]): setattr(gmodstat, 'speclinepop%d%04d' % (l, k), gmodstat.dictelem[l]['spec'][:, k]) if gdat.typedata == 'mock' and strgmodl == 'true' and gdat.numbpixl > 1: gdat.refrlgal = [[] for l in gmod.indxpopl] gdat.refrbgal = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gdat.refrlgal[l] = np.tile(gmodstat.dictelem[l]['lgal'], [3] + list(np.ones(gmodstat.dictelem[l]['lgal'].ndim, dtype=int))) gdat.refrbgal[l] = np.tile(gmodstat.dictelem[l]['bgal'], [3] + list(np.ones(gmodstat.dictelem[l]['bgal'].ndim, dtype=int))) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['per1'] = retr_per1(gmodstat.dictelem[l]['per0'], gmodstat.dictelem[l]['magf']) if gmod.numbparaelem > 0: if strgstat == 'this' or gdat.boolrefeforc and strgmodl == 'fitt': # correlate the fitting model elements with the reference elements if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: indxelemrefrasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] == 0: continue indxelemfittmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) indxelemrefrmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) matrdist = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l])) for k in range(gmodstat.numbelem[l]): # construct a matrix of angular distances between reference and fitting elements if gmod.typeelem[l].startswith('lghtline'): matrdist[:, k] = abs(gdat.refrelin[q][0, :] - gmodstat.dictelem[l]['elin'][k]) / gdat.refrelin[q][0, :] else: matrdist[:, k] = retr_angldist(gdat, gdat.refr.dictelem[q]['lgal'][0, :], gdat.refr.dictelem[q]['bgal'][0, :], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k]) indxelemrefrmatr[:, k] = np.arange(gdat.refr.numbelem[q]) indxelemfittmatr[:, k] = k matrdist = matrdist.flatten() indxelemrefrmatr = indxelemrefrmatr.flatten() indxelemfittmatr = indxelemfittmatr.flatten() # take only angular separations smaller than some threshold indxmatrthrs = np.where(matrdist < gdat.anglassc) matrdist = matrdist[indxmatrthrs] indxelemrefrmatr = indxelemrefrmatr[indxmatrthrs] indxelemfittmatr = indxelemfittmatr[indxmatrthrs] # sort the remaining associations with respect to distance indxmatrsort = np.argsort(matrdist) matrdist = matrdist[indxmatrsort] indxelemrefrmatr = indxelemrefrmatr[indxmatrsort] indxelemfittmatr = indxelemfittmatr[indxmatrsort] for c in range(matrdist.size): if indxelemrefrmatr[c] in indxelemrefrasschits[q][l] or indxelemfittmatr[c] in indxelemfittasschits[q][l]: continue indxelemrefrasschits[q][l].append(indxelemrefrmatr[c]) indxelemfittasschits[q][l].append(indxelemfittmatr[c]) indxelemrefrasschits[q][l] = np.array(indxelemrefrasschits[q][l]) indxelemfittasschits[q][l] = np.array(indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasschits', indxelemrefrasschits) setattr(gmodstat, 'indxelemfittasschits', indxelemfittasschits) indxelemrefrasscmiss = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasscfals = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: # indices of the reference elements not associated with the fitting model elements if gdat.refr.numbelem[q] > 0: indxelemrefrasscmiss[q][l] = np.setdiff1d(np.arange(gdat.refr.numbelem[q]), indxelemrefrasschits[q][l]) # indices of the fitting model elements not associated with the reference elements if gmodstat.numbelem[l] > 0: indxelemfittasscfals[q][l] = np.setdiff1d(np.arange(gmodstat.numbelem[l]), indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasscmiss', indxelemrefrasscmiss) setattr(gmodstat, 'indxelemfittasscfals', indxelemfittasscfals) for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for l in gmod.indxpopl: # collect the associated reference element parameter for each fitting element for strgfeat in gdat.refr.namepara.elemonly[q][l]: name = strgfeat + gdat.listnamerefr[q] if strgfeat != 'spec' and strgfeat != 'specplot': refrfeat = getattr(gdat.refr, strgfeat) gmodstat.dictelem[l][name] = np.zeros(gmodstat.numbelem[l]) if len(refrfeat[q]) > 0 and len(indxelemrefrasschits[q][l]) > 0: gmodstat.dictelem[l][name][indxelemfittasschits[q][l]] = refrfeat[q][0, indxelemrefrasschits[q][l]] print('temp') continue # collect the error in the associated reference element amplitude for strgfeat in gdat.listnameparaetotlelemcomm[q][l]: refrfeat = getattr(gdat.refr, strgfeat) if strgfeat == gmod.nameparagenrelemampl[l] and len(indxelemfittasschits[q][l]) > 0: gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]] = np.zeros(gmodstat.numbelem[l]) fittfeattemp = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] refrfeattemp = refrfeat[q][0, indxelemrefrasschits[q][l]] if gdat.booldiagmode: if not np.isfinite(refrfeattemp).all(): raise Exception('') gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]][indxelemfittasschits[q][l]] = 100. * (fittfeattemp - refrfeattemp) / refrfeattemp if gdat.boolrefeforc and strgmodl == 'fitt': for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat in gdat.refr.namepara.elem[gdat.indxrefrforc[l]]: if len(indxelemrefrasschits[gdat.indxrefrforc[l]][l]) == 0: continue refrfeat = getattr(gdat.refr, strgfeat)[gdat.indxrefrforc[l]][0, indxelemrefrasschits[gdat.indxrefrforc[l]][l]] if len(gmodstat.dictelem[l][strgfeat]) == 0: continue lpritotl += -2. * np.sum(1e6 * (gmodstat.dictelem[l][strgfeat][indxelemfittasschits[gdat.indxrefrforc[l]][l]] - refrfeat)**2 / refrfeat**2) # other tertiary variables continues ## number of degrees of freedom chi2doff = np.sum(cntp['resi']**2 / gdat.varidata) / numbdoff if gdat.booldiagmode: if not np.isfinite(cntp['resi']).all(): raise Exception('') if not np.isfinite(numbdoff): raise Exception('') if not np.isfinite(chi2doff): raise Exception('') setattr(gmodstat, 'numbdoff', numbdoff) setattr(gmodstat, 'chi2doff', chi2doff) if gmod.boolelempsfn and gmod.numbparaelem > 0: gmodstat.fwhmpsfn = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gmod.numbparaelem > 0: ### derived parameters for l in gmod.indxpopl: # luminosity if gmod.boolelemlght[l] and 'flux' in gmod.namepara.genrelem[l]: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat.startswith('reds') and strgfeat != 'reds': namerefr = strgfeat[-4:] gmodstat.dictelem[l]['lumi' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan gmodstat.dictelem[l]['dlos' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan reds = gmodstat.dictelem[l]['reds' + namerefr] indxgood = np.where(np.isfinite(gmodstat.dictelem[l]['reds' + namerefr]))[0] if indxgood.size > 0: # temp -- these units only work for energy units of keV dlos = gdat.adisobjt(reds) gmodstat.dictelem[l]['dlos' + namerefr][indxgood] = dlos lumi = retr_lumi(gdat, gmodstat.dictelem[l]['flux'], dlos, reds) gmodstat.dictelem[l]['lumi' + namerefr][indxgood] = lumi if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['mass'] = full([numbelem[l]], 3.) if gdat.typeverb > 2: print('l') print(l) if gdat.boolbinsspat: #### radial and angular coordinates gmodstat.dictelem[l]['gang'] = retr_gang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) gmodstat.dictelem[l]['aang'] = retr_aang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) if gmod.boolelemlght[l]: #### number of expected counts if gdat.boolbinsspat: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']], gmodstat.dictelem[l]['spec']) else: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['elin']], gmodstat.dictelem[l]['spec']) #### delta log-likelihood gmodstat.dictelem[l]['deltllik'] = np.zeros(gmodstat.numbelem[l]) if not (strgmodl == 'true' and gdat.checprio): if gdat.typeverb > 2: print('Calculating log-likelihood differences when removing elements from the model.') for k in range(gmodstat.numbelem[l]): # construct gdatmodi gdatmoditemp = tdpy.gdatstrt() gdatmoditemp.this = tdpy.gdatstrt() gdatmoditemp.next = tdpy.gdatstrt() gdatmoditemp.this.indxelemfull = gmodstat.indxelemfull gdatmoditemp.this.paragenrscalfull = gmodstat.paragenrscalfull gdatmoditemp.this.paragenrunitfull = gmodstat.paragenrunitfull prop_stat(gdat, gdatmoditemp, strgmodl, deth=True, thisindxpopl=l, thisindxelem=k) proc_samp(gdat, gdatmoditemp, 'next', strgmodl)#, boolinit=boolinit) if gdat.booldiagmode: if not np.isfinite(gmodstat.lliktotl): raise Exception('') gdatobjttemp = retr_gdatobjt(gdat, gdatmoditemp, strgmodl)#, boolinit=boolinit) nextlliktotl = gdatobjttemp.next.lliktotl gmodstat.dictelem[l]['deltllik'][k] = gmodstat.lliktotl - nextlliktotl if gdat.typeverb > 2: print('deltllik calculation ended.') # more derived parameters if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): ### PSF FWHM if gdat.typepixl == 'cart': fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) setattr(gmodstat, 'fwhm', fwhm) if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gmod.numbparaelem > 0: sbrt['dfnctotl'] = np.zeros_like(gdat.expo) sbrt['dfncsubt'] = np.zeros_like(gdat.expo) sbrt['dfncsupt'] = np.zeros_like(gdat.expo) for l in gmod.indxpopl: if gmod.boolcalcerrr[l]: sbrt['dfncfull'] = np.zeros_like(gdat.expo) if gmod.boolelemsbrt[l]: for k in range(gmodstat.numbelem[l]): # read normalization from the element dictionary if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] # calculate imprint on the element surface brightness state variable if gmod.boolelempsfn[l]: sbrttemp = retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) indxpixltemp = listindxpixlelem[l][k] if gmod.typeelem[l].startswith('lghtline'): sbrttemp = gmodstat.dictelem[l]['spec'][:, k, None, None] # add it to the state variable depending on the significance sbrt['dfnctotl'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] > 35: sbrt['dfncsupt'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] < 35: sbrt['dfncsubt'][:, indxpixltemp, :] += sbrttemp # calculate imprint without PSF truncation to calculate approximation errors if gmod.boolcalcerrr[l]: sbrt['dfncfull'][:, :, :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, gdat.indxpixl) setattr(gmodstat, 'sbrtdfncsubtpop%d' % l, sbrt['dfncsubt']) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.booldiagmode: numbtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtextsbgrd[l]: numbtemp += np.sum(gmodstat.numbelem[l]) if numbtemp > 0 and (sbrtextsbgrd == 0.).all(): raise Exception('') sbrt['bgrdexts'] = sbrtextsbgrd #### count maps cntp = dict() for name in gmod.listnamegcom: cntp[name] = retr_cntp(gdat, sbrt[name]) setattr(gmodstat, 'cntp' + name, cntp[name]) ### spatial averages sbrtmean = dict() sbrtstdv = dict() for name in gmod.listnamegcom: sbrtmean[name], sbrtstdv[name] = retr_spatmean(gdat, sbrt[name]) for b in gdat.indxspatmean: setattr(gmodstat, 'sbrt%smea%d' % (name, b), sbrtmean[name][b]) setattr(gmodstat, 'sbrt%sstd%d' % (name, b), sbrtstdv[name][b]) if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: for i in gdat.indxener: if 'dark' in gmod.listnamegcom: fracsdenmeandarkdfncsubt = sbrtmean['dfncsubt'][0][0][i] / (sbrtmean['dfncsubt'][0][0][i] + sbrtmean['dark'][0][0][i]) else: fracsdenmeandarkdfncsubt = 1. setattr(gmodstat, 'fracsdenmeandarkdfncsubten%02d' % i, np.array([fracsdenmeandarkdfncsubt])) if 'dark' in gmod.listnamegcom: booldfncsubt = float(np.where(sbrtmean['dfncsubt'][0][0] > sbrtmean['dark'][0][0])[0].any()) else: booldfncsubt = 1. setattr(gmodstat, 'booldfncsubt', np.array([booldfncsubt])) # find the 1-point function of the count maps of all emission components including the total emission for name in gmod.listnamegcom: namehistcntp = 'histcntp' + name for m in gdat.indxevtt: if gdat.numbevtt > 1: namehistcntp += 'evt%d' % m for i in gdat.indxener: if gdat.numbener > 1: namehistcntp += 'en%02d' % i histcntp = np.histogram(cntp[name][i, :, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, namehistcntp, histcntp) if False and i == 0 and m == 0 and (name == 'dfnc' or name == 'dfncsubt'): for strgbins in ['lowr', 'higr']: strgtemp = 'histcntp' + strgbins + name + 'en%02devt%d' % (i, m) if strgbins == 'lowr': setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[:gdat.numbtickcbar-1]))])) else: setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[gdat.numbtickcbar-1:]))])) else: histcntp = np.histogram(cntp[name][:, 0, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, 'histcntp' + name + 'evt%d' % m, histcntp) if gmod.boollens: if strgmodl == 'true': s2nr = [] s2nr = cntp['lens'] / np.sqrt(cntp['modl']) setattr(gmodstat, 's2nr', s2nr) cntplensgrad = np.empty((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt, 2)) for i in gdat.indxener: for m in gdat.indxevtt: cntplenstemp = np.zeros(gdat.numbpixlcart) cntplenstemp[gdat.indxpixlrofi] = cntp['lens'][i, :, m] cntplensgrad[i, :, m, :] = retr_gradmaps(gdat, cntplenstemp) * gdat.sizepixl cntplensgradmgtd = np.sqrt(np.sum(cntplensgrad**2, axis=3)) cntplensgrad *= gdat.sizepixl indx = np.where(np.fabs(cntplensgrad) > 1. * gdat.sizepixl) cntplensgrad[indx] = np.sign(cntplensgrad[indx]) * 1. * gdat.sizepixl deflmgtd = np.sqrt(np.sum(defl**2, axis=1)) setattr(gmodstat, 'deflmgtd', deflmgtd) setattr(gmodstat, 'cntplensgrad', cntplensgrad) setattr(gmodstat, 'cntplensgradmgtd', cntplensgradmgtd) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.boolelemlght[l]: #### spectra if gdat.boolbinsspat: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['specplot'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], \ curv=gmodstat.dictelem[l]['curv'], expc=gmodstat.dictelem[l]['expc'], \ sindcolr=sindcolr, spectype=gmod.spectype[l], plot=True) if gdat.typedata == 'inpt': if gdat.typeexpr == 'ferm': # temp try: gmodstat.dictelem[l]['sbrt0018'] = gdat.sbrt0018objt(gmodstat.dictelem[l]['bgal'], gmodstat.dictelem[l]['lgal']) except: gmodstat.dictelem[l]['sbrt0018'] = gmodstat.dictelem[l]['bgal'] * 0. if gmod.typeelem[l] == 'lens': #### distance to the source if gmod.boollens: gmodstat.dictelem[l]['diss'] = retr_angldist(gdat, gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], lgalsour, bgalsour) if gmod.boollenssubh: gmodstat.dictelem[l]['deflprof'] = np.empty((gdat.numbanglfull, gmodstat.numbelem[l])) gmodstat.dictelem[l]['mcut'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['rele'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reln'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relk'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relf'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reld'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relc'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relm'] = np.empty(gmodstat.numbelem[l]) # temp -- this can be placed earlier in the code cntplensobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ cntp['lens'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) for k in np.arange(gmodstat.numbelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] #### deflection profiles gmodstat.dictelem[l]['deflprof'][:, k] = retr_deflcutf(gdat.meanpara.anglfull, gmodstat.dictelem[l]['defs'][k], asca, acut) ### truncated mass gmodstat.dictelem[l]['mcut'][k] = retr_mcut(gdat, gmodstat.dictelem[l]['defs'][k], asca, acut, adishost, mdencrit) #### dot product with the source flux gradient # temp -- weigh the energy and PSF bins gmodstat.dictelem[l]['rele'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relf'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, cntpmodl=cntp['modl'][0, :, 0]) deflelem = retr_defl(gdat, gdat.indxpixl, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], gmodstat.dictelem[l]['defs'][k], asca=asca, acut=acut) bgalprim = gdat.bgalgrid - deflelem[:, 1] lgalprim = gdat.lgalgrid - deflelem[:, 0] gmodstat.dictelem[l]['relm'][k] = np.mean(abs(cntp['lens'][0, :, 0] - cntplensobjt(bgalprim, lgalprim, grid=False).flatten())) gmodstat.dictelem[l]['relk'][k] = gmodstat.dictelem[l]['relm'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reln'][k] = gmodstat.dictelem[l]['rele'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reld'][k] = retr_rele(gdat, gdat.cntpdata[0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relc'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, absv=False) / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl ### distribution of element parameters and features #### calculate the model filter listindxelemfilt = [[[] for l in gmod.indxpopl] for namefilt in gdat.listnamefilt] for k, namefilt in enumerate(gdat.listnamefilt): for l in gmod.indxpopl: if namefilt == '': listindxelemfilt[k][l] = np.arange(gmodstat.numbelem[l]) if namefilt == 'imagbndr': listindxelemfilt[k][l] = np.where((np.fabs(gmodstat.dictelem[l]['lgal']) < gdat.maxmgangdata) & (np.fabs(gmodstat.dictelem[l]['bgal']) < gdat.maxmgangdata))[0] if namefilt == 'deltllik': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['deltllik'] > 0.5 * gmod.numbparagenrelemsing[l])[0] if namefilt == 'nrel': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['reln'] > 0.3)[0] for l in gmod.indxpopl: # histograms of element parameters for namefrst in gmod.namepara.elem[l]: ## one dimensional if namefrst[:-4] == 'etag': continue if namefrst == 'specplot' or namefrst == 'deflprof': continue elif namefrst == 'spec': histfrst = np.zeros((gdat.numbbinsplot, gdat.numbener)) for i in gdat.indxener: histfrst[:, i] = np.histogram(gmodstat.dictelem[l]['spec'][i, listindxelemfilt[0][l]], gdat.binspara.spec)[0] elif namefrst == 'cnts': histfrst = np.histogram(gmodstat.dictelem[l]['cnts'][listindxelemfilt[0][l]], gdat.binspara.cnts)[0] else: #elif not (namefrst == 'curv' and gmod.spectype[l] != 'curv' or namefrst == 'expc' \ # and gmod.spectype[l] != 'expc' or namefrst.startswith('sindarry') and \ # gmod.spectype[l] != 'colr'): binsfrst = getattr(gdat.binspara, namefrst) #if len(gmodstat.dictelem[l][namefrst]) > 0 and len(listindxelemfilt[0][l]) > 0: histfrst = np.histogram(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], binsfrst)[0] strgvarb = 'hist' + namefrst + 'pop%d' % l setattr(gmodstat, strgvarb, histfrst) #### two dimensional for nameseco in gmod.namepara.elem[l]: if namefrst == 'spec' or namefrst == 'specplot' or namefrst == 'deflprof' or \ nameseco == 'spec' or nameseco == 'specplot' or nameseco == 'deflprof': continue if not checstrgfeat(namefrst, nameseco): continue binsseco = getattr(gdat.binspara, nameseco) histtdim = np.histogram2d(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], \ gmodstat.dictelem[l][nameseco][listindxelemfilt[0][l]], [binsfrst, binsseco])[0] setattr(gmodstat, 'hist' + namefrst + nameseco + 'pop%d' % l, histtdim) ### priors on element parameters and features for nameparagenrelem in gmod.namepara.genrelem[l]: xdat = gmodstat.dictelem[l][nameparagenrelem] minm = getattr(gmod.minmpara, nameparagenrelem + 'pop%d' % l) maxm = getattr(gmod.maxmpara, nameparagenrelem + 'pop%d' % l) scal = getattr(gmod.scalpara, nameparagenrelem + 'pop%d' % l) booltemp = False if scal.startswith('expo') or scal.startswith('dexp'): if scal.startswith('expo'): if scal == 'expo': sexp = getattr(gmod, 'gangdistsexppop%d' % l) else: sexp = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] pdfn = pdfn_expo(xdat, maxm, sexp) if scal.startswith('dexp'): pdfn = pdfn_dnp.exp(xdat, maxm, scal) booltemp = True if scal.startswith('self') or scal.startswith('logt'): if scal.startswith('self'): pdfn = 1. / (maxm - minm) + np.zeros_like(xdat) else: pdfn = 1. / (np.log(maxm) - np.log(minm)) + np.zeros_like(xdat) booltemp = True # temp if scal.startswith('powr'): slop = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem + 'pop%d' % l)] pdfn = pdfn_powr(xdat, minm, maxm, slop) booltemp = True if scal.startswith('dpowslopbrek'): pdfn = pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr) booltemp = True if scal == 'lnormeanstdv': pdfn = pdfn_lnor(xdat, meanlnor, stdvlnor) booltemp = True if scal.startswith('igam'): cutf = getattr(gdat, 'cutf' + nameparagenrelem) pdfn = pdfn_igam(xdat, slop, cutf) booltemp = True if scal.startswith('gaus'): # this does not work for mismodeling meanvarb = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] stdv = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] if nameparagenrelem == 'expc' and gmod.spectype[l] == 'expc': pdfn = pdfn_gaus(xdat, meanvarb, stdv) else: pdfn = pdfn_gaus(xdat, meanvarb, stdv) booltemp = True # temp -- meanelem will not be defined #if booltemp: # gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio'] = gmodstat.numbelem[l] * pdfn * np.interp(xdat, xdatplot, delt) #setattr(gmodstat, 'hist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) #if strgmodl == 'true': # setattr(gmodstat, 'refrhist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gmodstat.numbelem[l] > 0: ## total truncated mass of the subhalo as a cross check # temp -- generalize asca = gmodstat.dictelem[l]['asca'] acut = gmodstat.dictelem[l]['acut'] factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) masssubh = np.array([np.sum(factmcutfromdefs * gmodstat.dictelem[l]['defs'])]) ## derived variables as a function of other derived variables if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpntspuls'): massshel = np.empty(gdat.numbanglhalf) for k in gdat.indxanglhalf: indxelemshel = np.where((gdat.binspara.anglhalf[k] < gmodstat.dictelem[l]['gang']) & (gmodstat.dictelem[l]['gang'] < gdat.binspara.anglhalf[k+1])) massshel[k] = np.sum(gmodstat.dictelem[l]['mass'][indxelemshel]) setattr(gmodstat, 'massshelpop%d' % l, massshel) if gmod.boollens or gmod.numbparaelem > 0 and gmod.boollenssubh: # find the host, subhalo masses and subhalo mass fraction as a function of halo-centric radius listnametemp = gdat.liststrgcalcmasssubh listnamevarbmass = [] listnamevarbmassscal = [] listnamevarbmassvect = [] for e in gmod.indxsersfgrd: if boolllenshost: listnamevarbmassscal += ['masshosttotl'] for strgtemp in listnametemp: listnamevarbmassvect.append('masshostisf%d' % e + strgtemp) listnamevarbmassscal.append('masshostisf%d' % e + strgtemp + 'bein') if gmod.numbparaelem > 0 and gmod.boollenssubh: listnamevarbmassscal.append('masssubhtotl') listnamevarbmassscal.append('fracsubhtotl') for strgtemp in listnametemp: listnamevarbmassvect.append('masssubh' + strgtemp) listnamevarbmassvect.append('fracsubh' + strgtemp) listnamevarbmassscal.append('masssubh' + strgtemp + 'bein') listnamevarbmassscal.append('fracsubh' + strgtemp + 'bein') for name in listnamevarbmassvect: dicttert[name] = np.zeros(gdat.numbanglhalf) if 'isf' in name: indxisfrtemp = int(name.split('isf')[1][0]) angl = np.sqrt((gdat.meanpara.lgalcartmesh - lgalhost[indxisfrtemp])**2 + (gdat.meanpara.bgalcartmesh - bgalhost[indxisfrtemp])**2).flatten() for k in gdat.indxanglhalf: if name[4:8] == 'host': convtemp = conv[:] if name[4:8] == 'subh': convtemp = convelem[:] if name.endswith('delt'): indxpixl = np.where((gdat.binspara.anglhalf[k] < angl) & (angl < gdat.binspara.anglhalf[k+1]))[0] dicttert[name][k] = 1e6 * np.sum(convtemp[indxpixl]) * mdencrit * \ gdat.apix * adishost**2 / 2. / np.pi * gdat.deltanglhalf[k] / gdat.meanpara.anglhalf[k] if name.endswith('intg'): indxpixl = np.where(angl < gdat.meanpara.anglhalf[k])[0] dicttert[name][k] = np.sum(convtemp[indxpixl]) * mdencrit * gdat.apix * adishost**2 if name[:4] == 'frac': masshosttotl = 0. for e in gmod.indxsersfgrd: masshosttotl += dicttert['masshostisf%d' % e + name[-4:]][k] if masshosttotl != 0.: dicttert['fracsubh' + name[8:]][k] = dicttert['masssubh' + name[8:]][k] / masshosttotl setattr(gmodstat, name, dicttert[name]) # interpolate the host, subhalo masses and subhalo mass fraction at the Einstein radius and save it as a scalar variable dicttert[name + 'bein'] = np.interp(beinhost, gdat.meanpara.anglhalf, dicttert[name]) setattr(gmodstat, name + 'bein', dicttert[name + 'bein']) #if gmod.numbparaelem > 0: # ## copy element parameters to the global object # feat = [[] for l in gmod.indxpopl] # for l in gmod.indxpopl: # feat[l] = dict() # for strgfeat in gmod.namepara.genrelem[l]: # if strgfeat[:-4] == 'etag': # continue # if len(gmodstat.dictelem[l][strgfeat]) > 0: # if strgmodl == 'true': # shap = list(np.ones(gmodstat.dictelem[l][strgfeat].ndim, dtype=int)) # feat[l][strgfeat] = np.tile(gmodstat.dictelem[l][strgfeat], [3] + shap) # if strgmodl == 'fitt': # feat[l][strgfeat] = gmodstat.dictelem[l][strgfeat] # # #for strgfeat in gmod.namepara.elem: # # feattemp = [[] for l in gmod.indxpopl] # # for l in gmod.indxpopl: # # if strgfeat in gmod.namepara.genrelem[l]: # # if strgfeat in feat[l]: # # feattemp[l] = feat[l][strgfeat] # # else: # # feattemp[l] = np.array([]) # # setattr(gmodstat, strgfeat, feattemp) # copy true state to the reference state #if strgmodl == 'true': # for name, valu in deepcopy(gdat.__dict__).items(): # if name.startswith('true'): # #indx = name.find('pop') # #if indx != -1 and not name.endswith('pop') and name[indx+3].isdigit(): # # namerefr = name.replace('pop%s' % name[indx+3], 'ref%s' % name[indx+3]) # #else: # # namerefr = name # #namerefr = name # #namerefr = namerefr.replace('true', 'refr') # name = name.replace('true', 'refr') # setattr(gdat, name, valu) if gmod.numbparaelem > 0 and gdat.priofactdoff != 0.: if strgmodl == 'true': for q in gdat.indxrefr: for strgfeat in gdat.refr.namepara.elem[q]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof': continue reca = np.zeros(gdat.numbbinsplot) - 1. indxelempars = np.where(gmodstat.dictelem[q]['deltllik'] > 2.5)[0] refrhistpars = np.zeros(gdat.numbbinsplot) - 1. histparaelem = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) indxrefrgood = np.where(histparaelem > 0)[0] reca[indxrefrgood] = 0. refrhistpars[indxrefrgood] = 0. refrhist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) bins = getattr(gdat.binspara, strgfeat) if len(indxelempars) > 0: refrhistpars = np.histogram(gmodstat.dictelem[q][strgfeat][indxelempars], bins=bins)[0].astype(float) if indxrefrgood.size > 0: reca[indxrefrgood] = refrhistpars[indxrefrgood] / refrhist[indxrefrgood] setattr(gmodstat, 'histpars' + strgfeat + 'pop%d' % q, refrhistpars) setattr(gmodstat, 'reca' + strgfeat + 'pop%d' % q, reca) print('gdat.rtagmock') print(gdat.rtagmock) if gdat.rtagmock is not None: if gmod.numbparaelem > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof':# or strgfeat.startswith('aerr'): continue if strgfeat in gmod.namepara.genrelem[l]: hist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % l) reca = getattr(gdat.true.this, 'reca' + strgfeat + 'pop%d' % l) histcorrreca = hist / reca setattr(gmodstat, 'histcorrreca' + strgfeat + 'pop%d' % l, histcorrreca) ### Exculusive comparison with the true state if strgmodl == 'fitt' and gdat.typedata == 'mock': if gmod.boollens: numbsingcomm = min(deflsing.shape[2], gmod.deflsing.shape[2]) deflsingresi = deflsing[0, ..., :numbsingcomm] - gmod.deflsing[..., :numbsingcomm] deflsingresimgtd = np.sqrt(np.sum(deflsingresi**2, axis=1)) deflsingresiperc = 100. * deflsingresimgtd / gmod.deflsingmgtd[..., :numbsingcomm] setattr(gmodstat, 'numbsingcomm', numbsingcomm) setattr(gmodstat, 'deflsingresi', deflsingresi) truedeflmgtd = getattr(gdat.true.this, 'deflmgtd') truedefl = getattr(gdat.true.this, 'defl') deflresi = defl - truedefl deflresimgtd = np.sqrt(np.sum(deflresi**2, axis=1)) deflresiperc = 100. * deflresimgtd / truedeflmgtd setattr(gmodstat, 'deflresi', deflresi) setattr(gmodstat, 'deflresimgtd', deflresimgtd) if gmod.numbparaelem > 0: trueconvelem = getattr(gdat.true.this, 'convelem') convelemresi = convelem[:] - trueconvelem convelemresiperc = 100. * convelemresi / trueconvelem setattr(gmodstat, 'convelemresi', convelemresi) setattr(gmodstat, 'convelemresiperc', convelemresiperc) truemagn = getattr(gdat.true.this, 'magn') magnresi = magn[:] - truemagn magnresiperc = 100. * magnresi / truemagn setattr(gmodstat, 'magnresi', magnresi) setattr(gmodstat, 'magnresiperc', magnresiperc) if gmod.numbparaelem > 0: # correlate the catalog sample with the reference catalog if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] > 0: cmpl = np.array([float(len(indxelemrefrasschits[q][l])) / gdat.refr.numbelem[q]]) if gdat.booldiagmode: if cmpl > 1. or cmpl < 0.: raise Exception('') else: cmpl = np.array([-1.]) setattr(gmodstat, 'cmplpop%dpop%d' % (l, q), cmpl) if gmodstat.numbelem[l] > 0: fdis = np.array([float(indxelemfittasscfals[q][l].size) / gmodstat.numbelem[l]]) if gdat.booldiagmode: if fdis > 1. or fdis < 0.: raise Exception('') else: fdis = np.array([-1.]) setattr(gmodstat, 'fdispop%dpop%d' % (q, l), fdis) # collect the associated fitting element parameter for each reference element featrefrassc = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: featrefrassc[q][l] = dict() for strgfeat in gdat.refr.namepara.elem[q]: if not strgfeat in gmod.namepara.genrelem[l] or strgfeat in gdat.refr.namepara.elemonly[q][l]: continue if isinstance(gmodstat.dictelem[l][strgfeat], np.ndarray) and gmodstat.dictelem[l][strgfeat].ndim > 1: continue featrefrassc[q][l][strgfeat] = np.zeros(gdat.refr.numbelem[q]) + np.nan if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][strgfeat]) > 0: featrefrassc[q][l][strgfeat][indxelemrefrasschits[q][l]] = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] name = strgfeat + 'asscpop%dpop%d' % (q, l) setattr(gmodstat, name, featrefrassc[q][l][strgfeat]) # completeness for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue l = gdat.refr.indxpoplfittassc[q] for nameparaelemfrst in gdat.refr.namepara.elem[q]: if nameparaelemfrst.startswith('etag'): continue if nameparaelemfrst == 'spec' or nameparaelemfrst == 'specplot': continue refrfeatfrst = gdat.refr.dictelem[q][nameparaelemfrst][0, :] binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gdat.refr.namepara.elem[q]: if nameparaelemfrst == nameparaelemseco: continue if nameparaelemseco.startswith('etag'): continue if nameparaelemseco == 'spec' or nameparaelemseco == 'specplot': continue if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the cmpl np.array should depend on strgmodl cmpltdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeattdim = getattr(gdat.refr, 'hist%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q)) refrfeatseco = gdat.refr.dictelem[q][nameparaelemseco][0, :] binsfeatseco = getattr(gdat.binspara, nameparaelemseco) refrhistfeattdimassc = np.histogram2d(refrfeatfrst[indxelemrefrasschits[q][l]], \ refrfeatseco[indxelemrefrasschits[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(refrhistfeattdim != 0.) if indxgood[0].size > 0: cmpltdim[indxgood] = refrhistfeattdimassc[indxgood].astype(float) / refrhistfeattdim[indxgood] if gdat.booldiagmode: if np.where((cmpltdim[indxgood] > 1.) | (cmpltdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q), cmpltdim) cmplfrst = np.zeros(gdat.numbbinsplot) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeatfrst = getattr(gdat.refr, 'hist' + nameparaelemfrst + 'pop%d' % q) binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) refrhistfeatfrstassc = np.histogram(refrfeatfrst[indxelemrefrasschits[q][l]], bins=binsfeatfrst)[0] indxgood = np.where(refrhistfeatfrst != 0.)[0] if indxgood.size > 0: cmplfrst[indxgood] = refrhistfeatfrstassc[indxgood].astype(float) / refrhistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((cmplfrst[indxgood] > 1.) | (cmplfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%spop%d' % (nameparaelemfrst, q), cmplfrst) # false discovery rate for l in gmod.indxpopl: q = gmod.indxpoplrefrassc[l] for nameparaelemfrst in gmod.namepara.elem[l]: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gmod.namepara.elem[l]: if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the fdis np.array should depend on strgmodl fdistdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemseco]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: strgfeattdim = nameparaelemfrst + nameparaelemseco + 'pop%d' % l fitthistfeattdim = getattr(gmodstat, 'hist' + strgfeattdim) binsfeatseco = getattr(gdat.binspara, nameparaelemseco) fitthistfeattdimfals = np.histogram2d(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], \ gmodstat.dictelem[l][nameparaelemseco][indxelemfittasscfals[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(fitthistfeattdim != 0.) if indxgood[0].size > 0: fdistdim[indxgood] = fitthistfeattdimfals[indxgood].astype(float) / fitthistfeattdim[indxgood] if gdat.booldiagmode: if np.where((fdistdim[indxgood] > 1.) | (fdistdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%s%spop%d' % (nameparaelemfrst, nameparaelemseco, l), fdistdim) fdisfrst = np.zeros(gdat.numbbinsplot) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) fitthistfeatfrstfals = np.histogram(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], bins=binsfeatfrst)[0] fitthistfeatfrst = getattr(gmodstat, 'hist' + nameparaelemfrst + 'pop%d' % l) indxgood = np.where(fitthistfeatfrst != 0.)[0] if indxgood.size > 0: fdisfrst[indxgood] = fitthistfeatfrstfals[indxgood].astype(float) / fitthistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((fdisfrst[indxgood] > 1.) | (fdisfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%spop%d' % (nameparaelemfrst, l), fdisfrst) # temp if strgmodl == 'true' and gdat.typeverb > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) if np.where(minm > gmodstat.dictelem[l][strgfeat])[0].size > 0 or np.where(maxm < gmodstat.dictelem[l][strgfeat])[0].size > 0: print('Warning: element parameter outside the plot limits.') print('l') print(l) print('Feature: ') print(strgfeat) print('Plot minmimum') print(minm) print('Plot maxmimum') print(maxm) if strgfeat == gmod.nameparagenrelemampl[l] and strgfeat in gmod.namepara.genrelem[l]: gmod.indxparagenrelemtemp = gmod.namepara.genrelem[l].index(strgfeat) if (gmod.listscalparagenrelem[l][gmod.indxparagenrelemtemp] != 'gaus' and not gmod.listscalparagenrelem[l][gmod.indxparagenrelemtemp].startswith('lnor')): raise Exception('') stopchro(gdat, gdatmodi, 'tert') def retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, paragenrscalfull, dictelem, numbelem): gmod = getattr(gdat, strgmodl) if strgpdfn == 'self': minmfeat = getattr(gmod.minmpara, strgfeat) maxmfeat = getattr(gmod.maxmpara, strgfeat) lpri = numbelem[l] * np.log(1. / (maxmfeat - minmfeat)) if strgpdfn == 'logt': lpri = retr_lprilogtdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'gaus': lpri = retr_lprigausdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dexp': maxmbgal = getattr(gmod, 'maxmbgal') gmod.indxpara.bgaldistscal = getattr(gmod.indxpara, 'bgaldistscalpop%d' % l) lpri = np.sum(np.log(pdfn_dnp.exp(dictelem[l]['bgal'], maxmbgal, paragenrscalfull[gmod.indxpara.bgaldistscal]))) if strgpdfn == 'expo': maxmgang = getattr(gmod, 'maxmgang') gang = retr_gang(dictelem[l]['lgal'], dictelem[l]['bgal']) gmod.indxpara.gangdistscal = getattr(gmod.indxpara, 'gangdistscalpop%d' % l) lpri = np.sum(np.log(pdfn_expo(gang, maxmgang, paragenrscalfull[gmod.indxpara.gangdistscal]))) lpri = -numbelem[l] * np.log(2. * pi) if strgpdfn == 'tmpl': lpri = np.sum(lpdfspatprioobjt(dictelem[l]['bgal'], dictelem[l]['lgal'], grid=False)) if strgpdfn == 'powr': lpri = retr_lpripowrdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dpowslopbrek': lpri = retr_lpridpowdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dsrcexpo': lpri += -np.sum(np.sqrt((dictelem[l]['lgal'] - lgalsour)**2 + (dictelem[l]['bgal'] - bgalsour)**2) / \ getattr(gmod, 'dsrcdistsexppop%d' % l)) if strgpdfn == 'tmpl': if strgpdfn.endswith('cons'): pdfnspatpriotemp = getattr(gmod, 'pdfnspatpriotemp') spatdistcons = paragenrscalfull[getattr(gmod.indxpara, 'spatdistcons')] lpdfspatprio, lpdfspatprioobjt = retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons) lpdfspatpriointp = lpdfspatprioobjt(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart) lpdfspatpriointp = lpdfspatpriointp.T setattr(gmodstat, 'lpdfspatpriointp', lpdfspatpriointp) setattr(gmodstat, 'lpdfspatprioobjt', lpdfspatprioobjt) else: lpdfspatprioobjt = gmod.lpdfspatprioobjt return lpri def checstrgfeat(strgfrst, strgseco): numbfrst = len(strgfrst) numbseco = len(strgseco) numb = min(numbfrst, numbseco) if strgfrst[:numb] < strgseco[:numb]: booltemp = True elif strgfrst[:numb] == strgseco[:numb]: if numbfrst >= numbseco: booltemp = False else: booltemp = True else: booltemp = False return booltemp def retr_pathoutprtag(pathpcat, rtag): pathoutprtag = pathpcat + '/data/outp/' + rtag + '/' return pathoutprtag def proc_finl(gdat=None, rtag=None, strgpdfn='post', listnamevarbproc=None, forcplot=False): gdatmock = None print('proc_finl()') if rtag is None: rtag = gdat.rtag # determine if the final-processing if nominal or tiling if isinstance(rtag, list): listrtagmodi = rtag rtagfinl = tdpy.retr_strgtimestmp() + rtag[0][15:] + 'tile' booltile = True else: listrtagmodi = [rtag] rtagfinl = rtag booltile = False # determine of the gdatfinl object is available boolgdatfinl = chec_statfile(pathpcat, rtagfinl, 'gdatfinlpost') boolgdatfinlgood = False if boolgdatfinl: print('Final-processing has been performed previously.') pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) path = pathoutprtag + 'gdatfinl' + strgpdfn try: gdat = readfile(path) boolgdatfinlgood = True except: print('gdatfinl object is corrupted.') if boolgdatfinl and boolgdatfinlgood: # read gdatfinl pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) path = pathoutprtag + 'gdatfinl' + strgpdfn gdatfinl = readfile(path) if gdatfinl.fitt.numbparaelem > 0: if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: if gdatfinl.rtagmock is not None: path = gdatfinl.pathoutprtagmock + 'gdatfinlpost' gdatmock = readfile(path) else: if booltile: gdatfinltile = tdpy.gdatstrt() indxrtaggood = [] liststrgtile = [] listrtaggood = [] indxtiletemp = 0 for n, rtagmodi in enumerate(listrtagmodi): # read gdatinit boolgdatinit = chec_statfile(pathpcat, rtagmodi, 'gdatinit') if not boolgdatinit: if booltile: print('Initial global object not found. Skipping...') continue else: print('Initial global object not found. Quitting...') return pathoutprtag = retr_pathoutprtag(pathpcat, rtagmodi) path = pathoutprtag + 'gdatinit' gdatinit = readfile(path) if booltile: gdatfinltile = gdatinit gdatfinl = gdatinit else: gdatfinl = gdatinit pathoutprtagmodi = retr_pathoutprtag(pathpcat, rtagmodi) listgdatmodi = [] for k in gdatinit.indxproc: path = pathoutprtagmodi + 'gdatmodi%04d' % k + strgpdfn listgdatmodi.append(readfile(path)) # erase gdatdictcopy = deepcopy(gdatinit.__dict__) for strg, valu in gdatdictcopy.items(): if strg.startswith('fitt.indxpara.'): delattr(gdatinit, strg) if gdatinit.boolmockonly: print('Mock only run. Quitting final-processing...') return # read gdatmodi print('rtagmodi') print(rtagmodi) boolgdatmodi = chec_statfile(pathpcat, rtagmodi, 'gdatmodipost') if not boolgdatmodi: print('Modified global object not found. Quitting final-processing...') return ## list of other parameters to be flattened gdatinit.liststrgvarbarryflat = deepcopy(listgdatmodi[0].liststrgvarbarry) # temp #for strg in ['memoresi']: # gdatinit.liststrgvarbarryflat.remove(strg) listparagenrscalfull = np.empty((gdatinit.numbsamptotl, gdatinit.fitt.maxmnumbpara)) if booltile: gdatfinltile.pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) numbsamptotlrsmp = gdatinit.numbsamptotl indxsamptotlrsmp = np.random.choice(gdatinit.indxsamptotl, size=gdatinit.numbsamptotl, replace=False) # aggregate samples from the chains if gdatinit.typeverb > 0: print('Reading gdatmodi objects from all processes...') timeinit = gdatinit.functime() if gdatinit.typeverb > 0: timefinl = gdatinit.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if gdatinit.fitt.numbparaelem > 0: if len(getattr(listgdatmodi[0], 'list' + strgpdfn + 'gmodstat.indxelemfull')) == 0: print('Found an empty element list. Skipping...') continue if gdatinit.typeverb > 0: print('Accumulating np.arrays...') timeinit = gdatinit.functime() for strgvarb in gdatinit.liststrgvarbarryflat: for k in gdatinit.indxproc: if k == 0: shap = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb).shape shap = [shap[0], gdatinit.numbproc] + list(shap[1:]) temp = np.zeros(shap) - 1 if len(shap) > 2: temp[:, k, :] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb) else: temp[:, k] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, temp) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if gdatfinl.typeverb > 0: print('Accumulating lists...') timeinit = gdatfinl.functime() # lists of lists collected at each sample for strgvarb in listgdatmodi[0].liststrgvarblistsamp: listtemp = [[[] for k in gdatfinl.indxproc] for j in gdatfinl.indxsamp] for j in gdatfinl.indxsamp: for k in gdatfinl.indxproc: listtemp[j][k] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb)[j] setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listtemp) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if not booltile: ## np.maximum likelihood sample gdatfinl.maxmllikproc = np.empty(gdatfinl.numbproc) gdatfinl.indxswepmaxmllikproc = np.empty(gdatfinl.numbproc, dtype=int) gdatfinl.sampmaxmllikproc = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara)) for k in gdatfinl.indxproc: gdatfinl.maxmllikproc[k] = listgdatmodi[k].maxmllikswep gdatfinl.indxswepmaxmllikproc[k] = listgdatmodi[k].indxswepmaxmllik gdatfinl.sampmaxmllikproc[k, :] = listgdatmodi[k].sampmaxmllik listparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrunitfull') # Gelman-Rubin test if gdatfinl.numbproc > 1: if gdatfinl.typeverb > 0: print('Computing the Gelman-Rubin TS...') timeinit = gdatfinl.functime() gdatfinl.gmrbparagenrscalbase = np.zeros(gdatfinl.fitt.numbparagenrbase) gdatfinl.gmrbstat = np.zeros((gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt)) for k in gdatfinl.fitt.indxparagenrbase: gdatfinl.gmrbparagenrscalbase[k] = tdpy.mcmc.gmrb_test(listparagenrscalfull[:, :, k]) if not np.isfinite(gdatfinl.gmrbparagenrscalbase[k]): gdatfinl.gmrbparagenrscalbase[k] = 0. listcntpmodl = getattr(gdatfinl, 'list' + strgpdfn + 'cntpmodl') for i in gdatfinl.indxener: for j in gdatfinl.indxpixl: for m in gdatfinl.indxevtt: gdatfinl.gmrbstat[i, j, m] = tdpy.mcmc.gmrb_test(listcntpmodl[:, :, i, j, m]) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # calculate the autocorrelation of the chains if gdatfinl.typeverb > 0: print('Computing the autocorrelation of the chains...') timeinit = gdatfinl.functime() gdatfinl.atcrcntp = np.empty((gdatfinl.numbproc, gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt, int(gdatfinl.numbparagenrfull / 2))) gdatfinl.timeatcrcntp = np.empty((gdatfinl.numbproc, gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt)) gdatfinl.atcrpara = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara, int(gdatfinl.numbparagenrfull / 2))) gdatfinl.timeatcrpara = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara)) for k in gdatfinl.indxproc: gdatfinl.atcrpara[k, :, :], gdatfinl.timeatcrpara[k, :] = tdpy.mcmc.retr_timeatcr(listparagenrscalfull[:, k, :], typeverb=gdatfinl.typeverb) listcntpmodl = getattr(gdatfinl, 'list' + strgpdfn + 'cntpmodl') gdatfinl.atcrcntp[k, :], gdatfinl.timeatcrcntp[k, :] = tdpy.mcmc.retr_timeatcr(listcntpmodl[:, k, :, :, :], typeverb=gdatfinl.typeverb) timeatcrcntpmaxm = np.amax(gdatfinl.timeatcrcntp) gdatfinl.timeatcrcntpmaxm = np.amax(timeatcrcntpmaxm) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) setattr(gdatfinl, 'list' + strgpdfn + 'sampproc', np.copy(getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull'))) # flatten the list chains from different walkers for strgvarb in listgdatmodi[0].liststrgvarblistsamp: listtemp = [] listinpt = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for j in gdatfinl.indxsamp: for k in gdatfinl.indxproc: listtemp.append(listinpt[j][k]) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listtemp) # flatten the np.array chains from different walkers for strgvarb in gdatinit.liststrgvarbarryflat: inpt = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) shap = [inpt.shape[0] * inpt.shape[1]] + list(inpt.shape[2:]) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, inpt.reshape(shap)) listparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrunitfull') if booltile: liststrgtile.append(rtagmodi.split('_')[-2][-4:]) listrtaggood.append(rtagmodi) indxrtaggood.append(n) indxtiletemp += 1 if len(liststrgtile) == 1: for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: refrfeattile = [[] for q in gdatfinl.indxrefr] setattr(gdatfinl, 'refr' + strgfeat, refrfeattile) for strgvarb in gdatfinl.liststrgvarbarrysamp: if not strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: listvarb = [] setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listvarb) else: hist = np.zeros_like(getattr(listgdatmodi[0], 'list' + strgpdfn + strgvarb)) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, hist) for name, valu in gdatfinl.__dict__.items(): if name.startswith('refrhist'): setattr(gdatfinl, name, np.zeros_like(getattr(gdatfinl, name))) #for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: # refrfeattile = getattr(gdatfinl, 'refr' + strgfeat) # #refrfeat = getattr(gdatfinl, 'refr' + strgfeat) # refrfeat = [[] for q in gdatfinl.indxrefr] # for q in gdatfinl.indxrefr: # if strgfeat in gdatfinl.refrgmod.namepara.genrelem[q]: # refrfeat[q].append(refrfeattile[q]) for strgvarb in gdatfinl.liststrgvarbarrysamp: if strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: # temp if 'spec' in strgvarb: continue hist = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) hist += getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for name, valu in gdatfinl.__dict__.items(): if name.startswith('refrhist'): hist = getattr(gdatfinl, name) hist += getattr(gdatfinl, name) print('Done with the tile number %d, run number %d...' % (indxtiletemp, n)) if booltile: gdatfinl.pathplotrtag = gdatfinl.pathimag + rtagfinl + '/' make_fold(gdatfinl) indxrtaggood = np.array(indxrtaggood).astype(int) numbrtaggood = indxrtaggood.size numbtile = numbrtaggood print('Found %d tiles with run tags:' % numbrtaggood) for indxrtaggoodtemp in indxrtaggood: print(rtag[indxrtaggoodtemp]) # np.concatenate reference elements from different tiles #for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: # refrfeat = getattr(gdatfinl, 'refr' + strgfeat, refrfeat) # for q in gdatfinl.indxrefr: # if strgfeat in gdatfinl.refrgmod.namepara.genrelem[q]: # refrfeat[q] = np.concatenate(refrfeat[q], axis=1) for strgvarb in gdatfinl.liststrgvarbarrysamp: if not strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: listvarb = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) if 'assc' in strgvarb: numbrefrelemtotl = 0 for k, varbrsmp in enumerate(listvarb): numbrefrelemtotl += varbrsmp.shape[1] shap = [gdatfinl.numbsamptotl, numbrefrelemtotl] listvarbtemp = np.empty(shap) cntr = 0 for k, varb in enumerate(listvarb): listvarbtemp[:, cntr:cntr+varb.shape[1]] = varb cntr += varb.shape[1] else: shap = [gdatfinl.numbsamptotl * numbtile] + list(listvarb[0].shape[1:]) listvarbtemp = np.empty(shap) for k, varb in enumerate(listvarb): listvarbtemp[k*gdatfinl.numbsamptotl:(k+1)*gdatfinl.numbsamptotl, ...] = varb setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listvarbtemp) else: # np.maximum likelihood sample if gdatfinl.fitt.numbparaelem > 0: listindxelemfull = getattr(gdatfinl, 'list' + strgpdfn + 'indxelemfull') listllik = getattr(gdatfinl, 'list' + strgpdfn + 'llik') listlliktotl = getattr(gdatfinl, 'list' + strgpdfn + 'lliktotl') indxsamptotlmlik = np.argmax(np.sum(np.sum(np.sum(listllik, 3), 2), 1)) # copy the np.maximum likelihood sample for strgvarb in listgdatmodi[0].liststrgvarbarrysamp: setattr(gdatfinl, 'mlik' + strgvarb, getattr(gdatfinl, 'list' + strgpdfn + strgvarb)[indxsamptotlmlik, ...]) for strgvarb in listgdatmodi[0].liststrgvarblistsamp: setattr(gdatfinl, 'mlik' + strgvarb, getattr(gdatfinl, 'list' + strgpdfn + strgvarb)[indxsamptotlmlik]) # temp -- dont gdatfinl.listllik and gdatfinl.listparagenrscalfull have the same dimensions? gdatfinl.mlikparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull')[indxsamptotlmlik, :] gdatfinl.mlikparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull')[indxsamptotlmlik, :] #if gdatfinl.fitt.numbparaelem > 0: # gdatfinl.mlikindxelemfull = listindxelemfull[indxsamptotlmlik] gdatfinl.mlikparagenrscalbase = gdatfinl.mlikparagenrscalfull[gdatfinl.fitt.indxparagenrbase] for k, gmod.nameparagenrbase in enumerate(gdatfinl.fitt.nameparagenrbase): setattr(gdatfinl, 'mlik' + gmod.nameparagenrbase, gdatfinl.mlikparagenrscalbase[k]) # add execution times to the chain output gdatfinl.timereal = np.zeros(gdatfinl.numbproc) gdatfinl.timeproc = np.zeros(gdatfinl.numbproc) for k in gdatfinl.indxproc: gdatfinl.timereal[k] = listgdatmodi[k].timereal gdatfinl.timeproc[k] = listgdatmodi[k].timeproc # find the np.maximum likelihood and posterior over the chains gdatfinl.indxprocmaxmllik = np.argmax(gdatfinl.maxmllikproc) #gdatfinl.maxmlliktotl = gdatfinl.maxmllikproc[gdatfinl.indxprocmaxmllik] gdatfinl.indxswepmaxmllik = gdatfinl.indxprocmaxmllik * gdatfinl.numbparagenrfull + gdatfinl.indxswepmaxmllikproc[gdatfinl.indxprocmaxmllik] gdatfinl.sampmaxmllik = gdatfinl.sampmaxmllikproc[gdatfinl.indxprocmaxmllik, :] if strgpdfn == 'post': levipost = retr_levipost(listlliktotl) setattr(gdatfinl, strgpdfn + 'levipost', levipost) if strgpdfn == 'prio': leviprio = np.log(np.mean(np.exp(listlliktotl))) setattr(gdatfinl, strgpdfn + 'leviprio', leviprio) # parse the sample vector listparagenrscalbase = listparagenrscalfull[:, gdatfinl.fitt.indxparagenrbase] for k, gmod.nameparagenrbase in enumerate(gdatfinl.fitt.nameparagenrbase): setattr(gdatfinl, 'list' + strgpdfn + gmod.nameparagenrbase, listparagenrscalbase[:, k]) setattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalbase', listparagenrscalbase) if strgpdfn == 'post' and gdatfinl.checprio: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdatfinlprio' try: gdatprio = readfile(path) except: proc_finl(gdat=gdatfinl, strgpdfn='prio', listnamevarbproc=listnamevarbproc, forcplot=forcplot) else: gdatprio = None # post process samples ## bin element parameters if gdatfinl.typeverb > 0: print('Binning the probabilistic catalog spatially...') timeinit = gdatfinl.functime() if not booltile: if gdatfinl.fitt.numbparaelem > 0: if gdatfinl.boolbinsspat: histlgalbgalelemstkd = [[] for l in gdatfinl.fittindxpopl] listlgal = getattr(gdatfinl, 'list' + strgpdfn + 'lgal') listbgal = getattr(gdatfinl, 'list' + strgpdfn + 'bgal') for l in gdatfinl.fittindxpopl: if gdatfinl.fitttypeelem[l] != 'lghtline': histlgalbgalelemstkd[l] = np.zeros((gdatfinl.numbbgalpntsprob, gdatfinl.numblgalpntsprob, gdatfinl.numbbinsplot, numb)) temparry = np.concatenate([listlgal[n][l] for n in gdatfinl.indxsamptotl]) temp = np.empty((len(temparry), 3)) temp[:, 0] = temparry temp[:, 1] = np.concatenate([listbgal[n][l] for n in gdatfinl.indxsamptotl]) temp[:, 2] = np.concatenate([getattr(gdatfinl, 'list' + strgpdfn + strgfeat)[n][l] for n in gdatfinl.indxsamptotl]) bins = getattr(gdatfinl, 'bins' + strgfeat) histlgalbgalelemstkd[l][:, :, :, k] = np.histogramdd(temp, \ bins=(gdatfinl.binslgalpntsprob, gdatfinl.binsbgalpntsprob, bins))[0] setattr(gdatfinl, strgpdfn + 'histlgalbgalelemstkd', histlgalbgalelemstkd) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) ## construct a condensed catalog of elements if gdatfinl.boolcondcatl and gdatfinl.fitt.numbparaelem > 0: if gdatfinl.typeverb > 0: print('Constructing a condensed catalog...') timeinit = gdatfinl.functime() retr_condcatl(gdatfinl) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # construct lists of samples for each proposal type listindxproptype = getattr(gdatfinl, 'list' + strgpdfn + 'indxproptype') listboolpropaccp = getattr(gdatfinl, 'list' + strgpdfn + 'boolpropaccp') listboolpropfilt = getattr(gdatfinl, 'list' + strgpdfn + 'boolpropfilt') listindxsamptotlproptotl = [] listindxsamptotlpropfilt = [] listindxsamptotlpropaccp = [] listindxsamptotlpropreje = [] for n in gdatfinl.indxproptype: indxsampproptype = np.where(listindxproptype == gdatfinl.indxproptype[n])[0] listindxsamptotlproptotl.append(indxsampproptype) listindxsamptotlpropaccp.append(np.intersect1d(indxsampproptype, np.where(listboolpropaccp)[0])) listindxsamptotlpropfilt.append(np.intersect1d(indxsampproptype, np.where(listboolpropfilt)[0])) listindxsamptotlpropreje.append(np.intersect1d(indxsampproptype, np.where(np.logical_not(listboolpropaccp))[0])) if listindxsamptotlproptotl[n].size == 0: accp = 0. else: accp = float(listindxsamptotlpropaccp[n].size) / listindxsamptotlproptotl[n].size setattr(gdatfinl, 'accp' + gdatfinl.nameproptype[n], accp) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlproptotl', listindxsamptotlproptotl) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlpropaccp', listindxsamptotlpropaccp) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlpropreje', listindxsamptotlpropreje) if gdatfinl.fitt.numbparaelem > 0 and strgpdfn == 'post': if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: if gdatfinl.rtagmock is not None: path = gdatfinl.pathoutprtagmock + 'gdatfinlpost' gdatmock = readfile(path) # posterior corrections if gdatfinl.fitt.numbparaelem > 0 and strgpdfn == 'post': ## perform corrections if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: for gmod.namepara.genrelemvarbhist in gdatfinl.liststrgvarbhist: strgvarb = gmod.namepara.genrelemvarbhist[0] if gmod.namepara.genrelemvarbhist[1].startswith('aerr') or len(gmod.namepara.genrelemvarbhist[2]) > 0 and gmod.namepara.genrelemvarbhist[2].startswith('aerr'): continue if gmod.namepara.genrelemvarbhist[1] == 'spec' or gmod.namepara.genrelemvarbhist[1] == 'deflprof' or gmod.namepara.genrelemvarbhist[1] == 'specplot': continue if len(gmod.namepara.genrelemvarbhist[2]) > 0 and (gmod.namepara.genrelemvarbhist[2] == 'spec' or \ gmod.namepara.genrelemvarbhist[2] == 'deflprof' or gmod.namepara.genrelemvarbhist[2] == 'specplot'): continue ## internal correction listhist = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for qq in gdatmock.indxrefr: l = int(gmod.namepara.genrelemvarbhist[3][qq].split('pop')[1][0]) qq = int(gmod.namepara.genrelemvarbhist[3][qq].split('pop')[2][0]) if gmod.namepara.genrelemvarbhist[1][-4:] in gdatfinl.listnamerefr and \ (len(gmod.namepara.genrelemvarbhist[2]) == 0 or gmod.namepara.genrelemvarbhist[2][-4:] in gdatfinl.listnamerefr): listhistincr = listhist else: if gmod.namepara.genrelemvarbhist[1][-4:] in gdatfinl.listnamerefr and len(gmod.namepara.genrelemvarbhist[2]) > 0: listcmpltrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[2] + 'pop%dpop%d' % (l, qq))], 2) listfdistrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[2] + 'pop%dpop%d' % (qq, l))], 2) elif len(gmod.namepara.genrelemvarbhist[2][:-4]) > 0 and gmod.namepara.genrelemvarbhist[2][-4:] in gdatfinl.listnamerefr: listcmpltrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[1] + 'pop%dpop%d' % (l, qq))], 1) listfdistrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[1] + 'pop%dpop%d' % (qq, l))], 1) else: listcmpltrue = getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[3][qq]) listfdistrue = getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[3][qq]) if len(gmod.namepara.genrelemvarbhist[2]) == 0: listcmplboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) listfdisboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) listhistboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) for k in gdatfinl.indxbinsplot: listcmplboot[:, k] = np.random.choice(listcmpltrue[:, k], size=gdatfinl.numbsampboot) listfdisboot[:, k] = np.random.choice(listfdistrue[:, k], size=gdatfinl.numbsampboot) listhistboot[:, k] = np.random.choice(listhist[:, k], size=gdatfinl.numbsampboot) else: listcmplboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) listfdisboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) listhistboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) for a in gdatfinl.indxbinsplot: for b in gdatfinl.indxbinsplot: listcmplboot[:, a, b] = np.random.choice(listcmpltrue[:, a, b], size=gdatfinl.numbsampboot) listfdisboot[:, a, b] = np.random.choice(listfdistrue[:, a, b], size=gdatfinl.numbsampboot) listhistboot[:, a, b] = np.random.choice(listhist[:, a, b], size=gdatfinl.numbsampboot) indxbadd = np.where(listcmplboot == -1) indxbaddzero = np.where(listcmplboot == 0.) listhistincr = listhistboot / listcmplboot * (1. - listfdisboot) listhistincr[indxbadd] = -1.5 listhistincr[indxbaddzero] = 1.5 listgdatmodi[0].liststrgchan += ['incr' + gmod.namepara.genrelemvarbhist[4][qq]] setattr(gdatfinl, 'listpostincr' + gmod.namepara.genrelemvarbhist[4][qq], listhistincr) ## external correction for q in gdatfinl.indxrefr: nametemp = gmod.namepara.genrelemvarbhist[1] if len(gmod.namepara.genrelemvarbhist[2]) > 0: nametemp += gmod.namepara.genrelemvarbhist[2] nametemp += 'pop%dpop%dpop%d' % (q, qq, l) crexhist = getattr(gdatfinl, 'crex' + nametemp) if crexhist is not None: listhistexcr = listhistincr * crexhist if crexhist.ndim == 1 and listhistincr.ndim == 3: raise Exception('') listgdatmodi[0].liststrgchan += ['excr' + nametemp] setattr(gdatfinl, 'listpostexcr' + nametemp, listhistexcr) # compute credible intervals if gdatfinl.typeverb > 0: print('Computing credible intervals...') timeinit = gdatfinl.functime() for strgchan in listgdatmodi[0].liststrgchan: if booltile: if strgchan in gdatfinl.liststrgvarbarryswep or strgchan in listgdatmodi[0].liststrgvarblistsamp: continue if not (strgchan.startswith('hist') or strgchan.startswith('incr') or strgchan.startswith('excr')): continue if gdatfinl.fitt.numbparaelem > 0 and strgchan in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: if 'spec' in strgchan: continue if strgchan == 'spec': continue listtemp = getattr(gdatfinl, 'list' + strgpdfn + strgchan) if isinstance(listtemp, list): if booltile: continue # ensure that transdimensional lists are not included # temp if strgchan in gdatfinl.fitt.namepara.genrelemtotl or strgchan == 'indxelemfull': continue pctltemp = [] pmeatemp = [] meditemp = [] errrtemp = [] stdvtemp = [] numb = len(listtemp[0]) for k in range(numb): if isinstance(listtemp[0][k], list): continue shap = [gdatfinl.numbsamptotl] + list(listtemp[0][k].shape) temp = np.zeros(shap) for n in gdatfinl.indxsamptotl: temp[n, ...] = listtemp[n][k] pctltempsing = tdpy.retr_pctlvarb(temp) pmeatempsing = np.mean(temp, axis=0) meditempsing = pctltempsing[0, ...] errrtempsing = tdpy.retr_errrvarb(pctltempsing) stdvtempsing = np.std(temp) pctltemp.append(pctltempsing) pmeatemp.append(pmeatempsing) meditemp.append(meditempsing) errrtemp.append(errrtempsing) stdvtemp.append(stdvtempsing) else: # this is needed for finding posterior moments of features of associated reference elements if 'asscref' in strgchan: if listtemp.ndim != 2: raise Exception('') pmeatemp = np.zeros(listtemp.shape[1]) pctltemp = np.zeros([3] + [listtemp.shape[1]]) # temp -- this only works for 2D listtemp for k in range(listtemp.shape[1]): indxassc = np.where(np.isfinite(listtemp[:, k]))[0] if indxassc.size > 0: pctltemp[:, k] = tdpy.retr_pctlvarb(listtemp[indxassc, k]) pmeatemp[k] = np.mean(listtemp[indxassc, k]) else: pctltemp = tdpy.retr_pctlvarb(listtemp) pmeatemp = np.mean(listtemp, axis=0) errrtemp = tdpy.retr_errrvarb(pctltemp) stdvtemp = np.std(pctltemp, axis=0) meditemp = pctltemp[0, ...] if strgchan in gdatfinl.listnamevarbcpct: cpcttemp = np.empty([gdatfinl.numbsampcpct] + [3] + list(listtemp.shape[1:])) for n in gdatfinl.indxsampcpct: cpcttemp[n, ...] = tdpy.retr_pctlvarb(listtemp[:n+1, ...]) setattr(gdatfinl, 'pctl' + strgpdfn + strgchan, pctltemp) setattr(gdatfinl, 'medi' + strgpdfn + strgchan, meditemp) setattr(gdatfinl, 'pmea' + strgpdfn + strgchan, pmeatemp) setattr(gdatfinl, 'errr' + strgpdfn + strgchan, errrtemp) setattr(gdatfinl, 'stdv' + strgpdfn + strgchan, stdvtemp) if strgchan in gdatfinl.listnamevarbcpct: setattr(gdatfinl, 'cpct' + strgpdfn + strgchan, cpcttemp) if not booltile: pmealliktotl = getattr(gdatfinl, 'pmea' + strgpdfn + 'lliktotl') stdvlliktotl = getattr(gdatfinl, 'stdv' + strgpdfn + 'lliktotl') minmlliktotl = np.amin(listlliktotl) maxmlliktotl = np.amax(listlliktotl) skewlliktotl = np.mean(((listlliktotl - pmealliktotl) / stdvlliktotl)**3) kurtlliktotl = np.mean(((listlliktotl - pmealliktotl) / stdvlliktotl)**4) setattr(gdatfinl, 'minm' + strgpdfn + 'lliktotl', minmlliktotl) setattr(gdatfinl, 'maxm' + strgpdfn + 'lliktotl', maxmlliktotl) setattr(gdatfinl, 'skew' + strgpdfn + 'lliktotl', skewlliktotl) setattr(gdatfinl, 'kurt' + strgpdfn + 'lliktotl', kurtlliktotl) if strgpdfn == 'post': infopost = retr_infofromlevi(pmealliktotl, levipost) setattr(gdatfinl, strgpdfn + 'infopost', infopost) if strgpdfn == 'post' and gdatfinl.checprio: leviprio = getattr(gdatprio, 'prioleviprio') infoprio = retr_infofromlevi(pmealliktotl, leviprio) setattr(gdatfinl, strgpdfn + 'infoprio', infoprio) bcom = maxmlliktotl - pmealliktotl setattr(gdatfinl, strgpdfn + 'bcom', bcom) listnametemp = ['lliktotl'] if gmod.numbparaelem > 0: listnametemp += ['lpripena'] for namevarbscal in listnametemp: listtemp = getattr(gdatfinl, 'list' + strgpdfn + namevarbscal) minm = np.amin(listtemp) maxm = np.amax(listtemp) setattr(gdatfinl, 'minm' + namevarbscal, minm) setattr(gdatfinl, 'maxm' + namevarbscal, maxm) setattr(gdatfinl, 'scal' + namevarbscal, 'self') retr_axis(gdat, namevarbscal) if gdatfinl.checprio: for strgvarb in gdatfinl.listnamevarbscal: setp_pdfnvarb(gdatfinl, strgpdfn, strgvarb, strgvarb) for l0 in gdatfinl.fittindxpopl: for strgfeatfrst in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue setp_pdfnvarb(gdatfinl, strgpdfn, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l0) for strgfeatseco in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue setp_pdfnvarb(gdatfinl, strgpdfn, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l0, nameseco=strgfeatseco) # calculate information gain if strgpdfn == 'post': for namevarbscal in gdatfinl.listnamevarbscal: setp_info(gdatfinl, gdatprio, namevarbscal, namevarbscal) for l0 in gdatfinl.fittindxpopl: for strgfeatfrst in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue setp_info(gdatfinl, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l0) for strgfeatseco in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue setp_info(gdatfinl, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l0, nameseco=strgfeatseco) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # flatten the np.arrays which have been collected at each sweep #setattr(gdat, 'list' + strgpdfn + strgpdfntemp + 'flat', getattr(gdat, 'list' + strgpdfn + strgpdfntemp + 'totl').flatten()) if not booltile: # memory usage listmemoresi = getattr(gdatfinl, 'list' + strgpdfn + 'memoresi') gdatfinl.meanmemoresi = np.mean(listmemoresi, 1) gdatfinl.derimemoresi = (gdatfinl.meanmemoresi[-1] - gdatfinl.meanmemoresi[0]) / gdatfinl.numbswep gdatfinl.timerealtotl = time.time() - gdatfinl.timerealtotl gdatfinl.timeproctotl = time.clock() - gdatfinl.timeproctotl gdatfinl.timeproctotlswep = gdatfinl.timeproctotl / gdatfinl.numbswep if gdatfinl.timeatcrcntpmaxm == 0.: gdatfinl.timeprocnorm = 0. else: gdatfinl.timeprocnorm = gdatfinl.timeproctotlswep / gdatfinl.timeatcrcntpmaxm # write the final gdat object path = gdatfinl.pathoutprtag + 'gdatfinl' + strgpdfn if gdatfinl.typeverb > 0: print('Writing gdatfinl to %s...' % path) writfile(gdatfinl, path) filestat = open(gdatfinl.pathoutprtag + 'stat.txt', 'a') filestat.write('gdatfinl%s written.\n' % strgpdfn) filestat.close() if not booltile: if gdatfinl.typeverb > 0: for k in gdatfinl.indxproc: print('Process %d has been completed in %d real seconds, %d CPU seconds.' % (k, gdatfinl.timereal[k], gdatfinl.timeproc[k])) print('Parent process has run in %d real seconds, %d CPU seconds.' % (gdatfinl.timerealtotl, gdatfinl.timeproctotl)) print('HACKING!!') gdatfinl.strgpdfn = 'post' print('Checking whether post-processing plots already exist.') booltemp = chec_statfile(pathpcat, rtagfinl, 'plotfinl') if booltemp: print('Final plots already exist. Skipping...') else: if strgpdfn == 'post' and gdatfinl.checprio: path = pathoutprtag + 'gdatfinlprio' gdatprio = readfile(path) else: gdatprio = None if gdatfinl.makeplot and getattr(gdatfinl, 'makeplotfinl' + strgpdfn) or forcplot: plot_finl(gdatfinl, gdatprio=gdatprio, strgpdfn=strgpdfn, gdatmock=gdatmock, booltile=booltile) filestat = open(gdatfinl.pathoutprtag + 'stat.txt', 'a') filestat.write('plotfinl%s written.\n' % strgpdfn) filestat.close() def retr_listgdat(listrtag, typegdat='finlpost'): listgdat = [] for rtag in listrtag: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdat%s' % typegdat listgdat.append(readfile(path)) return listgdat def make_fold(gdat): for strgpdfn in gdat.liststrgpdfn: setattr(gdat, 'path' + strgpdfn, gdat.pathplotrtag + strgpdfn + '/') path = getattr(gdat, 'path' + strgpdfn) for nameseco in ['finl', 'fram', 'anim', 'opti']: setattr(gdat, 'path' + strgpdfn + nameseco, path + nameseco + '/') for nameseco in ['diag', 'lpac', 'varbscal', 'cond', 'varbscalproc']: setattr(gdat, 'path' + strgpdfn + 'finl' + nameseco, path + 'finl/' + nameseco + '/') for n in gdat.indxproptype: setattr(gdat, 'path' + strgpdfn + 'finl' + gdat.nameproptype[n], path + 'finl/lpac/' + gdat.nameproptype[n] + '/') for namethrd in ['hist', 'trac', 'join', 'cova']: setattr(gdat, 'path' + strgpdfn + 'finlvarbscal' + namethrd, path + 'finl/varbscal/' + namethrd + '/') for strgphas in gdat.liststrgphas + ['init']: liststrgfold = getattr(gdat, 'liststrgfold' + strgphas) for nameseco in liststrgfold: if strgphas == 'init': if nameseco == 'assc' or nameseco.startswith('cmpl') or nameseco.startswith('fdis'): continue setattr(gdat, 'path' + strgphas + nameseco[:-1], gdat.pathplotrtag + 'init/' + nameseco) else: setattr(gdat, 'path' + strgpdfn + strgphas + nameseco[:-1], path + strgphas + '/' + nameseco) gdat.pathinfo = gdat.pathplotrtag + 'info/' ## make the directories for attr, valu in gdat.__dict__.items(): if attr.startswith('path'): os.system('mkdir -p %s' % valu) def make_cmapdivg(strgcolrloww, strgcolrhigh): funccolr = mpl.colors.ColorConverter().to_rgb colrloww = funccolr(strgcolrloww) colrhigh = funccolr(strgcolrhigh) cmap = make_cmap([colrloww, funccolr('white'), 0.5, funccolr('white'), colrhigh]) return cmap def make_cmap(seq): seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mpl.colors.LinearSegmentedColormap('CustomMap', cdict) def setp_pdfnvarb(gdat, strgpdfn, name, namefull, nameseco=None): if listvarb.ndim == 1: shaptemp = [gdat.numbbinspdfn, 1] else: shaptemp = [gdat.numbbinspdfn] + list(listvarb.shape[1:]) pdfn = np.empty(shaptemp) if listvarb.ndim == 1: binsvarb = getattr(gdat.binspara, name) deltvarb = getattr(gdat, 'delt' + name) pdfn[:, 0] = np.histogram(listvarb, bins=binsvarb)[0].astype(float) pdfn[:, 0] /= np.sum(pdfn[:, 0]) pdfn[:, 0] /= deltvarb else: binsvarb = np.linspace(0, gmod.maxmpara.numbelemtotl, 51) if listvarb.ndim == 2: for k in range(listvarb.shape[1]): pdfn[:, k] = np.histogram(listvarb[:, k], bins=binsvarb)[0].astype(float) pdfn[:, k] /= np.sum(pdfn[:, k]) pdfn *= 50. if listvarb.ndim == 3: for k in range(listvarb.shape[1]): for m in range(listvarb.shape[2]): pdfn[:, k, m] = np.histogram(listvarb[:, k, m], bins=binsvarb)[0].astype(float) pdfn[:, k, m] /= np.sum(pdfn[:, k, m]) pdfn *= 2500. pdfn[np.where(pdfn < 1e-50)[0]] = 1e-50 setattr(gdat, 'pdfn' + strgpdfn + namefull, pdfn) def setp_info(gdat, gdatprio, name, namefull, nameseco=None, namesecofull=None): listpost = getattr(gdat, 'listpost' + namefull) listprio = getattr(gdatprio, 'listprio' + namefull) pdfnpost = getattr(gdat, 'pdfnpost' + namefull) pdfnprio = getattr(gdatprio, 'pdfnprio' + namefull) if listpost.ndim == 3: infodens = np.empty((gdat.numbbinspdfn, listpost.shape[1], listpost.shape[2])) info = np.empty((listpost.shape[1], listpost.shape[2])) pvks = np.empty((listpost.shape[1], listpost.shape[2])) else: if listpost.ndim == 1: numbtemp = 1 else: numbtemp = listpost.shape[1] infodens = np.empty((gdat.numbbinspdfn, numbtemp)) info = np.empty(numbtemp) pvks = np.empty(numbtemp) if listpost.ndim == 1: listpost = listpost[:, None] listprio = listprio[:, None] deltvarb = getattr(gdat, 'delt' + name) else: if listpost.ndim == 2: deltvarb = 1. / 50 else: deltvarb = 1. / 50**list2 if listpost.ndim == 1 or listpost.ndim == 2: for k in range(listpost.shape[1]): infodens[:, k] = retr_infodens(pdfnpost[:, k], pdfnprio[:, k]) info[k] = np.sum(infodens[:, k] * deltvarb) temp, pvks[k] = sp.stats.ks_2samp(listpost[:, k], listprio[:, k]) if listpost.ndim == 3: for k in range(listpost.shape[1]): for m in range(listpost.shape[2]): infodens[:, k, m] = retr_infodens(pdfnpost[:, k, m], pdfnprio[:, k, m]) info[k, m] = np.sum(infodens[:, k, m] * deltvarb) temp, pvks[k, m] = sp.stats.ks_2samp(listpost[:, k, m], listprio[:, k, m]) setattr(gdat, 'pvks' + namefull, pvks) setattr(gdat, 'infodens' + namefull, infodens) setattr(gdat, 'info' + namefull, info) # check the state file def chec_statfile(pathpcat, rtag, strggdat, typeverb=1): print('Checking the state file %s for %s...' % (strggdat, rtag)) pathoutprtag = retr_pathoutprtag(pathpcat, rtag) # check the status file if not os.path.isfile(pathoutprtag + 'stat.txt'): if typeverb > 0: print('pathoutprtag') print(pathoutprtag) print('stat.txt not found.') return False # check the global object filestat = open(pathoutprtag + 'stat.txt', 'r') booltemp = False linesrch = strggdat + ' written.\n' for line in filestat: if line == linesrch: booltemp = True filestat.close() if not booltemp: if typeverb > 0: print('bad %s status.' % (strggdat)) return False else: return True def retr_los3(dlos, lgal, bgal): dglc = np.sqrt(8.5e3**2 + dlos**2 - 2. * dlos * 8.5e3 * np.cos(bgal) * np.cos(lgal)) thet = np.arccos(np.sin(bgal) * dlos / dglc) phii = np.arcsin(np.sqrt(np.cos(bgal)**2 * dlos**2 + 8.5e3**2 - 2 * dlos * np.cos(bgal) * 8.5e3) / dglc) return dglc, thet, phii def retr_glc3(dglc, thet, phii): xpos = dglc * np.sin(thet) * np.cos(phii) ypos = dglc * np.sin(thet) * np.sin(phii) zpos = dglc * np.cos(thet) dlos = np.sqrt(zpos**2 + xpos**2 + (8.5e3 - ypos)**2) lgal = np.arctan2(8.5e3 - ypos, xpos) - np.pi / 2 bgal = np.arcsin(zpos / dlos) return dlos, lgal, bgal def retr_lumipuls(geff, magf, per0): # temp -- this is bolometric luminosity np.whereas dictelem[l]['flux'] is differential! lumi = 9.6e33 * (geff / 0.2) * (magf / 10**8.5)**2 * (3e-3 / per0)*4 return lumi def retr_lumi(gdat, flux, dlos, reds=None): lumi = flux * 4. * np.pi * dlos**2 * gdat.prsccmtr**2 / gdat.ergsgevv # temp # redshift correction if reds is not None: lumi *= (1. + reds)**2 return lumi def retr_flux(gdat, lumi, dlos, reds=None): flux = lumi / 4. / np.pi / dlos**2 / gdat.prsccmtr**2 * gdat.ergsgevv # temp # redshift correction if reds is not None: pass return flux def retr_per1(per0, magf): per1 = 3.3e-20 * (magf / 10**8.5)**2 * (3e-3 / per0) return per1 def retr_dlosgalx(lgal, bgal, dglc): # temp -- this is obviously wrong dlos = 8.5e3 - dglc return dlos def retr_arryfromlist(listtemp): shap = [len(listtemp)] + list(listtemp[0].shape) arry = np.empty(shap) for k in range(len(listtemp)): arry[k, ...] = listtemp[k] return arry def proc_cntpdata(gdat): # exclude voxels with vanishing exposure ## data counts if gdat.typedata == 'inpt': gdat.cntpdata = retr_cntp(gdat, gdat.sbrtdata) # data variance gdat.varidata = np.maximum(gdat.cntpdata, 1.) # correct the likelihoods for the constant data dependent factorial gdat.llikoffs = -sp.special.gammaln(gdat.cntpdata + 1) ## spatial average gdat.sbrtdatamean, gdat.sbrtdatastdv = retr_spatmean(gdat, gdat.cntpdata, boolcntp=True) # data count limits minmcntpdata = np.amin(gdat.cntpdata) maxmcntpdata = np.amax(gdat.cntpdata) minm = minmcntpdata maxm = maxmcntpdata setp_varb(gdat, 'cntpdata', minm=minm, maxm=maxm, lablroot='$C_{D}$', scal='asnh', strgmodl='plot') maxm = maxmcntpdata minm = 1e-1 * minmcntpdata for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) setp_varb(gdat, 'cntpmodl', minm=minm, maxm=maxm, strgmodl=strgmodl, scal='asnh') print('gdat.labltickmajrpara.cntpmodl') print(gdat.labltickmajrpara.cntpmodl) # residual limits maxm = np.ceil(maxmcntpdata * 0.1) minm = -np.ceil(maxmcntpdata * 0.1) setp_varb(gdat, 'cntpresi', minm=minm, maxm=maxm, lablroot='$C_{R}$', scal='asnh', strgmodl='plot') # 1-point function of the data counts for m in gdat.indxevtt: if gdat.numbpixl > 1: for i in gdat.indxener: print('gdat.cntpdata[i, :, m]') summgene(gdat.cntpdata[i, :, m]) print('gdat.binspara.cntpdata') summgene(gdat.binspara.cntpdata) histcntp = np.histogram(gdat.cntpdata[i, :, m], bins=gdat.binspara.cntpdata)[0] setattr(gdat, 'histcntpdataen%02devt%d' % (i, m), histcntp) else: histcntp = np.histogram(gdat.cntpdata[:, 0, m], bins=gdat.binspara.cntpdata)[0] setattr(gdat, 'histcntpdataevt%d' % m, histcntp) # obtain cartesian versions of the maps if gdat.typepixl == 'cart': ## data counts gdat.cntpdatacart = np.zeros((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt)) gdat.cntpdatacart[:, gdat.indxpixlrofi, :] = gdat.cntpdata gdat.cntpdatacart = gdat.cntpdatacart.reshape((gdat.numbener, gdat.numbsidecart, gdat.numbsidecart, gdat.numbevtt)) def retr_infodens(pdfnpost, pdfnprio): infodens = pdfnpost * np.log(pdfnpost / pdfnprio) return infodens def retr_llik(gdat, strgmodl, cntpmodl): if gdat.liketype == 'pois': llik = gdat.cntpdata * np.log(cntpmodl) - cntpmodl if gdat.liketype == 'gaus': llik = -0.5 * (gdat.cntpdata - cntpmodl)**2 / gdat.varidata return llik def retr_mapsgaus(gdat, lgal, bgal, spec, size, ellp, angl): rttrmatr = np.array([[np.cos(angl), -np.sin(angl)], [np.sin(angl), np.cos(angl)]]) icovmatr = np.array([[1. / ((1. - ellp) * size)**2, 0.], [0., 1. / size**2]]) posi = np.array([lgalgrid - lgal, bgalgrid - bgal]) mapsgaus = flux * np.exp(-0.5 * np.sum(posi * tensordot(self.icovmatr, posi, (1,0)), 0)) / size**2 / (1. - ellp) return mapsgaus def retr_sbrtsers(gdat, lgalgrid, bgalgrid, lgal, bgal, spec, size, ellp, angl, seri=np.array([4.])): lgalrttr = (1. - ellp) * (np.cos(angl) * (lgalgrid - lgal) - np.sin(angl) * (bgalgrid - bgal)) bgalrttr = np.sin(angl) * (lgalgrid - lgal) + np.cos(angl) * (bgalgrid - bgal) angl = np.sqrt(lgalrttr**2 + bgalrttr**2) # interpolate pixel-convolved Sersic surface brightness if gdat.typesers == 'intp': shapinpt = angl.shape inpt = np.empty(list(shapinpt) + [3]) inpt[..., 0] = angl inpt[..., 1] = size inpt[..., 2] = seri sbrtsers = spec[:, None, None] * sp.interpolate.interpn((gdat.binspara.lgalsers, gdat.binspara.halfsers, gdat.binspara.indxsers), gdat.sersprof, inpt)[None, :, None] # evaluate directly de Vaucouleurs if gdat.typesers == 'vauc': sbrtsers = spec[:, None, None] * retr_sbrtsersnorm(angl, size)[None, :, None] return sbrtsers def retr_sbrtsersnorm(angl, halfsers, indxsers=4.): ## this approximation works for 0.5 < indx < 10 factsers = 1.9992 * indxsers - 0.3271 ## surface brightness profile at the half-light radius for a 1 erg cm^-2 s^-1 A^-1 source if indxsers == 4.: sbrthalf = 1. / 7.2 / np.pi / halfsers**2 else: sbrthalf = 1. / 2. / np.pi / np.exp(factsers) * factsers**(2 * indxsers) / indxsers / sp.special.gamma(2. * indxsers) / halfsers**2 ## surface brightness profile sbrtsers = sbrthalf * np.exp(-factsers * ((angl / halfsers)**(1. / indxsers) - 1.)) return sbrtsers def copytdgu(varb): if isinstance(varb, np.ndarray): return np.copy(varb) else: return deepcopy(varb) def proc_anim(rtag): pathoutprtag = retr_pathoutprtag(pathpcat, rtag) print('Making animations of frame plots for %s...' % rtag) path = pathoutprtag + 'gdatinit' gdat = readfile(path) for strgpdfn in gdat.liststrgpdfn: for nameextn in gdat.liststrgfoldanim: pathframextn = gdat.pathimag + rtag + '/' + strgpdfn + '/fram/' + nameextn pathanimextn = gdat.pathimag + rtag + '/' + strgpdfn + '/anim/' + nameextn try: listfile = fnmatch.filter(os.listdir(pathframextn), '*_swep*.pdf') except: print('%s failed.' % pathframextn) continue listfiletemp = [] for thisfile in listfile: listfiletemp.extend((thisfile.split('_')[0]).rsplit('/', 1)) listname = list(set(listfiletemp)) if len(listname) == 0: continue shuffle(listname) for name in listname: strgtemp = '%s*_swep*.pdf' % name listfile = fnmatch.filter(os.listdir(pathframextn), strgtemp) numbfile = len(listfile) liststrgextn = [] for k in range(numbfile): liststrgextn.append((listfile[k].split(name)[1]).split('_')[0]) liststrgextn = list(set(liststrgextn)) for k in range(len(liststrgextn)): listfile = fnmatch.filter(os.listdir(pathframextn), name + liststrgextn[k] + '_swep*.pdf') numbfile = len(listfile) indxfilelowr = 0 if indxfilelowr < numbfile: indxfileanim = np.arange(indxfilelowr, numbfile) else: continue indxfileanim = np.random.choice(indxfileanim, replace=False, size=indxfileanim.size) cmnd = 'convert -delay 20 -density 300 -quality 100 ' for n in range(indxfileanim.size): cmnd += '%s%s ' % (pathframextn, listfile[indxfileanim[n]]) namegiff = '%s%s.gif' % (pathanimextn, name + liststrgextn[k]) cmnd += ' ' + namegiff print('Processing %s' % namegiff) if not os.path.exists(namegiff): print('Run: %s, pdf: %s' % (rtag, strgpdfn)) print('Making %s animation...' % name) os.system(cmnd) else: print('GIF already exists.') pass pathoutprtag = retr_pathoutprtag(pathpcat, rtag) filestat = open(pathoutprtag + 'stat.txt', 'a') filestat.write('animfinl written.\n') filestat.close() def plot_samp(gdat, gdatmodi, strgstat, strgmodl, strgphas, strgpdfn='post', gdatmock=None, booltile=False): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) if not booltile: if strgstat != 'pdfn': numbelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) if gdatmodi is not None: strgswep = '_%09d' % gdatmodi.cntrswep else: strgswep = '' if not booltile: # data count maps if gdat.numbpixl > 1: for i in gdat.indxener: for m in gdat.indxevtt: if gdat.boolmakeframcent and (i != gdat.numbener / 2 or m != gdat.numbevtt / 2): continue plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpdata', i, m) ## residual count maps for i in gdat.indxener: for m in gdat.indxevtt: if gdat.boolmakeframcent and (i != gdat.numbener / 2 or m != gdat.numbevtt / 2): continue plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpresi', i, m) if gdat.numbpixl > 1: if gmod.numbparaelem > 0: if gmod.boolelemlens: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convelem', booltdim=True) # temp -- restrict other plots to indxmodlelemcomp if gdat.boolbinsener: for specconvunit in gdat.listspecconvunit: if not gmod.boolbfun: plot_sbrt(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, specconvunit) if gmod.boolapplpsfn: plot_psfn(gdat, gdatmodi, strgstat, strgmodl) setp_indxswepsave(gdat) if gmod.numbparaelem > 0: # element parameter histograms if not (strgmodl == 'true' and gdat.typedata == 'inpt'): limtydat = gdat.limtydathistfeat for l in gmod.indxpopl: strgindxydat = 'pop%d' % l for nameparaderielemodim in gmod.namepara.derielemodim[l]: if not (nameparaderielemodim == 'flux' or nameparaderielemodim == 'mcut' or \ nameparaderielemodim == 'deltllik' or nameparaderielemodim == 'defs' or nameparaderielemodim == 'nobj'): continue if gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt': continue indxydat = [l, slice(None)] name = nameparaderielemodim namepopl = nameparaderielemodim + 'pop%d' % l lablxdat = getattr(gmod.labltotlpara, namepopl) scalxdat = getattr(gmod.scalpara, namepopl) limtxdat = getattr(gmod.limtpara, namepopl) meanxdat = getattr(gdat.meanpara, name) if gdat.numbpixl > 1: listydattype = ['totl', 'sden'] else: listydattype = ['totl'] for ydattype in listydattype: ## plot the surface density of elements if ydattype == 'sden': # plot the surface density of elements only for the amplitude feature if nameparaderielemodim != gmod.nameparagenrelemampl: continue if gdat.sdenunit == 'degr': lablydat = r'$\Sigma_{%s}$ [deg$^{-2}$]' % gmod.lablelemextn[l] if gdat.sdenunit == 'ster': lablydat = r'$\Sigma_{%s}$ [sr$^{-2}$]' % gmod.lablelemextn[l] ## plot the total number of elements if ydattype == 'totl': lablydat = r'$N_{%s}$' % gmod.lablelemextn[l] if ydattype == 'totl' and not gdat.rtagmock is None: listtypehist = ['hist', 'histcorrreca'] else: listtypehist = ['hist'] boolhistprio = not booltile for typehist in listtypehist: if typehist == 'histcorrreca': if gmod.numbparaelem == 0 or gdat.priofactdoff == 0.: continue if nameparaderielemodim == 'specplot' or nameparaderielemodim == 'spec' or nameparaderielemodim == 'deflprof': continue if not nameparaderielemodim in gmod.namepara.genrelem[l]: continue plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'hist' + nameparaderielemodim + 'pop%d' % l, \ 'mean' + nameparaderielemodim, scalydat='logt', lablxdat=lablxdat, \ lablydat=lablydat, histodim=True, ydattype=ydattype, \ scalxdat=scalxdat, meanxdat=meanxdat, limtydat=limtydat, \ limtxdat=limtxdat, boolhistprio=boolhistprio, \ #indxydat=indxydat, strgindxydat=strgindxydat, \ nameinte='histodim/', typehist=typehist) if not booltile: if gmod.numbparaelem > 0: # element parameter correlations for l in gmod.indxpopl: if strgmodl != 'true' and gdat.boolinforefr and gdat.boolasscrefr: for strgfeat in gmod.namepara.derielemodim[l]: if not (strgfeat == 'flux' or strgfeat == 'mass' or strgfeat == 'deltllik' or strgfeat == 'nobj') and \ (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): continue for q in gdat.indxrefr: if not l in gdat.refrindxpoplassc[q]: continue if gdat.refr.numbelem[q] == 0: continue if not strgfeat in gdat.refr.namepara.elem[q] or strgfeat in gdat.refr.namepara.elemonly[q][l]: continue plot_scatassc(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, q, l, strgfeat) plot_scatassc(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, q, l, strgfeat, plotdiff=True) if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): # plots for i in gdat.indxener: for m in gdat.indxevtt: if gmod.numbpopl > 1: if gmod.numbparaelem > 0: for l in gmod.indxpopl: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpdata', i, m, indxpoplplot=l) ## histograms of the number of counts per pixel limtxdat = [gdat.minmpara.cntpmodl, gdat.maxmpara.cntpmodl] for nameecom in gmod.listnameecomtotl: name = 'histcntp' + nameecom for m in gdat.indxevtt: for i in gdat.indxener: if gdat.numbener > 1: name += 'en%02d' % (i) if gdat.numbevtt > 1: name += 'evt%d' % (m) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, \ name, 'meancntpdata', scalydat='logt', scalxdat='logt', lablxdat=gdat.lablcnts, histodim=True, \ lablydat='$N_{pix}$', limtydat=[0.5, gdat.numbener], limtxdat=limtxdat) ## highest amplitude element # temp if gmod.numbparaelem > 0: # completeness and false discovery rate if strgmodl != 'true' and gdat.boolasscrefr: for strgclas in ['cmpl', 'fdis']: nameinte = strgclas + 'odim/' limtydat = [getattr(gdat, 'minm' + strgclas), getattr(gdat, 'maxm' + strgclas)] for l in gmod.indxpopl: for q in gdat.indxrefr: if not l in gdat.refrindxpoplassc[q]: continue if gdat.refr.numbelem[q] == 0 and strgclas == 'cmpl' or gmod.numbparaelem == 0 and strgclas == 'fdis': continue if strgclas == 'cmpl': lablydat = getattr(gmod.lablpara, strgclas + 'pop%dpop%d' % (l, q)) strgindxydat = 'pop%dpop%d' % (l, q) else: lablydat = getattr(gmod.lablpara, strgclas + 'pop%dpop%d' % (q, l)) strgindxydat = 'pop%dpop%d' % (q, l) for strgfeat in gdat.refr.namepara.elem[q]: if strgfeat == 'etag': continue if strgclas == 'fdis' and not strgfeat in gmod.namepara.derielemodim[l]: continue if not strgfeat.startswith('spec') and not strgfeat.startswith('defl') \ and not strgfeat in gdat.refr.namepara.elemonly[q][l] and \ not (gdat.typedata == 'mock' and (strgfeat.endswith('pars') or strgfeat.endswith('nrel'))): plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, strgclas + strgfeat + strgindxydat, \ 'mean' + strgfeat, lablxdat=lablxdat, \ lablydat=lablydat, \ #plottype='errr', \ scalxdat=scalxdat, limtydat=limtydat, limtxdat=limtxdat, \ omittrue=True, nameinte=nameinte) if gmod.numbparaelem > 0: alph = 0.1 if strgmodl == 'true': pathtemp = gdat.pathinit else: if strgstat == 'this': pathtemp = gdat.pathplotrtag + strgpdfn + '/fram/' elif strgstat == 'mlik': pathtemp = gdat.pathplotrtag + strgpdfn + '/finl/' elif strgstat == 'pdfn': pathtemp = gdat.pathplotrtag + strgpdfn + '/finl/' colr = retr_colr(gdat, strgstat, strgmodl, indxpopl=None) # transdimensional element parameters projected onto the data axes if not (strgstat == 'pdfn' and not gdat.boolcondcatl): for l in gmod.indxpopl: if gmod.typeelem[l] == 'lght': # PS spectra if strgstat == 'pdfn': specplot = [np.empty((gdat.numbenerplot, gdat.numbstkscond))] for r in gdat.indxstkscond: specplot[0][:, r] = gdat.dictglob['poststkscond'][r]['specplot'][0, :] listxdat = [] listplottype = [] for k in range(specplot[l].shape[-1]): listxdat.append(gdat.meanpara.enerplot) listplottype.append('lghtline') for specconvunit in gdat.listspecconvunit: listydat = [] for k in range(specplot[l].shape[-1]): specplottemp = specplot[l] if strgmodl == 'true': specplottemp = np.copy(specplottemp[0, :, k]) else: specplottemp = np.copy(specplottemp[:, k]) if specconvunit[0] == 'en01': specplottemp *= gdat.meanpara.enerplot if specconvunit[0] == 'en02': specplottemp *= gdat.meanpara.enerplot**2 if specconvunit[0] == 'en03': # temp pass listydat.append(specplottemp) lablydat = getattr(gmod.lablpara, 'flux' + specconvunit[0] + specconvunit[1] + 'totl') strgtemp = specconvunit[0] + specconvunit[1] if specconvunit[0] == 'en03': strgtemp += specconvunit[2] path = pathtemp + strgstat + 'specpop%d%s%s.pdf' % (l, strgtemp, strgswep) limtydat = [np.amin(gdat.minmspec), np.amax(gdat.maxmspec)] tdpy.plot_gene(path, listxdat, listydat, scalxdat='logt', scalydat='logt', \ lablxdat=gdat.lablenertotl, colr=colr, alph=alph, \ plottype=listplottype, limtxdat=[gdat.minmener, gdat.maxmener], lablydat=lablydat, \ limtydat=limtydat) if gmod.boollenssubh: ## deflection profiles if gdat.boolvariasca and gdat.boolvariacut: lablxdat = gdat.labltotlpara.gang if strgstat == 'pdfn': deflprof = [np.empty((gdat.numbanglfull, gdat.numbstkscond))] asca = [np.empty(gdat.numbstkscond)] acut = [np.empty(gdat.numbstkscond)] for r in gdat.indxstkscond: deflprof[0][:, r] = gdat.dictglob['poststkscond'][r]['deflprof'][0, :] asca[0][r] = gdat.dictglob['poststkscond'][r]['asca'][0] acut[0][r] = gdat.dictglob['poststkscond'][r]['acut'][0] for l in range(len(deflprof)): xdat = gdat.meanpara.anglfull * gdat.anglfact listydat = [] listvlinfrst = [] listvlinseco = [] if 'deflprof' in gmod.typeelem[l]: if strgmodl == 'true': deflproftemp = deflprof[l][0, :, :] else: deflproftemp = deflprof[l] for k in range(deflprof[l].shape[-1]): listydat.append(deflproftemp[:, k] * gdat.anglfact) if strgmodl == 'true': ascatemp = asca[l][0, k] acuttemp = acut[l][0, k] else: ascatemp = asca[l][k] acuttemp = acut[l][k] listvlinfrst.append(ascatemp * gdat.anglfact) listvlinseco.append(acuttemp * gdat.anglfact) beinhost = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'paragenrscalfull', strgpdfn, indxvarb=gmod.indxpara.beinhost) listydat.append(xdat * 0. + gdat.anglfact * beinhost) path = pathtemp + strgstat + 'deflsubhpop%d%s.pdf' % (l, strgswep) limtydat = [1e-3, 1.] limtxdat = [1e-3, 1.] tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', \ lablxdat=lablxdat, drawdiag=True, limtydat=limtydat, \ limtxdat=limtxdat, colr=colr, alph=alph, lablydat=r'$\alpha$ [$^{\prime\prime}$]', \ listvlinfrst=listvlinfrst, listvlinseco=listvlinseco) if gdat.typedata == 'mock': # pulsar masses for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': lablxdat = gdat.labltotlpara.gang limtydat = [gdat.minmmassshel, gdat.maxmmassshel] lablydat = gdat.lablmassshel name = 'massshelpop%d' % l plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) if gmod.boollens: ## radial mass budget lablxdat = gdat.lablanglfromhosttotl for strgcalcmasssubh in gdat.liststrgcalcmasssubh: # host mass for e in gmod.indxsersfgrd: strgsersfgrd = 'isf%d' % e limtydat = [gdat.minmmcut, getattr(gdat, 'plotmaxmmasshost' + strgsersfgrd + strgcalcmasssubh + 'bein')] lablydat = getattr(gmod.lablpara, 'masshost' + strgsersfgrd + strgcalcmasssubh + 'totl') name = 'masshost%s%s' % (strgsersfgrd, strgcalcmasssubh) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) if gmod.boolelemdeflsubhanyy: # subhalo masses limtydat = [gdat.minmmcut, getattr(gdat, 'plotmaxmmasssubh' + strgcalcmasssubh + 'bein')] lablydat = getattr(gmod.lablpara, 'masssubh' + strgcalcmasssubh + 'totl') name = 'masssubh%s' % (strgcalcmasssubh) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) # subhalo mass fraction limtydat = [1e-3, 0.1] lablydat = getattr(gmod.lablpara, 'fracsubh' + strgcalcmasssubh + 'totl') name = 'fracsubh%s' % (strgcalcmasssubh) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) alph = 0.1 if gdat.boolmodipsfn and gmod.boolelempsfnanyy: ## PSF radial profile for i in gdat.indxener: for m in gdat.indxevtt: indxydat = [i, slice(None), m] strgindxydat = 'en%02devt%d' % (i, m) lablxdat = gdat.labltotlpara.gang limtydat= np.array([1e-3, 1e3]) * gdat.anglfact**2 plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'psfn', \ 'binsangl', indxydat=indxydat, strgindxydat=strgindxydat, scalydat='logt', \ lablxdat=lablxdat, lablydat=r'$\mathcal{P}$', limtydat=limtydat) # internally and externally corrected element parameter histograms if gdat.typedata == 'inpt' and strgstat == 'pdfn' and gdat.rtagmock is not None: limtydat = gdat.limtydathistfeat for l in gmod.indxpopl: strgindxydat = 'pop%d' % l for strgfeat in gmod.namepara.derielemodim[l]: if strgfeat.startswith('aerr') or strgfeat == 'specplot' or strgfeat == 'spec' or strgfeat == 'deflprof': continue lablydat = r'$N_{%s}$' % gmod.lablelemextn[l] for namecorr in ['incr', 'excr']: nameinte = namecorr + 'odim/' for qq in gdatmock.indxrefr: if namecorr == 'excr': if not strgfeat in gmod.namepara.extrelem[l]: continue q = gdat.listnamerefr.index(strgfeat[-4:]) if getattr(gdat, 'crex' + strgfeat + 'pop%dpop%dpop%d' % (q, qq, l)) is None: continue name = namecorr + strgfeat + 'pop%dpop%dpop%d' % (q, qq, l) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'mean' + strgfeat, scalydat='logt', lablxdat=lablxdat, \ lablydat=lablydat, histodim=True, ydattype='totl', \ scalxdat=scalxdat, limtydat=limtydat, limtxdat=limtxdat, \ nameinte=nameinte) else: if strgfeat in gmod.namepara.extrelem[l]: continue name = namecorr + strgfeat + 'pop%dpop%d' % (qq, l) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'mean' + strgfeat, scalydat='logt', lablxdat=lablxdat, \ lablydat=lablydat, histodim=True, ydattype='totl', \ scalxdat=scalxdat, limtydat=limtydat, limtxdat=limtxdat, \ nameinte=nameinte) if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): if gmod.numbparaelem > 0: # element parameter correlations liststrgelemtdimvarb = getattr(gdat, 'liststrgelemtdimvarb' + strgphas) for strgelemtdimtype in gdat.liststrgelemtdimtype: for strgelemtdimvarb in liststrgelemtdimvarb: if strgelemtdimvarb.startswith('cmpl'): continue for l0 in gmod.indxpopl: for strgfrst in gmod.namepara.genrelem[l0]: if strgfrst.startswith('spec') or strgfrst == 'specplot' or strgfrst == 'deflprof': continue for strgseco in gmod.namepara.genrelem[l0]: if strgseco.startswith('spec') or strgseco == 'specplot' or strgseco == 'deflprof': continue if not checstrgfeat(strgfrst, strgseco): continue if strgelemtdimvarb.startswith('hist'): strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%d' % l0 plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst + 'pop%d' % l0, \ strgseco + 'pop%d' % l0, \ strgtotl, strgpdfn=strgpdfn) else: if booltile: continue if strgfrst.startswith('aerr') or strgseco.startswith('aerr'): continue if strgelemtdimvarb.startswith('fdis'): for q in gdat.indxrefr: strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%dpop%d' % (q, l0) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst, strgseco, strgtotl, strgpdfn=strgpdfn) elif strgelemtdimvarb.startswith('excr') or strgelemtdimvarb.startswith('incr'): for qq in gdatmock.indxrefr: if strgelemtdimvarb.startswith('excr'): for q in gdat.indxrefr: if getattr(gdat, 'crex' + strgfrst + strgseco + 'pop%dpop%dpop%d' % (q, qq, l0)) is None: continue strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%dpop%dpop%d' % (q, qq, l0) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst, strgseco, strgtotl, strgpdfn=strgpdfn) else: if strgfrst[-4:] in gdat.listnamerefr and strgseco[-4:] in gdat.listnamerefr: continue strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%dpop%d' % (qq, l0) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst, strgseco, strgtotl, strgpdfn=strgpdfn) if not (gdat.typedata == 'mock' and (gmod.numbelemtotl == 0 or gmod.maxmpara.numbelemtotl == 0)): for q in gdat.indxrefr: if strgphas == 'init' and gdat.typedata == 'mock': continue print('strgpdfn') print(strgpdfn) raise Exception('') if booltile: continue for l0 in gmod.indxpopl: for refrstrgfrst in gdat.refr.namepara.elem[q]: if refrstrgfrst == 'spec' or refrstrgfrst == 'specplot' or refrstrgfrst == 'deflprof' or refrstrgfrst == 'etag': continue if refrstrgfrst in gdat.refr.namepara.elemonly[q][l0]: continue for refrstrgseco in gdat.refr.namepara.elem[q]: if refrstrgseco in gdat.refr.namepara.elemonly[q][l0]: continue if refrstrgseco == 'spec' or refrstrgseco == 'specplot' or refrstrgseco == 'deflprof' or refrstrgseco == 'etag': continue if not checstrgfeat(refrstrgfrst, refrstrgseco): continue if refrstrgfrst.startswith('aerr') or refrstrgseco.startswith('aerr') or refrstrgfrst == 'specplot' or refrstrgseco == 'specplot': continue strgtotl = 'cmpl' + refrstrgfrst + refrstrgseco + 'pop%dpop%d' % (l0, q) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, 'bind', 'cmpl', \ q, refrstrgfrst + 'pop%d' % l0, refrstrgseco + 'pop%d' % l0, strgtotl, strgpdfn=strgpdfn) if not booltile: if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): # data and model count scatter for m in gdat.indxevttplot: if gdat.numbpixl > 1: for i in gdat.indxener: plot_scatcntp(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, m, indxenerplot=i) else: plot_scatcntp(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, m) ## spatial priors # temp if gdat.numbpixl > 1: if gmod.numbparaelem > 0: for l in gmod.indxpopl: for strgfeat, strgpdfn in zip(gmod.namepara.genrelemmodu[l], gmod.liststrgpdfnmodu[l]): if strgpdfn == 'tmplreln': plot_genemaps(gdat, gdatmodi, 'fitt', strgpdfn, 'lpdfspatpriointp', booltdim=True) if strgpdfn == 'tmplgaum': plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'lpdfspatpriointp', booltdim=True) # model count maps ## backgrounds if gdat.numbpixl > 1: for i in gdat.indxener: for m in gdat.indxevtt: for c in gmod.indxback: if gmod.boolbfun: continue if not gmod.boolunifback[c]: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpback%04d' % c, i, m, strgcbar='cntpdata') ## count error if strgmodl != 'true': if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.boolcalcerrr[l]: for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntperrr', i, -1, strgcbar='cntpresi') ## diffuse components for i in gdat.indxener: for k, name in enumerate(gmod.listnamediff): plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntp%s' % (name), i, strgcbar='cntpdata') ## model count maps for i in gdat.indxener: for m in gdat.indxevtt: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpmodl', i, m, strgcbar='cntpdata') # likelihood if strgmodl != 'true': for i in gdat.indxener: for m in gdat.indxevtt: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'llik', i, m, strgcbar='llikmaps') if gmod.boollens: ## lensing signal to noise if strgmodl == 'true': for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 's2nr', i, -1) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'magn', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'conv', booltdim=True) for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntplens', i, strgcbar='cntpdata', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntplensgradmgtd', i, strgcbar='cntpdata', booltdim=True) if gdat.penalpridiff: for i in gdat.indxener: for m in gdat.indxevtt: plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, \ 'psecodimdatapntsen%02devt%d' % (i, m), 'meanmpolodim', lablxdat='$l$', lablydat='$P_{resi}(l)$', \ limtydat=[1e-2, 2.], scalxdat='logt', scalydat='logt') plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'psecodimdatapntsprioen%02devt%d' % (i, m), 'meanmpolodim', lablxdat='$l$', \ lablydat='$P_{prio}(l)$', limtydat=[1e-2, 2.], scalxdat='logt', scalydat='logt') if gmod.boollens: indxydat = [slice(None)] strgindxydat = '' plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convpsecodim', 'meanwvecodim', lablxdat='$k$ [1/kpc]', lablydat='$P(k)$', limtydat=[1e-1, 1e2], \ scalxdat='logt', scalydat='logt', indxydat=indxydat, strgindxydat=strgindxydat) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'histdefl', 'meandefl', \ scal='self', lablxdat=r'$\alpha$ [arcsec]', lablydat=r'$N_{pix}$', \ strgindxydat=strgindxydat, indxydat=indxydat, histodim=True) if gmod.numbparaelem > 0 and gmod.boolelemdeflsubhanyy: indxydat = [slice(None)] strgindxydat = '' plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convpsecelemodim', 'meanwvecodim', lablxdat='$k$ [1/kpc]', lablydat='$P_{sub}(k)$', \ strgindxydat=strgindxydat, indxydat=indxydat, limtydat=[1e-5, 1e-1], scalxdat='logt', scalydat='logt') plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'histdeflsubh', 'meandeflsubh', scal='self', lablxdat=r'$\alpha$ [arcsec]', \ strgindxydat=strgindxydat, indxydat=indxydat, lablydat=r'$N_{pix}$', histodim=True) if gmod.boollens: for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpbgrd', i, -1, strgcbar='cntpdata') if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpbgrdgalx', i, -1, strgcbar='cntpdata') plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpbgrdexts', i, -1, strgcbar='cntpdata') # gradient of the lens emission for i in gdat.indxener: for m in gdat.indxevtt: plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntplensgrad', indxenerplot=i, indxevttplot=m) if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): if gmod.boollens: # overall deflection field plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, multfact=0.1) # deflection field due to individual lenses for k in range(numbdeflsingplot): if k == 0: multfact = 0.1 elif k == 1: multfact = 1. elif k >= 2: multfact = 10. plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, indxdefl=k, multfact=multfact) # residual deflection field if strgmodl == 'fitt' and gdat.typedata == 'mock': plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, nameparagenrelem='resi', multfact=100.) if strgstat != 'pdfn': for k in range(numbsingcomm): plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, nameparagenrelem='resi', indxdefl=k, multfact=100.) if gdat.numbpixl > 1: if gmod.numbparaelem > 0: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convelemresi', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convelemresiperc', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'magnresi', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'magnresiperc', booltdim=True) def dele_rtag(rtag): pathdata = pathpcat + '/data/outp/' pathimag = pathpcat + '/imag/' cmnd = 'rm -rf %s%s' % (pathdata, rtag) print(cmnd) os.system(cmnd) cmnd = 'rm -rf %s%s' % (pathimag, rtag) os.system(cmnd) print(cmnd) def plot_infopvks(gdat, gdatprio, name, namefull, nameseco=None): pvks = getattr(gdat, 'pvks' + namefull) info = getattr(gdat, 'info' + namefull) path = gdat.pathinfo + 'info' + namefull if nameseco is not None: indxpoplfrst = int(namefull[-1]) # information gain figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.pcolor(varbfrst, varbseco, info, cmap='Greys') plt.colorbar(imag) plot_sigmcont(gdat.fitt, '', axis, name, indxpoplfrst, strgseco=nameseco) if scalfrst == 'logt': axis.set_xscale('log') if scalseco == 'logt': axis.set_yscale('log') axis.set_xlabel(getattr(gdat.labltotlpara, name)) axis.set_ylabel(getattr(gdat.labltotlpara, nameseco)) axis.set_xlim(limtfrst) axis.set_ylim(limtseco) plt.tight_layout() plt.savefig(path) plt.close(figr) # KS test p value pathpvkstdim = gdat.pathinfo + 'pvks' + namefull figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.pcolor(varbfrst, varbseco, pvks, cmap='Greys') plt.colorbar(imag) plot_sigmcont(gdat.fitt, '', axis, name, indxpoplfrst, strgseco=nameseco) if scalfrst == 'logt': axis.set_xscale('log') if scalseco == 'logt': axis.set_yscale('log') axis.set_xlabel(getattr(gdat.labltotlpara, name)) axis.set_ylabel(getattr(gdat.labltotlpara, nameseco)) axis.set_xlim(limtfrst) axis.set_ylim(limtseco) plt.tight_layout() plt.savefig(pathpvkstdim) plt.close(figr) elif name != namefull: lablydat = '$D_{KL}$' lablxdat = getattr(gmod.lablpara, name + 'totl') xdat = getattr(gdat, 'mean' + name) ydat = getattr(gdat, 'info' + namefull) tdpy.mcmc.plot_plot(path, xdat, ydat, lablxdat, lablydat, scal) ydat = getattr(gdat, 'pvks' + namefull) pathpvks = gdat.pathinfo + 'pvks' + namefull tdpy.mcmc.plot_plot(pathpvks, xdat, ydat, lablxdat, '$p_{KS}$', scal) else: # horizontal axis xdat = getattr(gdat, 'mean' + name) lablxdat = getattr(gmod.lablpara, name + 'totl') # scaling scal = getattr(gdat, 'scal' + name) # common title titl = '$D_{KL} = %.3g$, KS = %.3g $\sigma$' % (info, pvks) # DKL density pathdinf = gdat.pathinfo + 'dinf' + namefull ydat = getattr(gdat, 'infodens' + namefull) lablydat = r'$\rho_{D_{KL}}$' tdpy.mcmc.plot_plot(pathdinf, xdat, ydat, lablxdat, lablydat, scal, titl=titl) # prior and posterior PDFs pathpdfn = gdat.pathinfo + 'pdfn' + namefull lablydat = r'$P$' ydat = [getattr(gdat, 'pdfnpost' + namefull), getattr(gdatprio, 'pdfnprio' + namefull)] legd = ['$P$(%s|$D$)' % lablxdat, '$P$(%s)' % lablxdat] tdpy.mcmc.plot_plot(pathpdfn, xdat, ydat, lablxdat, lablydat, scal, colr=['k', 'k'], linestyl=['-', '--'], legd=legd, titl=titl) def plot_finl(gdat=None, gdatprio=None, rtag=None, strgpdfn='post', gdatmock=None, booltile=None): if gdat.typeverb > 0: print('plot_finl()') print('Producing postprocessing plots...') timetotlinit = gdat.functime() gdat.strgbest = 'ML' if not booltile: # terms in the log-acceptance probability listindxsamptotlproptotl = getattr(gdat, 'list' + strgpdfn + 'indxsamptotlproptotl') listindxsamptotlpropaccp = getattr(gdat, 'list' + strgpdfn + 'indxsamptotlpropaccp') listindxsamptotlpropreje = getattr(gdat, 'list' + strgpdfn + 'indxsamptotlpropreje') for n in gdat.indxproptype: pathbase = getattr(gdat, 'path' + strgpdfn + 'finl%s' % gdat.nameproptype[n]) for k in gdat.indxtermlacp: varb = getattr(gdat, 'list' + strgpdfn + gdat.listnametermlacp[k]) labl = gdat.listlabltermlacp[k] if listindxsamptotlproptotl[n].size > 0 and (varb[listindxsamptotlproptotl[n]] != 0.).any(): path = pathbase + gdat.listnametermlacp[k] + 'totl' tdpy.mcmc.plot_trac(path, varb[listindxsamptotlproptotl[n]], labl, titl=gdat.nameproptype[n] + ', Total') if listindxsamptotlpropaccp[n].size > 0 and (varb[listindxsamptotlpropaccp[n]] != 0.).any(): path = pathbase + gdat.listnametermlacp[k] + 'accp' tdpy.mcmc.plot_trac(path, varb[listindxsamptotlpropaccp[n]], labl, titl=gdat.nameproptype[n] + ', Accepted') if listindxsamptotlpropreje[n].size > 0 and (varb[listindxsamptotlpropreje[n]] != 0.).any(): path = pathbase + gdat.listnametermlacp[k] + 'reje' tdpy.mcmc.plot_trac(path, varb[listindxsamptotlpropreje[n]], labl, titl=gdat.nameproptype[n] + ', Rejected') if gdat.checprio and strgpdfn == 'post' and not booltile: # this works only for scalar variables -- needs to be generalized to all variables if gdatprio is None: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdatfinlprio' gdatprio = readfile(path) for namevarbscal in gmod.namepara.scal: plot_infopvks(gdat, gdatprio, namevarbscal, namevarbscal) for l in gmod.indxpopl: for strgfeatfrst in gmod.namepara.genrelem[l]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue plot_infopvks(gdat, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l) for strgfeatseco in gmod.namepara.genrelem[l]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue plot_infopvks(gdat, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l, nameseco=strgfeatseco) listparagenrscalfull = getattr(gdat, 'list' + strgpdfn + 'paragenrscalfull') listparagenrscalfull = getattr(gdat, 'list' + strgpdfn + 'paragenrscalfull') listparagenrscalbase = getattr(gdat, 'list' + strgpdfn + 'paragenrscalbase') listboolpropfilt = getattr(gdat, 'list' + strgpdfn + 'boolpropfilt') listmemoresi = getattr(gdat, 'list' + strgpdfn + 'memoresi') listindxproptype = getattr(gdat, 'list' + strgpdfn + 'indxproptype') listsampproc = getattr(gdat, 'list' + strgpdfn + 'sampproc') # Gelman-Rubin test pathdiag = getattr(gdat, 'path' + strgpdfn + 'finldiag') if gdat.numbproc > 1: if np.isfinite(gdat.gmrbstat).all(): if gdat.typeverb > 0: print('Gelman-Rubin TS...') figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) minm = min(np.amin(gdat.gmrbstat), np.amin(gdat.gmrbparagenrscalbase)) maxm = max(np.amax(gdat.gmrbstat), np.amax(gdat.gmrbparagenrscalbase)) bins = np.linspace(minm, maxm, 40) axis.hist(gdat.gmrbstat.flatten(), bins=bins, label='Data proj.') axis.hist(gdat.gmrbparagenrscalbase, bins=bins, label='Fixed dim.') axis.set_xlabel('PSRF') axis.set_ylabel('$N_{stat}$') plt.tight_layout() figr.savefig(pathdiag + 'gmrbhist.pdf') plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gmod.indxparagenrbase, gdat.gmrbparagenrscalbase) axis.set_xticklabels(gmod.labltotlpara.genrbase) axis.set_ylabel('PSRF') plt.tight_layout() figr.savefig(pathdiag + 'gmrbparagenrscalbase.pdf') plt.close(figr) for i in gdat.indxener: for m in gdat.indxevtt: maps = gdat.gmrbstat[i, :, m] path = pathdiag + 'gmrbdataen%02devt%d.pdf' % (i, m) tdpy.plot_maps(path, maps, indxpixlrofi=gdat.indxpixlrofi, numbpixl=gdat.numbpixlfull, typepixl=gdat.typepixl, \ minmlgal=gdat.anglfact*gdat.minmlgal, maxmlgal=gdat.anglfact*gdat.maxmlgal, \ minmbgal=gdat.anglfact*gdat.minmbgal, maxmbgal=gdat.anglfact*gdat.maxmbgal) else: print('Inappropriate Gelman-Rubin test statistics encountered.') # plot autocorrelation if gdat.typeverb > 0: print('Autocorrelation...') tdpy.mcmc.plot_atcr(pathdiag, gdat.atcrcntp[0, 0, 0, 0, :], gdat.timeatcrcntp[0, 0, 0, 0], strgextn='cntp') tdpy.mcmc.plot_atcr(pathdiag, gdat.atcrpara[0, 0, :], gdat.timeatcrpara[0, 0], strgextn='para') print('Autocorrelation times:') for k, namepara in enumerate(gmod.namepara): print('%s %g' % (namepara, np.mean(gdat.timeatcrpara[:, k]))) # plot proposal efficiency if gdat.typeverb > 0: print('Acceptance ratio...') numbtimemcmc = 20 binstimemcmc = np.linspace(0., gdat.numbswep, numbtimemcmc) numbtick = 2 sizefigrydat = 4. * gdat.numbproptype figr, axgr = plt.subplots(gdat.numbproptype, 1, figsize=(12., sizefigrydat), sharex='all') if gdat.numbproptype == 1: axgr = [axgr] for n, axis in enumerate(axgr): histtotl = axis.hist(listindxsamptotlproptotl[n], bins=binstimemcmc)[0] histaccp = axis.hist(listindxsamptotlpropaccp[n], bins=binstimemcmc)[0] axis.set_ylabel('%s' % gdat.nameproptype[n]) if k == gdat.numbproptype - 1: axis.set_xlabel('$i_{samp}$') plt.tight_layout() figr.savefig(pathdiag + 'accpratiproptype.pdf') plt.close(figr) if gdat.typeverb > 0: print('Proposal execution times...') ## time performance #listchro = np.empty((gdat.numbswep, gdat.numbchro)) #listchro = [] #for k, name in enumerate(gdat.listnamechro): # #listchro[:, k] = getattr(gdat, 'list' + strgpdfn + 'chro' + name).flatten() * 1e3 # listchro.append(getattr(gdat, 'list' + strgpdfn + 'chro' + name).flatten() * 1e3) #pathdiag = getattr(gdat, 'path' + strgpdfn + 'finldiag') #figr, axis = plt.subplots(figsize=(2 * gdat.plotsize, gdat.plotsize)) #axis.violin(listchro) #axis.set_yscale('log') #axis.set_ylabel('$t$ [ms]') #axis.set_xticklabels(gdat.listlablchro) #axis.axvline(mean(chro), ls='--', alpha=0.2, color='black') #figr.savefig(pathdiag + 'chro.pdf' % gdat.listnamechro[k]) #plt.close(figr) # temp gdat.lablpmea = 'Mean' # posterior versions of the frame plots plot_samp(gdat, None, 'pdfn', 'fitt', 'finl', strgpdfn=strgpdfn, gdatmock=gdatmock, booltile=booltile) if booltile: return if gmod.numbparaelem > 0: if gdat.typeverb > 0: print('A mosaic of samples...') ## mosaic of images of posterior catalogs if gdat.numbpixl > 1: plot_mosa(gdat, strgpdfn) ## randomly selected trandimensional parameters if gmod.numbparaelem > 0: if gdat.typeverb > 0: print('Transdimensional parameters...') # choose the parameters based on persistence stdvlistsamptran = np.std(listparagenrscalfull[:, gmod.indxsamptrap], axis=0) indxtrapgood = np.where(stdvlistsamptran > 0.)[0] gmod.numbparaelemgood = indxtrapgood.size gmod.numbparaelemplot = min(3, gmod.numbparaelemgood) if gmod.numbparaelemplot > 0: indxtrapplot = np.sort(np.random.choice(gmod.indxsamptrap[indxtrapgood], size=gmod.numbparaelemplot, replace=False)) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') tdpy.mcmc.plot_grid(path, 'listelemfrst', listparagenrscalfull[:, gmod.indxsamptrap[:3]], [gmod.lablpara[k] for k in gmod.indxsamptrap[:3]]) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') tdpy.mcmc.plot_grid(path, 'listsamp', listparagenrscalfull[:, indxtrapplot], ['%d' % k for k in indxtrapplot]) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') tdpy.mcmc.plot_grid(path, 'listsamp', listparagenrscalfull[:, indxtrapplot], [gmod.lablpara[k] for k in indxtrapplot]) if gdat.typeverb > 0: print('Scalar variables...') # scalar variables ## trace and marginal distribution of each parameter for name in gmod.namepara.scal: if gdat.typeverb > 0: print('Working on %s...' % name) scal = getattr(gdat, 'scal' + name) corr = getattr(gdat, 'corr' + name) if corr is None: truepara = None else: truepara = getattr(gdat, 'corr' + name) listvarb = getattr(gdat, 'list' + strgpdfn + name) if listvarb.ndim != 1: if listvarb.shape[1] == 1: listvarb = listvarb[:, 0] else: raise Exception('') mlik = getattr(gdat, 'mlik' + name) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscaltrac') + name tdpy.mcmc.plot_trac(path, listvarb, labltotl, truepara=truepara, scalpara=scal, listvarbdraw=[mlik], listlabldraw=[''], listcolrdraw=['r']) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalhist') + name tdpy.mcmc.plot_hist(path, listvarb, labltotl, truepara=truepara, scalpara=scal, listvarbdraw=[mlik], listlabldraw=[''], listcolrdraw=['r']) for nameseco in gmod.namepara.scal: if name == nameseco: continue if gdat.typeverb > 0: print('Working on correlation of %s with %s...' % (name, nameseco)) pathjoin = getattr(gdat, 'path' + strgpdfn + 'finlvarbscaljoin') if corrseco is None: trueparaseco = None else: trueparaseco = getattr(gdat, 'corr' + nameseco) if listvarbseco.ndim != 1: if listvarbseco.shape[1] == 1: listvarbseco = listvarbseco[:, 0] else: raise Exception('') listjoin = np.vstack((listvarb, listvarbseco)).T tdpy.mcmc.plot_grid(pathjoin, name + nameseco, listjoin, [labltotl, labltotlseco], scalpara=[scal, scalseco], truepara=[truepara, trueparaseco], \ join=True, listvarbdraw=[np.array([mlik, mlikseco])]) if gdat.typeverb > 0: print('Fixed dimensional parameter covariance...') ### covariance ## overall path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') truepara = gmod.corrparagenrscalbase mlikpara = gdat.mlikparagenrscalbase tdpy.mcmc.plot_grid(path, 'paragenrscalbase', listparagenrscalbase, gmod.labltotlpara.genrbasetotl, truepara=truepara, listvarbdraw=[mlikpara]) # stacked posteiors binned in position and flux if gmod.numbparaelem > 0 and gdat.numbpixl > 1: liststrgbins = ['quad', 'full'] for l in gmod.indxpopl: plot_histlgalbgalelemstkd(gdat, strgpdfn, l, 'cumu') for strgbins in liststrgbins: plot_histlgalbgalelemstkd(gdat, strgpdfn, l, strgbins, namepara.elemsign[l]) if gdat.typeverb > 0: print('Prior and likelihood...') for strgpdfntemp in ['lpritotl', 'lliktotl']: if strgpdfntemp == 'lpritotl': labltemp = '\ln P(M)' if strgpdfntemp == 'lliktotl': labltemp = '\ln P(D|M)' labl = r'$%s$' % labltemp path = getattr(gdat, 'path' + strgpdfn + 'finl') + strgpdfntemp varb = getattr(gdat, 'list' + strgpdfn + strgpdfntemp) tdpy.mcmc.plot_hist(path, varb, labl) listvarbdraw = [] listlabldraw = [] listcolrdraw = [] if gdat.typedata == 'mock': listvarbdraw += [getattr(gdat.true, strgpdfntemp)] listlabldraw += ['True model'] listcolrdraw += [gdat.refr.colr] tdpy.mcmc.plot_trac(path, getattr(gdat, 'list' + strgpdfn + strgpdfntemp), labl, \ listvarbdraw=listvarbdraw, listlabldraw=listlabldraw, listcolrdraw=listcolrdraw) # plot resident memory figr, axis = plt.subplots(figsize=(2 * gdat.plotsize, gdat.plotsize)) axis.plot(gdat.indxswep, np.mean(listmemoresi, 1) / float(2**30)) axis.set_ylabel(r'$M$ [GB]') axis.set_xlabel(r'$i_{samp}$') plt.tight_layout() figr.savefig(pathdiag + 'memoresi.pdf') plt.close(figr) timetotlfinl = gdat.functime() if gdat.typeverb > 0: print('Plots and animations are produced in %.3g seconds.' % (timetotlfinl - timetotlinit)) def plot_sbrt(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, specconvunit): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) for b, namespatmean in enumerate(gdat.listnamespatmean): figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) # plot reference spectra if gdat.listprefsbrtlabltotl is not None: for k in range(len(gdat.listprefsbrtlabltotl)): if gdat.listprefsbrttype[k] == 'shad': factenerrefr = [[] for a in range(3)] for a in range(3): factenerrefr[a] = retr_factener(specconvunit[0], gdat.listprefsbrtener[k][a]) axis.plot(gdat.listprefsbrtener[k][0], gdat.listprefsbrtsbrt[k][0] * factenerrefr[0], color='m', label=gdat.listprefsbrtlabltotl[k]) enerpoly = np.empty(gdat.listprefsbrtener[k][1].size + gdat.listprefsbrtener[k][2].size) enerpoly[:gdat.listprefsbrtener[k][1].size] = gdat.listprefsbrtener[k][1] enerpoly[gdat.listprefsbrtener[k][1].size:] = gdat.listprefsbrtener[k][2][::-1] sbrtpoly = np.empty(gdat.listprefsbrtener[k][1].size + gdat.listprefsbrtener[k][2].size) sbrtpoly[:gdat.listprefsbrtener[k][1].size] = gdat.listprefsbrtsbrt[k][1] * factenerrefr[1] sbrtpoly[gdat.listprefsbrtener[k][1].size:] = gdat.listprefsbrtsbrt[k][2][::-1] * factenerrefr[2][::-1] axis.fill(enerpoly, sbrtpoly, color='m', alpha=0.5) else: factenerrefr = retr_factener(specconvunit[0], gdat.listprefsbrtener[k][1]) axis.errorbar(gdat.listprefsbrtener[k][1], gdat.listprefsbrtsbrt[k][1] * factenerrefr, label=gdat.listprefsbrtlabltotl[k], color='m') if strgmodl == 'true': liststrgmodl = [strgmodl] listgdatobjt = [gdat] if strgmodl == 'fitt' and (strgstat == 'this' or strgstat == 'pdfn'): if gdat.typedata == 'mock': liststrgmodl = [strgmodl, 'true'] listgdatobjt = [gdatobjt, gdat] else: liststrgmodl = [strgmodl] listgdatobjt = [gdatobjt] numbstrgstattemp = len(liststrgmodl) for a in range(numbstrgstattemp): indxploteleminit = [] indxplotelemendd = [] # number of transdimensional elements to be overplotted numbelemtemp = 0 if gdat.numbpixl == 1 and strgstat != 'pdfn': if liststrgmodl[a] == 'fitt': numbelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) numbelemtemp += np.sum(gmodstat.numbelem[l]) else: for q in gdat.indxrefr: numbelemtemp += np.sum(gdat.refr.numbelem[q]) numbplot = numblablsbrtspec + numbelemtemp listydat = np.zeros((numbplot, gdat.numbener)) listyerr = np.zeros((2, numbplot, gdat.numbener)) cntr = 0 cntrdata = cntr ## data listydat[cntr, :] = gdat.sbrtdatamean[b] listyerr[:, cntr, :] = gdat.sbrtdatastdv[b] cntr += 1 for c in gmod.indxback: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtback%04dmea%d' % (c, b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtback%04dmea%d' % (c, b), strgpdfn, strgmome='errr') cntr += 1 if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy and not (liststrgmodl[a] == 'true' and gdat.refr.numbelemtotl == 0): listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncsubtmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncsubtmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrthostisf%dmea%d' % (e, b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], \ 'sbrthostisf%dmea%d' % (e, b), strgpdfn, strgmome='errr') cntr += 1 if gmod.boollens: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtlensmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtlensmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 if gdat.numbpixl == 1 and strgstat != 'pdfn': cntrline = cntr indxploteleminit.append(cntr) for l in gmod.indxpopl: if liststrgmodl[a] == 'true': for k in range(gmod.numbelem[l]): listydat[cntr, :] = getattr(listgdatobjt[a], liststrgmodl[a] + 'spec')[l][0, :, k] if cntr == cntrline: listlablsbrtspec = listlablsbrtspec[:cntr] + ['Lines'] + listlablsbrtspec[cntr:] else: listlablsbrtspec = listlablsbrtspec[:cntr] + [None] + listlablsbrtspec[cntr:] cntr += 1 if k == gmod.numbelem[l] - 1: indxplotelemendd.append(k) else: for k in range(gmodstat.numbelem[l]): listydat[cntr, :] = getattr(listgdatobjt[a], strgstat + 'spec')[l][:, k] if cntr == cntrline: listlablsbrtspec = listlablsbrtspec[:cntr] + ['Lines'] + listlablsbrtspec[cntr:] else: listlablsbrtspec = listlablsbrtspec[:cntr] + [None] + listlablsbrtspec[cntr:] cntr += 1 if k == gmodstat.numbelem[l] - 1: indxplotelemendd.append(k) ## total model if numblablsbrt > 1: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtmodlmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtmodlmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 if liststrgmodl[a] == 'true': listyerr = np.zeros((2, numbplot, gdat.numbener)) # plot energy spectra of the data, background model components and total background if gdat.numbener > 1: listmrkr = ['o', '>', 's', 'h', '*', 'p', 'x'] for k in range(100): listmrkr.append('x') # determine the energy scaling factor if specconvunit[0] == 'en00': factener = 1. if specconvunit[0] == 'en01': factener = gdat.meanpara.ener if specconvunit[0] == 'en02': factener = gdat.meanpara.ener**2 if specconvunit[0] == 'en03': # temp pass factener = 1. #indxenerintv = np.where((gdat.meanpara.ener < specconvunit[4]) & (gdat.meanpara.ener > specconvunit[3]))[0] #ener = np.concatenate((np.array([specconvunit[3]]), gdat.meanpara.ener[indxenerintv], np.array([specconvunit[4]]))) # #for k in range(3): # if k == 0: # ydattemp = # ydatminmener = np.interp(specconvunit[3], gdat.meanpara.ener, ydat) # ydatmaxmener = np.interp(specconvunit[4], gdat.meanpara.ener, ydat) # ydat = np.concatenate((np.array([ydatminmener]), ydat[indxenerintv], np.array([ydatmaxmener]))) # ydat = np.trapz(ydat, gdat.meanpara.ener) # #yerrminmener = np.interp(specconvunit[3], gdat.meanpara.ener, yerr, axis=1) #yerrmaxmener = np.interp(specconvunit[4], gdat.meanpara.ener, yerr, axis=1) #ydat = np.stack((np.array([yerrminmener]), ydat[indxenerintv], np.array([yerrmaxmener]))) # # #yerr = np.trapz(yerr, gdat.meanpara.ener) xdat = gdat.meanpara.ener cntr = 0 for k in range(listydat.shape[0]): mrkr = listmrkr[cntr] if k == cntrdata: colr = 'black' alph = 1. linestyl = '-' else: colr = retr_colr(gdat, strgstat, liststrgmodl[a], indxpopl=None) linestyl = '--' alph = 0.5 ydat = np.copy(listydat[k, :]) yerr = np.copy(listyerr[:, k, :]) ydat *= factener yerr *= factener if k == cntrdata and a > 0: continue if liststrgmodl[a] == 'fitt': labl = listlablsbrtspec[k] else: labl = None temp, listcaps, temp = axis.errorbar(xdat, ydat, yerr=yerr, color=colr, marker=mrkr, ls=linestyl, markersize=10, alpha=alph, label=labl) for caps in listcaps: caps.set_markeredgewidth(1) if gdat.numbpixl == 1 and strgstat != 'pdfn': if cntr != cntrline or k in indxplotelemendd: cntr += 1 else: cntr += 1 if gdat.numbener > 1: axis.set_xlim([np.amin(gdat.binspara.ener), np.amax(gdat.binspara.ener)]) if gdat.typeexpr == 'chan': factminm = 1e-1 factmaxm = 1e2 elif gdat.typeexpr == 'ferm': factminm = 1e1 factmaxm = 1e-1 else: factminm = 1e-4 factmaxm = 1e0 minmydat = factminm * gdat.factylimtbrt[0] * np.amax(listydat[cntrdata, :] * factener) maxmydat = factmaxm * gdat.factylimtbrt[1] * np.amax(listydat[cntrdata, :] * factener) limtydat = [minmydat, maxmydat] axis.set_ylim(limtydat) axis.set_yscale('log') axis.set_xlabel(gdat.lablenertotl) axis.set_xscale('log') labl = getattr(gmod.lablpara, 'sbrt' + specconvunit[0] + specconvunit[1] + 'stertotl') axis.set_ylabel(labl) make_legd(axis, numbcols=2) plt.tight_layout() path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, 'sdenmean%s%s%s' % (namespatmean, specconvunit[0], specconvunit[1])) figr.savefig(path) plt.close(figr) def retr_factener(strgconvunit, ener): if strgconvunit == 'en00': factener = np.ones_like(ener) if strgconvunit == 'en01': factener = ener if strgconvunit == 'en02': factener = ener**2 if strgconvunit == 'en03': # temp pass factener = np.ones_like(ener) return factener def plot_pdfntotlflux(): minm = 1e-9 maxm = 10e-9 numbvarb = 90 numbparagenrfull = 100000 numbbins = 40 alph = 0.5 binssing = np.linspace(minm, maxm, numbvarb + 1) meansing = (binssing[:-1] + binssing[1:]) / 2. deltsing = binssing[1:] - binssing[:-1] binsdoub = np.linspace(2. * minm, 2. * maxm, 2 * numbvarb) meandoub = (binsdoub[:-1] + binsdoub[1:]) / 2. deltdoub = binsdoub[1:] - binsdoub[:-1] bins = np.linspace(minm, 2. * maxm, 2 * numbvarb + 1) arry = np.empty((2, numbparagenrfull)) minmslop = 1.5 maxmslop = 3. numbslop = 4 sloparry = np.linspace(minmslop, maxmslop, numbslop) for n in range(numbslop): slop = sloparry[n] for k in range(2): arry[k, :] = (np.random.rand(numbparagenrfull) * (maxm**(1. - slop) - minm**(1. - slop)) + minm**(1. - slop))**(1. / (1. - slop)) totl = np.sum(arry, 0) powrprob = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) * meansing**(-slop) convprob = convolve(powrprob, powrprob) * deltdoub[0] indxdoub = np.where(meandoub <= maxm)[0] convprobpoly = polyval(polyfit(meandoub[indxdoub], convprob[indxdoub], 8), meandoub[indxdoub]) figr, axis = plt.subplots() axis.hist(arry[k, :], bins=bins, alpha=alph, label='$f_1$ (Sampled)', color='b') axis.hist(totl, bins=bins, alpha=alph, label='$f_0$ (Sampled)', color='g') axis.plot(meansing, powrprob * numbparagenrfull * deltsing, label='$f_1$ (Analytic)', color='b') axis.plot(meandoub, convprob * numbparagenrfull * deltdoub[0], label='$f_0$ (Numerically convolved)', color='g') axis.plot(meandoub[indxdoub], convprobpoly * numbparagenrfull * deltdoub[indxdoub], label='$f_0$ (Fit)', color='r') axis.set_ylim([0.5, numbsamp]) axis.set_xlabel('$f$') axis.set_xlim([np.amin(bins), np.amax(bins)]) axis.set_xscale('log') axis.set_yscale('log') axis.set_ylabel('$N_{samp}$') make_legd(axis) plt.tight_layout() pathfold = os.environ["TDGU_DATA_PATH"] + '/imag/powrpdfn/' figr.savefig(pathfold + 'powrpdfn%04d.pdf' % n) plt.close(figr) def savefigr(gdat, gdatmodi, figr, path): #if gdatmodi is not None and gdat.numbproc > 1: # gdatmodi.lock.acquire() # print 'Process %d acquiring the lock...' % gdatmodi.indxprocwork plt.savefig(path) #if gdatmodi is not None and gdat.numbproc > 1: # gdatmodi.lock.release() # print 'Process %d releasing the lock...' % gdatmodi.indxprocwork def plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, indxpoplfrst, strgfrst, \ strgseco, strgtotl, strgmome='pmea', strgpdfn='post'): gmod = getattr(gdat, strgmodl) sizelarg = 10 sizesmll = 1 if strgstat == 'pdfn': lablmome = getattr(gdat, 'labl' + strgmome) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) if strgmodl == 'fitt': colrtemp = gmod.colrelem[indxpoplfrst] if strgstat == 'pdfn': labl = gdat.lablsampdist + ' ' + lablmome if strgelemtdimtype == 'bind': varb = getattr(gdat, strgmome + strgpdfn + strgtotl) varbfrst = gdat.binspara.strgfrst varbseco = getattr(gdat.binspara, strgseco) if strgtotl.startswith('hist') or strgtotl.startswith('exr') or strgtotl.startswith('incr') or np.amax(varb) <= 0.: normtdim = None else: normtdim = mpl.colors.LogNorm(0.5, vmax=np.amax(varb)) imag = axis.pcolor(varbfrst, varbseco, varb.T, cmap='Blues', label=labl, norm=normtdim) make_cbar(gdat, axis, imag) else: if gdat.boolcondcatl: varbfrst = np.zeros(gdat.numbprvlhigh) varbseco = np.zeros(gdat.numbprvlhigh) cntr = 0 for r in gdat.indxstkscond: if r in gdat.indxprvlhigh: varbfrst[cntr] = gdat.dictglob['poststkscond'][r][strgfrst][indxpoplfrst] varbseco[cntr] = gdat.dictglob['poststkscond'][r][strgseco][indxpoplfrst] cntr += 1 axis.scatter(varbfrst, varbseco, alpha=gdat.alphelem, color=colrtemp, label=gdat.lablparagenrscalfull) if strgstat == 'this' or strgstat == 'mlik': if strgelemtdimtype == 'bind': meanfrst = getattr(gdat.binspara, strgfrst) meanseco = getattr(gdat.binspara, strgseco) hist = getattr(gdatmodi, strgstat + strgtotl) if strgtotl.startswith('hist') or strgtotl.startswith('exr') or strgtotl.startswith('incr') or np.amax(hist) <= 0.: normtdim = None else: normtdim = mpl.colors.LogNorm(0.5, vmax=np.amax(hist)) imag = axis.pcolor(meanfrst, meanseco, hist.T, cmap='Blues', label=gdat.lablparagenrscalfull, alpha=gdat.alphhist, norm=normtdim) else: varbfrst = getattr(gdatmodi.this, strgfrst)[indxpoplfrst] varbseco = getattr(gdatmodi.this, strgseco)[indxpoplfrst] if len(varbfrst) == 0 or len(varbseco) == 0: varbfrst = np.array([limtfrst[0] * 0.1]) varbseco = np.array([limtseco[0] * 0.1]) axis.scatter(varbfrst, varbseco, alpha=gdat.alphelem, color=colrtemp, label=gdat.lablparagenrscalfull) # reference elements if strgfrst[-4:] in gdat.listnamerefr: strgfrsttemp = strgfrst[-4:] else: strgfrsttemp = strgfrst if strgseco[-4:] in gdat.listnamerefr: strgsecotemp = strgseco[-4:] else: strgsecotemp = strgseco if hasattr(gdat.refr, strgfrsttemp) and hasattr(gdat.refr, strgsecotemp): for q in gdat.indxrefr: if strgfrsttemp in gdat.refr.namepara.elem[q] and strgsecotemp in gdat.refr.namepara.elem[q]: refrvarbfrst = getattr(gdat.refr, strgfrsttemp)[q] refrvarbseco = getattr(gdat.refr, strgsecotemp)[q] if len(refrvarbfrst) == 0 or len(refrvarbseco) == 0: refrvarbfrst = np.array([limtfrst[0] * 0.1]) refrvarbseco = np.array([limtseco[0] * 0.1]) axis.scatter(refrvarbfrst, refrvarbseco, alpha=gdat.alphelem, color=gdat.refr.colrelem[q], label=gdat.refr.lablelem[q], s=sizelarg) plot_sigmcont(gdat, strgmodl, axis, strgfrst, indxpoplfrst, strgseco=strgseco) scalfrst = getattr(gmod.scalpara, strgfrst) scalseco = getattr(gmod.scalpara, strgseco) if scalfrst == 'logt': axis.set_xscale('log') if scalseco == 'logt': axis.set_yscale('log') axis.set_xlabel(getattr(gmod.labltotlpara, strgfrst)) axis.set_ylabel(getattr(gmod.labltotlpara, strgseco)) axis.set_xlim(getattr(gmod.limtpara, strgfrst)) axis.set_ylim(getattr(gmod.limtpara, strgseco)) make_legd(axis) plt.tight_layout() if strgstat == 'pdfn': strgmometemp = strgmome else: strgmometemp = '' nameinte = strgelemtdimvarb + 'tdim/' path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, '%s%s' % (strgmometemp, strgtotl), nameinte=nameinte) savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_sigmcont(gdat, strgmodl, axis, strgfrst, indxpoplfrst, strgseco=None): if strgfrst == 'deltllik' or strgseco == 'deltllik': for pval in gdat.pvalcont: if strgfrst == 'deltllik': deltlliksigm = scipy.stats.chi2.ppf(1. - pval, gmod.numbparagenrelemsing[indxpoplfrst]) axis.axvline(deltlliksigm, ls='--', color='black', alpha=0.2) if strgseco == 'deltllik': deltlliksigm = scipy.stats.chi2.ppf(1. - pval, gmod.numbparagenrelemsing[indxpoplfrst]) axis.axhline(deltlliksigm, ls='--', color='black', alpha=0.2) def plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, strgydat, strgxdat, typehist='hist', \ indxrefrplot=None, indxydat=None, strgindxydat=None, indxxdat=None, strgindxxdat=None, plottype='none', \ meanxdat=None, \ scal=None, scalxdat=None, scalydat=None, limtxdat=None, limtydat=None, omittrue=False, nameinte='', \ lablxdat='', lablydat='', histodim=False, offslegd=None, booltdim=False, ydattype='totl', boolhistprio=True): gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) if strgydat[-8:-5] == 'pop': boolelem = True else: boolelem = False if scal is None: if scalxdat is None: scalxdat = 'linr' if scalydat is None: scalydat = 'linr' else: scalxdat = scal scalydat = scal if histodim: figrsize = (gdat.plotsize, 0.8 * gdat.plotsize) else: figrsize = (gdat.plotsize, gdat.plotsize) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) if booltdim: xdat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgxdat, strgpdfn) ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn) else: xdat = getattr(gdat.meanpara, strgxdat[4:]) if typehist == 'histcorrreca': ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'histcorrreca' + strgydat[4:], strgpdfn) else: ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn) if indxxdat is not None: xdat = xdat[indxxdat] if indxydat is not None: ydat = ydat[indxydat] xerr = np.zeros((2, xdat.size)) if booltdim: axis.scatter(xdat, ydat, alpha=gdat.alphelem, color=colr, label=gdat.lablparagenrscalfull) else: if histodim: # temp if strgxdat[4:] in gmod.namepara.elem: deltxdat = getattr(gdat.deltpara, strgxdat[4:]) binsxdat = getattr(gdat.binspara, strgxdat[4:]) else: deltxdat = getattr(gdat.deltpara, strgxdat[4:]) binsxdat = getattr(gdat.binspara, strgxdat[4:]) xdattemp = binsxdat[:-1] + deltxdat / 2. if strgmodl == 'fitt': if boolelem: if strgydat.startswith('cmpl'): labl = gmod.lablelem[int(strgydat[-5])] colr = gmod.colrelem[int(strgydat[-5])] else: labl = gmod.lablelem[int(strgydat[-1])] colr = gmod.colrelem[int(strgydat[-1])] else: labl = gmod.labl colr = gmod.colr if strgstat == 'pdfn': if typehist == 'histcorrreca': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'histcorrreca' + strgydat[4:], strgpdfn, strgmome='errr') else: yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn, strgmome='errr') if indxydat is not None: yerr = yerr[[slice(None)] + indxydat] # label if strgydat.startswith('hist'): ## element distribution labl = gdat.lablsampdist else: ## other labl = gdat.lablsampdist # draw points indxerrr = np.where((yerr[0, :] > 0.) | (yerr[1, :] > 0.))[0] if indxerrr.size > 0: labltemp = None else: labltemp = labl temp, listcaps, temp = axis.errorbar(xdat, ydat, yerr=yerr, xerr=xerr, label=labl, \ marker='o', ls='', markersize=5, color=colr, lw=1, capsize=5) # draw error-bar caps if indxerrr.size > 0: temp, listcaps, temp = axis.errorbar(xdat[indxerrr], ydat[indxerrr], yerr=yerr[:, indxerrr], xerr=xerr[:, indxerrr], \ marker='o', ls='', markersize=5, color=colr, lw=1, capsize=5) for caps in listcaps: caps.set_markeredgewidth(1) elif strgstat == 'this' or strgstat == 'mlik': if strgstat == 'this': labl = gdat.lablsamp else: labl = gdat.lablmlik if histodim: axis.bar(xdattemp, ydat, deltxdat, label=gdat.lablparagenrscalfull, alpha=0.5, linewidth=1, edgecolor=colr) else: if plottype == 'errr': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn, strgmome='errr') if indxydat is not None: yerr = yerr[[slice(None)] + indxydat] temp, listcaps, temp = axis.errorbar(xdat, ydat, yerr=yerr, xerr=xerr, \ marker='o', ls='', markersize=5, label=labl, lw=1, capsize=5, color=colr) for caps in listcaps: caps.set_markeredgewidth(1) else: axis.plot(xdat, ydat, label=gdat.lablparagenrscalfull, alpha=0.5, color=colr) # reference histogram if not omittrue: for q in gdat.indxrefr: if boolelem: if strgydat[-12:-8] in gdat.listnamerefr: name = 'refr' + strgydat[:-12] + 'pop%d' % q + strgydat[-4:] else: name = 'refr' + strgydat[:-8] + 'pop%d' % q + strgydat[-4:] else: name = 'refr' + strgydat if not hasattr(gdat, name): continue ydattemp = getattr(gdat, name) ydat = ydattemp if indxydat is not None: ydat = ydat[indxydat] if strgydat[-8:-5] == 'pop': labl = gdat.refr.lablelem[q] colr = gdat.refr.colrelem[q] else: labl = gdat.refr.labl colr = gdat.refr.colr if histodim: axis.bar(xdattemp, ydat, deltxdat, color=colr, label=labl, alpha=gdat.alphhist, linewidth=1, edgecolor=colr) else: axis.plot(xdat, ydat, color=colr, label=labl, alpha=gdat.alphline) try: if histodim: if typehist == 'histcorrreca': reca = getattr(gdat.true, 'reca' + strgydat[4:]) axis.plot(xdattemp, 10. * reca, color='purple', label='PTFN', alpha=gdat.alphline) except: pass if not boolelem: break # external reference histogram if histodim and strgydat == 'histfluxpop0': try: if gdat.listprefhistfluxlabl is not None: for k in range(len(gdat.listprefhistfluxlabl)): if gdat.listprefhistfluxtype[k] == 'shad': axis.plot(gdat.listprefhistfluxflux[k][0], gdat.listprefhistfluxhist[k][0], color='m', label=gdat.listprefhistfluxlabl[k]) enerpoly = np.empty(gdat.listprefhistfluxflux[k][1].size + gdat.listprefhistfluxflux[k][2].size) enerpoly[:gdat.listprefhistfluxflux[k][1].size] = gdat.listprefhistfluxflux[k][1] enerpoly[gdat.listprefhistfluxflux[k][1].size:] = gdat.listprefhistfluxflux[k][2][::-1] sbrtpoly = np.empty(gdat.listprefhistfluxflux[k][1].size + gdat.listprefhistfluxflux[k][2].size) sbrtpoly[:gdat.listprefhistfluxflux[k][1].size] = gdat.listprefhistfluxhist[k][1] sbrtpoly[gdat.listprefhistfluxflux[k][1].size:] = gdat.listprefhistfluxhist[k][2][::-1] axis.fill(enerpoly, sbrtpoly, color='m', alpha=0.5) else: axis.errorbar(gdat.listprefhistfluxflux[k], gdat.listprefhistfluxhist[k], label=gdat.listprefhistfluxlabl[k], color='m') except: pass if strgydat.startswith('histcntp'): ydattemp = getattr(gmodstat, strgydat) axis.bar(xdattemp, ydattemp, deltxdat, color='black', label='Data', alpha=gdat.alphhist, linewidth=1, edgecolor='black') # axis scales if scalxdat == 'logt': axis.set_xscale('log') if scalydat == 'logt': if np.where(ydat > 0.)[0].size > 0: axis.set_yscale('log') # axis labels axis.set_xlabel(lablxdat) axis.set_ylabel(lablydat) # superimpose prior on the feature ptch = None line = None if strgydat.startswith('hist') and strgydat != 'histdefl' and strgydat != 'histdeflelem' and boolhistprio: if strgydat[-8:-5] == 'pop': strgtemp = strgydat[4:-8] if strgtemp in gmod.namepara.genrelem[int(strgydat[-5])]: xdatprio = getattr(gmod, strgxdat + 'prio') if gdat.typedata == 'mock' and not omittrue: for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue if strgtemp in gmod.namepara.genrelem[q]: truexdatprio = getattr(gdat.true, strgxdat + 'prio') trueydatsupr = getattr(gdat.true, strgydat + 'prio') trueydatsupr = retr_fromgdat(gdat, gdatmodi, strgstat, 'true', strgydat + 'prio', strgpdfn) axis.plot(truexdatprio, trueydatsupr, ls='-', alpha=gdat.alphline, color=gdat.refr.colrelem[q]) if strgmodl != 'true': ydatsupr = retr_fromgdat(gdat, gdatmodi, strgstat, 'fitt', strgydat + 'prio', strgpdfn) if strgstat == 'pdfn': yerrsupr = retr_fromgdat(gdat, gdatmodi, strgstat, 'fitt', strgydat + 'prio', strgpdfn, strgmome='errr') labl = gdat.lablsampdist + ' hyper-distribution' ptch, line = tdpy.plot_braz(axis, xdatprio, ydatsupr, yerr=yerrsupr, lcol='lightgrey', dcol='grey', labltotl=labltotl) else: axis.plot(xdatprio, ydatsupr, ls='--', alpha=gdat.alphline, color=gmod.colrelem[int(strgydat[-5])]) for name, valu in gdat.refr.__dict__.items(): if name[8:12] == 'hist' and name[12:16] == strgydat[4:] and name[16:19] == 'pop' and int(name[-1]) == indxpopltemp: colr = getattr(gdat, name + 'colr') linestyl = getattr(gdat, name + 'linestyl') axis.plot(valu[0, :], valu[1, :], ls=linestyl, color=colr) if strgydat.startswith('hist') and strgydat[4:-8] == 'deltllik': plot_sigmcont(gdat, strgmodl, axis, strgxdat[4:], int(strgydat[-1])) if indxydat is not None: strgydat += strgindxydat if indxxdat is not None: strgxdat += strgindxxdat if limtxdat is not None: axis.set_xlim(limtxdat) else: axis.set_xlim([np.amin(xdat), np.amax(xdat)]) if limtydat is not None: axis.set_ylim([limtydat[0], limtydat[1]]) else: axis.set_ylim([np.amin(ydat), np.amax(ydat)]) if ydattype != 'totl': strgydat += ydattype try: make_legd(axis, offs=offslegd, ptch=ptch, line=line) except: print('Legend failed when') print('strgstat') print(strgstat) print('strgmodl') print(strgmodl) print('strgydat') print(strgydat) raise Exception('') plt.tight_layout() if typehist == 'histcorrreca': path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, 'histcorrreca' + strgydat[4:], nameinte=nameinte) else: path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgydat, nameinte=nameinte) savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_scatassc(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, q, l, strgfeat, plotdiff=False): if plotdiff: figrsize = (gdat.plotsize, 0.7 * gdat.plotsize) else: figrsize = (gdat.plotsize, gdat.plotsize) figr, axis = plt.subplots(1, 1, figsize=figrsize) # prepare data to be plotted xdat = np.copy(getattr(gdat.refr, strgfeat)[q][0, :]) xerr = tdpy.retr_errrvarb(getattr(gdat.refr, strgfeat)[q]) ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgfeat + 'asscpop%dpop%d' % (q, l), strgpdfn) yerr = np.zeros((2, ydat.size)) if strgstat == 'pdfn': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgfeat + 'asscpop%dpop%d' % (q, l), strgpdfn, strgmome='errr') if plotdiff: ydat = 100. * (ydat - xdat) / xdat # handle the case when there is a single reference element if yerr.ndim == 1: ydat = np.array([ydat]) yerr = yerr[:, None] # plot all associations if plotdiff: indx = np.where(ydat > -100.)[0] else: indx = np.where(ydat > 0.)[0] if indx.size > 0: axis.errorbar(xdat[indx], ydat[indx], ls='', yerr=yerr[:, indx], xerr=xerr[:, indx], lw=1, marker='o', markersize=5, color='black') # temp -- plot associations inside the comparison area if plotdiff: axis.axhline(0., ls='--', alpha=gdat.alphline, color='black') else: axis.plot(binsplot, binsplot, ls='--', alpha=gdat.alphline, color='black') lablxdat = getattr(gmod.lablpara, strgfeat + 'refr') lablydat = getattr(gmod.lablpara, strgfeat + 'paragenrscalfull') axis.set_xlabel(lablxdat) axis.set_ylabel(lablydat) boollogtxaxi = False boollogtyaxi = False if indx.size > 0 and scal == 'logt': if not plotdiff: axis.set_yscale('log') boollogtyaxi = True axis.set_xscale('log') boollogtaxis = True if plotdiff: limtydat = np.array([-100., 100.]) else: limtydat = np.array([minmplot, maxmplot]) limtxdat = [minmplot, maxmplot] # overplot text if 'etag' in gdat.refr.namepara.elem[q]: for k in range(indx.size): if boollogtxaxi: sizexoff = 0.01 * xdat[indx[k]] else: sizexoff = 0.01 * (limtxdat[1] - limtxdat[0]) if boollogtyaxi: sizeyoff = 0.01 * ydat[indx[k]] else: sizeyoff = 0.01 * (limtydat[1] - limtydat[0]) axis.text(xdat[indx[k]] + sizexoff, ydat[indx[k]] + sizeyoff, gdat.refretag[q][indx[k]], verticalalignment='center', horizontalalignment='center', \ color='red', fontsize=1) axis.set_ylim(limtydat) axis.set_xlim(limtxdat) plt.tight_layout() if plotdiff: strgtype = 'diff' else: strgtype = '' path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, 'scatassc' + strgfeat + '%spop%dpop%d' % (strgtype, q, l), nameinte='assc') savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_scatcntp(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, indxevttplot, indxenerplot=None): gmod = getattr(gdat, strgmodl) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'cntpmodl', strgpdfn) if indxenerplot is None: xdat = gdat.cntpdata[:, :, indxevttplot].flatten() ydat = ydat[:, :, indxevttplot].flatten() nameplot = 'scatcntpevt%d' % (indxevttplot) if strgstat == 'pdfn': indxvarb = [slice(None), slice(None), indxevttplot] else: xdat = gdat.cntpdata[indxenerplot, :, indxevttplot] ydat = ydat[indxenerplot, :, indxevttplot] nameplot = 'scatcntpen%02devt%d' % (indxenerplot, indxevttplot) if strgstat == 'pdfn': indxvarb = [indxenerplot, slice(None), indxevttplot] if strgstat == 'pdfn': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'cntpmodl', strgpdfn, strgmome='errr', indxvarb=indxvarb) colr = gmod.colr if strgstat == 'pdfn': axis.errorbar(xdat, ydat, yerr=yerr, marker='o', ls='', markersize=5, color=gmod.colr, capsize=5) else: axis.plot(xdat, ydat, marker='o', ls='', markersize=5, color=gmod.colr) gdat.limtcntpdata = [gdat.binspara.cntpdata[0], gdat.binspara.cntpdata[-1]] axis.set_xlim(gdat.limtcntpdata) axis.set_ylim(gdat.limtcntpdata) axis.set_ylabel('$k^{modl}$') axis.set_xlabel('$k^{data}$') axis.set_xscale('log') axis.set_yscale('log') plt.tight_layout() path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, nameplot) savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_indxprox(gdat): numbbins = 40 numbfluxprox = len(gdat.indxpixlprox) bins = np.empty((gdat.numbprox, numbbins + 1)) indxpixlproxsize = np.empty((numbfluxprox, gdat.numbpixlfull)) for h in gdat.indxprox: for j in gdat.indxpixlfull: try: indxpixlproxsize[h, j] = gdat.indxpixlprox[h][j].size except: indxpixlproxsize[h, j] = gdat.numbpixlfull bins[h, :] = np.logspace(np.log10(np.amin(indxpixlproxsize[h, :])), np.log10(np.amax(indxpixlproxsize[h, :])), numbbins + 1) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) for h in gdat.indxprox: axis.hist(indxpixlproxsize[h, :], bins=bins[h, :], log=True, label='Flux bin %d' % h, alpha=gdat.alphhist) axis.set_xscale('log') axis.axvline(gdat.numbpixlfull, label='ROI', ls='--') axis.set_xlabel('Number of pixels') axis.set_ylabel("Number of tables") make_legd(axis) plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'init/indxprox.pdf') plt.close() def plot_psfn_type(): devi = np.linspace(0., 5., 100) y = np.zeros((x.size, 5)) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) singgaus = retr_singgaus(devi, 0.25) axis.plot(devi, singgaus, label='Single Gaussian') singking = retr_singking(devi, 0.25, 10.) axis.plot(devi, singking, label='Single King') doubgaus = retr_doubgaus(devi, 0.1, 0.25, 1.) axis.plot(devi, doubgaus, label='Double Gaussian') gausking = retr_gausking(devi, 0.1, 0.25, 1., 10.) axis.plot(devi, gausking, label='Gaussian + King') doubking = retr_doubking(devi, 0.1, 0.25, 10., 1., 5.) axis.plot(devi, doubking, label='Double King') make_legd(axis) axis.set_xscale('log') axis.set_yscale('log') axis.set_ylim([1e-3, None]) def plot_evidtest(): minmgain = -1. maxmgain = 5. minmdevi = 0. maxmdevi = 5. gain = np.linspace(minmgain, maxmgain, 100) devi = np.linspace(minmdevi, maxmdevi, 100) evid = np.log(np.sqrt(1. + np.exp(2. * gain[None, :])) * np.exp(-devi[:, None]**2 / 2. / (1. + 1. / np.exp(2. * gain[None, :])))) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) figr.suptitle('Log-Bayesian Evidence For Lower-Dimension Model', fontsize=18) imag = axis.imshow(evid, extent=[minmgain, maxmgain, minmdevi, maxmdevi], cmap='winter', origin='lower') cset1 = plt.contourf(gain, devi, evid, cmap='winter') axis.set_xlabel('Information gain') axis.set_ylabel('Goodness of fit') plt.colorbar(imag, ax=axis, fraction=0.03) plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'evidtest.pdf') plt.close(figr) def plot_histlgalbgalelemstkd(gdat, strgpdfn, indxpoplplot, strgbins, strgfeat=None): if strgfeat is not None: numbparaplot = gdat.numbbinsplot else: numbparaplot = 1 if strgbins == 'cumu': numbrows = 1 numbcols = 1 else: numbcols = 2 if strgbins == 'full': numbrows = numbparaplot / 2 else: numbrows = 2 histlgalbgalelemstkd = getattr(gdat, strgpdfn + 'histlgalbgalelemstkd') figr, axgr = plt.subplots(numbrows, numbcols, figsize=(numbcols * gdat.plotsize, numbrows * gdat.plotsize), sharex='all', sharey='all') if numbrows == 1: axgr = [axgr] for a, axrw in enumerate(axgr): if numbcols == 1: axrw = [axrw] for b, axis in enumerate(axrw): if strgfeat is not None: h = a * 2 + b if strgbins == 'full': indxlowr = h indxuppr = h + 1 elif strgbins == 'cumu': indxlowr = 0 indxuppr = numbparaplot else: if h < 3: indxlowr = 2 * h indxuppr = 2 * (h + 1) else: indxlowr = 2 * h indxuppr = numbparaplot temp = np.sum(histlgalbgalelemstkd[indxpoplplot][:, :, indxlowr:indxuppr], 2).T else: temp = np.sum(np.sum(histlgalbgalelemstkd[indxpoplplot], 2), 2).T if np.where(temp > 0.)[0].size > 0: imag = axis.imshow(temp, interpolation='nearest', origin='lower', cmap='BuPu', \ extent=gdat.exttrofi, norm=mpl.colors.LogNorm(vmin=0.5, vmax=None)) else: imag = axis.imshow(temp, interpolation='nearest', origin='lower', cmap='BuPu', extent=gdat.exttrofi) if strgfeat is not None: bins = getattr(gdat.binspara, strgfeat) # superimpose reference elements for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue # temp -- backcomp reframpl = getattr(gdat.refr, gdat.refr.nameparagenrelemampl[q]) if strgfeat in gdat.refr.namepara.elem[q]: refrfeat = getattr(gdat.refr, strgfeat)[q] if len(refrfeat) > 0: indxelem = np.where((bins[indxlowr] < refrfeat[0, :]) & (refrfeat[0, :] < bins[indxuppr]))[0] else: indxelem = np.array([]) else: indxelem = np.arange(gdat.refr.numbelem[q]) # temp -- backcomp try: mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl[q][0, indxelem], gdat.refr.nameparagenrelemampl[q]) except: mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl[q][0, indxelem], gdat.refr.nameparagenrelemampl[q]) if indxelem.size > 0: axis.scatter(gdat.anglfact * gdat.refr.dictelem[q]['lgal'][0, indxelem], gdat.anglfact * gdat.refr.dictelem[q]['bgal'][0, indxelem], \ s=mrkrsize, alpha=gdat.alphelem, marker=gdat.refrlistmrkrhits[q], lw=2, color=gdat.refr.colrelem[q]) if a == numbrows - 1: axis.set_xlabel(gdat.labllgaltotl) else: axis.set_xticklabels([]) if b == 0: axis.set_ylabel(gdat.lablbgaltotl) else: axis.set_yticklabels([]) draw_frambndr(gdat, axis) if strgbins != 'cumu': titl = tdpy.mexp(bins[indxlowr]) + ' < $%s$ < ' % lablfeat + tdpy.mexp(bins[indxuppr]) axis.set_title(titl) if strgfeat is not None: lablfeattotl = getattr(gmod.lablpara, strgfeat + 'totl') plt.figtext(0.5, 0.95, '%s' % lablfeattotl, ha='center', va='center') axiscomm = figr.add_axes([0.87, 0.2, 0.02, 0.6]) cbar = figr.colorbar(imag, cax=axiscomm) plt.subplots_adjust() #plt.subplots_adjust(left=0.18, top=.9, right=0.82, bottom=0.15, hspace=0.08, wspace=0.08) if strgbins == 'cumu': strgtemp = '' else: strgtemp = strgfeat path = getattr(gdat, 'path' + strgpdfn + 'finl') + 'histlgalbgalelemstkd%s%spop%d' % (strgbins, strgtemp, indxpoplplot) + '.pdf' figr.savefig(path) plt.close(figr) def plot_king(gdat): angl = rad2deg(gdat.binspara.angl) figr, axgr = plt.subplots(1, 2, figsize=(2 * gdat.plotsize, gdat.plotsize)) figr.suptitle('King Function', fontsize=20) for k, axis in enumerate(axgr): if k == 0: sigmlist = [0.25] gammlist = [1.01, 2.5, 10.] else: sigmlist = [0.1, 0.25, 1.] gammlist = [2.] for sigm in sigmlist: for gamm in gammlist: axis.plot(angl, retr_singking(angl, sigm, gamm), label=r'$\sigma = %.4g, \gamma = %.3g$' % (sigm, gamm)) make_legd(axis) axis.set_yscale('log') axis.set_xlabel(gdat.labltotlpara.gang) axis.set_xlabel(r'$\mathcal{K}$') plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'king.pdf') plt.close(figr) def plot_intr(gdat): if gdat.typeverb > 0: print('Making PCAT introductory plots...') #plot_grap(plottype='meta', typeverb=1) plot_grap(plottype='lght0000', typeverb=1) #plot_grap(plottype='lght0001', typeverb=1) #plot_grap(plottype='lght0002', typeverb=1) #plot_grap(plottype='lght0003', typeverb=1) #plot_grap(plottype='lens0000', typeverb=1) plot_grap(plottype='lens0001', typeverb=1) with plt.xkcd(): from matplotlib import patheffects mpl.rcParams['path.effects'] = [patheffects.withStroke(linewidth=0)] figr, axis = plt.subplots(figsize=(2 * gdat.plotsize, gdat.plotsize)) catl = np.arange(80) probcatl = pss.pmf(catl, 30.) + 0.5 * pss.pmf(catl, 60.) axis.plot(catl, probcatl) axis.set_xticks([10, 30, 60]) axis.set_xticklabels(["Crackpot's Catalog", "Best-fit catalog", "Not-so-best-fit catalog"]) axis.set_yticks([]) text = axis.set_title("Exploring the catalog space with Probabilistic cataloging") text.set_position([.5, 1.05]) axis.set_xlabel('Catalog index') axis.set_ylabel("Probability") axis.tick_params(axis='x', colors='#B6E954') axis.tick_params(axis='y', colors='#B6E954') axis.spines['bottom'].set_color('#B6E954') axis.spines['top'].set_color('#B6E954') axis.spines['right'].set_color('#B6E954') axis.spines['left'].set_color('#B6E954') axis.yaxis.label.set_color('#B6E954') axis.xaxis.label.set_color('#B6E954') axis.title.set_color('#B6E954') axis.set_axis_bgcolor('black') figr.set_facecolor('black') plt.tight_layout() figr.savefig(gdat.pathimag + 'talkintr.pdf', facecolor=figr.get_facecolor()) plt.close() def plot_psfn(gdat, gdatmodi, strgstat, strgmodl): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) for i in gdat.indxener: for m in gdat.indxevtt: for k in range(gdat.numbprox + 1): if k == 0 or k == gdat.numbprox: alph = 1. colr = 'b' if k == 0: labl = 'Dimmest PS' else: labl = 'Brightest PS' else: alph = 0.2 labl = None colr = 'black' axis.plot(gdat.binspara.angl * gdat.anglfact, gdat.binspara.prox[k] * gmodstat.psfn[i, :, m], label=labl, color=colr, alpha=alph) axis.set_xlim([np.amin(gdat.binspara.angl) * gdat.anglfact, np.amax(gdat.binspara.angl) * gdat.anglfact]) if k > 0: axis.axvline(gdat.anglfact * gdat.maxmangleval[k-1], ls='--', alpha=alph, color=colr) axis.set_yscale('log') axis.set_xlabel(gdat.labltotlpara.gang) axis.set_ylabel(gdat.lablsbrttotl) limt = gdat.specfraceval * np.amax(gdat.binspara.prox[0] * gmodstat.psfn[i, :, m]) if limt != 0.: axis.axhline(limt, color='red', ls=':', label='Flux floor') make_legd(axis) plt.tight_layout() name = 'psfn' if gdat.numbener > 1: name += 'en%02d' % i if gdat.numbevtt > 1: name += 'evt%d' % m figr.savefig(gdat.pathinit + name + '.pdf') plt.close(figr) def plot_mosa(gdat, strgpdfn): # empty global object gdatmodi = tdpy.gdatstrt() listparagenrscalfull = getattr(gdat, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdat, 'list' + strgpdfn + 'paragenrunitfull') numbrows = 3 numbcols = 2 numbsampmosa = numbrows * numbcols if numbsampmosa <= gdat.numbsamptotl: indxsampmosa = np.random.choice(gdat.indxsamptotl, size=numbsampmosa, replace=False) for l in gmod.indxpopl: for i in gdat.indxener: for m in gdat.indxevttplot: figr, axgr = plt.subplots(numbrows, numbcols, figsize=(numbcols * gdat.plotsize, numbrows * gdat.plotsize)) for a, axrw in enumerate(axgr): for b, axis in enumerate(axrw): n = indxsampmosa[numbcols*a+b] gdatmodi.this.paragenrscalfull = listparagenrscalfull[n, :].flatten() gdatmodi.this.paragenrunitfull = listparagenrunitfull[n, :].flatten() if gmod.numbparaelem > 0: gdatmodi.this.indxelemfull = getattr(gdat, 'list' + strgpdfn + 'indxelemfull')[n] proc_samp(gdat, gdatmodi, 'this', 'fitt') if a == numbrows - 1: axis.set_xlabel(gdat.labllgaltotl) else: axis.set_xticklabels([]) if b == 0: axis.set_ylabel(gdat.lablbgaltotl) else: axis.set_yticklabels([]) imag = retr_imag(gdat, axis, gdat.cntpdata, '', 'fitt', 'cntpdata', i, m) supr_fram(gdat, gdatmodi, 'this', 'fitt', axis, l) if gdat.boolbinsener: plt.figtext(0.5, 0.93, gdat.strgener[i], ha='center', va='center') axiscomm = figr.add_axes([0.92, 0.1, 0.02, 0.8]) cbar = figr.colorbar(imag, cax=axiscomm) cbar.set_ticks(gdat.valutickmajrpara.cntpdata) cbar.set_ticklabels(gdat.labltickmajrpara.cntpdata) plt.subplots_adjust() #plt.subplots_adjust(left=0.1, top=.91, hspace=0.03, wspace=0.1, bottom=0.09) if l == 1: strg = '' else: strg = 'pop%d' % l pathfinl = getattr(gdat, 'path' + strgpdfn + 'finl') if m is None: path = pathfinl + 'mosa' + strg + 'en%02dA.pdf' % (gdat.indxenerincl[i]) else: path = pathfinl + 'mosa' + strg + 'en%02devtt%d.pdf' % (gdat.indxenerincl[i], gdat.indxevttincl[m]) figr.savefig(path) plt.close(figr) else: if gdat.typeverb > 0: print('Skipping the mosaic plot...') def plot_grap(plottype, typeverb=0): import networkx as nx figr, axis = plt.subplots(figsize=(6, 6)) grap = nx.DiGraph() if plottype == 'meta': listcolr = ['black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', 'magenta'] if plottype == 'lens0001': listcolr = ['olive', 'olive', 'black', 'magenta', 'magenta', 'magenta', 'magenta', 'magenta', 'olive', 'olive', 'olive', 'olive', 'olive', \ r'black', 'olive', 'black'] if plottype == 'lght0000': listcolr = [r'olive', r'black', r'magenta', r'magenta', 'magenta', r'magenta', r'olive', r'olive', r'black', r'olive', r'olive', r'black', r'olive'] if plottype == 'lght0001': listcolr = ['black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', 'olive', 'olive', 'magenta', 'magenta', 'magenta', 'magenta', 'black'] if plottype == 'lght0002': listcolr = ['black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', 'olive', 'olive', 'olive', 'magenta', \ 'magenta', 'magenta', 'magenta', 'magenta', 'black'] if plottype == 'lght0003': listcolr = ['black', 'black', 'black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', \ 'olive', 'olive', 'magenta', 'magenta', 'magenta', 'magenta'] if plottype == 'lens0000': listcolr = ['olive', 'black', 'black', 'olive', 'olive', 'olive', 'olive', 'black', 'olive', 'magenta', 'magenta', 'magenta'] if plottype.startswith('meta'): grap.add_edges_from([ \ ('meanelem', 'numbelem'), \ ('modl','data'), \ ('psfp', 'modl'), \ ('feat','modl'), \ ('numbelem','feat'), \ ('amplslop', 'ampl'), \ ]) if plottype.startswith('lght') or plottype.startswith('lens'): grap.add_edges_from([ \ ('meanelem', 'numbelem'), \ ('modl','data'), \ ('psfp', 'modl'), \ ('bacp', 'modl'), \ ('lgal','modl'), \ ('bgal','modl'), \ ('numbelem','lgal'), \ ('numbelem','bgal'), \ ]) if plottype.startswith('lght'): grap.add_edges_from([ \ ('amplslop', 'ampl'), \ ('ampl', 'modl'), \ ('numbelem','ampl'), \ ('numbelem', 'sind'), \ ('sind','modl'), \ ]) if plottype.startswith('lens'): grap.add_edges_from([ \ ('lenp', 'modl'), \ ('defsslop', 'defs'), \ ('defs', 'modl'), \ ('numbelem','defs'), \ ]) if plottype == 'lens0001': grap.add_edges_from([ \ ('asca', 'modl'), \ ('numbelem','asca'), \ ('acut', 'modl'), \ ('numbelem','acut'), \ ]) if plottype == 'lght0001' or plottype == 'lght0002': grap.add_edges_from([ \ ('sinddistmean', 'sind'), \ ]) if plottype == 'lght0002': grap.add_edges_from([ \ ('numbelem', 'expc'), \ ('expc', 'modl'), \ ]) if plottype == 'lght0003': grap.add_edges_from([ \ ('spatdistcons', 'lgal'), \ ('spatdistcons', 'bgal'), \ ]) labl = {} if plottype.startswith('lens'): nameelem = r'\rm{sub}' else: nameelem = r'\rm{pts}' if plottype.startswith('lght') and (plottype == 'lght0001' or plottype == 'lght0002'): labl['numbelem'] = r'$\vec{N}_{%s}$' % nameelem labl['meanelem'] = r'$\vec{\mu}_{%s}$' % nameelem else: labl['numbelem'] = '$N_{%s}$' % nameelem labl['meanelem'] = r'$\mu_{%s}$' % nameelem if plottype.startswith('lght'): if plottype == 'lght0000' or plottype == 'lght0003': labl['amplslop'] = r'$\alpha$' else: labl['amplslop'] = r'$\vec{\alpha}$' if plottype.startswith('lens'): labl['defsslop'] = r'$\beta$' if plottype == 'lght0001' or plottype == 'lght0002': labl['sinddistmean'] = r'$\vec{\beta}$' if plottype == 'lght0003': labl['spatdistcons'] = r'$\gamma$' if plottype.startswith('lens'): labl['lenp'] = r'$\vec{\chi}$' labl['psfp'] = r'$\vec{\eta}$' labl['bacp'] = r'$\vec{A}$' labl['lgal'] = r'$\vec{\theta_1}$' labl['bgal'] = r'$\vec{\theta_2}$' if plottype.startswith('meta'): labl['feat'] = r'$\vec{\xi}$' else: if plottype.startswith('lght'): labl['sind'] = r'$\vec{s}$' labl['ampl'] = r'$\vec{f}$' else: labl['defs'] = r'$\vec{\alpha_{\rm{s}}}$' if plottype == 'lens0001': labl['asca'] = r'$\vec{\theta_{\rm{s}}}$' labl['acut'] = r'$\vec{\theta_{\rm{c}}}$' if plottype == 'lght0002': labl['expc'] = r'$\vec{E_{\rm{c}}}$' labl['modl'] = r'$M_D$' labl['data'] = r'$D$' posi = nx.circular_layout(grap) posi['sinddistmean'] = np.array([0.4, 0.15]) if plottype == 'lght0003': posi['spatdistcons'] = np.array([-0.2, 0.15]) if plottype.startswith('lght'): posi['numbelem'] = np.array([0., 0.075]) posi['meanelem'] = np.array([0., 0.15]) posi['amplslop'] = np.array([0.2, 0.15]) if plottype.startswith('lens'): posi['numbelem'] = np.array([-0.1, 0.075]) posi['meanelem'] = np.array([-0.1, 0.15]) posi['defsslop'] = np.array([0.1, 0.15]) if plottype.startswith('lght'): if plottype == 'lght0002': posi['psfp'] = np.array([0.7, -0.0]) posi['bacp'] = np.array([0.9, -0.0]) else: posi['psfp'] = np.array([0.5, -0.0]) posi['bacp'] = np.array([0.7, -0.0]) if plottype == 'lens0000': posi['psfp'] = np.array([0.3, -0.0]) posi['bacp'] = np.array([0.5, -0.0]) posi['lenp'] = np.array([0.7, -0.0]) if plottype == 'lens0001': posi['psfp'] = np.array([0.7, -0.0]) posi['bacp'] = np.array([0.9, -0.0]) posi['lenp'] = np.array([1.1, -0.0]) posi['lgal'] = np.array([-0.3, -0.0]) posi['bgal'] = np.array([-0.1, -0.0]) if plottype.startswith('lght'): posi['ampl'] = np.array([0.1, -0.0]) posi['sind'] = np.array([0.3, -0.0]) if plottype == 'lght0002': posi['expc'] = np.array([0.5, -0.0]) if plottype.startswith('lens'): posi['defs'] = np.array([0.1, -0.0]) if plottype == 'lens0001': posi['asca'] = np.array([0.3, -0.0]) posi['acut'] = np.array([0.5, -0.0]) posi['modl'] = np.array([0., -0.075]) posi['data'] = np.array([0., -0.15]) if typeverb > 0: numb = max(len(grap.edges()), len(listcolr)) for k in range(numb): try: print('%15s %15s %15s' % (grap.edges()[k][0], grap.edges()[k][1], listcolr[k])) except: print('unequal') size = 1000 nx.draw(grap, posi, labels=labl, ax=axis, edgelist=[], nodelist=[]) nx.draw_networkx_edges(grap, posi, ax=axis, labels=labl, edge_color=listcolr) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['modl', 'data'], node_color='grey', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['numbelem'], node_color='b', node_size=size) if plottype.startswith('lght'): nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['meanelem', 'amplslop'], node_color='r', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lgal', 'bgal', 'ampl', 'sind'], node_color='g', node_size=size) if plottype == 'lght0001' or plottype == 'lght0002': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['sinddistmean'], node_color='r', node_size=size) if plottype == 'lght0002': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['expc'], node_color='g', node_size=size) if plottype == 'lght0003': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['spatdistcons'], node_color='r', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['psfp', 'bacp'], node_color='y', node_size=size) if plottype.startswith('lens'): nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['meanelem', 'defsslop'], node_color='r', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lenp'], node_color='y', node_size=size) if plottype == 'lens0000': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lgal', 'bgal', 'defs'], node_color='g', node_size=size) if plottype == 'lens0001': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lgal', 'bgal', 'defs', 'asca', 'acut'], node_color='g', node_size=size) pathplot = pathpcat + '/imag/' plt.tight_layout() figr.savefig(pathplot + 'grap%s.pdf' % plottype) plt.close(figr) def plot_3fgl_thrs(gdat): path = pathpcat + '/detthresh_P7v15source_4years_PL22.fits' fluxthrs = astropy.io.fits.getdata(path, 0) bgalfgl3 = np.linspace(-90., 90., 481) lgalfgl3 = np.linspace(-180., 180., 960) bgalexpo = np.linspace(-90., 90., 400) lgalexpo = np.linspace(-180., 180., 800) #fluxthrs = interp2d(lgalfgl3, bgalfgl3, fluxthrs)(lgalexpo, bgalexpo) fluxthrs = griddata([lgalfgl3, bgalfgl3], fluxthrs, [gdat.lgalheal]) cntsthrs = fluxthrs * gdat.expo jbgal = np.where(abs(bgalexpo) < 10.)[0] jlgal = np.where(abs(lgalexpo) < 10.)[0] extent = [-10, 10, -10, 10] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.set_xlabel(gdat.labllgaltotl) axis.set_ylabel(gdat.lablbgaltotl) imag = plt.imshow(fluxthrs[np.amin(jbgal):np.amax(jbgal)+1, np.amin(jlghprofi):np.amax(jlghprofi)+1], origin='lower', cmap='Reds', extent=gdat.exttrofi) plt.colorbar(imag, fraction=0.05) plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'thrs.pdf') plt.close(figr) def plot_init(gdat): print('Making initial plots...') gmod = gdat.fitt # make initial plots if gdat.makeplot: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if (gmod.typeelemspateval[l] == 'locl' and gmod.maxmpara.numbelem[l] > 0) and gdat.numbpixl > 1: plot_indxprox(gdat) for i in gdat.indxener: for m in gdat.indxevtt: if gdat.typedata == 'mock' and gmod.boollens: figr, axis, path = init_figr(gdat, None, 'post', 'cntpmodlraww', 'this', 'true', i, m, -1) imag = retr_imag(gdat, axis, gmod.cntpmodlraww, 'this', 'true', 'cntpdata', i, m, booltdim=True) make_cbar(gdat, axis, imag, 0, tick=gdat.valutickmajrpara.cntpdata, labltotl=gdat.lablcntpdata) plt.tight_layout() figr.savefig(path) plt.close(figr) if gdat.boolcorrexpo: gdat.lablnumbpixl = r'$N_{\rm{pix}}$' gdat.limtexpo = [gdat.minmpara.expo, gdat.maxmpara.expo] if gdat.boolbinsener: path = gdat.pathinit + 'expototlmean.pdf' tdpy.plot_gene(path, gdat.meanpara.ener, gdat.expototlmean, scalxdat='logt', scalydat='logt', lablxdat=gdat.lablenertotl, \ lablydat=gdat.lablexpototl, limtydat=gdat.limtexpo) for m in gdat.indxevtt: for i in gdat.indxener: figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.hist(gdat.expo[i, :, m], gdat.binspara.expo) axis.set_xlabel(gdat.labltotlpara.expo) axis.set_ylabel(gdat.labltotlpara.numbpixl) axis.set_xscale('log') axis.set_yscale('log') plt.tight_layout() name = 'histexpo' if gdat.numbener > 1: name += 'en%02d' % i if gdat.numbevtt > 1: name += 'evt%d' % m path = gdat.pathinit + name + '.pdf' figr.savefig(path) plt.close(figr) if gdat.numbpixl > 1: for i in gdat.indxener: for m in gdat.indxevtt: figr, axis, path = init_figr(gdat, None, 'post', 'expo', '', '', i, m, -1) imag = retr_imag(gdat, axis, gdat.expo, None, None, 'expo', i, m) make_cbar(gdat, axis, imag, i) plt.tight_layout() figr.savefig(path) plt.close(figr) def plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, \ strgvarb='defl', nameparagenrelem='', indxdefl=None, indxpoplplot=-1, multfact=1., indxenerplot=None, indxevttplot=None): if indxdefl is not None: strgvarb += 'sing' strgvarb = strgvarb + nameparagenrelem defl = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn) defl *= multfact if indxenerplot is not None: defl = defl[indxenerplot, :, indxevttplot, ...] if indxdefl is not None: defl = defl[..., indxdefl] strgvarb += '%04d' % indxdefl defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) figr, axis, path = init_figr(gdat, gdatmodi, strgpdfn, strgvarb, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot) make_legdmaps(gdat, strgstat, strgmodl, axis) draw_frambndr(gdat, axis) defllgal = defl[:, :, 0] deflbgal = defl[:, :, 1] fact = 4 ptch = axis.quiver(gdat.anglfact * gdat.lgalgridcart[::fact, ::fact], gdat.anglfact * gdat.bgalgridcart[::fact, ::fact], \ gdat.anglfact * defllgal[::fact, ::fact], gdat.anglfact * deflbgal[::fact, ::fact], scale_units='xy', angles='xy', scale=1) supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis) plt.subplots_adjust(left=0.2, bottom=0.15, top=0.75, right=0.85) plt.subplots_adjust() savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, strgvarb, indxenerplot=None, indxevttplot=-1, strgcbar=None, \ booltdim=False, indxpoplplot=-1, strgmome='pmea'): gmod = getattr(gdat, strgmodl) if strgcbar is None: strgcbar = strgvarb # construct the string for the map if strgvarb == 'cntpdata': strgplot = strgvarb else: if strgstat == 'post': strgtemp = strgmome + strgpdfn else: strgtemp = '' strgplot = strgtemp + strgvarb figr, axis, path = init_figr(gdat, gdatmodi, strgpdfn, strgplot, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot) maps = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn) imag = retr_imag(gdat, axis, maps, strgstat, strgmodl, strgcbar, indxenerplot, indxevttplot, booltdim=booltdim) make_cbar(gdat, axis, imag, strgvarb) make_legdmaps(gdat, strgstat, strgmodl, axis) if gdat.boolsuprelem: supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis, indxpoplplot) print('strgvarb') print(strgvarb) plt.tight_layout() savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def init( \ # user interaction ## type of verbosity typeverb=1, \ ## path in which PCAT data lives pathpcat=None, \ # miscelleneaous ## type of PDF to sample from strgpdfn='post', \ # data ## type of data ### 'mock': simulated data ### 'inpt': input data ### 'real': real data retrieved from databases typedata=None, \ ## type of experiment typeexpr='user', \ # diagnostics ## Boolean to enter the diagnostic mode booldiagmode=True, \ ## squeeze exposure to check the low sample limit boolsqzeexpo=False, \ ### explode exposure to check the large sample limit boolexplexpo=False, \ ## squeeze proposal scale to check the acceptance ratio boolsqzeprop=False, \ ## explode proposal scale to check the acceptance ratio boolexplprop=False, \ ## Boolean to thin down the data boolthindata=False, \ ## factor by which to thin down the data factthin=None, \ # reference catalog ## Boolean to use the reference catalogs to associate boolasscrefr=None, \ # sampling ## Boolean flag to make burn-in tempered boolburntmpr=False, \ ## number of sweeps numbswep=100000, \ ## number of samples numbsamp=None, \ ## number of initial sweeps to be burned numbburn=None, \ # output ## Boolean to make condensed catalog boolcondcatl=True, \ refrlabltotl=None, \ refrlablpopl=None, \ fittlablpopl=None, \ # numpy RNG seed seedtype=0, \ ## Boolean flag to re-seed each chain separately boolseedchan=True, \ ## optional deterministic seed for sampling element parameters seedelem=None, \ indxevttincl=None, \ indxenerincl=None, \ listmask=None, \ # number of samples for Bootstrap numbsampboot=None, \ listnamefeatsele=None, \ # type of mask for the exposure map typemaskexpo='ignr', \ # type of exposure ## 'cons': constant ## 'file': provided in a file typeexpo='cons', \ # maximum spatial distance out to which element kernel will be evaluated maxmangleval=None, \ # initial state initpsfprefr=False, \ initpsfp=None, \ # evaluate the likelihood inside circles around elements typeelemspateval=None, \ namestattrue=None, \ # plotting ## Boolean flag to make the frame plots short boolshrtfram=True, \ boolrefeforc=False, \ indxrefrforc=None, \ ## Boolean to overplot the elements boolsuprelem=True, \ ## Boolean to plot the correlation between elements boolplotelemcorr=True, \ ## Boolean flag to vary the PSF boolmodipsfn=False, \ # name of the configuration strgcnfg=None, \ # model ## number of spatial dimensions numbspatdims=2, \ # hyperparameters fittampldisttype=None, \ # metamodel settings ## PSF evaluation type ## kernel evaluation type kernevaltype='ulip', \ # photometric model ## base parameters ### Sersic type typesers='vauc', \ ## transdimensional parameters (elements) ### vary projected scale radius variasca=True, \ ### vary projected cutoff radius variacut=True, \ # prior penalpridiff=False, \ priotype='logt', \ priofactdoff=None, \ # initialization ## initialization type inittype=None, \ loadvaripara=False, \ # save the state of the MCMC savestat=False, \ namesavestat=None, \ # recover the state from a previous run namerecostat=None, \ forcsavestat=False, \ # proposals ## Boolean flag to turn on proposals on element parameters boolpropcomp=True, \ boolpropcova=True, \ propwithsing=True, \ # type of covariance estimation typeopti='none', \ # modes of operation ## only generate and plot mock data boolmockonly=False, \ ## perform an additional run sampling from the prior checprio=False, \ strgexprsbrt=None, \ anglassc=None, \ nameexpr=None, \ # likelihood dependent ## exposure map expo=None, \ lgalprio=None, \ bgalprio=None, \ minmcntpdata=None, \ strgexpo=None, \ # number of processors numbproc=None, \ # likelihood function liketype='pois', \ # user-defined likelihood function retr_llik=None, \ anlytype=None, \ lgalcntr=0., \ bgalcntr=0., \ maxmangl=None, \ # spatial grid ## type of spatial pixelization typepixl=None, \ ## Boolean flag to force Cartesian spatial grid boolforccart=False, \ # number of pixels on a side in the Cartesian grid numbsidecart=None, \ # Nside in Healpix numbsideheal=256, \ allwfixdtrue=True, \ asscmetrtype='dist', \ # plotting numbswepplot=None, \ # Boolean flagt to make the frame plots only for the central energy and PSF bin boolmakeframcent=True, \ makeplot=True, \ makeplotinit=True, \ makeplotfram=True, \ makeplotfinlprio=True, \ makeplotfinlpost=True, \ makeplotintr=False, \ scalmaps='asnh', \ makeanim=True, \ strgenerfull=None, \ strgexprname=None, \ strganglunit=None, \ strganglunittext=None, \ anglfact=None, \ limtydathistfeat=None, \ # model # emission ## elements ## PSF specfraceval=None, \ numbangl=1000, \ binsangltype='logt', \ numbsidepntsprob=100, \ listprefsbrtsbrt=None, \ listprefsbrtener=None, \ listprefsbrtlabltotl=None, \ lablgangunit=None, \ labllgal=None, \ lablbgal=None, \ lablfluxunit=None, \ lablflux=None, \ strgenerunit=None, \ indxenerfull=None, \ indxevttfull=None, \ binsenerfull=None, \ asymfluxprop=False, \ ## Boolean flag to make the PSF model informed boolpriopsfninfo=False, \ ## spectral # lensing fittrelnpowr=0., \ # temp margfactmodl=1., \ maxmgangdata=None, \ # proposals stdvprophypr=0.01, \ stdvproppsfp=0.1, \ stdvpropbacp=0.01, \ stdvproplenp=1e-4, \ stdvlgal=0.001, \ stdvbgal=0.001, \ stdvflux=0.001, \ stdvspep=0.001, \ stdvspmrsind=0.2, \ varistdvlbhl=True, \ rtagmock=None, \ ## transdimensional proposal probabilities probtran=None, \ probspmr=None, \ # when proposing from the covariance, fracproprand should be very small! fracproprand=0., \ # standard deviation of the Gaussian from which the angular splitting will be drawn for splits and merges radispmr=None, \ defa=False, \ **args \ ): # preliminary setup # construct the global object gdat = tdpy.gdatstrt() for attr, valu in locals().items(): if '__' not in attr and attr != 'gdat': setattr(gdat, attr, valu) # copy all provided inputs to the global object for strg, valu in args.items(): setattr(gdat, strg, valu) # PCAT folders if gdat.pathpcat is None: gdat.pathpcat = os.environ["PCAT_DATA_PATH"] + '/' if gdat.pathpcat[-1] != '/': gdat.pathpcat += '/' gdat.pathdata = gdat.pathpcat + 'data/' gdat.pathdataopti = gdat.pathdata + 'opti/' gdat.pathimag = gdat.pathpcat + 'imag/' gdat.pathoutp = gdat.pathdata + 'outp/' gdat.pathinpt = gdat.pathdata + 'inpt/' # list of parameter groups gdat.liststrggroppara = ['genrbase', 'genrelem', 'derifixd', 'derielem', 'genrelemextd', 'derielemextd', 'kind', 'full'] # list of parameter features to be turned into lists gdat.listfeatparalist = ['minm', 'maxm', 'fact', 'scal', 'lablroot', 'lablunit', 'stdv', 'labltotl', 'name'] # list of parameter features gdat.listfeatpara = gdat.listfeatparalist + ['limt', 'bins', 'delt', 'numb', 'indx', 'cmap', 'mean', 'tick', 'numbbins', 'valutickmajr', 'labltickmajr', 'valutickminr', 'labltickminr'] # run tag gdat.strgswep = '%d' % (gdat.numbswep) ## time stamp gdat.strgtimestmp = tdpy.retr_strgtimestmp() ## name of the configuration function if gdat.strgcnfg is None: gdat.strgcnfg = inspect.stack()[1][3] gdat.strgvers = 'v0.3' if gdat.typeverb > 0: print('PCAT %s started at %s.' % (gdat.strgvers, gdat.strgtimestmp)) print('Configuration %s' % gdat.strgcnfg) # string describing the number of sweeps gdat.strgnumbswep = '%d' % gdat.numbswep # output paths gdat.rtag = retr_rtag(gdat.strgcnfg, gdat.strgnumbswep) gdat.pathoutprtag = retr_pathoutprtag(gdat.pathpcat, gdat.rtag) # physical constants gdat.prsccmtr = 3.086e18 gdat.ergsgevv = 624.151 gdat.factnewtlght = 2.09e13 # Msun / pc gdat.listnamepdir = ['forw', 'reve'] gdat.listlablpdir = ['f', 'r'] # number of standard deviations around mean of Gaussian-distributed variables gdat.numbstdvgaus = 4. # start the timer gdat.timerealtotl = time.time() gdat.timeproctotl = time.clock() # list of parameter types ## 'genr': generative parameters ## 'deri': derived parameters gdat.liststrgtypepara = ['genr', 'deri'] booltemp = chec_statfile(gdat.pathpcat, gdat.rtag, 'gdatmodi') if booltemp: print('gdatmodi already exists. Skipping...') else: # create output folder for the run os.system('mkdir -p %s' % gdat.pathoutprtag) # write the list of arguments to file fram = inspect.currentframe() listargs, temp, temp, listargsvals = inspect.getargvalues(fram) fileargs = open(gdat.pathoutprtag + 'cmndargs.txt', 'w') fileargs.write('PCAT call arguments\n') for args in listargs: fileargs.write('%s = %s\n' % (args, listargsvals[args])) fileargs.close() # write the list of arguments to file fileargs = open(gdat.pathoutprtag + 'args.txt', 'w') fileargs.write('PCAT call arguments\n') for args in listargs: fileargs.write('%20s %s\n' % (args, listargsvals[args])) fileargs.close() # defaults if gdat.typedata is None: if gdat.strgexprsbrt is None: gdat.typedata = 'mock' else: gdat.typedata = 'inpt' print('gdat.typedata') print(gdat.typedata) # list of models gdat.liststrgmodl = [] if gdat.typedata == 'mock': gdat.liststrgmodl += ['true'] gdat.liststrgmodl += ['fitt'] gdat.refr = tdpy.gdatstrt() gdat.listgmod = [] for strgmodl in gdat.liststrgmodl + ['refr']: setattr(gdat, strgmodl, tdpy.gdatstrt()) gmod = getattr(gdat, strgmodl) for strgstat in ['this', 'next']: setattr(gmod, strgstat, tdpy.gdatstrt()) for strgfeatpara in gdat.listfeatpara: setattr(gmod, strgfeatpara + 'para', tdpy.gdatstrt()) gdat.listgmod += [gmod] for strgfeatpara in gdat.listfeatpara: setattr(gdat, strgfeatpara + 'para', tdpy.gdatstrt()) ## number of processes gdat.strgproc = os.uname()[1] if gdat.numbproc is None: if gdat.strgproc == 'fink1.rc.fas.harvard.edu' or gdat.strgproc == 'fink2.rc.fas.harvard.edu' or gdat.strgproc == 'wise': gdat.numbproc = 1 else: gdat.numbproc = 1 if gdat.typedata == 'inpt' and gdat.rtagmock is not None: print('Will use %s to account for selection effects.' % gdat.rtagmock) gdat.pathoutprtagmock = retr_pathoutprtag(gdat.pathpcat, gdat.rtagmock) ## number of burned sweeps if gdat.numbburn is None: print('gdat.numbswep') print(gdat.numbswep) gdat.numbburn = int(gdat.numbswep / 10) print('gdat.numbburn') print(gdat.numbburn) # burn-in gdat.factburntmpr = 0.75 gdat.numbburntmpr = gdat.factburntmpr * gdat.numbburn if (gdat.boolsqzeprop or gdat.boolexplprop) and gdat.typeopti == 'hess': raise Exception('') print('gdat.boolpriopsfninfo') print(gdat.boolpriopsfninfo) print('gdat.typeexpr') print(gdat.typeexpr) ## factor by which to thin the sweeps to get samples if gdat.factthin is not None and gdat.numbsamp is not None: raise Exception('Both factthin and numbparagenrfull cannot be provided at the same time.') elif gdat.factthin is None and gdat.numbsamp is None: gdat.factthin = int(np.ceil(1e-3 * (gdat.numbswep - gdat.numbburn))) gdat.numbsamp = int((gdat.numbswep - gdat.numbburn) / gdat.factthin) elif gdat.numbsamp is not None: gdat.factthin = int((gdat.numbswep - gdat.numbburn) / gdat.numbsamp) elif gdat.factthin is not None: gdat.numbsamp = int((gdat.numbswep - gdat.numbburn) / gdat.factthin) if not isinstance(gdat.numbsamp, int) or not isinstance(gdat.factthin, int) or \ not isinstance(gdat.numbburn, int) or not isinstance(gdat.numbswep, int): print('gdat.numbsamp') print(gdat.numbsamp) print('gdat.factthin') print(gdat.factthin) print('gdat.numbburn') print(gdat.numbburn) print('gdat.numbswep') print(gdat.numbswep) raise Exception('Number of samples is not an integer.') # samples to be saved gdat.indxsamp = np.arange(gdat.numbsamp) # samples to be saved from all chains gdat.numbsamptotl = gdat.numbsamp * gdat.numbproc gdat.indxsamptotl = np.arange(gdat.numbsamptotl) gdat.numbsweptotl = gdat.numbswep * gdat.numbproc if gdat.typeverb > 0: print('%d samples will be taken, discarding the first %d. The chain will be thinned by a factor of %d.' % \ (gdat.numbswep, gdat.numbburn, gdat.factthin)) print('The resulting chain will contain %d samples per chain and %d samples in total.' % (gdat.numbsamp, gdat.numbsamptotl)) if gdat.anlytype is None: if gdat.typeexpr == 'chan': gdat.anlytype = 'home' elif gdat.typeexpr == 'ferm': gdat.anlytype = 'rec8pnts' else: gdat.anlytype = 'nomi' if gdat.priofactdoff is None: gdat.priofactdoff = 1. # experiment defaults if gdat.typeexpr == 'ferm': gdat.lablenerunit = 'GeV' if gdat.typeexpr == 'chan': gdat.lablenerunit = 'keV' if gdat.typeexpr == 'gene': gdat.lablenerunit = '' if gdat.typeexpr == 'fire': gdat.lablenerunit = '$\mu$m^{-1}' if gdat.typeexpr == 'ferm': if gdat.anlytype[4:8] == 'pnts': bins = np.logspace(np.log10(0.3), np.log10(10.), 4) if gdat.anlytype[4:8] == 'back': bins = np.logspace(np.log10(0.3), np.log10(300.), 31) if gdat.typeexpr == 'chan': if gdat.anlytype.startswith('home'): bins = np.array([0.5, 0.91, 1.66, 3.02, 5.49, 10.]) if gdat.anlytype.startswith('extr'): bins = np.array([0.5, 2., 8.]) if gdat.anlytype.startswith('spec'): bins = np.logspace(np.log10(0.5), np.log10(10.), 21) if gdat.typeexpr == 'fire': bins = np.logspace(np.log10(1. / 2.5e-6), np.log10(1. / 0.8e-6), 31) if gdat.typeexpr == 'hubb': # temp #bins = np.array([500., 750, 1000.]) bins = np.array([750, 1000.]) if gdat.typeexpr != 'gene': setp_varb(gdat, 'enerfull', bins=bins) setp_varb(gdat, 'numbpixl', lablroot='$N_{pix}$') if gdat.expo is not None: setp_varb(gdat, 'expo', minm=np.amin(gdat.expo), maxm=np.amax(gdat.expo), lablroot='$\epsilon$', cmap='OrRd', scal='logt') # energy band string if gdat.strgenerfull is None: if gdat.typeexpr == 'tess': gdat.strgenerfull = ['T'] if gdat.typeexpr == 'sdss': gdat.strgenerfull = ['z-band', 'i-band', 'r-band', 'g-band', 'u-band'] if gdat.typeexpr == 'hubb': #gdat.strgenerfull = ['F606W', 'F814W'] gdat.strgenerfull = ['F814W'] if gdat.typeexpr == 'ferm' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'fire': gdat.strgenerfull = [] for i in range(len(gdat.binspara.enerfull) - 1): gdat.strgenerfull.append('%.3g %s - %.3g %s' % (gdat.binspara.enerfull[i], gdat.lablenerunit, gdat.binspara.enerfull[i+1], gdat.lablenerunit)) if gdat.typeexpr == 'gene': gdat.strgenerfull = [''] ## PSF class if gdat.indxevttfull is None: if gdat.typeexpr == 'ferm': gdat.indxevttfull = np.arange(2) else: gdat.indxevttfull = np.arange(1) if gdat.indxevttincl is None: if gdat.typeexpr == 'ferm': gdat.indxevttincl = np.array([0, 1]) else: gdat.indxevttincl = np.arange(1) if gdat.indxevttincl is not None: gdat.evttbins = True else: gdat.evttbins = False if gdat.evttbins: gdat.numbevtt = gdat.indxevttincl.size gdat.numbevttfull = gdat.indxevttfull.size else: gdat.numbevtt = 1 gdat.numbevttfull = 1 gdat.indxevttincl = np.array([0]) gdat.indxevtt = np.arange(gdat.numbevtt) # Boolean flag to indicate that the data are binned in energy if gdat.typeexpr == 'gene': gdat.boolbinsener = False else: gdat.boolbinsener = True if gdat.boolbinsener: gdat.numbenerfull = len(gdat.strgenerfull) else: gdat.numbenerfull = 1 gdat.indxenerfull = np.arange(gdat.numbenerfull) if gdat.typepixl is None: if gdat.typeexpr == 'ferm': gdat.typepixl = 'heal' else: gdat.typepixl = 'cart' if gdat.boolbinsener: gdat.meanpara.enerfull = np.sqrt(gdat.binspara.enerfull[1:] * gdat.binspara.enerfull[:-1]) setp_varb(gdat, 'boolmodipsfn', valu=False, strgmodl='fitt') # default values for model types print('Starting to determine the default values for model types using setp_varbvalu()...') if gdat.typeexpr == 'hubb': typeemishost = 'sers' else: typeemishost = 'none' setp_varb(gdat, 'typeemishost', valu=typeemishost) setp_varb(gdat, 'lliktotl', lablroot='$L$') ### background type #### template if gdat.typeexpr == 'ferm': if gdat.anlytype == 'bfun': gdat.ordrexpa = 10 gdat.numbexpasing = gdat.ordrexpa**2 gdat.numbexpa = gdat.numbexpasing * 4 gdat.indxexpa = np.arange(gdat.numbexpa) typeback = ['bfun%04d' % k for k in gdat.indxexpa] else: typeback = [1., 'sbrtfdfmsmthrec8pntsnorm.fits'] if gdat.typeexpr == 'chan': # particle background if gdat.anlytype.startswith('spec'): # temp -- this is fake! sbrtparttemp = np.array([70.04, 70.04, 12.12, 15.98, 10.79, 73.59, 73.59]) binsenerpart = np.logspace(np.log10(0.5), np.log10(10.), 6) meanenerpart = np.sqrt(binsenerpart[:-1] * binsenerpart[1:]) meanenerparttemp = np.concatenate((np.array([0.5]), meanenerpart, np.array([10.]))) typebacktemp = interp(gdat.meanpara.enerfull, meanenerparttemp, sbrtparttemp) if gdat.anlytype.startswith('home') : typebacktemp = 1. #typebacktemp = np.array([70.04, 12.12, 15.98, 10.79, 73.59]) / 70.04 if gdat.anlytype.startswith('extr'): #typebacktemp = 'sbrtchanback' + gdat.anlytype + '.fits' typebacktemp = 1. if gdat.anlytype.startswith('spec'): typeback = [[1e2, 2.], typebacktemp] else: typeback = [1., typebacktemp] if gdat.typeexpr == 'hubb': typeback = [1.] if gdat.typeexpr == 'tess': typeback = [1.] if gdat.typeexpr == 'gene': typeback = [1.] if gdat.typeexpr == 'fire': typeback = [1.] if gdat.typeexpr != 'user': setp_varb(gdat, 'typeback', valu=typeback) if gdat.typeexpr == 'hubb': numbsersfgrd = 1 else: numbsersfgrd = 0 setp_varb(gdat, 'numbsersfgrd', valu=numbsersfgrd) if gdat.typeexpr == 'gene': typeelem = ['clus'] if gdat.typeexpr == 'ferm': typeelem = ['lghtpnts'] if gdat.typeexpr == 'tess': typeelem = ['lghtpnts'] if gdat.typeexpr == 'chan': typeelem = ['lghtpnts'] if gdat.typeexpr == 'hubb': typeelem = ['lghtpnts', 'lens', 'lghtgausbgrd'] if gdat.typeexpr == 'fire': typeelem = ['lghtlineabso'] if gdat.typeexpr == 'user': typeelem = ['user'] setp_varb(gdat, 'typeelem', valu=typeelem) print('gdat.fitt.typeelem') print(gdat.fitt.typeelem) ### PSF model #### angular profile if gdat.typeexpr == 'ferm': typemodlpsfn = 'doubking' if gdat.typeexpr == 'chan': typemodlpsfn = 'singking' if gdat.typeexpr == 'sdss': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'hubb': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'tess': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'gene': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'fire': typemodlpsfn = None if gdat.typeexpr != 'user': setp_varb(gdat, 'typemodlpsfn', valu=typemodlpsfn) #### background names listnameback = ['isot'] if gdat.typeexpr == 'ferm': listnameback.append('fdfm') #if gdat.typeexpr == 'chan': # listnameback.append('part') setp_varb(gdat, 'listnameback', valu=listnameback) if gdat.strgpdfn == 'prio': gdat.lablsampdist = 'Prior' if gdat.strgpdfn == 'post': gdat.lablsampdist = 'Posterior' for strgmodl in gdat.liststrgmodl: # set up the indices of the model setp_indxpara(gdat, 'init', strgmodl=strgmodl) if gdat.numbswepplot is None: gdat.numbswepplot = 50000 gdat.numbplotfram = gdat.numbswep / gdat.numbswepplot #setp_varb(gdat, 'colr', valu='mediumseagreen', strgmodl='refr') setp_varb(gdat, 'colr', valu='b', strgmodl='fitt') if gdat.typedata == 'mock': setp_varb(gdat, 'colr', valu='g', strgmodl='true') #gdat.refr.colr = 'mediumseagreen' #gdat.fitt.colr = 'deepskyblue' gdat.minmmass = 1. gdat.maxmmass = 10. if gdat.checprio: gdat.liststrgpdfn = ['prio', 'post'] else: gdat.liststrgpdfn = ['post'] gdat.lablmass = 'M' gdat.minmmassshel = 1e1 gdat.maxmmassshel = 1e5 gdat.lablmassshel = '$M_r$' gdat.lablcurv = r'\kappa' gdat.lablexpc = r'E_{c}' gmod.scalcurvplot = 'self' gmod.scalexpcplot = 'self' #gdat.minmper0 = 1e-3 #gdat.maxmper0 = 1e1 # #gdat.minmmagf = 10**7.5 #gdat.maxmmagf = 10**16 # temp -- automatize this eventually #gmod.minmper0 = gdat.minmper0 #gmod.minmper0 = gdat.minmper0 #gmod.maxmper0 = gdat.maxmper0 #gmod.maxmper0 = gdat.maxmper0 #gmod.minmmagf = gdat.minmmagf #gmod.minmmagf = gdat.minmmagf #gmod.maxmmagf = gdat.maxmmagf #gmod.maxmmagf = gdat.maxmmagf gdat.fitt.listelemmrkr = ['+', '_', '3'] gdat.true.listmrkrhits = ['x', '|', '4'] gdat.true.listmrkrmiss = ['s', 'o', 'p'] gdat.true.listlablmiss = ['s', 'o', 'p'] # list of scalings gdat.listscaltype = ['self', 'logt', 'atan', 'gaus', 'pois', 'expo'] # number of grids gdat.numbgrid = 1 gdat.indxgrid = np.arange(gdat.numbgrid) if gdat.typepixl == 'heal' and gdat.boolforccart: raise Exception('Cartesian forcing can only used with cart typepixl') gdat.liststrgphas = ['fram', 'finl', 'anim'] gdat.liststrgelemtdimtype = ['bind'] # lensing ## list of strings indicating different methods of calculating the subhalo mass fraction gdat.liststrgcalcmasssubh = ['delt', 'intg'] # input data if gdat.typedata == 'inpt': path = gdat.pathinpt + gdat.strgexprsbrt gdat.sbrtdata = astropy.io.fits.getdata(path) if gdat.typepixl == 'heal' or gdat.typepixl == 'cart' and gdat.boolforccart: if gdat.sbrtdata.ndim != 3: raise Exception('exprsbrtdata should be a 3D numpy np.array if pixelization is HealPix.') else: if gdat.sbrtdata.ndim != 4: raise Exception('exprsbrtdata should be a 4D numpy np.array if pixelization is Cartesian.') if gdat.typepixl == 'cart' and not gdat.boolforccart: gdat.sbrtdata = gdat.sbrtdata.reshape((gdat.sbrtdata.shape[0], -1, gdat.sbrtdata.shape[3])) gdat.numbenerfull = gdat.sbrtdata.shape[0] if gdat.typepixl == 'heal': gdat.numbpixlfull = gdat.sbrtdata.shape[1] elif gdat.boolforccart: gdat.numbpixlfull = gdat.numbsidecart**2 else: gdat.numbpixlfull = gdat.sbrtdata.shape[1] * gdat.sbrtdata.shape[2] gdat.numbevttfull = gdat.sbrtdata.shape[2] if gdat.typepixl == 'heal': # temp gdat.numbsidecart = 100 gdat.numbsidecarthalf = int(gdat.numbsidecart / 2) gdat.numbsideheal = int(np.sqrt(gdat.numbpixlfull / 12)) if gdat.typeexpr == 'hubb': gdat.hubbexpofact = 1.63050e-19 if gdat.strgexpo is None: if gdat.typeexpr == 'ferm': gdat.strgexpo = 'expofermrec8pntsigal0256.fits' if gdat.typeexpo is None: if gdat.typeexpr == 'ferm': gdat.typeexpo = 'file' else: gdat.typeexpo = 'cons' print('strgexpo') print(strgexpo) ## generative model # the factor to convert radians (i.e., internal angular unit of PCAT) to the angular unit that will be used in the output (i.e., plots and tables) if gdat.anglfact is None: if gdat.typeexpr == 'ferm': gdat.anglfact = 180. / np.pi if gdat.typeexpr == 'tess': gdat.anglfact = 60 * 180. / np.pi if gdat.typeexpr == 'sdss' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'hubb': gdat.anglfact = 3600 * 180. / np.pi if gdat.typeexpr == 'sche' or gdat.typeexpr == 'gene': gdat.anglfact = 1. if gdat.numbsidecart is not None and gdat.typepixl == 'cart' and not gdat.boolforccart and isinstance(strgexpo, str): raise Exception('numbsidecart argument should not be provided when strgexpo is a file name and pixelization is Cartesian.') if gdat.typepixl == 'heal' or gdat.typepixl == 'cart' and gdat.boolforccart: if gdat.numbsidecart is None: gdat.numbsidecart = 100 # exposure gdat.boolcorrexpo = gdat.expo is not None if gdat.typeexpo == 'cons': if gdat.typedata == 'mock': if gdat.numbsidecart is None: gdat.numbsidecart = 100 if gdat.typedata == 'mock': if gdat.typepixl == 'heal': gdat.expo = np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gdat.typepixl == 'cart': gdat.expo = np.ones((gdat.numbenerfull, gdat.numbsidecart**2, gdat.numbevttfull)) if gdat.typedata == 'inpt': gdat.expo = np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gdat.typeexpo == 'file': path = gdat.pathinpt + gdat.strgexpo if gdat.typeverb > 0: print('Reading %s...' % path) gdat.expo = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': gdat.expo = gdat.expo.reshape((gdat.expo.shape[0], -1, gdat.expo.shape[-1])) if gdat.numbsidecart is None: # temp -- gdat.numbsidecart takes the value of the region 0 if np.sqrt(gdat.expo.shape[1]) % 1. != 0.: raise Exception('') gdat.numbsidecart = int(np.sqrt(gdat.expo.shape[1])) if gdat.typedata == 'mock': if gdat.typepixl == 'cart': gdat.numbpixlfull = gdat.numbsidecart**2 if gdat.typepixl == 'heal': gdat.numbpixlfull = 12 * gdat.numbsideheal**2 # initialization type if gdat.inittype is None: gdat.inittype = 'rand' if gdat.typeexpr != 'user': # Boolean flag to indicate binning in space gdat.boolbinsspat = gdat.numbpixlfull != 1 print('gdat.boolbinsspat') print(gdat.boolbinsspat) if gdat.boolcorrexpo and np.amin(gdat.expo) == np.amax(gdat.expo) and not isinstance(gdat.strgexpo, float): raise Exception('Bad input exposure map.') if gdat.boolbinsspat: if gdat.typepixl == 'cart' and isinstance(gdat.strgexpo, float) and gdat.typedata == 'inpt': if np.sqrt(gdat.sbrtdata.shape[1]) % 1. != 0.: raise Exception('') gdat.numbsidecart = int(np.sqrt(gdat.sbrtdata.shape[1])) gdat.numbsidecarthalf = int(gdat.numbsidecart / 2) if gdat.typepixl == 'cart': gdat.numbpixlcart = gdat.numbsidecart**2 ### spatial extent of the data if gdat.maxmgangdata is None: if gdat.typeexpr == 'chan': gdat.maxmgangdata = 0.492 / gdat.anglfact * gdat.numbsidecarthalf if gdat.typeexpr == 'ferm': gdat.maxmgangdata = 15. / gdat.anglfact if gdat.typeexpr == 'tess': gdat.maxmgangdata = 20. / gdat.anglfact if gdat.typeexpr == 'hubb': gdat.maxmgangdata = 2. / gdat.anglfact if gdat.typeexpr == 'gene': gdat.maxmgangdata = 1. / gdat.anglfact print('gdat.numbsidecart') print(gdat.numbsidecart) print('gdat.maxmgangdata') print(gdat.maxmgangdata) # pixelization if gdat.typepixl == 'cart': gdat.apix = (2. * gdat.maxmgangdata / gdat.numbsidecart)**2 if gdat.typepixl == 'heal': temp, temp, temp, gdat.apix = tdpy.retr_healgrid(gdat.numbsideheal) gdat.sizepixl = np.sqrt(gdat.apix) # factor by which to multiply the y axis limits of the surface brightness plot if gdat.numbpixlfull == 1: gdat.factylimtbrt = [1e-4, 1e7] else: gdat.factylimtbrt = [1e-4, 1e3] # grid gdat.minmlgaldata = -gdat.maxmgangdata gdat.maxmlgaldata = gdat.maxmgangdata gdat.minmbgaldata = -gdat.maxmgangdata gdat.maxmbgaldata = gdat.maxmgangdata if gdat.typepixl == 'cart' and gdat.boolforccart: if gdat.typedata == 'inpt': sbrtdatatemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtdatatemp[i, :, m] = tdpy.retr_cart(gdat.sbrtdata[i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gdat.sbrtdata = sbrtdatatemp if gdat.boolcorrexpo: expotemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: expotemp[i, :, m] = tdpy.retr_cart(gdat.expo[i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gdat.expo = expotemp gdat.sdenunit = 'degr' gdat.factergskevv = 1.6e-9 if gdat.typeexpr == 'ferm': gdat.listspecconvunit = [['en02', 'gevv']] if gdat.typeexpr == 'chan': gdat.listspecconvunit = [['en00', 'kevv'], ['en02', 'kevv'], ['en02', 'ergs'], ['en03', 'ergs', '0520', 0.5, 2.], \ ['en03', 'ergs', '0210', 2., 10.], \ ['en03', 'ergs', '0510', 0.5, 10.], \ ['en03', 'ergs', '0208', 2., 8.], \ ['en03', 'ergs', '0508', 0.5, 8.], \ ['en03', 'ergs', '0207', 2., 7.], \ ['en03', 'ergs', '0507', 0.5, 7.]] if gdat.typeexpr == 'hubb': gdat.listspecconvunit = [['en03', 'ergs']] if gdat.typeexpr == 'fire': gdat.listspecconvunit = [['en00', 'imum']] # temp #if gdat.typeexpr == 'chan' and (gdat.anlytype.startswith('home') or gdat.anlytype.startswith('extr')): # gmod.lablpopl = ['AGN', 'Galaxy'] if gdat.typeexpr == 'ferm' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'fire': gdat.enerdiff = True if gdat.typeexpr == 'hubb' or gdat.typeexpr == 'gene' or gdat.typeexpr == 'tess': gdat.enerdiff = False if gdat.indxenerincl is None: # default if gdat.boolbinsener: gdat.indxenerincl = np.arange(gdat.binspara.enerfull.size - 1) if gdat.typeexpr == 'ferm': if gdat.anlytype[4:8] == 'pnts': gdat.indxenerincl = np.arange(3) if gdat.anlytype[4:8] == 'back': gdat.indxenerincl = np.arange(30) if gdat.typeexpr == 'chan': if gdat.anlytype.startswith('home'): gdat.indxenerincl = np.arange(5) if gdat.anlytype.startswith('extr'): gdat.indxenerincl = np.arange(2) if gdat.typeexpr == 'hubb': gdat.indxenerincl = np.array([0]) #gdat.indxenerincl = np.array([1]) #gdat.indxenerincl = np.array([0, 1]) if gdat.typeexpr == 'gene': gdat.indxenerincl = np.array([0]) if gdat.indxenerincl is None: gdat.numbener = 1 else: gdat.numbener = gdat.indxenerincl.size gdat.indxener = np.arange(gdat.numbener, dtype=int) if gdat.indxenerincl is None: gdat.indxenerincl = gdat.indxener if gdat.boolbinsener: gdat.indxenerinclbins = np.empty(gdat.numbener+1, dtype=int) gdat.indxenerinclbins[0:-1] = gdat.indxenerincl gdat.indxenerinclbins[-1] = gdat.indxenerincl[-1] + 1 gdat.indxenerpivt = 0 gdat.numbenerplot = 100 gdat.strgener = [gdat.strgenerfull[k] for k in gdat.indxenerincl] gdat.binspara.ener = gdat.binspara.enerfull[gdat.indxenerinclbins] gdat.meanpara.ener = np.sqrt(gdat.binspara.ener[1:] * gdat.binspara.ener[:-1]) gdat.deltener = gdat.binspara.ener[1:] - gdat.binspara.ener[:-1] gdat.minmener = gdat.binspara.ener[0] gdat.maxmener = gdat.binspara.ener[-1] retr_axis(gdat, 'ener') gdat.limtener = [np.amin(gdat.binspara.ener), np.amax(gdat.binspara.ener)] if gdat.boolbinsener: if gdat.numbener > 1: gdat.enerpivt = gdat.meanpara.ener[gdat.indxenerpivt] # energy bin indices other than that of the pivot bin gdat.indxenerinde = np.setdiff1d(gdat.indxener, gdat.indxenerpivt) # temp if gdat.typeexpr == 'chan': gdat.edis = 0.3 *
np.sqrt(gdat.binspara.ener)
numpy.sqrt
# Copyright (c) 2019, <NAME> import unittest import unittest.mock as mock import numpy as np import transforms3d as tf3d import pymodm from pymodm.errors import ValidationError from arvet.util.transform import Transform from arvet.util.test_helpers import ExtendedTestCase import arvet.database.tests.database_connection as dbconn import arvet.database.image_manager as im_manager from arvet.metadata.image_metadata import make_metadata, ImageSourceType from arvet.core.image import Image import arvet.core.tests.mock_types as mock_types from arvet_slam.trials.slam.tracking_state import TrackingState from arvet_slam.trials.slam.visual_slam import SLAMTrialResult, FrameResult # ------------------------- FRAME RESULT ------------------------- class TestFrameResultMongoModel(pymodm.MongoModel): frame_result = pymodm.fields.EmbeddedDocumentField(FrameResult) class TestPoseErrorDatabase(unittest.TestCase): image = None @classmethod def setUpClass(cls): dbconn.connect_to_test_db() dbconn.setup_image_manager() pixels = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) cls.image = Image( pixels=pixels, image_group='test', metadata=make_metadata(pixels, source_type=ImageSourceType.SYNTHETIC) ) cls.image.save() @classmethod def tearDownClass(cls): # Clean up after ourselves by dropping the collection for this model TestFrameResultMongoModel._mongometa.collection.drop() Image._mongometa.collection.drop() dbconn.tear_down_image_manager() def test_stores_and_loads(self): frame_result = FrameResult( timestamp=10.3, image=self.image, processing_time=12.44, pose=Transform((1, 2, 3), (4, 5, 6, 7)), motion=Transform((-2, 1, -3), (-3, 5, 6, -6)), estimated_pose=Transform((-1, -2, -3), (-4, -5, -6, 7)), estimated_motion=Transform((2, -1, 3), (8, -5, -6, -6)), tracking_state=TrackingState.NOT_INITIALIZED, loop_edges=[6.223], num_features=53, num_matches=6 ) # Save the model model = TestFrameResultMongoModel() model.frame_result = frame_result model.save() # Load all the entities all_entities = list(TestFrameResultMongoModel.objects.all()) self.assertGreaterEqual(len(all_entities), 1) # Something about these fields mean they need to be manually compared first self.assertEqual(all_entities[0].frame_result.image, frame_result.image) self.assertEqual(all_entities[0].frame_result.tracking_state, frame_result.tracking_state) self.assertEqual(all_entities[0].frame_result.pose, frame_result.pose) self.assertEqual(all_entities[0].frame_result.motion, frame_result.motion) self.assertEqual(all_entities[0].frame_result.estimated_pose, frame_result.estimated_pose) self.assertEqual(all_entities[0].frame_result.estimated_motion, frame_result.estimated_motion) self.assertEqual(all_entities[0].frame_result, frame_result) all_entities[0].delete() def test_stores_and_loads_minimal(self): frame_result = FrameResult( timestamp=10.3, image=self.image, processing_time=12.44, pose=Transform((1, 2, 3), (4, 5, 6, 7)), motion=Transform((-2, 1, -3), (-3, 5, 6, -6)) ) # Save the model model = TestFrameResultMongoModel() model.frame_result = frame_result model.save() # Load all the entities all_entities = list(TestFrameResultMongoModel.objects.all()) self.assertGreaterEqual(len(all_entities), 1) self.assertEqual(all_entities[0].frame_result.image, frame_result.image) self.assertEqual(all_entities[0].frame_result.tracking_state, frame_result.tracking_state) self.assertEqual(all_entities[0].frame_result.pose, frame_result.pose) self.assertEqual(all_entities[0].frame_result.motion, frame_result.motion) self.assertEqual(all_entities[0].frame_result.estimated_pose, frame_result.estimated_pose) self.assertEqual(all_entities[0].frame_result.estimated_motion, frame_result.estimated_motion) self.assertEqual(all_entities[0].frame_result, frame_result) all_entities[0].delete() def test_stores_and_loads_with_explicitly_null_estimates(self): frame_result = FrameResult( timestamp=10.3, image=self.image, processing_time=12.44, pose=Transform((1, 2, 3), (4, 5, 6, 7)), motion=Transform((-2, 1, -3), (-3, 5, 6, -6)), estimated_pose=None, estimated_motion=None ) # Save the model model = TestFrameResultMongoModel() model.frame_result = frame_result model.save() # Load all the entities all_entities = list(TestFrameResultMongoModel.objects.all()) self.assertGreaterEqual(len(all_entities), 1) self.assertEqual(all_entities[0].frame_result.image, frame_result.image) self.assertEqual(all_entities[0].frame_result.tracking_state, frame_result.tracking_state) self.assertEqual(all_entities[0].frame_result.pose, frame_result.pose) self.assertEqual(all_entities[0].frame_result.motion, frame_result.motion) self.assertEqual(all_entities[0].frame_result.estimated_pose, frame_result.estimated_pose) self.assertEqual(all_entities[0].frame_result.estimated_motion, frame_result.estimated_motion) self.assertEqual(all_entities[0].frame_result, frame_result) all_entities[0].delete() def test_required_fields_are_required(self): model = TestFrameResultMongoModel() # no timestamp model.frame_result = FrameResult( image=self.image, processing_time=12.44, pose=Transform((1, 2, 3), (4, 5, 6, 7)), motion=Transform((-2, 1, -3), (-3, 5, 6, -6)) ) with self.assertRaises(ValidationError): model.save() # no image model.frame_result = FrameResult( timestamp=10.3, processing_time=12.44, pose=Transform((1, 2, 3), (4, 5, 6, 7)), motion=Transform((-2, 1, -3), (-3, 5, 6, -6)) ) with self.assertRaises(ValidationError): model.save() # no processing time model.frame_result = FrameResult( timestamp=10.3, image=self.image, pose=Transform((1, 2, 3), (4, 5, 6, 7)), motion=Transform((-2, 1, -3), (-3, 5, 6, -6)) ) with self.assertRaises(ValidationError): model.save() # no pose model.frame_result = FrameResult( timestamp=10.3, image=self.image, processing_time=12.44, motion=Transform((-2, 1, -3), (-3, 5, 6, -6)) ) with self.assertRaises(ValidationError): model.save() # no motion model.frame_result = FrameResult( timestamp=10.3, image=self.image, processing_time=12.44, pose=Transform((1, 2, 3), (4, 5, 6, 7)) ) with self.assertRaises(ValidationError): model.save() # ------------------------- SLAM TRIAL RESULT ------------------------- class TestSLAMTrialResult(ExtendedTestCase): def test_sorts_results_by_timestamp(self): system = mock_types.MockSystem() image_source = mock_types.MockImageSource() mock_image = mock.create_autospec(Image) timestamps = [(-1 ** idx) * idx + np.random.normal(0, 0.01) for idx in range(10)] results = [ FrameResult( timestamp=timestamp, image=mock_image, processing_time=np.random.uniform(0.01, 1), pose=Transform( (idx * 15 + np.random.normal(0, 1), idx + np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), idx * np.pi / 6), w_first=True ), motion=Transform( (np.random.normal(0, 1), np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), np.pi / 6), w_first=True ), estimated_pose=Transform( (idx * 15 + np.random.normal(0, 1), idx + np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), 9 * idx * np.pi / 36), w_first=True ), estimated_motion=Transform( (np.random.normal(0, 1), np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), idx * np.pi / 36), w_first=True ), tracking_state=TrackingState.OK, loop_edges=[np.random.choice(timestamps)], num_features=np.random.randint(10, 1000), num_matches=np.random.randint(10, 1000) ) for idx, timestamp in enumerate(timestamps) ] obj = SLAMTrialResult( system=system, image_source=image_source, success=True, settings={'key': 'value'}, results=results, has_scale=True ) for idx in range(1, len(results)): self.assertGreater(obj.results[idx].timestamp, obj.results[idx - 1].timestamp) def test_throws_exception_if_loop_edges_refer_to_missing_timestamp(self): system = mock_types.MockSystem() image_source = mock_types.MockImageSource() mock_image = mock.create_autospec(Image) timestamps = [(-1 ** idx) * idx + np.random.normal(0, 0.01) for idx in range(10)] results = [ FrameResult( timestamp=timestamp, image=mock_image, processing_time=np.random.uniform(0.01, 1), pose=Transform( (idx * 15 + np.random.normal(0, 1), idx + np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), idx * np.pi / 6), w_first=True ), motion=Transform( (np.random.normal(0, 1), np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), np.pi / 6), w_first=True ), estimated_pose=Transform( (idx * 15 + np.random.normal(0, 1), idx + np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), 9 * idx * np.pi / 36), w_first=True ), estimated_motion=Transform( (np.random.normal(0, 1), np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), idx * np.pi / 36), w_first=True ), tracking_state=TrackingState.OK, loop_edges=[np.random.choice(timestamps)], num_features=np.random.randint(10, 1000), num_matches=np.random.randint(10, 1000) ) for idx, timestamp in enumerate(timestamps) ] results[3].loop_edges.append(max(timestamps) + 0.23) with self.assertRaises(ValueError): SLAMTrialResult( system=system, image_source=image_source, success=True, settings={'key': 'value'}, results=results, has_scale=True ) def test_infers_motion_from_pose(self): system = mock_types.MockSystem() image_source = mock_types.MockImageSource() mock_image = mock.create_autospec(Image) timestamps = [idx + np.random.normal(0, 0.01) for idx in range(10)] results = [ FrameResult( timestamp=timestamp, image=mock_image, processing_time=np.random.uniform(0.01, 1), pose=Transform( (idx * 15 + np.random.normal(0, 1), idx + np.random.normal(0, 0.1), np.random.normal(0, 1)), tf3d.quaternions.axangle2quat((1, 2, 3), idx * np.pi / 36), w_first=True ), tracking_state=TrackingState.OK, loop_edges=[np.random.choice(timestamps)], num_features=np.random.randint(10, 1000), num_matches=
np.random.randint(10, 1000)
numpy.random.randint
# -*- coding: utf-8 -*- import numpy as np import pytest from augmixations.core import ( generate_rect_coordinates, insert_image_in_background, check_middle_part_overlap_critical, correct_box_if_full_side_overlap, correct_box_if_some_alnge_overlap, correct_background_boxes, ) @pytest.mark.parametrize('params', [(500, 500, 0, 0, 500, 500, 100, 100, 300, 300), (1000, 2000, 0, 0, 2000, 1000, 300, 300, 600, 600), (500, 1000, 0, 0, 500, 500, None, None, None, None), (500, 700, None, None, None, None, None, None, None, None), (300, 300, None, None, None, None, 100, 100, 300, 300)]) def test_generate_rect_coordinates(params): img_h, img_w, min_x, min_y, max_x, max_y, min_h, min_w, max_h, max_w = params rect = generate_rect_coordinates(img_h, img_w, min_x, min_y, max_x, max_y, min_h, min_w, max_h, max_w) x1, y1, x2, y2 = rect assert x1 < x2 and y1 < y2 assert x1 >= 0 and y1 >= 0 assert x2 <= img_w and y2 <= img_h @pytest.mark.parametrize('params', [(np.ones((500, 500, 3), dtype=np.uint8)*255, np.ones((300, 300, 3), dtype=np.uint8)*255, 100, 100, 0, 0, 500, 500), (np.ones((500, 700, 3), dtype=np.uint8)*255, np.ones((300, 200, 3), dtype=np.uint8)*255, 100, 100, None, None, None, None), ]) def test_insert_image_in_background(params): bg_img, fg_img, start_x, start_y, min_x, min_y, max_x, max_y = params out_img, (shift_x, shift_y) = insert_image_in_background( bg_img, fg_img, start_x, start_y, min_x, min_y, max_x, max_y) if max_x is not None: assert start_x + shift_x <= max_x if min_x is not None: assert start_x + shift_x >= min_x if max_y is not None: assert start_y + shift_y <= max_y if min_y is not None: assert start_y + shift_y >= min_y assert out_img.shape == bg_img.shape @pytest.mark.parametrize('params', [ ({'x1': 75, 'y1': 25, 'x2': 125, 'y2': 125, 'area': 50*100, 'height': 100, 'width': 50}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.3, 0.9, 0.9, np.array([50, 50, 150, 150]), True), ({'x1': 75, 'y1': 25, 'x2': 125, 'y2': 125, 'area': 50*100, 'height': 100, 'width': 50}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.4, 0.9, 0.9, np.array([50, 50, 150, 150]), False), ({'x1': 25, 'y1': 75, 'x2': 125, 'y2': 125, 'area': 50*100, 'height': 50, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.3, 0.9, 0.9, np.array([50, 50, 150, 150]), True), ({'x1': 25, 'y1': 75, 'x2': 125, 'y2': 125, 'area': 50*100, 'height': 50, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.4, 0.9, 0.9, np.array([50, 50, 150, 150]), False), ({'x1': 25, 'y1': 75, 'x2': 125, 'y2': 125, 'area': 50*100, 'height': 50, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.3, 0.9, 0.9, np.array([50, 50, 150, 150]), True), ({'x1': 75, 'y1': 75, 'x2': 125, 'y2': 175, 'area': 50*100, 'height': 100, 'width': 50}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.4, 0.9, 0.9, np.array([50, 50, 150, 150]), False), ({'x1': 75, 'y1': 75, 'x2': 125, 'y2': 175, 'area': 50*100, 'height': 100, 'width': 50}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.3, 0.9, 0.9, np.array([50, 50, 150, 150]), True), ({'x1': 75, 'y1': 75, 'x2': 175, 'y2': 125, 'area': 50*100, 'height': 50, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.4, 0.9, 0.9, np.array([50, 50, 150, 150]), False), ({'x1': 75, 'y1': 75, 'x2': 175, 'y2': 125, 'area': 50*100, 'height': 50, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.3, 0.9, 0.9, np.array([50, 50, 150, 150]), True), # Вариант изменения бокса, # если перекрыта большая часть одной из сторон ({'x1': 75, 'y1': 25, 'x2': 225, 'y2': 100, 'area': 75*150, 'height': 75, 'width': 150}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.9, 0.9, 0.6, np.array([50, 100, 250, 250]), False), ({'x1': 75, 'y1': 200, 'x2': 225, 'y2': 300, 'area': 150*100, 'height': 100, 'width': 150}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.9, 0.9, 0.6, np.array([50, 50, 250, 200]), False), ({'x1': 25, 'y1': 75, 'x2': 100, 'y2': 225, 'area': 75*150, 'height': 150, 'width': 75}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.9, 0.6, 0.9, np.array([100, 50, 250, 250]), False), ({'x1': 200, 'y1': 75, 'x2': 300, 'y2': 225, 'area': 100*150, 'height': 150, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.9, 0.6, 0.9, np.array([50, 50, 200, 250]), False), # Вставленная картинка в центре бокса, но очень большая ({'x1': 55, 'y1': 55, 'x2': 245, 'y2': 245, 'area': 190*190, 'height': 190, 'width': 190}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.5, 0.9, 0.9, np.array([50, 50, 250, 250]), True), # Вставленная картинка с полным вертикальным перекрытием по центру ({'x1': 55, 'y1': 0, 'x2': 245, 'y2': 300, 'area': 190*300, 'height': 300, 'width': 190}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.5, 0.9, 0.9, np.array([50, 50, 250, 250]), True), # Вставленная картинка с полным горизонтальным перекрытием по центру ({'x1': 0, 'y1': 55, 'x2': 300, 'y2': 245, 'area': 190*300, 'height': 190, 'width': 300}, {'x1': 50, 'y1': 50, 'x2': 250, 'y2': 250, 'area': 200*200, 'height': 200, 'width': 200}, 0.5, 0.9, 0.9, np.array([50, 50, 250, 250]), True), ]) def test_check_middle_part_overlap_critical(params): rect_info, box_info, max_overlap_area_ratio, max_h_overlap, max_w_overlap, true_box, true_overlap = params new_box, critical_overlap = check_middle_part_overlap_critical( rect_info, box_info, max_overlap_area_ratio, max_h_overlap, max_w_overlap, debug=True, label='Test box',) assert critical_overlap == true_overlap assert np.array_equal(true_box, new_box) @pytest.mark.parametrize('params', [ # Перекрытие одной из сторон полностью # коэф. перекрываемой прощади для всех вариантов - 0.75 ({'x1': 25, 'y1': 25, 'x2': 125, 'y2': 175, 'area': 100*150, 'height': 150, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.8, np.array([125, 50, 150, 150]), False), ({'x1': 25, 'y1': 25, 'x2': 125, 'y2': 175, 'area': 100*150, 'height': 150, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.7, np.array([125, 50, 150, 150]), True), ({'x1': 25, 'y1': 25, 'x2': 175, 'y2': 125, 'area': 150*100, 'height': 100, 'width': 150}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.8, np.array([50, 125, 150, 150]), False), ({'x1': 25, 'y1': 25, 'x2': 175, 'y2': 125, 'area': 150*100, 'height': 100, 'width': 150}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.7, np.array([50, 125, 150, 150]), True), ({'x1': 75, 'y1': 25, 'x2': 175, 'y2': 175, 'area': 150*100, 'height': 150, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.8, np.array([50, 50, 75, 150]), False), ({'x1': 75, 'y1': 25, 'x2': 175, 'y2': 175, 'area': 150*100, 'height': 150, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.7, np.array([50, 50, 75, 150]), True), ({'x1': 25, 'y1': 75, 'x2': 175, 'y2': 175, 'area': 150*100, 'height': 100, 'width': 150}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.8, np.array([50, 50, 150, 75]), False), ({'x1': 25, 'y1': 75, 'x2': 175, 'y2': 175, 'area': 150*100, 'height': 100, 'width': 150}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.7, np.array([50, 50, 150, 75]), True), ]) def test_correct_box_if_full_side_overlap(params): rect_info, box_info, max_overlap_area_ratio, true_box, real_overlap = params new_box, critical_overlap = correct_box_if_full_side_overlap( rect_info, box_info, max_overlap_area_ratio, debug=True, label='Test box',) assert real_overlap == critical_overlap assert np.array_equal(true_box, new_box) @pytest.mark.parametrize('params', [ # Тест перекрыт какой-либо из углов угол, проверка поочерёдно: # 1. Обычное перекрытие проходящее по всем порогам # 2. Уменьшение порога площади перекрытия, мин. коэф = 0.5625 # 3. Увеличение порога минимальной ширины, мин. коэф = 0.25 # 4. Увеличение порога минимальной высоты, мин. коэф = 0.25 # 5. Увеличение погоров вин ширины и высоты и уменьшения порога мин площади # ЛЕВЫЙ ВЕРХНИЙ УГОЛ ({'x1': 25, 'y1': 25, 'x2': 125, 'y2': 125, 'area': 100*100, 'height': 100, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.9, 0.9, 0.7, np.array([50, 50, 150, 150]), False), ({'x1': 25, 'y1': 25, 'x2': 125, 'y2': 125, 'area': 100*100, 'height': 100, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.9, 0.9, 0.5, np.array([50, 50, 150, 150]), True), ({'x1': 25, 'y1': 25, 'x2': 125, 'y2': 125, 'area': 100*100, 'height': 100, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.7, 0.9, 0.7, np.array([125, 50, 150, 150]), False), ({'x1': 25, 'y1': 25, 'x2': 125, 'y2': 125, 'area': 100*100, 'height': 100, 'width': 100}, {'x1': 50, 'y1': 50, 'x2': 150, 'y2': 150, 'area': 100*100, 'height': 100, 'width': 100}, 0.9, 0.7, 0.7,
np.array([50, 125, 150, 150])
numpy.array
""" @author: <NAME> (andreww(at)email(dot)sc(dot)edu) Script used to generate optimization-based whitebox attacks and test them against """ import argparse import numpy as np import pandas as pd import os import time from matplotlib import pyplot as plt import scipy.io from utils.model import load_pool, load_lenet from models.athena import Ensemble, ENSEMBLE_STRATEGY from utils.file import load_from_json from utils.metrics import error_rate, get_corrections from attacks.attack import generate def generate_whitebox_ae(model, data, labels, attack_configs, eot=False, save=False, output_dir=None): """ Generate whitebox adversarial examples using the optimization approach. :param model: The targeted model. For a whitebox attack, this should be the full defended model. :param data: array. The benign samples to generate adversarial for. :param labels: array or list. The true labels. :param attack_configs: dictionary. Attacks and corresponding settings. :param save: boolean. True, if save the adversarial examples. :param output_dir: str or path. Location to save the adversarial examples. It cannot be None when save is True. :return: """ img_rows, img_cols = data.shape[1], data.shape[2] num_attacks = attack_configs.get("num_attacks") data_loader = (data, labels) if len(labels.shape) > 1: labels = [np.argmax(p) for p in labels] #returns correct label # initialize array for storing predicted values for each attack # each row corresponds to an image from the MNIST dataset # the first column contains the true values, and each subsequent column # contains the predicted values for each attack. # The array is initialized with '-1' at all elements so that any values # which are not overwritten with digits 0-9 are identifiable as erroneous dataTable = -np.ones((num_images, num_attacks+1), dtype = int) dataTable[:,0] = labels; for id in range(num_attacks): #outer loop steps through attacks key = "configs{}".format(id) attack_args = attack_configs.get(key) attack_args["eot"] = eot data_adv = generate(model=model, data_loader=data_loader, attack_args=attack_args ) # predict the adversarial examples predictions = model.predict(data_adv) predictions = [np.argmax(p) for p in predictions] err_rate = error_rate(np.asarray(predictions), np.asarray(labels)); print('>>>Error Rate: ',err_rate) dataTable[:,id+1] = predictions #insert predicted values into new column # plotting some examples num_plotting = min(data.shape[0], 2) for i in range(num_plotting): #inner loop steps through images to plot img = data_adv[i].reshape((img_rows, img_cols)) plt.imshow(img, cmap='gray') title = '{}: {}->{}'.format(attack_configs.get(key).get("description"), labels[i], predictions[i]) plt.title(title) plt.show() plt.close() # save the adversarial example if save: if output_dir is None: raise ValueError("Cannot save images to a none path.") # save with a random name file = os.path.join(output_dir, "ae_whitebox_{}_EOToff.npy".format(attack_configs.get(key).get("description"))) print("Saving the adversarial examples to file [{}].".format(file)) np.save(file, data_adv) if save: file = os.path.join(output_dir, "dataTable2.mat") print("Saving dataTable to "+file) scipy.io.savemat(file, {'dataTable2':dataTable}) def evaluate_baseline_attacks(trans_configs, model_configs, data_configs, num_images, save=False, output_dir=None): """ Apply transformation(s) on images. :param trans_configs: dictionary. The collection of the parameterized transformations to test. in the form of { configsx: { param: value, } } The key of a configuration is 'configs'x, where 'x' is the id of corresponding weak defense. :param model_configs: dictionary. Defines model related information. Such as, location, the undefended model, the file format, etc. :param data_configs: dictionary. Defines data related information. Such as, location, the file for the true labels, the file for the benign samples, the files for the adversarial examples, etc. :param labels: the correct labels for each image :param save: boolean. Save the transformed sample or not. :param output_dir: path or str. The location to store the transformed samples. It cannot be None when save is True. :return: """ ''' # Load the baseline defense (PGD-ADT model) pgd_adt = load_lenet(file=model_configs.get('pgd_trained'), trans_configs=None, use_logits=False, wrap=False) ''' # get the undefended model (UM) file = os.path.join(model_configs.get('dir'), model_configs.get('um_file')) undefended = load_lenet(file=file, trans_configs=trans_configs.get('configs0'), wrap=True) print(">>> um:", type(undefended)) # load weak defenses into a pool pool, _ = load_pool(trans_configs=trans_configs, model_configs=model_configs, active_list=True, wrap=True) # create AVEP and MV ensembles from the WD pool wds = list(pool.values()) print(">>> wds:", type(wds), type(wds[0])) #ensemble_AVEP = Ensemble(classifiers=wds, strategy=ENSEMBLE_STRATEGY.AVEP.value) ensemble_MV = Ensemble(classifiers=wds, strategy=ENSEMBLE_STRATEGY.MV.value) # load the benign samples bs_file = os.path.join(data_configs.get('dir'), data_configs.get('bs_file')) x_bs = np.load(bs_file) img_rows, img_cols = x_bs.shape[1], x_bs.shape[2] # load the corresponding true labels label_file = os.path.join(data_configs.get('dir'), data_configs.get('label_file')) labels = np.load(label_file) if len(labels.shape) > 1: labels = [np.argmax(p) for p in labels] #returns correct label # cut dataset to specified number of images x_bs = x_bs[:num_images] labels = labels[:num_images] # get indices of benign samples that are correctly classified by the targeted model print(">>> Evaluating UM on [{}], it may take a while...".format(bs_file)) pred_bs = undefended.predict(x_bs) corrections = get_corrections(y_pred=pred_bs, y_true=labels) pred_bs = [np.argmax(p) for p in pred_bs] # Evaluate AEs. ae_list = data_configs.get('ae_files') print(">>>>>>> AE list: ", ae_list) predictionData = -np.ones((num_images, len(ae_list)), dtype = int) for ae_count in range(len(ae_list)): # step through ae's one by one ae_file = os.path.join(data_configs.get('dir'), ae_list[ae_count]) x_adv =
np.load(ae_file)
numpy.load
# Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import scipy warnings.filterwarnings('ignore') import matplotlib import time#test time import scipy.signal as signal#fftconvolve matplotlib.use('Agg') import matplotlib.pyplot as plt import caffe import numpy as np import os from PIL import Image #for open image from skimage.transform import resize import math # for IPM size = 1 ratio = 8 def Find_local_maximum(datase): t = time.time() window = signal.general_gaussian(51, p=0.5, sig=1) peak_p = np.zeros([60, 80]) peak_p = np.argmax(datase, 2) seed_x = [] #seed points for IPM seed_y = [] #seed points for IPM print("fft_convolve time 1 :", time.time() - t) #For better local maximum peak_p = np.max(datase, 2) print('shape:',np.shape(peak_p)) t = time.time() for i in range(0, 60): peak_row = datase[i, :, :] if(sum(np.argmax(peak_row, 1)) == 0): continue j = 0 while(j < 79): l = np.array([]) while(np.argmax(peak_row[j]) > 0 and np.argmax(peak_row[j]) == np.argmax(peak_row[j+1]) and j < 79): l = np.append(l, max(peak_row[j])) j += 1 j += 1 if(len(l) > 0): l = np.append(l, max(peak_row[j])) #middle point max_idx = j - len(l.tolist()) // 2 - 1 #local maximum #max_idx = j - np.where(l == max(l))[0] seed_y.append(max_idx) seed_x.append(i) print("Time of fftconvolve 2: ", time.time() - t) return np.array(seed_y),
np.array(seed_x)
numpy.array
""" Solvers ------- This part of the package provides wrappers around Assimulo solvers. """ from assimulo.problem import Explicit_Problem import numpy as np import sys from means.simulation import SensitivityTerm from means.simulation.trajectory import Trajectory, TrajectoryWithSensitivityData import inspect from means.util.memoisation import memoised_property, MemoisableObject from means.util.sympyhelpers import to_one_dim_array NP_FLOATING_POINT_PRECISION = np.double #-- Easy initialisation utilities ------------------------------------------------------------- class UniqueNameInitialisationMixin(object): @classmethod def unique_name(self): return NotImplemented class SolverException(Exception): __base_exception_class = None __base_exception_kwargs = None def __init__(self, message, base_exception=None): if base_exception is not None: if message is None: message = '' # We need to take message argument as otherwise SolverException is unpickleable message += '{0.__class__.__name__}: {0!s}'.format(base_exception) super(SolverException, self).__init__(message) # CVodeError does not serialise well, so let's store it as a set of arguments and create the base exception # on the fly, rather than storing the actual object if base_exception is not None: self.__base_exception_class = base_exception.__class__ self.__base_exception_kwargs = base_exception.__dict__.copy() @property def base_exception(self): if self.__base_exception_class is not None: return self.__base_exception_class(**self.__base_exception_kwargs) def __eq__(self, other): return isinstance(other, self.__class__) and \ self.message == other.message and self.__base_exception_class == other.__base_exception_class and \ self.__base_exception_kwargs == other.__base_exception_kwargs def available_solvers(with_sensitivity_support=False): members = inspect.getmembers(sys.modules[__name__]) initialisable_solvers = {} # Some metaprogramming here: look for all classes at this module that are subclasses of # `UniqueNameInitialisationMixin`. Compile a dictionary of these for name, object in members: if inspect.isclass(object) and issubclass(object, SolverBase) \ and issubclass(object, UniqueNameInitialisationMixin) \ and object != UniqueNameInitialisationMixin: if with_sensitivity_support and not issubclass(object, SensitivitySolverBase): # If we need sensitivity support, skip all non-sensitivity solvers continue elif not with_sensitivity_support and issubclass(object, SensitivitySolverBase): # If we don't need sensitivity support, skip all solvers with sensitivity support continue assert(object.unique_name not in initialisable_solvers) initialisable_solvers[object.unique_name().lower()] = object return initialisable_solvers #-- Exception handling utilities ----------------------------------------------------------- def parse_flag(exception_message): """ Parse the flag from the solver exception. e.g. >>> parse_flag("Exception: Dopri5 failed with flag -3") -3 :param exception_message: message from the exception :type exception_message: str :return: flag id :rtype: int """ import re match = re.match('.* failed with flag (-\d+)', exception_message) try: return int(match.group(1)) except Exception: return None #-- Base solver functionality --------------------------------------------------------------- def _set_kwargs_as_attributes(instance, **kwargs): for attribute, value in kwargs.iteritems(): setattr(instance, attribute, value) return instance def _wrap_results_to_trajectories(simulated_timepoints, simulated_values, descriptions): number_of_timepoints, number_of_simulated_values = simulated_values.shape assert(len(descriptions) == number_of_simulated_values) assert(len(simulated_timepoints) == number_of_timepoints) # Wrap results to trajectories trajectories = [] for description, simulated_value_column in zip(descriptions, simulated_values.T): trajectories.append(Trajectory(simulated_timepoints, simulated_value_column, description)) return trajectories class SolverBase(MemoisableObject): """ This acts as a base class for ODE solvers used in `means`. It wraps around the solvers available in :module:`assimulo` package, and provides some basic functionality that allows solvers be used with `means` objects. """ _parameters = None _initial_conditions = None _problem = None _starting_time = None _options = None def __init__(self, problem, parameters, initial_conditions, starting_time=0.0, **options): """ :param problem: Problem to simulate :type problem: :class:`~means.approximation.ODEProblem` :param parameters: Parameters of the solver. One entry for each constant in `problem` :type parameters: :class:`iterable` :param initial_conditions: Initial conditions of the system. One for each of the equations. Assumed to be zero, if not specified :type initial_conditions: :class:`iterable` :param starting_time: Starting time for the solver, defaults to 0.0 :type starting_time: float :param options: Options to be passed to the specific instance of the solver. """ parameters = to_one_dim_array(parameters, dtype=NP_FLOATING_POINT_PRECISION) initial_conditions = to_one_dim_array(initial_conditions, dtype=NP_FLOATING_POINT_PRECISION) assert(parameters.shape == (len(problem.parameters),)) assert(initial_conditions.shape[0] == problem.number_of_equations) self._parameters = parameters self._initial_conditions = initial_conditions self._starting_time = float(starting_time) self._problem = problem self._options = options def simulate(self, timepoints): """ Simulate initialised solver for the specified timepoints :param timepoints: timepoints that will be returned from simulation :return: a list of trajectories for each of the equations in the problem. """ solver = self._solver last_timepoint = timepoints[-1] try: simulated_timepoints, simulated_values = solver.simulate(last_timepoint, ncp_list=timepoints) except (Exception, self._solver_exception_class) as e: # The exceptions thrown by solvers are usually hiding the real cause, try to see if it is # our right_hand_side_as_function that is broken first try: self._problem.right_hand_side_as_function(self._initial_conditions, self._parameters) except: # If it is broken, throw that exception instead raise else: # If it is not, handle the original exception self._handle_solver_exception(e) trajectories = self._results_to_trajectories(simulated_timepoints, simulated_values) return trajectories def _handle_solver_exception(self, solver_exception): """ This function handles any exceptions that occurred in the solver and have been proven not to be related to our right_hand_side function. Subclasses can override it. :param solver_exception: the exception raised by the solver :type solver_exception: Exception """ # By default just re-raise it with our wrapper raise SolverException(None, solver_exception) def _default_solver_instance(self): raise NotImplementedError @property def _solver_exception_class(self): """ Property That would return the exception class thrown by a specific solver the subclases can override. """ return None @memoised_property def _solver(self): solver = self._default_solver_instance() verbosity = self._options.pop('verbosity', 50) return _set_kwargs_as_attributes(solver, verbosity=verbosity, **self._options) @memoised_property def _assimulo_problem(self): rhs = self._problem.right_hand_side_as_function parameters = self._parameters initial_conditions = self._initial_conditions initial_timepoint = self._starting_time model = Explicit_Problem(lambda t, x: rhs(x, parameters), initial_conditions, initial_timepoint) return model def _results_to_trajectories(self, simulated_timepoints, simulated_values): """ Convert the resulting results into a list of trajectories :param simulated_timepoints: timepoints output from a solver :param simulated_values: values returned by the solver :return: """ descriptions = self._problem.left_hand_side_descriptors return _wrap_results_to_trajectories(simulated_timepoints, simulated_values, descriptions) class CVodeMixin(UniqueNameInitialisationMixin, object): @classmethod def unique_name(cls): return 'cvode' @property def _solver_exception_class(self): from assimulo.solvers.sundials import CVodeError return CVodeError def _cvode_instance(self, model, options): from assimulo.solvers.sundials import CVode solver = CVode(model) if 'usesens' in options: raise AttributeError('Cannot set \'usesens\' parameter. Use Simulation or SimulationWithSensitivities for ' 'sensitivity calculations') return solver class CVodeSolver(SolverBase, CVodeMixin): def _default_solver_instance(self): solver = self._cvode_instance(self._assimulo_problem, self._options) # It is necessary to set usesens to false here as we are non-parametric here solver.usesens = False return solver class ODE15sMixin(CVodeMixin): """ A CVODE solver that mimicks the parameters used in `ode15s`_ solver in MATLAB. The different parameters that are set differently by default are: ``discr`` Set to ``'BDF'`` by default ``atol`` Set to ``1e-6`` ``rtol`` Set to ``1e-3`` .. _`ode15s`: http://www.mathworks.ch/ch/help/matlab/ref/ode15s.html """ ATOL = 1e-6 RTOL = 1e-3 MINH = 5.684342e-14 @classmethod def unique_name(cls): return 'ode15s' def _cvode_instance(self, model, options): solver = super(ODE15sMixin, self)._cvode_instance(model, options) # BDF method below makes it a key similarity to the ode15s solver.discr = options.pop('discr', 'BDF') solver.atol = options.pop('atol', self.ATOL) solver.rtol = options.pop('rtol', self.RTOL) solver.maxord = options.pop('maxord', 5) # If minh is not set, CVODE would try to continue the simulation, issuing a warning # We set it here so this simulation fails. solver.minh = options.pop('minh', self.MINH) return solver class ODE15sLikeSolver(SolverBase, ODE15sMixin): def _default_solver_instance(self): solver = self._cvode_instance(self._assimulo_problem, self._options) # It is necessary to set usesens to false here as we are non-parametric here solver.usesens = False return solver class Dopri5Solver(SolverBase, UniqueNameInitialisationMixin): def _default_solver_instance(self): from assimulo.solvers.runge_kutta import Dopri5 return Dopri5(self._assimulo_problem) @classmethod def unique_name(self): return 'dopri5' def _handle_solver_exception(self, solver_exception): # Let's try and parse the exception flag, to add some helpful info flag = parse_flag(solver_exception.message) FLAG_DOCUMENTATION = {-1: 'Input is not consistent', -2: 'Larger NMAX is needed', -3: 'Step size becomes too small', -4: 'Problem is probably stiff'} new_message = None try: new_message = 'Dopri5 failed with flag {0}: {1}'.format(flag, FLAG_DOCUMENTATION[flag]) exception = Exception(new_message) except KeyError: # We have no documentation for this exception, let's just reraise it exception = solver_exception # Use the superclass method to rethrow the exception with our wrapper super(Dopri5Solver, self)._handle_solver_exception(exception) class LSODARSolver(SolverBase, UniqueNameInitialisationMixin): @property def _solver_exception_class(self): from assimulo.exception import ODEPACK_Exception return ODEPACK_Exception def _default_solver_instance(self): from assimulo.solvers import LSODAR return LSODAR(self._assimulo_problem) @classmethod def unique_name(self): return 'lsodar' def _handle_solver_exception(self, solver_exception): flag = parse_flag(solver_exception.message) from assimulo.exception import ODEPACK_Exception FLAG_DOCUMENTATION = {-1: 'Excess work done on this call (perhaps wrong jt)', -2: 'Excess accuracy requested (tolerances too small)', -3: 'Illegal input detected (see printed message)', -4: 'Repeated error test failures (check all inputs)', -5: 'Repeated convergence failures (perhaps bad jacobian supplied or wrong choice of ' 'jt or tolerances)', -6: 'Error weight became zero during problem.', -7: 'Work space insufficient to finish (see messages)'} new_message = None try: new_message = 'LSODAR failed with flag {0}: {1}'.format(flag, FLAG_DOCUMENTATION[flag]) exception = ODEPACK_Exception(new_message) except KeyError: # We have no documentation for this exception, let's just reraise it exception = solver_exception # Use the superclass method to rethrow the exception with our wrapper super(LSODARSolver, self)._handle_solver_exception(exception) class ExplicitEulerSolver(SolverBase, UniqueNameInitialisationMixin): def _default_solver_instance(self): from assimulo.solvers import ExplicitEuler return ExplicitEuler(self._assimulo_problem) @classmethod def unique_name(cls): return 'euler' def simulate(self, timepoints): # Euler solver does not return the correct timepoints for some reason, work around that by resampling them trajectories = super(ExplicitEulerSolver, self).simulate(timepoints) resampled_trajectories = [] for trajectory in trajectories: resampled_trajectories.append(trajectory.resample(timepoints)) return resampled_trajectories class RungeKutta4Solver(SolverBase, UniqueNameInitialisationMixin): def _default_solver_instance(self): from assimulo.solvers import RungeKutta4 return RungeKutta4(self._assimulo_problem) @classmethod def unique_name(cls): return 'rungekutta4' def simulate(self, timepoints): # RungeKutta4 solver does not return the correct timepoints for some reason, work around that by resampling them trajectories = super(RungeKutta4Solver, self).simulate(timepoints) resampled_trajectories = [] for trajectory in trajectories: resampled_trajectories.append(trajectory.resample(timepoints)) return resampled_trajectories class RungeKutta34Solver(SolverBase, UniqueNameInitialisationMixin): def _default_solver_instance(self): from assimulo.solvers import RungeKutta34 return RungeKutta34(self._assimulo_problem) @classmethod def unique_name(cls): return 'rungekutta34' class Radau5Solver(SolverBase, UniqueNameInitialisationMixin): def _default_solver_instance(self): from assimulo.solvers import Radau5ODE return Radau5ODE(self._assimulo_problem) @classmethod def unique_name(cls): return 'radau5' def _handle_solver_exception(self, solver_exception): # Let's try and parse the exception flag, to add some helpful info flag = parse_flag(solver_exception.message) FLAG_DOCUMENTATION = {-1: 'Input is not consistent', -2: 'Larger NMAX is needed', -3: 'Step size becomes too small', -4: 'Matrix is repeatedly singular'} new_message = None try: new_message = 'Radau5 failed with flag {0}: {1}'.format(flag, FLAG_DOCUMENTATION[flag]) exception = Exception(new_message) except KeyError: # We have no documentation for this exception, let's just reraise it exception = solver_exception # Use the superclass method to rethrow the exception with our wrapper super(Radau5Solver, self)._handle_solver_exception(exception) class RodasSolver(SolverBase, UniqueNameInitialisationMixin): def _default_solver_instance(self): from assimulo.solvers import RodasODE return RodasODE(self._assimulo_problem) @classmethod def unique_name(cls): return 'rodas' def _handle_solver_exception(self, solver_exception): # Let's try and parse the exception flag, to add some helpful info flag = parse_flag(solver_exception.message) FLAG_DOCUMENTATION = {-1: 'Input is not consistent', -2: 'Larger NMAX is needed', -3: 'Step size becomes too small', -4: 'Matrix is repeatedly singular'} new_message = None try: new_message = 'Rodas failed with flag {0}: {1}'.format(flag, FLAG_DOCUMENTATION[flag]) exception = Exception(new_message) except KeyError: # We have no documentation for this exception, let's just reraise it exception = solver_exception # Use the superclass method to rethrow the exception with our wrapper super(RodasSolver, self)._handle_solver_exception(exception) #-- Solvers with sensitivity support ----------------------------------------------------------------------------------- def _add_sensitivity_data_to_trajectories(trajectories, raw_sensitivity_data, parameters): sensitivity_values = [] for i, trajectory in enumerate(trajectories): ode_term = trajectory.description term_sensitivities = [] for j, parameter in enumerate(parameters): term_sensitivities.append((parameter, raw_sensitivity_data[j, :, i])) sensitivity_values.append(term_sensitivities) trajectories_with_sensitivity_data = [] for trajectory, sensitivities in zip(trajectories, sensitivity_values): # Collect the sensitivities into a nice dictionary of Trajectory objects sensitivity_trajectories = [] for parameter, values in sensitivities: sensitivity_trajectories.append(Trajectory(trajectory.timepoints, values, SensitivityTerm(trajectory.description, parameter))) trajectory_with_sensitivities = TrajectoryWithSensitivityData.from_trajectory(trajectory, sensitivity_trajectories) trajectories_with_sensitivity_data.append(trajectory_with_sensitivities) return trajectories_with_sensitivity_data class SensitivitySolverBase(SolverBase): @property def _assimulo_problem(self): rhs = self._problem.right_hand_side_as_function parameters = self._parameters initial_conditions = self._initial_conditions initial_timepoint = self._starting_time # Solvers with sensitivity support should be able to accept parameters # into rhs function directly model = Explicit_Problem(lambda t, x, p: rhs(x, p), initial_conditions, initial_timepoint) model.p0 =
np.array(parameters)
numpy.array
""" Sphere simulation and position tools Geometry simulation: * :py:func:`simulate_spheres_in_sphere`: Simulate a random sphere packing of hard spheres of identical radius inside a larger sphere Neighbor counting: * :py:func:`nearest_neighbors`: Calculate the distance to the nth closest point to a given set of points * :py:func:`count_neighbors`: Calculte the number of points within a radial neighborhood Point manipulation tools: * :py:func:`split_red_green`: Split a point list into red/green with a given probability distribution * :py:func:`mask_points`: Subset point lists based on a mask * :py:func:`concat_points`: Concatenate point lists """ # Imports from typing import Tuple, List # 3rd party import numpy as np from sklearn.neighbors import BallTree # Our own imports from . import _simulation from .consts import ( NUM_RED, NUM_GREEN, AGGREGATE_RADIUS, SAME_CELL_RADIUS, NEIGHBOR_RADIUS, ) # Neighbor counting def nearest_neighbors(red_points: np.ndarray, green_points: np.ndarray, num_closest: int = 1) -> np.ndarray: """ Find the closest green point to a red point :param red_points: The n x 3 array of red points :param green_points: The m x 3 array of green points :param num_closest: The nth closest point to return :returns: An n x 3 array of distances to green points for each red point """ red_points = np.stack(red_points, axis=1) green_points = np.stack(green_points, axis=1) tree = BallTree(green_points) return tree.query(red_points, k=num_closest, return_distance=True)[0][:, num_closest-1] def count_neighbors(red_points: np.ndarray, green_points: np.ndarray, radius: float = NEIGHBOR_RADIUS) -> np.ndarray: """ Count the number of neighbors within a radius :param ndarray red_points: The n x 3 array of red points :param ndarray green_points: The m x 3 array of green points :param float radius: The radius within which a point is a neighbor :returns: An n x 3 array of counts of green points near each red point """ red_points = np.stack(red_points, axis=1) green_points = np.stack(green_points, axis=1) tree = BallTree(green_points) return tree.query_radius(red_points, r=radius, count_only=True) # Point manipulation tools def mask_points(points: List[np.ndarray], mask: np.ndarray) -> Tuple[np.ndarray]: """ Mask off the points :param List[ndarray] points: List of 1D point arrays to mask :param ndarray mask: Mask for those arrays :returns: The same set of points, but masked """ points = np.stack(points, axis=1) points = points[mask, :] return points[:, 0], points[:, 1], points[:, 2] def concat_points(*args) -> Tuple[np.ndarray]: """ Concatenate all the points :param \\*args: List of ndarray tuples to concatenate :returns: An x, y, z tuple of all the points """ final_x = [] final_y = [] final_z = [] for (x, y, z) in args: if x.ndim == 0: assert y.ndim == 0 assert z.ndim == 0 continue assert x.shape[0] == y.shape[0] assert x.shape[0] == z.shape[0] final_x.append(x) final_y.append(y) final_z.append(z) return (np.concatenate(final_x), np.concatenate(final_y), np.concatenate(final_z)) def split_red_green(all_points: Tuple[np.ndarray], num_red: int = NUM_RED, num_green: int = NUM_GREEN, udist: str = 'uniform') -> Tuple[Tuple[np.ndarray]]: """ Split into red and green cells :param Tuple[ndarray] all_points: The list of coordinates to split into red and green :param int num_red: The number of points to assign to red :param int num_green: The number of points to assign to green :param str udist: Distribution for the red points :returns: A tuple of (red, green) points """ x, y, z = all_points all_radii = np.sqrt(x**2 + y**2 + z**2) all_indices = np.arange(all_radii.shape[0]) # Various distributions if udist == 'uniform': all_prob =
np.ones_like(all_radii)
numpy.ones_like
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,1])
numpy.array
""" Generates plots according to an execution stats trace, and saves them into a /Plot/ folder. """ import matplotlib.pyplot as plt import numpy as np import os import sys sys.path.insert(1, "../") from Utils.Stats import unpack_stats # Path to the execution folder path = "../temp/NNSGA_4f0/" # Indicates if the plots should be generated for every sub directory of the 'path' folder sub_directories = False def plot_raw(key, dic, destination): """Plot raw stats as they were saved, ex. an objective for every single agent.""" for tup in dic[key]: extended_ord = np.empty((tup[0][-1])) extended_ord[:] = np.nan for i in range(len(tup[0])): extended_ord[tup[0][i]] = tup[1][i] plt.plot(extended_ord) plt.savefig(f"{destination}/Raw_{key}") def plot(value, key, destination): extensions = list() max_range = 0 for tup in value: if tup[0][-1] > max_range: max_range = tup[0][-1] + 1 extended_ord = np.empty((tup[0][-1]+1)) extended_ord[:] = np.nan for i in range(len(tup[0])): extended_ord[tup[0][i]] = tup[1][i] extensions.append(extended_ord) plt.plot(extended_ord) # Raw stats plt.title(f"{key} raw data") plt.savefig(f"{destination}/Raw_{key}") plt.clf() # Min and Max max_ext = np.empty(max_range) max_ext[:] = np.nan min_ext = np.empty(max_range) min_ext[:] = np.nan cat = [list() for i in range(max_range)] for ext in extensions: for i in range(len(ext)): if ext[i] != np.nan: cat[i].append(ext[i]) med_ext = np.empty(max_range) med_ext[:] = np.nan quart1 = np.empty(max_range) quart1[:] = np.nan quart3 = np.empty(max_range) quart3[:] = np.nan for i in range(len(cat)): if len(cat[i]) != 0: val = np.array(cat[i]) med_ext[i] = np.quantile(val, 0.5) quart1[i] =
np.quantile(val, 0.25)
numpy.quantile
import os from skimage import morphology as morph from torch.utils import data import pandas as pd import pycocotools.mask as mask_util from skimage import measure import utils as ut import numpy as np from skimage.transform import resize from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask from torch.nn.functional import interpolate import pycocotools.mask as mask_utils import torch from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker from maskrcnn_benchmark.structures.bounding_box import BoxList from pycocotools import mask as maskUtils # ------------------------------ # proposals def annList2BestDice(annList, batch, maskVoid_flag=True): if annList == []: return {"annList": annList} assert len(batch["proposals"]) == 1 proposals = batch["proposals"][0] # dt = [ann["segmentation"] for ann in batch["annList"]] # dt = [{'size': [333, 500], 'counts': 'Ya\\18S:3N2M2M3O1O1N2M3K5N2O1N2jNV1L4N2O1N2\\Od0L4N2M3K5N2O1O1N2N2N2O1O1N2N2O1O1N2N2O1O1O1N2O1O1O1O1O1N2O1O1O1N2N2O1O1O1N2O1O1O100O10000O100O100N2O100O10O0H9N1O100O1O101O1O0N3N2O1N2N2N2N3N1N2N3J6K5N2M3L3N3N1O2N1N3M4N1N3N2N1O2M3M4L4K4M2N5J5K4L3N3L6D;I6L4L5J`U^2'}, {'size': [333, 500], 'counts': '[ea36Q:;J3hNHUH=\\OBf7>eHc0S7LaH9\\7^1M2L4I7O1O2L3N2N2O1O2L3O1O2M3L6LR1mN4M2M3N9G101O1O000000000000001O00000000000000000000aNfKkLZ4e2XLYMh3T2jKfLg0U1_3P2RMoMn2P2SMPNm2P2SMPNm2o1TMQNl2o1TMQNl2o1TMQNl2o1UMPNk2P2RLlLa0T1]3P2mKRMe0n0^3P2lKTMe0l0_3Q2iKVMh0g0`3T2eKXMj0d0a3i2^LWMb3i2_LVMa3j2`LUM`3k2aLTM_3l2bLSM^3m2dLQM\\3o2fLoLZ3Q3hLmLY3R3jLkLV3U3VM_Lk2`3RMcLQ3Y3hLoLY3P3fLQM[3n2dLSM^3k2^LZMc3d2ZL_Mh3_2ULdMl3[2RLgMP4W2TLSMPO0o4k2iLnLY3P3jLlLY3S3iLiLY3V3U2J:F`0@4L6J8H5K4L8H4L2M2N1O2M2M6Iah?'}] annList_segs = [ann["segmentation"] for ann in annList] props_segs = [prop["segmentation"] for prop in proposals if prop["score"] > 0.75] ious = maskUtils.iou(annList_segs, props_segs, np.zeros(len(annList_segs))) if len(ious) == 0: return {"annList": annList} # return {"annList":annList} indices = ious.argmax(axis=1) annList_new = [] # print("best ious", ious[:, indices]) for i, ind in enumerate(indices): ann_org = annList[i] ann_prop_seg = props_segs[ind] # Apply Void binmask = ann2mask({"segmentation": ann_prop_seg})["mask"] maskVoid = batch["maskVoid"] if (maskVoid is not None) and maskVoid_flag: binmask = binmask * (ut.t2n(maskVoid).squeeze()) ann_prop_seg = maskUtils.encode( np.asfortranarray(ut.t2n(binmask)).astype("uint8")) ann_prop_seg["counts"] = ann_prop_seg["counts"].decode("utf-8") ann_org["segmentation"] = ann_prop_seg annList_new += [ann_org] return {"annList": annList_new} @torch.no_grad() def annList2best_objectness(annList, points, single_point=True, maskVoid=None): for ann in annList: pass return {"annList": annList, "blobs": blobs, "categoryDict": categoryDict} @torch.no_grad() def pointList2BestObjectness(pointList, image_id, single_point=True, maskVoid=None): import ipdb; ipdb.set_trace() # breakpoint 2a55a8ba // propDict = pointList2propDict( pointList, batch, thresh=0.5, single_point=single_point) h, w = propDict["background"].squeeze().shape blobs = np.zeros((h, w), int) categoryDict = {} annList = [] for i, prop in enumerate(propDict['propDict']): if len(prop["annList"]) == 0: continue blobs[prop["annList"][0]["mask"] != 0] = i + 1 categoryDict[i + 1] = prop["category_id"] if maskVoid is not None: binmask = prop["annList"][0]["mask"] * (ut.t2n(maskVoid).squeeze()) else: binmask = prop["annList"][0]["mask"] seg = maskUtils.encode( np.asfortranarray(ut.t2n(binmask)).astype("uint8")) seg["counts"] = seg["counts"].decode("utf-8") score = prop["annList"][0]["score"] annList += [{ "segmentation": seg, "iscrowd": 0, "area": int(maskUtils.area(seg)), "image_id": image_id, "category_id": int(prop['category_id']), "height": h, "width": w, "score": score }] return {"annList": annList, "blobs": blobs, "categoryDict": categoryDict} class SharpProposals: def __init__(self, fname): # if dataset_name == "pascal": self.proposals_path = batch["proposals_path"][0] if "SharpProposals_name" in batch: batch_name = batch["SharpProposals_name"][0] else: batch_name = batch["name"][0] name_jpg = self.proposals_path + "{}.jpg.json".format(batch_name) name_png = self.proposals_path + "{}.json".format(batch_name) if os.path.exists(name_jpg): name = name_jpg else: name = name_png _, _, self.h, self.w = batch["images"].shape if "resized" in batch and batch["resized"].item() == 1: name_resized = self.proposals_path + "{}_{}_{}.json".format(batch["name"][0], self.h, self.w) if not os.path.exists(name_resized): proposals = ut.load_json(name) json_file = loop_and_resize(self.h, self.w, proposals) ut.save_json(name_resized, json_file) else: name_resized = name # name_resized = name proposals = ut.load_json(name_resized) self.proposals = sorted(proposals, key=lambda x: x["score"], reverse=True) def __getitem__(self, i): encoded = self.proposals[i]["segmentation"] proposal_mask = maskUtils.decode(encoded) return {"mask": proposal_mask, "score": self.proposals[i]["score"]} def __len__(self): return len(self.proposals) def sharpmask2psfcn_proposals(self): import ipdb; ipdb.set_trace() # breakpoint 102ed333 // pass def loop_and_resize(h, w, proposals): proposals_resized = [] n_proposals = len(proposals) for i in range(n_proposals): print("{}/{}".format(i, n_proposals)) prop = proposals[i] seg = prop["segmentation"] proposal_mask = maskUtils.decode(seg) # proposal_mask = resize(proposal_mask*255, (h, w), order=0).astype("uint8") if not proposal_mask.shape == (h, w): proposal_mask = (resize(proposal_mask * 255, (h, w), order=0) > 0).astype(int) seg = maskUtils.encode(np.asfortranarray(proposal_mask).astype("uint8")) seg["counts"] = seg["counts"].decode("utf-8") prop["segmentation"] = seg proposals_resized += [proposals[i]] else: proposals_resized += [proposals[i]] return proposals_resized @torch.no_grad() def pointList2propDict(pointList, batch, single_point=False, thresh=0.5): sharp_proposals = SharpProposals(batch) propDict = [] shape = pointList[0]["shape"] foreground = np.zeros(shape, int) if single_point: points = pointList2mask(pointList)["mask"] idDict = {} annDict = {} for i, p in enumerate(pointList): annDict[i] = [] idDict[i] = [] for k in range(len(sharp_proposals)): proposal_ann = sharp_proposals[k] if not (proposal_ann["score"] > thresh): continue proposal_mask = proposal_ann["mask"] for i, p in enumerate(pointList): if proposal_mask[p["y"], p["x"]] == 0: continue if single_point and (points * proposal_mask).sum() > 1: continue # score = proposal_ann["score"] annDict[i] += [proposal_ann] idDict[i] += [k] for i in annDict: annList = annDict[i] idList = idDict[i] p = pointList[i] mask = annList2mask(annList)["mask"] if mask is not None: foreground = foreground + mask # foreground[foreground<2]=0 propDict += [{ "annList": annList, "point": p, "idList": idList, "category_id": int(p["category_id"]) }] ######### return { "propDict": propDict, "foreground": foreground, "background": (foreground == 0).astype(int) } def mask2annList(maskClass, maskObjects, image_id, classes=None, maskVoid=-1): annList = [] maskClass = np.array(maskClass) maskObjects = np.array(maskObjects) objects = np.setdiff1d(np.unique(maskObjects), [0, 255]) for i, obj in enumerate(objects): binmask = maskObjects == obj category_id = np.unique(maskClass * binmask)[1] if classes is not None and category_id not in classes: continue ann = mask2ann(binmask, category_id=category_id, image_id=image_id, maskVoid=maskVoid, score=1, point=-1) # "bbox" - [nx4] Bounding box(es) stored as [x y w h] ann["bbox"] = maskUtils.toBbox(ann["segmentation"]) # ann["id"] = i + 1 annList += [ann] return annList def annList2targets(annList): if len(annList) == 0: return [] ann = annList[0] H = ann["height"] W = ann["width"] img_size = (W, H) annList = [obj for obj in annList if (("iscrowd" not in obj) or (obj["iscrowd"] == 0))] boxes = [obj["bbox"] for obj in annList] boxes = torch.as_tensor(boxes).reshape(len(annList), 4) # guard against no boxes target = BoxList(boxes, img_size, mode="xywh").convert("xyxy") classes = [obj["category_id"] for obj in annList] classes = torch.tensor(classes) target.add_field("labels", classes) if "segmentation" in annList[0]: masks = [obj["segmentation"] for obj in annList] from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask masks = SegmentationMask(masks, img_size, mode="mask") target.add_field("masks", masks) target = target.clip_to_image(remove_empty=True) # ut.images(torch.ones(1,3,500,500), annList=target2annList(target, "1")) return target def targets2annList_bbox(preds, image_id=-1, maskVoid=None): bbox = preds.bbox W, H = preds.size annList = bbox2annList( bbox, scoreList=preds.get_field("scores"), categoryList=preds.get_field("labels"), H=H, W=W, image_id=image_id, mode="xyxy", mask=None) return annList def targets2annList(targets, shape, image_id=-1, maskVoid=None, score_threshold=0.5): # preds.to("cpu") H, W = shape preds = targets.resize((W, H)) labels = targets.get_field("labels") if "masks" in targets.extra_fields: masks = targets.get_field("masks") masks = masks.get_mask_tensor()[:, None] else: masks = targets.get_field("mask") if "scores" in targets.extra_fields: scores = targets.get_field("scores") else: scores = labels * 0 + 1 masker = Masker(threshold=0.5, padding=1) if list(masks.shape[-2:]) != [H, W]: masks = masker(masks.expand(1, -1, -1, -1, -1), targets) masks = masks[0] # apply mask void if maskVoid is not None and masks.shape[0] > 0: masks = masks * maskVoid.byte() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") annList = segm2annList( segm=rles, boxes=preds.bbox.cpu(), scoreList=scores, categoryList=labels, H=H, W=W, image_id=image_id, mode="xyxy", mask=None, score_threshold=score_threshold) return annList def proposals2bbox(bbox, scoreList, W, H): annList = bbox2annList( bbox, scoreList, np.ones(bbox.shape[0]), H, W, image_id="proposal", mode="xyxy", mask=None) return annList def proposals2annList(proposals): bbox = proposals.bbox W, H = proposals.size annList = bbox2annList( bbox, proposals.get_field("objectness"), np.ones(bbox.shape[0]), H, W, image_id="proposal", mode="xyxy", mask=None) return annList def target2annList(target, image_id): bbox = target.bbox W, H = target.size annList = bbox2annList( bbox, np.zeros(bbox.shape[0]), target.get_field("labels"), H, W, image_id, mode="xyxy", mask=None) return annList def load_ann_json(fname, image_shape): name = ut.extract_fname(fname) fname_new = fname.replace(name, name + "_%s.json" % str(image_shape)) if os.path.exists(fname_new): return ut.load_json(fname_new) else: annList = ut.load_json(fname) annList_new = [] for ann in annList: binmask = ann2mask(ann)["mask"] if binmask.shape != image_shape: binmask = resize( ann2mask(ann)["mask"], output_shape=image_shape, order=0, anti_aliasing=False, mode="constant", preserve_range=True).astype(int) seg = maskUtils.encode( np.asfortranarray(ut.t2n(binmask)).astype("uint8")) seg["counts"] = seg["counts"].decode("utf-8") ann["score"] = ann["score"] ann["segmentation"] = seg ann["bbox"] = maskUtils.toBbox(seg).astype(int).tolist() annList_new += [ann] ut.save_json(fname_new, annList_new) return annList_new def intersect_bbox(b1, b2): xs_1, ys_1, w1, h1 = np.array(b1) xs_2, ys_2, w2, h2 = np.array(b2) xe_1 = xs_1 + w1 ye_1 = ys_1 + h1 xe_2 = xs_2 + w2 ye_2 = ys_2 + h2 # if(y1<(y2+h2) or x1<(x2+w2)): # flag = False # elif((x1 + w1) > x2 or (y1 + h1) > y2): # flag = False # else: # flag = True return not (xe_1 < xs_2 or xs_1 > xe_2 or ye_1 < ys_2 or ys_1 > ye_2) def annList2propList(annList, sharpmask_annList): new_annList = [] for ann in annList: binmask = ann2mask(ann)["mask"] best_score = 0. best_mask = binmask # ut.images(sharp_mask, win="resized") # ut.images(ann2mask(sharp_ann)["mask"], win="original") for sharp_ann in sharpmask_annList: if ann["score"] < 0.5: continue if not intersect_bbox(ann["bbox"], sharp_ann["bbox"]): continue sharp_mask = ann2mask(sharp_ann)["mask"] score = dice(sharp_mask, binmask) # assert score > 0 if score > best_score: best_mask = sharp_mask best_score = score # ut.images(sharp_mask, win="sharpmask") # ut.images(binmask, win="predmask") # break # if score > best_dice: # best_dice = score # best_mask = sharp_mask seg = maskUtils.encode( np.asfortranarray(ut.t2n(best_mask)).astype("uint8")) seg["counts"] = seg["counts"].decode("utf-8") ann["score"] = best_score ann["segmentation"] = seg new_annList += [ann] return new_annList def maskList2annList(maskList, categoryList, image_id, scoreList=None): annList = [] _, h, w = maskList.shape for i in range(maskList.shape[0]): binmask = maskList[i] seg = maskUtils.encode( np.asfortranarray(ut.t2n(binmask)).astype("uint8")) seg["counts"] = seg["counts"].decode("utf-8") if scoreList is not None: score = scoreList[i] annList += [{ "segmentation": seg, "iscrowd": 0, "bbox": maskUtils.toBbox(seg).astype(int).tolist(), "area": int(maskUtils.area(seg)), "image_id": image_id, "category_id": int(categoryList[i]), "height": h, "width": w, "score": score }] return annList # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 class Mask(object): """ This class is unfinished and not meant for use yet It is supposed to contain the mask for an object as a 2d tensor """ def __init__(self, segm, size, mode): width, height = size if isinstance(segm, Mask): mask = segm.mask else: if type(segm) == list: # polygons mask = Polygons( segm, size, 'polygon').convert('mask').to(dtype=torch.float32) elif type(segm) == dict and 'counts' in segm: if type(segm['counts']) == list: # uncompressed RLE h, w = segm['size'] rle = mask_utils.frPyObjects(segm, h, w) mask = mask_utils.decode(rle) mask = torch.from_numpy(mask).to(dtype=torch.float32) else: # compressed RLE mask = mask_utils.decode(segm) mask = torch.from_numpy(mask).to(dtype=torch.float32) else: # binary mask if type(segm) == np.ndarray: mask = torch.from_numpy(segm).to(dtype=torch.float32) else: # torch.Tensor mask = segm.to(dtype=torch.float32) self.mask = mask self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented") width, height = self.size if method == FLIP_LEFT_RIGHT: max_idx = width dim = 1 elif method == FLIP_TOP_BOTTOM: max_idx = height dim = 0 flip_idx = torch.tensor(list(range(max_idx)[::-1])) flipped_mask = self.mask.index_select(dim, flip_idx) return Mask(flipped_mask, self.size, self.mode) def crop(self, box): box = [int(b) for b in box] # w, h = box[2] - box[0], box[3] - box[1] w, h = box[2] - box[0] + 1, box[3] - box[1] + 1 # if w == 0: # box[2] = box[0] + 1 # if h == 0: # box[3] = box[1] + 1 w = max(w, 1) h = max(h, 1) # cropped_mask = self.mask[box[1]: box[3], box[0]: box[2]] cropped_mask = self.mask[box[1]:box[3] + 1, box[0]:box[2] + 1] return Mask(cropped_mask, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): width, height = size scaled_mask = interpolate( self.mask[None, None, :, :], (height, width), mode='nearest')[0, 0] return Mask(scaled_mask, size=size, mode=self.mode) def convert(self, mode): mask = self.mask.to(dtype=torch.uint8) return mask def __iter__(self): return iter(self.mask) def __repr__(self): s = self.__class__.__name__ + "(" # s += "num_mask={}, ".format(len(self.mask)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s class Polygons(object): """ This class holds a set of polygons that represents a single instance of an object mask. The object can be represented as a set of polygons """ def __init__(self, polygons, size, mode): # assert isinstance(polygons, list), '{}'.format(polygons) if isinstance(polygons, list): polygons = [ torch.as_tensor(p, dtype=torch.float32) for p in polygons ] elif isinstance(polygons, Polygons): polygons = polygons.polygons self.polygons = polygons self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented") flipped_polygons = [] width, height = self.size if method == FLIP_LEFT_RIGHT: dim = width idx = 0 elif method == FLIP_TOP_BOTTOM: dim = height idx = 1 for poly in self.polygons: p = poly.clone() TO_REMOVE = 1 p[idx::2] = dim - poly[idx::2] - TO_REMOVE flipped_polygons.append(p) return Polygons(flipped_polygons, size=self.size, mode=self.mode) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] # TODO chck if necessary w = max(w, 1) h = max(h, 1) cropped_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w) p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h) cropped_polygons.append(p) return Polygons(cropped_polygons, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): ratios = tuple( float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) if ratios[0] == ratios[1]: ratio = ratios[0] scaled_polys = [p * ratio for p in self.polygons] return Polygons(scaled_polys, size, mode=self.mode) ratio_w, ratio_h = ratios scaled_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] *= ratio_w p[1::2] *= ratio_h scaled_polygons.append(p) return Polygons(scaled_polygons, size=size, mode=self.mode) def convert(self, mode): width, height = self.size if mode == "mask": rles = mask_utils.frPyObjects([p.numpy() for p in self.polygons], height, width) rle = mask_utils.merge(rles) mask = mask_utils.decode(rle) mask = torch.from_numpy(mask) # TODO add squeeze? return mask def __repr__(self): s = self.__class__.__name__ + "(" s += "num_polygons={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s # # class SegmentationMask(object): # """ # This class stores the segmentations for all objects in the image # """ # # def __init__(self, segms, size, mode=None): # """ # Arguments: # segms: three types # (1) polygons: a list of list of lists of numbers. The first # level of the list correspond to individual instances, # the second level to all the polygons that compose the # object, and the third level to the polygon coordinates. # (2) rles: COCO's run length encoding format, uncompressed or compressed # (3) binary masks # size: (width, height) # mode: 'polygon', 'mask'. if mode is 'mask', convert mask of any format to binary mask # """ # assert isinstance(segms, list) # if len(segms) == 0: # self.masks = [] # mode = 'mask' # else: # if type(segms[0]) != list: # mode = 'mask' # # if mode == 'mask': # self.masks = [Mask(m, size, mode) for m in segms] # else: # polygons # self.masks = [Polygons(p, size, mode) for p in segms] # self.size = size # self.mode = mode # # def transpose(self, method): # if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): # raise NotImplementedError( # "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented") # # flipped = [] # for mask in self.masks: # flipped.append(mask.transpose(method)) # return SegmentationMask(flipped, size=self.size, mode=self.mode) # # def crop(self, box): # w, h = box[2] - box[0], box[3] - box[1] # cropped = [] # for mask in self.masks: # cropped.append(mask.crop(box)) # return SegmentationMask(cropped, size=(w, h), mode=self.mode) # # def resize(self, size, *args, **kwargs): # scaled = [] # for mask in self.masks: # scaled.append(mask.resize(size, *args, **kwargs)) # return SegmentationMask(scaled, size=size, mode=self.mode) # # def to(self, *args, **kwargs): # return self # # def __getitem__(self, item): # if isinstance(item, (int, slice)): # selected_masks = [self.masks[item]] # else: # # advanced indexing on a single dimension # selected_masks = [] # if isinstance(item, torch.Tensor) and item.dtype == torch.uint8: # item = item.nonzero() # item = item.squeeze(1) if item.numel() > 0 else item # item = item.tolist() # for i in item: # selected_masks.append(self.masks[i]) # return SegmentationMask(selected_masks, size=self.size, mode=self.mode) # # def __iter__(self): # return iter(self.masks) # # def __repr__(self): # s = self.__class__.__name__ + "(" # s += "num_instances={}, ".format(len(self.masks)) # s += "image_width={}, ".format(self.size[0]) # s += "image_height={})".format(self.size[1]) # return s def annList2maskList(annList, box=False, color=False): n_anns = len(annList) if n_anns == 0: return {"mask": None} ann = annList[0] try: h, w = ann["mask"].shape except: h, w = ann["height"], ann["width"] maskList = np.zeros((h, w, n_anns), int) categoryList = np.zeros(n_anns, int) for i in range(n_anns): ann = annList[i] if "mask" in ann: ann_mask = ann["mask"] else: ann_mask = maskUtils.decode(ann["segmentation"]) assert ann_mask.max() <= 1 maskList[:, :, i] = ann_mask categoryList[i] = ann["category_id"] # mask[mask==1] = ann["category_id"] return {"maskList": maskList, "categoryList": categoryList} def batch2annList(batch): annList = [] image_id = int(batch["name"][0].replace("_", "")) # image_id = batch["image_id"][0] height, width = batch["images"].shape[-2:] maskObjects = batch["maskObjects"] maskClasses = batch["maskClasses"] n_objects = maskObjects[maskObjects != 255].max() object_uniques = np.unique(maskObjects) object_uniques = object_uniques[object_uniques != 0] id = 1 for obj_id in range(1, n_objects + 1): if obj_id == 0: continue binmask = (maskObjects == obj_id) segmentation = maskUtils.encode( np.asfortranarray(ut.t2n(binmask).squeeze())) segmentation["counts"] = segmentation["counts"].decode("utf-8") uniques = (binmask.long() * maskClasses).unique() uniques = uniques[uniques != 0] assert len(uniques) == 1 category_id = uniques[0].item() annList += [{ "segmentation": segmentation, "iscrowd": 0, # "bbox":maskUtils.toBbox(segmentation).tolist(), "area": int(maskUtils.area(segmentation)), "id": id, "height": height, "width": width, "image_id": image_id, "category_id": category_id }] id += 1 return annList def test(model, val_set, metric="bbox"): pass @torch.no_grad() def validate(model, val_set, method="annList_box"): n_batches = len(val_set) pred_annList = [] gt_annList = [] for i in range(n_batches): batch = ut.get_batch(val_set, [i]) print(i, "/", n_batches) pred_dict = model.predict(batch, method=method) assert batch["name"][0] not in model.trained_batch_names pred_annList += pred_dict["annList"] results = compare_annList(gt_annList, pred_annList, val_set) results_dict = results["result_dict"] return results_dict @torch.no_grad() def valBatch(model, batch, method="annList_box"): pred_annList = [] gt_annList = [] pred_annList += model.predict(batch, method=method) gt_annList += batch["annList"] result_dict = compare_annList(gt_annList, pred_annList) return result_dict def pred2annList(boxes_yxyx, scoreList, categoryList, batch, mask=None): image_shape = batch["images"].shape _, _, h, w = image_shape boxes_yxyx_denorm = bbox_yxyx_denormalize(boxes_yxyx, image_shape) boxes_xyhw = ut.t2n(yxyx2xywh(boxes_yxyx_denorm)) annList = [] for i in range(len(boxes_xyhw)): ann = { "bbox": list(map(int, boxes_xyhw[i])), "image_id": batch["meta"]["image_id"][0], "category_id": int(categoryList[i]), "height": h, "width": w, "score": float(scoreList[i]) } annList += [ann] return annList def segm2annList(segm, boxes, scoreList, categoryList, H, W, image_id, mode="yxyx", mask=None, score_threshold=None): if len(boxes) == 0: return [] if boxes.max() < 1: boxes_denorm = bbox_yxyx_denormalize(boxes, (1, 3, H, W)) else: boxes_denorm = boxes if mode == "yxyx": boxes_xywh = ut.t2n(yxyx2xywh(boxes_denorm)) else: boxes_xywh = ut.t2n(xyxy2xywh(boxes_denorm)) annList = [] for i in range(len(boxes_xywh)): score = float(scoreList[i]) if score_threshold is not None and score < score_threshold: continue ann = { "segmentation": segm[i], "bbox": list(map(int, boxes_xywh[i])), "image_id": image_id, "category_id": int(categoryList[i]), "height": H, "width": W, "score": score } annList += [ann] return annList def bbox2annList(boxes, scoreList, categoryList, H, W, image_id, mode="yxyx", mask=None): if len(boxes) == 0: return [] if boxes.max() < 1: boxes_denorm = bbox_yxyx_denormalize(boxes, (1, 3, H, W)) else: boxes_denorm = boxes if mode == "yxyx": boxes_xywh = ut.t2n(yxyx2xywh(boxes_denorm)) else: boxes_xywh = ut.t2n(xyxy2xywh(boxes_denorm)) annList = [] for i in range(len(boxes_xywh)): ann = { "bbox": list(map(int, boxes_xywh[i])), "image_id": image_id, "category_id": int(categoryList[i]), "height": H, "width": W, "score": float(scoreList[i]) } annList += [ann] return annList # def annList2annDict(annList, type="instances"): # # type = "instances or bbox" # if isinstance(annList[0], list): # annList = annList[0] # annDict = {} # annDict["categories"] = [{"id":category_id} for category_id in # np.unique([a["category_id"] for a in annList])] # try: # annDict["images"] = [{"file_name":a["image_id"], # "id":a["image_id"], # "width":a["segmentation"]["size"][1], # "height":a["segmentation"]["size"][0]} for a in annList] # except: # annDict["images"] = [{"file_name":a["image_id"], # "id":a["image_id"], # "width":a["width"], # "height":a["height"]} for a in annList] # annDict["type"] = type # if "id" not in annList[0]: # for i, ann in enumerate(annList): # ann["id"] = i # annDict["annotations"] = annList # return annDict def bbox2mask(bbox, image_shape, window_box=None, mode="yxyx"): # bbox = ut.t2n(bbox) _, _, h, w = image_shape if bbox.max() <= 1.: bbox = ut.t2n( bbox_yxyx_denormalize(bbox.cpu(), image_shape, window_box)) mask = np.zeros((h, w), int) for i in range(bbox.shape[0]): if mode == "xyxy": x1, y1, x2, y2 = map(int, bbox[i]) else: y1, x1, y2, x2 = map(int, bbox[i]) # print(y1,x1,y2,x2) mask[y1:y2, x1] = 1 mask[y1:y2, x2] = 1 mask[y1, x1:x2] = 1 mask[y2, x1:x2] = 1 return mask def clamp_boxes_yxyx(boxes, image_shape): _, _, H, W = image_shape # Height boxes[:, 0] = boxes[:, 0].clamp(0, H - 1) boxes[:, 2] = boxes[:, 2].clamp(0, H - 1) # Width boxes[:, 1] = boxes[:, 1].clamp(0, W - 1) boxes[:, 3] = boxes[:, 3].clamp(0, W - 1) return boxes def apply_delta_on_bbox(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, 4] where each row is y1, x1, y2, x2 deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)] """ # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= torch.exp(deltas[:, 2]) width *= torch.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width result = torch.stack([y1, x1, y2, x2], dim=1) return result def compute_bbox_delta(b1_yxyx, b2_yxyx): """Applies the given deltas to the given boxes. boxes 1: [N, 4] where each row is y1, x1, y2, x2 boxes 2: [N, 4] where each row is y1, x1, y2, x2 """ b1_dict = bbox_yxyx_dict(ut.t2n(b1_yxyx)) b2_dict = bbox_yxyx_dict(ut.t2n(b2_yxyx)) y1 = (b1_dict["yc"] - b2_dict["yc"]) / b2_dict["h"] x1 = (b1_dict["xc"] - b2_dict["xc"]) / b2_dict["w"] y2 = np.log(b1_dict["h"] / b2_dict["h"]) x2 = np.log(b1_dict["w"] / b2_dict["w"]) return torch.FloatTensor([y1, x1, y2, x2]).t() def compute_overlaps_yxyx(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. For better performance, pass the largest set first and the smaller second. """ # Areas of anchors and GT boxes area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(overlaps.shape[1]): box2 = boxes2[i] overlaps[:, i] = compute_iou_yxyx(box2, boxes1, area2[i], area1) return overlaps def compute_iou_yxyx(box, boxes, box_area, boxes_area): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2] boxes: [boxes_count, (y1, x1, y2, x2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) union = box_area + boxes_area[:] - intersection[:] iou = intersection / union return iou def yxyx2xywh(boxes_yxyx): y1, x1, y2, x2 = torch.chunk(boxes_yxyx, chunks=4, dim=1) h = y2 - y1 w = x2 - x1 return torch.cat([x1, y1, w, h], dim=1) def xyxy2xywh(boxes_xyxy): x1, y1, x2, y2 = torch.chunk(boxes_xyxy, chunks=4, dim=1) h = y2 - y1 w = x2 - x1 return torch.cat([x1, y1, w, h], dim=1) def bbox_yxyx_normalize(bbox, image_shape): _, _, H, W = image_shape scale = torch.FloatTensor([H, W, H, W]) return bbox / scale def bbox_yxyx_denormalize(bbox, image_shape, window_box=None, clamp=True): _, _, H, W = image_shape if window_box is None: window_box = [0, 0, H, W] else: window_box = list(map(int, window_box)) H_window_box = window_box[2] - window_box[0] W_window_box = window_box[3] - window_box[1] scales = torch.FloatTensor( [H_window_box, W_window_box, H_window_box, W_window_box]) shift = torch.FloatTensor( [window_box[0], window_box[1], window_box[0], window_box[1]]) # Translate bounding boxes to image domain bbox = bbox * scales + shift if clamp: bbox = clamp_boxes_yxyx(bbox, image_shape) return bbox def bbox_yxyx_dict(bbox): h = bbox[:, 2] - bbox[:, 0] w = bbox[:, 3] - bbox[:, 1] yc = bbox[:, 0] + 0.5 * h xc = bbox[:, 1] + 0.5 * w return {"xc": xc, "yc": yc, "h": h, "w": w} def bbox_xywh_dict(bbox, H, W): pass def bbox_yxyx_shape2shape(bbox, shape1, shape2): bbox = ut.n2t(bbox).float() bbox_norm = bbox_yxyx_normalize(bbox, shape1) return bbox_yxyx_denormalize(bbox_norm, shape2) def annList2bbox(annList, mode="yxyx"): n_objs = len(annList) bbox_yxyx = torch.zeros((n_objs, 4)) bbox_yxhw = torch.zeros((n_objs, 4)) gt_category_ids = torch.zeros((n_objs)) seg_areas = torch.zeros((n_objs)) # Load object bounding boxes into a data frame. for i, ann in enumerate(annList): try: W, H = ann["width"], ann["height"] x, y, w, h = ann["bbox"].flatten() except: H, W = ann["segmentation"]["size"] x, y, w, h = maskUtils.toBbox(ann["segmentation"]) x1 = x y1 = y x2 = min(x + w, W - 1) y2 = min(y + h, H - 1) bbox_yxyx[i] = torch.FloatTensor((y1 / H, x1 / W, y2 / H, x2 / W)) bbox_yxhw[i] = torch.FloatTensor((x / W, y / H, w / W, h / H)) seg_areas[i] = h * w gt_category_ids[i] = ann["category_id"] return { 'bbox_yxyx': bbox_yxyx, 'bbox_yxhw': bbox_yxhw, 'category_ids': gt_category_ids, 'seg_areas': seg_areas } def ann2poly(ann): mask = ann2mask(ann)["mask"] # f_mask = np.asfortranarray(mask) # e_mask = maskUtils.encode(f_mask) # area = maskUtils.area(e_mask) # bbox = maskUtils.toBbox(e_mask) contours = measure.find_contours(mask, 0.5) polyList = [] for contour in contours: contour = np.flip(contour, axis=1) segmentation = contour.ravel().astype(int) polyList.append(segmentation) return polyList def poly2mask(poly, bbox_new): Rs = maskUtils.frPoly mo = maskUtils.decode(Rs) return polyList def load_annList(exp_dict, predict_method, reset=None): dataset_name = exp_dict["dataset_name"] base = "/mnt/projects/counting/Saves/main/" fname = base + "lcfcn_points/{}_{}_annList.json".format( dataset_name, predict_method) if os.path.exists(fname) and reset != "reset": return ut.load_json(fname) else: _, val_set = load_trainval(exp_dict) loader = data.DataLoader( val_set, batch_size=1, num_workers=0, drop_last=False) pointDict = load_LCFCNPoints(exp_dict) annList = [] for i, batch in enumerate(loader): print(i, "/", len(loader), " - annList") pointList = pointDict[batch["name"][0]] if len(pointList) == 0: continue if predict_method == "BestObjectness": pred_dict = pointList2BestObjectness(pointList, batch) elif predict_method == "UpperBound": pred_dict = pointList2UpperBound(pointList, batch) annList += pred_dict["annList"] ut.save_json(fname, annList) return annList def load_BestObjectness(exp_dict, reset=None): return load_annList( exp_dict, predict_method="BestObjectness", reset=reset) def load_UpperBound(exp_dict, reset=None): return load_annList(exp_dict, predict_method="UpperBound", reset=reset) def get_perSizeResults(gt_annDict, pred_annList): cocoGt = pycocotools.coco.COCO(gt_annDict) # pred_annList2 = [] cocoDt = cocoGt.loadRes(pred_annList) cocoEval = COCOeval(cocoGt, cocoDt, "segm") cocoEval.params.iouThrs = np.array([.25, .5, .75]) cocoEval.evaluate() cocoEval.accumulate() results = cocoEval.summarize() result_dict = {} for i in ["0.25", "0.5", "0.75"]: score = results["{}_all".format(i)] result_dict[i] = score return {"results": results, "result_dict": result_dict} def get_perCategoryResults(gt_annDict, pred_annDict): cocoGt = pycocotools.coco.COCO(gt_annDict) cocoDt = cocoGt.loadRes(pred_annDict) cocoEval = COCOeval(cocoGt, cocoDt, "segm") results = {} for i in cocoEval.params.catIds: cocoEval = COCOeval(cocoGt, cocoDt, "segm") cocoEval.params.iouThrs = np.array([.5]) cocoEval.params.catIds = [i] cocoEval.params.areaRngLbl = ["all"] cocoEval.evaluate() cocoEval.accumulate() stat = list(cocoEval.summarize().values()) assert len(stat) == 1 results[i] = stat[0] return results def get_image_ids(pred_annList): idList = set() for p in pred_annList: idList.add(p["image_id"]) return list(idList) # def pred_for_coco2014(exp_dict, pred_annList): # if exp_dict["dataset_name"] == "CocoDetection2014": # train_set,_ = ut.load_trainval(exp_dict) # for p in pred_annList: # p["image_id"] = int(p["image_id"]) # p["category_id"] = train_set.label2category[p["category_id"]] # return pred_annList def test_baselines(exp_dict, reset=None): #### Best Objectness # pointDict = load_LCFCNPoints(exp_dict) pred_annList = load_UpperBound(exp_dict, reset=reset) if os.path.exists(exp_dict["path_baselines"]) and reset != "reset": result_list = ut.load_pkl(exp_dict["path_baselines"]) return result_list else: gt_annDict = load_gtAnnDict(exp_dict) pred_annList = load_BestObjectness(exp_dict, reset=reset) # idList1 = get_image_ids(pred_annList) # idList2 = get_image_ids(gt_annDict["annotations"]) results = get_perSizeResults(gt_annDict, pred_annList) result_dict = results["result_dict"] result_dict["predict_method"] = "BestObjectness" result_list = [result_dict] #### Upper bound pred_annList = load_UpperBound(exp_dict, reset=reset) results = get_perSizeResults(gt_annDict, pred_annList) result_dict = results["result_dict"] result_dict["predict_method"] = "UpperBound" result_list += [result_dict] ut.save_pkl(exp_dict["path_baselines"], result_list) print(pd.DataFrame(result_list)) return result_list def validate(model, dataset, predict_method, n_val=None, return_annList=False): pred_annList = dataset2annList( model, dataset, predict_method=predict_method, n_val=n_val) gt_annDict = load_gtAnnDict({"dataset_name": type(dataset).__name__}) results = get_perSizeResults(gt_annDict, pred_annList) result_dict = results["result_dict"] result_dict["predict_method"] = predict_method if return_annList: return result_dict, pred_annList return result_dict def test_best(exp_dict, reset=None): _, val_set = load_trainval(exp_dict) history = ut.load_history(exp_dict) # if reset == "reset": try: pred_annList = ut.load_best_annList(exp_dict) except: model = ut.load_best_model(exp_dict) pred_annList = dataset2annList( model, val_set, predict_method="BestDice", n_val=None) ut.save_pkl(exp_dict["path_best_annList"], pred_annList) # else: # pred_annList = ut.load_best_annList(exp_dict) gt_annDict = load_gtAnnDict(exp_dict) results = get_perSizeResults(gt_annDict, pred_annList) result_dict = results["result_dict"] result_dict["predict_method"] = "BestDice" result_dict["epoch"] = history["best_model"]["epoch"] result_list = test_baselines(exp_dict) result_list += [result_dict] print(pd.DataFrame(result_list)) def get_random_indices(mask, n_indices=10): mask_ind = np.where(mask.squeeze()) n_pixels = mask_ind[0].shape[0] P_ind = np.random.randint(0, n_pixels, n_indices) yList = mask_ind[0][P_ind] xList = mask_ind[1][P_ind] return {"yList": yList, "xList": xList} def propDict2seedList(propDict, n_neighbors=100, random_proposal=False): seedList = [] for prop in propDict["propDict"]: if len(prop["annList"]) == 0: seedList += [{ "category_id": [prop["point"]["category_id"]], "yList": [prop["point"]["y"]], "xList": [prop["point"]["x"]], "neigh": { "yList": [prop["point"]["y"]], "xList": [prop["point"]["x"]] } }] else: if random_proposal: i = np.random.randint(0, len(prop["annList"])) mask = prop["annList"][i]["mask"] else: mask = prop["annList"][0]["mask"] seedList += [{ "category_id": [prop["point"]["category_id"]], "yList": [prop["point"]["y"]], "xList": [prop["point"]["x"]], "neigh": get_random_indices(mask, n_indices=100) }] # Background background = propDict["background"] if background.sum() == 0: y_axis = np.random.randint(0, background.shape[1], 100) x_axis =
np.random.randint(0, background.shape[2], 100)
numpy.random.randint
import h5py import numpy as np from scipy.io import loadmat from operator import itemgetter import math import scipy as sp import cv2 import matplotlib.pyplot as plt import os, sys import time import multiprocessing import random # Generate Observation Map def func(theta, m, I, imax, L, w, N, anglemask): print('*',end='') rotmat = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]]) p = 0.5*(L[:,0]+1)*(w-1) #x 0:w-1 q = 0.5*(L[:,1]+1)*(w-1) #y 0:w-1 x = [p-0.5*(w-1), q-0.5*(w-1)] x_ = np.dot(rotmat, x) p = x_[0,:]+0.5*(w-1); q = x_[1,:]+0.5*(w-1); p = np.int32(p) q = np.int32(q) light_idx = q*w + p # 0:w*w-1 x = [N[:,0], N[:,1]] x_ = np.dot(rotmat, x) pn = x_[0,:]; qn = x_[1,:]; normal = [np.transpose(pn), np.transpose(qn), N[:,2]] normal = np.transpose(normal) temp = I*anglemask/np.transpose(imax) embed = np.zeros((m, w*w), np.float32) embed[:, light_idx] = temp embed = np.reshape(embed, (m, w, w)) mask = np.zeros((m, w*w), np.bool_) mask[:, light_idx] = anglemask mask = np.reshape(mask, (m, w, w)) return embed, mask, normal, rotmat def wrapper(args): return func(*args) # for multi core cpu def light_embedding_2d_rot_invariant_multi(I, imax, L, w, N, div, isRandomThresh): m = I.shape[0] rows = w cols = w embed_rot = [] normal_rot = [] mask_rot = [] rot = [] anglemask = np.zeros((I.shape[0],I.shape[1]),np.float32) for k in range(I.shape[0]): # numpixel angle1 = 180*np.arccos(L[:,2])/np.pi if isRandomThresh == True: tgt = np.where(angle1<random.randint(20,90)) tgtrandom = np.random.permutation(tgt[0]) tgt = tgtrandom[:random.randint(50,np.min([1000,L.shape[0]]))] else: tgt = np.where(angle1<90) anglemask[k,tgt] = 1 n = multiprocessing.cpu_count() p = multiprocessing.Pool(n) params = [(np.pi*(i*360.0/div)/180, m, I, imax, L, w, N, anglemask) for i in range(np.int32(div))] result = p.map(wrapper, params) p.close() embed_list = [] mask_list = [] nml_list = [] rot_list = [] for i in range(div): embed_list.append(result[i][0].copy()) mask_list.append(result[i][1].copy()) nml_list.append(result[i][2].copy()) rot_list.append(result[i][3].copy()) embed_list = np.array(embed_list) embed_list = np.transpose(embed_list, (1,0,2,3)) mask_list = np.array(mask_list) mask_list = np.transpose(mask_list, (1,0,2,3)) nml_list = np.array(nml_list) nml_list = np.transpose(nml_list, (1,0,2)) del result,anglemask return np.array(embed_list), np.array(mask_list), np.array(nml_list), np.array(rot_list), rows, cols # for single core cpu def light_embedding_2d_rot_invariant(I, imax, L, w, N, div, isRandomThresh): m = I.shape[0] embed_rot = [] normal_rot = [] mask_rot = [] rot = [] count = 0 anglemask = np.zeros((I.shape[0],I.shape[1]),np.float32) for k in range(I.shape[0]): angle1 = 180*np.arccos(L[:,2])/np.pi if isRandomThresh == True: tgt = np.where(angle1<random.randint(20,90)) tgtrandom = np.random.permutation(tgt[0]) tgt = tgtrandom[:random.randint(50,np.min([1000,L.shape[0]]))] else: tgt = np.where(angle1<90) anglemask[k,tgt] = 1 for k in range(div): theta = k*360/div if theta < 360: count = count + 1 theta = np.pi*theta/180 rotmat = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]]) p = 0.5*(L[:,0]+1)*(w-1) #x 0:w-1 q = 0.5*(L[:,1]+1)*(w-1) #y 0:w-1 x = [p-0.5*(w-1), q-0.5*(w-1)] x_ = np.dot(rotmat, x) p = x_[0,:]+0.5*(w-1); q = x_[1,:]+0.5*(w-1); p = np.int32(p) q = np.int32(q) light_idx = q*w + p # 0:w*w-1 x = [N[:,0], N[:,1]] x_ = np.dot(rotmat, x) pn = x_[0,:]; qn = x_[1,:]; normal = [
np.transpose(pn)
numpy.transpose
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Mar 5 15:34:18 2020 @author: mubariz """ import caffe import numpy as np import os def compute_map_features(ref_map): mean_npy = np.load(str(os.path.abspath(os.curdir))+'/VPR_Techniques/HybridNet/hybridnet_mean.npy') print('Mean Array Shape:' + str(mean_npy.shape)) net = caffe.Net(str(os.path.abspath(os.curdir))+'/VPR_Techniques/HybridNet/deploy.prototxt',str(os.path.abspath(os.curdir))+'/VPR_Techniques/HybridNet/HybridNet.caffemodel', caffe.TEST) transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) print(net.blobs['data'].data.shape) transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension transformer.set_mean('data', mean_npy) # subtract the dataset-mean value in each channel transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255] transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR ref_features=[] features_ref_local=np.zeros((256,30)) for image_reference in ref_map: image_reference = image_reference / 255. image_reference = image_reference[:,:,(2,1,0)] features_ref_local=np.zeros((256,30)) if(image_reference is not None): transformed_image_ref = transformer.preprocess('data', image_reference) net.blobs['data'].data[...] = transformed_image_ref.copy() out = net.forward() features_ref=np.asarray(net.blobs['conv5'].data)[1,:,:,:].copy() for i in range(256): #S=1 features_ref_local[i,0]=np.max(features_ref[i,:,:]) #S=2 features_ref_local[i,1]=
np.max(features_ref[i,0:6,0:6])
numpy.max
import os import random import argparse import logging import json import time import multiprocessing as mp import scipy.sparse as ssp from tqdm import tqdm import networkx as nx import torch import numpy as np import dgl #os.environ["CUDA_VISIBLE_DEVICES"]="1" def process_files(files, saved_relation2id, add_traspose_rels): ''' files: Dictionary map of file paths to read the triplets from. saved_relation2id: Saved relation2id (mostly passed from a trained model) which can be used to map relations to pre-defined indices and filter out the unknown ones. ''' entity2id = {} relation2id = saved_relation2id triplets = {} ent = 0 rel = 0 for file_type, file_path in files.items(): data = [] with open(file_path) as f: file_data = [line.split() for line in f.read().split('\n')[:-1]] for triplet in file_data: if triplet[0] not in entity2id: entity2id[triplet[0]] = ent ent += 1 if triplet[2] not in entity2id: entity2id[triplet[2]] = ent ent += 1 # Save the triplets corresponding to only the known relations if triplet[1] in saved_relation2id: data.append([entity2id[triplet[0]], entity2id[triplet[2]], saved_relation2id[triplet[1]]]) triplets[file_type] = np.array(data) id2entity = {v: k for k, v in entity2id.items()} id2relation = {v: k for k, v in relation2id.items()} # Construct the list of adjacency matrix each corresponding to eeach relation. Note that this is constructed only from the train data. adj_list = [] for i in range(len(saved_relation2id)): idx = np.argwhere(triplets['graph'][:, 2] == i) adj_list.append(ssp.csc_matrix((np.ones(len(idx), dtype=np.uint8), (triplets['graph'][:, 0][idx].squeeze(1), triplets['graph'][:, 1][idx].squeeze(1))), shape=(len(entity2id), len(entity2id)))) # Add transpose matrices to handle both directions of relations. adj_list_aug = adj_list if add_traspose_rels: adj_list_t = [adj.T for adj in adj_list] adj_list_aug = adj_list + adj_list_t dgl_adj_list = ssp_multigraph_to_dgl(adj_list_aug) return adj_list, dgl_adj_list, triplets, entity2id, relation2id, id2entity, id2relation def intialize_worker(model, adj_list, dgl_adj_list, id2entity, params, node_features, kge_entity2id): global model_, adj_list_, dgl_adj_list_, id2entity_, params_, node_features_, kge_entity2id_ model_, adj_list_, dgl_adj_list_, id2entity_, params_, node_features_, kge_entity2id_ = model, adj_list, dgl_adj_list, id2entity, params, node_features, kge_entity2id def get_neg_samples_replacing_head_tail(test_links, adj_list, num_samples=50): n, r = adj_list[0].shape[0], len(adj_list) heads, tails, rels = test_links[:, 0], test_links[:, 1], test_links[:, 2] neg_triplets = [] for i, (head, tail, rel) in enumerate(zip(heads, tails, rels)): neg_triplet = {'head': [[], 0], 'tail': [[], 0]} neg_triplet['head'][0].append([head, tail, rel]) while len(neg_triplet['head'][0]) < num_samples: neg_head = head neg_tail = np.random.choice(n) if neg_head != neg_tail and adj_list[rel][neg_head, neg_tail] == 0: neg_triplet['head'][0].append([neg_head, neg_tail, rel]) neg_triplet['tail'][0].append([head, tail, rel]) while len(neg_triplet['tail'][0]) < num_samples: neg_head = np.random.choice(n) neg_tail = tail # neg_head, neg_tail, rel = np.random.choice(n), np.random.choice(n), np.random.choice(r) if neg_head != neg_tail and adj_list[rel][neg_head, neg_tail] == 0: neg_triplet['tail'][0].append([neg_head, neg_tail, rel]) neg_triplet['head'][0] = np.array(neg_triplet['head'][0]) neg_triplet['tail'][0] = np.array(neg_triplet['tail'][0]) neg_triplets.append(neg_triplet) return neg_triplets def get_neg_samples_replacing_head_tail_all(test_links, adj_list): n, r = adj_list[0].shape[0], len(adj_list) heads, tails, rels = test_links[:, 0], test_links[:, 1], test_links[:, 2] neg_triplets = [] print('sampling negative triplets...') for i, (head, tail, rel) in tqdm(enumerate(zip(heads, tails, rels)), total=len(heads)): neg_triplet = {'head': [[], 0], 'tail': [[], 0]} neg_triplet['head'][0].append([head, tail, rel]) for neg_tail in range(n): neg_head = head if neg_head != neg_tail and adj_list[rel][neg_head, neg_tail] == 0: neg_triplet['head'][0].append([neg_head, neg_tail, rel]) neg_triplet['tail'][0].append([head, tail, rel]) for neg_head in range(n): neg_tail = tail if neg_head != neg_tail and adj_list[rel][neg_head, neg_tail] == 0: neg_triplet['tail'][0].append([neg_head, neg_tail, rel]) neg_triplet['head'][0] = np.array(neg_triplet['head'][0]) neg_triplet['tail'][0] = np.array(neg_triplet['tail'][0]) neg_triplets.append(neg_triplet) return neg_triplets def get_neg_samples_replacing_head_tail_from_ruleN(ruleN_pred_path, entity2id, saved_relation2id): with open(ruleN_pred_path) as f: pred_data = [line.split() for line in f.read().split('\n')[:-1]] neg_triplets = [] for i in range(len(pred_data) // 3): neg_triplet = {'head': [[], 10000], 'tail': [[], 10000]} if pred_data[3 * i][1] in saved_relation2id: head, rel, tail = entity2id[pred_data[3 * i][0]], saved_relation2id[pred_data[3 * i][1]], entity2id[pred_data[3 * i][2]] for j, new_head in enumerate(pred_data[3 * i + 1][1::2]): neg_triplet['head'][0].append([entity2id[new_head], tail, rel]) if entity2id[new_head] == head: neg_triplet['head'][1] = j for j, new_tail in enumerate(pred_data[3 * i + 2][1::2]): neg_triplet['tail'][0].append([head, entity2id[new_tail], rel]) if entity2id[new_tail] == tail: neg_triplet['tail'][1] = j neg_triplet['head'][0] = np.array(neg_triplet['head'][0]) neg_triplet['tail'][0] = np.array(neg_triplet['tail'][0]) neg_triplets.append(neg_triplet) return neg_triplets def incidence_matrix(adj_list): ''' adj_list: List of sparse adjacency matrices ''' rows, cols, dats = [], [], [] dim = adj_list[0].shape for adj in adj_list: adjcoo = adj.tocoo() rows += adjcoo.row.tolist() cols += adjcoo.col.tolist() dats += adjcoo.data.tolist() row = np.array(rows) col = np.array(cols) data = np.array(dats) return ssp.csc_matrix((data, (row, col)), shape=dim) def _bfs_relational(adj, roots, max_nodes_per_hop=None): """ BFS for graphs with multiple edge types. Returns list of level sets. Each entry in list corresponds to relation specified by adj_list. Modified from dgl.contrib.data.knowledge_graph to node accomodate sampling """ visited = set() current_lvl = set(roots) next_lvl = set() while current_lvl: for v in current_lvl: visited.add(v) next_lvl = _get_neighbors(adj, current_lvl) next_lvl -= visited # set difference if max_nodes_per_hop and max_nodes_per_hop < len(next_lvl): next_lvl = set(random.sample(next_lvl, max_nodes_per_hop)) yield next_lvl current_lvl = set.union(next_lvl) def _get_neighbors(adj, nodes): """Takes a set of nodes and a graph adjacency matrix and returns a set of neighbors. Directly copied from dgl.contrib.data.knowledge_graph""" sp_nodes = _sp_row_vec_from_idx_list(list(nodes), adj.shape[1]) sp_neighbors = sp_nodes.dot(adj) neighbors = set(ssp.find(sp_neighbors)[1]) # convert to set of indices return neighbors def _sp_row_vec_from_idx_list(idx_list, dim): """Create sparse vector of dimensionality dim from a list of indices.""" shape = (1, dim) data = np.ones(len(idx_list)) row_ind = np.zeros(len(idx_list)) col_ind = list(idx_list) return ssp.csr_matrix((data, (row_ind, col_ind)), shape=shape) def get_neighbor_nodes(roots, adj, h=1, max_nodes_per_hop=None): bfs_generator = _bfs_relational(adj, roots, max_nodes_per_hop) lvls = list() for _ in range(h): try: lvls.append(next(bfs_generator)) except StopIteration: pass return set().union(*lvls) def subgraph_extraction_labeling(ind, rel, A_list, h=1, enclosing_sub_graph=False, max_nodes_per_hop=None, node_information=None, max_node_label_value=None): # extract the h-hop enclosing subgraphs around link 'ind' A_incidence = incidence_matrix(A_list) A_incidence += A_incidence.T # could pack these two into a function root1_nei = get_neighbor_nodes(set([ind[0]]), A_incidence, h, max_nodes_per_hop) root2_nei = get_neighbor_nodes(set([ind[1]]), A_incidence, h, max_nodes_per_hop) subgraph_nei_nodes_int = root1_nei.intersection(root2_nei) subgraph_nei_nodes_un = root1_nei.union(root2_nei) # Extract subgraph | Roots being in the front is essential for labelling and the model to work properly. if enclosing_sub_graph: subgraph_nodes = list(ind) + list(subgraph_nei_nodes_int) else: subgraph_nodes = list(ind) + list(subgraph_nei_nodes_un) subgraph = [adj[subgraph_nodes, :][:, subgraph_nodes] for adj in A_list] labels, enclosing_subgraph_nodes = node_label_new(incidence_matrix(subgraph), max_distance=h) pruned_subgraph_nodes = np.array(subgraph_nodes)[enclosing_subgraph_nodes].tolist() pruned_labels = labels[enclosing_subgraph_nodes] if max_node_label_value is not None: pruned_labels = np.array([np.minimum(label, max_node_label_value).tolist() for label in pruned_labels]) return pruned_subgraph_nodes, pruned_labels def remove_nodes(A_incidence, nodes): idxs_wo_nodes = list(set(range(A_incidence.shape[1])) - set(nodes)) return A_incidence[idxs_wo_nodes, :][:, idxs_wo_nodes] def node_label_new(subgraph, max_distance=1): # an implementation of the proposed double-radius node labeling (DRNd L) roots = [0, 1] sgs_single_root = [remove_nodes(subgraph, [root]) for root in roots] dist_to_roots = [np.clip(ssp.csgraph.dijkstra(sg, indices=[0], directed=False, unweighted=True, limit=1e6)[:, 1:], 0, 1e7) for r, sg in enumerate(sgs_single_root)] dist_to_roots = np.array(list(zip(dist_to_roots[0][0], dist_to_roots[1][0])), dtype=int) # dist_to_roots[np.abs(dist_to_roots) > 1e6] = 0 # dist_to_roots = dist_to_roots + 1 target_node_labels = np.array([[0, 1], [1, 0]]) labels = np.concatenate((target_node_labels, dist_to_roots)) if dist_to_roots.size else target_node_labels enclosing_subgraph_nodes = np.where(np.max(labels, axis=1) <= max_distance)[0] # print(len(enclosing_subgraph_nodes)) return labels, enclosing_subgraph_nodes def ssp_multigraph_to_dgl(graph, n_feats=None): """ Converting ssp multigraph (i.e. list of adjs) to dgl multigraph. """ g_nx = nx.MultiDiGraph() g_nx.add_nodes_from(list(range(graph[0].shape[0]))) # Add edges for rel, adj in enumerate(graph): # Convert adjacency matrix to tuples for nx0 nx_triplets = [] for src, dst in list(zip(adj.tocoo().row, adj.tocoo().col)): nx_triplets.append((src, dst, {'type': rel})) g_nx.add_edges_from(nx_triplets) # make dgl graph g_dgl = dgl.DGLGraph(multigraph=True) g_dgl.from_networkx(g_nx, edge_attrs=['type']) # add node features if n_feats is not None: g_dgl.ndata['feat'] = torch.tensor(n_feats) return g_dgl def prepare_features(subgraph, n_labels, max_n_label, n_feats=None): # One hot encode the node label feature and concat to n_featsure n_nodes = subgraph.number_of_nodes() label_feats = np.zeros((n_nodes, max_n_label[0] + 1 + max_n_label[1] + 1)) label_feats[np.arange(n_nodes), n_labels[:, 0]] = 1 label_feats[np.arange(n_nodes), max_n_label[0] + 1 + n_labels[:, 1]] = 1 n_feats =
np.concatenate((label_feats, n_feats), axis=1)
numpy.concatenate
from collections import OrderedDict from typing import List, Tuple, Dict import numpy as np import torch from .base_metric import BaseMetric from .metric_keys import DetailMetricKey, MainMetricKey def calc_overlap_union_iou(pred: np.ndarray or None, teacher: np.ndarray) -> Tuple[float, float, float]: """ :param pred: ndarray (4, ) :param teacher: ndarray (4, ) :return: overlap, union, iou """ teacher_area = (teacher[2] - teacher[0]) * (teacher[3] - teacher[1]) if pred is None: return 0.0, teacher_area, 0.0 pred_area = (pred[2] - pred[0]) * (pred[3] - pred[1]) intersection_width = np.maximum(np.minimum(pred[2], teacher[2]) - np.maximum(pred[0], teacher[0]), 0) intersection_height = np.maximum(np.minimum(pred[3], teacher[3]) - np.maximum(pred[1], teacher[1]), 0) overlap = intersection_width * intersection_height union = teacher_area + pred_area - overlap iou = overlap / union return overlap, union, iou class DetectionIoUByClasses(BaseMetric): def __init__(self, label_names: List[str], val_key: DetailMetricKey = DetailMetricKey.KEY_AVERAGE): assert val_key in [DetailMetricKey.KEY_TOTAL, DetailMetricKey.KEY_AVERAGE] self.label_names = label_names self.union_by_classes = [0 for _ in range(len(self.label_names))] self.overlap_by_classes = [0 for _ in range(len(self.label_names))] self._val_key = val_key def clone_empty(self) -> 'DetectionIoUByClasses': return DetectionIoUByClasses(self.label_names.copy(), self._val_key) def clone(self) -> 'DetectionIoUByClasses': new_metric = self.clone_empty() new_metric.union_by_classes = self.union_by_classes.copy() new_metric.overlap_by_classes = self.overlap_by_classes.copy() return new_metric def calc_one_batch(self, pred: np.ndarray or torch.Tensor, teacher: np.ndarray or torch.Tensor): """ :param pred: (Batch size, bounding boxes by batch, 5(x_min, y_min, x_max, y_max, label)) :param teacher: (batch size, bounding box count, 5(x_min, y_min, x_max, y_max, label)) :return: """ # 全探索だと遅いのでインデックスごとにまとめておく これをRecallAndPrecisionにも batch_pred_by_class = [] for pred_bboxes in pred: pred_bboxes_by_class = [[] for _ in range(len(self.label_names))] for pred_bbox in pred_bboxes: pred_bboxes_by_class[int(pred_bbox[-1])].append(pred_bbox) batch_pred_by_class.append(pred_bboxes_by_class) for i in range(teacher.shape[0]): bbox_annotations = teacher[i, :, :] bbox_annotations = bbox_annotations[bbox_annotations[:, -1] >= 0] pred_bboxes_by_class = batch_pred_by_class[i] for bbox_annotation in bbox_annotations: label = int(bbox_annotation[-1]) if pred[i] is None: overlap, union, _ = calc_overlap_union_iou(None, bbox_annotation) self.union_by_classes[label] += union self.overlap_by_classes[label] += overlap continue # 教師bboxに対して当てはまりの一番良いbboxを探索 max_iou = 0 best_union, best_overlap = 0, 0 for pred_bbox in pred_bboxes_by_class[label]: overlap, union, iou = calc_overlap_union_iou(pred_bbox, bbox_annotation) if max_iou < iou: max_iou = iou best_union, best_overlap = union, overlap if max_iou <= 0: overlap, union, _ = calc_overlap_union_iou(None, bbox_annotation) self.union_by_classes[label] += union self.overlap_by_classes[label] += overlap continue self.union_by_classes[label] += best_union self.overlap_by_classes[label] += best_overlap def calc_summary(self) -> Tuple[float, Dict[str, float]]: result = OrderedDict() total_overlap, total_union = 0, 0 avg_iou = 0.0 for i, label_name in enumerate(self.label_names): overlap, union = self.overlap_by_classes[i], self.union_by_classes[i] result[label_name] = overlap / union if union > 0 else 0 total_overlap += overlap total_union += union avg_iou += result[label_name] result[DetailMetricKey.KEY_AVERAGE.value] = avg_iou / len(self.label_names) result[DetailMetricKey.KEY_TOTAL.value] = total_overlap / total_union if total_union > 0 else 0 return result[self._val_key.value], result def clear(self): self.union_by_classes = [0 for i in range(len(self.label_names))] self.overlap_by_classes = [0 for i in range(len(self.label_names))] def __add__(self, other: 'DetectionIoUByClasses') -> 'DetectionIoUByClasses': if not isinstance(other, DetectionIoUByClasses): raise RuntimeError(f"Bad class type. expected: {DetectionIoUByClasses.__name__}") if len(self.label_names) != len(other.label_names): raise RuntimeError( f"Label count must be same. but self is {len(self.label_names)} and other is {len(other.label_names)}") new_metric = self.clone_empty() for i in range(len(self.union_by_classes)): new_metric.union_by_classes[i] = self.union_by_classes[i] + other.union_by_classes[i] new_metric.overlap_by_classes[i] = self.overlap_by_classes[i] + other.overlap_by_classes[i] return new_metric def __truediv__(self, num: int) -> 'DetectionIoUByClasses': return self.clone() class RecallAndPrecision(BaseMetric): def __init__(self, label_names: List[str], main_val_key: MainMetricKey = MainMetricKey.KEY_F_SCORE, sub_val_key: DetailMetricKey = DetailMetricKey.KEY_TOTAL): self.label_names = label_names self.tp_by_classes = [0 for _ in range(len(self.label_names))] self.fp_by_classes = [0 for _ in range(len(self.label_names))] self.fn_by_classes = [0 for _ in range(len(self.label_names))] self._main_val_key = main_val_key self._sub_val_key = sub_val_key assert self._main_val_key in [MainMetricKey.KEY_RECALL, MainMetricKey.KEY_PRECISION, MainMetricKey.KEY_F_SCORE] assert self._sub_val_key in [DetailMetricKey.KEY_AVERAGE, DetailMetricKey.KEY_TOTAL] def clone_empty(self) -> 'RecallAndPrecision': return RecallAndPrecision(self.label_names.copy(), self._main_val_key, self._sub_val_key) def clone(self) -> 'RecallAndPrecision': new_metric = self.clone_empty() new_metric.tp_by_classes = self.tp_by_classes.copy() new_metric.fp_by_classes = self.fp_by_classes.copy() new_metric.fn_by_classes = self.fn_by_classes.copy() return new_metric def calc_one_batch(self, pred: np.ndarray or torch.Tensor, teacher: np.ndarray or torch.Tensor): """ :param pred: (Batch size, bounding boxes by batch, 5(x_min, y_min, x_max, y_max, label)) :param teacher: (batch size, bounding box count, 5(x_min, y_min, x_max, y_max, label)) :return: """ for i in range(teacher.shape[0]): bbox_annotations = teacher[i, :, :] bbox_annotations = bbox_annotations[bbox_annotations[:, 4] >= 0] pred_bboxes = pred[i].copy() searched_index_ls = [] # 全探索だと遅いのでインデックスごとにまとめておく idx_ls_by_classes = [[] for _ in range(len(self.label_names))] for j, pred_bbox in enumerate(pred_bboxes): idx_ls_by_classes[int(pred_bbox[-1])].append(j) for bbox_annotation in bbox_annotations: label = int(bbox_annotation[-1]) if pred_bboxes is None or len(pred_bboxes) == 0: self.fn_by_classes[label] += 1 continue # 教師bboxに当てはまっているbboxを探索 is_matched = False for pred_bbox_idx in idx_ls_by_classes[label]: if pred_bbox_idx in searched_index_ls: continue pred_bbox = pred_bboxes[pred_bbox_idx] overlap, union, iou = calc_overlap_union_iou(pred_bbox, bbox_annotation) if iou >= 0.5: self.tp_by_classes[label] += 1 is_matched = True searched_index_ls.append(i) break if not is_matched: self.fn_by_classes[label] += 1 # 誤検出した数を算出 for i, pred_bbox in enumerate(pred_bboxes): if i in searched_index_ls: continue self.fp_by_classes[int(pred_bbox[-1])] += 1 def calc_summary(self) -> Tuple[float, Dict[str, float]]: recall_dict, precision_dict, f_score_dict = OrderedDict(), OrderedDict(), OrderedDict() for label, label_name in enumerate(self.label_names): tp, fp, fn = self.tp_by_classes[label], self.fp_by_classes[label], self.fn_by_classes[label] recall = tp / (tp + fn) if tp + fn > 0 else 0 precision = tp / (tp + fp) if tp + fp > 0 else 0 f_score = (2 * recall * precision) / (recall + precision) if recall + precision > 0 else 0 recall_dict[label_name] = recall precision_dict[label_name] = precision f_score_dict[label_name] = f_score recall_dict[DetailMetricKey.KEY_AVERAGE.value] = sum(recall_dict.values()) / len(self.label_names) precision_dict[DetailMetricKey.KEY_AVERAGE.value] = sum(precision_dict.values()) / len(self.label_names) f_score_dict[DetailMetricKey.KEY_AVERAGE.value] = sum(f_score_dict.values()) / len(self.label_names) total_tp, total_fn, total_fp = sum(self.tp_by_classes), sum(self.fn_by_classes), sum(self.fp_by_classes) total_recall = total_tp / (total_tp + total_fn) if total_tp + total_fn > 0 else 0 total_precision = total_tp / (total_tp + total_fp) if total_tp + total_fp > 0 else 0 total_f_score = (2 * total_recall * total_precision) / ( total_recall + total_precision) if total_recall + total_precision > 0 else 0 recall_dict[DetailMetricKey.KEY_TOTAL.value] = total_recall precision_dict[DetailMetricKey.KEY_TOTAL.value] = total_precision f_score_dict[DetailMetricKey.KEY_TOTAL.value] = total_f_score result = { MainMetricKey.KEY_RECALL.value: recall_dict, MainMetricKey.KEY_PRECISION.value: precision_dict, MainMetricKey.KEY_F_SCORE.value: f_score_dict } return result[self._main_val_key.value][self._sub_val_key.value], result def clear(self): self.tp_by_classes = [0 for i in range(len(self.label_names))] self.fp_by_classes = [0 for i in range(len(self.label_names))] self.fn_by_classes = [0 for i in range(len(self.label_names))] def __add__(self, other: 'RecallAndPrecision') -> 'RecallAndPrecision': if not isinstance(other, RecallAndPrecision): raise RuntimeError(f"Bad class type. expected: {RecallAndPrecision.__name__}") if len(self.label_names) != len(other.label_names): raise RuntimeError( f"Label count must be same. but self is {len(self.label_names)} and other is {len(other.label_names)}") new_metric = self.clone_empty() for i in range(len(self.tp_by_classes)): new_metric.tp_by_classes[i] = self.tp_by_classes[i] + other.tp_by_classes[i] new_metric.fp_by_classes[i] = self.fp_by_classes[i] + other.fp_by_classes[i] new_metric.fn_by_classes[i] = self.fn_by_classes[i] + other.fn_by_classes[i] return new_metric def __truediv__(self, num: int) -> 'RecallAndPrecision': return self.clone() # TODO 実装途中 class mAPByClasses: def __init__(self, n_classes: int): self._n_classes = n_classes def __call__(self, results, teachers): average_precisions = [_ for _ in range(self._n_classes)] for label in range(self._n_classes): false_positives = np.zeros((0,)) true_positives = np.zeros((0,)) scores =
np.zeros((0,))
numpy.zeros
""" Holds some code for analyzing the faces_basic dataset. Eventually much of this code should be broken out to functions that are common across datasets, then this file should hold only study-specific information. The working directory must be ../../.. relative to this file. Notes: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004660 0.15 - 200 Hz 1-pole filter 1000 Hz srate Paper used CAR after rejecting artifacts or epileptiform activity. 58-62 Hz 3rd order Butterworth filter. 400 msec stimulus on (face or house), 400 msec ISI. 50 house and 50 face pictures per run. Further methods from https://www.sciencedirect.com/science/article/pii/S105381191300935X Spectral decoupling: 1-sec window centred in the middle of the stimulus. PSD (Hann -> Fourier -> * complex conjugate) Normalize w.r.t. mean spectrum across all segments ( psd / mean(psd) ) log(psd) PCA to get projections from PSD to PSCs (only on freqs < 200 Hz that are not around 60Hz or its harmonics) Online: Spectrogram (wavelets), project each time point onto first PSC (broadband) Smoothing (sigma = 0.05 sec) z-scoring exp() Here we will take a slightly different approach: PSD -> TensorDecomposition (trials, frequencies, channels) Raw -> TensorDecomposition (trials, times, channels) (? DemixingPCA ?) @author: <NAME> """ from pathlib import Path import numpy as np DATA_ROOT = Path.cwd() / 'data' / 'kjm_ecog' / 'download' / 'faces_basic' AREA_LABELS = [ 'Temporal pole', 'Parahippocampal gyrus', # parahippocampal part of the medial occipito-temporal gyrus 'Inferior temporal gyrus', 'Middle temporal gyrus', 'fusiform gyrus', # Lateral occipito-temporal gyrus, 'Lingual gyrus', # lingual part of the medial occipito-temporal gyrus 'Inferior occipital gyrus', 'Cuneus', 'Post-ventral cingulate gyrus', # Posterior-ventral part of the 'Middle Occipital gyrus', 'occipital pole', 'precuneus', 'Superior occipital gyrus', 'Post-dorsal cingulate gyrus', # Posterior-dorsal part of the cingulate gyrus ' ', ' ', ' ', ' ', ' ', 'Non-included area', ] def import_to_npype(subject_id): import scipy.io from collections import OrderedDict from neuropype.engine import InstanceAxis, SpaceAxis, TimeAxis, Chunk, Block, Packet, Flags data_fn = DATA_ROOT / 'data' / subject_id / (subject_id + '_faceshouses.mat') dat_contents = scipy.io.loadmat(data_fn) stim = dat_contents['stim'].reshape(-1) # samples x 1; uint8 data = dat_contents['data'] # samples x channels; float srate = dat_contents['srate'][0][0] # Time vector tvec = np.arange(len(stim)) / srate # Process the stimulus to get an events chunk b_stim_onset = np.diff(np.hstack((0, stim))) != 0 b_stim_onset = np.logical_and(b_stim_onset, stim != 0) stim_inds = np.where(b_stim_onset)[0] stim_vals = stim[stim_inds] stim_content = np.repeat(['ISI'], len(stim_vals)).astype(object) stim_content[stim_vals <= 50] = 'house' stim_content[np.logical_and(stim_vals > 50, stim_vals <= 100)] = 'face' stim_ax = InstanceAxis(tvec[b_stim_onset], data=stim_content.tolist()) stim_ax.append_fields(['StimID'], [stim_vals]) stim_chunk = Chunk(block=Block(data=np.nan * np.ones(stim_ax.data.shape), axes=(stim_ax,)), props=[Flags.is_event_stream]) # Get the channel labels and locations. locs_fn = DATA_ROOT / 'locs' / (subject_id + '_xslocs.mat') locs_contents = scipy.io.loadmat(locs_fn) # 'elcode' and 'locs' elec_names = np.array([AREA_LABELS[el_code - 1] for el_code in locs_contents['elcode'].reshape(-1)], dtype=object) # Append a .N to each electrode name, where N is the count of electrodes with that name. # The below method is a little silly, but more straightforward approaches did not work in interactive debug mode. name_counts = {_: 0 for _ in
np.unique(elec_names)
numpy.unique
import numpy as np import tensorflow as tf from tensorflow.python.framework import constant_op import sys import json import math import os import time import random import sqlite3 random.seed(time.time()) from model import Model, _START_VOCAB tf.app.flags.DEFINE_boolean("is_train", True, "Set to False to inference.") tf.app.flags.DEFINE_integer("symbols", 30000, "vocabulary size.") tf.app.flags.DEFINE_integer("num_entities", 21471, "entitiy vocabulary size.") tf.app.flags.DEFINE_integer("num_relations", 44, "relation size.") tf.app.flags.DEFINE_integer("embed_units", 300, "Size of word embedding.") tf.app.flags.DEFINE_integer("trans_units", 100, "Size of trans embedding.") tf.app.flags.DEFINE_integer("units", 512, "Size of each model layer.") tf.app.flags.DEFINE_integer("layers", 2, "Number of layers in the model.") tf.app.flags.DEFINE_boolean("copy_use", True, "use copy mechanism or not.") tf.app.flags.DEFINE_integer("batch_size", 100, "Batch size to use during training.") tf.app.flags.DEFINE_string("data_dir", "./data", "Data directory") tf.app.flags.DEFINE_string("train_dir", "./train", "Training directory.") tf.app.flags.DEFINE_integer("per_checkpoint", 1000, "How many steps to do per checkpoint.") tf.app.flags.DEFINE_integer("inference_version", 0, "The version for inferencing.") tf.app.flags.DEFINE_boolean("log_parameters", True, "Set to True to show the parameters") tf.app.flags.DEFINE_string("inference_path", "test", "Set filename of inference, default isscreen") FLAGS = tf.app.flags.FLAGS if FLAGS.train_dir[-1] == '/': FLAGS.train_dir = FLAGS.train_dir[:-1] csk_triples, csk_entities, kb_dict = [], [], [] def prepare_data(path, is_train=True): global csk_entities, csk_triples, kb_dict with open('%s/resource.txt' % path) as f: d = json.loads(f.readline()) csk_triples = d['csk_triples'] csk_entities = d['csk_entities'] raw_vocab = d['vocab_dict'] kb_dict = d['dict_csk'] data_train, data_dev, data_test = [], [], [] if is_train: with open('%s/trainset.txt' % path) as f: for idx, line in enumerate(f): #if idx == 100000: break if idx % 100000 == 0: print('read train file line %d' % idx) data_train.append(json.loads(line)) with open('%s/validset.txt' % path) as f: for line in f: data_dev.append(json.loads(line)) with open('%s/testset.txt' % path) as f: for line in f: data_test.append(json.loads(line)) return raw_vocab, data_train, data_dev, data_test def build_vocab(path, raw_vocab, trans='transE'): print("Creating word vocabulary...") vocab_list = _START_VOCAB + sorted(raw_vocab, key=raw_vocab.get, reverse=True) if len(vocab_list) > FLAGS.symbols: vocab_list = vocab_list[:FLAGS.symbols] print("Creating entity vocabulary...") entity_list = ['_NONE', '_PAD_H', '_PAD_R', '_PAD_T', '_NAF_H', '_NAF_R', '_NAF_T'] with open('%s/entity.txt' % path) as f: for i, line in enumerate(f): e = line.strip() entity_list.append(e) print("Creating relation vocabulary...") relation_list = [] with open('%s/relation.txt' % path) as f: for i, line in enumerate(f): r = line.strip() relation_list.append(r) print("Loading word vectors...") vectors = {} with open('%s/glove.840B.300d.txt' % path) as f: for i, line in enumerate(f): if i % 100000 == 0: print(" processing line %d" % i) s = line.strip() word = s[:s.find(' ')] vector = s[s.find(' ')+1:] vectors[word] = vector embed = [] for word in vocab_list: if word in vectors: vector = map(float, vectors[word].split()) else: vector = np.zeros((FLAGS.embed_units), dtype=np.float32) embed.append(vector) embed = np.array(embed, dtype=np.float32) print("Loading entity vectors...") entity_embed = [] with open('%s/entity_%s.txt' % (path, trans)) as f: for i, line in enumerate(f): s = line.strip().split('\t') entity_embed.append(map(float, s)) print("Loading relation vectors...") relation_embed = [] with open('%s/relation_%s.txt' % (path, trans)) as f: for i, line in enumerate(f): s = line.strip().split('\t') relation_embed.append(s) entity_relation_embed = np.array(entity_embed+relation_embed, dtype=np.float32) entity_embed = np.array(entity_embed, dtype=np.float32) relation_embed =
np.array(relation_embed, dtype=np.float32)
numpy.array
# encoding: utf-8 import numpy as np import os import torch from PIL import Image import matplotlib.pyplot as plt from collections import defaultdict import gc from utils.AlignedTripletLoss import low_memory_local_dist from trainers.re_ranking import re_ranking as re_ranking_func class ResNetEvaluator: def __init__(self, model): self.model = model def save_incorrect_pairs(self, distmat, queryloader, galleryloader, g_pids, q_pids, g_camids, q_camids, savefig): os.makedirs(savefig, exist_ok=True) self.model.eval() m = distmat.shape[0] indices = np.argsort(distmat, axis=1) for i in range(m): for j in range(10): index = indices[i][j] if g_camids[index] == q_camids[i] and g_pids[index] == q_pids[i]: continue else: break if g_pids[index] == q_pids[i]: continue fig, axes =plt.subplots(1, 11, figsize=(12, 8)) img = queryloader.dataset.dataset[i][0] img = Image.open(img).convert('RGB') axes[0].set_title(q_pids[i]) axes[0].imshow(img) axes[0].set_axis_off() for j in range(10): gallery_index = indices[i][j] img = galleryloader.dataset.dataset[gallery_index][0] img = Image.open(img).convert('RGB') axes[j+1].set_title(g_pids[gallery_index]) axes[j+1].set_axis_off() axes[j+1].imshow(img) fig.savefig(os.path.join(savefig, '%d.png' %q_pids[i])) plt.close(fig) def evaluate(self, queryloader, galleryloader, queryFliploader, galleryFliploader, ranks=[1, 2, 4, 5,8, 10, 16, 20], eval_flip=False, re_ranking=False, savefig=False): self.model.eval() qf, q_pids, q_camids = [], [], [] for inputs0, inputs1 in zip(queryloader, queryFliploader): inputs, pids, camids = self._parse_data(inputs0) feature0 = self._forward(inputs) if eval_flip: inputs, pids, camids = self._parse_data(inputs1) feature1 = self._forward(inputs) qf.append((feature0 + feature1) / 2.0) else: qf.append(feature0) q_pids.extend(pids) q_camids.extend(camids) qf = torch.cat(qf, 0) q_pids = torch.Tensor(q_pids) q_camids = torch.Tensor(q_camids) print("Extracted features for query set: {} x {}".format(qf.size(0), qf.size(1))) gf, g_pids, g_camids = [], [], [] for inputs0, inputs1 in zip(galleryloader, galleryFliploader): inputs, pids, camids = self._parse_data(inputs0) feature0 = self._forward(inputs) if eval_flip: inputs, pids, camids = self._parse_data(inputs1) feature1 = self._forward(inputs) gf.append((feature0 + feature1) / 2.0) else: gf.append(feature0) g_pids.extend(pids) g_camids.extend(camids) gf = torch.cat(gf, 0) g_pids = torch.Tensor(g_pids) g_camids = torch.Tensor(g_camids) print("Extracted features for gallery set: {} x {}".format(gf.size(0), gf.size(1))) print("Computing distance matrix") m, n = qf.size(0), gf.size(0) q_g_dist = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \ torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t() q_g_dist.addmm_(1, -2, qf, gf.t()) if re_ranking: q_q_dist = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, m) + \ torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, m).t() q_q_dist.addmm_(1, -2, qf, qf.t()) g_g_dist = torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, n) + \ torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, n).t() g_g_dist.addmm_(1, -2, gf, gf.t()) q_g_dist = q_g_dist.numpy() q_g_dist[q_g_dist < 0] = 0 q_g_dist = np.sqrt(q_g_dist) q_q_dist = q_q_dist.numpy() q_q_dist[q_q_dist < 0] = 0 q_q_dist = np.sqrt(q_q_dist) g_g_dist = g_g_dist.numpy() g_g_dist[g_g_dist < 0] = 0 g_g_dist = np.sqrt(g_g_dist) distmat = torch.Tensor(re_ranking_func(q_g_dist, q_q_dist, g_g_dist)) else: distmat = q_g_dist if savefig: print("Saving fingure") self.save_incorrect_pairs(distmat.numpy(), queryloader, galleryloader, g_pids.numpy(), q_pids.numpy(), g_camids.numpy(), q_camids.numpy(), savefig) print("Computing CMC and mAP") cmc, mAP = self.eval_func_gpu(distmat, q_pids, g_pids, q_camids, g_camids) print("Results ----------") print("mAP: {:.1%}".format(mAP)) print("CMC curve") for r in ranks: print("Rank-{:<3}: {:.1%}".format(r, cmc[r - 1])) print("------------------") del(qf) del(gf) try: gc.collect() except: print('cannot collect.....') return cmc[0] def _parse_data(self, inputs): imgs, pids, camids = inputs return imgs.cuda(), pids, camids def _forward(self, inputs): with torch.no_grad(): feature = self.model(inputs) return feature.cpu() def eval_func_gpu(self, distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50): num_q, num_g = distmat.size() if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) _, indices = torch.sort(distmat, dim=1) matches = g_pids[indices] == q_pids.view([num_q, -1]) keep = ~((g_pids[indices] == q_pids.view([num_q, -1])) & (g_camids[indices] == q_camids.view([num_q, -1]))) #keep = g_camids[indices] != q_camids.view([num_q, -1]) results = [] num_rel = [] for i in range(num_q): m = matches[i][keep[i]] if m.any(): num_rel.append(m.sum()) results.append(m[:max_rank].unsqueeze(0)) matches = torch.cat(results, dim=0).float() num_rel = torch.Tensor(num_rel) cmc = matches.cumsum(dim=1) cmc[cmc > 1] = 1 all_cmc = cmc.sum(dim=0) / cmc.size(0) pos = torch.Tensor(range(1, max_rank+1)) temp_cmc = matches.cumsum(dim=1) / pos * matches AP = temp_cmc.sum(dim=1) / num_rel mAP = AP.sum() / AP.size(0) return all_cmc.numpy(), mAP.item() def eval_func(self, distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50): """Evaluation with market1501 metric Key: for each query identity, its gallery images from the same camera view are discarded. """ num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices = np.argsort(distmat, axis=1) matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_AP = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query pid and camid q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same pid and camid with query order = indices[q_idx] remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve # binary vector, positions with value 1 are correct matches orig_cmc = matches[q_idx][keep] if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * orig_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) return all_cmc, mAP class AlignedEvaluator: def __init__(self, model): self.model = model def eval_cuhk03(self, distmat, q_pids, g_pids, q_camids, g_camids, max_rank, N=100): """Evaluation with cuhk03 metric Key: one image for each gallery identity is randomly sampled for each query identity. Random sampling is performed N times (default: N=100). """ num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices = np.argsort(distmat, axis=1) matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_AP = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query pid and camid q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same pid and camid with query order = indices[q_idx] remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue kept_g_pids = g_pids[order][keep] g_pids_dict = defaultdict(list) for idx, pid in enumerate(kept_g_pids): g_pids_dict[pid].append(idx) cmc, AP = 0., 0. for repeat_idx in range(N): mask = np.zeros(len(orig_cmc), dtype=np.bool) for _, idxs in g_pids_dict.items(): # randomly sample one image for each gallery person rnd_idx = np.random.choice(idxs) mask[rnd_idx] = True masked_orig_cmc = orig_cmc[mask] _cmc = masked_orig_cmc.cumsum() _cmc[_cmc > 1] = 1 cmc += _cmc[:max_rank].astype(np.float32) # compute AP num_rel = masked_orig_cmc.sum() tmp_cmc = masked_orig_cmc.cumsum() tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * masked_orig_cmc AP += tmp_cmc.sum() / num_rel cmc /= N AP /= N all_cmc.append(cmc) all_AP.append(AP) num_valid_q += 1. assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) return all_cmc, mAP def eval_market1501(self, distmat, q_pids, g_pids, q_camids, g_camids, max_rank): """Evaluation with market1501 metric Key: for each query identity, its gallery images from the same camera view are discarded. """ num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices = np.argsort(distmat, axis=1) matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_AP = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query pid and camid q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same pid and camid with query order = indices[q_idx] remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * orig_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc =
np.asarray(all_cmc)
numpy.asarray
import numpy as np # 2013-10-31 Added MultiRate class, simplified fitting methods, removed full_output parameter # 2014-12-18 Add loading of Frequency, Integration time and Iterations, calculate lower # bound on errors from Poisson distribution # 2015-01-28 Simplified fitting again. Needs more work # 2015-03-02 Added functions for number density calculation _verbosity = 2 def set_verbosity(level): """ 0: serious/unrecoverable error 1: recoverable error 2: warning 3: information """ global _verbosity _verbosity = level def warn(message, level): if level <= _verbosity: print(message) def fitter(p0, errfunc, args): from lmfit import minimize result = minimize(errfunc, p0, args=args, nan_policy="omit") if not result.success: msg = " Optimal parameters not found: " + result.message raise RuntimeError(msg) for i, name in enumerate(result.var_names): if result.params[name].value == result.init_vals[i]: warn("Warning: fitter: parameter \"%s\" was not changed, it is probably redundant"%name, 2) from scipy.stats import chi2 chi = chi2.cdf(result.chisqr, result.nfree) if chi > 0.5: pval = -(1-chi)*2 else: pval = chi*2 pval = 1-chi return result.params, pval, result def dict2Params(dic): from lmfit import Parameters if isinstance(dic, Parameters): return dic.copy() p = Parameters() for key, val in dic.items(): p.add(key, value=val) return p P = dict2Params class Rate: def __init__(self, fname, full_data=False, skip_iter=[]): import re import datetime as dt fr = open(fname) state = -1 npoints = 0 nions = 0 pointno = 0 iterno = 0 ioniter = [] ionname = [] frequency = 0 integration = 0 poisson_error = True # -1 header # 0 init # 1 read time # 2 read data for lineno, line in enumerate(fr): # read header if state == -1: if lineno == 2: T1 = line[:22].split() T2 = line[22:].split() self.starttime = dt.datetime.strptime(" ".join(T1), "%Y-%m-%d %H:%M:%S.%f") self.stoptime = dt.datetime.strptime(" ".join(T2), "%Y-%m-%d %H:%M:%S.%f") if lineno == 3: state = 0 toks = line.split() if len(toks) == 0: continue if state == 0: if re.search("Period \(s\)=", line): frequency = 1/float(re.search("Period \(s\)=([0-9.]+)", line).group(1)) if re.search("Frequency=", line): frequency = float(re.search("Frequency=([0-9.]+)", line).group(1)) if re.search("Integration time \(s\)", line): integration = float(re.search("Integration time \(s\)=([0-9.]+)", line).group(1)) if re.search("Number of Points=", line): npoints = int(re.search("Number of Points=(\d+)", line).group(1)) if re.search("Number of Iterations=", line): self.niter = int(re.search("Number of Iterations=(\d+)", line).group(1)) if toks[0] == "[Ion": nions += 1 if re.search("^Iterations=", line) : ioniter.append(int(re.search("Iterations=(\d+)", line).group(1))) if re.search("^Name=", line) : ionname.append(re.search("Name=(.+)$", line).group(1).strip('\"')) if toks[0] == "Time": if len(toks)-2 != nions: print("Corrupt file", fname, "Wrong number of ions in the header. Trying to recover") # Assume that the Time header is correct: nions = len(toks)-2 ioniter = ioniter[:nions] if len(ioniter) < nions: warn("Corrupt file " + str(fname) + ": Iterations for all species not recorded, guessing...", 1) while len(ioniter) < nions: ioniter.append(ioniter[-1]) if len(ionname) < nions: warn("Corrupt file " + str(fname) + ": Names for all species not recorded, making something up...", 2) ionname += toks[len(ionname)+2:] state = 1 time = [] data = np.zeros((nions, npoints, self.niter)) continue if state == 1: try: newtime = float(toks[0]) except ValueError: if pointno != npoints: warn("Corrupt file " + fname + " trying to guess number of points", 2) npoints = pointno data.resize((nions, npoints, self.niter)) time = np.array(time) state = 2 else: time.append(newtime) pointno += 1 if state == 2: if toks[0] == "Iteration": iterno = int(toks[1])-1 if iterno+1 > self.niter: warn("Corrupt file " + fname + " trying to guess number of iterations", 2) #msg = "Corrupt file: " + fname #raise IOError(msg) self.niter = iterno+1 data.resize((nions, npoints, self.niter)) pointno = 0 continue try: data[:, pointno, iterno] = [float(x) for x in toks][1:-1] except ValueError: warn("Error in file " + fname + " number of ions probably wrong") pointno += 1 ioniter = np.array(ioniter) # in case of multiple measurements per iteration if iterno+1 != self.niter: if self.niter % (iterno+1) != 0: msg = "Corrupt file: " + fname print(("Corrupt file " + fname + " trying to guess number of iterations:" + str(iterno+1))) if iterno+1 < self.niter: data = data[:,:,:iterno+1] else: newdata =
np.zeros((nions, npoints, iterno+1))
numpy.zeros
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for polynomial_tensor.py.""" from __future__ import absolute_import, division import unittest import copy import numpy from openfermion.ops import PolynomialTensor from openfermion.transforms import get_fermion_operator from openfermion.utils._slater_determinants_test import ( random_quadratic_hamiltonian) class PolynomialTensorTest(unittest.TestCase): def setUp(self): self.n_qubits = 2 self.constant = 23.0 one_body_a = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_a = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_a[0, 1] = 2 one_body_a[1, 0] = 3 two_body_a[0, 1, 0, 1] = 4 two_body_a[1, 1, 0, 0] = 5 self.one_body_a = one_body_a self.two_body_a = two_body_a self.polynomial_tensor_a = PolynomialTensor( {(): self.constant, (1, 0): one_body_a, (1, 1, 0, 0): two_body_a}) self.one_body_operand = numpy.zeros((self.n_qubits, self.n_qubits)) self.two_body_operand = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) self.one_body_operand[0, 1] = 6 self.one_body_operand[1, 0] = 7 self.two_body_operand[0, 1, 0, 1] = 8 self.two_body_operand[1, 1, 0, 0] = 9 self.polynomial_tensor_operand = PolynomialTensor( {(1, 0): self.one_body_operand, (0, 0, 1, 1): self.two_body_operand}) self.polynomial_tensor_a_with_zeros = PolynomialTensor( {(): self.constant, (1, 0): one_body_a, (1, 1, 0, 0): two_body_a, (1, 1, 0, 0, 0, 0): numpy.zeros([self.n_qubits] * 6)}) one_body_na = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_na = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_na[0, 1] = -2 one_body_na[1, 0] = -3 two_body_na[0, 1, 0, 1] = -4 two_body_na[1, 1, 0, 0] = -5 self.polynomial_tensor_na = PolynomialTensor( {(): -self.constant, (1, 0): one_body_na, (1, 1, 0, 0): two_body_na}) one_body_b = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_b = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_b[0, 1] = 1 one_body_b[1, 0] = 2 two_body_b[0, 1, 0, 1] = 3 two_body_b[1, 0, 0, 1] = 4 self.polynomial_tensor_b = PolynomialTensor( {(): self.constant, (1, 0): one_body_b, (1, 1, 0, 0): two_body_b}) one_body_ab = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_ab = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_ab[0, 1] = 3 one_body_ab[1, 0] = 5 two_body_ab[0, 1, 0, 1] = 7 two_body_ab[1, 0, 0, 1] = 4 two_body_ab[1, 1, 0, 0] = 5 self.polynomial_tensor_ab = PolynomialTensor( {(): 2.0 * self.constant, (1, 0): one_body_ab, (1, 1, 0, 0): two_body_ab}) constant_axb = self.constant * self.constant one_body_axb = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_axb = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_axb[0, 1] = 2 one_body_axb[1, 0] = 6 two_body_axb[0, 1, 0, 1] = 12 self.polynomial_tensor_axb = PolynomialTensor( {(): constant_axb, (1, 0): one_body_axb, (1, 1, 0, 0): two_body_axb}) self.n_qubits_plus_one = self.n_qubits + 1 one_body_c = numpy.zeros((self.n_qubits_plus_one, self.n_qubits_plus_one)) two_body_c = numpy.zeros((self.n_qubits_plus_one, self.n_qubits_plus_one, self.n_qubits_plus_one, self.n_qubits_plus_one)) one_body_c[0, 1] = 1 one_body_c[1, 0] = 2 two_body_c[0, 1, 0, 1] = 3 two_body_c[1, 0, 0, 1] = 4 self.polynomial_tensor_c = PolynomialTensor( {(): self.constant, (1, 0): one_body_c, (1, 1, 0, 0): two_body_c}) one_body_hole = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_hole = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_hole[0, 1] = 2 one_body_hole[1, 0] = 3 two_body_hole[0, 1, 0, 1] = 4 two_body_hole[1, 1, 0, 0] = 5 self.polynomial_tensor_hole = PolynomialTensor( {(): self.constant, (0, 1): one_body_hole, (0, 0, 1, 1): two_body_hole}) one_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits)) two_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits)) one_body_spinful[0, 1] = 2 one_body_spinful[1, 0] = 3 one_body_spinful[2, 3] = 6 one_body_spinful[3, 2] = 7 two_body_spinful[0, 1, 0, 1] = 4 two_body_spinful[1, 1, 0, 0] = 5 two_body_spinful[2, 1, 2, 3] = 8 two_body_spinful[3, 3, 2, 2] = 9 self.polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) def test_setitem_1body(self): expected_one_body_tensor = numpy.array([[0, 3], [2, 0]]) self.polynomial_tensor_a[(0, 1), (1, 0)] = 3 self.polynomial_tensor_a[(1, 1), (0, 0)] = 2 self.assertTrue(numpy.allclose( self.polynomial_tensor_a.n_body_tensors[(1, 0)], expected_one_body_tensor)) def test_getitem_1body(self): self.assertEqual(self.polynomial_tensor_c[(0, 1), (1, 0)], 1) self.assertEqual(self.polynomial_tensor_c[(1, 1), (0, 0)], 2) def test_setitem_2body(self): self.polynomial_tensor_a[(0, 1), (1, 1), (1, 0), (0, 0)] = 3 self.polynomial_tensor_a[(1, 1), (0, 1), (0, 0), (1, 0)] = 2 self.assertEqual( self.polynomial_tensor_a.n_body_tensors[ (1, 1, 0, 0)][0, 1, 1, 0], 3) self.assertEqual( self.polynomial_tensor_a.n_body_tensors[ (1, 1, 0, 0)][1, 0, 0, 1], 2) def test_getitem_2body(self): self.assertEqual( self.polynomial_tensor_c[(0, 1), (1, 1), (0, 0), (1, 0)], 3) self.assertEqual( self.polynomial_tensor_c[(1, 1), (0, 1), (0, 0), (1, 0)], 4) def test_invalid_getitem_indexing(self): with self.assertRaises(KeyError): self.polynomial_tensor_a[(0, 1), (1, 1), (0, 0)] def test_invalid_setitem_indexing(self): test_tensor = copy.deepcopy(self.polynomial_tensor_a) with self.assertRaises(KeyError): test_tensor[(0, 1), (1, 1), (0, 0)] = 5 def test_eq(self): self.assertEqual(self.polynomial_tensor_a, self.polynomial_tensor_a) self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_hole) self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_spinful) # OK to have different keys if arrays for differing keys are 0-arrays self.assertEqual(self.polynomial_tensor_a, self.polynomial_tensor_a_with_zeros) self.assertEqual(self.polynomial_tensor_a_with_zeros, self.polynomial_tensor_a) def test_ne(self): self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_b) def test_add(self): new_tensor = self.polynomial_tensor_a + self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_ab) def test_iadd(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor += self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_ab) def test_invalid_addend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a + 2 def test_invalid_tensor_shape_add(self): with self.assertRaises(TypeError): self.polynomial_tensor_a + self.polynomial_tensor_c def test_different_keys_add(self): result = self.polynomial_tensor_a + self.polynomial_tensor_operand expected = PolynomialTensor( {(): self.constant, (1, 0): numpy.add(self.one_body_a, self.one_body_operand), (1, 1, 0, 0): self.two_body_a, (0, 0, 1, 1): self.two_body_operand}) self.assertEqual(result, expected) def test_neg(self): self.assertEqual(-self.polynomial_tensor_a, self.polynomial_tensor_na) def test_sub(self): new_tensor = self.polynomial_tensor_ab - self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_a) def test_isub(self): new_tensor = copy.deepcopy(self.polynomial_tensor_ab) new_tensor -= self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_a) def test_invalid_subtrahend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a - 2 def test_invalid_tensor_shape_sub(self): with self.assertRaises(TypeError): self.polynomial_tensor_a - self.polynomial_tensor_c def test_different_keys_sub(self): result = self.polynomial_tensor_a - self.polynomial_tensor_operand expected = PolynomialTensor( {(): self.constant, (1, 0): numpy.subtract(self.one_body_a, self.one_body_operand), (1, 1, 0, 0): self.two_body_a, (0, 0, 1, 1): self.two_body_operand}) self.assertEqual(result, expected) def test_mul(self): new_tensor = self.polynomial_tensor_a * self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_axb) new_tensor_1 = self.polynomial_tensor_a * 2. new_tensor_2 = 2. * self.polynomial_tensor_a self.assertEqual(new_tensor_1, PolynomialTensor( {(): self.constant * 2., (1, 0): self.one_body_a * 2., (1, 1, 0, 0): self.two_body_a * 2.})) self.assertEqual(new_tensor_2, PolynomialTensor( {(): self.constant * 2., (1, 0): self.one_body_a * 2., (1, 1, 0, 0): self.two_body_a * 2.})) self.assertEqual(get_fermion_operator(new_tensor_1), get_fermion_operator(self.polynomial_tensor_a) * 2.) self.assertEqual(get_fermion_operator(new_tensor_2), get_fermion_operator(self.polynomial_tensor_a) * 2.) def test_imul(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor *= self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_axb) def test_invalid_multiplier(self): with self.assertRaises(TypeError): self.polynomial_tensor_a * 'a' def test_invalid_tensor_shape_mult(self): with self.assertRaises(TypeError): self.polynomial_tensor_a * self.polynomial_tensor_c def test_different_keys_mult(self): result = self.polynomial_tensor_a * self.polynomial_tensor_operand expected = PolynomialTensor( {(1, 0): numpy.multiply(self.one_body_a, self.one_body_operand)}) self.assertEqual(result, expected) def test_div(self): new_tensor = self.polynomial_tensor_a / 2. self.assertEqual(new_tensor, PolynomialTensor( {(): self.constant / 2., (1, 0): self.one_body_a / 2., (1, 1, 0, 0): self.two_body_a / 2.})) self.assertEqual(get_fermion_operator(new_tensor), get_fermion_operator(self.polynomial_tensor_a) / 2.) def test_idiv(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor /= 3. self.assertEqual(new_tensor, PolynomialTensor( {(): self.constant / 3., (1, 0): self.one_body_a / 3., (1, 1, 0, 0): self.two_body_a / 3.})) self.assertEqual(get_fermion_operator(new_tensor), get_fermion_operator(self.polynomial_tensor_a) / 3.) def test_invalid_dividend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a / 'a' def test_iter_and_str(self): one_body = numpy.zeros((self.n_qubits, self.n_qubits)) two_body = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body[0, 1] = 11.0 two_body[0, 1, 1, 0] = 22.0 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_str = ('() 23.0\n((0, 1), (1, 0)) 11.0\n' '((0, 1), (1, 1), (1, 0), (0, 0)) 22.0\n') self.assertEqual(str(polynomial_tensor), want_str) self.assertEqual(polynomial_tensor.__repr__(), want_str) def test_rotate_basis_identical(self): rotation_matrix_identical = numpy.zeros((self.n_qubits, self.n_qubits)) rotation_matrix_identical[0, 0] = 1 rotation_matrix_identical[1, 1] = 1 one_body = numpy.zeros((self.n_qubits, self.n_qubits)) two_body = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits)) two_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits)) i = 0 j = 0 for p in range(self.n_qubits): for q in range(self.n_qubits): one_body[p, q] = i one_body_spinful[p, q] = i one_body_spinful[p + self.n_qubits, q + self.n_qubits] = i i = i + 1 for r in range(self.n_qubits): for s in range(self.n_qubits): two_body[p, q, r, s] = j two_body_spinful[p, q, r, s] = j two_body_spinful[p + self.n_qubits, q + self.n_qubits, r + self.n_qubits, s + self.n_qubits] = j j = j + 1 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) want_polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) polynomial_tensor.rotate_basis(rotation_matrix_identical) polynomial_tensor_spinful.rotate_basis(rotation_matrix_identical) self.assertEqual(polynomial_tensor, want_polynomial_tensor) self.assertEqual(polynomial_tensor_spinful, want_polynomial_tensor_spinful) def test_rotate_basis_reverse(self): rotation_matrix_reverse = numpy.zeros((self.n_qubits, self.n_qubits)) rotation_matrix_reverse[0, 1] = 1 rotation_matrix_reverse[1, 0] = 1 one_body = numpy.zeros((self.n_qubits, self.n_qubits)) two_body = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_reverse = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_reverse = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) i = 0 j = 0 i_reverse = pow(self.n_qubits, 2) - 1 j_reverse = pow(self.n_qubits, 4) - 1 for p in range(self.n_qubits): for q in range(self.n_qubits): one_body[p, q] = i i = i + 1 one_body_reverse[p, q] = i_reverse i_reverse = i_reverse - 1 for r in range(self.n_qubits): for s in range(self.n_qubits): two_body[p, q, r, s] = j j = j + 1 two_body_reverse[p, q, r, s] = j_reverse j_reverse = j_reverse - 1 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body_reverse, (1, 1, 0, 0): two_body_reverse}) polynomial_tensor.rotate_basis(rotation_matrix_reverse) self.assertEqual(polynomial_tensor, want_polynomial_tensor) def test_rotate_basis_quadratic_hamiltonian_real(self): self.do_rotate_basis_quadratic_hamiltonian(True) def test_rotate_basis_quadratic_hamiltonian_complex(self): self.do_rotate_basis_quadratic_hamiltonian(False) def do_rotate_basis_quadratic_hamiltonian(self, real): """Test diagonalizing a quadratic Hamiltonian that conserves particle number.""" n_qubits = 5 # Initialize a particle-number-conserving quadratic Hamiltonian # and compute its orbital energies quad_ham = random_quadratic_hamiltonian(n_qubits, True, real=real) orbital_energies, constant = quad_ham.orbital_energies() # Rotate a basis where the Hamiltonian is diagonal diagonalizing_unitary = quad_ham.diagonalizing_bogoliubov_transform() quad_ham.rotate_basis(diagonalizing_unitary.T) # Check that the rotated Hamiltonian is diagonal with the correct # orbital energies D = numpy.zeros((n_qubits, n_qubits), dtype=complex) D[numpy.diag_indices(n_qubits)] = orbital_energies self.assertTrue(numpy.allclose(quad_ham.combined_hermitian_part, D)) # Check that the new Hamiltonian still conserves particle number self.assertTrue(quad_ham.conserves_particle_number) # Check that the orbital energies and constant are the same new_orbital_energies, new_constant = quad_ham.orbital_energies() self.assertTrue(
numpy.allclose(orbital_energies, new_orbital_energies)
numpy.allclose
import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import spikewarp as sw """ Class and helpers for main clustering meta analyses """ class MetaClusterAnalysisHolder(object): def __init__(self, shuffle_option_string, is_mainz=True): self.shuffle_option_string = shuffle_option_string self.suf = "_" + shuffle_option_string self.is_mainz = is_mainz self.pdds = {} self.sdds = {} for data_name in sw.list_of_first_stage_data_names: self.pdds.update({data_name: []}) for data_name in sw.list_of_second_stage_data_names: self.sdds.update({data_name: []}) self.final_angled_cluster_count = 0 self.did_contribute_atleast_one_final_angled_cluster_count = 0 self.all_both_spiking_reliabilities = []; self.all_both_spiking_reliabilities_0s_removed = [] self.all_number_of_conjunctive_trials = []; self.all_number_of_conjunctive_trials_0s_removed = [] def extend_standard_cluster_arrays(self, single_clustering): if (single_clustering.do_use_clusters_in_analysis): self.final_angled_cluster_count += single_clustering.final_angled_cluster_count self.did_contribute_atleast_one_final_angled_cluster_count += single_clustering.was_first_single_clustering_to_pass_for_pair for key in single_clustering.primary_data_dicts.keys(): if (key not in self.pdds.keys()): self.pdds[key] = [] self.pdds[key].extend(single_clustering.primary_data_dicts[key]) for key in single_clustering.secondary_data_dicts.keys(): if (key not in self.sdds.keys()): self.sdds[key] = [] self.sdds[key].extend(single_clustering.secondary_data_dicts[key]) def extend_standard_cluster_arrays_using_another_mcah(self, mcah): self.final_angled_cluster_count += mcah.final_angled_cluster_count self.did_contribute_atleast_one_final_angled_cluster_count += mcah.did_contribute_atleast_one_final_angled_cluster_count for key in mcah.pdds.keys(): if (key not in self.pdds.keys()): self.pdds[key] = [] self.pdds[key].extend(mcah.pdds[key]) for key in mcah.sdds.keys(): if (key not in self.sdds.keys()): self.sdds[key] = [] self.sdds[key].extend(mcah.sdds[key]) def calculate_time_span_info_and_plots(self, directory_holder, cortical_onset, time_window_following_cortical_onset, end_of_spiking_activity): sdds = self.sdds pdds = self.pdds dh = directory_holder suf = self.suf tex_tag_file_name = dh.collated_root_output_directory + "AnalysisOutputLatexTimeSpan.tex" with open(tex_tag_file_name, "w") as tex_file: print(f"", file=tex_file) # Cluster Time Spans sw.basic_x_y_plot([pdds['FlatClusterStats_FlatCluster_FS_Mean0']], [pdds['FlatClusterStats_FlatCluster_FS_Mean1']], dh.clus_time_spans_dir + "PrimaryClusterMeans" + suf, s=4, draw_y_equals_x=True, y_equals_x_max=100, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10]) sw.basic_x_y_plot([sdds['FlatClusterStats_FlatCluster_FS_Mean0']], [sdds['FlatClusterStats_FlatCluster_FS_Mean1']], dh.clus_time_spans_dir + "SecondaryClusterMeans" + suf, s=4, draw_y_equals_x=True, y_equals_x_max=100, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10]) sw.basic_x_y_plot([2.0*np.hstack((pdds['FlatClusterStats_FlatCluster_N0_FS_SD'], pdds['FlatClusterStats_FlatCluster_N1_FS_SD']))], [np.hstack((pdds['FlatClusterStats_FlatCluster_FS_Mean0'], pdds['FlatClusterStats_FlatCluster_FS_Mean1']))], dh.clus_time_spans_dir + "PrimaryClusterMeans_VS_2sds" + suf, s=4, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10], opt_x_and_y_max=[40.0, 100.0], y_axis_on_right=False) sw.basic_x_y_plot([2.0*np.hstack((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD']))], [np.hstack((sdds['FlatClusterStats_FlatCluster_FS_Mean0'], sdds['FlatClusterStats_FlatCluster_FS_Mean1']))], dh.clus_time_spans_dir + "SecondaryClusterMeans_VS_2sds" + suf, s=4, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10], opt_x_and_y_max=[40.0, 100.0], y_axis_on_right=False) secondary_flat_cluster_means = np.hstack((sdds['FlatClusterStats_FlatCluster_FS_Mean0'], sdds['FlatClusterStats_FlatCluster_FS_Mean1'])) secondary_flat_cluster_pre_limits = secondary_flat_cluster_means - 4.0 * np.hstack((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD'])) secondary_flat_cluster_post_limits = secondary_flat_cluster_means + 4.0 * np.hstack((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD'])) sw.normal_histo_plot([secondary_flat_cluster_post_limits], dh.clus_time_spans_dir + "LimitsOfFlatClustersForAngledClustersOnly" + suf, bins=20, histo_range=[0.0, 100.0], x_axis_label="ms", y_axis_label="Frequency", custom_x_tick_locators=[100.0, 10.0], custom_y_tick_locators=[10.0, 10.0], alpha=0.78, add_chi_squared_text=True) time_threshold = cortical_onset + time_window_following_cortical_onset num_before = np.sum(secondary_flat_cluster_post_limits < time_threshold) num_after = np.sum(secondary_flat_cluster_post_limits > time_threshold) percent_before = 100.0 * float(num_before) / float(num_after + num_before) percent_before_string = "{:.{}f}".format(percent_before, 1) data_part = percent_before_string + "\\%" cluster_time_span_string = "As " + data_part + " of Stage 2 clusters extracted over 90ms following cortical activation onset lied within " + str(int(time_window_following_cortical_onset)) + "ms following onset (Supplementary Fig. 12), analysis was constrained to spikes in the first " + str(int(time_window_following_cortical_onset)) + "ms following activation onset. " sw.append_new_tag(data_part, "ClusterTimeSpanSummaryNum", tex_tag_file_name) sw.append_new_tag(cluster_time_span_string, "ClusterTimeSpanSummary", tex_tag_file_name) def plot_p_value_histos(self, directory_holder, do_extra_plots=False): sdds = self.sdds pdds = self.pdds dh = directory_holder suf = self.suf plot_all_lag_histograms = False if (do_extra_plots): plot_all_lag_histograms = True tex_tag_file_name = dh.collated_root_output_directory + suf + "AnalysisOutputLatex.tex" with open(tex_tag_file_name, "w") as tex_file: print(f"", file=tex_file) specific_prim_clus_corr_dir = dh.prim_clus_corr_dir + suf + "/"; sw.makedirs(specific_prim_clus_corr_dir) specific_sec_clus_corr_dir = dh.sec_clus_corr_dir + suf + "/"; sw.makedirs(specific_sec_clus_corr_dir) # Cluster Correlations Primary sw.normal_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_ZoomHist", bins=20, histo_range=[0.0, 0.1], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[0.1, 0.01], custom_y_tick_locators=[30, 30], alpha=0.78, add_chi_squared_text=True) flat_cluster_correlations_chi_squared_table_strings_array = sw.cumulative_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_CumHist", bins=200, x_axis_label="p-value", y_axis_label="Normalised\ncumulative sum", custom_x_tick_locators=[1.0, 0.2], add_chi_squared_text=True) sw.normal_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_LowResHist", bins=40, x_axis_label="p-value", y_axis_label="Frequency", custom_y_tick_locators=[100, 100], alpha=0.78, add_chi_squared_text=True) sw.cumulative_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "LowRes_LowResCumHist", bins=20, x_axis_label="p-value", y_axis_label="Normalised\ncumulative sum", add_chi_squared_text=True) if ('FlatClusterStats_FlatCluster_LR_rsquared' in sdds.keys()): # Cluster Correlations Secondary sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_LR_rsquared'], sdds['FlatClusterStats_FlatCluster_LR_rvalue']], specific_sec_clus_corr_dir + "RVal_Hist", bins=40, histo_range=[-1.0, 1.0], x_axis_left_buffer=0.01, x_axis_label="$r$, $r^2$", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[50, 10], alpha=0.78) sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_LR_rsquared']], specific_sec_clus_corr_dir + "R^2_Hist", colors=['g'], bins=20, x_axis_left_buffer=0.01, x_axis_label="r^2-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[20, 20]) cluster_p_minus_unclustered_conj_p = np.asarray(sdds['FlatClusterStats_FlatCluster_LR_pvalue']) - np.asarray(sdds['Unclustered_Conj_LR_pvalue']) num_improved_by_clustering = np.sum(cluster_p_minus_unclustered_conj_p < 0.0) num_not_improved_by_clustering = np.sum(cluster_p_minus_unclustered_conj_p >= 0.0) percent_improved_by_clustering = 100.0 * float(num_improved_by_clustering) / float(num_improved_by_clustering + num_not_improved_by_clustering) percent_improved_by_clustering_string = "{:.{}f}".format(percent_improved_by_clustering, 1) num_non_significant_before_clustering = np.sum(np.asarray(sdds['Unclustered_Conj_LR_pvalue']) > 0.05) num_sdd_clusters = len(sdds['Unclustered_Conj_LR_pvalue']) percent_non_significant_before_clustering = 100.0*(num_non_significant_before_clustering/num_sdd_clusters) percent_non_significant_before_clustering_string = "{:.{}f}".format(percent_non_significant_before_clustering, 1) sw.basic_x_y_plot([sdds['Unclustered_Conj_LR_pvalue']], [sdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_sec_clus_corr_dir + "NonConjPVal_Vs_ClusPVal", draw_y_equals_x=True, y_equals_x_max=1.0, x_axis_label='p-value', y_axis_label='p-value', scatter_point_color_groups=['b'], custom_x_tick_locators=[1.0, 0.2], dashes=(8, 2)) sw.normal_histo_plot([sdds['Unclustered_Conj_LR_pvalue']], specific_sec_clus_corr_dir + "ConjPVal_Vs_ClusPVal", bins=20, histo_range=[0.0, 1.0], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[10, 10], alpha=0.78) sw.normal_histo_plot([np.asarray(sdds['FlatClusterStats_FlatCluster_LR_pvalue']) - np.asarray(sdds['Unclustered_Conj_LR_pvalue'])], specific_sec_clus_corr_dir + "ClusPVal_Minus_ConjPVal_Hist", bins=21, histo_range=[-1.0, 0.05], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[10, 10], alpha=0.78) # Cluster Differences Correlations sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differences_dir + "FS0_Vs_Diff_LR_PVal_ZoomHist" + suf, bins=20, histo_range=[0.0, 0.1], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[0.1, 0.01], custom_y_tick_locators=[200, 200], alpha=0.78, add_chi_squared_text=True) differences_chi_squared_table_strings_array = sw.cumulative_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differences_dir + "FS0_Vs_Diff_LR_PVal_CumHist" + suf, bins=200, x_axis_label="p-value", y_axis_label="Normalised\ncumulative sum", custom_x_tick_locators=[1.0, 0.2], add_chi_squared_text=True) sw.normal_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differences_dir + "FS0_Vs_Diff_LR_PVal_LowResHist" + suf, bins=20, x_axis_label="p-value", y_axis_label="Frequency", custom_y_tick_locators=[100, 20], alpha=0.78, add_chi_squared_text=True) # Cluster Correlation Summary Latex sw.append_new_tag(str(len(pdds['FlatClusterStats_FlatCluster_LR_pvalue'])) + " Stage 1 clusters were extracted", "NumStage1ClustersFullString", tex_tag_file_name) sw.append_new_tag(str(len(pdds['FlatClusterStats_FlatCluster_LR_pvalue'])), "NumStage1ClustersData", tex_tag_file_name) cluster_correlation_string0 = "Spike pairs within Stage 1 cluster ellipses were linearly correlated above chance levels (Fisher's method: " + flat_cluster_correlations_chi_squared_table_strings_array[0] + ")" sw.append_new_tag(cluster_correlation_string0, "Stage1ClusterFisherFullString", tex_tag_file_name) sw.append_new_tag(flat_cluster_correlations_chi_squared_table_strings_array[0], "Stage1ClusterFisherData", tex_tag_file_name) cluster_correlation_string0p1 = "spike pair differences were correlated with the spike time of the first neuron in the pair for Stage 2 clusters (Fisher's method: " + differences_chi_squared_table_strings_array[0] + "; Fig. 3g), shows that correlations are not explained by a model of the form $s_1 = s_0 + d + independent\\_noise$ where $d$ is a fixed difference." sw.append_new_tag(cluster_correlation_string0p1, "ClusterCorrelationSummary0p1", tex_tag_file_name) num_greaterthan = np.sum(np.asarray(sdds['FlatClusterStats_FlatCluster_LR_rvalue']) > 0.0) data_part = sw.percent_and_frac_string(num_greaterthan, self.final_angled_cluster_count) cluster_correlation_string1 = data_part + " of Stage 2 clusters were positively correlated " sw.append_new_tag(cluster_correlation_string1, "Stage2PositivelyCorrelatedFullString", tex_tag_file_name) sw.append_new_tag(data_part, "Stage2PositivelyCorrelatedNum", tex_tag_file_name) cluster_correlation_string2 = percent_improved_by_clustering_string + "\\% (" + str(num_improved_by_clustering) + "/" + str(num_improved_by_clustering + num_not_improved_by_clustering) + ") of the Stage 2 clusters had correlations of higher significance than correlations calculated for all unclustered first spike pairs in the originating response distribution (Fig. 3h). Moreover, " + percent_non_significant_before_clustering_string + "\\% (" + str(num_non_significant_before_clustering) + '/' + str(num_sdd_clusters) + ") of the original response distributions from which Stage 2 clusters were extracted were not correlated significantly (p>0.05) (Fig. 3h). " sw.append_new_tag(cluster_correlation_string2, "ClusterCorrelationSummary2", tex_tag_file_name) angled_clusters_unique_pairs_summary_string = "A total of " + str(self.final_angled_cluster_count) + " unique Stage 2 clusters were extracted from " + str(self.did_contribute_atleast_one_final_angled_cluster_count) + " unique response distributions." #, confirming that there were no repeated or similar clusters." sw.append_new_tag(angled_clusters_unique_pairs_summary_string, "AngledClustersUniquePairsSummary", tex_tag_file_name) # Angle Comparisons sw.basic_x_y_plot([sdds["Original" + '_BS_PCA_mean_angle']], [sdds["SelectivelyDifferencedBoxJenkins" + '_FA_angle_BS_mean']], dh.angle_analysis_directory + "BS_PCA_VS_SelectivelyDifferencedBoxJenkins_FA_Angles" + suf, draw_y_equals_x=True, y_equals_x_max=90, x_axis_label='Degrees', y_axis_label='Degrees', s=4, scatter_point_color_groups=['g'], custom_x_tick_locators=[90, 10]) # Cluster Reliabilities sw.plot_cluster_reliability_plots(sdds['PCA_ellipse_overall_reliability'], sdds['PCA_ellipse_conj_reliability'], dh.cluster_reliabilities_dir, suf) analysis_dict_keys= ['Original', 'OriginalTestsPassed', "SelectivelyDifferenced", "SelectivelyDifferencedTestsPassedActuallyDifferenced", "SelectivelyDifferencedBoxJenkins", "SelectivelyDifferencedBoxJenkinsTestsPassed"] if ('analysis_dict_member_keys' in sdds.keys()): analysis_dict_member_keys = sdds['analysis_dict_member_keys'] for analysis_dict_key in analysis_dict_keys: # Directories specific_angle_analysis_dir = dh.angle_analysis_directory + analysis_dict_key + "/" + suf + "/"; sw.makedirs(specific_angle_analysis_dir) specific_nonstationarity_dir = dh.clus_non_stationarity_dir + analysis_dict_key + "/" + suf + "/"; sw.makedirs(specific_nonstationarity_dir) sharipo_normality_specific_nonstationarity_dir = specific_nonstationarity_dir + "SharipoNormality/"; sw.makedirs(sharipo_normality_specific_nonstationarity_dir) KPSS_stationarity_specific_nonstationarity_dir = specific_nonstationarity_dir + "KPSSStationarity/"; sw.makedirs(KPSS_stationarity_specific_nonstationarity_dir) ADF_stationarity_specific_nonstationarity_dir = specific_nonstationarity_dir + "ADFStationarity/"; sw.makedirs(ADF_stationarity_specific_nonstationarity_dir) LR_specific_nonstationarity_dir = specific_nonstationarity_dir + "LRStationarity/"; sw.makedirs(LR_specific_nonstationarity_dir) HZ_specific_nonstationarity_dir = specific_nonstationarity_dir + "HZStationarity/"; sw.makedirs(HZ_specific_nonstationarity_dir) bartlett_specific_nonstationarity_dir = specific_nonstationarity_dir + "BartlettSphericity/"; sw.makedirs(bartlett_specific_nonstationarity_dir) specific_lag_pvals_nonstationary_dir = specific_nonstationarity_dir + "LagPVals/"; sw.makedirs(specific_lag_pvals_nonstationary_dir) LR_correlation_specific_nonstationarity_dir = specific_nonstationarity_dir + "LRCorrelation/"; sw.makedirs(LR_correlation_specific_nonstationarity_dir) true_where_tests_not_passed_ORIGINAL = np.asarray(sdds['Original_tests_passed']) num_tests_not_passed_ORIGINAL = np.sum(true_where_tests_not_passed_ORIGINAL == False) if (analysis_dict_key in ["Original", "SelectivelyDifferencedBoxJenkins", "SelectivelyDifferenced"]): num_for_type = np.sum(np.bitwise_not(np.asarray(sdds[analysis_dict_key + '_is_empty']))) true_where_normal = np.asarray(sdds[analysis_dict_key + '_normal']) num_normal = np.sum(true_where_normal) where_normal = np.where(true_where_normal) true_where_tests_passed = np.asarray(sdds[analysis_dict_key + '_tests_passed']) num_tests_passed = np.sum(true_where_tests_passed) where_tests_passed = np.where(true_where_tests_passed) true_where_tests_not_passed = np.asarray(sdds[analysis_dict_key + '_tests_passed']) num_tests_not_passed = np.sum(true_where_tests_not_passed == False) true_where_tests_passed_and_normal = np.asarray(sdds[analysis_dict_key + '_tests_passed_and_normal']) num_tests_passed_and_normal = np.sum(true_where_tests_passed_and_normal) where_tests_passed_and_normal = np.where(true_where_tests_passed_and_normal) true_where_correlated = np.asarray(sdds[analysis_dict_key + '_is_still_correlated']) number_correlated = np.sum(true_where_correlated) where_correlated = np.where(true_where_correlated) true_where_tests_passed_and_correlated = np.logical_and(true_where_correlated, true_where_tests_passed) num_tests_passed_and_correlated = np.sum(true_where_tests_passed_and_correlated) where_tests_passed_and_correlated = np.where(true_where_tests_passed_and_correlated) where_different_from_45 = np.logical_and(np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_45']), np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_0'])) num_different_from_45 = np.sum(where_different_from_45) true_where_correlated_and_different_from_45 = np.logical_and(true_where_correlated, np.asarray(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_different_from_45'])) num_correlated_and_different_from_45 = np.sum(true_where_correlated_and_different_from_45) where_correlated_and_different_from_45 = np.where(true_where_correlated_and_different_from_45) true_where_correlated_and_different_from_45_tests_passed =
np.logical_and(true_where_correlated_and_different_from_45, true_where_tests_passed)
numpy.logical_and
import matplotlib.pyplot as plt from matplotlib import rc import matplotlib.gridspec as gridspec from matplotlib.colors import LogNorm plt.rc('text', usetex=True) plt.rc('font', family='serif') import numpy as np names = ['T_{eff}', '\log g', '[Fe/H]', '[\\alpha/Fe]', 'AKWISE'] units = ['K', 'dex', 'dex', 'dex', 'dex'] mins = np.array([3900, 0.7, -1.6, 0.0, -0.1]) maxs = np.array([5300, 3.9, 0.3, 0.3, 0.4]) nbins = 10 chunks = (maxs-mins)/nbins bins = mins[:,None]+np.arange(nbins)[None,:]*chunks[:,None] # (nlabel, nbin) direc_orig = "../run_2_train_on_good" direc = "../run_9_more_metal_poor" direc = "../run_9b_reddening" all_cannon = np.load("%s/all_cannon_labels.npz" %direc)['arr_0'] all_ids = np.load("%s/all_ids.npz" %direc_orig)['arr_0'] #all_apogee = np.load("%s/all_label.npz" %direc_orig)['arr_0'] good_id = np.load("%s/tr_id.npz" %direc)['arr_0'] snr = np.load("%s/tr_snr.npz" %direc)['arr_0'] #choose = np.array([np.where(all_ids==val)[0][0] for val in good_id]) #apogee = all_apogee[choose] apogee = np.load("%s/tr_label.npz" %direc)['arr_0'] cannon = all_cannon fig = plt.figure(figsize=(10,8)) gs = gridspec.GridSpec(3,2, wspace=0.3, hspace=0.3) for i in range(0, len(names)): name = names[i] unit = units[i] low = mins[i] high = maxs[i] val = cannon[:,i]-apogee[:,i] y = np.zeros(nbins) yerr =
np.zeros(y.shape)
numpy.zeros
import numpy as np from scipy.spatial.distance import cdist def cmeans(data, c, h, error, maxiter, metric='euclidean', init=None, seed=None): """ Fuzzy c-means clustering algorithm [1]. Parameters ---------- data : 2d array, size (S, N) Data to be clustered. N is the number of data sets; S is the number of features within each sample vector. c : int Desired number of clusters or classes. m : float Array exponentiation applied to the membership function u_old at each iteration, where U_new = u_old ** m. error : float Stopping criterion; stop early if the norm of (u[p] - u[p-1]) < error. maxiter : int Maximum number of iterations allowed. metric: string By default is set to euclidean. Passes any option accepted by ``scipy.spatial.distance.cdist``. init : 2d array, size (S, N) Initial fuzzy c-partitioned matrix. If none provided, algorithm is randomly initialized. seed : int If provided, sets random seed of init. No effect if init is provided. Mainly for debug/testing purposes. Returns ------- cntr : 2d array, size (S, c) Cluster centers. Data for each center along each feature provided for every cluster (of the `c` requested clusters). u : 2d array, (S, N) Final fuzzy c-partitioned matrix. u0 : 2d array, (S, N) Initial guess at fuzzy c-partitioned matrix (either provided init or random guess used if init was not provided). d : 2d array, (S, N) Final Euclidian distance matrix. jm : 1d array, length P Objective function history. p : int Number of iterations run. fpc : float Final fuzzy partition coefficient. Notes ----- The algorithm implemented is from Ross et al. [1]_. Fuzzy C-Means has a known problem with high dimensionality datasets, where the majority of cluster centers are pulled into the overall center of gravity. If you are clustering data with very high dimensionality and encounter this issue, another clustering method may be required. For more information and the theory behind this, see Winkler et al. [2]_. References ---------- .. [1] <NAME>. Fuzzy Logic With Engineering Applications, 3rd ed. Wiley. 2010. ISBN 978-0-470-74376-8 pp 352-353, eq 10.28 - 10.35. .. [2] <NAME>., <NAME>., & <NAME>. Fuzzy c-means in high dimensional spaces. 2012. Contemporary Theory and Pragmatic Approaches in Fuzzy Computing Utilization, 1. """ # Setup u0 # 初始化聚类划分矩阵 if init is None: if seed is not None: np.random.seed(seed=seed) n = data.shape[1] u0 = np.random.rand(c, n) u0 = normalize_columns(u0) init = u0.copy() u0 = init u = np.fmax(u0, np.finfo(np.float64).eps)#精度的比较,小于这个精度会自动取这个值 #计算派i s = np.sum(u, axis=1, keepdims=True)/u.shape[1] # Initialize loop parameters jm = np.zeros(0) p = 0 # Main cmeans loop while p < maxiter - 1: u2 = u.copy() s0 = s.copy() [cntr, u, Jjm , d, s] = _cmeans0(data, u2, c, h, s0, metric) jm = np.hstack((jm, Jjm)) p += 1 # Stopping rule if np.linalg.norm(u - u2) < error: break # Final calculations error = np.linalg.norm(u - u2) fpc = _fp_coeff(u) return cntr, u, u0, d, jm, p, fpc def _cmeans0(data, u_old, c, h, s, metric): """ Single step in generic fuzzy c-means clustering algorithm. Modified from Ross, Fuzzy Logic w/Engineering Applications (2010), pages 352-353, equations 10.28 - 10.35. Parameters inherited from cmeans() """ # Normalizing, then eliminating any potential zero values.标准化,然后消除任何潜在的零值。 u_old = normalize_columns(u_old)# 标准化,然后消除任何潜在的零值,,用于最开始的时候,归一化 u_old = np.fmax(u_old, np.finfo(np.float64).eps)#精度的比较,小于这个精度会自动取这个值 # 计算分布先验Pi [[s1],[s2],...[s..]] s = np.sum(u_old, axis=1, keepdims=True) / u_old.shape[1] ##[c1 c2 ....cn]每个聚类中心的先验分布 s = np.fmax(s, np.finfo(np.float64).eps)#精度的比较,小于这个精度会自动取这个值 um = u_old # Calculate cluster centers data = data.T # 点乘,得到聚类中心 cntr = um.dot(data) / np.atleast_2d(um.sum(axis=1)).T #待处理公式聚类中心,不用改动 d = _distance(data, cntr, metric) #待处理欧式距离公式,目前估计也不用改动 d = np.fmax(d, np.finfo(np.float64).eps)##精度的比较,小于这个精度会自动取这个值 jm = (um * d ** 2).sum() # u = normalize_power_columns(d, - 2. / (m - 1)) #待处理划分矩阵公式 u = _uij(d, s, h) # u = np.exp()#指数运算 return cntr, u, jm, d, s ''' 将模糊m换成正则化项系数 1.先计算派i 2.在更加派i求隶属度 3.聚类中心 ''' def _uij(d, s, h): ''' :param d: 聚类距离矩阵 :param n: 正则化系数 :return: ''' s1 = s.repeat(d.shape[1], axis=1) tmp = s1*np.exp(d/(-h)) tmp = np.fmax(tmp, np.finfo(np.float64).eps)##精度的比较,小于这个精度会自动取这个值 # s2 = s.repeat(d.shape[1], axis=1) tmp1 = np.sum(tmp, axis=0, keepdims=True)## # 需要改的地方。。。。。 temp1 = tmp1.repeat(d.shape[0], axis=0) u = tmp/temp1 u = normalize_columns(u) return u def _fp_coeff(u): """ Fuzzy partition coefficient `fpc` relative to fuzzy c-partitioned matrix `u`. Measures 'fuzziness' in partitioned clustering. Parameters ---------- u : 2d array (C, N) Fuzzy c-partitioned matrix; N = number of data points and C = number of clusters. Returns ------- fpc : float Fuzzy partition coefficient. """ n = u.shape[1] return np.trace(u.dot(u.T)) / float(n) def _distance(data, centers, metric='euclidean'): """ Euclidean distance from each point to each cluster center. Parameters ---------- data : 2d array (N x Q) Data to be analyzed. There are N data points. centers : 2d array (C x Q) Cluster centers. There are C clusters, with Q features. metric: string By default is set to euclidean. Passes any option accepted by ``scipy.spatial.distance.cdist``. Returns ------- dist : 2d array (C x N) Euclidean distance from each point, to each cluster center. See Also -------- scipy.spatial.distance.cdist """ return cdist(data, centers, metric=metric).T """ _normalize_columns.py : Normalize columns. """ # import numpy as np def normalize_columns(columns): """ Normalize columns of matrix. Parameters ---------- columns : 2d array (M x N) Matrix with columns Returns ------- normalized_columns : 2d array (M x N) columns/np.sum(columns, axis=0, keepdims=1) """ # broadcast sum over columns normalized_columns = columns / np.sum(columns, axis=0, keepdims=1) return normalized_columns def normalize_power_columns(x, exponent): """ Calculate normalize_columns(x**exponent) in a numerically safe manner. Parameters ---------- x : 2d array (M x N) Matrix with columns n : float Exponent Returns ------- result : 2d array (M x N) normalize_columns(x**n) but safe """ assert np.all(x >= 0.0) x = x.astype(np.float64) # values in range [0, 1] x = x / np.max(x, axis=0, keepdims=True) # values in range [eps, 1] x = np.fmax(x,
np.finfo(x.dtype)
numpy.finfo
""" Code for training and evaluating Pytorch models. """ from torch.nn.modules.loss import MarginRankingLoss, CrossEntropyLoss from torch.optim.lr_scheduler import ReduceLROnPlateau import logging import numpy as np import os import pprint import time import torch import torch.optim as optim import models import utils CUDA = torch.cuda.is_available() CONFIG = utils.read_config() LOGGER = logging.getLogger(os.path.basename(__file__)) def calc_losses(y_hats, y, out_dims): """ Calculate all losses across all prediction tasks. Also reformats 'predictions' to be a friendly pytorch tensor for later use. TODO: this should be a class? """ reg_loss = MarginRankingLoss() clf_loss = CrossEntropyLoss() if CUDA: reg_loss = reg_loss.cuda() clf_loss = clf_loss.cuda() losses, predictions = [], [] for i, out_dim in enumerate(out_dims): y_hat = y_hats[i] y_tru = y[:, i] # Regression case. if out_dim == 1: # Required for margin ranking loss. y_rank = get_paired_ranks(y_tru) y1_hat, y2_hat = get_pairs(y_hat) losses.append(reg_loss(y1_hat, y2_hat, y_rank)) predictions.append(y_hat) # Classification case. elif out_dim > 1: # Cross entropy loss. losses.append(clf_loss(y_hat, y_tru.long())) _, preds = torch.max(y_hat.data, 1) predictions.append(preds.float().unsqueeze(1)) predictions = torch.cat(predictions, dim=1) return(losses, predictions) def get_pairs(y): """ For an input vector y, returns vectors y1 and y2 such that y1-y2 gives all unique pairwise subtractions possible in y. """ y = y.cpu() n = len(y) idx_y2, idx_y1 = np.where(np.tril(np.ones((n, n)), k=-1)) y1 = y[torch.LongTensor(idx_y1)] y2 = y[torch.LongTensor(idx_y2)] if CUDA: y1 = y1.cuda() y2 = y2.cuda() return(y1, y2) def get_paired_ranks(y): """ Generate y_rank (for margin ranking loss). If `y == 1` then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for `y == -1`. """ y = y.cpu() # Calculates all pairwise subtractions. y_rank = y[np.newaxis, :] - y[:, np.newaxis] # Edge case where the difference between 2 points is 0. y_rank[y_rank == 0] = 1e-19 # Get the lower triangle of y_rank (ignoring the diagonal). idx = np.where(
np.tril(y_rank, k=-1)
numpy.tril
# Created by zenn at 2021/5/6 import torch import os import copy import numpy as np from pyquaternion import Quaternion from datasets.data_classes import PointCloud from scipy.spatial.distance import cdist def random_choice(num_samples, size, replacement=False, seed=None): if seed is not None: generator = torch.random.manual_seed(seed) else: generator = None return torch.multinomial( torch.ones((size), dtype=torch.float32), num_samples=num_samples, replacement=replacement, generator=generator ) def regularize_pc(points, sample_size, seed=None): # random sampling from points num_points = points.shape[0] new_pts_idx = None rng = np.random if seed is None else np.random.default_rng(seed) if num_points > 2: if num_points != sample_size: new_pts_idx = rng.choice(num_points, size=sample_size, replace=sample_size > num_points) # new_pts_idx = random_choice(num_samples=sample_size, size=num_points, # replacement=sample_size > num_points, seed=seed).numpy() else: new_pts_idx = np.arange(num_points) if new_pts_idx is not None: points = points[new_pts_idx, :] else: points = np.zeros((sample_size, 3), dtype='float32') return points, new_pts_idx def getOffsetBB(box, offset, degrees=True, use_z=False, limit_box=True): rot_quat = Quaternion(matrix=box.rotation_matrix) trans = np.array(box.center) new_box = copy.deepcopy(box) new_box.translate(-trans) new_box.rotate(rot_quat.inverse) if len(offset) == 3: use_z = False # REMOVE TRANSfORM if degrees: if len(offset) == 3: new_box.rotate( Quaternion(axis=[0, 0, 1], degrees=offset[2])) elif len(offset) == 4: new_box.rotate( Quaternion(axis=[0, 0, 1], degrees=offset[3])) else: if len(offset) == 3: new_box.rotate( Quaternion(axis=[0, 0, 1], radians=offset[2])) elif len(offset) == 4: new_box.rotate( Quaternion(axis=[0, 0, 1], radians=offset[3])) if limit_box: if offset[0] > new_box.wlh[0]: offset[0] = np.random.uniform(-1, 1) if offset[1] > min(new_box.wlh[1], 2): offset[1] = np.random.uniform(-1, 1) if use_z and offset[2] > new_box.wlh[2]: offset[2] = 0 if use_z: new_box.translate(np.array([offset[0], offset[1], offset[2]])) else: new_box.translate(np.array([offset[0], offset[1], 0])) # APPLY PREVIOUS TRANSFORMATION new_box.rotate(rot_quat) new_box.translate(trans) return new_box def getModel(PCs, boxes, offset=0, scale=1.0, normalize=False): """center and merge the object pcs in boxes""" if len(PCs) == 0: return PointCloud(np.ones((3, 0))) points = [np.ones((PCs[0].points.shape[0], 0), dtype='float32')] for PC, box in zip(PCs, boxes): cropped_PC, new_box = cropAndCenterPC(PC, box, offset=offset, scale=scale, normalize=normalize) # try: if cropped_PC.nbr_points() > 0: points.append(cropped_PC.points) PC = PointCloud(np.concatenate(points, axis=1)) return PC, new_box def cropAndCenterPC(PC, box, offset=0, scale=1.0, normalize=False): """ crop and center the pc using the given box """ new_PC = crop_pc_axis_aligned(PC, box, offset=2 * offset, scale=4 * scale) new_box = copy.deepcopy(box) rot_mat = np.transpose(new_box.rotation_matrix) trans = -new_box.center new_PC.translate(trans) new_box.translate(trans) new_PC.rotate((rot_mat)) new_box.rotate(Quaternion(matrix=(rot_mat))) new_PC = crop_pc_axis_aligned(new_PC, new_box, offset=offset, scale=scale) if normalize: new_PC.normalize(box.wlh) return new_PC, new_box def get_point_to_box_distance(pc, box): """ generate the BoxCloud for the given pc and box :param pc: Pointcloud object or numpy array :param box: :return: """ if isinstance(pc, PointCloud): points = pc.points.T # N,3 else: points = pc # N,3 assert points.shape[1] == 3 box_corners = box.corners() # 3,8 box_centers = box.center.reshape(-1, 1) # 3,1 box_points = np.concatenate([box_centers, box_corners], axis=1) # 3,9 points2cc_dist = cdist(points, box_points.T) # N,9 return points2cc_dist def crop_pc_axis_aligned(PC, box, offset=0, scale=1.0, return_mask=False): """ crop the pc using the box in the axis-aligned manner """ box_tmp = copy.deepcopy(box) box_tmp.wlh = box_tmp.wlh * scale maxi = np.max(box_tmp.corners(), 1) + offset mini = np.min(box_tmp.corners(), 1) - offset x_filt_max = PC.points[0, :] < maxi[0] x_filt_min = PC.points[0, :] > mini[0] y_filt_max = PC.points[1, :] < maxi[1] y_filt_min = PC.points[1, :] > mini[1] z_filt_max = PC.points[2, :] < maxi[2] z_filt_min = PC.points[2, :] > mini[2] close = np.logical_and(x_filt_min, x_filt_max) close = np.logical_and(close, y_filt_min) close = np.logical_and(close, y_filt_max) close = np.logical_and(close, z_filt_min) close = np.logical_and(close, z_filt_max) new_PC = PointCloud(PC.points[:, close]) if return_mask: return new_PC, close return new_PC def crop_pc_oriented(PC, box, offset=0, scale=1.0, return_mask=False): """ crop the pc using the exact box. slower than 'crop_pc_axis_aligned' but more accurate """ box_tmp = copy.deepcopy(box) new_PC = PointCloud(PC.points.copy()) rot_mat = np.transpose(box_tmp.rotation_matrix) trans = -box_tmp.center # align data new_PC.translate(trans) box_tmp.translate(trans) new_PC.rotate(rot_mat) box_tmp.rotate(Quaternion(matrix=rot_mat)) box_tmp.wlh = box_tmp.wlh * scale maxi = np.max(box_tmp.corners(), 1) + offset mini = np.min(box_tmp.corners(), 1) - offset x_filt_max = new_PC.points[0, :] < maxi[0] x_filt_min = new_PC.points[0, :] > mini[0] y_filt_max = new_PC.points[1, :] < maxi[1] y_filt_min = new_PC.points[1, :] > mini[1] z_filt_max = new_PC.points[2, :] < maxi[2] z_filt_min = new_PC.points[2, :] > mini[2] close = np.logical_and(x_filt_min, x_filt_max) close = np.logical_and(close, y_filt_min) close = np.logical_and(close, y_filt_max) close = np.logical_and(close, z_filt_min) close = np.logical_and(close, z_filt_max) new_PC = PointCloud(new_PC.points[:, close]) # transform back to the original coordinate system new_PC.rotate(np.transpose(rot_mat)) new_PC.translate(-trans) if return_mask: return new_PC, close return new_PC def generate_subwindow(pc, sample_bb, scale, offset=2, oriented=True): """ generating the search area using the sample_bb :param pc: :param sample_bb: :param scale: :param offset: :param oriented: use oriented or axis-aligned cropping :return: """ rot_mat = np.transpose(sample_bb.rotation_matrix) trans = -sample_bb.center if oriented: new_pc = PointCloud(pc.points.copy()) box_tmp = copy.deepcopy(sample_bb) # transform to the coordinate system of sample_bb new_pc.translate(trans) box_tmp.translate(trans) new_pc.rotate(rot_mat) box_tmp.rotate(Quaternion(matrix=rot_mat)) new_pc = crop_pc_axis_aligned(new_pc, box_tmp, scale=scale, offset=offset) else: new_pc = crop_pc_axis_aligned(pc, sample_bb, scale=scale, offset=offset) # transform to the coordinate system of sample_bb new_pc.translate(trans) new_pc.rotate(rot_mat) return new_pc def transform_box(box, ref_box): box = copy.deepcopy(box) box.translate(-ref_box.center) box.rotate(Quaternion(matrix=ref_box.rotation_matrix.T)) return box def get_in_box_mask(PC, box): """check which points of PC are inside the box""" box_tmp = copy.deepcopy(box) new_PC = PointCloud(PC.points.copy()) rot_mat = np.transpose(box_tmp.rotation_matrix) trans = -box_tmp.center # align data new_PC.translate(trans) box_tmp.translate(trans) new_PC.rotate(rot_mat) box_tmp.rotate(Quaternion(matrix=rot_mat)) maxi = np.max(box_tmp.corners(), 1) mini = np.min(box_tmp.corners(), 1) x_filt_max = new_PC.points[0, :] < maxi[0] x_filt_min = new_PC.points[0, :] > mini[0] y_filt_max = new_PC.points[1, :] < maxi[1] y_filt_min = new_PC.points[1, :] > mini[1] z_filt_max = new_PC.points[2, :] < maxi[2] z_filt_min = new_PC.points[2, :] > mini[2] close = np.logical_and(x_filt_min, x_filt_max) close =
np.logical_and(close, y_filt_min)
numpy.logical_and
import dask.dataframe as dd import numpy as np import pandas as pd import pytest import featuretools as ft from featuretools.computational_backends.feature_set import FeatureSet from featuretools.computational_backends.feature_set_calculator import ( FeatureSetCalculator ) from featuretools.feature_base import DirectFeature, Feature from featuretools.primitives import ( AggregationPrimitive, Day, Hour, Minute, Month, Second, TransformPrimitive, Year ) from featuretools.primitives.utils import PrimitivesDeserializer from featuretools.synthesis import dfs from featuretools.variable_types import Categorical, Datetime, Numeric def test_direct_from_identity(es): device = es['sessions']['device_type'] d = DirectFeature(base_feature=device, child_entity=es['log']) feature_set = FeatureSet([d]) calculator = FeatureSetCalculator(es, feature_set=feature_set, time_last=None) df = calculator.run(np.array([0, 5])) if isinstance(df, dd.DataFrame): df = df.compute().set_index('id').sort_index() v = df[d.get_name()].tolist() assert v == [0, 1] def test_direct_from_variable(es): # should be same behavior as test_direct_from_identity device = es['sessions']['device_type'] d = DirectFeature(base_feature=device, child_entity=es['log']) feature_set = FeatureSet([d]) calculator = FeatureSetCalculator(es, feature_set=feature_set, time_last=None) df = calculator.run(
np.array([0, 5])
numpy.array
import numpy as np import gym from gym import spaces from numpy.random import default_rng import pickle import os import math import matplotlib.pyplot as plt from PIL import Image from gym_flp import rewards from IPython.display import display, clear_output import anytree from anytree import Node, RenderTree, PreOrderIter, LevelOrderIter, LevelOrderGroupIter ''' v0.0.3 Significant changes: 08.09.2020: - Dicrete option removed from spaces; only Box allowed - Classes for quadtratic set covering and mixed integer programming (-ish) added - Episodic tasks: no more terminal states (exception: max. no. of trials reached) 12.10.2020: - mip added - fbs added ''' class qapEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode=None, instance=None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.DistanceMatrices, self.FlowMatrices = pickle.load(open(os.path.join(__location__,'discrete', 'qap_matrices.pkl'), 'rb')) self.transport_intensity = None self.instance = instance self.mode = mode while not (self.instance in self.DistanceMatrices.keys() or self.instance in self.FlowMatrices.keys() or self.instance in ['Neos-n6', 'Neos-n7', 'Brewery']): print('Available Problem Sets:', self.DistanceMatrices.keys()) self.instance = input('Pick a problem:').strip() self.D = self.DistanceMatrices[self.instance] self.F = self.FlowMatrices[self.instance] # Determine problem size relevant for much stuff in here: self.n = len(self.D[0]) # Action space has two option: # 1) Define as Box with shape (1, 2) and allow values to range from 1 through self.n # 2) Define as Discrete with x = 1+((n^2-n)/2) actions (one half of matrix + 1 value from diagonal) --> Omit "+1" to obtain range from 0 to x! # self.action_space = spaces.Box(low=-1, high=6, shape=(1,2), dtype=np.int) # Doubles complexity of the problem as it allows the identical action (1,2) and (2,1) self.action_space = spaces.Discrete(int((self.n**2-self.n)*0.5)+1) # If you are using images as input, the input values must be in [0, 255] as the observation is normalized (dividing by 255 to have values in [0, 1]) when using CNN policies. if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape=(1, self.n, 3), dtype = np.uint8) # Image representation elif self.mode == 'human': self.observation_space = spaces.Box(low=1, high = self.n, shape=(self.n,), dtype=np.float32) self.states = {} # Create an empty dictonary where states and their respective reward will be stored for future reference self.actions = self.pairwiseExchange(self.n) # Initialize Environment with empty state and action self.action = None self.state = None self.internal_state = None #Initialize moving target to incredibly high value. To be updated if reward obtained is smaller. self.movingTargetReward = np.inf self.MHC = rewards.mhc.MHC() # Create an instance of class MHC in module mhc.py from package rewards def reset(self): state = default_rng().choice(range(1,self.n+1), size=self.n, replace=False) #MHC, self.TM = self.MHC.compute(self.D, self.F, state) self.internal_state = state.copy() return state def step(self, action): # Create new State based on action fromState = self.internal_state.copy() swap = self.actions[action] fromState[swap[0]-1], fromState[swap[1]-1] = fromState[swap[1]-1], fromState[swap[0]-1] newState = fromState.copy() #MHC, self.TM = self.MHC.compute(self.D, self.F, current_permutation) MHC, self.TM = self.MHC.compute(self.D, self.F, newState) if self.mode == 'human': self.states[tuple(fromState)] = MHC if self.movingTargetReward == np.inf: self.movingTargetReward = MHC #reward = self.movingTargetReward - MHC reward = -1 if MHC > self.movingTargetReward else 10 self.movingTargetReward = MHC if MHC < self.movingTargetReward else self.movingTargetReward if self.mode == "rgb_array": rgb = np.zeros((1,self.n,3), dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((fromState-np.min(fromState))/(np.max(fromState)-np.min(fromState))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for i, s in enumerate(fromState): rgb[0:1, i] = [R[s-1], G[s-1], B[s-1]] newState = np.array(rgb) self.state = newState.copy() self.internal_state = fromState.copy() return newState, reward, False, {} def render(self, mode=None): if self.mode == "human": SCALE = 1 # Scale size of pixels for displayability img_h, img_w = SCALE, (len(self.internal_state))*SCALE data = np.zeros((img_h, img_w, 3), dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((self.internal_state-np.min(self.internal_state))/(np.max(self.internal_state)-np.min(self.internal_state))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for i, s in enumerate(self.internal_state): data[0*SCALE:1*SCALE, i*SCALE:(i+1)*SCALE] = [R[s-1], G[s-1], B[s-1]] img = Image.fromarray(data, 'RGB') if self.mode == 'rgb_array': img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def close(self): pass def pairwiseExchange(self, x): actions = [(i,j) for i in range(1,x) for j in range(i+1,x+1) if not i==j] actions.append((1,1)) return actions class fbsEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode=None, instance = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.mode = mode self.instance = instance while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed ''' Nomenclature: W --> Width of Plant (y coordinate) L --> Length of Plant (x coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' #if self.l is None or self.w is None: # self.l = np.random.randint(max(self.min_side_length, np.min(self.a)/self.min_side_length), max(self.min_side_length, np.min(self.a)/self.min_side_length), size=(self.n,)) # self.l = np.sqrt(self.A/self.aspect_ratio) # self.w = np.round(self.a/self.l) # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L # Design a layout with l = 1,5 * w #self.L = divisor(int(self.A)) #self.W = self.A/self.L # These values need to be set manually, e.g. acc. to data from literature. Following Eq. 1 in Ulutas & Kulturel-Konak (2012), the minimum side length can be determined by assuming the smallest facility will occupy alone. self.aspect_ratio = int(max(self.beta)) if not self.beta is None else 1 self.min_length = np.min(self.a) / self.L self.min_width = np.min(self.a) / self.W # We define minimum side lengths to be 1 in order to be displayable in array self.min_length = 1 self.min_width = 1 self.action_space = spaces.Discrete(5) #Taken from doi:10.1016/j.engappai.2020.103697 self.actions = {0: 'Randomize', 1: 'Bit Swap', 2: 'Bay Exchange', 3: 'Inverse', 4: 'Idle'} #self.state_space = spaces.Box(low=1, high = self.n, shape=(self.n,), dtype=np.int) self.bay_space = spaces.Box(low=0, high = 1, shape=(self.n,), dtype=np.int) # binary vector indicating bay breaks (i = 1 means last facility in bay) self.state = None self.permutation = None # Permutation of all n facilities, read from top to bottom self.bay = None self.done = False self.MHC = rewards.mhc.MHC() if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": observation_low = np.tile(np.array([0,0,self.min_length,self.min_width],dtype=int), self.n) observation_high = np.tile(np.array([self.W, self.L, self.W, self.L], dtype=int), self.n) self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = int) # Vector representation of coordinates else: print("Nothing correct selected") def reset(self): # 1. Get a random permutation and bays self.permutation, self.bay = self.sampler() # 2. Last position in bay break vector has to be 1 by default. self.bay[-1] = 1 self.fac_x, self.fac_y, self.fac_b, self.fac_h = self.getCoordinates() self.D = getDistances(self.fac_x, self.fac_y) reward, self.TM = self.MHC.compute(self.D, self.F, self.permutation[:]) self.state = self.constructState(self.fac_x, self.fac_y, self.fac_b, self.fac_h, self.n) return self.state def constructState(self, x, y, l, w, n): # Construct state state_prelim = np.zeros((4*n,), dtype=float) state_prelim[0::4] = y state_prelim[1::4] = x state_prelim[2::4] = w state_prelim[3::4] = l if self.mode == "human": self.state = np.array(state_prelim) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(state_prelim) return self.state[:] def ConvertCoordinatesToState(self, state_prelim): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((self.permutation-np.min(self.permutation))/(np.max(self.permutation)-np.min(self.permutation))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for x, p in enumerate(self.permutation): x_from = state_prelim[4*x+1] -0.5 * state_prelim[4*x+3] y_from = state_prelim[4*x+0] -0.5 * state_prelim[4*x+2] x_to = state_prelim[4*x+1] + 0.5 * state_prelim[4*x+3] y_to = state_prelim[4*x+0] + 0.5 * state_prelim[4*x+2] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[p-1], G[p-1], B[p-1]] return np.array(data, dtype=np.uint8) def sampler(self): return default_rng().choice(range(1,self.n+1), size=self.n, replace=False), self.bay_space.sample() def getCoordinates(self): facilities = np.where(self.bay==1)[0] #Read all positions with a bay break bays = np.split(self.permutation, facilities[:-1]+1) lengths = np.zeros((len(self.permutation,))) widths = np.zeros((len(self.permutation,))) fac_x = np.zeros((len(self.permutation,))) fac_y = np.zeros((len(self.permutation,))) x = 0 start = 0 for b in bays: #Get the facilities that are located in the bay areas = self.a[b-1] #Get the area associated with the facilities end = start + len(areas) lengths[start:end] = np.sum(areas)/self.W #Calculate all facility widhts in bay acc. to Eq. (1) in https://doi.org/10.1016/j.eswa.2011.11.046 widths[start:end] = areas/lengths[start:end] fac_x[start:end] = lengths[start:end] * 0.5 + x x += np.sum(areas)/self.W y = np.ones(len(b)) ll = 0 for idx, l in enumerate(widths[start:end]): y[idx] = ll + 0.5*l ll += l fac_y[start:end] = y start = end return fac_x, fac_y, lengths, widths def step(self, action): a = self.actions[action] #k = np.count_nonzero(self.bay) fromState = np.array(self.permutation) # Get lists with a bay positions and facilities in each bay facilities = np.where(self.bay==1)[0] bay_breaks = np.split(self.bay, facilities[:-1]+1) # Load indiv. facilities into bay acc. to breaks; omit break on last position to avoid empty array in list. bays = np.split(self.permutation, facilities[:-1]+1) if a == 'Randomize': # Two vector elements randomly chosen are exchanged. Bay vector remains untouched. k = default_rng().choice(range(len(self.permutation-1)), size=1, replace=False) l = default_rng().choice(range(len(self.permutation-1)), size=1, replace=False) fromState[k], fromState[l] = fromState[l], fromState[k] self.permutation = np.array(fromState) elif a == 'Bit Swap': #One element randomly selected flips its value (1 to 0 or 0 to 1) j = default_rng().choice(range(len(self.bay-1)), size=1, replace=False) temp_bay = np.array(self.bay) # Make a copy of bay temp_bay[j] = 1 if temp_bay[j] == 0 else 0 self.bay = np.array(temp_bay) elif a == 'Bay Exchange': #Two bays are randomly selected and exchange facilities contained in them o = int(default_rng().choice(range(len(bays)), size=1, replace=False)) p = int(default_rng().choice(range(len(bays)), size=1, replace=False)) while p==o: # Make sure bays are not the same p = int(default_rng().choice(range(len(bays)), size=1, replace=False)) # Swap bays and break points accordingly: bays[o], bays[p] = bays[p], bays[o] bay_breaks[o], bay_breaks[p] = bay_breaks[p], bay_breaks[o] new_bay = np.concatenate(bay_breaks) new_state = np.concatenate(bays) # Make sure state is saved as copy self.permutation = np.array(new_state) self.bay = np.array(new_bay) elif a == 'Inverse': #Facilities present in a certain bay randomly chosen are inverted. q = default_rng().choice(range(len(bays))) bays[q] = np.flip(bays[q]) new_bay = np.concatenate(bay_breaks) new_state = np.concatenate(bays) # Make sure state is saved as copy self.permutation = np.array(new_state) self.bay = np.array(new_bay) elif a == 'Idle': pass # Keep old state self.fac_x, self.fac_y, self.fac_b, self.fac_h = self.getCoordinates() self.D = getDistances(self.fac_x, self.fac_y) reward, self.TM = self.MHC.compute(self.D, self.F, fromState) self.state = self.constructState(self.fac_x, self.fac_y, self.fac_b, self.fac_h, self.n) self.done = False #Always false for continuous task return self.state[:], reward, self.done, {} def render(self, mode= None): if self.mode== "human": # Mode 'human' needs intermediate step to convert state vector into image array data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') if self.mode == "rgb_array": data = self.state[:] img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() #23.02.21: Switched to data instead of img for testing video return img def close(self): pass #self.close() class ofpEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode = None, instance = None, distance = None, aspect_ratio = None, step_size = None, greenfield = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.mode = mode self.aspect_ratio = 2 if aspect_ratio is None else aspect_ratio self.step_size = 2 if step_size is None else step_size self.greenfield = greenfield self.instance = instance while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] self.counter = 0 self.done = False self.pseudo_stability = 0 #If the reward has not improved in the last 200 steps, terminate the episode self.best_reward = None # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed ''' Nomenclature: W --> Width of Plant (x coordinate) L --> Length of Plant (y coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' #if self.l is None or self.w is None: # self.l = np.random.randint(max(self.min_side_length, np.min(self.a)/self.min_side_length), max(self.min_side_length, np.min(self.a)/self.min_side_length), size=(self.n,)) # self.l = np.sqrt(self.A/self.aspect_ratio) # self.w = np.round(self.a/self.l) # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L if self.greenfield: self.L = 2*self.L self.W = 2*self.W # Design a layout with l = 1,5 * w #self.L = divisor(int(self.A)) #self.W = self.A/self.L # These values need to be set manually, e.g. acc. to data from literature. Following Eq. 1 in Ulutas & Kulturel-Konak (2012), the minimum side length can be determined by assuming the smallest facility will occupy alone. self.aspect_ratio = int(max(self.beta)) if not self.beta is None else self.aspect_ratio self.min_length = 1 self.min_width = 1 # 3. Define the possible actions: 5 for each box [toDo: plus 2 to manipulate sizes] + 1 idle action for all self.actions = {} for i in range(self.n): self.actions[0+(i)*5] = "up" self.actions[1+(i)*5] = "down" self.actions[2+(i)*5] = "right" self.actions[3+(i)*5] = "left" self.actions[4+(i)*5] = "rotate" self.actions[len(self.actions)] = "keep" # 4. Define actions space as Discrete Space self.action_space = spaces.Discrete(1+5*self.n) #5 actions for each facility: left, up, down, right, rotate + idle action across all # 5. Set some starting points self.reward = 0 self.state = None self.internal_state = None #Placeholder for state variable for internal manipulation in rgb_array mode if self.w is None or self.l is None: self.l = np.random.randint(self.min_side_length*self.aspect_ratio, np.min(self.a), size=(self.n, )) self.w = np.round(self.a/self.l) # 6. Set upper and lower bound for observation space # min x position can be point of origin (0,0) [coordinates map to upper left corner] # min y position can be point of origin (0,0) [coordinates map to upper left corner] # min width can be smallest area divided by its length # min lenght can be smallest width (above) multiplied by aspect ratio # max x pos can be bottom right edge of grid # max y pos can be bottpm right edge of grid if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": #observation_low = np.tile(np.array([0,0,self.min_side_length, self.min_side_length],dtype=float), self.n) #observation_high = np.tile(np.array([self.L, self.W, max(self.l), max(self.w)], dtype=float), self.n) observation_low = np.zeros(4* self.n) observation_high = np.zeros(4* self.n) observation_low[0::4] = max(self.w) observation_low[1::4] = max(self.l) observation_low[2::4] = max(self.w) observation_low[3::4] = max(self.l) observation_high[0::4] = self.W - max(self.w) observation_high[1::4] = self.L - max(self.l) observation_high[2::4] = self.W - max(self.w) observation_high[3::4] = self.L - max(self.l) self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = np.uint8) # Vector representation of coordinates else: print("Nothing correct selected") self.MHC = rewards.mhc.MHC() # Set Boundaries self.upper_bound = self.L- max(self.l)/2 self.lower_bound = 0 + max(self.l)/2 self.left_bound = 0 + max(self.w)/2 self.right_bound = self.W- max(self.w)/2 def reset(self): # Start with random x and y positions if self.mode == 'human': state_prelim = self.observation_space.sample() # Override length (l) and width (w) or facilities with data from instances state_prelim[2::4] = self.w state_prelim[3::4] = self.l self.D = getDistances(state_prelim[0::4], state_prelim[1::4]) self.internal_state = np.array(state_prelim) self.state = np.array(state_prelim) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) self.counter = 0 self.best_reward = reward self.reward = 0 elif self.mode == 'rgb_array': state_prelim = np.zeros((self.W, self.L, 3),dtype=np.uint8) x = np.random.uniform(0, self.L, size=(self.n,)) y = np.random.uniform(0, self.W, size=(self.n,)) #s = self.constructState(y, x, self.w, self.l, self.n) s = np.zeros(4*self.n) s[0::4] = y s[1::4] = x s[2::4] = self.w s[3::4] = self.l self.internal_state = np.array(s).copy() #self.state = self.constructState(y, x, self.w, self.l, self.n) self.D = getDistances(s[0::4], s[1::4]) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) self.state = self.ConvertCoordinatesToState(self.internal_state) self.counter = 0 self.best_reward = reward return self.state.copy() # def offGrid(self, s): # if np.any(s[0::4]-s[2::4] < 0): # #print("Bottom bound breached") # og = True # elif np.any(s[0::4]+s[2::4] > self.W): # #print("Top bound breached") # og = True # elif np.any(s[1::4]-s[3::4] < 0): # #print("left bound breached") # og = True # elif np.any(s[1::4]+s[3::4] > self.L): # #print("right bound breached") # og = True # else: # og = False # return og # def collision_test(self, y, x, w, l): # # collision test # collision = False #initialize collision for each collision test # for i in range (0, self.n-1): # for j in range (i+1,self.n): # if not(x[i]+0.5*l[i] < x[j]-0.5*l[j] or x[i]-0.5*l[i] > x[j]+0.5*l[j] or y[i]-0.5*w[i] > y[j]+0.5*w[j] or y[i]+0.5*w[i] < y[j]-0.5*w[j]): # collision = True # break # return collision def collision(self,x,y,w,l): collision = False for i in range(0,self.n-1): for j in range(i+1,self.n): if (abs(int(x[i]) - int(x[j])) < 0.5*self.w[i]+0.5*self.w[j]): if(abs(int(y[i]) - int(y[j])) < 0.5*self.l[i]+0.5*self.l[j]): #print(x[i],y[i],x[j],y[j]) collision = True if (abs(int(y[i]) - int(y[j])) < 0.5*self.l[i]+0.5*self.l[j]): if(abs(int(x[i]) - int(x[j])) < 0.5*self.w[i]+0.5*self.w[j]): #print(x[i],y[i],x[j],y[j]) collision = True return collision def step(self, action): self.reward = 0 m = np.int(np.ceil((action+1)/5)) # Facility on which the action is # Get copy of state to manipulate: temp_state = self.internal_state[:] step_size = self.step_size # Do the action if self.actions[action] == "up": if temp_state[4*(m-1)+1] + temp_state[4*(m-1)+3]*0.5 + step_size < self.upper_bound: temp_state[4*(m-1)+1] += step_size else: temp_state[4*(m-1)+1] += 0 #print('Forbidden action: machine', m, 'left grid on upper bound') elif self.actions[action] == "down": if temp_state[4*(m-1)+1] - temp_state[4*(m-1)+3]*0.5 + step_size > self.lower_bound: temp_state[4*(m-1)+1] -= step_size else: temp_state[4*(m-1)+1] += 0 #print('Forbidden action: machine', m, 'left grid on lower bound') elif self.actions[action] == "right": if temp_state[4*(m-1)]+temp_state[4*(m-1)+2]*0.5 + step_size < self.right_bound: temp_state[4*(m-1)] += step_size else: temp_state[4*(m-1)] += 0 #print('Forbidden action: machine', m, 'left grid on right bound') elif self.actions[action] == "left": if temp_state[4*(m-1)]-temp_state[4*(m-1)+2]*0.5 + step_size > self.left_bound: temp_state[4*(m-1)] -= step_size else: temp_state[4*(m-1)] += 0 #print('Forbidden action: machine', m, 'left grid on left bound') elif self.actions[action] == "keep": None #Leave everything as is elif self.actions[action] == "rotate": temp_state[4*(m-1)+2], temp_state[4*(m-1)+3] = temp_state[4*(m-1)+3], temp_state[4*(m-1)+2] else: raise ValueError("Received invalid action={} which is not part of the action space".format(action)) self.fac_x, self.fac_y, self.fac_b, self.fac_h = temp_state[0::4], temp_state[1::4], temp_state[2::4], temp_state[3::4] # ToDo: Read this from self.state self.D = getDistances(self.fac_x, self.fac_y) fromState = np.array(range(1,self.n+1)) # Need to create permutation matrix MHC, self.TM = self.MHC.compute(self.D, self.F, fromState) self.internal_state = np.array(temp_state) # Keep a copy of the vector representation for future steps self.state = self.internal_state[:] # Test if initial state causing a collision. If yes than initialize a new state until there is no collision collision = self.collision(temp_state[0::4],temp_state[1::4], temp_state[2::4], temp_state[3::4]) # Pass every 4th item starting at 0 (x pos) and 1 (y pos) for checking if (MHC < self.best_reward) and (collision == False) : self.best_reward = MHC self.reward = 50 if collision == True: self.reward = -2 if self.mode == 'rgb_array': self.state = self.ConvertCoordinatesToState(self.internal_state) #Retain state for internal use self.pseudo_stability = self.counter self.done = True if self.pseudo_stability == 200 else False self.counter += 1 #print(self.reward) return self.state,self.reward,self.done,{} def ConvertCoordinatesToState(self, state_prelim): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) p = np.arange(self.n) R = np.array((p-np.min(p))/(np.max(p)-np.min(p))*255).astype(int) R[R<=20] = 255 G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) G[G<=20] = 255 B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) B[B<=20] = 255 for x, p in enumerate(p): x_from = state_prelim[4*x+0] -0.5 * state_prelim[4*x+2] y_from = state_prelim[4*x+1] -0.5 * state_prelim[4*x+3] x_to = state_prelim[4*x+0] + 0.5 * state_prelim[4*x+2] y_to = state_prelim[4*x+1] + 0.5 * state_prelim[4*x+3] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[p-1], G[p-1], B[p-1]] return np.array(data, dtype=np.uint8) def constructState(self, x, y, b, h, n): # Construct state state_prelim = np.zeros((4*n,), dtype=float) state_prelim[0::4] = x state_prelim[1::4] = y state_prelim[2::4] = b state_prelim[3::4] = h if self.mode == "human": self.state = np.array(state_prelim) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(state_prelim) return self.state[:] def render(self): if self.mode == "human": data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') if self.mode == "rgb_array": img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def close(self): pass #Nothing here yet class stsEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode = None, instance = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.instance = instance self.mode = mode self.MHC = rewards.mhc.MHC() while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L ''' Nomenclature: W --> Width of Plant (y coordinate) L --> Length of Plant (x coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' # Provide variables for layout encoding (epsilon in doi:10.1016/j.ejor.2018.01.001) self.permutation = None self.slicing = None self.orientation_space = spaces.Box(low=0, high = 1, shape=(self.n-1,), dtype=np.int) # binary vector indicating bay breaks (i = 1 means last facility in bay) self.state = None if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": #observation_low = np.tile(np.array([0,0,self.min_side_length, self.min_side_length],dtype=float), self.n) #observation_high = np.tile(np.array([self.L, self.W, max(self.l), max(self.w)], dtype=float), self.n) observation_low = np.zeros(4* self.n) observation_high = np.zeros(4* self.n) observation_low[0::4] = 0.0 #Top-left corner y observation_low[1::4] = 0.0 #Top-left corner x observation_low[2::4] = 1.0 #Width observation_low[3::4] = 1.0 #Length observation_high[0::4] = self.W observation_high[1::4] = self.L observation_high[2::4] = self.W observation_high[3::4] = self.L self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = float) # Vector representation of coordinates else: print("Nothing correct selected") self.action_space = spaces.Discrete(5) self.actions = {0: 'Permute', 1: 'Slice_Swap', 2: 'Shuffle', 3: 'Bit_Swap', 4: 'Idle'} def reset(self): # 1. Get a random permutation, slicing order and orientation self.permutation, self.slicing, self.orientation = self.sampler() # 2. Build the tree incl. size information s = self.TreeBuilder(self.permutation, self.slicing, self.orientation) centers = np.array([s[0::4] + 0.5*s[2::4], s[1::4] + 0.5* s[3::4]]) self.D = getDistances(centers[0], centers[1]) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) if self.mode == "human": self.state = np.array(s) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(s) return self.state def ConvertCoordinatesToState(self, s): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) p = self.permutation[:] R = np.array((p-np.min(p))/(np.max(p)-np.min(p))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for x in range(self.n): y_from = s[4*x+0] x_from = s[4*x+1] y_to = y_from + s[4*x+2] x_to = x_from + s[4*x+3] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[x], G[x], B[x]] return np.array(data, dtype=np.uint8) def TreeBuilder(self,p,s,o): names = {0: 'V', 1: 'H'} contains = np.array(p) W = self.W L = self.L area = W * L self.STS = Node(name = None, contains = contains, parent = None, area = area, width = W, length = L, upper_left = np.zeros((2,)), lower_right = np.array([W,L]), dtype = float) for i,r in enumerate(o): name = names[r] cut_after_pos = s[i] whats_in_pos = p[cut_after_pos-1] parent = anytree.search.find(self.STS, lambda node: np.any(node.contains==whats_in_pos)) parent.name = name starting_point = parent.upper_left cuts = np.split(parent.contains, [np.where(parent.contains == whats_in_pos)[0][0]+1]) for c in cuts: area = float(np.sum(self.a[c-1])) length = area/parent.width if name == 'V' else parent.length width = area/parent.length if name == 'H' else parent.width starting_point = starting_point contains = c new_name = None if not len(c)==1 else c[0] Node(name = new_name, \ contains = contains, \ parent = parent, \ area = area, \ width = width, \ length = length, \ upper_left = starting_point, \ lower_right = starting_point + np.array([width, length]), \ dtype = float) starting_point = starting_point + np.array([0, length]) if parent.name == 'V' else starting_point + np.array([width, 0]) parent.contains = None self.STS.root.area = np.sum([i.area for i in self.STS.root.children]) s = np.zeros((4*self.n,)) for l in self.STS.leaves: trg = int(l.name)-1 s[4*trg] = l.upper_left[0] s[4*trg+1] = l.upper_left[1] s[4*trg+2] = l.width s[4*trg+3] = l.length return s def step(self, a): action = self.actions[a] ''' Available actions in STS: - Random permutation change - Random slicing order change at two positions - Shuffle slicing order (new random array) - Bitswap in Orientation vector - Do Nothing ''' if action == 'Permute': i = np.random.randint(0, len(self.permutation)-1) j = np.random.randint(0, len(self.permutation)-1) temp_perm = np.array(self.permutation) temp_perm[i], temp_perm[j] = temp_perm[j], temp_perm[i] self.permutation = np.array(temp_perm) elif action == 'Slice_Swap': i = np.random.randint(0, len(self.slicing)-1) j = np.random.randint(0, len(self.slicing)-1) temp_sli = np.array(self.slicing) temp_sli[i], temp_sli[j] = temp_sli[j], temp_sli[i] self.slicing = np.array(temp_sli) elif action == 'Shuffle': self.slicing = default_rng().choice(range(1,self.n), size=self.n-1, replace=False) elif action == 'Bit_Swap': i = np.random.randint(0, len(self.orientation)-1) if self.orientation[i] == 1: self.orientation[i] = 0 elif self.orientation[i] == 0: self.orientation[i] = 1 elif action == 'Idle': self.permutation = np.array(self.permutation) self.slicing = np.array(self.slicing) self.orientation = np.array(self.orientation) new_state = self.TreeBuilder(self.permutation, self.slicing, self.orientation) if self.mode == "human": self.state = np.array(new_state) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(new_state) return self.state[:], 0, False, {} def render(self, mode=None): if self.mode == "human": data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') elif self.mode == "rgb_array": img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def sampler(self): return
default_rng()
numpy.random.default_rng
import cv2 import numpy as np def get_center_of_poly(pts): # try: # M = cv2.moments(pts) # except: M = cv2.moments(
np.array([pts])
numpy.array
# fitmultimodel.py - Multi-component distributions SNNLS fit function # -------------------------------------------------------------------- # This file is a part of DeerLab. License is MIT (see LICENSE.md). # Copyright(c) 2019-2021: <NAME>, <NAME> and other contributors. import copy import numpy as np import matplotlib.pyplot as plt from types import FunctionType import deerlab as dl from deerlab.utils import hccm, goodness_of_fit, Jacobian from deerlab.classes import FitResult def fitmultimodel(V, Kmodel, r, model, maxModels, method='aic', lb=None, ub=None, lbK=None, ubK=None, strategy='split', weights=1, renormalize = True, uq=True, tol=1e-9, maxiter=1e8): r""" Fits a multi-model parametric distance distribution model to a dipolar signal using separable non-linear least-squares (SNLLS). Parameters ---------- V : array_like or list of array_like Dipolar signal(s) to be fitted. Kmodel : callable or 2D-array_like Dipolar kernel model. If no kernel parameters must be fitted, it can be specified as a matrix array (or a list thereof if multiple signals are globally fitted). Otherwise, it is a callable function that accepts an array of kernel parameters and returns a kernel matrix array or a list thereof. r : array_like Distance axis, in nanometers. model : callable Basis component of the multi-component distance distribution. Must be a callable DeerLab model function (e.g. ``dd_gauss`` or ``dd_rice``). maxModels : scalar Maximal number of components in the multi-component distance distribution. method : string, optional Functional metric used for the selection of the optimal number of components: * ``'aic'`` Akaike information criterion * ``'aicc'`` corrected Akaike information criterion * ``'bic'`` Bayesian information criterion * ``'rmsd'`` Root-mean squared deviation The default is ``'aic'``. lb : array_like, optional Lower bounds for the distribution basis model parameters. If not specified, parameters are unbounded. ub : array_like, optional Upper bounds for the distribution basis model parameters. If not specified, parameters are unbounded. ubK : array_like, optional Lower bounds for the kernel model parameters. If not specified, parameters are unbounded. ubK : array_like, optional Upper bounds for the kernel model parameters. If not specified, parameters are unbounded. strategy: string, optional Strategy for the initialization of the multi-component non-linear parameters: * ``'spread'`` For each N-component model, the non-linear parameters start values are spread equidistantly over the box constraints. The number of components are changed in a forward matter, i.e. 1,2,...,N. * ``'split'`` For each N-component model, the non-linear parameters start values are selected by splitting the location and spread of the components obtained from the N-1 component fit. The number of components are changed in a forward matter, i.e. 1,2,...,N. * ``'merge'`` For each N-component model, the non-linear parameters start values are selected by merging the location and spread of the components obtained from the N+1 component fit. The number of components are changed in a backward matter, i.e. N,N-1,...,1. The default is ``'split'``. weights : array_like, optional Array of weighting coefficients for the individual signals in global fitting, the default is all weighted equally. renormalize : boolean, optional Enable/disable renormalization of the fitted distribution, by default it is enabled. uq : boolean, optional Enable/disable the uncertainty quantification analysis, by default it is enabled. tol : scalar, optional Tolerance value for convergence of the NNLS algorithm. If not specified, the value is set to ``tol = 1e-9``. maxiter: scalar, optional Maximum number of iterations before termination. If not specified, the value is set to ``maxiter = 1e8``. Returns ------- :ref:`FitResult` with the following fields defined: P : ndarray Fitted distance distribution with optimal number of components. Pparam : ndarray Fitted distance distribution components parameters amps : ndarray Fitted components amplitudes Kparam : ndarray Fitted kernel parameters. V : ndarray or list thereof Fitted dipolar signal(s). Puncert : :ref:`UQResult` Covariance-based uncertainty quantification of the fitted distance distribution paramUncert : :ref:`UQResult` Covariance-based uncertainty quantification of the fitted parameters Vuncert : ndarray or list thereof Covariance-based uncertainty quantification of the fitted dipolar signal(s). Nopt : int scalar Optimized number of components in model. Pn : list of ndarrays List of all fitted multi-component distance distributions. selfun : ndarray Selection functional values (as specified as ``method``) for the all fitted multi-component models. scale : float int or list of float int Amplitude scale(s) of the dipolar signal(s). plot : callable Function to display the results. It will display the fitted signals, the distance distribution with confidence intervals, and the values of the selection functional. The function returns the figure object (``matplotlib.figure.Figure``) object as output, which can be modified. Using ``fig = plot(show=False)`` will not render the figure unless ``display(fig)`` is called. stats : dict Goodness of fit statistical estimators: * ``stats['chi2red']`` - Reduced \chi^2 test * ``stats['r2']`` - R^2 test * ``stats['rmsd']`` - Root-mean squared deviation (RMSD) * ``stats['aic']`` - Akaike information criterion * ``stats['aicc']`` - Corrected Akaike information criterion * ``stats['bic']`` - Bayesian information criterion success : bool Whether or not the optimizer exited successfully. cost : float Value of the cost function at the solution. residuals : ndarray Vector of residuals at the solution. Notes ----- This function takes advantage of the special structure of a multi-component model, i.e. the separability of the component amplitudes as linear parameters from the rest of the non-linear parameters. This makes it suitable to be solved as a SNLLS problem. Examples -------- A classical example involves the fit of a multi-Gauss distance distribution to a 4-pulse DEER dipolar signal. Since the signal requires additional parameters (e.g. modulation depth, background parameters,…) a kernel model can be defined to account for these:: def Kmodel(Kpar): # Unpack parameters lam,conc = Kpar # Construct kernel K = dl.dipolarkernel(t,r,mod=lam,bg=dl.bg_hom3d(t,conc,lam)) return K fit = dl.fitmultimodel(V,Kmodel,r,dd_model,Nmax,'aicc') If multiple signals are to be fitted globally the example abova can be easily adapted by passing multiple signals to the fit function and by returning multiple kernels with the kernel model function:: def Kmodel(Kpar): # Unpack parameters lam,conc = Kpar # Construct kernels for both signals K1 = dl.dipolarkernel(t1,r,mod=lam,bg=bg_hom3d(t1,conc,lam)) K2 = dl.dipolarkernel(t2,r,mod=lam,bg=bg_hom3d(t2,conc,lam)) return K1,K2 fit = dl.fitmultimodel([V1,V2],Kmodel,r,dd_model,Nmax,'aicc') """ # Ensure that all arrays are numpy.nparray r = np.atleast_1d(r) # Parse multiple datsets and non-linear operators into a single concatenated vector/matrix V, Kmodel, weights, Vsubsets, prescales = dl.utils.parse_multidatasets(V, Kmodel, weights,precondition=True) # Check kernel model if type(Kmodel) is FunctionType: # If callable, determine how many parameters the model requires nKparam = 0 notEnoughParam = True while notEnoughParam: nKparam = nKparam + 1 try: Kmodel(np.random.uniform(size=nKparam)) notEnoughParam = False except ValueError: notEnoughParam = True else: # If the kernel is just a matrix make it a callable without parameters nKparam = 0 K = copy.deepcopy(Kmodel) # need a copy to avoid infite recursion on next step Kmodel = lambda _: K # Extract information about the model nparam = len(model.start) if lb is None: lb = model.lower if ub is None: ub = model.upper paramnames = model.parameters if lbK is None: lbK = [] if ubK is None: ubK = [] # Ensure that all arrays are numpy.nparray lb,ub,lbK,ubK = np.atleast_1d(lb,ub,lbK,ubK) if len(lbK) is not nKparam or len(ubK) is not nKparam: raise ValueError('The upper/lower bounds of the kernel parameters must be ',nKparam,'-element arrays') areLocations = [str in ['Mean','Location'] for str in paramnames] areSpreads = [str in ['Spread','Width','Standard deviation'] for str in paramnames] if any(areLocations): # If the center of the basis function is a parameter limit it # to the distance axis range (stabilizes parameter search) ub[areLocations] = max(r) lb[areLocations] = min(r) def nonlinmodel(par,Nmodels): #=============================================================================== """ Non-linear augmented kernel model ---------------------------------- This function constructs the actual non-linear function which is passed to the SNLLS problem. The full signal is obtained by multiplication of this matrix by a vector of amplitudes. """ # Get kernel with current non-linear parameters K = Kmodel(par[
np.arange(0,nKparam)
numpy.arange
import os import dipy.reconst.dti as dti import numpy as np from dipy.core.gradients import gradient_table, generate_bvecs from dipy.io.image import save_nifti from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel from dipy.reconst.csdeconv import auto_response from scipy.spatial.transform import Rotation class Ellipse: def __init__(self, mean, covariance): self.covariance = covariance self.inv_covariance = np.linalg.pinv(self.covariance) self.mean = mean def quad_form_at(self, x): delta = x - self.mean quad_form = delta.T @ self.covariance @ delta return quad_form def exp_quad_at(self, x): return np.exp(-self.quad_form_at(x)) def rotate_covariance(self, angles): R = Rotation.from_rotvec(angles).as_matrix() self.covariance = R @ self.covariance @ R.T self.inv_covariance = R @ self.inv_covariance @ R.T class DiffusionImageModel: def __init__(self, img_dims, intensity_threshold=1.e-3, rotate=False): center = np.array(img_dims) / 2 cov = (1 / 5) * np.array([[1, 0, 0], [0, 0.5, 0], [0, 0, 0.01]]) ellipse = Ellipse(mean=center, covariance=cov) if rotate is True: angles = [np.pi / 3, np.pi / 4, np.pi / 5] ellipse.rotate_covariance(angles) self.ellipse = ellipse self.img_dims = img_dims self.intensity_threshold = intensity_threshold self.affine = np.eye(4) self.image = None self.b0_image = None self.bvals = None self.bvecs = None self.volumes = None self.dti = None self.v1 = None self.odf = None def fit_dti(self): covariance = [ [1., 0., 0.], [0., 0.2, 0.], [0., 0., 0.2] ] covariance = 100 *
np.array(covariance)
numpy.array
""""""""" Written by <NAME> at Yu Lab, University of Chicago """"""""" from scipy.signal import sosfiltfilt import numpy as np # TESTED def generate_matrix(regr_buffer_size): sampling_axis = np.arange(regr_buffer_size) A = np.vstack([sampling_axis, np.ones(len(sampling_axis))]).T return A # TESTED def calculate_derv(A, filter, Detector): curr_filtered = sosfiltfilt(filter, Detector.data_buffer) curr_regr = curr_filtered[len(curr_filtered) - Detector.regr_buffer_size:, np.newaxis] pinv =
np.linalg.pinv(A)
numpy.linalg.pinv
import typing from pathlib import Path import numpy as np import scipy.fftpack from scipy import signal import einops import functools import torch import paderbox as pb import padertorch as pt import padercontrib as pc from padertorch.contrib.cb.transform import stft as pt_stft, istft as pt_istft from padertorch.contrib.cb import complex as pt_complex def kaldi_stft(time_signal, size=512, shift=160, *, axis=-1, window_length=400, pad=False, fading=False): # ToDo: window return pb.transform.stft(**locals()) def kaldi_istft(stft_signal, size=512, shift=160, *, axis=-1, window_length=400, pad=False, fading=False): # ToDo: window return pb.transform.istft(**locals()) def stft_to_cepstrum( stft_signal, norm='ortho', eps=None, ): """ Reference implementation to get the cepstrum: dft -> abs -> log -> dft >>> signal1 = np.array([1, 2, 3, 4]) >>> signal2 = np.array([1, 2, 3, 4, 5, 6, 7, 8]) >>> dft_signal = np.fft.fft(signal1) >>> np.fft.fft(np.log(np.abs(dft_signal)), norm='ortho') array([2.53758691+0.j, 0.80471896+0.j, 0.45814537+0.j, 0.80471896+0.j]) >>> dft_signal = np.fft.fft(signal2) >>> np.fft.fft(np.log(np.abs(dft_signal)), norm='ortho') array([5.67812692+0.j, 1.21752299+0.j, 0.53177166+0.j, 0.33614941+0.j, 0.28670713+0.j, 0.33614941+0.j, 0.53177166+0.j, 1.21752299+0.j]) Implementation without redundant operations: rdft -> abs -> log -> dct >>> rdft_signal = np.fft.rfft(signal1) >>> stft_to_cepstrum(rdft_signal) array([2.53758691, 0.80471896, 0.45814537]) >>> rdft_signal = np.fft.rfft(signal2) >>> stft_to_cepstrum(rdft_signal) array([5.67812692, 1.21752299, 0.53177166, 0.33614941, 0.28670713]) Note: a scaling only influences the first value >>> rdft_signal = np.fft.rfft(signal1) >>> stft_to_cepstrum(rdft_signal * 2) array([3.92388127, 0.80471896, 0.45814537]) >>> stft_to_cepstrum([0., 0, 0]) array([-1416.79283706, 0. , 0. ]) >>> stft_to_cepstrum([0., 0, 0], eps=0) array([-inf, nan, nan]) >>> stft_to_cepstrum([1., 1, 1]) array([0., 0., 0.]) >>> stft_to_cepstrum([1., 1, 1], eps=0) array([0., 0., 0.]) >>> stft_to_cepstrum([0., 1, 1]) array([-354.19820927, -354.19820927, -354.19820927]) >>> stft_to_cepstrum([0., 1, 1], eps=0) array([-inf, -inf, -inf]) """ stft_signal = np.asarray(stft_signal) assert stft_signal.shape[-1] % 2 == 1, stft_signal.shape stft_signal = np.abs(stft_signal) if eps is None: eps = np.finfo(stft_signal.dtype).tiny if eps != 0: stft_signal =
np.maximum(stft_signal, eps)
numpy.maximum
# pylint: disable=redefined-outer-name, no-member from copy import deepcopy import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal from scipy.stats import linregress from xarray import DataArray, Dataset from ...data import concat, convert_to_inference_data, from_dict, load_arviz_data from ...rcparams import rcParams from ...stats import ( apply_test_function, compare, ess, hdi, loo, loo_pit, psislw, r2_score, summary, waic, ) from ...stats.stats import _gpinv from ...stats.stats_utils import get_log_likelihood from ..helpers import check_multiple_attrs, multidim_models # pylint: disable=unused-import rcParams["data.load"] = "eager" @pytest.fixture(scope="session") def centered_eight(): centered_eight = load_arviz_data("centered_eight") return centered_eight @pytest.fixture(scope="session") def non_centered_eight(): non_centered_eight = load_arviz_data("non_centered_eight") return non_centered_eight def test_hdp(): normal_sample = np.random.randn(5000000) interval = hdi(normal_sample) assert_array_almost_equal(interval, [-1.88, 1.88], 2) def test_hdp_2darray(): normal_sample = np.random.randn(12000, 5) result = hdi(normal_sample) assert result.shape == (5, 2) def test_hdi_multidimension(): normal_sample = np.random.randn(12000, 10, 3) result = hdi(normal_sample) assert result.shape == (3, 2) def test_hdi_idata(centered_eight): data = centered_eight.posterior result = hdi(data) assert isinstance(result, Dataset) assert dict(result.dims) == {"school": 8, "hdi": 2} result = hdi(data, input_core_dims=[["chain"]]) assert isinstance(result, Dataset) assert result.dims == {"draw": 500, "hdi": 2, "school": 8} def test_hdi_idata_varnames(centered_eight): data = centered_eight.posterior result = hdi(data, var_names=["mu", "theta"]) assert isinstance(result, Dataset) assert result.dims == {"hdi": 2, "school": 8} assert list(result.data_vars.keys()) == ["mu", "theta"] def test_hdi_idata_group(centered_eight): result_posterior = hdi(centered_eight, group="posterior", var_names="mu") result_prior = hdi(centered_eight, group="prior", var_names="mu") assert result_prior.dims == {"hdi": 2} range_posterior = result_posterior.mu.values[1] - result_posterior.mu.values[0] range_prior = result_prior.mu.values[1] - result_prior.mu.values[0] assert range_posterior < range_prior def test_hdi_coords(centered_eight): data = centered_eight.posterior result = hdi(data, coords={"chain": [0, 1, 3]}, input_core_dims=[["draw"]]) assert_array_equal(result.coords["chain"], [0, 1, 3]) def test_hdi_multimodal(): normal_sample = np.concatenate( (np.random.normal(-4, 1, 2500000), np.random.normal(2, 0.5, 2500000)) ) intervals = hdi(normal_sample, multimodal=True) assert_array_almost_equal(intervals, [[-5.8, -2.2], [0.9, 3.1]], 1) def test_hdi_circular(): normal_sample = np.random.vonmises(np.pi, 1, 5000000) interval = hdi(normal_sample, circular=True) assert_array_almost_equal(interval, [0.6, -0.6], 1) def test_hdi_bad_ci(): normal_sample = np.random.randn(10) with pytest.raises(ValueError): hdi(normal_sample, hdi_prob=2) def test_hdi_skipna(): normal_sample = np.random.randn(500) interval = hdi(normal_sample[10:]) normal_sample[:10] = np.nan interval_ = hdi(normal_sample, skipna=True) assert_array_almost_equal(interval, interval_) def test_r2_score(): x = np.linspace(0, 1, 100) y = np.random.normal(x, 1) res = linregress(x, y) assert_allclose(res.rvalue ** 2, r2_score(y, res.intercept + res.slope * x).r2, 2) def test_r2_score_multivariate(): x = np.linspace(0, 1, 100) y = np.random.normal(x, 1) res = linregress(x, y) y_multivariate = np.c_[y, y] y_multivariate_pred = np.c_[res.intercept + res.slope * x, res.intercept + res.slope * x] assert not np.isnan(r2_score(y_multivariate, y_multivariate_pred).r2) @pytest.mark.parametrize("method", ["stacking", "BB-pseudo-BMA", "pseudo-BMA"]) @pytest.mark.parametrize("multidim", [True, False]) def test_compare_same(centered_eight, multidim_models, method, multidim): if multidim: data_dict = {"first": multidim_models.model_1, "second": multidim_models.model_1} else: data_dict = {"first": centered_eight, "second": centered_eight} weight = compare(data_dict, method=method)["weight"] assert_allclose(weight[0], weight[1]) assert_allclose(np.sum(weight), 1.0) def test_compare_unknown_ic_and_method(centered_eight, non_centered_eight): model_dict = {"centered": centered_eight, "non_centered": non_centered_eight} with pytest.raises(NotImplementedError): compare(model_dict, ic="Unknown", method="stacking") with pytest.raises(ValueError): compare(model_dict, ic="loo", method="Unknown") @pytest.mark.parametrize("ic", ["loo", "waic"]) @pytest.mark.parametrize("method", ["stacking", "BB-pseudo-BMA", "pseudo-BMA"]) @pytest.mark.parametrize("scale", ["log", "negative_log", "deviance"]) def test_compare_different(centered_eight, non_centered_eight, ic, method, scale): model_dict = {"centered": centered_eight, "non_centered": non_centered_eight} weight = compare(model_dict, ic=ic, method=method, scale=scale)["weight"] assert weight["non_centered"] >= weight["centered"] assert_allclose(np.sum(weight), 1.0) @pytest.mark.parametrize("ic", ["loo", "waic"]) @pytest.mark.parametrize("method", ["stacking", "BB-pseudo-BMA", "pseudo-BMA"]) def test_compare_different_multidim(multidim_models, ic, method): model_dict = {"model_1": multidim_models.model_1, "model_2": multidim_models.model_2} weight = compare(model_dict, ic=ic, method=method)["weight"] # this should hold because the same seed is always used assert weight["model_1"] >= weight["model_2"] assert_allclose(np.sum(weight), 1.0) def test_compare_different_size(centered_eight, non_centered_eight): centered_eight = deepcopy(centered_eight) centered_eight.posterior = centered_eight.posterior.drop("Choate", "school") centered_eight.sample_stats = centered_eight.sample_stats.drop("Choate", "school") centered_eight.posterior_predictive = centered_eight.posterior_predictive.drop( "Choate", "school" ) centered_eight.prior = centered_eight.prior.drop("Choate", "school") centered_eight.observed_data = centered_eight.observed_data.drop("Choate", "school") model_dict = {"centered": centered_eight, "non_centered": non_centered_eight} with pytest.raises(ValueError): compare(model_dict, ic="waic", method="stacking") @pytest.mark.parametrize("var_names_expected", ((None, 10), ("mu", 1), (["mu", "tau"], 2))) def test_summary_var_names(centered_eight, var_names_expected): var_names, expected = var_names_expected summary_df = summary(centered_eight, var_names=var_names) assert len(summary_df.index) == expected METRICS_NAMES = [ "mean", "sd", "hdi_3%", "hdi_97%", "mcse_mean", "mcse_sd", "ess_mean", "ess_sd", "ess_bulk", "ess_tail", "r_hat", ] @pytest.mark.parametrize( "params", (("all", METRICS_NAMES), ("stats", METRICS_NAMES[:4]), ("diagnostics", METRICS_NAMES[4:])), ) def test_summary_kind(centered_eight, params): kind, metrics_names_ = params summary_df = summary(centered_eight, kind=kind) assert_array_equal(summary_df.columns, metrics_names_) @pytest.mark.parametrize("fmt", ["wide", "long", "xarray"]) def test_summary_fmt(centered_eight, fmt): assert summary(centered_eight, fmt=fmt) is not None @pytest.mark.parametrize("order", ["C", "F"]) def test_summary_unpack_order(order): data = from_dict({"a": np.random.randn(4, 100, 4, 5, 3)}) az_summary = summary(data, order=order, fmt="wide") assert az_summary is not None if order != "F": first_index = 4 second_index = 5 third_index = 3 else: first_index = 3 second_index = 5 third_index = 4 column_order = [] for idx1 in range(first_index): for idx2 in range(second_index): for idx3 in range(third_index): if order != "F": column_order.append("a[{},{},{}]".format(idx1, idx2, idx3)) else: column_order.append("a[{},{},{}]".format(idx3, idx2, idx1)) for col1, col2 in zip(list(az_summary.index), column_order): assert col1 == col2 @pytest.mark.parametrize("origin", [0, 1, 2, 3]) def test_summary_index_origin(origin): data = from_dict({"a": np.random.randn(2, 50, 10)}) az_summary = summary(data, index_origin=origin, fmt="wide") assert az_summary is not None for i, col in enumerate(list(az_summary.index)): assert col == "a[{}]".format(i + origin) @pytest.mark.parametrize( "stat_funcs", [[np.var], {"var": np.var, "var2": lambda x: np.var(x) ** 2}] ) def test_summary_stat_func(centered_eight, stat_funcs): arviz_summary = summary(centered_eight, stat_funcs=stat_funcs) assert arviz_summary is not None assert hasattr(arviz_summary, "var") def test_summary_nan(centered_eight): centered_eight = deepcopy(centered_eight) centered_eight.posterior.theta[:, :, 0] = np.nan summary_xarray = summary(centered_eight) assert summary_xarray is not None assert summary_xarray.loc["theta[0]"].isnull().all() assert ( summary_xarray.loc[[ix for ix in summary_xarray.index if ix != "theta[0]"]] .notnull() .all() .all() ) def test_summary_skip_nan(centered_eight): centered_eight = deepcopy(centered_eight) centered_eight.posterior.theta[:, :10, 1] = np.nan summary_xarray = summary(centered_eight) theta_1 = summary_xarray.loc["theta[1]"].isnull() assert summary_xarray is not None assert ~theta_1[:4].all() assert theta_1[4:].all() @pytest.mark.parametrize("fmt", [1, "bad_fmt"]) def test_summary_bad_fmt(centered_eight, fmt): with pytest.raises(TypeError): summary(centered_eight, fmt=fmt) @pytest.mark.parametrize("order", [1, "bad_order"]) def test_summary_bad_unpack_order(centered_eight, order): with pytest.raises(TypeError): summary(centered_eight, order=order) @pytest.mark.parametrize("scale", ["log", "negative_log", "deviance"]) @pytest.mark.parametrize("multidim", (True, False)) def test_waic(centered_eight, multidim_models, scale, multidim): """Test widely available information criterion calculation""" if multidim: assert waic(multidim_models.model_1, scale=scale) is not None waic_pointwise = waic(multidim_models.model_1, pointwise=True, scale=scale) else: assert waic(centered_eight, scale=scale) is not None waic_pointwise = waic(centered_eight, pointwise=True, scale=scale) assert waic_pointwise is not None assert "waic_i" in waic_pointwise def test_waic_bad(centered_eight): """Test widely available information criterion calculation""" centered_eight = deepcopy(centered_eight) del centered_eight.sample_stats["log_likelihood"] with pytest.raises(TypeError): waic(centered_eight) del centered_eight.sample_stats with pytest.raises(TypeError): waic(centered_eight) def test_waic_bad_scale(centered_eight): """Test widely available information criterion calculation with bad scale.""" with pytest.raises(TypeError): waic(centered_eight, scale="bad_value") def test_waic_warning(centered_eight): centered_eight = deepcopy(centered_eight) centered_eight.sample_stats["log_likelihood"][:, :250, 1] = 10 with pytest.warns(UserWarning): assert waic(centered_eight, pointwise=True) is not None # this should throw a warning, but due to numerical issues it fails centered_eight.sample_stats["log_likelihood"][:, :, :] = 0 with pytest.warns(UserWarning): assert waic(centered_eight, pointwise=True) is not None @pytest.mark.parametrize("scale", ["log", "negative_log", "deviance"]) def test_waic_print(centered_eight, scale): waic_data = waic(centered_eight, scale=scale).__repr__() waic_pointwise = waic(centered_eight, scale=scale, pointwise=True).__repr__() assert waic_data is not None assert waic_pointwise is not None assert waic_data == waic_pointwise @pytest.mark.parametrize("scale", ["log", "negative_log", "deviance"]) @pytest.mark.parametrize("multidim", (True, False)) def test_loo(centered_eight, multidim_models, scale, multidim): """Test approximate leave one out criterion calculation""" if multidim: assert loo(multidim_models.model_1, scale=scale) is not None loo_pointwise = loo(multidim_models.model_1, pointwise=True, scale=scale) else: assert loo(centered_eight, scale=scale) is not None loo_pointwise = loo(centered_eight, pointwise=True, scale=scale) assert loo_pointwise is not None assert "loo_i" in loo_pointwise assert "pareto_k" in loo_pointwise assert "loo_scale" in loo_pointwise def test_loo_one_chain(centered_eight): centered_eight = deepcopy(centered_eight) centered_eight.posterior = centered_eight.posterior.drop([1, 2, 3], "chain") centered_eight.sample_stats = centered_eight.sample_stats.drop([1, 2, 3], "chain") assert loo(centered_eight) is not None def test_loo_bad(centered_eight): with pytest.raises(TypeError): loo(np.random.randn(2, 10)) centered_eight = deepcopy(centered_eight) del centered_eight.sample_stats["log_likelihood"] with pytest.raises(TypeError): loo(centered_eight) def test_loo_bad_scale(centered_eight): """Test loo with bad scale value.""" with pytest.raises(TypeError): loo(centered_eight, scale="bad_scale") def test_loo_bad_no_posterior_reff(centered_eight): loo(centered_eight, reff=None) centered_eight = deepcopy(centered_eight) del centered_eight.posterior with pytest.raises(TypeError): loo(centered_eight, reff=None) loo(centered_eight, reff=0.7) def test_loo_warning(centered_eight): centered_eight = deepcopy(centered_eight) # make one of the khats infinity centered_eight.sample_stats["log_likelihood"][:, :, 1] = 10 with pytest.warns(UserWarning) as records: assert loo(centered_eight, pointwise=True) is not None assert any("Estimated shape parameter" in str(record.message) for record in records) # make all of the khats infinity centered_eight.sample_stats["log_likelihood"][:, :, :] = 1 with pytest.warns(UserWarning) as records: assert loo(centered_eight, pointwise=True) is not None assert any("Estimated shape parameter" in str(record.message) for record in records) @pytest.mark.parametrize("scale", ["log", "negative_log", "deviance"]) def test_loo_print(centered_eight, scale): loo_data = loo(centered_eight, scale=scale).__repr__() loo_pointwise = loo(centered_eight, scale=scale, pointwise=True).__repr__() assert loo_data is not None assert loo_pointwise is not None assert len(loo_data) < len(loo_pointwise) def test_psislw(centered_eight): pareto_k = loo(centered_eight, pointwise=True, reff=0.7)["pareto_k"] log_likelihood = get_log_likelihood(centered_eight) log_likelihood = log_likelihood.stack(sample=("chain", "draw")) assert_allclose(pareto_k, psislw(-log_likelihood, 0.7)[1]) @pytest.mark.parametrize("probs", [True, False]) @pytest.mark.parametrize("kappa", [-1, -0.5, 1e-30, 0.5, 1]) @pytest.mark.parametrize("sigma", [0, 2]) def test_gpinv(probs, kappa, sigma): if probs: probs = np.array([0.1, 0.1, 0.1, 0.2, 0.3]) else: probs = np.array([-0.1, 0.1, 0.1, 0.2, 0.3]) assert len(_gpinv(probs, kappa, sigma)) == len(probs) @pytest.mark.parametrize("func", [loo, waic]) def test_multidimensional_log_likelihood(func): llm = np.random.rand(4, 23, 15, 2) ll1 = llm.reshape(4, 23, 15 * 2) statsm = Dataset(dict(log_likelihood=DataArray(llm, dims=["chain", "draw", "a", "b"]))) stats1 = Dataset(dict(log_likelihood=DataArray(ll1, dims=["chain", "draw", "v"]))) post = Dataset(dict(mu=DataArray(np.random.rand(4, 23, 2), dims=["chain", "draw", "v"]))) dsm = convert_to_inference_data(statsm, group="sample_stats") ds1 = convert_to_inference_data(stats1, group="sample_stats") dsp = convert_to_inference_data(post, group="posterior") dsm = concat(dsp, dsm) ds1 = concat(dsp, ds1) frm = func(dsm) fr1 = func(ds1) assert (fr1 == frm).all() assert_array_almost_equal(frm[:4], fr1[:4]) @pytest.mark.parametrize( "args", [ {"y": "obs"}, {"y": "obs", "y_hat": "obs"}, {"y": "arr", "y_hat": "obs"}, {"y": "obs", "y_hat": "arr"}, {"y": "arr", "y_hat": "arr"}, {"y": "obs", "y_hat": "obs", "log_weights": "arr"}, {"y": "arr", "y_hat": "obs", "log_weights": "arr"}, {"y": "obs", "y_hat": "arr", "log_weights": "arr"}, {"idata": False}, ], ) def test_loo_pit(centered_eight, args): y = args.get("y", None) y_hat = args.get("y_hat", None) log_weights = args.get("log_weights", None) y_arr = centered_eight.observed_data.obs y_hat_arr = centered_eight.posterior_predictive.obs.stack(sample=("chain", "draw")) log_like = get_log_likelihood(centered_eight).stack(sample=("chain", "draw")) n_samples = len(log_like.sample) ess_p = ess(centered_eight.posterior, method="mean") reff = np.hstack([ess_p[v].values.flatten() for v in ess_p.data_vars]).mean() / n_samples log_weights_arr = psislw(-log_like, reff=reff)[0] if args.get("idata", True): if y == "arr": y = y_arr if y_hat == "arr": y_hat = y_hat_arr if log_weights == "arr": log_weights = log_weights_arr loo_pit_data = loo_pit(idata=centered_eight, y=y, y_hat=y_hat, log_weights=log_weights) else: loo_pit_data = loo_pit(idata=None, y=y_arr, y_hat=y_hat_arr, log_weights=log_weights_arr) assert np.all((loo_pit_data >= 0) & (loo_pit_data <= 1)) @pytest.mark.parametrize( "args", [ {"y": "y"}, {"y": "y", "y_hat": "y"}, {"y": "arr", "y_hat": "y"}, {"y": "y", "y_hat": "arr"}, {"y": "arr", "y_hat": "arr"}, {"y": "y", "y_hat": "y", "log_weights": "arr"}, {"y": "arr", "y_hat": "y", "log_weights": "arr"}, {"y": "y", "y_hat": "arr", "log_weights": "arr"}, {"idata": False}, ], ) def test_loo_pit_multidim(multidim_models, args): y = args.get("y", None) y_hat = args.get("y_hat", None) log_weights = args.get("log_weights", None) idata = multidim_models.model_1 y_arr = idata.observed_data.y y_hat_arr = idata.posterior_predictive.y.stack(sample=("chain", "draw")) log_like = get_log_likelihood(idata).stack(sample=("chain", "draw")) n_samples = len(log_like.sample) ess_p = ess(idata.posterior, method="mean") reff = np.hstack([ess_p[v].values.flatten() for v in ess_p.data_vars]).mean() / n_samples log_weights_arr = psislw(-log_like, reff=reff)[0] if args.get("idata", True): if y == "arr": y = y_arr if y_hat == "arr": y_hat = y_hat_arr if log_weights == "arr": log_weights = log_weights_arr loo_pit_data = loo_pit(idata=idata, y=y, y_hat=y_hat, log_weights=log_weights) else: loo_pit_data = loo_pit(idata=None, y=y_arr, y_hat=y_hat_arr, log_weights=log_weights_arr) assert np.all((loo_pit_data >= 0) & (loo_pit_data <= 1)) @pytest.mark.parametrize("input_type", ["idataarray", "idatanone_ystr", "yarr_yhatnone"]) def test_loo_pit_bad_input(centered_eight, input_type): """Test incompatible input combinations.""" arr = np.random.random((8, 200)) if input_type == "idataarray": with pytest.raises(ValueError, match=r"type InferenceData or None"): loo_pit(idata=arr, y="obs") elif input_type == "idatanone_ystr": with pytest.raises(ValueError, match=r"all 3.+must be array or DataArray"): loo_pit(idata=None, y="obs") elif input_type == "yarr_yhatnone": with pytest.raises(ValueError, match=r"y_hat.+None.+y.+str"): loo_pit(idata=centered_eight, y=arr, y_hat=None) @pytest.mark.parametrize("arg", ["y", "y_hat", "log_weights"]) def test_loo_pit_bad_input_type(centered_eight, arg): """Test wrong input type (not None, str not DataArray.""" kwargs = {"y": "obs", "y_hat": "obs", "log_weights": None} kwargs[arg] = 2 # use int instead of array-like with pytest.raises(ValueError, match="not {}".format(type(2))): loo_pit(idata=centered_eight, **kwargs) @pytest.mark.parametrize("incompatibility", ["y-y_hat1", "y-y_hat2", "y_hat-log_weights"]) def test_loo_pit_bad_input_shape(incompatibility): """Test shape incompatiblities.""" y = np.random.random(8) y_hat = np.random.random((8, 200)) log_weights = np.random.random((8, 200)) if incompatibility == "y-y_hat1": with pytest.raises(ValueError, match="1 more dimension"): loo_pit(y=y, y_hat=y_hat[None, :], log_weights=log_weights) elif incompatibility == "y-y_hat2": with pytest.raises(ValueError, match="y has shape"): loo_pit(y=y, y_hat=y_hat[1:3, :], log_weights=log_weights) elif incompatibility == "y_hat-log_weights": with pytest.raises(ValueError, match="must have the same shape"): loo_pit(y=y, y_hat=y_hat[:, :100], log_weights=log_weights) @pytest.mark.parametrize("pointwise", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize( "kwargs", [ {}, {"group": "posterior_predictive", "var_names": {"posterior_predictive": "obs"}}, {"group": "observed_data", "var_names": {"both": "obs"}, "out_data_shape": "shape"}, {"var_names": {"both": "obs", "posterior": ["theta", "mu"]}}, {"group": "observed_data", "out_name_data": "T_name"}, ], ) def test_apply_test_function(centered_eight, pointwise, inplace, kwargs): """Test some usual call cases of apply_test_function""" centered_eight = deepcopy(centered_eight) group = kwargs.get("group", "both") var_names = kwargs.get("var_names", None) out_data_shape = kwargs.get("out_data_shape", None) out_pp_shape = kwargs.get("out_pp_shape", None) out_name_data = kwargs.get("out_name_data", "T") if out_data_shape == "shape": out_data_shape = (8,) if pointwise else () if out_pp_shape == "shape": out_pp_shape = (4, 500, 8) if pointwise else (4, 500) idata = deepcopy(centered_eight) idata_out = apply_test_function( idata, lambda y, theta:
np.mean(y)
numpy.mean
# this tells python to act as if though We are one folder up import sys sys.path.insert(0,'..') import pandas as pd import FixedEffectModelPyHDFE.api as FEM from FixedEffectModelPyHDFE.DemeanDataframe import get_np_columns #import FixedEffectModel.api as FEM import numpy as np from patsy import dmatrices import statsmodels.formula.api as smf import statsmodels.api as sm from fastreg import linear from datetime import datetime import unittest from math import isclose NLS_WORK = "./../data/test_dropped_na.dta" CEREAL = "./../data/cereal.dta" AUTO = "./../data/auto_drop_na.dta" TOLERANCE = 0.01 class FixedEffectsModelTestsVSfastreg(unittest.TestCase): def setup(self, data_directory, target, regressors, absorb, cluster): print(self._testMethodName) print("target: ", target) print("regressors: ", regressors) print("absorb: ", absorb) print("cluster: ", cluster) df = pd.read_stata(data_directory) df.reset_index(drop=True, inplace=True) fem_start = datetime.now() self.result = FEM.ols_high_d_category(df, regressors, target, absorb, cluster, formula=None, robust=False, epsilon = 1e-8, max_iter = 1e6) fem_end = datetime.now() print("FEM time taken: " + str(fem_end-fem_start)) self.result.summary() print() if absorb[0] == '0': absorb=None fastreg_start = datetime.now() fastreg = linear.ols(y=target[0], x=regressors, absorb=absorb, cluster=cluster, data=df) fastreg_end = datetime.now() print(fastreg) print("fastreg time taken: " + str(fastreg_end - fastreg_start)) print("\n\n\n\n\n") ######################################################################### ######################################################################### def test_just_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'], cluster=[]) def test_no_absorb_cluster_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts']) # comparing fvalue def test_clustering_single_variable_no_absorb2_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['race']) # comparing fvalue assert(np.isclose(self.result.fvalue, 127593.72, atol=TOLERANCE)) # comparing standard errors assert(np.all(np.isclose(self.result.bse, np.asarray([.148934, .0065111, .0113615]), atol=TOLERANCE))) # comparing tvalues assert(np.all(np.isclose(self.result.tvalues, np.asarray([27.75, 2.32, 66.61]), atol=TOLERANCE))) def test_clustering_single_variable_no_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['fifty_clusts']) assert(np.isclose(self.result.fvalue, 10230.63, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.048274, .0044294, .0052923]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([85.60, 3.42, 143.00]), atol=TOLERANCE))) def test_clustering_two_variables_no_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['fifty_clusts', 'sixty_clusts']) assert(np.isclose(self.result.fvalue, 12347.24, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.0518019, .0048228, .00492]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([79.77, 3.14, 153.82]), atol=TOLERANCE))) def test_clustering_many_variables_no_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode']) assert(np.isclose(self.result.fvalue, 4664.62, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.0551555, .0080815, .007881]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues,
np.asarray([74.92, 1.87, 96.03])
numpy.asarray
import numpy as np from numba import jit, int32, float32, double, cfunc from numba.experimental import jitclass spec = [ ('x', double[:]), ('dq', double[:]), ('u', double[:]), ('m', double), ('Iz', double), ('lf', double), ('lr', double), ('Bf', double), ('Cf', double), ('Df', double), ('Br', double), ('Cr', double), ('Dr', double), ('Cr0', double), ('Cr2', double), ('Cm1', double), ('Cm2', double), ('iterNum', int32), ('sim_dt', double), ('control_dt', double), ('car_shape', double[:,:]), ] @jitclass(spec) class VehicleSimModel(object): def __init__(self, m=0.041, Iz=27.8E-6, lf=0.029, lr=0.033, Bf=2.579, Cf=1.2, Df=0.192, Br=3.3852, Cr=1.2691, Dr=0.1737, Cm1=0.287, Cm2=0.0545, Cr0= 0.0518, Cr2=0.00035, scale=1.0, control_dt = 10.0, sim_dt=1.0): self.x = np.asfortranarray(np.zeros(3, dtype=np.float64)) self.dq = np.zeros(3, dtype=np.float64) self.u = np.zeros(2, dtype=np.float64) self.m = m self.Iz= Iz self.lf = lf self.lr = lr self.Bf = Bf self.Cf = Cf self.Df = Df self.Br = Br self.Cr = Cr self.Dr = Dr self.Cr0 = Cr0 self.Cr2 = Cr2 self.Cm1 = Cm1 self.Cm2 = Cm2 car_l = (lf + lr)/2 * scale car_w = car_l/2 self.car_shape = np.asfortranarray(np.array([ [ car_l, car_w, 1.], [ car_l,-car_w, 1.], [-car_l,-car_w, 1.], [-car_l, car_w, 1.], [ car_l, car_w, 1.]], dtype=np.float64)) self.sim_dt = sim_dt self.control_dt = control_dt self.iterNum = int(self.control_dt/self.sim_dt) @property def shape(self): shape = np.dot(self.car_shape, np.asfortranarray(np.array([ [
np.cos(self.x[2])
numpy.cos
import os from collections import defaultdict from datetime import datetime from subprocess import PIPE, call import astropy.io.fits as pyfits import astropy.units as u import astropy.wcs as pywcs import matplotlib.pyplot as plt import numpy as np import pyregion._region_filter as rfilter import scipy.interpolate as interpolate from six import string_types from tqdm import tqdm from xcs_soxs.constants import erg_per_keV, sigma_to_fwhm from xcs_soxs.events import write_event_file from xcs_soxs.instrument_registry import instrument_registry from xcs_soxs.simput import read_simput_catalog from xcs_soxs.utils import mylog, ensure_numpy_array, \ parse_prng, parse_value, get_rot_mat, soxs_cfg def get_response_path(fn): if os.path.exists(fn): return os.path.abspath(fn) else: resp_path = soxs_cfg.get("soxs", "response_path") if not os.path.exists(resp_path): raise IOError("The SOXS response directory %s does not exist!" % resp_path) resp_fn = os.path.join(resp_path, fn) if os.path.exists(resp_fn): return resp_fn raise IOError("Could not find file %s! Please download it from " % fn + "http://hea-www.cfa.harvard.edu/~jzuhone/soxs/responses.html " "and place it in the current working directory or place it in " "the SOXS response directory %s." % resp_path) class SpatialARF(object): def __init__(self, filenames, response_regions): self.filename = filenames[0] self.arf_files = filenames self.response_regions = response_regions first_file = pyfits.open(self.filename) # Only need to read in one set of energy limits, for a set of ARFs generated to describe an instrument the # energy bands should be the same self.elo = first_file["SPECRESP"].data.field("ENERG_LO") self.ehi = first_file["SPECRESP"].data.field("ENERG_HI") self.emid = 0.5 * (self.elo + self.ehi) first_file.close() eff_areas = [] for filename in self.arf_files: f = pyfits.open(filename) eff_areas.append(np.nan_to_num(f["SPECRESP"].data.field("SPECRESP")).astype("float64")) f.close() self.eff_areas = np.array(eff_areas) maxes = [areas.max() for areas in self.eff_areas] self.max_area = max(maxes) @classmethod def from_instrument(cls, name): """ Return an :class:`~xcs_soxs.instrument.SpatialARF` object from the name of an existing instrument specification in SOXS. Parameters ---------- name : string The name of the instrument specification to use to obtain the ARF object from. Examples -------- >>> arf = xcs_soxs.SpatialARF.from_instrument("xmm_epn_0201903501") """ instr = instrument_registry.get(name, None) if instr is None: raise KeyError("Instrument '%s' not in registry!" % name) return cls(instr["arf"]) def __str__(self): return self.filename def find_response_region(self, x_coord, y_coord): """ Use the positions of the events, and the response regions, to determine which ARF to use. Parameters ---------- x_coord : np.ndarray The x coordinates of events, in the 'chip' coordinate system y_coord : np.ndarray The y coordinates of events, in the 'chip' coordinate system """ num_evts = x_coord.shape[0] reg_ids = -np.ones(num_evts, dtype='int') for reg_ind, reg in enumerate(self.response_regions): if reg[0] == "Box": inside_reg = np.logical_and.reduce((x_coord >= (reg[1] - (reg[3]/2)), x_coord <= (reg[1] + (reg[3]/2)), y_coord >= (reg[2] - (reg[4]/2)), y_coord <= (reg[2] + (reg[4]/2)))) else: region_type, region_args = (reg[0], reg[1:]) r = getattr(rfilter, region_type)(*region_args) inside_reg = r.inside(x_coord, y_coord) reg_ids[inside_reg] = reg_ind return reg_ids def interpolate_area(self, energy, arf_ind): """ Interpolate the effective area to the energies provided by the supplied *energy* array. """ unique_arf_inds = np.unique(arf_ind) e_area = np.zeros((1, len(energy))) for a_ind in unique_arf_inds: if a_ind != -1: rel_inds = np.where(arf_ind == a_ind)[0] rel_energies = energy[rel_inds] e_area[0, rel_inds] = np.interp(rel_energies, self.emid, self.eff_areas[a_ind, :], left=0.0, right=0.0) return u.Quantity(list(e_area[0, :]), "cm**2") def detect_events(self, events, exp_time, flux, refband, prng=None): """ Use the ARF to determine a subset of photons which will be detected. Returns a boolean NumPy array which is the same is the same size as the number of photons, wherever it is "true" means those photons have been detected. Parameters ---------- events : dict of np.ndarrays The energies and positions of the photons. exp_time : float The exposure time in seconds. flux : float The total flux of the photons in erg/s/cm^2. refband : array_like A two-element array or list containing the limits of the energy band which the flux was computed in. resp_regs : list of lists A list of lists that describe the regions each ARF file was generated for. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) energy = events["energy"] if energy.size == 0: return events which_arfs = self.find_response_region(events["cx"], events["cy"]) earea = self.interpolate_area(energy, which_arfs).value idxs = np.logical_and(energy >= refband[0], energy <= refband[1]) rate = flux/(energy[idxs].sum()*erg_per_keV)*earea[idxs].sum() n_ph = prng.poisson(lam=rate*exp_time) fak = float(n_ph)/energy.size if fak > 1.0: mylog.error("Number of events in sample: %d, Number of events wanted: %d" % (energy.size, n_ph)) raise ValueError("This combination of exposure time and effective area " "will result in more photons being drawn than are available " "in the sample!!!") w = earea / self.max_area randvec = prng.uniform(size=energy.size) eidxs = prng.permutation(np.where(randvec < w)[0])[:n_ph].astype("int64") mylog.info("%s events detected." % n_ph) for key in events: events[key] = events[key][eidxs] return events class AuxiliaryResponseFile(object): r""" A class for auxiliary response files (ARFs). Parameters ---------- filename : string The filename of the ARF to be read. Examples -------- >>> arf = AuxiliaryResponseFile("xrs_mucal_3x10_3.0eV.arf") """ def __init__(self, filename): self.filename = get_response_path(filename) f = pyfits.open(self.filename) self.elo = f["SPECRESP"].data.field("ENERG_LO") self.ehi = f["SPECRESP"].data.field("ENERG_HI") self.emid = 0.5*(self.elo+self.ehi) self.eff_area = np.nan_to_num(f["SPECRESP"].data.field("SPECRESP")).astype("float64") self.max_area = self.eff_area.max() f.close() @classmethod def from_instrument(cls, name): """ Return an :class:`~xcs_soxs.instrument.AuxiliaryResponseFile` object from the name of an existing instrument specification in SOXS. Parameters ---------- name : string The name of the instrument specification to use to obtain the ARF object from. Examples -------- >>> arf = xcs_soxs.AuxiliaryResponseFile.from_instrument("xmm_epn_0201903501") """ instr = instrument_registry.get(name, None) if instr is None: raise KeyError("Instrument '%s' not in registry!" % name) return cls(instr["arf"]) def __str__(self): return self.filename def interpolate_area(self, energy): """ Interpolate the effective area to the energies provided by the supplied *energy* array. """ earea = np.interp(energy, self.emid, self.eff_area, left=0.0, right=0.0) return u.Quantity(earea, "cm**2") def detect_events(self, events, exp_time, flux, refband, prng=None): """ Use the ARF to determine a subset of photons which will be detected. Returns a boolean NumPy array which is the same is the same size as the number of photons, wherever it is "true" means those photons have been detected. Parameters ---------- events : dict of np.ndarrays The energies and positions of the photons. exp_time : float The exposure time in seconds. flux : float The total flux of the photons in erg/s/cm^2. refband : array_like A two-element array or list containing the limits of the energy band which the flux was computed in. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) energy = events["energy"] if energy.size == 0: return events earea = self.interpolate_area(energy).value idxs = np.logical_and(energy >= refband[0], energy <= refband[1]) rate = flux/(energy[idxs].sum()*erg_per_keV)*earea[idxs].sum() n_ph = prng.poisson(lam=rate*exp_time) fak = float(n_ph)/energy.size if fak > 1.0: mylog.error("Number of events in sample: %d, Number of events wanted: %d" % (energy.size, n_ph)) raise ValueError("This combination of exposure time and effective area " "will result in more photons being drawn than are available " "in the sample!!!") w = earea / self.max_area randvec = prng.uniform(size=energy.size) eidxs = prng.permutation(np.where(randvec < w)[0])[:n_ph].astype("int64") mylog.info("%s events detected." % n_ph) for key in events: events[key] = events[key][eidxs] return events def plot(self, xscale="log", yscale="log", xlabel=None, ylabel=None, fig=None, ax=None, **kwargs): """ Make a quick plot of the effective area curve. Parameters ---------- xscale : string The scale of the x-axis. "linear" or "log". yscale : string The scale of the y-axis. "linear" or "log". xlabel : string The label of the x-axis. Default: "E (keV)" ylabel : string The label of the y-axis. Default: "$\mathrm{A\ (cm^2)}$" fig : :class:`~matplotlib.figure.Figure`, optional The figure to place the plot in. If not supplied, one will be created. ax : :class:`~matplotlib.axes.Axes`, optional The axes to place the plot in. If not supplied, one will be created. All other arguments are passed to the call to :meth:`~matplotlib.axes.Axes.plot`. Returns ------- A tuple of the :class:`~matplotlib.figure.Figure` and :class:`~matplotlib.axes.Axes` objects. """ if xlabel is None: xlabel = "E (keV)" if ylabel is None: ylabel = "$\mathrm{A\ (cm^2)}$" if fig is None: fig = plt.figure(figsize=(10, 10)) if ax is None: ax = fig.add_subplot(111) ax.plot(self.emid, self.eff_area, **kwargs) ax.set_xscale(xscale) ax.set_yscale(yscale) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return fig, ax class FlatResponse(AuxiliaryResponseFile): """ A flat effective area response. Parameters ---------- emin : float The minimum energy of the response in keV. emax : float The maximum energy of the response in keV. area : float The effective area in cm**2. nbins : integer The number of bins in the response file. Examples -------- >>> arf = FlatResponse(0.1, 10.0, 3000.0, 10000) """ def __init__(self, emin, emax, area, nbins): self.filename = "flat_response" de = (emax-emin)/nbins self.elo = np.arange(nbins)*de + emin self.ehi = self.elo + de self.emid = 0.5*(self.elo+self.ehi) self.eff_area = area*np.ones(nbins) self.max_area = area class RedistributionMatrixFile(object): r""" A class for redistribution matrix files (RMFs). Parameters ---------- filename : string The filename of the RMF to be read. Examples -------- >>> rmf = RedistributionMatrixFile("xrs_hdxi.rmf") """ def __init__(self, filename): self.filename = get_response_path(filename) self.handle = pyfits.open(self.filename, memmap=True) if "MATRIX" in self.handle: self.mat_key = "MATRIX" elif "SPECRESP MATRIX" in self.handle: self.mat_key = "SPECRESP MATRIX" else: raise RuntimeError("Cannot find the response matrix in the RMF " "file %s! " % filename+"It should be named " "\"MATRIX\" or \"SPECRESP MATRIX\".") self.header = self.handle[self.mat_key].header self.num_mat_columns = len(self.handle[self.mat_key].columns) self.ebounds_header = self.handle["EBOUNDS"].header self.weights = np.array([w.sum() for w in self.data["MATRIX"]]) self.elo = self.data["ENERG_LO"] self.ehi = self.data["ENERG_HI"] self.ebins = np.append(self.data["ENERG_LO"], self.data["ENERG_HI"][-1]) self.emid = 0.5*(self.elo+self.ehi) self.de = self.ehi-self.elo self.n_e = self.elo.size self.n_ch = self.header["DETCHANS"] num = 0 for i in range(1, self.num_mat_columns+1): if self.header["TTYPE%d" % i] == "F_CHAN": num = i break self.cmin = self.header.get("TLMIN%d" % num, 1) self.cmax = self.header.get("TLMAX%d" % num, self.n_ch) @classmethod def from_instrument(cls, name): """ Return an :class:`~xcs_soxs.instrument.RedistributionMatrixFile` object from the name of an existing instrument specification in SOXS. Parameters ---------- name : string The name of the instrument specification to use to obtain the RMF object from. Examples -------- >>> arf = xcs_soxs.RedistributionMatrixFile.from_instrument("hdxi") """ instr = instrument_registry.get(name, None) if instr is None: raise KeyError("Instrument '%s' not in registry!" % name) return cls(instr["rmf"]) @property def data(self): return self.handle[self.mat_key].data @property def ebounds_data(self): return self.handle["EBOUNDS"].data def __str__(self): return self.filename def _make_channels(self, k): # build channel number list associated to array value, # there are groups of channels in rmfs with nonzero probabilities trueChannel = [] f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k])) n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k])) for start, nchan in zip(f_chan, n_chan): if nchan == 0: trueChannel.append(start) else: trueChannel += list(range(start, start + nchan)) return np.array(trueChannel) def e_to_ch(self, energy): energy = parse_value(energy, "keV") return np.searchsorted(self.ebounds_data["E_MIN"], energy)-1 def scatter_energies(self, events, prng=None): """ Scatter photon energies with the RMF and produce the corresponding channel values. Parameters ---------- events : dict of np.ndarrays The energies and positions of the photons. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) eidxs = np.argsort(events["energy"]) sorted_e = events["energy"][eidxs] detectedChannels = [] # run through all photon energies and find which bin they go in fcurr = 0 last = sorted_e.shape[0] emin = sorted_e[0] emax = sorted_e[-1] pbar = tqdm(leave=True, total=last, desc="Scattering energies ") for (k, low), high in zip(enumerate(self.elo), self.ehi): if high < emin or low > emax: continue e = sorted_e[fcurr:last] nn =
np.logical_and(low <= e, e < high)
numpy.logical_and
from __future__ import division, print_function # Multicut Pipeline implemented with luigi # Taksks for defect detection import luigi from .customTargets import HDF5DataTarget, VolumeTarget from .dataTasks import ExternalSegmentation from .pipelineParameter import PipelineParameter from .tools import config_logger, run_decorator import logging import os import numpy as np import vigra from concurrent import futures # import the proper nifty version try: import nifty except ImportError: try: import nifty_with_cplex as nifty except ImportError: import nifty_with_gurobi as nifty # init the workflow logger workflow_logger = logging.getLogger(__name__) config_logger(workflow_logger) class OversegmentationPatchStatistics(luigi.Task): pathToSeg = luigi.Parameter() patchSize = luigi.Parameter() def requires(self): return ExternalSegmentation(self.pathToSeg) @run_decorator def run(self): seg = self.input() seg.open() ny = seg.shape()[1] nx = seg.shape()[2] patch_shape = [self.patchSize, self.patchSize] def extract_patch_statistics_slice(z): # 2d blocking representing the patches seg_z = seg.read([z, 0, 0], [z + 1, ny, nx]) patches = nifty.tools.blocking(roiBegin=[0, 0], roiEnd=[ny, nx], blockShape=patch_shape) # get number of segments for patches in this slice n_segs_z = [] for patch_id in range(patches.numberOfBlocks): patch = patches.getBlock(patch_id) patch_begin, patch_end = patch.begin, patch.end patch_slicing = np.s_[patch_begin[0]:patch_end[0], patch_begin[1]:patch_end[1]] n_segs_z.append(np.unique(seg_z[patch_slicing]).shape[0]) return n_segs_z # parallel with futures.ThreadPoolExecutor(max_workers=PipelineParameter().nThreads) as executor: tasks = [] for z in range(seg.shape()[0]): tasks.append(executor.submit(extract_patch_statistics_slice, z)) segs_per_patch = [] for fut in tasks: segs_per_patch.extend(fut.result()) mean = np.mean(segs_per_patch) std = np.std(segs_per_patch) # calculate histogram to have a closer look at the stats n_bins = 16 histo, bin_edges =
np.histogram(segs_per_patch, bins=n_bins)
numpy.histogram
#!/usr/bin/python # -*- coding: utf-8 -*- try: import unittest2 as unittest except: import unittest import numpy as np from pyrr import quaternion class test_quaternion(unittest.TestCase): # many of these values are taken from searches on wolfram alpha def test_import(self): import pyrr pyrr.quaternion from pyrr import quaternion def test_create(self): result = quaternion.create() np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_parameters(self): result = quaternion.create(1.0, 2.0, 3.0, 4.0) np.testing.assert_almost_equal(result, [1.0, 2.0, 3.0, 4.0], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_x_rotation(self): # 180 degree turn around X axis q = quaternion.create_from_x_rotation(np.pi) self.assertTrue(np.allclose(q, [1., 0., 0., 0.])) # 90 degree rotation around X axis q = quaternion.create_from_x_rotation(np.pi / 2.) self.assertTrue(np.allclose(q, [np.sqrt(0.5), 0., 0., np.sqrt(0.5)])) # -90 degree rotation around X axis q = quaternion.create_from_x_rotation(-np.pi / 2.) self.assertTrue(np.allclose(q, [-np.sqrt(0.5), 0., 0., np.sqrt(0.5)])) def test_create_from_y_rotation(self): # 180 degree turn around Y axis q = quaternion.create_from_y_rotation(np.pi) self.assertTrue(np.allclose(q, [0., 1., 0., 0.])) # 90 degree rotation around Y axis q = quaternion.create_from_y_rotation(np.pi / 2.) self.assertTrue(np.allclose(q, [0., np.sqrt(0.5), 0., np.sqrt(0.5)])) # -90 degree rotation around Y axis q = quaternion.create_from_y_rotation(-np.pi / 2.) def test_create_from_z_rotation(self): # 180 degree turn around Z axis q = quaternion.create_from_z_rotation(np.pi) self.assertTrue(np.allclose(q, [0., 0., 1., 0.])) # 90 degree rotation around Z axis q = quaternion.create_from_z_rotation(np.pi / 2.) self.assertTrue(np.allclose(q, [0., 0., np.sqrt(0.5), np.sqrt(0.5)])) # -90 degree rotation around Z axis q = quaternion.create_from_z_rotation(-np.pi / 2.) def test_create_from_axis_rotation(self): # wolfram alpha can be awesome sometimes result = quaternion.create_from_axis_rotation([0.57735, 0.57735, 0.57735], np.pi) np.testing.assert_almost_equal(result, [5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17], decimal=3) self.assertTrue(result.dtype == np.float) def test_create_from_axis_rotation_non_normalized(self): result = quaternion.create_from_axis_rotation([1., 1., 1.], np.pi) np.testing.assert_almost_equal(result, [5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17], decimal=3) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_unit(self): result = quaternion.create_from_matrix(np.eye(3)) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_x(self): result = quaternion.create_from_matrix([ [1., 0., 0.], [0., -1., 0.], [0., 0., -1.], ]) np.testing.assert_almost_equal(result, [1., 0., 0., 0.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_y(self): result = quaternion.create_from_matrix([ [-1., 0., 0.], [0., 1., 0.], [0., 0., -1.], ]) np.testing.assert_almost_equal(result, [0., 1., 0., 0.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_z(self): result = quaternion.create_from_matrix([ [-1., 0., 0.], [0., -1., 0.], [0., 0., 1.], ]) np.testing.assert_almost_equal(result, [0., 0., 1., 0.], decimal=5) self.assertTrue(result.dtype == np.float) @unittest.skip('Not implemented') def test_create_from_eulers(self): pass @unittest.skip('Not implemented') def test_create_from_inverse_of_eulers(self): pass def test_cross(self): q1 = quaternion.create_from_x_rotation(np.pi / 2.0) q2 = quaternion.create_from_x_rotation(-np.pi / 2.0) result = quaternion.cross(q1, q2) np.testing.assert_almost_equal(result, quaternion.create(), decimal=5) def test_quaternion_slerp(self): sqrt2 = np.sqrt(2) / 2 identity = np.array([0.0, 0.0, 0.0, 1.0]) y90rot = np.array([0.0, sqrt2, 0.0, sqrt2]) y180rot = np.array([0.0, 1.0, 0.0, 0.0]) # Testing a == 0 # Must be id result = quaternion.slerp(identity, y90rot, 0.0) np.testing.assert_almost_equal(result, identity, decimal=4) # Testing a == 1 # Must be 90° rotation on Y : 0 0.7 0 0.7 result = quaternion.slerp(identity, y90rot, 1.0) np.testing.assert_almost_equal(result, y90rot, decimal=4) # Testing standard, easy case # Must be 45° rotation on Y : 0 0.38 0 0.92 y45rot1 = quaternion.slerp(identity, y90rot, 0.5) # Testing reverse case # Must be 45° rotation on Y : 0 0.38 0 0.92 y45rot2 = quaternion.slerp(y90rot, identity, 0.5) np.testing.assert_almost_equal(y45rot1, y45rot2, decimal=4) # Testing against full circle around the sphere instead of shortest path # Must be 45° rotation on Y # certainly not a 135° rotation # y45rot3 = quaternion.slerp(identity, quaternion.negate(y90rot), 0.5) y45rot3 = quaternion.slerp(identity, y90rot, 0.5) y45angle3 = quaternion.rotation_angle(y45rot3) np.testing.assert_almost_equal(y45angle3 * 180 / np.pi, 45, decimal=4) np.testing.assert_almost_equal(y45angle3, np.pi / 4, decimal=4) # # Same, but inverted # # Must also be 45° rotation on Y : 0 0.38 0 0.92 # # -0 -0.38 -0 -0.92 is ok too y45rot4 = quaternion.slerp(-y90rot, identity, 0.5) np.testing.assert_almost_equal(np.abs(y45rot4), y45rot2, decimal=4) # # Testing q1 = q2 # # Must be 90° rotation on Y : 0 0.7 0 0.7 y90rot3 = quaternion.slerp(y90rot, y90rot, 0.5); np.testing.assert_almost_equal(y90rot3, y90rot, decimal=4) # # Testing 180° rotation # # Must be 90° rotation on almost any axis that is on the XZ plane xz90rot = quaternion.slerp(identity, -y90rot, 0.5) xz90rot = quaternion.rotation_angle(xz90rot) np.testing.assert_almost_equal(xz90rot, np.pi / 4, decimal=4) def test_is_zero_length(self): result = quaternion.is_zero_length([1., 0., 0., 0.]) self.assertFalse(result) def test_is_zero_length_zero(self): result = quaternion.is_zero_length([0., 0., 0., 0.]) self.assertTrue(result) def test_is_non_zero_length(self): result = quaternion.is_non_zero_length([1., 0., 0., 0.]) self.assertTrue(result) def test_is_non_zero_length_zero(self): result = quaternion.is_non_zero_length([0., 0., 0., 0.]) self.assertFalse(result) def test_squared_length_identity(self): result = quaternion.squared_length([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, 1., decimal=5) def test_squared_length(self): result = quaternion.squared_length([1., 1., 1., 1.]) np.testing.assert_almost_equal(result, 4., decimal=5) def test_squared_length_batch(self): result = quaternion.squared_length([ [0., 0., 0., 1.], [1., 1., 1., 1.], ]) np.testing.assert_almost_equal(result, [1., 4.], decimal=5) def test_length_identity(self): result = quaternion.length([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, 1., decimal=5) def test_length(self): result = quaternion.length([1., 1., 1., 1.]) np.testing.assert_almost_equal(result, 2., decimal=5) def test_length_batch(self): result = quaternion.length([ [0., 0., 0., 1.], [1., 1., 1., 1.], ]) np.testing.assert_almost_equal(result, [1., 2.], decimal=5) def test_normalize_identity(self): # normalize an identity quaternion result = quaternion.normalize([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_normalize_non_identity(self): # normalize an identity quaternion result = quaternion.normalize([1., 2., 3., 4.]) np.testing.assert_almost_equal(result, [1. / np.sqrt(30.), np.sqrt(2. / 15.), np.sqrt(3. / 10.), 2. * np.sqrt(2. / 15.)], decimal=5) def test_normalize_batch(self): # normalize an identity quaternion result = quaternion.normalize([ [0., 0., 0., 1.], [1., 2., 3., 4.], ]) expected = [ [0., 0., 0., 1.], [1. / np.sqrt(30.), np.sqrt(2. / 15.), np.sqrt(3. / 10.), 2. * np.sqrt(2. / 15.)], ] np.testing.assert_almost_equal(result, expected, decimal=5) def test_rotation_angle(self): result = quaternion.rotation_angle([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, np.pi, decimal=5) def test_rotation_axis(self): result = quaternion.rotation_axis([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, [0.57735, 0.57735, 0.57735], decimal=5) def test_dot_adjacent(self): result = quaternion.dot([1., 0., 0., 0.], [0., 1., 0., 0.]) np.testing.assert_almost_equal(result, 0.0, decimal=5) def test_dot_parallel(self): result = quaternion.dot([0., 1., 0., 0.], [0., 1., 0., 0.]) np.testing.assert_almost_equal(result, 1.0, decimal=5) def test_dot_angle(self): result = quaternion.dot([.2, .2, 0., 0.], [2., -.2, 0., 0.]) np.testing.assert_almost_equal(result, 0.36, decimal=5) def test_dot_batch(self): result = quaternion.dot([ [1., 0., 0., 0.], [0., 1., 0., 0.], [.2, .2, 0., 0.] ], [ [0., 1., 0., 0.], [0., 1., 0., 0.], [2., -.2, 0., 0.] ]) expected = [0., 1., 0.36] np.testing.assert_almost_equal(result, expected, decimal=5) def test_conjugate(self): #result = quaternion.conjugate([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) result = quaternion.conjugate([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_conjugate_rotation(self): result = quaternion.conjugate([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, [-0.57735, -0.57735, -0.57735, 6.12323e-17], decimal=5) @unittest.skip('Not implemented') def test_power(self): pass def test_inverse(self): result = quaternion.inverse([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_inverse_rotation(self): result = quaternion.inverse([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, [-0.577351, -0.577351, -0.577351, 6.12324e-17], decimal=5) def test_inverse_non_unit(self): q = [1, 2, 3, 4] result = quaternion.inverse(q) expected = quaternion.conjugate(q) / quaternion.length(q) np.testing.assert_almost_equal(result, expected, decimal=5) def test_negate_unit(self): result = quaternion.negate([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., -1.], decimal=5) def test_negate(self): result = quaternion.negate([1., 2., 3., 4.]) np.testing.assert_almost_equal(result, [-1., -2., -3., -4.], decimal=5) def test_apply_to_vector_unit_x(self): result = quaternion.apply_to_vector([0., 0., 0., 1.], [1., 0., 0.]) np.testing.assert_almost_equal(result, [1., 0., 0.], decimal=5) def test_apply_to_vector_x(self): # 180 degree turn around X axis q = quaternion.create_from_x_rotation(np.pi) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0.,-1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0.,-1.])) # 90 degree rotation around X axis q = quaternion.create_from_x_rotation(np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 0., 1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0.,-1., 0.])) # -90 degree rotation around X axis q = quaternion.create_from_x_rotation(-np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 0.,-1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 1., 0.])) def test_apply_to_vector_y(self): # 180 degree turn around Y axis q = quaternion.create_from_y_rotation(np.pi) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [-1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0.,-1.])) # 90 degree rotation around Y axis q = quaternion.create_from_y_rotation(np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 0.,-1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [1., 0., 0.])) # -90 degree rotation around Y axis q = quaternion.create_from_y_rotation(-np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 0., 1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [-1., 0., 0.])) def test_apply_to_vector_z(self): # 180 degree turn around Z axis q = quaternion.create_from_z_rotation(np.pi) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [-1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0.,-1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) # 90 degree rotation around Z axis q = quaternion.create_from_z_rotation(np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [-1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) # -90 degree rotation around Z axis q = quaternion.create_from_z_rotation(-np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0.,-1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) def test_apply_to_vector_non_unit(self): q = quaternion.create_from_x_rotation(np.pi) # zero length self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 0.]), [0., 0., 0.])) # >1 length self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [2., 0., 0.]), [2., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 2., 0.]), [0.,-2., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 2.]), [0., 0.,-2.])) def test_identity(self): # https://en.wikipedia.org/wiki/Quaternion i = quaternion.create(1., 0., 0., 0.) j = quaternion.create(0., 1., 0., 0.) k = quaternion.create(0., 0., 1., 0.) one = quaternion.create(0., 0., 0., 1.) # i * 1 = i # j * 1 = j # k * 1 = k # 1 * i = i # 1 * j = j # 1 * k = k i1 = quaternion.cross(i, one) j1 = quaternion.cross(j, one) k1 = quaternion.cross(k, one) _1i = quaternion.cross(one, i) _1j = quaternion.cross(one, j) _1k = quaternion.cross(one, k) self.assertTrue(np.allclose(i1, _1i, i)) self.assertTrue(np.allclose(j1, _1j, j)) self.assertTrue(np.allclose(k1, _1k, k)) # result = -1 ii = quaternion.cross(i, i) kk = quaternion.cross(k, k) jj = quaternion.cross(j, j) ijk = quaternion.cross(quaternion.cross(i, j), k) self.assertTrue(np.allclose(ii, -one)) self.assertTrue(np.allclose(jj, -one)) self.assertTrue(np.allclose(kk, -one)) self.assertTrue(np.allclose(ijk, -one)) # ij = k # ji = -k # jk = i # kj = -i # ki = j # ik = -j ij = quaternion.cross(i, j) ji = quaternion.cross(j, i) jk = quaternion.cross(j, k) kj = quaternion.cross(k, j) ki = quaternion.cross(k, i) ik = quaternion.cross(i, k) self.assertTrue(np.allclose(ij, k)) self.assertTrue(
np.allclose(ji, -k)
numpy.allclose
""" Team name: ThE raNDom WALkERS Members: <NAME>, <NAME>, <NAME> """ import pandas as pd import numpy as np from typing import Union import pandas as pd import numpy as np from typing import Union def compute_beta_vec(bo, epsilon_vec): """Compute beta from distribution of f.""" sorted_f_vec = np.sort(bo.f_vec) f0 = sorted_f_vec[0] N0 = ((sorted_f_vec - f0) == 0).sum() f1_index = np.where((sorted_f_vec - f0) > 0)[0][0] f1 = sorted_f_vec[f1_index] N1 = ((sorted_f_vec - f1) == 0).sum() beta_vec = np.log(N1 / (N0 * epsilon_vec)) / (f1 - f0) return beta_vec def get_optimal_betas_df(lambda_vec, epsilon_vec, lambda_arrays_list, model_string='G1'): """Return a dataframe containing the optimal values for beta.""" running_list = [] model_repeated = np.repeat(model_string, len(epsilon_vec)) for i, lambda_array in enumerate(lambda_arrays_list): lambda_repeated = np.repeat(lambda_vec[i], len(epsilon_vec)) l = list(zip(model_repeated, lambda_repeated, epsilon_vec,
np.median(lambda_array, axis=0)
numpy.median
from glob import glob import numpy as np import scipy.sparse as sparse import matplotlib.pyplot as plt import networkx as nx import operator from spatialpower.tissue_generation import assign_labels from spatialpower.tissue_generation import visualization results_dir = './results/motif_detection/' adj_mat_list = np.sort(glob(results_dir + 'blank_graph_network*.npy')) pos_mat_list = np.sort(glob(results_dir + 'blank_graph_positions*.npy')) dim = 300 ##RANDOM## cell_type_probabilities = np.ones(10) * 0.1 neighborhood_probabilities =
np.ones((10,10))
numpy.ones
from dsynth.view_datasets.tless import TlessMultiviewDataset from dsynth import MultiviewWarper import numpy as np def test_tless_dataset(): dataset = TlessMultiviewDataset(obj_id=2, unit_test=True) ibr = MultiviewWarper(dataset) R =
np.reshape(dataset[1].cam_R, (3,3))
numpy.reshape
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. import numpy as np from MiniFramework.Layer import * from MiniFramework.ActivationLayer import * from MiniFramework.ClassificationLayer import * class GRUCell(object): def __init__(self, input_size, hidden_size): self.input_size = input_size self.hidden_size = hidden_size def split_params(self, w, size): s=[] for i in range(3): s.append(w[(i*size):((i+1)*size)]) return s[0], s[1], s[2] # Get shared parameters, and split them to fit 3 gates, in the order of z, r, \tilde{h} (n stands for \tilde{h} in code) def get_params(self, W, U): self.wz, self.wr, self.wn = self.split_params(W, self.hidden_size) self.uz, self.ur, self.un = self.split_params(U, self.input_size) def forward(self, x, h_p, W, U): self.get_params(W, U) self.x = x self.z = Sigmoid().forward(np.dot(h_p, self.wz) + np.dot(x, self.uz)) self.r = Sigmoid().forward(np.dot(h_p, self.wr) + np.dot(x, self.ur)) self.n = Tanh().forward(np.dot((self.r * h_p), self.wn) + np.dot(x, self.un)) self.h = (1 - self.z) * h_p + self.z * self.n def backward(self, h_p, in_grad): self.dzz = in_grad * (self.n - h_p) * self.z * (1 - self.z) self.dzn = in_grad * self.z * (1 - self.n * self.n) self.dzr = np.dot(self.dzn, self.wn.T) * h_p * self.r * (1 - self.r) self.dwn = np.dot((self.r * h_p).T, self.dzn) self.dun = np.dot(self.x.T, self.dzn) self.dwr = np.dot(h_p.T, self.dzr) self.dur = np.dot(self.x.T, self.dzr) self.dwz =
np.dot(h_p.T, self.dzz)
numpy.dot
import os import io import json import math import tempfile import contextlib from typing import Union, Iterable, List, Optional, Tuple import glob from functools import reduce from types import SimpleNamespace from enum import Enum from collections import namedtuple from copy import copy, deepcopy from itertools import groupby import warnings import numpy as np import imageio from boltons.setutils import IndexedSet try: import matplotlib.cm except ImportError: warnings.warn( "Visualization dependencies not available, colorize will not work", ImportWarning, stacklevel=2, ) from rasterio.crs import CRS from rasterio.rpc import RPC import rasterio import rasterio.warp import rasterio.shutil from rasterio.coords import BoundingBox from rasterio._err import CPLE_AppDefinedError from rasterio.enums import Resampling, Compression from rasterio.features import geometry_mask from rasterio.windows import Window, WindowMethodsMixin from rasterio.io import MemoryFile from affine import Affine from shapely.geometry import Point, Polygon from PIL import Image from telluric.constants import WEB_MERCATOR_CRS, MERCATOR_RESOLUTION_MAPPING, RASTER_TYPE, WGS84_CRS from telluric.vectors import GeoVector from telluric.util.projections import transform from telluric.util.raster_utils import ( convert_to_cog, _calc_overviews_factors, _mask_from_masked_array, _join_masks_from_masked_array, calc_transform, warp) from telluric.vrt import ( boundless_vrt_doc, raster_list_vrt, raster_collection_vrt, wms_vrt) try: from telluric.util.local_tile_server import TileServer except ImportError: warnings.warn( "Visualization dependencies not available, local tile server will not work", ImportWarning, stacklevel=2, ) dtype_map = { np.uint8: rasterio.uint8, np.uint16: rasterio.uint16, np.uint32: rasterio.uint32, np.int16: rasterio.int16, np.int32: rasterio.int32, np.float32: rasterio.float32, np.float64: rasterio.float64, } gdal_drivers = { 'tif': 'GTiff', 'tiff': 'GTiff', 'png': 'PNG', 'jpg': 'JPEG', 'jpeg': 'JPEG', } band_names_tag = 'telluric_band_names' class MergeStrategy(Enum): LEFT_ALL = 0 INTERSECTION = 1 UNION = 2 class PixelStrategy(Enum): INDEX = 0 FIRST = 1 def join(rasters): """ This method takes a list of rasters and returns a raster that is constructed of all of them """ raster = rasters[0] # using the first raster to understand what is the type of data we have mask_band = None nodata = None with raster._raster_opener(raster.source_file) as r: nodata = r.nodata mask_flags = r.mask_flag_enums per_dataset_mask = all([rasterio.enums.MaskFlags.per_dataset in flags for flags in mask_flags]) if per_dataset_mask and nodata is None: mask_band = 0 return GeoRaster2.from_rasters(rasters, relative_to_vrt=False, nodata=nodata, mask_band=mask_band) def _dest_resolution(first_raster, crs): transform, _, _ = rasterio.warp.calculate_default_transform( first_raster.crs, crs, first_raster.width, first_raster.height, *first_raster.footprint().get_bounds(first_raster.crs)) dest_resolution = abs(transform.a), abs(transform.e) return dest_resolution def merge_all(rasters, roi=None, dest_resolution=None, merge_strategy=MergeStrategy.UNION, shape=None, ul_corner=None, crs=None, pixel_strategy=PixelStrategy.FIRST, resampling=Resampling.nearest, crop=True): """Merge a list of rasters, cropping (optional) by a region of interest. There are cases that the roi is not precise enough for this cases one can use, the upper left corner the shape and crs to precisely define the roi. When roi is provided the ul_corner, shape and crs are ignored. NB: Reading rotated rasters with GDAL (and rasterio) gives unpredictable result and in order to overcome this you must use the warping algorithm to apply the rotation (it might be acomplished by using gdalwarp utility). Hence we should have the possibility to disable cropping, otherwise calling merge_all on rotated rasters may cause fails. """ first_raster = rasters[0] if roi: crs = crs or roi.crs dest_resolution = dest_resolution or _dest_resolution(first_raster, crs) # Create empty raster empty = GeoRaster2.empty_from_roi( roi, resolution=dest_resolution, band_names=first_raster.band_names, dtype=first_raster.dtype, shape=shape, ul_corner=ul_corner, crs=crs) # Create a list of single band rasters if not crop: warnings.warn( "The option to disable crop has been added to overcome rare issues that happen " "while working with rotated rasters and it is not yet well tested.", stacklevel=2 ) all_band_names, projected_rasters = _prepare_rasters(rasters, merge_strategy, empty, resampling=resampling, crop=crop) assert len(projected_rasters) == len(rasters) prepared_rasters = _apply_pixel_strategy(projected_rasters, pixel_strategy) # Extend the rasters list with only those that have the requested bands prepared_rasters = _explode_rasters(prepared_rasters, all_band_names) if all_band_names: # Merge common bands prepared_rasters = _merge_common_bands(prepared_rasters) # Merge all bands raster = reduce(_stack_bands, prepared_rasters) return empty.copy_with(image=raster.image, band_names=raster.band_names) else: raise ValueError("result contains no bands, use another merge strategy") def _apply_pixel_strategy(rasters, pixel_strategy): # type: (List[Optional[_Raster]], PixelStrategy) -> List[_Raster] if pixel_strategy == PixelStrategy.INDEX: new_rasters = [] for ii, raster in enumerate(rasters): if raster: new_image = np.ma.masked_array( np.full_like(raster.image.data, ii, dtype=int), raster.image.mask ) # type: np.ndarray new_rasters.append(_Raster(image=new_image, band_names=raster.band_names)) return new_rasters elif pixel_strategy == PixelStrategy.FIRST: # The way merge_all is written now, this pixel strategy is the default one # and all the steps in the chain are prepared for it, so no changes needed # apart from taking out None values return [raster for raster in rasters if raster] else: raise ValueError("Please use an allowed pixel_strategy") def _explode_rasters(projected_rasters, all_band_names): # type: (List[_Raster], IndexedSet[str]) -> List[_Raster] prepared_rasters = [] for projected_raster in projected_rasters: prepared_rasters.extend(_explode_raster(projected_raster, all_band_names)) return prepared_rasters def _merge_common_bands(rasters): # type: (List[_Raster]) -> List[_Raster] """Combine the common bands. """ # Compute band order all_bands = IndexedSet([rs.band_names[0] for rs in rasters]) def key(rs): return all_bands.index(rs.band_names[0]) rasters_final = [] # type: List[_Raster] for band_name, rasters_group in groupby(sorted(rasters, key=key), key=key): rasters_final.append(reduce(_fill_pixels, rasters_group)) return rasters_final def _prepare_rasters( rasters, # type: List[GeoRaster2] merge_strategy, # type: MergeStrategy first, # type: GeoRaster2 resampling=Resampling.nearest, # type: Resampling crop=True, # type: bool ): # type: (...) -> Tuple[IndexedSet[str], List[Optional[_Raster]]] """Prepares the rasters according to the baseline (first) raster and the merge strategy. The baseline (first) raster is used to crop and reproject the other rasters, while the merge strategy is used to compute the bands of the result. These are returned for diagnostics. """ # Create list of prepared rasters all_band_names = IndexedSet(first.band_names) projected_rasters = [] for raster in rasters: try: projected_raster = _prepare_other_raster(first, raster, resampling=resampling, crop=crop) except ValueError: projected_raster = None # Modify the bands only if an intersecting raster was returned if projected_raster: if merge_strategy is MergeStrategy.INTERSECTION: all_band_names.intersection_update(projected_raster.band_names) elif merge_strategy is MergeStrategy.UNION: all_band_names.update(projected_raster.band_names) # Some rasters might be None. In this way, we still retain the original order projected_rasters.append(projected_raster) return all_band_names, projected_rasters # noinspection PyDefaultArgument def _explode_raster(raster, band_names=[]): # type: (_Raster, Iterable[str]) -> List[_Raster] """Splits a raster into multiband rasters. """ # Using band_names=[] does no harm because we are not mutating it in place # and it makes MyPy happy if not band_names: band_names = raster.band_names else: band_names = list(IndexedSet(raster.band_names).intersection(band_names)) return [_Raster(image=raster.bands_data([band_name]), band_names=[band_name]) for band_name in band_names] def _prepare_other_raster(one, other, resampling=Resampling.nearest, crop=True): # type: (GeoRaster2, GeoRaster2, Resampling, bool) -> Union[_Raster, None] # Crop and reproject the second raster, if necessary. if not (one.crs == other.crs and one.affine.almost_equals(other.affine) and one.shape == other.shape): if one.footprint().intersects(other.footprint()): if crop: if one.crs != other.crs: src_bounds = one.footprint().get_bounds(other.crs) src_vector = GeoVector(Polygon.from_bounds(*src_bounds), other.crs) src_width, src_height = ( src_bounds.right - src_bounds.left, src_bounds.top - src_bounds.bottom) buffer_ratio = int(os.environ.get("TELLURIC_MERGE_CROP_BUFFER", 10)) buffer_size = max(src_width, src_height) * (buffer_ratio / 100) other = other.crop(src_vector.buffer(buffer_size)) else: other = other.crop(one.footprint(), resolution=one.resolution()) if other.height == 0 or other.width == 0: return None other = other._reproject(new_width=one.width, new_height=one.height, dest_affine=one.affine, dst_crs=one.crs, resampling=resampling) else: return None return _Raster(image=other.image, band_names=other.band_names) def _fill_pixels(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two single band rasters with the same band by filling the pixels according to depth. """ assert len(one.band_names) == len(other.band_names) == 1, "Rasters are not single band" # We raise an error in the intersection is empty. # Other options include returning an "empty" raster or just None. # The problem with the former is that GeoRaster2 expects a 2D or 3D # numpy array, so there is no obvious way to signal that this raster # has no bands. Also, returning a (1, 1, 0) numpy array is useless # for future concatenation, so the expected shape should be used # instead. The problem with the latter is that it breaks concatenation # anyway and requires special attention. Suggestions welcome. if one.band_names != other.band_names: raise ValueError("rasters have no bands in common, use another merge strategy") new_image = one.image.copy() other_image = other.image # The values that I want to mask are the ones that: # * Were already masked in the other array, _or_ # * Were already unmasked in the one array, so I don't overwrite them other_values_mask = (np.ma.getmaskarray(other_image)[0] | (~np.ma.getmaskarray(one.image)[0])) # Reshape the mask to fit the future array other_values_mask = other_values_mask[None, ...] # Overwrite the values that I don't want to mask new_image[~other_values_mask] = other_image[~other_values_mask] # In other words, the values that I wanted to write are the ones that: # * Were already masked in the one array, _and_ # * Were not masked in the other array # The reason for using the inverted form is to retain the semantics # of "masked=True" that apply for masked arrays. The same logic # could be written, using the De Morgan's laws, as # other_values_mask = (one.image.mask[0] & (~other_image.mask[0]) # other_values_mask = other_values_mask[None, ...] # new_image[other_values_mask] = other_image[other_values_mask] # but here the word "mask" does not mean the same as in masked arrays. return _Raster(image=new_image, band_names=one.band_names) def _stack_bands(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two rasters with non overlapping bands by stacking the bands. """ assert set(one.band_names).intersection(set(other.band_names)) == set() # We raise an error in the bands are the same. See above. if one.band_names == other.band_names: raise ValueError("rasters have the same bands, use another merge strategy") # Apply "or" to the mask in the same way rasterio does, see # https://mapbox.github.io/rasterio/topics/masks.html#dataset-masks # In other words, mask the values that are already masked in either # of the two rasters, since one mask per band is not supported new_mask = np.ma.getmaskarray(one.image)[0] |
np.ma.getmaskarray(other.image)
numpy.ma.getmaskarray
import os import numpy as np import scipy.constants as ct from scipy.io import readsav as rsav from .load_quantities import * from .load_arithmetic_quantities import * from .tools import * from .load_noeos_quantities import * from . import document_vars class Matsumotosav: """ Class to read Matsumoto's sav file atmosphere. Snapshots from a MHD simulation ( Matsumoto 2018 ) https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.3328M/abstract Parameters ---------- fdir : str, optional Directory with snapshots. rootname : str Template for snapshot number. it : integer Snapshot number to read. By default reads the loaded snapshot; if a different number is requested, will load that snapshot. verbose : bool, optional If True, will print more information. """ def __init__(self, rootname, snap, fdir='.', sel_units = 'cgs', verbose=True): self.fdir = fdir self.rootname = rootname self.savefile = rsav(os.path.join(fdir,rootname+'{:06d}'.format(snap)+'.sav')) self.snap = snap self.sel_units= sel_units self.verbose = verbose self.uni = Matsumotosav_units() self.time = self.savefile['v']['time'][0].copy() self.grav = self.savefile['v']['gx'][0].copy() self.gamma = self.savefile['v']['gm'][0].copy() if self.sel_units=='cgs': self.x = self.savefile['v']['x'][0].copy() # cm self.y = self.savefile['v']['y'][0].copy() self.z = self.savefile['v']['z'][0].copy() self.dx = self.savefile['v']['dx'][0].copy() self.dy = self.savefile['v']['dy'][0].copy() self.dz = self.savefile['v']['dz'][0].copy() else: self.x = self.savefile['v']['x'][0].copy()/1e8 # Mm self.y = self.savefile['v']['y'][0].copy()/1e8 self.z = self.savefile['v']['z'][0].copy()/1e8 self.dx = self.savefile['v']['dx'][0].copy()/1e8 self.dy = self.savefile['v']['dy'][0].copy()/1e8 self.dz = self.savefile['v']['dz'][0].copy()/1e8 self.nx = len(self.x) self.ny = len(self.y) self.nz = len(self.z) if self.nx > 1: self.dx1d = np.gradient(self.x) else: self.dx1d = np.zeros(self.nx) if self.ny > 1: self.dy1d = np.gradient(self.y) else: self.dy1d = np.zeros(self.ny) if self.nz > 1: self.dz1d = np.gradient(self.z) else: self.dz1d = np.zeros(self.nz) self.transunits = False self.cstagop = False # This will not allow to use cstagger from Bifrost in load self.hion = False # This will not allow to use HION from Bifrost in load self.genvar() document_vars.create_vardict(self) document_vars.set_vardocs(self) def get_var(self,var , *args, snap=None, iix=None, iiy=None, iiz=None, layout=None, **kargs): ''' Reads the variables from a snapshot (snap). Parameters ---------- var - string Name of the variable to read. Must be Bifrost internal names. snap - integer, optional Snapshot number to read. By default reads the loaded snapshot; if a different number is requested, will load that snapshot. Axes: ----- y and z axes horizontal plane x-axis is vertical axis, top corona is first index and negative. Variable list: -------------- ro -- Density (g/cm^3) [nx, ny, nz] temperature -- Temperature (K) [nx, ny, nz] vx -- component x of the velocity (cm/s) [nx, ny, nz] vy -- component y of the velocity (cm/s) [nx, ny, nz] vz -- component z of the velocity (cm/s) [nx, ny, nz] bx -- component x of the magnetic field (G) [nx, ny, nz] by -- component y of the magnetic field (G) [nx, ny, nz] bz -- component z of the magnetic field (G) [nx, ny, nz] pressure -- Pressure (dyn/cm^2) [nx, ny, nz] ''' if snap != None: self.snap = snap self.savefile = rsav(os.path.join(self.fdir,self.rootname+'{:06d}'.format(self.snap)+'.sav')) if var in self.varn.keys(): varname=self.varn[var] else: varname=var try: if self.sel_units == 'cgs': varu=var.replace('x','') varu=varu.replace('y','') varu=varu.replace('z','') if (var in self.varn.keys()) and (varu in self.uni.uni.keys()): cgsunits = self.uni.uni[varu] else: cgsunits = 1.0 else: cgsunits = 1.0 self.data = self.savefile['v'][varname][0].T * cgsunits ''' if (np.shape(self.data)[0]>self.nx): self.data = (self.data[1:,:,:] + self.data[:-1,:,:]) / 2 if (np.shape(self.data)[1]>self.ny): self.data = (self.data[:,1:,:] + self.data[:,:-1,:]) / 2 if (np.shape(self.data)[2]>self.nz): self.data = (self.data[:,:,1:] + self.data[:,:,:-1]) / 2 ''' except: # Loading quantities if self.verbose: print('Loading composite variable',end="\r",flush=True) self.data = load_noeos_quantities(self,var, **kargs) if np.shape(self.data) == (): self.data = load_quantities(self,var,PLASMA_QUANT='', CYCL_RES='', COLFRE_QUANT='', COLFRI_QUANT='', IONP_QUANT='', EOSTAB_QUANT='', TAU_QUANT='', DEBYE_LN_QUANT='', CROSTAB_QUANT='', COULOMB_COL_QUANT='', AMB_QUANT='', HALL_QUANT='', BATTERY_QUANT='', SPITZER_QUANT='', KAPPA_QUANT='', GYROF_QUANT='', WAVE_QUANT='', FLUX_QUANT='', CURRENT_QUANT='', COLCOU_QUANT='', COLCOUMS_QUANT='', COLFREMX_QUANT='', **kargs) # Loading arithmetic quantities if np.shape(self.data) == (): if self.verbose: print('Loading arithmetic variable',end="\r",flush=True) self.data = load_arithmetic_quantities(self,var, **kargs) if document_vars.creating_vardict(self): return None elif var == '': print(help(self.get_var)) print('VARIABLES USING CGS OR GENERIC NOMENCLATURE') for ii in self.varn: print('use ', ii,' for ',self.varn[ii]) if hasattr(self,'vardict'): self.vardocs() return None return self.data def genvar(self): ''' Dictionary of original variables which will allow to convert to cgs. ''' self.varn={} self.varn['rho']= 'ro' self.varn['tg'] = 'te' self.varn['pg'] = 'pr' self.varn['ux'] = 'vx' self.varn['uy'] = 'vy' self.varn['uz'] = 'vz' self.varn['bx'] = 'bx' self.varn['by'] = 'by' self.varn['bz'] = 'bz' def trans2comm(self,varname,snap=None): ''' Transform the domain into a "common" format. All arrays will be 3D. The 3rd axis is: - for 3D atmospheres: the vertical axis - for loop type atmospheres: along the loop - for 1D atmosphere: the unique dimension is the 3rd axis. At least one extra dimension needs to be created artifically. All of them should obey the right hand rule In all of them, the vectors (velocity, magnetic field etc) away from the Sun. If applies, z=0 near the photosphere. Units: everything is in cgs. If an array is reverse, do ndarray.copy(), otherwise pytorch will complain. ''' self.sel_units = 'cgs' if varname[-1] in ['x','y','z']: if varname[-1] == 'x': varname=varname.replace(varname[len(varname)-1], 'y') elif varname[-1] == 'y': varname=varname.replace(varname[len(varname)-1], 'z') else: varname=varname.replace(varname[len(varname)-1], 'x') self.order = np.array((1,2,0)) self.trans2commaxes() return np.transpose(self.get_var(varname,snap=snap), self.order).copy() def trans2commaxes(self): if self.transunits == False: # including units conversion axisarrs= np.array(((self.x),(self.y),(self.z))) daxisarrs= np.array(((self.dx),(self.dy),(self.dz))) self.x = axisarrs[self.order[0]].copy() self.y = axisarrs[self.order[1]].copy() self.z = axisarrs[self.order[2]].copy() + np.max(np.abs(axisarrs[self.order[2]])) self.dx = daxisarrs[self.order[0]].copy() self.dy = daxisarrs[self.order[1]].copy() self.dz = -axisarrs[self.order[2]].copy() self.dx1d, self.dy1d, self.dz1d = np.gradient(self.x).copy(),
np.gradient(self.y)
numpy.gradient
# modified from original source by <NAME> # source: https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/demo/inference.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import csv import os import shutil import json from PIL import Image from pycocotools.coco import COCO import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision import cv2 import numpy as np print("We are using torch version", torch.__version__) print("We are using torchvision version", torchvision.__version__) import sys sys.path.append("./deep-high-resolution-net.pytorch/lib") import time from models import pose_hrnet from config import cfg from config import update_config from core.inference import get_final_preds from utils.transforms import get_affine_transform import detectron2 from detectron2.utils.logger import setup_logger setup_logger() import numpy as np import cv2 import os from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') _BLACK = (0, 0, 0) _RED = (0, 0, 255) _BLUE = (255, 0, 0) _PURPLE = (204, 0, 153) _ORANGE = (51, 153, 255) _LBROWN = (0, 153, 230) keypoint_colors = { '1': _RED, '2': _RED, '3': _RED, '4': _RED, '5': _RED, '6': _ORANGE, '7': _ORANGE, '8': _ORANGE, '9': _ORANGE, '10': _LBROWN, '11': _LBROWN, '12': _LBROWN, '13': _LBROWN, '14': _BLUE, '15': _BLUE, '16': _BLUE, '17': _BLUE, '18': _PURPLE, '19': _PURPLE, '20': _PURPLE, '21': _PURPLE } COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'hand', ] def get_person_detection_boxes(model, img, threshold=0.5): pil_image = Image.fromarray(img) # Load the image transform = transforms.Compose([transforms.ToTensor()]) # Defing PyTorch Transform transformed_img = transform(pil_image) # Apply the transform to the image pred = model([transformed_img.to(CTX)]) # Pass the image to the model # Use the first detected person pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(pred[0]['boxes'].cpu().detach().numpy())] # Bounding boxes pred_scores = list(pred[0]['scores'].cpu().detach().numpy()) person_boxes = [] # Select box has score larger than threshold and is person for pred_class, pred_box, pred_score in zip(pred_classes, pred_boxes, pred_scores): if (pred_score > threshold) and pred_class == 'hand': person_boxes.append(pred_box) return person_boxes def get_pose_estimation_prediction(pose_model, image, centers, scales, transform): rotation = 0 # pose estimation transformation model_inputs = [] for center, scale in zip(centers, scales): trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE) # Crop smaller image of people model_input = cv2.warpAffine( image, trans, (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])), flags=cv2.INTER_LINEAR) # hwc -> 1chw model_input = transform(model_input)#.unsqueeze(0) model_inputs.append(model_input) # n * 1chw -> nchw model_inputs = torch.stack(model_inputs) # compute output heatmap output = pose_model(model_inputs.to(CTX)) coords, _ = get_final_preds( cfg, output.cpu().detach().numpy(), np.asarray(centers),
np.asarray(scales)
numpy.asarray
from mechanisms import Sequential, Parallel from utils import create_agents, create_items, create_auctions, correct_values import numpy as np if __name__ == '__main__': PARALLEL = False COMMON = False N_RUNS = 1000 QUANTILE = 0.005 STEP_SHARE = 0.05 VERBOSE = False prices, regrets = [], [] for i in range(N_RUNS): items = create_items(STEP_SHARE) agents = create_agents() ### agents = {k: v.modify_capacities(0) for k, v in agents.items()} ### agents = {k: v.modify_values(0) for k, v in agents.items()} agents = correct_values(agents, items, step_share=STEP_SHARE) ### items = {k: v.modify_reserve_price(0) for k, v in items.items()} auctions = create_auctions(agents, items, COMMON) auctions = {k: v.check_agents() for k, v in auctions.items()} mechanism = Parallel(agents, items, auctions) if PARALLEL else Sequential(agents, items, auctions) price = mechanism.run(VERBOSE) prices.append(price) regret = mechanism.get_regret() regrets.append(regret) low_price, avg_price, high_price = np.quantile(prices, QUANTILE), np.mean(prices), np.quantile(prices, 1 - QUANTILE) low_price, avg_price, high_price = round(low_price/1000, 1), round(avg_price/1000, 1), round(high_price/1000, 1) print('parallel' if PARALLEL else 'sequential', 'common:' if COMMON else 'individual', '\nprice', avg_price, 'bln rub, ci [', low_price, ',', high_price, '] bln rub') low_rgt, avg_rgt, high_rgt = np.quantile(regrets, QUANTILE),
np.mean(regrets)
numpy.mean
import os from math import radians import numpy as np from sklearn.metrics import pairwise_distances import trackintel as ti from trackintel.geogr.distances import meters_to_decimal_degrees, calculate_distance_matrix class TestCalculate_distance_matrix: def test_shape_for_different_array_length(self): spts = ti.read_staypoints_csv(os.path.join('tests', 'data', 'geolife', 'geolife_staypoints.csv')) x = spts.iloc[0:5] y = spts.iloc[5:15] d_euc1 = calculate_distance_matrix(X=x, Y=y, dist_metric='euclidean') d_euc2 = calculate_distance_matrix(X=y, Y=x, dist_metric='euclidean') d_hav1 = calculate_distance_matrix(X=x, Y=y, dist_metric='haversine') d_hav2 = calculate_distance_matrix(X=y, Y=x, dist_metric='haversine') assert d_euc1.shape == d_hav1.shape == (5, 10) assert d_euc2.shape == d_hav2.shape == (10, 5) assert np.isclose(0, np.sum(np.abs(d_euc1 - d_euc2.T))) assert np.isclose(0, np.sum(np.abs(d_hav1 - d_hav2.T))) def test_keyword_combinations(self): spts = ti.read_staypoints_csv(os.path.join('tests', 'data', 'geolife', 'geolife_staypoints.csv')) x = spts.iloc[0:5] y = spts.iloc[5:15] _ = calculate_distance_matrix(X=x, Y=y, dist_metric='euclidean', n_jobs=-1) _ = calculate_distance_matrix(X=y, Y=x, dist_metric='haversine', n_jobs=-1) d_mink1 = calculate_distance_matrix(X=x, Y=x, dist_metric='minkowski', p=1) d_mink2 = calculate_distance_matrix(X=x, Y=x, dist_metric='minkowski', p=2) d_euc = calculate_distance_matrix(X=x, Y=x, dist_metric='euclidean') assert not
np.array_equal(d_mink1,d_mink2)
numpy.array_equal
import itertools import logging import math import random from typing import Tuple, Optional import click import numpy as np from shapely.affinity import rotate, translate from shapely.geometry import MultiLineString, Polygon from shapely.ops import unary_union import vpype as vp RectType = Tuple[float, float, float, float] def rect_to_polygon(rect: RectType) -> Polygon: return Polygon( [ (rect[0], rect[1]), (rect[0] + rect[2], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (rect[0], rect[1] + rect[3]), ] ) def generate_fill(rect: RectType, pen_width: float) -> vp.LineCollection: line_count = math.ceil(rect[3] / pen_width) base_seg = np.array([pen_width / 2, rect[2] - pen_width / 2]) + rect[0] y_start = rect[1] + (rect[3] - (line_count - 1) * pen_width) / 2 segs = [] for n in range(line_count): seg = base_seg + (y_start + pen_width * n) * 1j segs.append(seg if n % 2 == 0 else np.flip(seg)) return vp.LineCollection([np.hstack(segs)]) def generate_gradient( rect: RectType, line: np.ndarray, density: float = 1.0 ) -> vp.LineCollection: """Generate a random dots with a gradient density distribution. `density` is global average number of point per square pixel """ n = int((rect[2] * rect[3]) * density) orig = np.random.uniform(rect[0], rect[0] + rect[2], n) + 1j * np.random.triangular( rect[1], rect[1], rect[1] + rect[3], n ) lines = orig.reshape(n, 1) + line.reshape(1, len(line)) return vp.LineCollection(lines) def generate_dot_gradient( rect: RectType, pen_width: float, density: float = 1.0 ) -> vp.LineCollection: """Generate a random dots with a gradient density distribution. `density` is global average number of point per square pixel """ return generate_gradient(rect,
np.array([0, pen_width * 0.05])
numpy.array
#!/usr/bin/env python # Copyright 2021 # author: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from scipy.stats import ttest_ind import netCDF4 as nc import pickle import os from PIL import Image as PIL_Image import sys import shutil import glob import datetime import time import calendar from numpy import genfromtxt from scipy.optimize import curve_fit from scipy.cluster.vq import kmeans,vq from scipy.interpolate import interpn, interp1d from math import e as e_constant import math import matplotlib.dates as mdates from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from matplotlib.collections import LineCollection from matplotlib.ticker import (MultipleLocator, NullFormatter, ScalarFormatter) from matplotlib.colors import ListedColormap, BoundaryNorm import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib import warnings warnings.filterwarnings("ignore") plt.style.use('classic') # font size # font_size = 14 # matplotlib.rc('font', **{'family': 'serif', 'serif': ['Arial'], 'size': font_size}) # matplotlib.rc('font', weight='bold') p_progress_writing = False SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title time_format = '%d-%m-%Y_%H:%M' time_format_khan = '%Y%m%d.0%H' time_format_mod = '%Y-%m-%d_%H:%M:%S' time_format_twolines = '%H:%M\n%d-%m-%Y' time_format_twolines_noYear_noMin_intMonth = '%H\n%d-%m' time_format_twolines_noYear = '%H:%M\n%d-%b' time_format_twolines_noYear_noMin = '%H\n%d-%b' time_format_date = '%Y-%m-%d' time_format_time = '%H:%M:%S' time_format_parsivel = '%Y%m%d%H%M' time_format_parsivel_seconds = '%Y%m%d%H%M%S' time_str_formats = [ time_format, time_format_mod, time_format_twolines, time_format_twolines_noYear, time_format_date, time_format_time, time_format_parsivel ] default_cm = cm.jet cm_vir = cm.viridis listed_cm_colors_list = ['silver', 'red', 'green', 'yellow', 'blue', 'black'] listed_cm = ListedColormap(listed_cm_colors_list, 'indexed') colorbar_tick_labels_list_cloud_phase = ['Clear', 'Water', 'SLW', 'Mixed', 'Ice', 'Unknown'] listed_cm_colors_list_cloud_phase = ['white', 'red', 'green', 'yellow', 'blue', 'purple'] listed_cm_cloud_phase = ListedColormap(listed_cm_colors_list_cloud_phase, 'indexed') avogadros_ = 6.022140857E+23 # molecules/mol gas_const = 83144.598 # cm3 mbar k-1 mol-1 gas_const_2 = 8.3144621 # J mol-1 K-1 gas_const_water = 461 # J kg-1 K-1 gas_const_dry = 287 # J kg-1 K-1 boltzmann_ = gas_const / avogadros_ # cm3 mbar / k molecules gravity_ = 9.80665 # m/s poisson_ = 2/7 # for dry air (k) latent_heat_v = 2.501E+6 # J/kg latent_heat_f = 3.337E+5 # J/kg latent_heat_s = 2.834E+6 # J/kg heat_capacity__Cp = 1005.7 # J kg-1 K-1 dry air heat_capacity__Cv = 719 # J kg-1 K-1 water vapor Rs_da = 287.05 # Specific gas const for dry air, J kg^{-1} K^{-1} Rs_v = 461.51 # Specific gas const for water vapour, J kg^{-1} K^{-1} Cp_da = 1004.6 # Specific heat at constant pressure for dry air Cv_da = 719. # Specific heat at constant volume for dry air Cp_v = 1870. # Specific heat at constant pressure for water vapour Cv_v = 1410. # Specific heat at constant volume for water vapour Cp_lw = 4218 # Specific heat at constant pressure for liquid water Epsilon = 0.622 # Epsilon=Rs_da/Rs_v; The ratio of the gas constants degCtoK = 273.15 # Temperature offset between K and C (deg C) rho_w = 1000. # Liquid Water density kg m^{-3} grav = 9.80665 # Gravity, m s^{-2} Lv = 2.5e6 # Latent Heat of vaporisation boltzmann = 5.67e-8 # Stefan-Boltzmann constant mv = 18.0153e-3 # Mean molar mass of water vapor(kg/mol) m_a = 28.9644e-3 # Mean molar mass of air(kg/mol) Rstar_a = 8.31432 # Universal gas constant for air (N m /(mol K)) path_output = '/g/data/k10/la6753/' # Misc class Object_create(object): pass def list_files_recursive(path_, filter_str=None): # create list of raw spectra files file_list = [] # r=root, d=directories, f = files if filter_str is None: for r, d, f in os.walk(path_): for file in f: file_list.append(os.path.join(r, file)) else: for r, d, f in os.walk(path_): for file in f: if filter_str in file: file_list.append(os.path.join(r, file)) return file_list def list_files(path_, filter_str='*'): file_list = sorted(glob.glob(str(path_ + filter_str))) return file_list def coincidence(arr_1,arr_2): # only coincidences check_ = arr_1 * arr_2 check_[check_ == check_] = 1 arr_1_checked = arr_1 * check_ arr_2_checked = arr_2 * check_ return arr_1_checked[~np.isnan(arr_1_checked)], arr_2_checked[~np.isnan(arr_2_checked)] def array_2d_fill_gaps_by_interpolation_linear(array_): rows_ = array_.shape[0] cols_ = array_.shape[1] output_array_X = np.zeros((rows_, cols_), dtype=float) output_array_Y = np.zeros((rows_, cols_), dtype=float) row_sum = np.sum(array_, axis=1) col_index = np.arange(array_.shape[1]) col_sum = np.sum(array_, axis=0) row_index = np.arange(array_.shape[0]) for r_ in range(array_.shape[0]): if row_sum[r_] != row_sum[r_]: # get X direction interpolation coin_out = coincidence(col_index, array_[r_, :]) output_array_X[r_, :][np.isnan(array_[r_, :])] = np.interp( col_index[np.isnan(array_[r_, :])], coin_out[0], coin_out[1]) for c_ in range(array_.shape[1]): if col_sum[c_] != col_sum[c_]: # get Y direction interpolation coin_out = coincidence(row_index, array_[:, c_]) output_array_Y[:, c_][np.isnan(array_[:, c_])] = np.interp( row_index[np.isnan(array_[:, c_])], coin_out[0], coin_out[1]) output_array = np.array(array_) output_array[np.isnan(array_)] = 0 return output_array + ((output_array_X + output_array_Y)/2) def array_2d_fill_gaps_by_interpolation_cubic(array_): rows_ = array_.shape[0] cols_ = array_.shape[1] output_array_X = np.zeros((rows_, cols_), dtype=float) output_array_Y = np.zeros((rows_, cols_), dtype=float) row_sum = np.sum(array_, axis=1) col_index = np.arange(array_.shape[1]) col_sum = np.sum(array_, axis=0) row_index = np.arange(array_.shape[0]) for r_ in range(array_.shape[0]): if row_sum[r_] != row_sum[r_]: # get X direction interpolation coin_out = coincidence(col_index, array_[r_, :]) interp_function = interp1d(coin_out[0], coin_out[1], kind='cubic') output_array_X[r_, :][np.isnan(array_[r_, :])] = interp_function(col_index[np.isnan(array_[r_, :])]) for c_ in range(array_.shape[1]): if col_sum[c_] != col_sum[c_]: # get Y direction interpolation coin_out = coincidence(row_index, array_[:, c_]) interp_function = interp1d(coin_out[0], coin_out[1], kind='cubic') output_array_Y[:, c_][np.isnan(array_[:, c_])] = interp_function(row_index[np.isnan(array_[:, c_])]) output_array = np.array(array_) output_array[np.isnan(array_)] = 0 return output_array + ((output_array_X + output_array_Y)/2) def combine_2_time_series(time_1_reference, data_1, time_2, data_2, forced_time_step=None, forced_start_time=None, forced_stop_time=None, cumulative_var_1=False, cumulative_var_2=False): """ takes two data sets with respective time series, and outputs the coincident stamps from both data sets It does this by using mean_discrete() for both sets with the same start stamp and averaging time, the averaging time is the forced_time_step :param time_1_reference: 1D array, same units as time_2, this series will define the returned time step reference :param data_1: can be 1D or 2D array, first dimention most be same as time_1 :param time_2: 1D array, same units as time_1 :param data_2: can be 1D or 2D array, first dimention most be same as time_2 :param window_: optional, if 0 (default) the values at time_1 and time_2 most match exactly, else, the match can be +- window_ :param forced_time_step: if not none, the median of the differential of the time_1_reference will be used :param forced_start_time: if not none, the returned series will start at this time stamp :param forced_stop_time: if not none, the returned series will stop at this time stamp :param cumulative_var_1: True is you want the variable to be accumulated instead of means, only of 1D data :param cumulative_var_2: True is you want the variable to be accumulated instead of means, only of 1D data :return: Index_averaged_1: 1D array, smallest coincident time, without time stamp gaps :return: Values_mean_1: same shape as data_1 both according to Index_averaged_1 times :return: Values_mean_2: same shape as data_2 both according to Index_averaged_1 times """ # define forced_time_step if forced_time_step is None: forced_time_step = np.median(np.diff(time_1_reference)) # find time period if forced_start_time is None: first_time_stamp = max(np.nanmin(time_1_reference), np.nanmin(time_2)) else: first_time_stamp = forced_start_time if forced_stop_time is None: last_time_stamp = min(np.nanmax(time_1_reference), np.nanmax(time_2)) else: last_time_stamp = forced_stop_time # do the averaging print('starting averaging of data 1') if cumulative_var_1: Index_averaged_1, Values_mean_1 = mean_discrete(time_1_reference, data_1, forced_time_step, first_time_stamp, last_index=last_time_stamp, cumulative_parameter_indx=0) else: Index_averaged_1, Values_mean_1 = mean_discrete(time_1_reference, data_1, forced_time_step, first_time_stamp, last_index=last_time_stamp) print('starting averaging of data 2') if cumulative_var_2: Index_averaged_2, Values_mean_2 = mean_discrete(time_2, data_2, forced_time_step, first_time_stamp, last_index=last_time_stamp, cumulative_parameter_indx=0) else: Index_averaged_2, Values_mean_2 = mean_discrete(time_2, data_2, forced_time_step, first_time_stamp, last_index=last_time_stamp) # check that averaged indexes are the same if np.nansum(np.abs(Index_averaged_1 - Index_averaged_2)) != 0: print('error during averaging of series, times do no match ????') return None, None, None # return the combined, trimmed data return Index_averaged_1, Values_mean_1, Values_mean_2 def split_str_chunks(s, n): """Produce `n`-character chunks from `s`.""" out_list = [] for start in range(0, len(s), n): out_list.append(s[start:start+n]) return out_list def coincidence_multi(array_list): # only coincidences parameters_list = array_list check_ = parameters_list[0] for param_ in parameters_list[1:]: check_ = check_ * param_ check_[check_ == check_] = 1 new_arr_list = [] for param_ in parameters_list: new_arr_list.append(param_ * check_) check_ = check_ * param_ # delete empty rows_ list_list = [] for param_ in parameters_list: t_list = [] for i in range(check_.shape[0]): if check_[i] == check_[i]: t_list.append(param_[i]) list_list.append(t_list) # concatenate ar_list = [] for ii in range(len(parameters_list)): ar_list.append(np.array(list_list[ii])) return ar_list def coincidence_zero(arr_1,arr_2): # only coincidences check_ = arr_1 * arr_2 # delete empty rows_ list_1 = [] list_2 = [] for i in range(check_.shape[0]): if check_[i] != 0: list_1.append(arr_1[i]) list_2.append(arr_2[i]) return np.array(list_1),np.array(list_2) def discriminate(X_, Y_, Z_, value_disc_list, discrmnt_invert_bin = False): if discrmnt_invert_bin: Z_mask = np.ones(Z_.shape[0]) Z_mask[Z_ > value_disc_list[0]] = np.nan Z_mask[Z_ >= value_disc_list[1]] = 1 Y_new = Y_ * Z_mask X_new = X_ * Z_mask else: Z_mask = np.ones(Z_.shape[0]) Z_mask[Z_ < value_disc_list[0]] = np.nan Z_mask[Z_ > value_disc_list[1]] = np.nan Y_new = Y_ * Z_mask X_new = X_ * Z_mask return X_new, Y_new def add_ratio_to_values(header_, values_, nominator_index, denominator_index, ratio_name, normalization_value=1.): nominator_data = values_[:,nominator_index] denominator_data = values_[:,denominator_index] ratio_ = normalization_value * nominator_data / denominator_data values_new = np.column_stack((values_,ratio_)) header_new = np.append(header_,ratio_name) return header_new, values_new def bin_data(x_val_org,y_val_org, start_bin_edge=0, bin_size=1, min_bin_population=1): # get coincidences only x_val,y_val = coincidence(x_val_org,y_val_org) # combine x and y in matrix M_ = np.column_stack((x_val,y_val)) # checking if always ascending to increase efficiency always_ascending = 1 for x in range(x_val.shape[0]-1): if x_val[x]==x_val[x] and x_val[x+1]==x_val[x+1]: if x_val[x+1] < x_val[x]: always_ascending = 0 if always_ascending == 0: M_sorted = M_[M_[:,0].argsort()] # sort by first column M_ = M_sorted # convert data to list of bins y_binned = [] x_binned = [] last_row = 0 last_row_temp = last_row while start_bin_edge <= np.nanmax(x_val): y_val_list = [] for row_ in range(last_row, M_.shape[0]): if start_bin_edge <= M_[row_, 0] < start_bin_edge + bin_size: if M_[row_, 1] == M_[row_, 1]: y_val_list.append(M_[row_, 1]) last_row_temp = row_ if M_[row_, 0] >= start_bin_edge + bin_size: last_row_temp = row_ break x_binned.append(start_bin_edge) if len(y_val_list) >= min_bin_population: y_binned.append(y_val_list) else: y_binned.append([]) start_bin_edge += bin_size last_row = last_row_temp # add series if bin_size >= 1: x_binned_int = np.array(x_binned, dtype=int) else: x_binned_int = x_binned return x_binned_int, y_binned def shiftedColorMap(cmap, midpoint=0.5, name='shiftedcmap'): cdict = { 'red': [], 'green': [], 'blue': [], 'alpha': [] } # regular index to compute the colors reg_index = np.linspace(0, 1, 257) # shifted index to match the data shift_index = np.hstack([ np.linspace(0.0, midpoint, 128, endpoint=False), np.linspace(midpoint, 1.0, 129, endpoint=True) ]) for ri, si in zip(reg_index, shift_index): r, g, b, a = cmap(ri) cdict['red'].append((si, r, r)) cdict['green'].append((si, g, g)) cdict['blue'].append((si, b, b)) cdict['alpha'].append((si, a, a)) newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict) plt.register_cmap(cmap=newcmap) return newcmap def student_t_test(arr_1, arr_2): return ttest_ind(arr_1, arr_2, nan_policy='omit') def k_means_clusters(array_, cluster_number, forced_centers=None): if forced_centers is None: centers_, x = kmeans(array_,cluster_number) data_id, x = vq(array_, centers_) return centers_, data_id else: data_id, x = vq(array_, forced_centers) return forced_centers, data_id def grid_(x, y, z, resX=100, resY=100): "Convert 3 column data to matplotlib grid" xi = np.linspace(min(x), max(x), resX) yi = np.linspace(min(y), max(y), resY) Z = matplotlib.mlab.griddata(x, y, z, xi, yi) X, Y = np.meshgrid(xi, yi) return X, Y, Z def find_max_index_2d_array(array_): return np.unravel_index(np.argmax(array_, axis=None), array_.shape) def find_min_index_2d_array(array_): return np.unravel_index(np.argmin(array_, axis=None), array_.shape) def find_max_index_1d_array(array_): return np.argmax(array_, axis=None) def find_min_index_1d_array(array_): return np.argmin(array_, axis=None) def time_series_interpolate_discrete(Index_, Values_, index_step, first_index, position_=0., last_index=None): """ this will average values from Values_ that are between Index_[n:n+avr_size) :param Index_: n by 1 numpy array to look for position, :param Values_: n by m numpy array, values to be averaged :param index_step: in same units as Index_ :param first_index: is the first discrete index on new arrays. :param position_: will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) :param last_index: in case you want to force the returned series to some fixed period/length :return: Index_averaged, Values_averaged """ # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: MM_ = np.column_stack((Index_,Values_)) MM_sorted = MM_[MM_[:,0].argsort()] # sort by first column Index_ = MM_sorted[:,0] Values_ = MM_sorted[:,1:] # error checking! if Index_.shape[0] != Values_.shape[0]: print('error during shape check! Index_.shape[0] != Values_.shape[0]') return None, None if Index_[-1] < first_index: print('error during shape check! Index_[-1] < first_index') return None, None # initialize output matrices if last_index is None: final_index = np.nanmax(Index_) else: final_index = last_index total_averaged_rows = int((final_index-first_index) / index_step) + 1 if len(Values_.shape) == 1: Values_mean = np.zeros(total_averaged_rows) Values_mean[:] = np.nan else: Values_mean = np.zeros((total_averaged_rows,Values_.shape[1])) Values_mean[:,:] = np.nan Index_interp = np.zeros(total_averaged_rows) for r_ in range(total_averaged_rows): Index_interp[r_] = first_index + (r_ * index_step) Index_interp -= (position_ * index_step) Values_interp = np.interp(Index_interp, Index_, Values_) Index_interp = Index_interp + (position_ * index_step) return Index_interp, Values_interp def array_2D_sort_ascending_by_column(array_, column_=0): array_sorted = array_[array_[:, column_].argsort()] return array_sorted def get_ax_range(ax): x_1 = ax.axis()[0] x_2 = ax.axis()[1] y_1 = ax.axis()[2] y_2 = ax.axis()[3] return x_1, x_2, y_1, y_2 def get_array_perimeter_only(array_): return np.concatenate([array_[0, :-1], array_[:-1, -1], array_[-1, ::-1], array_[-2:0:-1, 0]]) # WRF def wrf_var_search(wrf_nc_file, description_str): description_str_lower = description_str.lower() for var_ in sorted(wrf_nc_file.variables): try: if description_str_lower in wrf_nc_file.variables[var_].description.lower(): print(var_, '|', wrf_nc_file.variables[var_].description) except: pass def create_virtual_sonde_from_wrf(sonde_dict, filelist_wrf_output, wrf_filename_time_format = 'wrfout_d03_%Y-%m-%d_%H_%M_%S'): # create time array filelist_wrf_output_noPath = [] for filename_ in filelist_wrf_output: filelist_wrf_output_noPath.append(filename_.split('/')[-1]) wrf_time_file_list = np.array(time_str_to_seconds(filelist_wrf_output_noPath, wrf_filename_time_format)) # create lat and lon arrays wrf_domain_file = nc.Dataset(filelist_wrf_output[0]) # p(sorted(wrf_domain_file.variables)) # wrf_vars = sorted(wrf_domain_file.variables) # for i_ in range(len(wrf_vars)): # try: # print(wrf_vars[i_], '\t\t', wrf_domain_file.variables[wrf_vars[i_]].description) # except: # print(wrf_vars[i_]) wrf_lat = wrf_domain_file.variables['XLAT'][0, :, :].filled(np.nan) wrf_lon = wrf_domain_file.variables['XLONG'][0, :, :].filled(np.nan) wrf_lat_U = wrf_domain_file.variables['XLAT_U'][0, :, :].filled(np.nan) wrf_lon_U = wrf_domain_file.variables['XLONG_U'][0, :, :].filled(np.nan) wrf_lat_V = wrf_domain_file.variables['XLAT_V'][0, :, :].filled(np.nan) wrf_lon_V = wrf_domain_file.variables['XLONG_V'][0, :, :].filled(np.nan) wrf_domain_file.close() # load sonde's profile sonde_hght = sonde_dict['hght'] # m ASL sonde_pres = sonde_dict['pres'] # hPa sonde_time = sonde_dict['time'] # seconds since epoc sonde_lati = sonde_dict['lati'] # degrees sonde_long = sonde_dict['long'] # degrees # create output lists of virtual sonde list_p__ = [] list_hgh = [] list_th_ = [] list_th0 = [] list_qv_ = [] list_U__ = [] list_V__ = [] list_tim = [] list_lat = [] list_lon = [] wrf_point_abs_address_old = 0 # loop thru real sonde's points for t_ in range(sonde_hght.shape[0]): p_progress_bar(t_, sonde_hght.shape[0]) point_hght = sonde_hght[t_] point_pres = sonde_pres[t_] point_time = sonde_time[t_] point_lati = sonde_lati[t_] point_long = sonde_long[t_] # find closest cell via lat, lon index_tuple = find_index_from_lat_lon_2D_arrays(wrf_lat,wrf_lon, point_lati,point_long) index_tuple_U = find_index_from_lat_lon_2D_arrays(wrf_lat_U,wrf_lon_U, point_lati,point_long) index_tuple_V = find_index_from_lat_lon_2D_arrays(wrf_lat_V,wrf_lon_V, point_lati,point_long) # find closest file via time file_index = time_to_row_sec(wrf_time_file_list, point_time) # open wrf file wrf_domain_file = nc.Dataset(filelist_wrf_output[file_index]) # get pressure array from wrf wrf_press = (wrf_domain_file.variables['PB'][0, :, index_tuple[0], index_tuple[1]].data + wrf_domain_file.variables['P'][0, :, index_tuple[0], index_tuple[1]].data) / 100 # hPa # find closest model layer via pressure layer_index = find_min_index_1d_array(np.abs(wrf_press - point_pres)) # define point absolute address and check if it is a new point wrf_point_abs_address_new = (index_tuple[0], index_tuple[1], file_index, layer_index) if wrf_point_abs_address_new != wrf_point_abs_address_old: wrf_point_abs_address_old = wrf_point_abs_address_new # get wrf data index_tuple_full = (0, layer_index, index_tuple[0], index_tuple[1]) index_tuple_full_U = (0, layer_index, index_tuple_U[0], index_tuple_U[1]) index_tuple_full_V = (0, layer_index, index_tuple_V[0], index_tuple_V[1]) # save to arrays list_p__.append(float(wrf_press[layer_index])) list_hgh.append(float(point_hght)) list_th_.append(float(wrf_domain_file.variables['T'][index_tuple_full])) list_th0.append(float(wrf_domain_file.variables['T00'][0])) list_qv_.append(float(wrf_domain_file.variables['QVAPOR'][index_tuple_full])) list_U__.append(float(wrf_domain_file.variables['U'][index_tuple_full_U])) list_V__.append(float(wrf_domain_file.variables['V'][index_tuple_full_V])) list_tim.append(float(wrf_time_file_list[file_index])) list_lat.append(float(wrf_lat[index_tuple[0], index_tuple[1]])) list_lon.append(float(wrf_lon[index_tuple[0], index_tuple[1]])) wrf_domain_file.close() # convert lists to arrays array_p__ = np.array(list_p__) array_hgh = np.array(list_hgh) array_th_ = np.array(list_th_) array_th0 = np.array(list_th0) array_qv_ = np.array(list_qv_) array_U__ = np.array(list_U__) array_V__ = np.array(list_V__) array_tim = np.array(list_tim) array_lat = np.array(list_lat) array_lon = np.array(list_lon) # calculate derivative variables wrf_temp_K = calculate_temperature_from_potential_temperature(array_th_ + array_th0, array_p__) wrf_temp_C = kelvin_to_celsius(wrf_temp_K) wrf_e = MixR2VaporPress(array_qv_, array_p__*100) wrf_td_C = DewPoint(wrf_e) wrf_td_C[wrf_td_C > wrf_temp_C] = wrf_temp_C[wrf_td_C > wrf_temp_C] wrf_RH = calculate_RH_from_QV_T_P(array_qv_, wrf_temp_K, array_p__*100) wrf_WD, wrf_WS = cart_to_polar(array_V__, array_U__) wrf_WD_met = wrf_WD + 180 wrf_WD_met[wrf_WD_met >= 360] = wrf_WD_met[wrf_WD_met >= 360] - 360 wrf_WS_knots = ws_ms_to_knots(wrf_WS) # create virtual sonde dict wrf_sonde_dict = {} wrf_sonde_dict['hght'] = array_hgh wrf_sonde_dict['pres'] = array_p__ wrf_sonde_dict['temp'] = wrf_temp_C wrf_sonde_dict['dwpt'] = wrf_td_C wrf_sonde_dict['sknt'] = wrf_WS_knots wrf_sonde_dict['drct'] = wrf_WD_met wrf_sonde_dict['relh'] = wrf_RH wrf_sonde_dict['time'] = array_tim wrf_sonde_dict['lati'] = array_lat wrf_sonde_dict['long'] = array_lon return wrf_sonde_dict def wrf_get_temp_K(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_press = (wrf_domain_file.variables['PB'][0, :, :, :].data + wrf_domain_file.variables['P'][0, :, :, :].data) / 100 # hPa wrf_theta = (wrf_domain_file.variables['T'][0, :, :, :].data + wrf_domain_file.variables['T00'][0].data) # K wrf_temp_K = calculate_temperature_from_potential_temperature(wrf_theta, wrf_press) if original_arg_type_str: wrf_domain_file.close() return wrf_temp_K def wrf_get_press_hPa(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_press = (wrf_domain_file.variables['PB'][0, :, :, :].data + wrf_domain_file.variables['P'][0, :, :, :].data) / 100 # hPa if original_arg_type_str: wrf_domain_file.close() return wrf_press def wrf_get_height_m(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_height = (wrf_domain_file.variables['PH'][0,:-1,:,:].data + wrf_domain_file.variables['PHB'][0,:-1,:,:].data) / gravity_ if original_arg_type_str: wrf_domain_file.close() return wrf_height def wrf_get_terrain_height_m(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_height = (wrf_domain_file.variables['PH'][0,0,:,:].data + wrf_domain_file.variables['PHB'][0,0,:,:].data) / gravity_ if original_arg_type_str: wrf_domain_file.close() return wrf_height def wrf_get_water_vapor_mixing_ratio(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_QVAPOR = wrf_domain_file.variables['QVAPOR'][0,:,:,:].data if original_arg_type_str: wrf_domain_file.close() return wrf_QVAPOR def wrf_get_cloud_water_mixing_ratio(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_QCLOUD = wrf_domain_file.variables['QCLOUD'][0,:,:,:].data if original_arg_type_str: wrf_domain_file.close() return wrf_QCLOUD def wrf_get_ice_mixing_ratio(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_QICE = wrf_domain_file.variables['QICE'][0,:,:,:].data if original_arg_type_str: wrf_domain_file.close() return wrf_QICE def wrf_get_lat_lon(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_lat = wrf_domain_file.variables['XLAT'][0, :, :].filled(np.nan) wrf_lon = wrf_domain_file.variables['XLONG'][0, :, :].filled(np.nan) if original_arg_type_str: wrf_domain_file.close() return wrf_lat, wrf_lon def wrf_rename_files_fix_time_format(filename_original_list, original_character=':', replacement_character='_'): for i_, filename_ in enumerate(filename_original_list): p_progress_bar(i_, len(filename_original_list)) new_filename = filename_.replace(original_character,replacement_character) os.rename(filename_, new_filename) # meteorology def calculate_saturation_vapor_pressure_wexler(T_array_K): # result in mb (hPa) G0 = -0.29912729E+4 G1 = -0.60170128E+4 G2 = 0.1887643854E+2 G3 = -0.28354721E-1 G4 = 0.17838301E-4 G5 = -0.84150417E-9 G6 = 0.44412543E-12 G7 = 0.2858487E+1 e_s = np.exp((G0 * (T_array_K ** -2)) + (G1 * (T_array_K ** -1)) + G2 + (G3 * T_array_K) + (G4 * (T_array_K ** 2)) + (G5 * (T_array_K ** 3)) + (G6 * (T_array_K ** 4)) + (G7 * np.log(T_array_K))) return e_s * 0.01 def calculate_saturation_mixing_ratio(P_array_mb, T_array_K): e_s = calculate_saturation_vapor_pressure_wexler(T_array_K) q_s = 621.97 * (e_s / (P_array_mb - e_s)) return q_s def calculate_potential_temperature(T_array_K, P_array_hPa): potential_temp = T_array_K * ((1000 / P_array_hPa) ** poisson_) return potential_temp def calculate_equivalent_potential_temperature(T_array_K, P_array_hPa, R_array_kg_over_kg): P_o = 1000 T_e = T_array_K + (latent_heat_v * R_array_kg_over_kg / heat_capacity__Cp) theta_e = T_e * ((P_o/P_array_hPa)**poisson_) return theta_e def calculate_temperature_from_potential_temperature(theta_array_K, P_array_hPa): temperature_ = theta_array_K * ( (P_array_hPa/1000) ** poisson_ ) return temperature_ def calculate_mountain_height_from_sonde(sonde_dict): """ calculates H_hat from given values of u_array, v_array, T_array, effective_height, rh_array, q_array, p_array """ # Set initial conditions height = 1000 # metres # define arrays WS_array = ws_knots_to_ms(sonde_dict['SKNT']) U_array, V_array = polar_to_cart(sonde_dict['DRCT'], WS_array) T_array = celsius_to_kelvin(sonde_dict['TEMP']) RH_array = sonde_dict['RELH'] P_array = sonde_dict['PRES'] Z_array = sonde_dict['HGHT'] Q_array = sonde_dict['MIXR']/1000 TH_array = sonde_dict['THTA'] # calculated arrays q_s = calculate_saturation_mixing_ratio(P_array, T_array) e_ = gas_const_dry / gas_const_water # gradients d_ln_TH = np.gradient(np.log(TH_array)) d_z = np.gradient(Z_array) d_q_s = np.gradient(q_s) # Dry Brunt - Vaisala N_dry = gravity_ * d_ln_TH / d_z N_dry[RH_array >= 90] = 0 # Moist Brunt - Vaisala term_1_1 = 1 + ( latent_heat_v * q_s / (gas_const_dry * T_array) ) term_1_2 = 1 + ( e_ * (latent_heat_v**2) * q_s / (heat_capacity__Cp * gas_const_dry * (T_array**2) ) ) term_2_1 = d_ln_TH / d_z term_2_2 = latent_heat_v / (heat_capacity__Cp * T_array) term_2_3 = d_q_s / d_z term_3 = d_q_s / d_z # should be d_q_w but sonde data has no cloud water data N_moist = gravity_ * ( (term_1_1 / term_1_2) * (term_2_1 + ( term_2_2 * term_2_3) ) - term_3 ) N_moist[RH_array < 90] = 0 # define output array N_2 = (N_dry + N_moist)**2 H_hat_2 = N_2 * (height**2) / (U_array**2) return H_hat_2 def calculate_mountain_height_from_era5(era5_pressures_filename, era5_surface_filename, point_lat, point_lon, return_arrays=False, u_wind_mode='u', range_line_degrees=None, time_start_str_YYYYmmDDHHMM='',time_stop_str_YYYYmmDDHHMM='', reference_height=1000, return_debug_arrays=False): """ calculates H_hat from given values of u_array, v_array, T_array, effective_height, rh_array, q_array, p_array u_wind_mode: can be u, wind_speed, normal_to_range. If normal_to_range, then range_line most not be none if range_line_degrees is not None, u_wind_mode will automatically be set to normal_to_range range_line_degrees: degress (decimals) from north, clockwise, of the mountain range line. """ # load files era5_sur = nc.Dataset(era5_surface_filename, 'r') era5_pre = nc.Dataset(era5_pressures_filename, 'r') # check if times are the same for both files dif_sum = np.sum(np.abs(era5_pre.variables['time'][:] - era5_sur.variables['time'][:])) if dif_sum > 0: print('Error, times in selected files are not the same') return # check if lat lon are the same for both files dif_sum = np.sum(np.abs(era5_pre.variables['latitude'][:] - era5_sur.variables['latitude'][:])) dif_sum = dif_sum + np.sum(np.abs(era5_pre.variables['longitude'][:] - era5_sur.variables['longitude'][:])) if dif_sum > 0: print('Error, latitude or longitude in selected files are not the same') return # find lat lon index lat_index, lon_index = find_index_from_lat_lon(era5_sur.variables['latitude'][:], era5_sur.variables['longitude'][:], [point_lat], [point_lon]) lat_index = lat_index[0] lon_index = lon_index[0] # copy arrays time_array = time_era5_to_seconds(np.array(era5_sur.variables['time'][:])) r_1 = 0 r_2 = -1 if time_start_str_YYYYmmDDHHMM != '': r_1 = time_to_row_str(time_array, time_start_str_YYYYmmDDHHMM) if time_stop_str_YYYYmmDDHHMM != '': r_2 = time_to_row_str(time_array, time_stop_str_YYYYmmDDHHMM) time_array = time_array[r_1:r_2] sp_array = np.array(era5_sur.variables['sp'][r_1:r_2, lat_index, lon_index]) / 100 # hPa P_array = np.array(era5_pre.variables['level'][:]) # hPa if range_line_degrees is not None: WD_, WS_ = cart_to_polar(np.array(era5_pre.variables['v'][r_1:r_2,:,lat_index,lon_index]).flatten(), np.array(era5_pre.variables['u'][r_1:r_2,:,lat_index,lon_index]).flatten()) WD_delta = WD_ - range_line_degrees range_normal_component = WS_ * np.sin(np.deg2rad(WD_delta)) U_array = range_normal_component.reshape((sp_array.shape[0], P_array.shape[0])) else: if u_wind_mode == 'u': U_array = np.array(era5_pre.variables['u'][r_1:r_2,:,lat_index,lon_index]) else: U_array = np.sqrt(np.array(era5_pre.variables['v'][r_1:r_2,:,lat_index,lon_index]) ** 2 + np.array(era5_pre.variables['u'][r_1:r_2,:,lat_index,lon_index]) ** 2) T_array = np.array(era5_pre.variables['t'][r_1:r_2, :, lat_index, lon_index]) Q_L_array = np.array(era5_pre.variables['crwc'][r_1:r_2, :, lat_index, lon_index]) RH_array = np.array(era5_pre.variables['r'][r_1:r_2, :, lat_index, lon_index]) Z_array = np.array(era5_pre.variables['z'][r_1:r_2, :, lat_index, lon_index]) / gravity_ # calculate arrays TH_array = np.zeros((time_array.shape[0], P_array.shape[0]), dtype=float) for t_ in range(time_array.shape[0]): TH_array[t_,:] = calculate_potential_temperature(T_array[t_,:], P_array[:]) # calculated arrays q_s = calculate_saturation_mixing_ratio(P_array, T_array) e_ = gas_const_dry / gas_const_water # create output dict H_hat_2 = {} # loop tru time stamps for t_ in range(time_array.shape[0]): p_progress_bar(t_,time_array.shape[0]) # find surface pressure at this time stamp surface_p = sp_array[t_] # find pressure at 1000 meters pressure_1000m = np.interp(reference_height, Z_array[t_, :], P_array) pressure_1000m_index = np.argmin(np.abs(P_array - pressure_1000m)) # find extrapolations ql_0 = np.interp(np.log(surface_p), np.log(P_array), Q_L_array[t_, :]) z__0 = np.interp(np.log(surface_p), np.log(P_array), Z_array[t_, :]) th_0 = np.interp(np.log(surface_p), np.log(P_array), TH_array[t_, :]) qs_0 = np.interp(np.log(surface_p), np.log(P_array), q_s[t_, :]) t__1000 = np.interp(reference_height, Z_array[t_, :], T_array[t_, :]) u__1000 = np.interp(reference_height, Z_array[t_, :], U_array[t_, :]) ql_1000 = np.interp(reference_height, Z_array[t_, :], Q_L_array[t_, :]) z__1000 = reference_height th_1000 = np.interp(reference_height, Z_array[t_, :], TH_array[t_, :]) qs_1000 = np.interp(reference_height, Z_array[t_, :], q_s[t_, :]) # gradients d_ln_TH = np.log(th_1000) - np.log(th_0) d_z = z__1000 - z__0 d_q_s = qs_1000 - qs_0 d_q_w = (d_q_s) + (ql_1000 - ql_0) # Brunt - Vaisala if np.max(RH_array[t_, pressure_1000m_index:])>= 90: # Moist term_1_1 = 1 + ( latent_heat_v * qs_1000 / (gas_const_dry * t__1000) ) term_1_2 = 1 + ( e_ * (latent_heat_v**2) * qs_1000 / (heat_capacity__Cp * gas_const_dry * (t__1000**2) ) ) term_2_1 = d_ln_TH / d_z term_2_2 = latent_heat_v / (heat_capacity__Cp * t__1000) term_2_3 = d_q_s / d_z term_3 = d_q_w / d_z N_2 = gravity_ * ( (term_1_1 / term_1_2) * (term_2_1 + ( term_2_2 * term_2_3) ) - term_3 ) else: # Dry N_2 = gravity_ * d_ln_TH / d_z # populate each time stamp H_hat_2[time_array[t_]] = N_2 * (reference_height ** 2) / (u__1000 ** 2) era5_sur.close() era5_pre.close() if return_arrays: H_hat_2_time = sorted(H_hat_2.keys()) H_hat_2_time = np.array(H_hat_2_time) H_hat_2_vals = np.zeros(H_hat_2_time.shape[0], dtype=float) for r_ in range(H_hat_2_time.shape[0]): H_hat_2_vals[r_] = H_hat_2[H_hat_2_time[r_]] if return_debug_arrays: return H_hat_2_time, H_hat_2_vals, N_2, u__1000 ** 2 else: return H_hat_2_time, H_hat_2_vals else: return H_hat_2 def calculate_mountain_height_from_WRF(filename_SP, filename_PR, filename_UU, filename_VV, filename_TH, filename_QR, filename_QV, filename_PH, return_arrays=False, u_wind_mode='u', range_line_degrees=None, reference_height=1000): """ calculates H_hat from WRF point output text files u_wind_mode: can be u, wind_speed, normal_to_range. If normal_to_range, then range_line most not be none if range_line_degrees is not None, u_wind_mode will automatically be set to normal_to_range range_line_degrees: degress (decimals) from north, clockwise, of the mountain range line. :param filename_SP: fullpath filename of surface pressure file :param filename_PR: fullpath filename of pressure file :param filename_UU: fullpath filename of u wind file :param filename_VV: fullpath filename of v wind file :param filename_TH: fullpath filename of potential temperature file :param filename_QR: fullpath filename of rain water mixing ratio file :param filename_QV: fullpath filename of Water vapor mixing ratio file :param filename_PH: fullpath filename of geopotential height file :param return_arrays: if true, will return also brunt vaisalla and wind component squared :param u_wind_mode: can be u, wind_speed, normal_to_range. If normal_to_range, then range_line most not be none :param range_line_degrees: if not None, u_wind_mode will automatically be set to normal_to_range :param reference_height: mean height of mountain range :return: H_hat_2 """ # load arrays from text SP_array = genfromtxt(filename_SP, dtype=float, skip_header=1)[:,9] / 100 # hPa PR_array = genfromtxt(filename_PR, dtype=float, skip_header=1)[:,1:] / 100 # hPa UU_array = genfromtxt(filename_UU, dtype=float, skip_header=1)[:,1:] VV_array = genfromtxt(filename_VV, dtype=float, skip_header=1)[:,1:] TH_array = genfromtxt(filename_TH, dtype=float, skip_header=1)[:,1:] QR_array = genfromtxt(filename_QR, dtype=float, skip_header=1)[:,1:] QV_array = genfromtxt(filename_QV, dtype=float, skip_header=1)[:,1:] Z_array = genfromtxt(filename_PH, dtype=float, skip_header=1)[:,1:] # already in meters # calculate arrays if range_line_degrees is not None: WD_, WS_ = cart_to_polar(UU_array.flatten(), VV_array.flatten()) WD_delta = WD_ - range_line_degrees range_normal_component = WS_ * np.sin(np.deg2rad(WD_delta)) U_array = range_normal_component.reshape((UU_array.shape[0], UU_array.shape[1])) else: if u_wind_mode == 'u': U_array = UU_array else: U_array = np.sqrt(UU_array ** 2 + VV_array ** 2) T_array = calculate_temperature_from_potential_temperature(TH_array, PR_array) RH_array = calculate_RH_from_QV_T_P(QV_array, T_array, PR_array*100) q_s = calculate_saturation_mixing_ratio(PR_array, T_array) e_ = gas_const_dry / gas_const_water # create output array H_hat_2 = np.zeros(PR_array.shape[0], dtype=float) # loop tru time stamps for r_ in range(PR_array.shape[0]): p_progress_bar(r_, PR_array.shape[0]) # find surface pressure at this time stamp surface_p = SP_array[r_] # find pressure at 1000 meters pressure_1000m = np.interp(reference_height, Z_array[r_, :], PR_array[r_, :]) pressure_1000m_index = np.argmin(np.abs(PR_array[r_, :] - pressure_1000m)) # find extrapolations ql_0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), QR_array[r_, :]) z__0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), Z_array[r_, :]) th_0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), TH_array[r_, :]) qs_0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), q_s[r_, :]) t__1000 = np.interp(reference_height, Z_array[r_, :], T_array[r_, :]) u__1000 = np.interp(reference_height, Z_array[r_, :], U_array[r_, :]) ql_1000 = np.interp(reference_height, Z_array[r_, :], QR_array[r_, :]) z__1000 = reference_height th_1000 = np.interp(reference_height, Z_array[r_, :], TH_array[r_, :]) qs_1000 = np.interp(reference_height, Z_array[r_, :], q_s[r_, :]) # gradients d_ln_TH = np.log(th_1000) - np.log(th_0) d_z = z__1000 - z__0 d_q_s = qs_1000 - qs_0 d_q_w = (d_q_s) + (ql_1000 - ql_0) # Brunt - Vaisala if np.max(RH_array[r_, pressure_1000m_index:])>= 90: # Moist term_1_1 = 1 + ( latent_heat_v * qs_1000 / (gas_const_dry * t__1000) ) term_1_2 = 1 + ( e_ * (latent_heat_v**2) * qs_1000 / (heat_capacity__Cp * gas_const_dry * (t__1000**2) ) ) term_2_1 = d_ln_TH / d_z term_2_2 = latent_heat_v / (heat_capacity__Cp * t__1000) term_2_3 = d_q_s / d_z term_3 = d_q_w / d_z N_2 = gravity_ * ( (term_1_1 / term_1_2) * (term_2_1 + ( term_2_2 * term_2_3) ) - term_3 ) else: # Dry N_2 = gravity_ * d_ln_TH / d_z # populate each time stamp H_hat_2[r_] = N_2 * (reference_height ** 2) / (u__1000 ** 2) if return_arrays: return H_hat_2, N_2, u__1000 ** 2 else: return H_hat_2 def calculate_dewpoint_from_T_RH(T_, RH_): """ from Magnus formula, using Bolton's constants :param T_: ambient temperature [Celsius] :param RH_: relative humidity :return: Td_ dew point temperature [celsius] """ a = 6.112 b = 17.67 c = 243.5 y_ = np.log(RH_/100) + ((b*T_)/(c+T_)) Td_ = (c * y_) / (b - y_) return Td_ def calculate_RH_from_QV_T_P(arr_qvapor, arr_temp_K, arr_press_Pa): tv_ = 6.11 * e_constant**((2500000/461) * ((1/273) - (1/arr_temp_K))) pv_ = arr_qvapor * (arr_press_Pa/100) / (arr_qvapor + 0.622) return np.array(100 * pv_ / tv_) def calculate_profile_input_for_cluster_analysis_from_ERA5(p_profile, t_profile, td_profile, q_profile, u_profile, v_profile, h_profile, surface_p): """ takes data from ERA5 for only one time stamp for all pressure levels from 250 to 1000 hPa :param p_profile: in hPa :param t_profile: in Celsius :param td_profile: in Celsius :param q_profile: in kg/kg :param u_profile: in m/s :param v_profile: in m/s :param h_profile: in m :param surface_p: in hPa :return: surface_p, qv_, qu_, tw_, sh_, tt_ """ # trim profiles from surface to top # find which levels should be included levels_total = 0 for i_ in range(p_profile.shape[0]): if p_profile[i_] > surface_p: break levels_total += 1 ####################################### find extrapolations surface_t = np.interp(np.log(surface_p), np.log(p_profile), t_profile) surface_td = np.interp(np.log(surface_p), np.log(p_profile), td_profile) surface_q = np.interp(np.log(surface_p), np.log(p_profile), q_profile) surface_u = np.interp(np.log(surface_p), np.log(p_profile), u_profile) surface_v = np.interp(np.log(surface_p), np.log(p_profile), v_profile) surface_h = np.interp(np.log(surface_p), np.log(p_profile), h_profile) # create temp arrays T_array = np.zeros(levels_total + 1, dtype=float) Td_array = np.zeros(levels_total + 1, dtype=float) Q_array = np.zeros(levels_total + 1, dtype=float) U_array = np.zeros(levels_total + 1, dtype=float) V_array = np.zeros(levels_total + 1, dtype=float) H_array = np.zeros(levels_total + 1, dtype=float) P_array = np.zeros(levels_total + 1, dtype=float) T_array[:levels_total] = t_profile[:levels_total] Td_array[:levels_total] = td_profile[:levels_total] Q_array[:levels_total] = q_profile[:levels_total] U_array[:levels_total] = u_profile[:levels_total] V_array[:levels_total] = v_profile[:levels_total] H_array[:levels_total] = h_profile[:levels_total] P_array[:levels_total] = p_profile[:levels_total] T_array[-1] = surface_t Td_array[-1] = surface_td Q_array[-1] = surface_q U_array[-1] = surface_u V_array[-1] = surface_v H_array[-1] = surface_h P_array[-1] = surface_p ###################################### r_850 = np.argmin(np.abs(P_array - 850)) r_500 = np.argmin(np.abs(P_array - 500)) dp_ = np.abs(np.gradient(P_array)) tt_ = (T_array[r_850] - (2 * T_array[r_500]) + Td_array[r_850]) qu_ = np.sum(Q_array * U_array * dp_) / gravity_ qv_ = np.sum(Q_array * V_array * dp_) / gravity_ tw_ = np.sum(Q_array * dp_) / gravity_ del_u = U_array[r_850] - U_array[r_500] del_v = V_array[r_850] - V_array[r_500] del_z = H_array[r_850] - H_array[r_500] sh_ = ((del_u / del_z) ** 2 + (del_v / del_z) ** 2) ** 0.5 return surface_p, qv_, qu_, tw_, sh_, tt_ def barometric_equation(presb_pa, tempb_k, deltah_m, Gamma=-0.0065): """The barometric equation models the change in pressure with height in the atmosphere. INPUTS: presb_k (pa): The base pressure tempb_k (K): The base temperature deltah_m (m): The height differential between the base height and the desired height Gamma [=-0.0065]: The atmospheric lapse rate OUTPUTS pres (pa): Pressure at the requested level REFERENCE: http://en.wikipedia.org/wiki/Barometric_formula """ return presb_pa * \ (tempb_k/(tempb_k+Gamma*deltah_m))**(grav*m_a/(Rstar_a*Gamma)) def barometric_equation_inv(heightb_m, tempb_k, presb_pa, prest_pa, Gamma=-0.0065): """The barometric equation models the change in pressure with height in the atmosphere. This function returns altitude given initial pressure and base altitude, and pressure change. INPUTS: heightb_m (m): presb_pa (pa): The base pressure tempb_k (K) : The base temperature deltap_pa (m): The pressure differential between the base height and the desired height Gamma [=-0.0065]: The atmospheric lapse rate OUTPUTS heightt_m REFERENCE: http://en.wikipedia.org/wiki/Barometric_formula """ return heightb_m + \ tempb_k * ((presb_pa/prest_pa)**(Rstar_a*Gamma/(grav*m_a))-1) / Gamma def Theta(tempk, pres, pref=100000.): """Potential Temperature INPUTS: tempk (K) pres (Pa) pref: Reference pressure (default 100000 Pa) OUTPUTS: Theta (K) Source: Wikipedia Prints a warning if a pressure value below 2000 Pa input, to ensure that the units were input correctly. """ try: minpres = min(pres) except TypeError: minpres = pres if minpres < 2000: print("WARNING: P<2000 Pa; did you input a value in hPa?") return tempk * (pref/pres)**(Rs_da/Cp_da) def TempK(theta, pres, pref=100000.): """Inverts Theta function.""" try: minpres = min(pres) except TypeError: minpres = pres if minpres < 2000: print("WARNING: P<2000 Pa; did you input a value in hPa?") return theta * (pres/pref)**(Rs_da/Cp_da) def ThetaE(tempk, pres, e): """Calculate Equivalent Potential Temperature for lowest model level (or surface) INPUTS: tempk: Temperature [K] pres: Pressure [Pa] e: Water vapour partial pressure [Pa] OUTPUTS: theta_e: equivalent potential temperature References: Eq. (9.40) from Holton (2004) Eq. (22) from Bolton (1980) <NAME> and <NAME> (2013), 'Land-Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations', J. Climate """ # tempc tempc = tempk - degCtoK # Calculate theta theta = Theta(tempk, pres) # T_lcl formula needs RH es = VaporPressure(tempc) RH = 100. * e / es # theta_e needs q (water vapour mixing ratio) qv = MixRatio(e, pres) # Calculate the temp at the Lifting Condensation Level T_lcl = ((tempk-55)*2840 / (2840-(np.log(RH/100)*(tempk-55)))) + 55 # print "T_lcl :%.3f"%T_lcl # DEBUG STUFF #### theta_l = tempk * \ (100000./(pres-e))**(Rs_da/Cp_da)*(tempk/T_lcl)**(0.28*qv) # print "theta_L: %.3f"%theta_l # Calculate ThetaE theta_e = theta_l * np.exp((Lv * qv) / (Cp_da * T_lcl)) return theta_e def ThetaE_Bolton(tempk, pres, e, pref=100000.): """Theta_E following Bolton (1980) INPUTS: tempk: Temperature [K] pres: Pressure [Pa] e: Water vapour partial pressure [Pa] See http://en.wikipedia.org/wiki/Equivalent_potential_temperature """ # Preliminary: T = tempk qv = MixRatio(e, pres) Td = DewPoint(e) + degCtoK kappa_d = Rs_da / Cp_da # Calculate TL (temp [K] at LCL): TL = 56 + ((Td-56.)**-1+(np.log(T/Td)/800.))**(-1) # print "TL: %.3f"%TL # Calculate Theta_L: thetaL = T * (pref/(pres-e))**kappa_d*(T/TL)**(0.28*qv) # print "theta_L: %.3f"%thetaL # put it all together to get ThetaE thetaE = thetaL * np.exp((3036./TL-0.78)*qv*(1+0.448*qv)) return thetaE def ThetaV(tempk, pres, e): """Virtual Potential Temperature INPUTS tempk (K) pres (Pa) e: Water vapour pressure (Pa) (Optional) OUTPUTS theta_v : Virtual potential temperature """ mixr = MixRatio(e, pres) theta = Theta(tempk, pres) return theta * (1+mixr/Epsilon) / (1+mixr) def GammaW(tempk, pres): """Function to calculate the moist adiabatic lapse rate (deg C/Pa) based on the environmental temperature and pressure. INPUTS: tempk (K) pres (Pa) RH (%) RETURNS: GammaW: The moist adiabatic lapse rate (Deg C/Pa) REFERENCE: http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate (Note that I multiply by 1/(grav*rho) to give MALR in deg/Pa) """ tempc = tempk-degCtoK es = VaporPressure(tempc) ws = MixRatio(es, pres) # tempv=VirtualTempFromMixR(tempk,ws) tempv = VirtualTemp(tempk, pres, es) latent = Latentc(tempc) Rho = pres / (Rs_da*tempv) # This is the previous implementation: # A=1.0+latent*ws/(Rs_da*tempk) # B=1.0+Epsilon*latent*latent*ws/(Cp_da*Rs_da*tempk*tempk) # Gamma=(A/B)/(Cp_da*Rho) # This is algebraically identical but a little clearer: A = -1. * (1.0+latent*ws/(Rs_da*tempk)) B = Rho * (Cp_da+Epsilon*latent*latent*ws/(Rs_da*tempk*tempk)) Gamma = A / B return Gamma def DensHumid(tempk, pres, e): """Density of moist air. This is a bit more explicit and less confusing than the method below. INPUTS: tempk: Temperature (K) pres: static pressure (Pa) mixr: mixing ratio (kg/kg) OUTPUTS: rho_air (kg/m^3) SOURCE: http://en.wikipedia.org/wiki/Density_of_air """ pres_da = pres - e rho_da = pres_da / (Rs_da * tempk) rho_wv = e/(Rs_v * tempk) return rho_da + rho_wv def Density(tempk, pres, mixr): """Density of moist air INPUTS: tempk: Temperature (K) pres: static pressure (Pa) mixr: mixing ratio (kg/kg) OUTPUTS: rho_air (kg/m^3) """ virtualT = VirtualTempFromMixR(tempk, mixr) return pres / (Rs_da * virtualT) def VirtualTemp(tempk, pres, e): """Virtual Temperature INPUTS: tempk: Temperature (K) e: vapour pressure (Pa) p: static pressure (Pa) OUTPUTS: tempv: Virtual temperature (K) SOURCE: hmmmm (Wikipedia).""" tempvk = tempk / (1-(e/pres)*(1-Epsilon)) return tempvk def VirtualTempFromMixR(tempk, mixr): """Virtual Temperature INPUTS: tempk: Temperature (K) mixr: Mixing Ratio (kg/kg) OUTPUTS: tempv: Virtual temperature (K) SOURCE: hmmmm (Wikipedia). This is an approximation based on a m """ return tempk * (1.0+0.6*mixr) def Latentc(tempc): """Latent heat of condensation (vapourisation) INPUTS: tempc (C) OUTPUTS: L_w (J/kg) SOURCE: http://en.wikipedia.org/wiki/Latent_heat#Latent_heat_for_condensation_of_water """ return 1000 * (2500.8 - 2.36*tempc + 0.0016*tempc**2 - 0.00006*tempc**3) def VaporPressure(tempc, phase="liquid"): """Water vapor pressure over liquid water or ice. INPUTS: tempc: (C) OR dwpt (C), if SATURATION vapour pressure is desired. phase: ['liquid'],'ice'. If 'liquid', do simple dew point. If 'ice', return saturation vapour pressure as follows: Tc>=0: es = es_liquid Tc <0: es = es_ice RETURNS: e_sat (Pa) SOURCE: http://cires.colorado.edu/~voemel/vp.html (#2: CIMO guide (WMO 2008), modified to return values in Pa) This formulation is chosen because of its appealing simplicity, but it performs very well with respect to the reference forms at temperatures above -40 C. At some point I'll implement Goff-Gratch (from the same resource). """ over_liquid = 6.112 * np.exp(17.67*tempc/(tempc+243.12))*100. over_ice = 6.112 * np.exp(22.46*tempc/(tempc+272.62))*100. # return where(tempc<0,over_ice,over_liquid) if phase == "liquid": # return 6.112*exp(17.67*tempc/(tempc+243.12))*100. return over_liquid elif phase == "ice": # return 6.112*exp(22.46*tempc/(tempc+272.62))*100. return np.where(tempc < 0, over_ice, over_liquid) else: raise NotImplementedError def SatVap(dwpt, phase="liquid"): """This function is deprecated, return ouput from VaporPres""" print("WARNING: This function is deprecated, please use VaporPressure()" + " instead, with dwpt as argument") return VaporPressure(dwpt, phase) def MixRatio(e, p): """Mixing ratio of water vapour INPUTS e (Pa) Water vapor pressure p (Pa) Ambient pressure RETURNS qv (kg kg^-1) Water vapor mixing ratio` """ return Epsilon * e / (p - e) def MixR2VaporPress(qv, p): """Return Vapor Pressure given Mixing Ratio and Pressure INPUTS qv (kg kg^-1) Water vapor mixing ratio` p (Pa) Ambient pressure RETURNS e (Pa) Water vapor pressure """ return qv * p / (Epsilon + qv) def DewPoint(e): """ Use Bolton's (1980, MWR, p1047) formulae to find tdew. INPUTS: e (Pa) Water Vapor Pressure OUTPUTS: Td (C) """ ln_ratio = np.log(e/611.2) Td = ((17.67-ln_ratio)*degCtoK+243.5*ln_ratio)/(17.67-ln_ratio) return Td - degCtoK def WetBulb(tempc, RH): """Stull (2011): Wet-Bulb Temperature from Relative Humidity and Air Temperature. INPUTS: tempc (C) RH (%) OUTPUTS: tempwb (C) """ Tw = tempc * np.arctan(0.151977*(RH+8.313659)**0.5) + \ np.arctan(tempc+RH) - np.arctan(RH-1.676331) + \ 0.00391838*RH**1.5*np.arctan(0.023101*RH) - \ 4.686035 return Tw # unit conversions def convert_unit_and_save_data_ppb_ugm3(filename_, station_name): # https://uk-air.defra.gov.uk/assets/documents/reports/cat06/0502160851_Conversion_Factors_Between_ppb_and.pdf # http://www2.dmu.dk/AtmosphericEnvironment/Expost/database/docs/PPM_conversion.pdf parameters_unit_scaling = {'11' : 1.96, # O3 '10' : 1.25, # NO '9' : 1.88, # NO2 '16' : 2.62, # SO2 '8' : 1.15} # CO new_unit_name = '[$\mu$g/m$^3$]' parameter_name_mod = {'9' : 'NO$_2$', '11' : 'O$_3$', '12' : 'PM$_1$$_0$', '13' : 'PM$_2$$_.$$_5$', '7' : 'CO$_2$', '16' : 'SO$_2$', } # station_name = 'QF_01' data_array = open_csv_file(filename_) current_header = data_array[0,:] new_header = np.array(current_header) v_current = np.array(data_array[1:,:],dtype=float) v_new = np.array(v_current) for keys_ in parameters_unit_scaling.keys(): v_new[:, int(keys_)] = v_current[:, int(keys_)] * parameters_unit_scaling[str(keys_)] # add station name suffix for i_ in range(5,22): if str(i_) in parameter_name_mod.keys(): parameter_name = parameter_name_mod[str(i_)] else: parameter_name = current_header[i_].split('_')[0] if str(i_) in parameters_unit_scaling.keys(): parameter_unit = new_unit_name else: parameter_unit = current_header[i_].split('_')[1] new_header[i_] = station_name + '_' + parameter_name + '_' + parameter_unit data_array[1:,:] = v_new data_array[0,:] = new_header filename_new = filename_.split('\\')[-1].split('.')[0] + '_unit_converted.csv' current_filename_without_path = filename_.split('\\')[-1] current_filename_path = filename_[:-len(current_filename_without_path)] numpy_save_txt(current_filename_path + filename_new, data_array) print('done!') def save_data_with_unit_conversion_ppb_ugm3(file_list_path): file_list = sorted(glob.glob(str(file_list_path + '\\' + '*.csv'))) # https://uk-air.defra.gov.uk/assets/documents/reports/cat06/0502160851_Conversion_Factors_Between_ppb_and.pdf # http://www2.dmu.dk/AtmosphericEnvironment/Expost/database/docs/PPM_conversion.pdf parameters_unit_scaling = {'12' : 1.96, # O3 '13' : 1.25, # NO '14' : 1.88, # NO2 '15' : 2.62, # SO2 '16' : 1.15} # CO parameters_new_names = ['YYYY', # 0 'MM', # 1 'DD', # 2 'HH', # 3 'mm', # 4 'Day of the week', # 5 'WD degrees', # 6 'WS m/s', # 7 'Temp Celsius', # 8 'RH %', # 9 'SR W/m2', # 10 'ATP mbar', # 11 'O3 ug/m3', # 12 'NO ug/m3', # 13 'NO2 ug/m3', # 14 'SO2 ug/m3', # 15 'CO mg/m3', # 16 'CO2 ppm', # 17 'PM10 ug/m3', # 18 'PM2.5 ug/m3', # 19 'THC ppm', # 20 'Rain mm', # 21 'Ox ppb', # 22 'NOx ppb'] # 23 for month_ in range(1,13): print(month_) filename_old = file_list[month_ -1] data_array = open_csv_file(file_list[month_ -1]) v_ppb = np.array(data_array[1:,:],dtype=float) v_ug_m3 = np.array(v_ppb) for keys_ in parameters_unit_scaling.keys(): v_ug_m3[:, int(keys_)] = v_ppb[:, int(keys_)] * parameters_unit_scaling[str(keys_)] data_array[0, :] = parameters_new_names data_array[1:,:] = v_ug_m3 filename_new = filename_old.split('\\')[-1].split('.')[0] + '_ugm3.csv' numpy_save_txt(file_list_path + '\\' + filename_new, data_array) print('done!') def RH_to_abs_conc(arr_RH,arr_T): a_ = 1-(373.15/arr_T) c_1 = 13.3185 c_2 = -1.97 c_3 = -.6445 c_4 = -.1299 Po_H2O = 1013.25 * e_constant ** ((c_1 * (a_**1)) + (c_2 * (a_**2)) + (c_3 * (a_**3)) + (c_4 * (a_**4)) ) # mbar return (arr_RH * Po_H2O) / (100 * boltzmann_ * arr_T) def Mixing_Ratio_to_molecules_per_cm3(arr_MR, ATP_mbar, Temp_C): arr_temp = Temp_C + 273.15 # kelvin arr_Molec_per_cm3 = arr_MR * ( ATP_mbar / ( boltzmann_ * arr_temp ) ) # molecules / cm3 return arr_Molec_per_cm3 def molecules_per_cm3_to_Mixing_Ratio(arr_Molec_per_cm3, ATP_mbar, Temp_C): arr_temp = Temp_C + 273.15 # kelvin arr_MR = (arr_Molec_per_cm3 * boltzmann_ * arr_temp) / ATP_mbar return arr_MR def ws_knots_to_ms(arr_): return arr_ * .514444 def ws_ms_to_knots(arr_): return arr_ / .514444 def kelvin_to_celsius(arr_temp_k): return arr_temp_k - 273.15 def celsius_to_kelvin(arr_temp_c): return arr_temp_c + 273.15 # geo reference def find_index_from_lat_lon(series_lat, series_lon, point_lat_list, point_lon_list): lat_index_list = [] lon_index_list = [] # mask arrays lat_m = series_lat lon_m = series_lon if np.sum(lat_m) != np.sum(lat_m) or np.sum(lon_m) != np.sum(lon_m): lat_m = np.ma.masked_where(np.isnan(lat_m), lat_m) lat_m = np.ma.masked_where(np.isinf(lat_m), lat_m) lon_m = np.ma.masked_where(np.isnan(lon_m), lon_m) lon_m = np.ma.masked_where(np.isinf(lon_m), lon_m) if type(point_lat_list) == tuple or type(point_lat_list) == list: for lat_ in point_lat_list: lat_index_list.append(np.argmin(np.abs(lat_m - lat_))) for lon_ in point_lon_list: lon_index_list.append(np.argmin(np.abs(lon_m - lon_))) else: lat_index_list = np.argmin(np.abs(lat_m - point_lat_list)) lon_index_list = np.argmin(np.abs(lon_m - point_lon_list)) return lat_index_list, lon_index_list def find_index_from_lat_lon_2D_arrays(lat_arr, lon_arr, point_lat, point_lon): lat_del_arr = lat_arr - point_lat lon_del_arr = lon_arr - point_lon dist_arr = ( lat_del_arr**2 + lon_del_arr**2 )**0.5 return find_min_index_2d_array(dist_arr) def find_index_from_lat_lon_1D_arrays(lat_arr, lon_arr, point_lat, point_lon): lat_del_arr = lat_arr - point_lat lon_del_arr = lon_arr - point_lon dist_arr = ( lat_del_arr**2 + lon_del_arr**2 )**0.5 return find_min_index_1d_array(dist_arr) def distance_array_lat_lon_2D_arrays_degrees(lat_arr, lon_arr, point_lat, point_lon): lat_del_arr = lat_arr - point_lat lon_del_arr = lon_arr - point_lon return ( lat_del_arr**2 + lon_del_arr**2 )**0.5 def meter_per_degrees(lat_point): lat_mean_rad = np.deg2rad(np.abs(lat_point)) m_per_deg_lat = 111132.954 - 559.822 * np.cos(2 * lat_mean_rad) + 1.175 * np.cos(4 * lat_mean_rad) m_per_deg_lon = 111132.954 * np.cos(lat_mean_rad) return np.abs(m_per_deg_lat), np.abs(m_per_deg_lon) def degrees_per_meter(lat_point): m_per_deg_lat, m_per_deg_lon = meter_per_degrees(lat_point) return 1/m_per_deg_lat, 1/m_per_deg_lon def distance_array_lat_lon_2D_arrays_degress_to_meters(lat_arr, lon_arr, point_lat, point_lon): m_per_deg_lat, m_per_deg_lon = meter_per_degrees(np.nanmean(lat_arr)) lat_del_arr_m = (lat_arr - point_lat) * m_per_deg_lat lon_del_arr_m = (lon_arr - point_lon) * m_per_deg_lon return ( lat_del_arr_m**2 + lon_del_arr_m**2 )**0.5 def distance_between_to_points_in_meters(point_1_latlon, point_2_latlon): latMid = (point_1_latlon[0] + point_2_latlon[0]) / 2 m_per_deg_lat, m_per_deg_lon = meter_per_degrees(latMid) del_lat = (point_1_latlon[0] - point_2_latlon[0]) * m_per_deg_lat del_lon = (point_1_latlon[1] - point_2_latlon[1]) * m_per_deg_lon return ((del_lat**2) + (del_lon**2))**0.5 # Data Loading def numpy_load_txt(filename_, delimiter_=",", format_=float, skip_head=0): return genfromtxt(filename_, delimiter=delimiter_, dtype=format_, skip_header=skip_head) def open_csv_file(filename_, delimiter=',', skip_head=0, dtype='<U32'): # load data return np.array(genfromtxt(filename_, delimiter=delimiter, dtype=dtype, skip_header=skip_head)) def load_time_columns(filename_): ## user defined variables day_column_number = 2 month_column_number = 1 year_column_number = 0 hour_column_number = 3 minute_column_number = 4 time_header = 'Time' #defining time header data_array = open_csv_file(filename_) # define arrays values_str = data_array[1:,5:] values_ = np.zeros((values_str.shape[0],values_str.shape[1]),dtype=float) for r_ in range(values_.shape[0]): for c_ in range(values_.shape[1]): try: values_[r_,c_] = float(values_str[r_,c_]) except: values_[r_,c_] = np.nan header_ = data_array[0 ,1:] # defining time arrays time_days = np.zeros(data_array.shape[0] - 1, dtype=float) time_month = np.zeros(data_array.shape[0] - 1, dtype=int) time_weekday = np.zeros(data_array.shape[0] - 1, dtype=int) time_hour = np.zeros(data_array.shape[0] - 1) for r_ in range(data_array.shape[0] - 1): time_days[r_] = mdates.date2num(datetime.datetime( int(float(data_array[r_+1,year_column_number])), int(float(data_array[r_+1,month_column_number])), int(float(data_array[r_+1,day_column_number])), int(float(data_array[r_+1,hour_column_number])), int(float(data_array[r_+1,minute_column_number])))) time_month[r_] = int(float(data_array[r_+1,month_column_number])) time_weekday[r_] = datetime.datetime.weekday(mdates.num2date(time_days[r_])) time_hour[r_] = float(data_array[r_+1,hour_column_number]) + (float(data_array[r_+1,minute_column_number]) / 60) # compile names header_[0] = time_header header_[1] = 'Month' header_[2] = 'Day of week' header_[3] = 'Hour of day' # compile values values_ = np.column_stack((time_days, time_month, time_weekday, time_hour, values_)) return header_, values_ def load_object(filename): with open(filename, 'rb') as input_object: object_ = pickle.load(input_object) return object_ def read_one_line_from_text_file(filename_, line_number): file_ = open(filename_) for i, line in enumerate(file_): if i == line_number : line_str = line elif i > line_number: break file_.close() return line_str # data saving/output def save_time_variable_as_csv(output_filename, var_name, time_in_secs, var_values, time_format_output='%Y%m%d%H%M%S'): out_file = open(output_filename, 'w') # write header out_file.write(time_format_output) out_file.write(',') out_file.write(var_name) out_file.write('\n') for r_ in range(time_in_secs.shape[0]): p_progress_bar(r_, time_in_secs.shape[0]) out_file.write(time_seconds_to_str(time_in_secs[r_], time_format_output)) out_file.write(',' + str(var_values[r_])) out_file.write('\n') out_file.close() def numpy_save_txt(filename_, array_, delimiter_=",", format_='%s'): np.savetxt(filename_, array_, delimiter=delimiter_, fmt=format_) def save_array_to_disk(header_with_units, time_in_seconds, values_in_floats, filename): # if len(values_in_floats.shape) == 1: header_to_print = ['YYYY', 'MM', 'DD', 'HH', 'mm', header_with_units] else: header_to_print = ['YYYY', 'MM', 'DD', 'HH', 'mm'] for parameter_ in header_with_units: header_to_print.append(parameter_) # create values block T_ = time_seconds_to_5C_array(time_in_seconds) P_ = np.column_stack((T_, values_in_floats)) # change type to str P_str = np.array(P_, dtype='<U32') # join header with values P_final = np.row_stack((header_to_print, P_str)) # save to hard drive numpy_save_txt(filename, P_final) print('final data saved to: ' + filename) def save_HVF(header_, values_, filename): # check if all shapes match if len(header_) != values_.shape[1]: print('shape of header is not compatible with shape of values') return time_in_seconds = mdates.num2epoch(values_[:, 0]) header_with_units = header_[2:] values_in_floats = values_[:, 2:] header_to_print = ['YYYY', 'MM', 'DD', 'HH', 'mm'] for parameter_ in header_with_units: header_to_print.append(parameter_) # create values block T_ = np.zeros((time_in_seconds.shape[0], 5), dtype='<U32') for r_ in range(time_in_seconds.shape[0]): if time_in_seconds[r_] == time_in_seconds[r_]: T_[r_] = time.strftime("%Y,%m,%d,%H,%M", time.gmtime(time_in_seconds[r_])).split(',') P_ = np.column_stack((T_, values_in_floats)) # change type to str P_str = np.array(P_, dtype='<U32') # join header with values P_final = np.row_stack((header_to_print, P_str)) # save to hard drive numpy_save_txt(filename, P_final) print('final data saved to: ' + filename) def save_simple_array_to_disk(header_list, values_array, filename_): # change type to str values_str = np.array(values_array, dtype='<U32') # join header with values array_final = np.row_stack((header_list, values_str)) # save to hard drive numpy_save_txt(filename_, array_final) print('final data saved to: ' + filename_) def save_array_as_is(array_, filename_): np.savetxt(filename_, array_, delimiter=",", fmt='%s') def save_object(obj, filename): with open(filename, 'wb') as output: # Overwrites any existing file. pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL) # png data handeling def store_array_to_png(array_, filename_out): """ This function saves an array to a png file while keeping as much accuracy as possible with the lowest memory ussage :param array_: numpy array :param filename_out: string with full path :return: none """ # shape rows_ = array_.shape[0] columns_ = array_.shape[1] # nan layer array_nan = np.zeros((rows_, columns_), dtype='uint8') array_nan[array_ != array_] = 100 # replace nans array_[array_ != array_] = 0 # convert to all positive array_positive = np.abs(array_) # sign layer array_sign = np.zeros((rows_, columns_), dtype='uint8') array_sign[array_ >= 0] = 100 # zeros array array_zeros = np.zeros((rows_, columns_), dtype='uint8') array_zeros[array_positive != 0] = 1 # sub 1 array array_sub1 = np.zeros((rows_, columns_), dtype='uint8') array_sub1[array_positive<1] = 1 array_sub1 = array_sub1 * array_zeros # power array exp_ = np.array(np.log10(array_positive), dtype=int) exp_[array_zeros==0] = 0 # integral array array_integral = array_positive / 10 ** np.array(exp_, dtype=float) # array_layer_1 array_layer_1 = np.array(((array_sub1 * 9) + 1) * array_integral * 10, dtype='uint8') + array_sign # array_layer_2 array_layer_2 = np.array(((array_integral * ((array_sub1 * 9) + 1) * 10) - np.array(array_integral * ((array_sub1 * 9) + 1) * 10, dtype='uint8')) * 100, dtype='uint8') array_layer_2 = array_layer_2 + array_nan # power sign layer exp_ = exp_ - array_sub1 array_power_sign = np.zeros((rows_, columns_), dtype='uint8') array_power_sign[exp_ >= 0] = 100 # array_layer_3 array_layer_3 = np.abs(exp_) + array_power_sign # initialize out array out_array = np.zeros((rows_, columns_, 3), dtype='uint8') # dump into out array out_array[:, :, 0] = array_layer_1 out_array[:, :, 1] = array_layer_2 out_array[:, :, 2] = array_layer_3 img_arr = PIL_Image.fromarray(out_array) img_arr.save(filename_out) def read_png_to_array(filename_): """ This functions converts pngs files created by "store_array_to_png" back to numpy arrays :param filename_: string with full path name to png file created by store_array_to_png :return: numpy array """ # read image into array img_arr = np.array(PIL_Image.open(filename_)) # shape rows_ = img_arr.shape[0] columns_ = img_arr.shape[1] # nan array nan_array = np.zeros((rows_, columns_), dtype='uint8') nan_array[img_arr[:,:,1] >= 100] = 1 # power array power_array_magnitude = ((img_arr[:,:,2]/100) - np.array(img_arr[:,:,2]/100, dtype='uint8') ) * 100 sign_array = np.zeros((rows_, columns_)) - 1 sign_array[img_arr[:,:,2] >= 100] = 1 power_array = power_array_magnitude * sign_array # sign array sign_array = np.array(img_arr[:,:,0]/100, dtype=int) sign_array[sign_array == 0] = -1 # unit array unit_array = np.array(img_arr[:,:,0]/10, dtype='uint8') - (np.array(img_arr[:,:,0]/100, dtype='uint8') * 10) # decimal array decimal_array_1 = (img_arr[:,:,0]/10) - np.array(img_arr[:,:,0]/10, dtype='uint8') decimal_array_2 = ((img_arr[:,:,1]/100) - np.array(img_arr[:,:,1]/100, dtype='uint8') ) / 10 # compute out array out_array = (sign_array * (unit_array + decimal_array_1 + decimal_array_2)) * 10 ** power_array # flag nans out_array[nan_array==1]=np.nan return out_array # sattelite data load def load_OMI_NO2_monthly_data(filename_): # # [molec./cm-2] # filename_ = 'C:\\_input\\no2_201601.grd' # arr_NO2, lat_arr_NO2, lon_arr_NO2 = load_OMI_NO2_monthly_data(filename_) # [440: -820, 1650: 1960] data_array = genfromtxt(filename_, dtype=float, skip_header=7) file_object = open(filename_,mode='r') ncols = int(file_object.readline().split()[-1]) nrows = int(file_object.readline().split()[-1]) xllcorner = float(file_object.readline().split()[-1]) yllcorner = float(file_object.readline().split()[-1]) cellsize = float(file_object.readline().split()[-1]) nodata_value = float(file_object.readline().split()[-1]) # version = file_object.readline().split()[-1] file_object.close() lat_arr = np.zeros((nrows, ncols), dtype=float) lon_arr = np.zeros((nrows, ncols), dtype=float) lat_series = np.linspace(yllcorner + (cellsize * nrows), yllcorner, nrows) lon_series = np.linspace(xllcorner, xllcorner + (cellsize * ncols), ncols) for r_ in range(nrows): lon_arr[r_, :] = lon_series for c_ in range(ncols): lat_arr[:, c_] = lat_series data_array[data_array==nodata_value] = np.nan data_array = data_array * 1e13 return data_array[1:-1,:], lat_arr[1:-1,:], lon_arr[1:-1,:] def load_OMI_HCHO_monthly_data(filename_): # # [molec./cm-2] # filename_ = 'C:\\_input\\OMIH2CO_Grid_720x1440_201601.dat' # arr_HCHO, lat_arr_HCHO, lon_arr_HCHO = load_OMI_HCHO_monthly_data(filename_) # [220: -410, 825: 980] data_array = genfromtxt(filename_, dtype=float, skip_header=7) ncols = 1440 nrows = 720 xllcorner = -180 yllcorner = -90 cellsize = 0.25 lat_arr = np.zeros((nrows, ncols), dtype=float) lon_arr = np.zeros((nrows, ncols), dtype=float) lat_series = np.linspace(yllcorner + (cellsize * nrows), yllcorner, nrows) lon_series = np.linspace(xllcorner, xllcorner + (cellsize * ncols), ncols) for r_ in range(nrows): lon_arr[r_, :] = lon_series for c_ in range(ncols): lat_arr[:, c_] = lat_series data_array = data_array * 1e15 return data_array[1:-1,:], lat_arr[1:-1,:], lon_arr[1:-1,:] def download_HIM8_AUS_ch3_500m(YYYYmmddHHMM_str): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + \ '/' + \ YYYYmmddHHMM_str[4:6] + \ '/' + \ YYYYmmddHHMM_str[6:8] + \ '/' + \ YYYYmmddHHMM_str[8:12] + \ '/' + \ YYYYmmddHHMM_str + '00' \ '-P1S-ABOM_BRF_B03-PRJ_GEOS141_500-HIMAWARI8-AHI.nc' f_ = nc.Dataset(url_) r_1 = 13194 r_2 = 19491 c_1 = 4442 c_2 = 14076 return f_.variables['channel_0003_brf'][0, r_1:r_2, c_1:c_2] def download_HIM8_AUS_2000m(YYYYmmddHHMM_str, channel_number_str, print_=True): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + '/' + YYYYmmddHHMM_str[4:6] + '/' + YYYYmmddHHMM_str[6:8] + \ '/' + YYYYmmddHHMM_str[8:12] + \ '/' + YYYYmmddHHMM_str + '00' + \ '-P1S-ABOM_OBS_' \ 'B' + channel_number_str + \ '-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' if print_: print('downloading HIM_8', YYYYmmddHHMM_str, channel_number_str) f_ = nc.Dataset(url_) r_1 = 3298 r_2 = 4873 c_1 = 1110 c_2 = 3519 variable_name = '' for var_key in f_.variables.keys(): if len(var_key.split('channel')) > 1: variable_name = var_key break return f_.variables[variable_name][0, r_1:r_2, c_1:c_2] def download_HIM8_2000m(YYYYmmddHHMM_str, channel_number_str): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + '/' + YYYYmmddHHMM_str[4:6] + '/' + YYYYmmddHHMM_str[6:8] + \ '/' + YYYYmmddHHMM_str[8:12] + \ '/' + YYYYmmddHHMM_str + '00' + \ '-P1S-ABOM_OBS_' \ 'B' + channel_number_str + \ '-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' f_ = nc.Dataset(url_) variable_name = '' for var_key in f_.variables.keys(): if len(var_key.split('channel')) > 1: variable_name = var_key break print('downloading variable:', variable_name) return f_.variables[variable_name][0, :,:] def download_HIM8_AUS_truecolor_2000m(YYYYmmddHHMM_str): H8_b = download_HIM8_AUS_2000m(YYYYmmddHHMM_str, '01') H8_g = download_HIM8_AUS_2000m(YYYYmmddHHMM_str, '02') H8_r = download_HIM8_AUS_2000m(YYYYmmddHHMM_str, '03') img_ = np.zeros((H8_b.shape[0], H8_b.shape[1], 3), dtype='uint8') img_[:, :, 0] = H8_r * 170 img_[:, :, 1] = H8_g * 170 img_[:, :, 2] = H8_b * 170 return img_ def download_HIM8_truecolor_2000m(YYYYmmddHHMM_str): H8_b = download_HIM8_2000m(YYYYmmddHHMM_str, '01') H8_g = download_HIM8_2000m(YYYYmmddHHMM_str, '02') H8_r = download_HIM8_2000m(YYYYmmddHHMM_str, '03') img_ = np.zeros((H8_b.shape[0], H8_b.shape[1], 3), dtype='uint8') img_[:, :, 0] = H8_r * 170 img_[:, :, 1] = H8_g * 170 img_[:, :, 2] = H8_b * 170 return img_ def download_lat_lon_arrays_HIM8_500(): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/ancillary/' \ '20150127000000-P1S-ABOM_GEOM_SENSOR-PRJ_GEOS141_500-HIMAWARI8-AHI.nc' lat_ = download_big_nc_array_in_parts(url_, 'lat') lon_ = download_big_nc_array_in_parts(url_, 'lon') lat_[lat_ > 360] = np.nan lon_[lon_ > 360] = np.nan return lat_, lon_ def download_lat_lon_arrays_HIM8_2000(): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/ancillary/' \ '20150127000000-P1S-ABOM_GEOM_SENSOR-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' lat_ = download_big_nc_array_in_parts(url_, 'lat') lon_ = download_big_nc_array_in_parts(url_, 'lon') lat_[lat_ > 360] = np.nan lon_[lon_ > 360] = np.nan return lat_, lon_ def download_big_nc_array_in_parts(url_, variable_name, parts_=4): f_ = nc.Dataset(url_) var_shape = f_.variables[variable_name].shape print('downloading variable', variable_name, 'with shape:', var_shape) if len(var_shape) == 0: print('ERROR! variable is not an array') return None elif len(var_shape) == 1: if var_shape[0] == 1: print('ERROR! variable is a scalar') return None else: rows_per_part = int(var_shape[0] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros(var_shape[0]) for part_ in range(parts_ - 1): output_array[int(part_*rows_per_part):int((part_+1)*rows_per_part)] =\ f_.variables[variable_name][int(part_*rows_per_part):int((part_+1)*rows_per_part)] output_array[int((parts_ -1)*rows_per_part):] = \ f_.variables[variable_name][int((parts_ -1)*rows_per_part):] return output_array elif len(var_shape) == 2: rows_per_part = int(var_shape[1] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros((var_shape[0],var_shape[1])) for part_ in range(parts_ - 1): output_array[:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part)] = \ f_.variables[variable_name][:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part)] output_array[:,int((parts_ - 1) * rows_per_part):] = \ f_.variables[variable_name][:,int((parts_ - 1) * rows_per_part):] return output_array elif len(var_shape) == 3: rows_per_part = int(var_shape[1] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros((var_shape[0],var_shape[1],var_shape[2])) for part_ in range(parts_ - 1): output_array[:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:] = \ f_.variables[variable_name][:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:] output_array[:,int((parts_ - 1) * rows_per_part):,:] = \ f_.variables[variable_name][:,int((parts_ - 1) * rows_per_part):,:] return output_array elif len(var_shape) == 4: rows_per_part = int(var_shape[1] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros((var_shape[0],var_shape[1],var_shape[2],var_shape[3])) for part_ in range(parts_ - 1): output_array[:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:,:] = \ f_.variables[variable_name][:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:,:] output_array[:,int((parts_ - 1) * rows_per_part):,:,:] = \ f_.variables[variable_name][:,int((parts_ - 1) * rows_per_part):,:,:] return output_array elif len(var_shape) > 4: print('ERROR! variable has more than 4 dimensions, not implemented for this many dimentions') return None def get_himawari8_2000m_NCI(YYYYmmddHHMM_str, channel_number, output_format='png', output_path='/g/k10/la6753/data/', row_start=0, row_stop=5500, col_start=0, col_stop=5500): """ gets array from himawari-8 netcdf files and extracts only the indicated channel at the indicated time. saves to output_path :param YYYYmmddHHMM_str: string with the time in four digits for year, two digits for months... :param channel_number: int or float with the number of the channel ('01'-'16') :param output_format: string with either 'png' or 'numpy'. If png the array will be saved used store_array_to_png, otherwise numpy.save will be used :param output_path: string with the path, or full filename to be used to save the file :param row_start: int with the row number to start the crop :param row_stop: int with the row number to stop the crop :param col_start: int with the coloumn number to start the crop :param col_stop: int with the coloumn number to stop the crop :return: None """ channel_number_str = str(int(channel_number)).zfill(2) filename_ = '/g/data/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + '/' + YYYYmmddHHMM_str[4:6] + '/' + YYYYmmddHHMM_str[6:8] + \ '/' + YYYYmmddHHMM_str[8:12] + \ '/' + YYYYmmddHHMM_str + '00' + \ '-P1S-ABOM_OBS_' \ 'B' + channel_number_str + \ '-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' if os.path.exists(filename_): f_ = nc.Dataset(filename_) variable_name = '' for var_key in f_.variables.keys(): if len(var_key.split('channel')) > 1: variable_name = var_key break array_ = f_.variables[variable_name][0, row_start:row_stop, col_start:col_stop] if output_path[-1] == '/' or output_path[-1] == '\\': if output_format == 'png': output_filename = output_path + 'him_2000m_ch' + channel_number_str + '_' + YYYYmmddHHMM_str + '.png' else: output_filename = output_path + 'him_2000m_ch' + channel_number_str + '_' + YYYYmmddHHMM_str + '.npy' else: output_filename = output_path if output_format == 'png': store_array_to_png(array_, output_filename) else: np.save(output_filename, array_) else: print('File not available for time stamp:', YYYYmmddHHMM_str) # ERA5 def create_virtual_sondes_from_ERA5(time_stamp_sec, lat_lon_tuple, era5_file_levels_ncFile, era5_file_surface_ncFile, max_time_delta_sec=21600, show_prints=True): close_level_file=False close_surface_file=False if type(era5_file_levels_ncFile) == str: era5_file_levels = nc.Dataset(era5_file_levels_ncFile) close_level_file = True else: era5_file_levels = era5_file_levels_ncFile if type(era5_file_surface_ncFile) == str: era5_file_surface = nc.Dataset(era5_file_surface_ncFile) close_surface_file = True else: era5_file_surface = era5_file_surface_ncFile time_era5_levels_sec = time_era5_to_seconds(era5_file_levels.variables['time'][:]) time_era5_surface_sec = time_era5_to_seconds(era5_file_surface.variables['time'][:]) r_era5_levels_1 = time_to_row_sec(time_era5_levels_sec, time_stamp_sec) r_era5_surface_1 = time_to_row_sec(time_era5_surface_sec, time_stamp_sec) if np.abs(time_era5_levels_sec[r_era5_levels_1] - time_stamp_sec) > max_time_delta_sec: if show_prints: print('error time gap is too large', ) return None # find row and column for the lat lon lat_index, lon_index = find_index_from_lat_lon(era5_file_levels.variables['latitude'][:].data, era5_file_levels.variables['longitude'][:].data, lat_lon_tuple[0], lat_lon_tuple[1]) if show_prints: print('creating input arrays') t_profile = kelvin_to_celsius(era5_file_levels.variables['t'][r_era5_levels_1, :, lat_index, lon_index].data) if show_prints: print('created t_array') td_profile = calculate_dewpoint_from_T_RH(t_profile, era5_file_levels.variables['r'][r_era5_levels_1, :, lat_index, lon_index].data) if show_prints: print('created Td_array') h_profile = era5_file_levels.variables['z'][r_era5_levels_1, :, lat_index, lon_index].data / gravity_ if show_prints: print('created z_array') u_profile = era5_file_levels.variables['u'][r_era5_levels_1, :, lat_index, lon_index].data if show_prints: print('created u_array') v_profile = era5_file_levels.variables['v'][r_era5_levels_1, :, lat_index, lon_index].data if show_prints: print('created v_array') p_profile = era5_file_levels.variables['level'][:].data # hPa if show_prints: print('created p_array') surface_p = era5_file_surface.variables['sp'][r_era5_surface_1, lat_index, lon_index] / 100 # / 100 to convert Pa to hPa if show_prints: print('created sp_array') # trim profiles from surface to top # find which levels should be included levels_total = 0 for i_ in range(p_profile.shape[0]): if p_profile[i_] > surface_p: break levels_total += 1 ####################################### find extrapolations surface_t = np.interp(np.log(surface_p), np.log(p_profile), t_profile) surface_td = np.interp(np.log(surface_p), np.log(p_profile), td_profile) surface_u = np.interp(np.log(surface_p), np.log(p_profile), u_profile) surface_v = np.interp(np.log(surface_p), np.log(p_profile), v_profile) surface_h = np.interp(np.log(surface_p), np.log(p_profile), h_profile) # create temp arrays T_array = np.zeros(levels_total + 1, dtype=float) Td_array = np.zeros(levels_total + 1, dtype=float) Q_array = np.zeros(levels_total + 1, dtype=float) U_array = np.zeros(levels_total + 1, dtype=float) V_array = np.zeros(levels_total + 1, dtype=float) H_array = np.zeros(levels_total + 1, dtype=float) P_array = np.zeros(levels_total + 1, dtype=float) T_array[:levels_total] = t_profile[:levels_total] Td_array[:levels_total] = td_profile[:levels_total] U_array[:levels_total] = u_profile[:levels_total] V_array[:levels_total] = v_profile[:levels_total] H_array[:levels_total] = h_profile[:levels_total] P_array[:levels_total] = p_profile[:levels_total] T_array[-1] = surface_t Td_array[-1] = surface_td U_array[-1] = surface_u V_array[-1] = surface_v H_array[-1] = surface_h P_array[-1] = surface_p if close_level_file: era5_file_levels.close() if close_surface_file: era5_file_surface.close() return P_array, H_array, T_array, Td_array, U_array, V_array def era5_get_surface_interpolated_vars(era5_file_levels_ncFile, era5_file_surface_ncFile, show_prints=True, time_start_str_YYYYmmDDHHMM=None, time_stop_str_YYYYmmDDHHMM=None): close_level_file=False close_surface_file=False if type(era5_file_levels_ncFile) == str: era5_file_levels = nc.Dataset(era5_file_levels_ncFile) close_level_file = True else: era5_file_levels = era5_file_levels_ncFile if type(era5_file_surface_ncFile) == str: era5_file_surface = nc.Dataset(era5_file_surface_ncFile) close_surface_file = True else: era5_file_surface = era5_file_surface_ncFile time_era5_levels_sec = time_era5_to_seconds(era5_file_levels.variables['time'][:]) # trim time r_1 = 0 r_2 = -1 if time_start_str_YYYYmmDDHHMM is not None: r_1 = time_to_row_str(time_era5_levels_sec, time_start_str_YYYYmmDDHHMM) if time_stop_str_YYYYmmDDHHMM is not None: r_2 = time_to_row_str(time_era5_levels_sec, time_stop_str_YYYYmmDDHHMM) time_era5_sec = time_era5_levels_sec[r_1:r_2] if show_prints: print('creating input arrays') t_profile = kelvin_to_celsius(era5_file_levels.variables['t'][r_1:r_2, 10:, :, :].data) if show_prints: print('created t_array') td_profile = calculate_dewpoint_from_T_RH(t_profile, era5_file_levels.variables['r'][r_1:r_2, 10:, :, :].data) if show_prints: print('created Td_array') h_profile = era5_file_levels.variables['z'][r_1:r_2, 10:, :, :].data / gravity_ if show_prints: print('created z_array') u_profile = era5_file_levels.variables['u'][r_1:r_2, 10:, :, :].data if show_prints: print('created u_array') v_profile = era5_file_levels.variables['v'][r_1:r_2, 10:, :, :].data if show_prints: print('created v_array') p_profile = era5_file_levels.variables['level'][10:].data # hPa if show_prints: print('created p_array') surface_p = era5_file_surface.variables['sp'][r_1:r_2, :, :] / 100 # / 100 to convert Pa to hPa if show_prints: print('created sp_array') q_profile = era5_file_levels.variables['q'][r_1:r_2, 10:, :, :].data if show_prints: print('created q_array') ####################################### find extrapolations surface_t = np.zeros((surface_p.shape), dtype=float) surface_td = np.zeros((surface_p.shape), dtype=float) surface_u = np.zeros((surface_p.shape), dtype=float) surface_v = np.zeros((surface_p.shape), dtype=float) surface_h = np.zeros((surface_p.shape), dtype=float) surface_q = np.zeros((surface_p.shape), dtype=float) if show_prints: print('starting interpolation of every point in time') for r_ in range(time_era5_sec.shape[0]): p_progress_bar(r_,time_era5_sec.shape[0]) for lat_ in range(surface_p.shape[1]): for lon_ in range(surface_p.shape[2]): surface_t [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), t_profile [r_,:,lat_,lon_]) surface_td[r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), td_profile[r_,:,lat_,lon_]) surface_u [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), u_profile [r_,:,lat_,lon_]) surface_v [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), v_profile [r_,:,lat_,lon_]) surface_h [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), h_profile [r_,:,lat_,lon_]) surface_q [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), q_profile [r_,:,lat_,lon_]) if close_level_file: era5_file_levels.close() if close_surface_file: era5_file_surface.close() return surface_t, surface_td, surface_u, surface_v, surface_h, surface_q, time_era5_sec # HYSPLIT def hysplit_load_freq_endpoints(filename_, number_of_hours): file_obj = open(filename_,'r') line_list = file_obj.readlines() file_obj.close() file_traj_list = [] traj_number = -1 for line_inx, line_str in enumerate(line_list): if line_str == ' 1 PRESSURE\n': traj_number += 1 for r_ in range(number_of_hours + 1): new_line_list = line_list[line_inx + r_ + 1].split() new_line_list.append(traj_number) file_traj_list.append(new_line_list) arr_ = np.zeros((len(file_traj_list),12), dtype=float) for r_ in range(len(file_traj_list)): for c_ in range(12): arr_[r_,c_] = file_traj_list[r_][c_ + 2] return arr_ def hysplit_load_freq_endpoints_all(file_list): file_traj_list = [] for filename_ in file_list: file_obj = open(filename_,'r') line_list = file_obj.readlines() file_obj.close() for line_inx, line_str in enumerate(line_list): if line_str == ' 1 PRESSURE\n': for r_ in range(25): file_traj_list.append(line_list[line_inx + r_ + 1].split()) arr_ = np.zeros((len(file_traj_list),11), dtype=float) for r_ in range(len(file_traj_list)): for c_ in range(11): arr_[r_,c_] = file_traj_list[r_][c_ + 2] return arr_ def calculate_mean_time(file_list, lat_tuple, lon_tuple): # file_list_irn = sorted(glob.glob(str('E:\\hysplit_IRN\\' + '*.txt'))) # file_list_uae = sorted(glob.glob(str('E:\\hysplit_UAE\\' + '*.txt'))) # lat_tuple = tuple((24.889974, 26.201930)) # lon_tuple = tuple((50.727086, 51.729315)) hit_counter_list = [] total_counter_list = [] # month_list_list = [] month_mean_time = [] month_std_time = [] month_probability_list = [] for filename_ in file_list: arr_ = hysplit_load_freq_endpoints(filename_, 24) hit_counter = 0 hit_age = [] total_number_of_trajs = int(np.max(arr_[:,-1])) for traj_ in range(total_number_of_trajs + 1): for r_ in range(arr_.shape[0]): if arr_[r_,-1] == traj_: if lat_tuple[0] < arr_[r_, 7] < lat_tuple[1] and lon_tuple[0] < arr_[r_, 8] < lon_tuple[1]: hit_counter += 1 hit_age.append(arr_[r_, 6]) break hit_counter_list.append(hit_counter) total_counter_list.append(total_number_of_trajs) month_probability_list.append(100*hit_counter/total_number_of_trajs) # month_list_list.append(hit_age) month_mean_time.append(np.mean(hit_age)) month_std_time.append(np.std(hit_age)) return month_probability_list, np.array(month_mean_time), hit_counter_list, total_counter_list, np.array(month_std_time) # BOM def Lidar_compile_and_convert_txt_to_dict(main_folder_path): # main_folder_path = 'D:\Data\LIDAR Data\\' # create the full file list filename_list = [] path_folders_list = next(os.walk(main_folder_path))[1] for sub_folder in path_folders_list: if sub_folder[0] == '2': path_sub_folders_list = next(os.walk(main_folder_path + sub_folder + '\\'))[1] for sub_sub_folder in path_sub_folders_list: path_sub_sub_sub = main_folder_path + sub_folder + '\\' + sub_sub_folder + '\\' ssss_filelist = sorted(glob.glob(str(path_sub_sub_sub + '*.*'))) for filename_min in ssss_filelist: filename_list.append(filename_min) total_files = len(filename_list) print(' number of files to compile:', str(total_files)) # get first file to get shape convertion_output = Lidar_convert_txt_to_array(filename_list[0]) range_shape = convertion_output[1].shape[0] # create arrays time_array = np.zeros(total_files) range_array = convertion_output[1][:,0] ch0_pr2 = np.zeros((total_files, range_shape), dtype=float) ch0_mrg = np.zeros((total_files, range_shape), dtype=float) ch1_pr2 = np.zeros((total_files, range_shape), dtype=float) ch1_mrg = np.zeros((total_files, range_shape), dtype=float) ch2_pr2 = np.zeros((total_files, range_shape), dtype=float) ch2_mrg = np.zeros((total_files, range_shape), dtype=float) print('arrays initialized') # populate arrays for i_, filename_ in enumerate(filename_list): p_progress(i_, total_files) convertion_output = Lidar_convert_txt_to_array(filename_) time_array[i_] = convertion_output[0] ch0_pr2[i_, :] = convertion_output[1][:,1] ch0_mrg[i_, :] = convertion_output[1][:,2] ch1_pr2[i_, :] = convertion_output[1][:,3] ch1_mrg[i_, :] = convertion_output[1][:,4] ch2_pr2[i_, :] = convertion_output[1][:,5] ch2_mrg[i_, :] = convertion_output[1][:,6] # move to dict output_dict = {} output_dict['time'] = time_array output_dict['range'] = range_array output_dict['ch0_pr2'] = ch0_pr2 output_dict['ch0_mrg'] = ch0_mrg output_dict['ch1_pr2'] = ch1_pr2 output_dict['ch1_mrg'] = ch1_mrg output_dict['ch2_pr2'] = ch2_pr2 output_dict['ch2_mrg'] = ch2_mrg return output_dict def Lidar_convert_txt_to_array(filename_): file_time_str = filename_[-25:-6] time_stamp_seconds = time_str_to_seconds(file_time_str, '%Y-%m-%d_%H-%M-%S') # read the data into an array data_array_raw = genfromtxt(filename_,dtype=float, delimiter='\t',skip_header=133) # only keep one altitude column data_array_out = np.zeros((data_array_raw.shape[0], 7), dtype=float) data_array_out[:,0] = data_array_raw[:,0] data_array_out[:,1] = data_array_raw[:,1] data_array_out[:,2] = data_array_raw[:,2] data_array_out[:,3] = data_array_raw[:,4] data_array_out[:,4] = data_array_raw[:,5] data_array_out[:,5] = data_array_raw[:,7] data_array_out[:,6] = data_array_raw[:,8] return time_stamp_seconds, data_array_out def compile_AWAP_precip_datafiles(file_list): # load first file to get shape print('loading file: ', file_list[0]) arr_1, start_date_sec_1 = load_AWAP_data(file_list[0]) rows_ = arr_1.shape[0] columns_ = arr_1.shape[1] # create lat and lon series series_lat = np.arange(-44.5, -9.95, 0.05)[::-1] series_lon = np.arange(112, 156.29, 0.05) # create time array output_array_time = np.zeros(len(file_list), dtype=float) # create output array output_array = np.zeros((len(file_list), rows_, columns_), dtype=float) # load first array data into output array output_array[0,:,:] = arr_1 output_array_time[0] = start_date_sec_1 # loop thru remainning files to populate ouput_array for t_, filename_ in enumerate(file_list[1:]): print('loading file: ', filename_) arr_t, start_date_sec_t = load_AWAP_data(filename_) output_array[t_+1, :, :] = arr_t output_array_time[t_+1] = start_date_sec_t return output_array, output_array_time, series_lat, series_lon def load_AWAP_data(filename_): start_date_str = filename_.split('\\')[-1][:8] # stop_date_str = filename_.split('\\')[-1][8:16] start_date_sec = time_str_to_seconds(start_date_str, '%Y%m%d') arr_precip = np.genfromtxt(filename_, float, skip_header=6, skip_footer=18) return arr_precip , start_date_sec def get_means_from_filelist(file_list, lat_lon_ar): # lat_lon_points_list = [ 147.8, # 149, # -36.8, # -35.4] # box domain indexes index_c = [716, 740] index_r = [508, 536] series_lat = np.arange(-44.5, -9.95, 0.05)[::-1] series_lon = np.arange(112,156.3,0.05) lat_index_list, lon_index_list = find_index_from_lat_lon(series_lat, series_lon, lat_lon_ar[:,1], lat_lon_ar[:,0]) time_secs_list = [] precip_array = np.zeros((277,9),dtype=float) for r_, filename_ in enumerate(file_list): print('loading file: ', filename_) arr_precip, start_date_sec = load_AWAP_data(filename_) time_secs_list.append(start_date_sec) precip_array[r_, 0] = start_date_sec precip_array[r_, 1] = np.mean(arr_precip[index_r[0]:index_r[1]+1, index_c[0]:index_c[1]+1]) for i_ in range(2,9): precip_array[r_, i_] = arr_precip[lat_index_list[i_-2],lon_index_list[i_-2]] save_array_to_disk(['box mean precip [mm]','1 precip [mm]','2 precip [mm]','3 precip [mm]', '4 precip [mm]','5 precip [mm]','6 precip [mm]','7 precip [mm]'], precip_array[:,0], precip_array[:,1:], 'C:\\_output\\test_fimi_2.csv') # save_HVF(['box','1','2','3','4','5','6','7'], precip_array, 'C:\\_output\\test_fimi_1.csv') print("done") return precip_array def compile_BASTA_days_and_save_figure(directory_where_nc_file_are): # compile BASTA data per day and save plot (per day) time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' # directory_where_nc_file_are = '/home/luis/Data/BASTA/L0/12m5/' path_input = directory_where_nc_file_are file_label = path_input.split('/')[-4] + '_' + path_input.split('/')[-3] + '_' + path_input.split('/')[-2] + '_' file_list_all = sorted(glob.glob(str(path_input + '/*.nc'))) first_day_str = file_list_all[0][-18:-10] last_day_str = file_list_all[-1][-18:-10] first_day_int = time_seconds_to_days(time_str_to_seconds(first_day_str,'%Y%m%d')) last_day_int = time_seconds_to_days(time_str_to_seconds(last_day_str,'%Y%m%d')) total_number_of_days = last_day_int - first_day_int print('The data in the folder encompasses', total_number_of_days, 'days') days_list_int = np.arange(first_day_int, last_day_int + 1) days_list_str = time_seconds_to_str(time_days_to_seconds(days_list_int),'%Y%m%d') for day_str in days_list_str: print('-|' * 20) file_list_day = sorted(glob.glob(str(path_input + file_label + day_str + '*.nc'))) print('Compiling day', day_str, len(file_list_day), 'files found for this day.') if len(file_list_day) > 0: filename_ = file_list_day[0] print('loading file:', filename_) netcdf_file_object = nc.Dataset(filename_, 'r') # variable_names = sorted(netcdf_file_object.variables.keys()) time_raw = netcdf_file_object.variables['time'][:].copy() file_first_time_stamp = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) compiled_time_days = time_seconds_to_days(np.array(time_raw, dtype=int) + file_first_time_stamp) compiled_raw_reflectivity_array = netcdf_file_object.variables['raw_reflectivity'][:].copy() compiled_range_array = netcdf_file_object.variables['range'][:].copy() netcdf_file_object.close() if len(file_list_day) > 1: for filename_ in file_list_day[1:]: print('loading file:', filename_) netcdf_file_object = nc.Dataset(filename_, 'r') time_raw = netcdf_file_object.variables['time'][:].copy() file_first_time_stamp = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) time_days = time_seconds_to_days(np.array(time_raw, dtype = int) + file_first_time_stamp) compiled_time_days = np.append(compiled_time_days, time_days) raw_reflectivity_array = netcdf_file_object.variables['raw_reflectivity'][:].copy() compiled_raw_reflectivity_array = np.vstack((compiled_raw_reflectivity_array, raw_reflectivity_array)) netcdf_file_object.close() figure_output_name = path_input + file_label + day_str + '.png' print('saving figure to:', figure_output_name) p_arr_vectorized_2(compiled_raw_reflectivity_array, compiled_time_days, compiled_range_array/1000, cmap_=default_cm, figsize_=(12, 8), vmin_=80, vmax_=140, cbar_label='Raw Reflectivity dB', x_header='UTC',y_header='Range AGL [km]', figure_filename=figure_output_name, time_format_ = '%H') def compile_BASTA_into_one_file(directory_where_nc_file_are): # compile BASTA data into one netcdf file time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' # directory_where_nc_file_are = '/home/luis/Data/BASTA/L0/12m5/' path_input = directory_where_nc_file_are file_list_all = sorted(glob.glob(str(path_input + '/*.nc'))) # first_day_str = file_list_all[0][-18:-10] # last_day_str = file_list_all[-1][-18:-10] # first_day_int = time_seconds_to_days(time_str_to_seconds(first_day_str,'%Y%m%d')) # last_day_int = time_seconds_to_days(time_str_to_seconds(last_day_str,'%Y%m%d')) # days_list_int = np.arange(first_day_int, last_day_int + 1) # create copy of first file netcdf_file_object = nc.Dataset(file_list_all[-1], 'r') last_second_raw = netcdf_file_object.variables['time'][:][-1] file_first_time_stamp = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) netcdf_file_object.close() last_second_epoc = last_second_raw + file_first_time_stamp last_time_str = time_seconds_to_str(last_second_epoc, '%Y%m%d_%H%M%S') output_filename = file_list_all[0][:-3] + '_' + last_time_str + '.nc' shutil.copyfile(file_list_all[0], output_filename) print('Created output file with name:', output_filename) # open output file for appending data netcdf_output_file_object = nc.Dataset(output_filename, 'a') file_first_time_stamp_seconds_epoc = time_str_to_seconds(netcdf_output_file_object.variables['time'].units, time_format_basta) variable_names = sorted(netcdf_output_file_object.variables.keys()) # create references to variables in output file variable_objects_dict = {} for var_name in variable_names: variable_objects_dict[var_name] = netcdf_output_file_object.variables[var_name] for filename_ in file_list_all[1:]: print('-' * 5) print('loading file:', filename_) # open file netcdf_file_object = nc.Dataset(filename_, 'r') # create file's time series file_time_stamp_seconds_epoc = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) time_raw = netcdf_file_object.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc row_start = variable_objects_dict['time'].shape[0] row_end = time_raw.shape[0] + row_start # append time array variable_objects_dict['time'][row_start:row_end] = time_seconds_epoc - file_first_time_stamp_seconds_epoc # append raw_reflectivity array variable_objects_dict['raw_reflectivity'][row_start:row_end] = \ netcdf_file_object.variables['raw_reflectivity'][:].copy() # append raw_velocity array variable_objects_dict['raw_velocity'][row_start:row_end] = \ netcdf_file_object.variables['raw_velocity'][:].copy() # append all other variables that only time dependent for var_name in variable_names: if var_name != 'time' and var_name != 'range' and \ var_name != 'raw_reflectivity' and var_name != 'raw_velocity': if len(netcdf_file_object.variables[var_name].shape) == 1: variable_objects_dict[var_name][row_start:row_end] = \ netcdf_file_object.variables[var_name][:].copy() netcdf_file_object.close() netcdf_output_file_object.close() print('done') def load_BASTA_data_from_netcdf_to_arrays(filename_): # load BASTA data from netcdf to arrays # path_input = '/home/luis/Data/BASTA/L0/' # filename_ = path_input + 'BASTA_L0_12m5_20180606_071716_20180806_025422.nc' time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' # open file netcdf_file_object = nc.Dataset(filename_, 'r') # load time as seconds and days file_time_stamp_seconds_epoc = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) time_raw = netcdf_file_object.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc time_days_epoc = time_seconds_to_days(time_seconds_epoc) # append range array array_range = netcdf_file_object.variables['range'][:].copy() # append raw_reflectivity array array_raw_reflectivity = netcdf_file_object.variables['raw_reflectivity']#[:].copy() # append raw_velocity array array_raw_velocity = netcdf_file_object.variables['raw_velocity']#[:].copy() # close file # netcdf_file_object.close() return array_raw_reflectivity, array_raw_velocity, array_range, time_seconds_epoc, time_days_epoc def BASTA_load_period_to_dict(start_time_YMDHM, stop_time_YMDHM, folder_path, variable_names=('time', 'range', 'raw_reflectivity', 'raw_velocity')): time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' out_dict = {} temp_dict = {} variables_with_time_dimension = [] if not 'time' in variable_names: variable_names_temp_list = ['time'] for variable_name in variable_names: variable_names_temp_list.append(variable_name) variable_names = variable_names_temp_list # data_folder data_folder = folder_path # get all data files filenames file_list = sorted(glob.glob(str(data_folder + '\\*.nc'))) file_times_tuple_list = [] file_times_tuple_list_str = [] for i_, filename_ in enumerate(file_list): file_time_str_start = filename_.split('_')[-2] + filename_.split('_')[-1].split('.')[0] file_time_sec_start = time_str_to_seconds(file_time_str_start, '%Y%m%d%H%M%S') if i_ < len(file_list) -1: file_time_str_stop = file_list[i_+1].split('_')[-2] + file_list[i_+1].split('_')[-1].split('.')[0] file_time_sec_stop = time_str_to_seconds(file_time_str_stop, '%Y%m%d%H%M%S') else: file_time_sec_stop = file_time_sec_start + (24*60*60) file_times_tuple_list.append(tuple((file_time_sec_start, file_time_sec_stop))) file_times_tuple_list_str.append(tuple((file_time_str_start, time_seconds_to_str(file_time_sec_stop, '%Y%m%d%H%M%S')))) # select only files inside time range event_start_sec = time_str_to_seconds(start_time_YMDHM, '%Y%m%d%H%M') event_stop_sec = time_str_to_seconds(stop_time_YMDHM, '%Y%m%d%H%M') selected_file_list = [] for file_index in range(len(file_list)): if event_start_sec <= file_times_tuple_list[file_index][0] <= event_stop_sec: selected_file_list.append(file_list[file_index]) elif event_start_sec <= file_times_tuple_list[file_index][1] <= event_stop_sec: selected_file_list.append(file_list[file_index]) elif file_times_tuple_list[file_index][0] <= event_start_sec <= file_times_tuple_list[file_index][1]: selected_file_list.append(file_list[file_index]) elif file_times_tuple_list[file_index][0] <= event_stop_sec <= file_times_tuple_list[file_index][1]: selected_file_list.append(file_list[file_index]) print('found files:') p_(selected_file_list) # load data if len(selected_file_list) == 0: print('No files inside time range!') return out_dict else: cnt = 0 for filename_ in selected_file_list: if cnt == 0: nc_file = nc.Dataset(filename_, 'r') print('reading file:',filename_) for variable_name in variable_names: if 'time' in nc_file.variables[variable_name].dimensions: variables_with_time_dimension.append(variable_name) if variable_name == 'time': file_time_stamp_seconds_epoc = time_str_to_seconds(nc_file.variables['time'].units, time_format_basta) time_raw = nc_file.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc temp_dict[variable_name] = time_seconds_epoc else: temp_dict[variable_name] = nc_file.variables[variable_name][:].filled(np.nan) nc_file.close() cnt += 1 else: nc_file = nc.Dataset(filename_, 'r') print('reading file:', filename_) for variable_name in variable_names: if 'time' in nc_file.variables[variable_name].dimensions: variables_with_time_dimension.append(variable_name) if len(nc_file.variables[variable_name].shape) == 1: if variable_name == 'time': file_time_stamp_seconds_epoc = time_str_to_seconds(nc_file.variables['time'].units, time_format_basta) time_raw = nc_file.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc temp_dict[variable_name] = np.hstack((temp_dict[variable_name], time_seconds_epoc)) else: temp_dict[variable_name] = np.hstack((temp_dict[variable_name], nc_file.variables[variable_name][:].filled(np.nan))) else: temp_dict[variable_name] = np.vstack((temp_dict[variable_name], nc_file.variables[variable_name][:].filled(np.nan))) nc_file.close() # find row for start and end of event start_row = np.argmin(np.abs(temp_dict['time'] - event_start_sec)) end_row = np.argmin(np.abs(temp_dict['time'] - event_stop_sec)) for variable_name in variable_names: if variable_name in variables_with_time_dimension: out_dict[variable_name] = temp_dict[variable_name][start_row:end_row] else: out_dict[variable_name] = temp_dict[variable_name] return out_dict def MRR_CFAD(range_array, Ze_array, bins_=(12, np.arange(-10, 40, 2)), normalize_height_wise = True, x_header='dBZe', y_header='Height [km]', custom_y_range_tuple=None, custom_x_range_tuple=None, figure_filename=None, cbar_label='', cmap_=default_cm, figsize_ = (10,6), title_str = '', contourF_=True, cbar_format='%.2f', vmin_=None,vmax_=None, grid_=True, fig_ax=None, show_cbar=True, level_threshold_perc=10, invert_y=False, levels=None,custom_ticks_x=None, custom_ticks_y=None, cbar_ax=None): if len(range_array.shape) == 1: temp_array = np.zeros((Ze_array.shape)) for r_ in range(Ze_array.shape[0]): temp_array[r_,:] = range_array range_array = temp_array if type(bins_[0]) == int: if bins_[0] < 1: bins_ = (int(range_array.shape[1] * bins_[0]), bins_[1]) hist_out = np.histogram2d(range_array.flatten()[~np.isnan(Ze_array.flatten())] / 1000, Ze_array.flatten()[~np.isnan(Ze_array.flatten())], normed=False, bins=bins_) hist_array, hist_r, hist_c = hist_out hist_r = (hist_r[:-1] + hist_r[1:]) * 0.5 hist_c = (hist_c[:-1] + hist_c[1:]) * 0.5 hist_r_2d = np.zeros((hist_array.shape), dtype=float) hist_c_2d = np.zeros((hist_array.shape), dtype=float) for r_ in range(hist_array.shape[0]): for c_ in range(hist_array.shape[1]): hist_r_2d[r_, c_] = hist_r[r_] hist_c_2d[r_, c_] = hist_c[c_] # normalize height wise if normalize_height_wise: heights_counts = np.sum(hist_array, axis=1) maximum_count_at_some_height = np.max(heights_counts) cbar_label_final = 'Height normalized frequency' for r_ in range(hist_array.shape[0]): if heights_counts[r_] < maximum_count_at_some_height * (level_threshold_perc/100): hist_array[r_, :] = np.nan else: hist_array[r_, :] = hist_array[r_, :] / heights_counts[r_] else: cbar_label_final = 'Normalized frequency' if cbar_label == '': cbar_label = cbar_label_final fig_ax = p_arr_vectorized_3(hist_array, hist_c_2d, hist_r_2d, contourF_=contourF_, grid_=grid_, custom_y_range_tuple=custom_y_range_tuple, custom_x_range_tuple=custom_x_range_tuple, x_header=x_header, y_header=y_header, cmap_=cmap_, figsize_=figsize_, cbar_ax=cbar_ax, cbar_label=cbar_label, title_str=title_str, vmin_=vmin_, vmax_=vmax_,levels=levels, figure_filename=figure_filename, fig_ax=fig_ax,show_cbar=show_cbar, invert_y=invert_y, custom_ticks_x=custom_ticks_x, custom_ticks_y=custom_ticks_y,cbar_format=cbar_format) return fig_ax, hist_array.T, hist_c[:-1], hist_r[:-1] # parsivel def create_DSD_plot(DSD_arr, time_parsivel_seconds, size_arr, events_period_str, figfilename='', output_data=False, x_range=(0, 7.5), y_range=(-1, 3.1), figsize_=(5, 5)): size_series = size_arr[0, :] event_row_start = time_to_row_str(time_parsivel_seconds, events_period_str.split('_')[0]) event_row_stop_ = time_to_row_str(time_parsivel_seconds, events_period_str.split('_')[1]) # normalize DSD_arr_over_D = DSD_arr / size_arr DSD_arr_over_D_by_D = np.sum(DSD_arr_over_D, axis=1) DSD_arr_over_D_by_D_no_zero = DSD_arr_over_D_by_D * 1 DSD_arr_over_D_by_D_no_zero[DSD_arr_over_D_by_D_no_zero == 0] = np.nan DSD_arr_over_D_by_D_log = np.log10(DSD_arr_over_D_by_D_no_zero) DSD_arr_over_D_by_D_log_event_1_bin = np.array(DSD_arr_over_D_by_D_log[event_row_start:event_row_stop_]) DSD_arr_over_D_by_D_log_event_1_bin[~np.isnan(DSD_arr_over_D_by_D_log_event_1_bin)] = 1 DSD_arr_over_D_by_D_log_event_1_bin_sum = np.nansum(DSD_arr_over_D_by_D_log_event_1_bin, axis=0) DSD_arr_over_D_by_D_log_event_1_meanbyD = np.nanmean(np.array( DSD_arr_over_D_by_D_log[event_row_start:event_row_stop_]), axis=0) DSD_arr_over_D_by_D_log_event_1_meanbyD[DSD_arr_over_D_by_D_log_event_1_bin_sum < 10] = np.nan fig, ax = plt.subplots(figsize=figsize_) ax.set_title('Mean value of drop concentrations in each diameter bin') ax.set_xlabel('D [mm]') ax.set_ylabel('log10 N(D) [m-3 mm-1]') ax.plot(size_series, DSD_arr_over_D_by_D_log_event_1_meanbyD, '-or', label='Event 1') ax.set_xlim(x_range) ax.set_ylim(y_range) ax.grid() if figfilename != '': fig.savefig(figfilename, transparent=True, bbox_inches='tight') plt.close(fig) if output_data: return size_series, DSD_arr_over_D_by_D_log_event_1_meanbyD def parsivel_nc_format_V2(input_filename, output_filename): """ Transform the not so good nc V1 version produced by save_parsivel_arrays_to_netcdf to V2 :param input_filename: output from save_parsivel_arrays_to_netcdf :param output_filename: a path and filename :return: """ # create file netcdf_output_file_object = nc.Dataset(output_filename, 'w') print('created new file') netcdf_first_file_object = nc.Dataset(input_filename) # create attributes netcdf_output_file_object.setncattr('author', '<NAME> (<EMAIL>') netcdf_output_file_object.setncattr('version', 'V2') netcdf_output_file_object.setncattr('created', time_seconds_to_str(time.time(), '%Y-%m-%d_%H:%M UTC')) print('added attributes') # create list for dimensions and variables dimension_names_list = sorted(netcdf_first_file_object.dimensions) variable_names_list = sorted(netcdf_first_file_object.variables) # create dimensions for dim_name in dimension_names_list: if dim_name == 'time': netcdf_output_file_object.createDimension('time', size=0) print('time', 'dimension created') else: netcdf_output_file_object.createDimension(dim_name, size=netcdf_first_file_object.dimensions[dim_name].size) print(dim_name, 'dimension created') # create variables # time var_name = 'time' netcdf_output_file_object.createVariable(var_name, 'int64', (var_name,), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'seconds since ' + time_seconds_to_str(0, time_format_mod)) time_parsivel_seconds = time_str_to_seconds(np.array(netcdf_first_file_object.variables[var_name][:], dtype=str), time_format_parsivel) netcdf_output_file_object.variables[var_name][:] = np.array(time_parsivel_seconds, dtype='int64') print('created time variable') # time_YmdHM var_name = 'YYYYmmddHHMM' netcdf_output_file_object.createVariable(var_name, 'str', ('time',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'YYYYmmddHHMM in string type') netcdf_output_file_object.variables[var_name][:] = np.array(netcdf_first_file_object.variables['time'][:], dtype=str) print('created time_YmdHM variable') # particle_fall_speed var_name = 'particles_spectrum' if var_name in variable_names_list: netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, netcdf_first_file_object.variables[var_name].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'particle counts per bin per minute') netcdf_output_file_object.variables[var_name].setncattr('description', 'for each time stamp, the array varies with respect' ' to fall speed on the y axis (rows) starting from the top' ' and varies with respect to size on the x axis (columns) ' 'starting from the left') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][:].copy() print('created particles_spectrum variable') # particle_fall_speed var_name = 'particle_fall_speed' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, ('particle_fall_speed',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'm/s') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][:, 0].copy() print('created particle_fall_speed variable') # particle_size var_name = 'particle_size' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, ('particle_size',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'mm') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][0, :].copy() print('created particle_size variable') # precipitation_intensity var_name = 'precipitation_intensity' netcdf_output_file_object.createVariable(var_name, 'float', netcdf_first_file_object.variables[ 'Intensity of precipitation (mm|h)'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'mm/h') netcdf_output_file_object.variables[var_name][:] = np.array( netcdf_first_file_object.variables['Intensity of precipitation (mm|h)'][:], dtype=float) print('created precipitation_intensity variable') # Weather_code_SYNOP_WaWa var_name = 'weather_code_SYNOP_WaWa' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables['Weather code SYNOP WaWa'].dtype, netcdf_first_file_object.variables['Weather code SYNOP WaWa'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'n/a') netcdf_output_file_object.variables[var_name][:] = \ netcdf_first_file_object.variables['Weather code SYNOP WaWa'][:].copy() # Weather_code_SYNOP_WaWa var_name = 'weather_code_METAR_SPECI' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables['Weather code METAR|SPECI'].dtype, netcdf_first_file_object.variables['Weather code METAR|SPECI'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'n/a') netcdf_output_file_object.variables[var_name][:] = \ netcdf_first_file_object.variables['Weather code METAR|SPECI'][:].copy() print('created weather_code_METAR_SPECI variable') # Weather_code_NWS var_name = 'weather_code_NWS' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables['Weather code NWS'].dtype, netcdf_first_file_object.variables['Weather code NWS'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'n/a') NWS_description = '''precip_type_dict = { 'C': 'No Precip', 'Kein Niederschlag': 'No Precip', 'A': 'Hail', 'L': 'Drizzle', 'L+': 'heavy Drizzle', 'L-': 'light Drizzle', 'R': 'Rain', 'R+': 'heavy Rain', 'R-': 'light Rain', 'RL': 'Drizzle and Rain', 'RL+': 'heavy Drizzle and Rain', 'RL-': 'light Drizzle and Rain', 'RLS': 'Rain, Drizzle and Snow', 'RLS+': 'heavy Rain, Drizzle and Snow', 'RLS-': 'light Rain, Drizzle and Snow', 'S': 'Snow', 'S+': 'heavy Snow', 'S-': 'light Snow', 'SG': 'Snow Grains', 'SP': 'Freezing Rain' }''' netcdf_output_file_object.variables[var_name].setncattr('description', NWS_description) netcdf_output_file_object.variables[var_name][:] = \ netcdf_first_file_object.variables['Weather code NWS'][:].copy() print('created weather_code_NWS variable') # Radar_reflectivity (dBz) var_name = 'radar_reflectivity' netcdf_output_file_object.createVariable(var_name, 'float', netcdf_first_file_object.variables['Radar reflectivity (dBz)'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'dBz') netcdf_output_file_object.variables[var_name][:] = np.array( netcdf_first_file_object.variables['Radar reflectivity (dBz)'][:], dtype=float) print('created radar_reflectivity variable') # particle_count var_name = 'particle_count' netcdf_output_file_object.createVariable(var_name, 'int64', netcdf_first_file_object.variables[ 'Number of detected particles'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'counts') netcdf_output_file_object.variables[var_name].setncattr('description', 'Number of detected particles per minute') netcdf_output_file_object.variables[var_name][:] = np.array( netcdf_first_file_object.variables['Number of detected particles'][:], dtype='int64') print('created particle_count variable') # particle_concentration_spectrum var_name = 'particle_concentration_spectrum' var_name_old = 'particle_concentration_spectrum_m-3' if var_name_old in variable_names_list: netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name_old].dtype, netcdf_first_file_object.variables[var_name_old].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '1/m3') netcdf_output_file_object.variables[var_name].setncattr('description', 'particles per meter cube per class') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name_old][:].copy() print('created particle_concentration_spectrum variable') # N_total var_name = 'N_total' var_name_old = 'particle_concentration_total_m-3' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name_old].dtype, netcdf_first_file_object.variables[var_name_old].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '1/m3') netcdf_output_file_object.variables[var_name].setncattr('description', 'total particles per meter cube') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name_old][:].copy() print('created N_total variable') # psd var_name = 'psd' var_name_old = 'particle_concentration_spectrum_m-3' netcdf_output_file_object.createVariable(var_name, 'float', ('time', 'particle_size',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '1/m3') netcdf_output_file_object.variables[var_name].setncattr('description', 'particle size distribution, same as ' 'particle_concentration_spectrum but all speeds' 'bins are summed, only varies with time and size') netcdf_output_file_object.variables[var_name][:] = np.sum(netcdf_first_file_object.variables[var_name_old][:], axis=1) print('created psd variable') # rain mask rain_only_list = ['R', 'R+', 'R-'] RR_ = np.array(netcdf_first_file_object.variables['Intensity of precipitation (mm|h)'][:], dtype=float) NWS_ = netcdf_first_file_object.variables['Weather code NWS'][:].copy() rain_mask = np.zeros(RR_.shape[0], dtype=int) + 1 for r_ in range(RR_.shape[0]): if RR_[r_] > 0 and NWS_[r_] in rain_only_list: rain_mask[r_] = 0 var_name = 'rain_mask' netcdf_output_file_object.createVariable(var_name, 'int', ('time',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '0 if rain, 1 if not rain') netcdf_output_file_object.variables[var_name].setncattr('description', 'using the NWS code, only used R, R+ and R-') netcdf_output_file_object.variables[var_name][:] = rain_mask print('rain_mask') # close all files netcdf_output_file_object.close() netcdf_first_file_object.close() def parsivel_sampling_volume(particle_size_2d, particle_fall_speed_2d): sampling_area = 0.18 * (0.03 - ((particle_size_2d/1000) / 2)) # m2 sampling_time = 60 # seconds sampling_height = particle_fall_speed_2d * sampling_time # meters sampling_volume_2d = sampling_area * sampling_height # m3 return sampling_volume_2d def load_parsivel_txt_to_array(filename_, delimiter_=';'): # filename_ = 'C:\\_input\\parsivel_2018-07-26-00_2018-08-02-00_1.txt' size_scale = [0.062,0.187,0.312,0.437,0.562,0.687,0.812,0.937,1.062,1.187,1.375,1.625,1.875, 2.125,2.375,2.75,3.25,3.75,4.25,4.75,5.5,6.5,7.5,8.5,9.5,11,13,15,17,19,21.5,24.5] speed_scale = [0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.1,1.3,1.5,1.7,1.9,2.2,2.6,3,3.4, 3.8,4.4,5.2,6,6.8,7.6,8.8,10.4,12,13.6,15.2,17.6,20.8] speed_array = np.zeros((32,32), dtype=float) size_array = np.zeros((32, 32), dtype=float) for i in range(32): speed_array[:,i] = speed_scale size_array[i, :] = size_scale # read parsivel file spectrum_array_list = [] data_array_list = [] with open(filename_) as file_object: header_ = file_object.readline().split(delimiter_) line_str = file_object.readline() line_split = np.array(line_str.split(delimiter_)) if len(line_split) == 17: line_split[16] = '0' data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32,32))) elif len(line_split) > 17: line_split[16] = '0' data_array_list.append(line_split[:16]) line_split[line_split == ''] = '0' spectrum_array_list.append(np.array(line_split[16:-1]).reshape((32, 32))) elif len(line_split) == 16: data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32,32))) for line in file_object: line_split = np.array(line.split(delimiter_)) if len(line_split) == 17: line_split[16] = '0' data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32, 32))) elif len(line_split) > 17: line_split[16] = '0' data_array_list.append(line_split[:16]) line_split[line_split == ''] = '0' spectrum_array_list.append(np.array(line_split[16:-1]).reshape((32, 32))) elif len(line_split) == 16: if line_split[0] != 'Date': data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32, 32))) data_array = np.stack(data_array_list) spectrum_array = np.stack(spectrum_array_list).astype(float) t_list = [] for t_ in range(data_array.shape[0]): t_list.append(data_array[t_][0] + ' ' + data_array[t_][1]) if len(header_) == 16: # no spectra was set to record return data_array, None, t_list, size_array, speed_array, header_ else: return data_array, spectrum_array, t_list, size_array, speed_array, header_ def save_parsivel_arrays_to_netcdf(raw_spectra_filename, nedcdf_output_filename, delimiter_=';', raw_time_format='%d.%m.%Y %H:%M:%S'): # save_parsivel_arrays_to_netcdf('C:\\_input\\parsivel_2018-07-26-00_2018-08-02-00_1.txt', 'C:\\_input\\parsivel_compiled_3.nc') print('reading txt to array') data_array, spectrum_array, t_list, size_array, speed_array, header_ = \ load_parsivel_txt_to_array(raw_spectra_filename, delimiter_=delimiter_) print('arrays created') file_attributes_tuple_list = [('Compiled by', '<NAME> @: ' + str(datetime.datetime.now())), ('Data source', 'Parsivel Disdrometer'), ('time format', 'YYYYMMDDHHmm in uint64 data type, each ' + 'time stamp is the acumulated precip for one minute')] # time from str to int time_array = np.zeros(data_array.shape[0], dtype='<U12') # for t_ in range(data_array.shape[0]): # time_array[t_] = int(t_list[t_][6:10] + # YYYY # t_list[t_][3:5] + # MM # t_list[t_][:2] + # DD # t_list[t_][12:14] + # HH # t_list[t_][15:17]) # mm for t_ in range(data_array.shape[0]): time_array[t_] = int(time_seconds_to_str(time_str_to_seconds(t_list[t_],raw_time_format), time_format_parsivel)) pollutant_attributes_tuple_list = [('units', 'particles per minute')] # create output file file_object_nc4 = nc.Dataset(nedcdf_output_filename,'w')#,format='NETCDF4_CLASSIC') print('output file started') # create dimensions file_object_nc4.createDimension('particle_fall_speed', speed_array.shape[0]) file_object_nc4.createDimension('particle_size', size_array.shape[1]) file_object_nc4.createDimension('time', time_array.shape[0]) # create dimension variables file_object_nc4.createVariable('particle_fall_speed', 'f4', ('particle_fall_speed','particle_size',), zlib=True) file_object_nc4.createVariable('particle_size', 'f4', ('particle_fall_speed','particle_size',), zlib=True) file_object_nc4.createVariable('time', 'u8', ('time',), zlib=True) # populate dimension variables file_object_nc4.variables['time'][:] = time_array[:] file_object_nc4.variables['particle_fall_speed'][:] = speed_array[:] file_object_nc4.variables['particle_size'][:] = size_array[:] # create particles_spectrum array if spectrum_array is not None: file_object_nc4.createVariable('particles_spectrum', 'u2', ('time', 'particle_fall_speed', 'particle_size',), zlib=True) # populate file_object_nc4.variables['particles_spectrum'][:] = spectrum_array[:] # create particle_concentration_spectrum_m-3 # get sampling volume sampling_volume_2d = parsivel_sampling_volume(size_array, speed_array) particle_concentration_spectrum = spectrum_array / sampling_volume_2d # create variable file_object_nc4.createVariable('particle_concentration_spectrum_m-3', 'float32', ('time', 'particle_fall_speed', 'particle_size',), zlib=True) # populate file_object_nc4.variables['particle_concentration_spectrum_m-3'][:] = particle_concentration_spectrum[:] # create particle_concentration_total_m-3 particle_concentration_total = np.nansum(np.nansum(particle_concentration_spectrum, axis=-1), axis=-1) # create variable file_object_nc4.createVariable('particle_concentration_total_m-3', 'float32', ('time', ), zlib=True) # populate file_object_nc4.variables['particle_concentration_total_m-3'][:] = particle_concentration_total[:] for attribute_ in pollutant_attributes_tuple_list: setattr(file_object_nc4.variables['particles_spectrum'], attribute_[0], attribute_[1]) # create other data variables for i_, head_ in enumerate(header_[:-1]): var_name = head_.replace('/','|') print('storing var name: ' , var_name) temp_ref = file_object_nc4.createVariable(var_name, str, ('time',), zlib=True) temp_ref[:] = data_array[:, i_] for attribute_ in file_attributes_tuple_list: setattr(file_object_nc4, attribute_[0], attribute_[1]) file_object_nc4.close() print('Done!') def load_parsivel_from_nc(netcdf_filename): netcdf_file_object = nc.Dataset(netcdf_filename, 'r') file_var_values_dict = {} variable_name_list = netcdf_file_object.variables.keys() for var_ in variable_name_list: file_var_values_dict[var_] = netcdf_file_object.variables[var_][:].copy() netcdf_file_object.close() return file_var_values_dict, variable_name_list def parsivel_plot_spectrum_counts(arr_, title_='', x_range_tuple=(0, 6), y_range_tuple=(0, 10), save_filename=None, contourF=False, bins_=(0,2,5,10,20,50,100,200), fig_size=(5,5)): cmap_parsivel = ListedColormap(['white', 'yellow', 'orange', 'lime', 'darkgreen', 'aqua', 'purple', 'navy', 'red'], 'indexed') size_scale = [0.062,0.187,0.312,0.437,0.562,0.687,0.812,0.937,1.062,1.187,1.375,1.625,1.875, 2.125,2.375,2.75,3.25,3.75,4.25,4.75,5.5,6.5,7.5,8.5,9.5,11,13,15,17,19,21.5,24.5] speed_scale = [0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.1,1.3,1.5,1.7,1.9,2.2,2.6,3,3.4, 3.8,4.4,5.2,6,6.8,7.6,8.8,10.4,12,13.6,15.2,17.6,20.8] speed_array = np.zeros((32,32), dtype=float) size_array = np.zeros((32, 32), dtype=float) for i in range(32): speed_array[:,i] = speed_scale size_array[i, :] = size_scale spectrum_array_color = np.zeros((arr_.shape[0], arr_.shape[1]), dtype=float) bin_labels = [] i_ = 0 for i_, bin_ in enumerate(bins_): spectrum_array_color[arr_ > bin_] = i_ + 1 bin_labels.append(str(bin_)) bin_labels[i_] = '>' + bin_labels[i_] fig, ax = plt.subplots(figsize=fig_size) if contourF: quad1 = ax.contourf(size_array, speed_array, spectrum_array_color, cmap=cmap_parsivel, vmin=0, vmax=8) else: quad1 = ax.pcolormesh(size_array, speed_array, spectrum_array_color, cmap=cmap_parsivel, vmin=0, vmax=8) ax.set_ylim(y_range_tuple) ax.set_xlim(x_range_tuple) ax.set_xlabel('particle size [mm]') ax.set_ylabel('particle speed [m/s]') ax.set_title(title_) cbar_label = 'Particles per bin' cb2 = fig.colorbar(quad1)#, ticks=[0,1,2,3,4,5,6,7]) ticks_ = np.linspace(0.5, i_+0.5, len(bins_)) cb2.set_ticks(ticks_) cb2.set_ticklabels(bin_labels) cb2.ax.set_ylabel(cbar_label) if save_filename is None: plt.show() else: fig.savefig(save_filename, transparent=True, bbox_inches='tight') plt.close(fig) return fig, ax def parsivel_plot_spectrum_DSD(arr_, title_='', x_range_tuple=(0, 6), y_range_tuple=(0, 10), save_filename=None, contourF=False, fig_size=(5,5), cmap_=default_cm, cbar_label='DSD [m-3]', nozeros_=True, vmin_=None, vmax_=None,): size_scale = [0.062,0.187,0.312,0.437,0.562,0.687,0.812,0.937,1.062,1.187,1.375,1.625,1.875, 2.125,2.375,2.75,3.25,3.75,4.25,4.75,5.5,6.5,7.5,8.5,9.5,11,13,15,17,19,21.5,24.5] speed_scale = [0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.1,1.3,1.5,1.7,1.9,2.2,2.6,3,3.4, 3.8,4.4,5.2,6,6.8,7.6,8.8,10.4,12,13.6,15.2,17.6,20.8] speed_array = np.zeros((32,32), dtype=float) size_array = np.zeros((32, 32), dtype=float) for i in range(32): speed_array[:,i] = speed_scale size_array[i, :] = size_scale if nozeros_: arr_ = np.array(arr_) arr_[arr_ == 0] = np.nan fig, ax = plt.subplots(figsize=fig_size) if contourF: quad1 = ax.contourf(size_array, speed_array, arr_, cmap=cmap_) else: quad1 = ax.pcolormesh(size_array, speed_array, arr_, cmap=cmap_, vmin=vmin_, vmax=vmax_) ax.set_ylim(y_range_tuple) ax.set_xlim(x_range_tuple) ax.set_xlabel('particle size [mm]') ax.set_ylabel('particle speed [m/s]') ax.set_title(title_) cb2 = fig.colorbar(quad1) cb2.ax.set_ylabel(cbar_label) if save_filename is None: plt.show() else: fig.savefig(save_filename, transparent=True, bbox_inches='tight') plt.close(fig) return fig, ax def calculate_cumulative_precipitation_parsivel(parsivel_precipitation_mm_per_hour, parsivel_time_sec, time_period_str): return np.nansum( parsivel_precipitation_mm_per_hour[time_to_row_str(parsivel_time_sec, time_period_str.split('_')[0]): time_to_row_str(parsivel_time_sec, time_period_str.split('_')[1])]) / 60 def calculate_D_m(N_D, D_series): D_grad = np.gradient(D_series) D_m = np.nansum((N_D * (D_series**4) * D_grad)) / np.nansum((N_D * (D_series ** 3) * D_grad)) return D_m def calculate_LWC(N_D, D_series): D_grad = np.gradient(D_series) water_density = 1E6 # g/m3 LWC_ = (np.pi * water_density / 6) * np.nansum((N_D * (D_series**3) * D_grad)) return LWC_ # Holographic microscope def convert_raw_to_array(filename_): print('converting file: ' + filename_.split('/')[-1]) A = np.fromfile(filename_, dtype='uint8') evenEl = A[1::2] oddEl = A[0::2] B = 256 * evenEl + oddEl width = 2592 height = 1944 I = B.reshape(height, width) return I def create_video_from_filelist(file_list, output_filename, cmap_): width = 2592 height = 1944 array_3d = np.zeros((len(file_list), height, width), dtype='uint8') time_list = [] for t_, filename_ in enumerate(file_list): array_3d[t_,:,:] = convert_raw_to_array(filename_) time_list.append(filename_[-21:-4]) create_video_animation_from_3D_array(array_3d, output_filename, colormap_= cmap_, title_list=time_list, axes_off=True, show_colorbar=False, interval_=500) def convert_array_to_png_array(array_): # shape rows_ = array_.shape[0] columns_ = array_.shape[1] # nan layer array_nan = np.zeros((rows_, columns_), dtype='uint8') array_nan[array_ != array_] = 100 # replace nans array_[array_ != array_] = 0 # convert to all positive array_positive = np.abs(array_) # sign layer array_sign = np.zeros((rows_, columns_), dtype='uint8') array_sign[array_ >= 0] = 100 # zeros array array_zeros = np.zeros((rows_, columns_), dtype='uint8') array_zeros[array_positive != 0] = 1 # sub 1 array array_sub1 = np.zeros((rows_, columns_), dtype='uint8') array_sub1[array_positive<1] = 1 array_sub1 = array_sub1 * array_zeros # power array exp_ = np.array(np.log10(array_positive), dtype=int) exp_[array_zeros==0] = 0 # integral array array_integral = array_positive / 10 ** np.array(exp_, dtype=float) # array_layer_1 array_layer_1 = np.array(((array_sub1 * 9) + 1) * array_integral * 10, dtype='uint8') + array_sign # array_layer_2 array_layer_2 = np.array(((array_integral * ((array_sub1 * 9) + 1) * 10) - np.array(array_integral * ((array_sub1 * 9) + 1) * 10, dtype='uint8')) * 100, dtype='uint8') array_layer_2 = array_layer_2 + array_nan # power sign layer exp_ = exp_ - array_sub1 array_power_sign = np.zeros((rows_, columns_), dtype='uint8') array_power_sign[exp_ >= 0] = 100 # array_layer_3 array_layer_3 = np.abs(exp_) + array_power_sign # initialize out array out_array = np.zeros((rows_, columns_, 3), dtype='uint8') # dump into out array out_array[:, :, 0] = array_layer_1 out_array[:, :, 1] = array_layer_2 out_array[:, :, 2] = array_layer_3 return out_array # netcdf file handling def netCDF_crop_timewise(input_filename, time_stamp_start_str_YYYYmmDDHHMM, time_stamp_stop_str_YYYYmmDDHHMM, output_filename=None, vars_to_keep=None, time_dimension_name='time'): """ Creates a copy of an input netCDF4 file with only a subset of the data :param input_filename: netCDF4 file with path :param time_stamp_start_str_YYYYmmDDHHMMSS: String in YYYYmmDDHHMMSS format :param time_stamp_stop_str_YYYYmmDDHHMMSS: :param output_filename: filename with path and .nc extension. If none, output file will be in same folder as input :param vars_to_keep: list of variable names in str to be kept in output copy. If none, all variables will be copied :param time_dimension_name: name of time dimension :return: 0 if good, filename if error """ error_file = 0 try: nc_input_file = nc.Dataset(input_filename) time_array = nc_input_file.variables[time_dimension_name][:].copy() nc_input_file.close() r_1 = time_to_row_str(time_array, time_stamp_start_str_YYYYmmDDHHMM) r_2 = time_to_row_str(time_array, time_stamp_stop_str_YYYYmmDDHHMM) dict_ = load_netcdf_to_dictionary(input_filename, var_list=vars_to_keep, time_tuple_start_stop_row=(r_1,r_2), time_dimension_name=time_dimension_name) if output_filename is None: output_filename = input_filename[:-3] + '_trimmed_' + str(r_1) + '_' + str(r_2) + '.nc' save_dictionary_to_netcdf(dict_, output_filename) except BaseException as error_msg: print(error_msg) error_file = input_filename return error_file def add_variable_to_netcdf_file(nc_filename, variables_dict): """ Opens and adds a variable(s) to the file. Will not add new dimensions. :param nc_filename: str including path :param variables_dict: must be a dictionary with keys as variables. inside each variables key should have a dictionary inside with variable names as keys Each var most have a data key equal to a numpy array (can be masked) and a attribute key Each var most have a dimensions key equal to a tuple, in the same order as the array's dimensions Each var most have a attributes key equal to a list of tuples with name and description text :return: None """ # check if dict_ has the right format # create dimension and variables lists vars_list = variables_dict.keys() for var_ in vars_list: if 'dimensions' in variables_dict[var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its dimensions') return if 'attributes' in variables_dict[var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its attributes') return # open file file_obj = nc.Dataset(nc_filename,'a') print('file openned, do not close this threat or file might be corrupted') try: # check that variable shapes agree with destination file for var_ in vars_list: dim_list = list(variables_dict[var_]['dimensions']) var_shape = variables_dict[var_]['data'].shape for i_, dim_ in enumerate(dim_list): if dim_ in sorted(file_obj.dimensions): if var_shape[i_] == file_obj.dimensions[dim_].size: pass else: print('Variable', var_, 'has dimension', dim_, 'of different size compared to destination file\nfile closed') file_obj.close() return else: print('Variable', var_, 'has dimension', dim_, 'which does not exist in destination file\nfile closed') file_obj.close() return # create variables print('creating', var_, 'variable') file_obj.createVariable(var_, variables_dict[var_]['data'].dtype, variables_dict[var_]['dimensions'], zlib=True) # populate variables file_obj.variables[var_][:] = variables_dict[var_]['data'] for var_attr in variables_dict[var_]['attributes']: if var_attr[0] == '_FillValue' or var_attr[0] == 'fill_value': pass else: setattr(file_obj.variables[var_], var_attr[0], var_attr[1]) print('created', var_, 'variable') except BaseException as error_msg: file_obj.close() print('error, file closed\n', error_msg) print('All good, closing file') file_obj.close() print('Done!') def save_dictionary_to_netcdf(dict_, output_filename): """ Saves a dictionary with the right format to a netcdf file. First dim will be set to unlimited. :param dict_: must have a dimensions key, a variables key, and a attributes key. dimensions key should have a list of the names of the dimensions variables key should have a dictionary inside with variable names as keys attributes key should have a list of tuples inside, with the name of the attribute and description in each tuple Each var most have a data key equal to a numpy array (can be masked) and a attribute key Each var most have a dimensions key equal to a tuple, in the same order as the array's dimensions all attributes are tuples with name and description text :param output_filename: should include full path and extension :return: None """ # check if dict_ has the right format if 'variables' in dict_.keys(): pass else: print('dictionary has the wrong format, missing variables key') return if 'dimensions' in dict_.keys(): pass else: print('dictionary has the wrong format, missing dimensions key') return if 'attributes' in dict_.keys(): pass else: print('dictionary has the wrong format, missing attributes key') return # create dimension and variables lists vars_list = dict_['variables'].keys() dims_list = dict_['dimensions'] for dim_ in dims_list: if dim_ in vars_list: pass else: print('dictionary has the wrong format, ' + dim_ + 'dimension is missing from variables') for var_ in vars_list: if 'dimensions' in dict_['variables'][var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its dimensions') return if 'attributes' in dict_['variables'][var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its attributes') return # create output file file_obj = nc.Dataset(output_filename,'w')#,format='NETCDF4_CLASSIC') print('output file started') # populate file's attributes for attribute_ in dict_['attributes']: setattr(file_obj, attribute_[0], attribute_[1]) # create dimensions for i_, dim_ in enumerate(dims_list): if i_ == 0: file_obj.createDimension(dim_, size=0) else: shape_index = np.argwhere(np.array(dict_['variables'][dim_]['dimensions']) == dim_)[0][0] file_obj.createDimension(dim_, dict_['variables'][dim_]['data'].shape[shape_index]) print('dimensions created') # create variables for var_ in vars_list: print('creating', var_, 'variable') file_obj.createVariable(var_, dict_['variables'][var_]['data'].dtype, dict_['variables'][var_]['dimensions'], zlib=True) # populate variables file_obj.variables[var_][:] = dict_['variables'][var_]['data'] for var_attr in dict_['variables'][var_]['attributes']: if isinstance(var_attr, str): setattr(file_obj.variables[var_], dict_['variables'][var_]['attributes'][0], dict_['variables'][var_]['attributes'][1]) break else: if var_attr[0] == '_FillValue' or var_attr[0] == 'fill_value': pass else: setattr(file_obj.variables[var_], var_attr[0], var_attr[1]) print('created', var_, 'variable') print('storing data to disk and closing file') file_obj.close() print('Done!') def load_netcdf_to_dictionary(filename_, var_list=None, time_tuple_start_stop_row=None, time_dimension_name='time'): """ creates a dictionary from a netcdf file, with the following format :param filename_: filename with path of a netCDF4 file :param var_list: list of variables to be loaded, if none, all variables will be loaded :param time_tuple_start_stop_str: tuple with two time rows, time dimension will be trimmed r_1:r_2 :param time_dimension_name: name of time dimension :return: dict_: have a dimensions key, a variables key, and a attributes key. Each var have a data key equal to a numpy array (can be masked) and a attribute key Each var have a dimensions key equal to a tuple, in the same order as the array's dimensions all attributes are tuples with name and description text """ # create output dict out_dict = {} # open file file_obj = nc.Dataset(filename_, 'r') # ,format='NETCDF4_CLASSIC') print('output file started') # get file's attr file_att_list_tuple = [] for attr_ in file_obj.ncattrs(): file_att_list_tuple.append((attr_, file_obj.getncattr(attr_))) out_dict['attributes'] = file_att_list_tuple # get dimensions out_dict['dimensions'] = sorted(file_obj.dimensions) # get variables if var_list is None: var_list = sorted(file_obj.variables) out_dict['variables'] = {} # create variables for var_ in var_list: out_dict['variables'][var_] = {} if time_tuple_start_stop_row is not None: if time_dimension_name in file_obj.variables[var_].dimensions: out_dict['variables'][var_]['data'] = file_obj.variables[var_][time_tuple_start_stop_row[0]: time_tuple_start_stop_row[1]] else: out_dict['variables'][var_]['data'] = file_obj.variables[var_][:] else: out_dict['variables'][var_]['data'] = file_obj.variables[var_][:] out_dict['variables'][var_]['attributes'] = file_obj.variables[var_].ncattrs() var_att_list_tuple = [] for attr_ in file_obj.variables[var_].ncattrs(): var_att_list_tuple.append((attr_, file_obj.variables[var_].getncattr(attr_))) out_dict['variables'][var_]['attributes'] = var_att_list_tuple out_dict['variables'][var_]['dimensions'] = file_obj.variables[var_].dimensions print('read variable', var_) file_obj.close() print('Done!') return out_dict def merge_multiple_netCDF_by_time_dimension(directory_where_nc_file_are_in_chronological_order, output_path='', output_filename=None, time_variable_name='time', time_dimension_name=None, vars_to_keep=None, nonTimeVars_check_list=None, key_search_str='', seek_in_subfolders=False, force_file_list=None): if force_file_list is not None: file_list_all = sorted(force_file_list) else: if seek_in_subfolders: if key_search_str == '': file_list_all = sorted(list_files_recursive(directory_where_nc_file_are_in_chronological_order)) else: file_list_all = sorted(list_files_recursive(directory_where_nc_file_are_in_chronological_order, filter_str=key_search_str)) else: file_list_all = sorted(glob.glob(str(directory_where_nc_file_are_in_chronological_order + '*' + key_search_str + '*.nc'))) print('Files to be merged (in this order):') parameter_list = '' for i, parameter_ in enumerate(file_list_all): parameter_list = str(parameter_list) + str(i) + " ---> " + str(parameter_) + '\n' print(parameter_list) # create copy of first file if output_filename is None: if output_path == '': output_filename = file_list_all[0][:-3] + '_merged.nc' else: output_filename = output_path + file_list_all[0].split('\\')[-1][:-3] + '_merged.nc' # define time variable and dimension if time_dimension_name is None: time_dimension_name = time_variable_name # check if time dimension is unlimited netcdf_first_file_object = nc.Dataset(file_list_all[0], 'r') if netcdf_first_file_object.dimensions[time_dimension_name].size == 0 and vars_to_keep is None: # all good, just make copy of file with output_filename name netcdf_first_file_object.close() shutil.copyfile(file_list_all[0], output_filename) print('first file in merger list has unlimited time dimension, copy created with name:', output_filename) else: # not so good, create new file and copy everything from first, make time dimension unlimited... netcdf_output_file_object = nc.Dataset(output_filename, 'w') print('first file in merger list does not have unlimited time dimension, new file created with name:', output_filename) # copy main attributes attr_list = netcdf_first_file_object.ncattrs() for attr_ in attr_list: netcdf_output_file_object.setncattr(attr_, netcdf_first_file_object.getncattr(attr_)) print('main attributes copied') # create list for dimensions and variables dimension_names_list = sorted(netcdf_first_file_object.dimensions) if vars_to_keep is None: variable_names_list = sorted(netcdf_first_file_object.variables) else: variable_names_list = vars_to_keep # create dimensions for dim_name in dimension_names_list: if dim_name == time_dimension_name: netcdf_output_file_object.createDimension(time_dimension_name, size=0) print(time_variable_name, 'dimension created') else: netcdf_output_file_object.createDimension(dim_name, size=netcdf_first_file_object.dimensions[dim_name].size) print(dim_name, 'dimension created') # create variables for var_name in variable_names_list: # create netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, netcdf_first_file_object.variables[var_name].dimensions, zlib=True) print(var_name, 'variable created') # copy the attributes attr_list = netcdf_first_file_object.variables[var_name].ncattrs() for attr_ in attr_list: netcdf_output_file_object.variables[var_name].setncattr(attr_, netcdf_first_file_object.variables[ var_name].getncattr(attr_)) print('variable attributes copied') # copy the data to the new file netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][:].copy() print('variable data copied') print('-=' * 20) # close all files netcdf_output_file_object.close() netcdf_first_file_object.close() print('starting to copy other files into merged file') vars_list = variable_names_list for filename_ in file_list_all[1:]: # open output file for appending data netcdf_output_file_object = nc.Dataset(output_filename, 'a') print('-' * 5) print('loading file:', filename_) # open hourly file netcdf_file_object = nc.Dataset(filename_, 'r') # get time array time_hourly = np.array(netcdf_file_object.variables[time_variable_name][:], dtype=float) row_start = netcdf_output_file_object.variables[time_variable_name].shape[0] row_end = time_hourly.shape[0] + row_start # append time array netcdf_output_file_object.variables[time_variable_name][row_start:row_end] = time_hourly # append all other variables that only time dependent for var_name in vars_list: if var_name != time_variable_name: if time_dimension_name in netcdf_output_file_object.variables[var_name].dimensions: netcdf_output_file_object.variables[var_name][row_start:row_end] = \ netcdf_file_object.variables[var_name][:].copy() # check non time dependent variables for consistency vars_list_sub = sorted(netcdf_file_object.variables) if vars_list_sub != sorted(netcdf_first_file_object.variables): print('Alert! Variables in first file are different than other files') print('first file variables:') p_(sorted(netcdf_first_file_object.variables)) print(filename_, 'file variables:') p_(vars_list_sub) if nonTimeVars_check_list is not None: for var_name in nonTimeVars_check_list: if np.nansum(np.abs(netcdf_file_object.variables[var_name][:].copy() - netcdf_output_file_object.variables[var_name][:].copy())) != 0: print('Alert!', var_name, 'from file:', filename_, 'does not match the first file') # copy the attributes netcdf_output_file_object.variables[var_name].setncattr( 'values from file ' + filename_, netcdf_file_object.variables[var_name][:].copy() ) netcdf_file_object.close() netcdf_output_file_object.close() print('done') def load_netcdf_file_variable(filename_, variable_name_list=None): netcdf_file_object = nc.Dataset(filename_, 'r') file_attributes_dict = {} file_var_values_dict = {} file_var_attrib_dict = {} file_dim_dict = {} if variable_name_list is None: variable_name_list = list(netcdf_file_object.variables) for atr_ in netcdf_file_object._attributes: file_attributes_dict[atr_] = netcdf_file_object._attributes[atr_] for dim_ in netcdf_file_object.dimensions: file_dim_dict[dim_] = netcdf_file_object.dimensions[dim_] for var_ in variable_name_list: file_var_values_dict[var_] = netcdf_file_object.variables[var_][:].copy() for atr_ in netcdf_file_object.variables[var_]._attributes: file_var_attrib_dict[var_] = netcdf_file_object.variables[var_]._attributes[atr_] netcdf_file_object.close() return file_attributes_dict, file_var_values_dict, file_var_attrib_dict, file_dim_dict def save_array_list_as_netcdf(array_list, name_list, units_list, attributes_list, out_filename): file_object = nc.Dataset(out_filename, 'w') # file_object.history = 'Created for a test' for variable_ in range(len(array_list)): dim_list_name = [] for dim_ in range(len(array_list[variable_].shape)): dim_name = str(variable_) + '_' + str(dim_) dim_list_name.append(dim_name) file_object.createDimension(dim_name, array_list[variable_].shape[dim_]) dtype_ = str(array_list[variable_].dtype)[0] file_object.createVariable( name_list[variable_], dtype_, tuple(dim_list_name) ) setattr(file_object.variables[name_list[variable_]], 'units',units_list[variable_]) file_object.variables[name_list[variable_]] = array_list[variable_] # temp_variable_handle[:] = array_list[variable_][:] for atri_ in attributes_list: setattr(file_object, atri_[0], atri_[1]) file_object.close() def save_time_series_as_netcdf(array_list, name_list, units_list, attributes_list, out_filename): file_object = nc.Dataset(out_filename, 'w') # create time dimension file_object.createDimension('time', array_list[0].shape[0]) for variable_ in range(len(array_list)): dtype_ = str(array_list[variable_].dtype)[0] if dtype_ == '<': dtype_ = 'S1' file_object.createVariable(name_list[variable_], dtype_, ('time',)) setattr(file_object.variables[name_list[variable_]], 'units',units_list[variable_]) file_object.variables[name_list[variable_]][:] = array_list[variable_][:] # temp_variable_handle[:] = array_list[variable_][:] for atri_ in attributes_list: setattr(file_object, atri_[0], atri_[1]) file_object.close() def save_emissions_to_new_netcdf(out_filename, emissions_array, pollutant_name, time_array, lat_array, lon_array, file_attributes_tuple_list, pollutant_attributes_tuple_list): file_object = nc.Dataset(out_filename, 'w') # create dimensions file_object.createDimension('lat', lat_array.shape[0]) file_object.createDimension('lon', lon_array.shape[0]) file_object.createDimension('time', time_array.shape[0]) # create dimension variables file_object.createVariable('time', str(time_array.dtype)[0], ('time', )) file_object.createVariable('lat', str(lat_array.dtype)[0], ('lat',)) file_object.createVariable('lon', str(lon_array.dtype)[0], ('lon',)) # populate dimension variables file_object.variables['time'][:] = time_array[:] file_object.variables['lat'][:] = lat_array[:] file_object.variables['lon'][:] = lon_array[:] # create emission array file_object.createVariable(pollutant_name, str(emissions_array.dtype)[0], ('time', 'lat', 'lon',)) # populate file_object.variables[pollutant_name][:] = emissions_array[:] for attribute_ in file_attributes_tuple_list: setattr(file_object, attribute_[0], attribute_[1]) for attribute_ in pollutant_attributes_tuple_list: setattr(file_object.variables[pollutant_name], attribute_[0], attribute_[1]) file_object.close() def save_emissions_to_existing_netcdf(out_filename, emissions_array, pollutant_name, attributes_tuple_list): file_object = nc.Dataset(out_filename, 'a') file_object.createVariable(pollutant_name, str(emissions_array.dtype)[0], ('time', 'lat', 'lon',)) file_object.variables[pollutant_name][:] = emissions_array[:] setattr(file_object.variables[pollutant_name], 'pollutant name', pollutant_name) for attribute_ in attributes_tuple_list: setattr(file_object.variables[pollutant_name], attribute_[0], attribute_[1]) file_object.close() def WRF_emission_file_modify(filename_, variable_name, cell_index_west_east, cell_index_south_north, new_value): netcdf_file_object = nc.Dataset(filename_, 'a') current_array = netcdf_file_object.variables[variable_name][0,0,:,:].copy() current_value = current_array[cell_index_south_north, cell_index_west_east] print(current_value) current_array[cell_index_south_north, cell_index_west_east] = new_value netcdf_file_object.variables[variable_name][0,0,:,:] = current_array[:,:] netcdf_file_object.close() def find_wrf_3d_cell_from_latlon_to_south_north_west_east(lat_, lon_, wrf_output_filename, wrf_lat_variablename='XLAT', wrf_lon_variablename='XLONG', flatten_=False): netcdf_file_object_wrf = nc.Dataset(wrf_output_filename, 'r') wrf_lat_array = netcdf_file_object_wrf.variables[wrf_lat_variablename][:,:].copy() wrf_lon_array = netcdf_file_object_wrf.variables[wrf_lon_variablename][:,:].copy() netcdf_file_object_wrf.close() wrf_abs_distance = ( (np.abs(wrf_lat_array - lat_)**2) + (np.abs(wrf_lon_array - lon_)**2) )**0.5 if flatten_: return np.argmin(wrf_abs_distance) else: return np.unravel_index(np.argmin(wrf_abs_distance), wrf_abs_distance.shape) # specialized tools def vectorize_array(array_): output_array = np.zeros((array_.shape[0] * array_.shape[1], 3), dtype=float) for r_ in range(array_.shape[0]): for c_ in range(array_.shape[1]): output_array[r_,0] = r_ output_array[r_, 1] = c_ output_array[r_, 2] = array_[r_,c_] return output_array def exceedance_rolling(arr_time_seconds, arr_values, standard_, rolling_period, return_rolling_arrays=False): ## assumes data is in minutes and in same units as standard time_secs_1h, values_mean_disc_1h = mean_discrete(arr_time_seconds, arr_values, 3600, arr_time_seconds[0], min_data=45) values_rolling_mean = row_average_rolling(values_mean_disc_1h, rolling_period) counter_array = np.zeros(values_rolling_mean.shape[0]) counter_array[values_rolling_mean > standard_] = 1 total_number_of_exceedances = np.sum(counter_array) #create date str array T_ = np.zeros((time_secs_1h.shape[0],5),dtype='<U32') for r_ in range(time_secs_1h.shape[0]): if time_secs_1h[r_] == time_secs_1h[r_]: T_[r_] = time.strftime("%Y_%m_%d",time.gmtime(time_secs_1h[r_])).split(',') exceedance_date_list = [] for r_, rolling_stamp in enumerate(values_rolling_mean): if rolling_stamp > standard_: exceedance_date_list.append(T_[r_]) exc_dates_array = np.array(exceedance_date_list) exc_dates_array_unique = np.unique(exc_dates_array) if return_rolling_arrays: return total_number_of_exceedances, exc_dates_array_unique, time_secs_1h, values_rolling_mean else: return total_number_of_exceedances, exc_dates_array_unique # ozonesonde and radiosonde related def load_sonde_data(filename_, mode_='PBL'): ##Loads data and finds inversions, creates I_ # global V_, M_, H_, ASL_, time_header, I_, I_line # global ASL_avr, L_T, L_RH, time_string, time_days, time_seconds, year_, flight_name ## user defined variables delimiter_ = ',' error_flag = -999999 first_data_header = 'Day_[GMT]' day_column_number = 0 month_column_number = 1 year_column_number = 2 hour_column_number = 3 minute_column_number = 4 second_column_number = 5 # time_header = 'Local Time' # defining time header # main data array sample_data = filename_ # look for data start (header size) with open(sample_data) as file_read: header_size = -1 r_ = 0 for line_string in file_read: if (len(line_string) >= len(first_data_header) and line_string[:len(first_data_header)] == first_data_header): header_size = r_ break r_ += 1 if header_size == -1: print('no data found!') sys.exit() data_array = np.array(genfromtxt(sample_data, delimiter=delimiter_, skip_header=header_size, dtype='<U32')) # defining header and data arrays M_ = data_array[1:, 6:].astype(float) H_ = data_array[0, 6:] ASL_ = M_[:, -1] # year_ = data_array[1, year_column_number] ASL_[ASL_ == error_flag] = np.nan # defining time arrays time_str = data_array[1:, 0].astype('<U32') for r_ in range(time_str.shape[0]): time_str[r_] = (str(data_array[r_ + 1, day_column_number]) + '-' + str(data_array[r_ + 1, month_column_number]) + '-' + str(data_array[r_ + 1, year_column_number]) + '_' + str(data_array[r_ + 1, hour_column_number]) + ':' + str(data_array[r_ + 1, minute_column_number]) + ':' + str(data_array[r_ + 1, second_column_number])) time_days = np.array([mdates.date2num(datetime.datetime.utcfromtimestamp( calendar.timegm(time.strptime(time_string_record, '%d-%m-%Y_%H:%M:%S')))) for time_string_record in time_str]) time_seconds = time_days_to_seconds(time_days) V_ = M_.astype(float) V_[V_ == error_flag] = np.nan T_avr = np.ones(V_[:, 1].shape) RH_avr = np.ones(V_[:, 1].shape) ASL_avr = np.ones(V_[:, 1].shape) L_T = np.zeros(V_[:, 1].shape) L_RH = np.zeros(V_[:, 1].shape) I_ = np.zeros(V_[:, 1].shape) I_[:] = np.nan # rolling average of T RH and ASL mean_size = 7 # 5 for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): T_avr[r_] = np.nanmean(V_[r_ - mean_size: r_ + mean_size, 1]) RH_avr[r_] = np.nanmean(V_[r_ - mean_size: r_ + mean_size, 2]) ASL_avr[r_] = np.nanmean(ASL_[r_ - mean_size: r_ + mean_size]) for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): if (ASL_avr[r_ + 1] - ASL_avr[r_]) > 0: L_T[r_] = ((T_avr[r_ + 1] - T_avr[r_]) / (ASL_avr[r_ + 1] - ASL_avr[r_])) L_RH[r_] = ((RH_avr[r_ + 1] - RH_avr[r_]) / (ASL_avr[r_ + 1] - ASL_avr[r_])) # define location of inversion # PBL or TSI if mode_ == 'PBL': for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): if L_T[r_] > 7 and L_RH[r_] < -20: # PBL = 7,20 / TSI = 20,200 I_[r_] = 1 # get one of I_ only per layer temperature_gap = .4 # kilometres I_line = np.zeros((1, 3)) # height, time, intensity if np.nansum(I_) > 1: r_ = -1 while r_ < I_.shape[0] - mean_size: r_ += 1 if I_[r_] == 1 and ASL_avr[r_] < 4: layer_temp = T_avr[r_] layer_h = ASL_avr[r_] layer_time = time_seconds[r_] for rr_ in range(r_, I_.shape[0] - mean_size): if T_avr[rr_] < layer_temp - temperature_gap: delta_h = ASL_avr[rr_] - layer_h altitude_ = layer_h stanking_temp = np.array([altitude_, layer_time, delta_h]) I_line = np.row_stack((I_line, stanking_temp)) r_ = rr_ break if np.max(I_line[:, 0]) != 0: I_line = I_line[1:, :] else: I_line[:, :] = np.nan else: for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): if L_T[r_] > 20 and L_RH[r_] < -200: # PBL = 7,20 / TSI = 20,200 I_[r_] = 1 # get one of I_ only per layer temperature_gap = .4 # kilometres I_line = np.zeros((1, 3)) # height, time, intensity if np.nansum(I_) > 1: r_ = -1 while r_ < I_.shape[0] - mean_size: r_ += 1 if I_[r_] == 1 and 4 < ASL_avr[r_] < 8: layer_temp = T_avr[r_] layer_h = ASL_avr[r_] layer_time = time_seconds[r_] for rr_ in range(r_, I_.shape[0] - mean_size): if T_avr[rr_] < layer_temp - temperature_gap: delta_h = ASL_avr[rr_] - layer_h altitude_ = layer_h stanking_temp = np.array([altitude_, layer_time, delta_h]) I_line = np.row_stack((I_line, stanking_temp)) r_ = rr_ break if np.max(I_line[:, 0]) != 0: I_line = I_line[1:, :] else: I_line[:, :] = np.nan return H_, V_, time_days, time_seconds, I_, I_line, L_T, L_RH def plot_X1_X2_Y(X1_blue, X2_green, Y): fig, ax1 = plt.subplots() ax2 = ax1.twiny() ax1.plot(X1_blue, Y, s=5, color='b', edgecolor='none') ax1.axvline(0, c='k') ax2.scatter(X2_green, Y, s=5, color='g', edgecolor='none') ax2.axvline(0, c='k') plt.show() def plot_T_RH_I_(V_, I_line): fig, ax1 = plt.subplots() ax2 = ax1.twiny() ASL_ = V_[:, -1] ax1.set_ylabel('ASL') ax1.set_xlabel('Temp') ax2.set_xlabel('RH') ax1.scatter(V_[:, 1], ASL_, s=5, color='b', edgecolor='none') ax1.axvline(0, c='k') RH_temp = V_[:, 2] RH_temp = RH_temp ax2.scatter(RH_temp, ASL_, s=5, color='g', edgecolor='none') ax2.axvline(0, c='k') for x in range(I_line.shape[0]): plt.axhline(I_line[x, 0], c='r') plt.show() def plot_ThetaVirtual_I_(V_, I_line): fig, ax1 = plt.subplots() ASL_ = V_[:, -1] ax1.set_ylabel('ASL') ax1.set_xlabel('Virtual Potential Temperature [K]') ax1.scatter(V_[:, 5], ASL_, s=5, color='b', edgecolor='none') for x in range(I_line.shape[0]): plt.axhline(I_line[x, 0], c='r') plt.show() def last_lat_lon_alt_ozonesonde(filename_): data_array = genfromtxt(filename_, delimiter=',', dtype='<U32', skip_header=23) return data_array[-1,31], data_array[-1,32], data_array[-1,33], data_array[-1,0] def load_khancoban_sondes(filename_): line_number = -1 dict_ = {} dict_['filename'] = filename_.split('\\')[-1] dict_['date'] = '20' + filename_.split('\\')[-1][2:] profile_header = [] profile_units = [] profile_data = [] with open(filename_) as file_object: for line in file_object: line_number += 1 line_items = line.split() if 17 <= line_number <= 35: profile_header.append(line_items[0]) profile_units.append(line_items[1]) if line_number >= 39 and len(line_items)>1: profile_data.append(line_items) profile_array = np.zeros((len(profile_data), len(profile_data[0])), dtype=float) for r_ in range(len(profile_data)): profile_array[r_, :] = profile_data[r_] for c_ in range(len(profile_header)): dict_[profile_header[c_]] = {} dict_[profile_header[c_]]['data'] = profile_array[:, c_] dict_[profile_header[c_]]['units'] = profile_units[c_] return dict_ def convert_khan_sonde_data_to_skewt_dict(khan_dict, sonde_name): # create time array in seconds since epoc date_seconds = time_str_to_seconds(khan_dict[sonde_name]['date'], '%Y%m%d.0%H') time_sonde_sec = date_seconds + khan_dict[sonde_name]['time']['data'] mydata_0=dict(zip(('hght','pres','temp','dwpt', 'sknt', 'drct', 'relh', 'time', 'lati', 'long'), (khan_dict[sonde_name]['Height']['data'], khan_dict[sonde_name]['P']['data'], kelvin_to_celsius(khan_dict[sonde_name]['T']['data']), kelvin_to_celsius(khan_dict[sonde_name]['TD']['data']), ws_ms_to_knots(khan_dict[sonde_name]['FF']['data']), khan_dict[sonde_name]['DD']['data'], khan_dict[sonde_name]['RH']['data'], time_sonde_sec, khan_dict[sonde_name]['Lat']['data'], khan_dict[sonde_name]['Lon']['data'] ))) return mydata_0 # data averaging def average_all_data_files(filename_, number_of_seconds, WD_index = None, WS_index = None, min_data_number=None, cumulative_parameter_list=None): header_, values_ = load_time_columns(filename_) time_sec = time_days_to_seconds(values_[:,0]) # wind tratment if WD_index is not None and WS_index is not None: print('wind averaging underway for parameters: ' + header_[WD_index] + ' and ' + header_[WS_index]) # converting wind parameters to cartesian WD_ = values_[:,WD_index] WS_ = values_[:,WS_index] North_, East_ = polar_to_cart(WD_, WS_) values_[:,WD_index] = North_ values_[:,WS_index] = East_ # averaging if min_data_number is None: min_data_number = int(number_of_seconds/60 * .75) if cumulative_parameter_list is None: Index_mean,Values_mean = mean_discrete(time_sec, values_[:,2:], number_of_seconds, time_sec[0], min_data = min_data_number, cumulative_parameter_indx= None) else: Index_mean,Values_mean = mean_discrete(time_sec, values_[:,2:], number_of_seconds, time_sec[0], min_data = min_data_number, cumulative_parameter_indx=np.array(cumulative_parameter_list) - 2) if WD_index is not None and WS_index is not None: # converting wind parameters to polar North_ = Values_mean[:,WD_index - 2] East_ = Values_mean[:,WS_index - 2] WD_, WS_ = cart_to_polar(North_, East_) Values_mean[:,WD_index - 2] = WD_ Values_mean[:,WS_index - 2] = WS_ output_filename = filename_.split('.')[0] output_filename += '_' + str(int(number_of_seconds/60)) + '_minute_mean' + '.csv' save_array_to_disk(header_[2:], Index_mean, Values_mean, output_filename) print('Done!') print('saved at: ' + output_filename) def median_discrete(Index_, Values_, avr_size, first_index, min_data=1, position_=0.0): # Index_: n by 1 numpy array to look for position, # Values_: n by m numpy array, values to be averaged # avr_size in same units as Index_, # first_index is the first discrete index on new arrays. # min_data is minimum amount of data for average to be made (optional, default = 1) # position_ will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) # this will average values from Values_ that are between Index_[n:n+avr_size) # will return: Index_averaged, Values_averaged # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: MM_ = np.column_stack((Index_,Values_)) MM_sorted = MM_[MM_[:,0].argsort()] # sort by first column Index_ = MM_sorted[:,0] Values_ = MM_sorted[:,1:] # error checking! if Index_.shape[0] != Values_.shape[0]: return None, None if Index_[-1] < first_index: return None, None if min_data < 1: return None, None # initialize averaged matrices final_index = np.nanmax(Index_) total_averaged_rows = int((final_index-first_index)/avr_size) + 1 if len(Values_.shape) == 1: Values_median =
np.zeros(total_averaged_rows)
numpy.zeros
#!/usr/bin/env python """ This script grew-up from test of specific issue - 2021-10-18: Xiaozhe complains that too many pixels outside signal region in ueddaq02 r401 shows up in selection of intensities between 100 and 500 keV. See: - `github: <https://github.com/slac-lcls/lcls2>`_. - `confluence: <https://confluence.slac.stanford.edu/display/PSDM/EPIXQUAD+ueddaq02+r401+issue+calib+hot+banks+2021-10-18>`_. Created on 2021-10-18 by <NAME> """ import sys SCRNAME = sys.argv[0].rsplit('/')[-1] if len(sys.argv)<2: sys.exit( '\nMISSING PARAMETERS\nTry: %s -h' % SCRNAME) import math import numpy as np import logging logger = logging.getLogger(__name__) DICT_NAME_TO_LEVEL = logging._nameToLevel # {'INFO': 20, 'WARNING': 30, 'WARN': 30,... from psana.pyalgos.generic.NDArrUtils import info_ndarr, divide_protected from psana import DataSource from psana.detector.UtilsGraphics import gr, fleximagespec#, fleximage, flexhist from psana.detector.UtilsEpix10ka import event_constants import argparse USAGE = '\n %s -h' % SCRNAME\ + '\n %s -r554 -t1' % SCRNAME\ + '\n %s -e ueddaq02 -d epixquad -r554 -t1' % SCRNAME\ + '\n -t, --tname - test name/number:'\ + '\n 1 - segment numeration'\ + '\n 2 - gain range index'\ + '\n 3 - gain, ADU/keV'\ + '\n 4 - pedestals'\ + '\n 5 - rms'\ + '\n 6 - raw'\ + '\n 7 - raw-peds'\ + '\n 8 - (raw-peds)/gain, keV'\ + '\n 9 - calib, keV'\ + '\n 10 - status'\ + '\n 11 - gain factor = 1/gain, keV/ADU'\ + '\n ----'\ + '\n 21 - run 401 two-threshold selection issue'\ + '\n 22 - (raw-peds)/gain, keV hot - specific isuue test'\ + '\n 23 - (raw-peds)/gain, keV cold - specific isuue test' d_tname = '0' d_detname = 'epixquad' d_expname = 'ueddaq02' d_run = 554 d_events = 5 d_evskip = 0 d_stepnum = None d_saveimg = False d_grindex = None d_amin = None d_amax = None d_cframe = 0 d_loglev = 'INFO' parser = argparse.ArgumentParser(usage=USAGE, description='%s - test per-event components of the det.raw.calib method'%SCRNAME) parser.add_argument('-t', '--tname', default=d_tname, type=str, help='test name, def=%s' % d_tname) parser.add_argument('-d', '--detname', default=d_detname, type=str, help='detector name, def=%s' % d_detname) parser.add_argument('-e', '--expname', default=d_expname, type=str, help='experiment name, def=%s' % d_expname) parser.add_argument('-r', '--run', default=d_run, type=int, help='run number, def=%s' % d_run) parser.add_argument('-N', '--events', default=d_events, type=int, help='maximal number of events, def=%s' % d_events) parser.add_argument('-K', '--evskip', default=d_evskip, type=int, help='number of events to skip in the beginning of run, def=%s' % d_evskip) parser.add_argument('-s', '--stepnum', default=d_stepnum, type=int, help='step number counting from 0 or None for all steps, def=%s' % d_stepnum) parser.add_argument('-S', '--saveimg', default=d_saveimg, action='store_true', help='save image in file, def=%s' % d_saveimg) parser.add_argument('-g', '--grindex', default=d_grindex, type=int, help='gain range index [0,6] for peds, gains etc., def=%s' % str(d_grindex)) parser.add_argument('-l', '--loglev', default=d_loglev, type=str, help='logger level (DEBUG, INFO, WARNING, etc.), def.=%s' % str(d_loglev)) parser.add_argument('--amin', default=d_amin, type=float, help='spectrum minimal value, def=%s' % str(d_amin)) parser.add_argument('--amax', default=d_amax, type=float, help='spectrum maximal value, def=%s' % str(d_amax)) parser.add_argument('--cframe', default=d_cframe, type=int, help='coordinate frame for images 0/1 for psana/LAB, def=%s' % str(d_cframe)) args = parser.parse_args() print('*** parser.parse_args: %s' % str(args)) logging.basicConfig(format='[%(levelname).1s] %(name)s L%(lineno)04d: %(message)s', level=DICT_NAME_TO_LEVEL[args.loglev]) logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.getLogger('psana.psexp.event_manager').setLevel(logging.INFO) tname = args.tname # sys.argv[1] if len(sys.argv) > 1 else '0' THRMIN = 100 THRMAX = 500 AMIN = 1 AMAX = 200 CROP1_IMG = False CROP2_IMG = False flims = None fname = 'ims.png' def selection(arr): return np.where((arr>THRMIN) & (arr<THRMAX), arr, 0) def amin_amax(args, amin_def=None, amax_def=None): return args.amin if args.amin else amin_def,\ args.amax if args.amax else amax_def ds = DataSource(exp=args.expname, run=args.run) orun = next(ds.runs()) det = orun.Detector(args.detname) MDB = det.raw._data_bit_mask # M14 if det.raw._dettype == 'epix10ka' else M15 prefix = 'ims-%s-r%04d' % (orun.expt, orun.runnum) print('*** det.raw._data_bit_mask_: %s' % oct(MDB)) print('*** det.raw._calibconst.keys:', det.raw._calibconst.keys()) print('*** pedestal metadata:', det.raw._calibconst['pedestals'][1]) print('*** gain metadata:', det.raw._calibconst['pixel_gain'][1]) #print('*** rms metadata:', det.raw._calibconst['pixel_rms'][1]) #print('*** status metadata:', det.raw._calibconst['pixel_status'][1]) peds = det.raw._calibconst['pedestals'][0] gain = det.raw._calibconst['pixel_gain'][0] rms = det.raw._calibconst['pixel_rms'][0] status = det.raw._calibconst['pixel_status'][0] print(info_ndarr(peds,'pedestals')) print(info_ndarr(rms,'rms')) print(info_ndarr(gain,'gain, ADU/keV')) arr, img = None, None suffix = '' evt_peds, evt_gfac = None, None for nstep,step in enumerate(orun.steps()): if args.stepnum is not None and nstep<args.stepnum: print('skip nstep %d < stepnum=%d' % (nstep, args.stepnum)) continue if args.stepnum is not None and nstep>args.stepnum: print('break at nstep %d > stepnum=%d' % (nstep, args.stepnum)) break print('=== Step %d' % nstep) for nevt,evt in enumerate(step.events()): if nevt>args.events: print('break at nevt %d' % nevt) break if nevt<args.evskip: print('skip nevt %d' % nevt) continue if tname in ('4', '7', '8', '22', '23'): evt_peds = peds[args.grindex,:] if args.grindex is not None else\ event_constants(det.raw, evt, peds) #(7, 4, 352, 384) -> (4, 352, 384) print(info_ndarr(evt_peds,'evt_peds')) if tname in ('8', '11', '22', '23'): gfac = divide_protected(
np.ones_like(gain)
numpy.ones_like
import loader as ld import fun_basicas as fun import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt from scipy.optimize import minimize def coste(theta1, theta2, X, Y, num_etiquetas): # Y preparada A1, A2, h = forward_prop(X, theta1, theta2) sum1 = Y * np.log(h) sum2 = (1 - Y) * np.log(1 - h + 1e-6) return (-1 / X.shape[0]) * np.sum(sum1 + sum2) def coste_reg(theta1, theta2, X, Y, num_etiquetas, Lambda): c = coste(theta1, theta2, X, Y, num_etiquetas) m = X.shape[0] e = sum(sum(theta1[:, 1:] ** 2)) + sum(sum(theta2[:, 1:] ** 2)) return c + (Lambda / (2 * m)) * e def forward_prop(X, theta1, theta2): n = X.shape[0] # Se añade una fila de unos a la matriz inicial X = np.hstack([np.ones([n, 1]), X]) # La capa oculta utiliza la primera matriz de pesos para crear sus neuronas y le añade una fila de unos Oculta = fun.sigmoide(np.dot(X, theta1.T)) Oculta = np.hstack([np.ones([n, 1]), Oculta]) # El resultado se calcula pasando por la segunda matriz de pesos todas las neuronas de la capa oculta Resultado = fun.sigmoide(np.dot(Oculta, theta2.T)) return X, Oculta, Resultado def gradiente(theta1, theta2, X, y): # Creamos los Delta con la forma de theta pero inicializados a cero Delta1 = np.zeros(np.shape(theta1)) Delta2 = np.zeros(np.shape(theta2)) m = len(y) # Se realiza la propagación hacia delante A1, A2, h = forward_prop(X, theta1, theta2) # Se realiza la propagación hacia atras para cada # elemento para comprobar el fallo for k in range(m): a1k = A1[k, :] a2k = A2[k, :] a3k = h[k, :] yk = y[k, :] d3 = a3k - yk g_prima = (a2k * (1 - a2k)) d2 = np.dot(theta2.T, d3) * g_prima Delta1 = Delta1 + np.dot(d2[1:, np.newaxis], a1k[np.newaxis, :]) Delta2 = Delta2 + np.dot(d3[:, np.newaxis], a2k[np.newaxis, :]) # Se devuelven los Deltas que corresponden al gradiente return Delta1 / m, Delta2 / m def gradiente_reg(theta1, theta2, X, y, Lambda): m = len(y) Delta1, Delta2 = gradiente(theta1, theta2, X, y) # A cada elemento del gradiente (menos la primera columna) se le añade el termino de regularización Lambda # multiplicado por cada elemento de las matriz theta 1 y theta2 Delta1[:, 1:] = Delta1[:, 1:] + (Lambda / m) * theta1[:, 1:] Delta2[:, 1:] = Delta2[:, 1:] + (Lambda / m) * theta2[:, 1:] return Delta1, Delta2 def backprop(params_rn, num_entradas, num_ocultas, num_etiquetas, X, y, reg): # backprop devuelve una tupla (coste, gradiente) con el coste y el gradiente de # una red neuronal de tres capas , con num_entradas , num_ocultas nodos en la capa # oculta y num_etiquetas nodos en la capa de salida. Si m es el numero de ejemplos # de entrenamiento, la dimensión de ’X’ es (m, num_entradas) y la de ’y’ es # (m, num_etiquetas) theta1 = np.reshape(params_rn[:num_ocultas * (num_entradas + 1)], (num_ocultas, (num_entradas + 1))) theta2 = np.reshape(params_rn[num_ocultas * (num_entradas + 1):], (num_etiquetas, (num_ocultas + 1))) m = len(y) D1, D2 = gradiente_reg(theta1, theta2, X, y, reg) coste = coste_reg(theta1, theta2, X, y, num_etiquetas, reg) gradiente = np.concatenate((np.ravel(D1), np.ravel(D2))) return coste, gradiente def prueba_neurona(X, y, theta1, theta2): """función que devuelve el porcentaje de acierto de una red neuronal utilizando unas matrices de pesos dadas""" n = len(y) y =
np.ravel(y)
numpy.ravel
import logging import functools import os import shelve import pandas as pd import numpy as np import seaborn as sns import itertools import matplotlib.pyplot as plt import matplotlib import math from natsort import natsorted from decimal import Decimal from matplotlib.patches import Patch from matplotlib.lines import Line2D from matplotlib import colors import matplotlib.lines as mlines from matplotlib.ticker import AutoMinorLocator from matplotlib.gridspec import GridSpec import matplotlib.gridspec as gridspec from matplotlib.patches import Rectangle from scipy.stats import ttest_ind from statsmodels.stats.multitest import multipletests from inspect import getmembers, isclass from .config import FilterChoice logger = logging.getLogger(__name__) # map matplotlib color codes to the default seaborn palette sns.set() sns.set_color_codes() _ = plt.plot([0, 1], color='r') sns.set_color_codes() _ = plt.plot([0, 2], color='b') sns.set_color_codes() _ = plt.plot([0, 3], color='g') sns.set_color_codes() _ = plt.plot([0, 4], color='m') sns.set_color_codes() _ = plt.plot([0, 5], color='y') plt.close('all') # Pipeline module order, to be filled in by the @module decorator. pipeline_modules = [] pipeline_module_names = [] def module(func): """ Annotation for pipeline module functions. This function adds the given function to the registry list. It also wraps the given function to log a pre/post-call banner. """ @functools.wraps(func) def wrapper(*args, **kwargs): logger.info("=" * 70) logger.info("RUNNING MODULE: %s", func.__name__) result = func(*args, **kwargs) logger.info("=" * 70) logger.info("") return result pipeline_modules.append(wrapper) pipeline_module_names.append(wrapper.__name__) return wrapper def save_data(path, data, **kwargs): """ Save a DataFrame as csv, creating all intermediate directories. Extra kwargs will be passed through to pandas.DataFrame.to_csv. """ if not path.name.endswith(".csv"): raise ValueError("Path must end with .csv") path.parent.mkdir(parents=True, exist_ok=True) data.to_csv(path, **kwargs) def save_figure(path, figure=None, **kwargs): """ Save a matplotlib figure as pdf, creating all intermediate directories. A figure may be passed explicitly, or the matplotlib current figure will be used. Extra kwargs will be passed through to matplotlib.pyplot.savefig. """ if not path.name.endswith(".pdf"): raise ValueError("Path must end with .pdf") if figure is None: figure = plt.gcf() path.parent.mkdir(parents=True, exist_ok=True) figure.savefig(str(path), **kwargs) def open_dashboards(path, **kwargs): """ Open Python shelve containing dashboard data in dictionary form. """ os.chdir(path) dashboards_shlf = shelve.open('dashboards.shelve', writeback=True) return dashboards_shlf def categorical_cmap(numUniqueSamples, uniqueSampleNames, numCatagories, reverseSampleOrder=False, flipColorOrder=False, cmap='seaborn_default', continuous=False): """ Generate a categorical colormap of length numUniqueSamples. cmap = 'tab10', 'seaborn_default', etc. """ if cmap == 'seaborn_default': channel_color_list = sns.color_palette() else: # specify and apply color list index order base_colors = plt.get_cmap(cmap) channel_color_list = [base_colors(i) for i in range(base_colors.N)] color_order = [3, 0, 2, 4, 8, 6, 1, 5, 9, 7] if flipColorOrder: color_order =
np.flip(color_order)
numpy.flip
import numpy as np # X: a standard data array (d by n) # y: a standard labels row vector (1 by n) # iters: the number of updates to perform on weights WW # lrate: the learning rate used # K: the mini-batch size to be used import math class Sequential: def __init__(self, modules, loss): self.modules = modules self.loss = loss def mini_gd(self, X, Y, iters, lrate, notif_each=None, K=10): D, N = X.shape np.random.seed(0) num_updates = 0 indices = np.arange(N) while num_updates < iters: np.random.shuffle(indices) X = X[:,indices] # Your code Y = Y[:,indices] # Your code for j in range(math.floor(N/K)): if num_updates >= iters: break # Implement the main part of mini_gd here Xt = X[:,(j*K):(j+1)*K] # Your code Yt = Y[:,(j*K):(j+1)*K] # Your code # The rest of this function should be similar to your # implementation of Sequential.sgd in HW 7 # Your code Ypred= self.forward(Xt) loss= self.loss.forward(Ypred,Yt) dLdZ= self.loss.backward() self.backward(dLdZ) self.sgd_step(lrate) num_updates += 1 def forward(self, Xt): for m in self.modules: Xt = m.forward(Xt) return Xt def backward(self, delta): for m in self.modules[::-1]: delta = m.backward(delta) def sgd_step(self, lrate): for m in self.modules: m.sgd_step(lrate) class BatchNorm(Module): def __init__(self, m):
np.random.seed(0)
numpy.random.seed
import codecs import copy import gc import json import logging import os import pickle import random import time from typing import List, Tuple, Union # %% os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # %% import matplotlib.pyplot as plt from matplotlib.colors import Normalize import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.decomposition import PCA from sklearn.feature_selection import VarianceThreshold from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.metrics import median_absolute_error, r2_score from sklearn.model_selection import StratifiedKFold from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.preprocessing import Binarizer, KBinsDiscretizer import tensorflow as tf from tensorflow.python.framework import tensor_util from tensorflow.python.keras.utils import losses_utils, tf_utils from tensorflow.python.ops.losses import util as tf_losses_util import tensorflow_addons as tfa import tensorflow_probability as tfp import umap # %% from assessment import calc_uncertainty_regection_curve, f_beta_metrics from uncertainty import ensemble_uncertainties_regression # %% class LossFunctionWrapper(tf.keras.losses.Loss): def __init__(self, fn, reduction=losses_utils.ReductionV2.AUTO, name=None, **kwargs): super(LossFunctionWrapper, self).__init__(reduction=reduction, name=name) self.fn = fn self._fn_kwargs = kwargs def call(self, y_true, y_pred): if tensor_util.is_tensor(y_pred) and tensor_util.is_tensor(y_true): y_pred, y_true = tf_losses_util.squeeze_or_expand_dimensions(y_pred, y_true) return self.fn(y_true, y_pred, **self._fn_kwargs) def get_config(self): config = {} for k, v in six.iteritems(self._fn_kwargs): config[k] = tf.keras.backend.eval(v) if tf_utils.is_tensor_or_variable(v) \ else v base_config = super(LossFunctionWrapper, self).get_config() return dict(list(base_config.items()) + list(config.items())) # %% def npairs_loss(labels, feature_vectors): feature_vectors_normalized = tf.math.l2_normalize(feature_vectors, axis=1) logits = tf.divide( tf.matmul( feature_vectors_normalized, tf.transpose(feature_vectors_normalized) ), 0.5 # temperature ) return tfa.losses.npairs_loss(tf.squeeze(labels), logits) # %% class NPairsLoss(LossFunctionWrapper): def __init__(self, reduction=losses_utils.ReductionV2.AUTO, name='m_pairs_loss'): super(NPairsLoss, self).__init__(npairs_loss, name=name, reduction=reduction) # %% def build_preprocessor(X: np.ndarray, colnames: List[str]) -> Pipeline: X_ = Pipeline(steps=[ ( 'imputer', SimpleImputer( missing_values=np.nan, strategy='constant', fill_value=-1.0 ) ), ( 'scaler', MinMaxScaler() ) ]).fit_transform(X) X_ = np.rint(X_ * 100000.0).astype(np.int32) binary_features = dict() categorical_features = dict() removed_features = [] for col_idx in range(X.shape[1]): values = set(X_[:, col_idx].tolist()) print(f'Column {col_idx} "{colnames[col_idx]}" has ' \ f'{len(values)} unique values.') if len(values) > 1: if len(values) < 3: binary_features[col_idx] = np.min(X[:, col_idx]) else: categorical_features[col_idx] = len(values) else: removed_features.append(col_idx) del values del X_ all_features = set(range(X.shape[1])) useful_features = sorted(list(all_features - set(removed_features))) if len(useful_features) == 0: raise ValueError('Training inputs are bad. All features are removed.') print(f'There are {X.shape[1]} features.') if len(removed_features) > 0: print(f'These features will be removed: ' \ f'{[colnames[col_idx] for col_idx in removed_features]}.') transformers = [] if (len(categorical_features) > 0) and (len(binary_features) > 0): print(f'There are {len(categorical_features)} categorical ' \ f'features and {len(binary_features)} binary features.') elif len(categorical_features) > 0: print(f'There are {len(categorical_features)} categorical features.') else: print(f'There are {len(binary_features)} binary features.') for col_idx in categorical_features: n_unique_values = categorical_features[col_idx] transformers.append( ( colnames[col_idx], KBinsDiscretizer( n_bins=min(max(n_unique_values // 3, 3), 256), encode='ordinal', strategy=('quantile' if n_unique_values > 50 else 'kmeans') ), (col_idx,) ) ) for col_idx in binary_features: transformers.append( ( colnames[col_idx], Binarizer(threshold=0.0), (col_idx,) ) ) preprocessor = Pipeline(steps=[ ( 'imputer', SimpleImputer( missing_values=np.nan, strategy='constant', fill_value=-1.0 ) ), ( 'minmax_scaler', MinMaxScaler() ), ( 'composite_transformer', ColumnTransformer( transformers=transformers, sparse_threshold=0.0, n_jobs=1 ) ), ( 'selector', VarianceThreshold() ), ( 'standard_scaler', StandardScaler(with_mean=True, with_std=True) ), ( 'pca', PCA(random_state=42) ) ]) return preprocessor.fit(X) # %% def reduce_dimensions_of_data(features: np.ndarray) -> np.ndarray: preprocessed_features = Pipeline( steps=[ ('scaler', StandardScaler()), ('pca', PCA(n_components=features.shape[1] // 3, random_state=42)) ] ).fit_transform(features) print('Features are preprocessed.') reduced_features = umap.UMAP( low_memory=False, n_jobs=-1, random_state=42, verbose=True ).fit_transform(preprocessed_features) print('Feature space is reduced.') del preprocessed_features return reduced_features # %% def show_temperature(features: np.ndarray, targets: np.ndarray, title: str = '', figure_id: int = 0): if features.shape[0] != targets.shape[0]: err_msg = f'Features do not correspond to targets! ' \ f'{features.shape[0]} != {targets.shape[0]}' raise ValueError(err_msg) if len(features.shape) != 2: err_msg = f'Features are wrong! Expected 2-D array, got ' \ f'{len(features.shape)}-D one.' raise ValueError(err_msg) if features.shape[1] != 2: err_msg = f'Features are wrong! Expected number of ' \ f'columns is 2, got {features.shape[1]}.' raise ValueError(err_msg) if len(targets.shape) != 1: err_msg = f'Targets are wrong! Expected 1-D array, got ' \ f'{len(targets.shape)}-D one.' raise ValueError(err_msg) sorted_targets = sorted(targets.tolist()) n_percentile2 = max(int(round(0.01 * len(sorted_targets))), 1) min_target = sorted_targets[n_percentile2] max_target = sorted_targets[-n_percentile2] del sorted_targets clipped_targets = np.empty(targets.shape, dtype=np.float64) for sample_idx in range(targets.shape[0]): if targets[sample_idx] < min_target: clipped_targets[sample_idx] = min_target elif targets[sample_idx] > max_target: clipped_targets[sample_idx] = max_target else: clipped_targets[sample_idx] = targets[sample_idx] temperature_colors = clipped_targets.tolist() temperature_norm = Normalize(vmin=np.min(temperature_colors), vmax=np.max(temperature_colors)) fig = plt.figure(figure_id, figsize=(11, 11)) plt.scatter(x=features[:, 0], y=features[:, 1], marker='o', cmap=plt.cm.get_cmap("jet"), c=temperature_colors, norm=temperature_norm) if len(title) > 0: plt.title(f'UMAP projections of weather data {title} (temperature)') else: plt.title(f'UMAP projections of weather data (temperature)') plt.colorbar() plt.show() # %% def filter_dataset(y: np.ndarray) -> List[int]: all_values = sorted(y.tolist()) n = len(all_values) if n <= 10000: err_msg = f'y is wrong! Expected length of y is greater than 10000, ' \ f'but got {n}.' raise ValueError(err_msg) y001 = all_values[int(round((n - 1) * 0.001))] y999 = all_values[int(round((n - 1) * 0.999))] del all_values filtered_indices = list(filter( lambda idx: (y[idx] > y001) and (y[idx] < y999), range(n) )) return filtered_indices # %% def build_neural_network(input_size: int, layer_size: int, n_layers: int, dropout_rate: float, scale_coeff: float, nn_name: str) -> tf.keras.Model: feature_vector = tf.keras.layers.Input( shape=(input_size,), dtype=tf.float32, name=f'{nn_name}_feature_vector' ) outputs = [] hidden_layer = tf.keras.layers.AlphaDropout( rate=dropout_rate, seed=random.randint(0, 2147483647), name=f'{nn_name}_dropout1' )(feature_vector) for layer_idx in range(1, (2 * n_layers) // 3 + 1): try: kernel_initializer = tf.keras.initializers.LecunNormal( seed=random.randint(0, 2147483647) ) except: kernel_initializer = tf.compat.v1.keras.initializers.lecun_normal( seed=random.randint(0, 2147483647) ) hidden_layer = tf.keras.layers.Dense( units=layer_size, activation='selu', kernel_initializer=kernel_initializer, bias_initializer='zeros', name=f'{nn_name}_dense{layer_idx}' )(hidden_layer) hidden_layer = tf.keras.layers.AlphaDropout( rate=dropout_rate, seed=random.randint(0, 2147483647), name=f'{nn_name}_dropout{layer_idx + 1}' )(hidden_layer) try: kernel_initializer = tf.keras.initializers.LecunNormal( seed=random.randint(0, 2147483647) ) except: kernel_initializer = tf.compat.v1.keras.initializers.lecun_normal( seed=random.randint(0, 2147483647) ) projection_layer = tf.keras.layers.Dense( units=50, activation=None, use_bias=False, kernel_initializer=kernel_initializer, name=f'{nn_name}_projection' )(hidden_layer) for layer_idx in range((2 * n_layers) // 3 + 1, n_layers + 1): try: kernel_initializer = tf.keras.initializers.LecunNormal( seed=random.randint(0, 2147483647) ) except: kernel_initializer = tf.compat.v1.keras.initializers.lecun_normal( seed=random.randint(0, 2147483647) ) hidden_layer = tf.keras.layers.Dense( units=layer_size, activation='selu', kernel_initializer=kernel_initializer, bias_initializer='zeros', name=f'{nn_name}_dense{layer_idx}' )(hidden_layer) hidden_layer = tf.keras.layers.AlphaDropout( rate=dropout_rate, seed=random.randint(0, 2147483647), name=f'{nn_name}_dropout{layer_idx + 1}' )(hidden_layer) try: kernel_initializer = tf.keras.initializers.LecunNormal( seed=random.randint(0, 2147483647) ) except: kernel_initializer = tf.compat.v1.keras.initializers.lecun_normal( seed=random.randint(0, 2147483647) ) output_layer = tf.keras.layers.Dense( units=2, activation=None, use_bias=False, kernel_initializer=kernel_initializer, name=f'{nn_name}_output' )(hidden_layer) bayesian_layer = tfp.layers.DistributionLambda( lambda t: tfp.distributions.Normal( loc=t[..., :1], scale=1e-6 + tf.math.softplus((1.0 / scale_coeff) * t[..., 1:]) ), name=f'{nn_name}_distribution' )(output_layer) neural_network = tf.keras.Model( inputs=feature_vector, outputs=[bayesian_layer, projection_layer], name=nn_name ) negloglik = lambda y, rv_y: -rv_y.log_prob(y) radam = tfa.optimizers.RectifiedAdam(learning_rate=3e-4) ranger = tfa.optimizers.Lookahead(radam, sync_period=6, slow_step_size=0.5) losses = { f'{nn_name}_distribution': negloglik, f'{nn_name}_projection': NPairsLoss() } loss_weights = { f'{nn_name}_distribution': 1.0, f'{nn_name}_projection': 0.5 } metrics = { f'{nn_name}_distribution': [ tf.keras.metrics.MeanAbsoluteError() ] } neural_network.compile( optimizer=ranger, loss=losses, loss_weights=loss_weights, metrics=metrics ) return neural_network # %% def show_training_process(history: tf.keras.callbacks.History, metric_name: str, figure_id: int = 1, comment: str = ''): val_metric_name = 'val_' + metric_name if metric_name not in history.history: err_msg = f'The metric "{metric_name}" is not found! Available metrics are: ' \ f'{list(history.history.keys())}.' raise ValueError(err_msg) plt.figure(figure_id, figsize=(5, 5)) interesting_metric = history.history[metric_name] plt.plot(list(range(len(interesting_metric))), interesting_metric, label=f'Training {metric_name}') if val_metric_name in history.history: interesting_val_metric = history.history[val_metric_name] assert len(interesting_metric) == len(interesting_val_metric) plt.plot(list(range(len(interesting_val_metric))), interesting_val_metric, label=f'Validation {metric_name}') plt.xlabel('Epochs') plt.ylabel(metric_name) if len(comment) > 0: plt.title(f'Training process of {comment}') else: plt.title('Training process') plt.legend(loc='best') plt.show() # %% def predict_with_single_nn(input_data: np.ndarray, model_for_prediction: tf.keras.Model, batch_size: int, output_scaler: StandardScaler) \ -> Tuple[np.ndarray, np.ndarray]: if len(input_data.shape) != 2: err_msg = f'The `input_data` argument is wrong! Expected 2-D array, ' \ f'got {len(input_data.shape)}-D one!' raise ValueError(err_msg) n_batches = int(np.ceil(input_data.shape[0] / float(batch_size))) pred_mean = [] pred_std = [] for batch_idx in range(n_batches): batch_start = batch_idx * batch_size batch_end = min(input_data.shape[0], batch_start + batch_size) instant_predictions = model_for_prediction(input_data[batch_start:batch_end])[0] if not isinstance(instant_predictions, tfp.distributions.Distribution): err_msg = f'Minibatch {batch_idx}: predictions are wrong! ' \ f'Expected tfp.distributions.Distribution, ' \ f'got {type(instant_predictions)}.' raise ValueError(err_msg) instant_mean = instant_predictions.mean() instant_std = instant_predictions.stddev() del instant_predictions if not isinstance(instant_mean, np.ndarray): instant_mean = instant_mean.numpy() if not isinstance(instant_std, np.ndarray): instant_std = instant_std.numpy() instant_mean = instant_mean.astype(np.float64).flatten() instant_std = instant_std.astype(np.float64).flatten() pred_mean.append(instant_mean) pred_std.append(instant_std) del instant_mean, instant_std pred_mean = np.concatenate(pred_mean) pred_std = np.concatenate(pred_std) pred_mean = output_scaler.inverse_transform( pred_mean.reshape((input_data.shape[0], 1)) ).flatten() pred_std *= output_scaler.scale_[0] return pred_mean, pred_std * pred_std # %% def evaluate_single_nn(pred_means: np.ndarray, pred_vars: np.ndarray, true_outputs: np.ndarray) -> float: if len(pred_means.shape) != 1: err_msg = f'The `pred_means` argument is wrong! Expected 1-D array, ' \ f'got {len(pred_means.shape)}-D one.' raise ValueError(err_msg) if len(pred_vars.shape) != 1: err_msg = f'The `pred_vars` argument is wrong! Expected 1-D array, ' \ f'got {len(pred_vars.shape)}-D one.' raise ValueError(err_msg) if len(true_outputs.shape) != 1: err_msg = f'The `true_outputs` argument is wrong! Expected 1-D array, ' \ f'got {len(true_outputs.shape)}-D one.' raise ValueError(err_msg) n_test_samples = true_outputs.shape[0] if n_test_samples < 5: raise ValueError(f'Number of test samples = {n_test_samples} is too small!') if n_test_samples != pred_means.shape[0]: err_msg = f'The `pred_means` does not correspond to the `true_outputs`! ' \ f'{pred_means.shape[0]} != {n_test_samples}' raise ValueError(err_msg) if n_test_samples != pred_vars.shape[0]: err_msg = f'The `pred_vars` does not correspond to the `true_outputs`! ' \ f'{pred_vars.shape[0]} != {n_test_samples}' raise ValueError(err_msg) all_preds_ = np.empty((1, n_test_samples, 2), dtype=np.float32) all_preds_[0, :, 0] = pred_means all_preds_[0, :, 1] = pred_vars all_uncertainty_ = ensemble_uncertainties_regression(all_preds_) uncertainties = all_uncertainty_['tvar'] del all_preds_, all_uncertainty_ errors = (pred_means - true_outputs) ** 2 rejection_mse_ = calc_uncertainty_regection_curve(errors, uncertainties) return
np.mean(rejection_mse_)
numpy.mean
#!/usr/bin/python # -*- encoding: utf-8 -*- from logger import setup_logger from models.model_stages import BiSeNet from cityscapes import CityScapes import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.nn.functional as F import torch.distributed as dist import os import os.path as osp import logging import time import numpy as np from tqdm import tqdm import math # miou算法 class MscEvalV0(object): def __init__(self, scale=0.5, ignore_label=255): self.ignore_label = ignore_label self.scale = scale # 传递net网络,dl数据集,n_classes种类 def __call__(self, net, dl, n_classes): ## evaluate # hist矩阵 hist = torch.zeros(n_classes, n_classes).cuda().detach() if dist.is_initialized() and dist.get_rank() != 0: diter = enumerate(dl) else: diter = enumerate(tqdm(dl)) for i, (imgs, label) in diter: # 这里在测试中莫名奇妙的包了一层1, N, _, H, W = label.shape label = label.squeeze(1).cuda() # 转换一下维度 # 如上述所言 size = label.size()[-2:] imgs = imgs.cuda() N, C, H, W = imgs.size() new_hw = [int(H * self.scale), int(W * self.scale)] imgs = F.interpolate(imgs, new_hw, mode='bilinear', align_corners=True) logits = net(imgs)[0] logits = F.interpolate(logits, size=size, mode='bilinear', align_corners=True) probs = torch.softmax(logits, dim=1) preds = torch.argmax(probs, dim=1) keep = label != self.ignore_label hist += torch.bincount( label[keep] * n_classes + preds[keep], minlength=n_classes ** 2 ).view(n_classes, n_classes).float() if dist.is_initialized(): dist.all_reduce(hist, dist.ReduceOp.SUM) ious = hist.diag() / (hist.sum(dim=0) + hist.sum(dim=1) - hist.diag()) miou = ious.mean() return miou.item() # 验证函数,dspth为根目录 def evaluatev0(respth='./pretrained', dspth='./data', backbone='CatNetSmall', scale=0.75, use_boundary_2=False, use_boundary_4=False, use_boundary_8=False, use_boundary_16=False, use_conv_last=False): print('scale', scale) print('use_boundary_2', use_boundary_2) print('use_boundary_4', use_boundary_4) print('use_boundary_8', use_boundary_8) print('use_boundary_16', use_boundary_16) ## dataset batchsize = 5 n_workers = 2 dsval = CityScapes(dspth, mode='val') dl = DataLoader(dsval, batch_size=batchsize, shuffle=False, num_workers=n_workers, drop_last=False) n_classes = 19 print("backbone:", backbone) net = BiSeNet(backbone=backbone, n_classes=n_classes, use_boundary_2=use_boundary_2, use_boundary_4=use_boundary_4, use_boundary_8=use_boundary_8, use_boundary_16=use_boundary_16, use_conv_last=use_conv_last) net.load_state_dict(torch.load(respth)) net.cuda() net.eval() with torch.no_grad(): single_scale = MscEvalV0(scale=scale) mIOU = single_scale(net, dl, 19) logger = logging.getLogger() logger.info('mIOU is: %s\n', mIOU) class MscEval(object): def __init__(self, model, dataloader, scales=[0.5, 0.75, 1, 1.25, 1.5, 1.75], n_classes=19, lb_ignore=255, cropsize=1024, flip=True, *args, **kwargs): self.scales = scales self.n_classes = n_classes self.lb_ignore = lb_ignore self.flip = flip self.cropsize = cropsize ## dataloader self.dl = dataloader self.net = model def pad_tensor(self, inten, size): N, C, H, W = inten.size() outten = torch.zeros(N, C, size[0], size[1]).cuda() outten.requires_grad = False margin_h, margin_w = size[0] - H, size[1] - W hst, hed = margin_h // 2, margin_h // 2 + H wst, wed = margin_w // 2, margin_w // 2 + W outten[:, :, hst:hed, wst:wed] = inten return outten, [hst, hed, wst, wed] def eval_chip(self, crop): with torch.no_grad(): out = self.net(crop)[0] prob = F.softmax(out, 1) if self.flip: crop = torch.flip(crop, dims=(3,)) out = self.net(crop)[0] out = torch.flip(out, dims=(3,)) prob += F.softmax(out, 1) prob = torch.exp(prob) return prob def crop_eval(self, im): cropsize = self.cropsize stride_rate = 5 / 6. N, C, H, W = im.size() long_size, short_size = (H, W) if H > W else (W, H) if long_size < cropsize: im, indices = self.pad_tensor(im, (cropsize, cropsize)) prob = self.eval_chip(im) prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]] else: stride = math.ceil(cropsize * stride_rate) if short_size < cropsize: if H < W: im, indices = self.pad_tensor(im, (cropsize, W)) else: im, indices = self.pad_tensor(im, (H, cropsize)) N, C, H, W = im.size() n_x = math.ceil((W - cropsize) / stride) + 1 n_y = math.ceil((H - cropsize) / stride) + 1 prob = torch.zeros(N, self.n_classes, H, W).cuda() prob.requires_grad = False for iy in range(n_y): for ix in range(n_x): hed, wed = min(H, stride * iy + cropsize), min(W, stride * ix + cropsize) hst, wst = hed - cropsize, wed - cropsize chip = im[:, :, hst:hed, wst:wed] prob_chip = self.eval_chip(chip) prob[:, :, hst:hed, wst:wed] += prob_chip if short_size < cropsize: prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]] return prob def scale_crop_eval(self, im, scale): N, C, H, W = im.size() new_hw = [int(H * scale), int(W * scale)] im = F.interpolate(im, new_hw, mode='bilinear', align_corners=True) prob = self.crop_eval(im) prob = F.interpolate(prob, (H, W), mode='bilinear', align_corners=True) return prob def compute_hist(self, pred, lb): n_classes = self.n_classes ignore_idx = self.lb_ignore keep = np.logical_not(lb == ignore_idx) merge = pred[keep] * n_classes + lb[keep] hist = np.bincount(merge, minlength=n_classes ** 2) hist = hist.reshape((n_classes, n_classes)) return hist def evaluate(self): ## evaluate n_classes = self.n_classes hist = np.zeros((n_classes, n_classes), dtype=np.float32) dloader = tqdm(self.dl) if dist.is_initialized() and not dist.get_rank() == 0: dloader = self.dl for i, (imgs, label) in enumerate(dloader): N, _, H, W = label.shape probs = torch.zeros((N, self.n_classes, H, W)) probs.requires_grad = False imgs = imgs.cuda() for sc in self.scales: # prob = self.scale_crop_eval(imgs, sc) prob = self.eval_chip(imgs) probs += prob.detach().cpu() probs = probs.data.numpy() preds = np.argmax(probs, axis=1) hist_once = self.compute_hist(preds, label.data.numpy().squeeze(1)) hist = hist + hist_once IOUs = np.diag(hist) / (
np.sum(hist, axis=0)
numpy.sum
import json import os import sys import math import glob import numpy as np import random import csv import subprocess import time #Before using, open Dream3D and set the folder that you want the output files in. #Functions here used to change the pipeline only affect the name of the output file #not the directory. #Type directory containing json files for Dream3D Pipelines pipelineDirectory = '/home/jackyl/Desktop/Dream3DPyTest/Pipes/FilterPipelines' #PipelineRunnerDirectory # Currently this requires that the PipelineRunner file be placed in the Plugins # directory of the DREAM3D files. pipeRunnerDirectory = '/home/jackyl/Desktop/Dream3DPyTest/Dream3D-6.3.29/Plugins' #Path to output directory outputDirectory = '/home/jackyl/Desktop/Dream3DPyTest/VolFrac' ################################################ #Housekeeping - Managing files ################################################ def openPipeline(filePath): #Open JSON for editing with open(filePath, 'r') as jsonData: pipeData = json.load(jsonData) return pipeData def updatePipeline(pipeData, filePath): #Overwrite JSON with open(filePath, "w") as jsonFile: jsonFile.write(json.dumps(pipeData)) def runPipelineRunner(pipeline): # Changed Working Directory to where my pipelinerunner command was # This may not be necessary on your machine, check with PipelineRunner Docs for Dream3D # and adjust cwd as necessary # Runs PipelineRunner in Terminal - subprocess should not continue unless previous is done. subprocess.call(['./PipelineRunner', '-p', pipeline], cwd =pipeRunnerDirectory) # # This is also valid, and allows starting several DREAM3D processes, but does not stop # even if it uses all the RAM available and crashes # USE AS YOUR OWN RISK (Add a time.sleep call to the trial function) # subprocess.Popen(['./PipelineRunner', '-p', pipeline], # cwd=pipeRunnerDirectory) ################################################ # JSON Editing Functions ################################################ def changeMuAndSD(pipeData, newMu, newSD, phase=1, cutoff=4): #Overwrite JSON with new Mu and SD for item in pipeData: if (item != "PipelineBuilder" and int(item) == 0): section = item pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Distribution']['Average'] = newMu pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Distribution']['Standard Deviation'] = newSD pipeData[section]['StatsDataArray'][str(phase)]['Feature_Diameter_Info'][1] = math.exp(newMu + newSD*cutoff) pipeData[section]['StatsDataArray'][str(phase)]['Feature_Diameter_Info'][2] = math.exp(newMu - newSD*cutoff) def changePhaseFraction(pipeData, fraction, phase=1): #Overwrite JSON with new volume fraction for the phase for item in pipeData: if (item != "PipelineBuilder" and int(item) == 0): section = item pipeData[section]['StatsDataArray'][str(phase)]['PhaseFraction'] = fraction def changeDimensions(pipeData, inputX, inputY, inputZ): #Overwrite JSON with new Volume Size pipeData['01']['Dimensions']['y'] = inputY pipeData['01']['Dimensions']['x'] = inputX pipeData['01']['Dimensions']['z'] = inputZ def changeResolution(pipeData, inputX, inputY, inputZ): #Overwrite JSON with new Resolution pipeData['01']['Resolution']['y'] = inputY pipeData['01']['Resolution']['x'] = inputX pipeData['01']['Resolution']['z'] = inputZ def changeShapeDist(pipeData, alpha1, beta1, alpha2, beta2, phase=1): #Overwrite JSON with new shape distributions (Controlling Alpha/Beta parameters) for item in pipeData: if (item != "PipelineBuilder" and int(item) == 0): section = item pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs B Over A Distributions']['Alpha'] = [alpha1]*6 pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs B Over A Distributions']['Beta'] = [beta1]*6 pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs C Over A Distributions']['Alpha'] = [alpha2]*6 pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs C Over A Distributions']['Beta'] = [beta2]*6 def changeOutputFileName(pipeData, typeOfFile, newFileName, outputDir=outputDirectory): # NOTE - Only changes the file name, does not change containing directories # DO NOT HAVE "/" IN THE NEW FILE NAME # typeOfFile - csv, dream3d - depends if the filter exists already if (typeOfFile == "csv"): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == 'Write Feature Data as CSV File'): section = part output = 'FeatureDataFile' elif (typeOfFile == "dream3d"): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == 'Write DREAM.3D Data File'): section = part output = 'OutputFile' elif (typeOfFile == 'polefig'): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == 'Write Pole Figure Images'): section = part elif(typeOfFile == 'FFT'): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == "Write Los Alamos FFT File"): section = part if (outputDir != None and typeOfFile != 'polefig' and typeOfFile != 'FFT'): pipeData[section][output] = outputDir + "/" + newFileName elif (typeOfFile == 'polefig'): pipeData[section]['OutputPath'] = outputDir pipeData[section]['ImagePrefix'] = newFileName elif (typeOfFile == 'FFT'): pipeData[section]['OutputFile'] = outputDir + "/" + newFileName pipeData[section]['FeatureIdsArrayPath']['OutputFile'] = outputDir + "/" + newFileName else: curName = pipeData[section][output] partList = curName.split("/") partList[-1] = newFileName newName = '/'.join(partList) pipeData[section][output] = newName def changeODF(pipeData, e1, e2, e3, wt, sigma, phase=1): #Change ODF requires e1, e2, e3 to be in degrees if (type(e1) != list): e1 = [e1] if (type(e2) != list): e2 = [e2] if (type(e3) != list): e3 = [e3] if (type(wt) != list): wt = [wt] if (type(sigma) != list): sigma = [sigma] e1 = list(map(lambda x: math.radians(x), e1)) e2 = list(map(lambda x: math.radians(x), e2)) e3 = list(map(lambda x: math.radians(x), e3)) if (e1 == [] or e2 == [] or e3 == [] or wt == [] or sigma == []): pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights'] = {} else: pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Weight'] = wt pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Sigma'] = sigma pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Euler 1'] = e1 pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Euler 2'] = e2 pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Euler 3'] = e3 ################################################ # Texture Helper Functions ################################################ def eulerAnglesToMatrix(eulerAngle): #Angles are in Degrees phi1 = eulerAngle[0] Phi = eulerAngle[1] phi2 = eulerAngle[2] Z1 = np.matrix([[math.cos(phi1), math.sin(phi1), 0], [-math.sin(phi1), math.cos(phi1), 0], [0, 0, 1]]) Z2 = np.matrix([[math.cos(phi2), math.sin(phi2), 0], [-math.sin(phi2), math.cos(phi2), 0], [0, 0, 1]]) X = np.matrix([[1, 0, 0], [0, math.cos(Phi), math.sin(Phi)], [0, -math.sin(Phi), math.cos(Phi)]]) mat = Z2 * X * Z1 return mat def matrixToEuler(g): if (g[2,2] == 1): A2 = 0 A1 = np.arctan2(g[0,1], g[0,0])/2 A3 = A1 else: A2 = math.acos(g[2, 2]) A1 = np.arctan2(g[2,0]/math.sin(A2), -g[2,1]/math.sin(A2)) A3 = np.arctan2(g[0,2]/math.sin(A2), g[1,2]/math.sin(A2)) return np.degrees(np.matrix([A1, A2, A3])) def millerIndexToMatrix(b, n): #Requires b and n to be np.matrix types bnorm = b / np.linalg.norm(b) nnorm = n / np.linalg.norm(n) t = np.cross(nnorm, bnorm) tnorm = t /
np.linalg.norm(t)
numpy.linalg.norm
import sys import os from RGBDPose.utils import ply_loader import numpy as np import json import open3d import copy def load_pcd(cat): # load meshes model_vsd = ply_loader.load_ply(cat) return model_vsd['pts'] def main(argv): root = argv[0] samples = argv[1] meshes = os.listdir(argv[0]) meshes = [k for k in meshes if k.endswith('.ply')] mesh_dict = dict() for mesh_name in meshes: if mesh_name[-3:] == 'ply': path = root + '/' + mesh_name pts = load_pcd(path) colors = np.zeros(pts.shape) pcd_model = open3d.PointCloud() pcd_model.points = open3d.Vector3dVector(pts) pcd_model.colors = open3d.Vector3dVector(colors) draw_models = [] draw_models.append(pcd_model) print(mesh_name) control_points = np.zeros((1, 3), dtype=np.float32) # choose starting point norms = np.linalg.norm(pts, 2, 1) first_k = np.argmax(norms) control_points[0, :] = pts[first_k, :] mesh_sphere = open3d.create_mesh_coordinate_frame(size=0.01, origin=pts[first_k, :]) # geometry.TriangleMesh. mesh_sphere.paint_uniform_color([0.1, 0.1, 0.7]) draw_models.append(mesh_sphere) max_x = np.max(pts[:, 0]) min_x = np.min(pts[:, 0]) max_y = np.max(pts[:, 1]) min_y = np.min(pts[:, 1]) max_z = np.max(pts[:, 2]) min_z = np.min(pts[:, 2]) x_dim = (max_x - min_x) #* 0.5 y_dim = (max_y - min_y) #* 0.5 z_dim = (max_z - min_z) #* 0.5 #min_side_length = min([x_dim], [y_dim], [z_dim]) min_side_length = (x_dim + y_dim + z_dim)/7 print(min_side_length) for k in range(int(samples)-1): distances = [] for ind, q_p in enumerate(pts): dist_sum = 0.0 skipped = False for p_p in range(control_points.shape[0]): dist_poi = np.linalg.norm((q_p - control_points[p_p, :]), 2) dist_sum += dist_poi if dist_poi < min_side_length: skipped = True if skipped == True: # hell of a bad workaround distances.append(0.0) else: distances.append(dist_sum) point_k = np.argmax(distances) print(distances[point_k]) cp_now = np.zeros((1, 3), dtype=np.float32) cp_now[0, :] = pts[point_k, :] mesh_sphere = open3d.create_mesh_coordinate_frame(size=0.01, origin=pts[point_k, :]) # geometry.TriangleMesh. mesh_sphere.paint_uniform_color([0.1, 0.1, 0.7]) #mesh_transform = np.ones((4, 4)) #mesh_transform[0, 3] = pts[point_k, 0] #mesh_transform[1, 3] = pts[point_k, 1] #mesh_transform[2, 3] = pts[point_k, 2] #mesh_sphere.transform(mesh_transform) #open3d.draw_geometries([mesh_sphere]) draw_models.append(mesh_sphere) control_points =
np.concatenate([control_points, cp_now], axis=0)
numpy.concatenate
""" @ <NAME> (<EMAIL>), May 2021 @ <NAME> (<EMAIL>) Demonstration of the extraction of training and evaluation sets based on grain segmentation by the LRC-MRM method. """ import os import numpy as np from scipy import ndimage from skimage.feature import peak_local_max from lib.segmentation import run_lrc_mrm import warnings warnings.filterwarnings("ignore") def run_test(ms=8, cps=20, ssize=5_000, debug=False, save_it=False): """ Runs the data extraction test. Args: ms: Exclusion distance to closest grain boundary (in px). cps: Size of the NMF basis (pseudo-parameter of the grain segmentation algorithm). ssize: Random sampling size (pseudo-parameter of the grain segmentation algorithm). debug: if True, stops the process after 1 window instead of processing the whole dataset. save_it: whether to save the extracted dataset or not. If True, creates a NPY file (extracted_set_test.npy) containing a dataset of (1) DRM signals extracted from the specimen and (2) the corresponding EBSD orientations. """ # Specify root directory root = os.path.realpath(__file__) root = os.path.abspath(os.path.join(os.path.dirname(root), 'data/')) # Open DRM dataset data = np.load(f'{root}/drm_data.npy') rx, ry, s0, s1 = data.shape # Open EBSD euler map (labels for training / evaluation) eulers = np.load(f'{root}/eulers.npy') def data_window_generator(): """ Yields a sliding window of (200 x 200) pixels across the dataset. """ window_size_x, window_size_y = (200, 200) x_indeces = np.floor(rx // window_size_x) residual_x = rx - window_size_x * x_indeces y_indeces =
np.floor(ry // window_size_y)
numpy.floor
import numpy as np from math import ceil from numpy import linalg as LA import pandas as pd from collections import defaultdict from typing import Dict, List, Tuple import matplotlib.pyplot as plt from itertools import chain from copy import deepcopy colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] class SensorArray: times: np.ndarray = None data: np.ndarray = None def __init__(self, times, data): self.times = times self.data = data def get_time_index(self, t): return np.sum(self.times < t) def get_interval(self, t_start, t_end) -> 'SensorArray': s = self.get_time_index(t_start) e = self.get_time_index(t_end) return SensorArray(self.times[s:e], self.data[:, s:e]) def __deepcopy__(self, memodict={}): return SensorArray(self.times.copy(), self.data.copy()) class Events: times: np.ndarray = None events: List[str] = None def __init__(self, times, events): self.times = times self.events = events def parse_event_times(self, end_code) -> List[Tuple[str, float, float]]: t_events = self.times events = self.events trials = [] start = None for i, c in enumerate(events): if start is None: if c == end_code: raise ValueError( f'Got end code before start code at index {i}, ' f'time {t_events[i]}') start = events[i], t_events[i] else: if c != end_code: raise ValueError( f'Expected end code at index {i}, time {t_events[i]}') trials.append((start[0], start[1], t_events[i])) start = None if start is not None: raise ValueError('Last trial does not have end code') return trials class Trial: previous_trial: 'Trial' = None trial_code: str = '' experiment_data: List[SensorArray] = [] trial_start: float = 0 trial_end: float = 0 pre: List[SensorArray] = [] trial: List[SensorArray] = [] post: List[SensorArray] = [] def __init__( self, experiment_data, trial_code, trial_start, trial_end, previous_trial=None): self.experiment_data = experiment_data self.trial_code = trial_code self.trial_start = trial_start self.trial_end = trial_end self.previous_trial = previous_trial def parse_trial(self, pre_trial_duration, post_trial_duration) -> None: self.pre = [ sensor.get_interval( self.trial_start - pre_trial_duration, self.trial_start) for sensor in self.experiment_data ] self.trial = [ sensor.get_interval(self.trial_start, self.trial_end) for sensor in self.experiment_data ] self.post = [ sensor.get_interval( self.trial_end, self.trial_end + post_trial_duration) for sensor in self.experiment_data ] def __deepcopy__(self, memodict={}): # todo handle previous trial copy trial = Trial( self.experiment_data, self.trial_code, self.trial_start, self.trial_end ) trial.pre = deepcopy(self.pre) trial.trial = deepcopy(self.trial) trial.post = deepcopy(self.post) return trial def get_section(self, section) -> List[np.ndarray]: if section in ('pre', 'trial', 'post'): return [s.data for s in getattr(self, section)] elif section == 'all': data = [[] for _ in self.trial] for i, sensor in enumerate(self.pre): data[i].append(sensor.data) for i, sensor in enumerate(self.trial): data[i].append(sensor.data) for i, sensor in enumerate(self.post): data[i].append(sensor.data) return [
np.concatenate(item, axis=1)
numpy.concatenate
# # Tests of spherical Bessel functions. # from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_almost_equal, assert_allclose, assert_array_almost_equal) import pytest from numpy import sin, cos, sinh, cosh, exp, inf, nan, r_, pi from scipy.special import spherical_jn, spherical_yn, spherical_in, spherical_kn from scipy.integrate import quad from scipy._lib._numpy_compat import suppress_warnings class TestSphericalJn: def test_spherical_jn_exact(self): # https://dlmf.nist.gov/10.49.E3 # Note: exact expression is numerically stable only for small # n or z >> n. x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5]) assert_allclose(spherical_jn(2, x), (-1/x + 3/x**3)*sin(x) - 3/x**2*cos(x)) def test_spherical_jn_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1, x), (2*n + 1)/x*spherical_jn(n, x)) def test_spherical_jn_recurrence_real(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1,x), (2*n + 1)/x*spherical_jn(n, x)) def test_spherical_jn_inf_real(self): # https://dlmf.nist.gov/10.52.E3 n = 6 x = np.array([-inf, inf]) assert_allclose(spherical_jn(n, x), np.array([0, 0])) def test_spherical_jn_inf_complex(self): # https://dlmf.nist.gov/10.52.E3 n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in multiply") assert_allclose(spherical_jn(n, x), np.array([0, 0, inf*(1+1j)])) def test_spherical_jn_large_arg_1(self): # https://github.com/scipy/scipy/issues/2165 # Reference value computed using mpmath, via # besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z)) assert_allclose(spherical_jn(2, 3350.507), -0.00029846226538040747) def test_spherical_jn_large_arg_2(self): # https://github.com/scipy/scipy/issues/1641 # Reference value computed using mpmath, via # besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z)) assert_allclose(spherical_jn(2, 10000), 3.0590002633029811e-05) def test_spherical_jn_at_zero(self): # https://dlmf.nist.gov/10.52.E1 # But note that n = 0 is a special case: j0 = sin(x)/x -> 1 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_jn(n, x), np.array([1, 0, 0, 0, 0, 0])) class TestSphericalYn: def test_spherical_yn_exact(self): # https://dlmf.nist.gov/10.49.E5 # Note: exact expression is numerically stable only for small # n or z >> n. x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5]) assert_allclose(spherical_yn(2, x), (1/x - 3/x**3)*cos(x) - 3/x**2*sin(x)) def test_spherical_yn_recurrence_real(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1,x), (2*n + 1)/x*spherical_yn(n, x)) def test_spherical_yn_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1, x), (2*n + 1)/x*spherical_yn(n, x)) def test_spherical_yn_inf_real(self): # https://dlmf.nist.gov/10.52.E3 n = 6 x = np.array([-inf, inf]) assert_allclose(spherical_yn(n, x), np.array([0, 0])) def test_spherical_yn_inf_complex(self): # https://dlmf.nist.gov/10.52.E3 n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in multiply") assert_allclose(spherical_yn(n, x), np.array([0, 0, inf*(1+1j)])) def test_spherical_yn_at_zero(self): # https://dlmf.nist.gov/10.52.E2 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_yn(n, x), np.full(n.shape, -inf)) def test_spherical_yn_at_zero_complex(self): # Consistently with numpy: # >>> -np.cos(0)/0 # -inf # >>> -np.cos(0+0j)/(0+0j) # (-inf + nan*j) n = np.array([0, 1, 2, 5, 10, 100]) x = 0 + 0j assert_allclose(spherical_yn(n, x), np.full(n.shape, nan)) class TestSphericalJnYnCrossProduct: def test_spherical_jn_yn_cross_product_1(self): # https://dlmf.nist.gov/10.50.E3 n = np.array([1, 5, 8]) x = np.array([0.1, 1, 10]) left = (spherical_jn(n + 1, x) * spherical_yn(n, x) - spherical_jn(n, x) * spherical_yn(n + 1, x)) right = 1/x**2 assert_allclose(left, right) def test_spherical_jn_yn_cross_product_2(self): # https://dlmf.nist.gov/10.50.E3 n = np.array([1, 5, 8]) x = np.array([0.1, 1, 10]) left = (spherical_jn(n + 2, x) * spherical_yn(n, x) - spherical_jn(n, x) * spherical_yn(n + 2, x)) right = (2*n + 3)/x**3 assert_allclose(left, right) class TestSphericalIn: def test_spherical_in_exact(self): # https://dlmf.nist.gov/10.49.E9 x = np.array([0.12, 1.23, 12.34, 123.45]) assert_allclose(spherical_in(2, x), (1/x + 3/x**3)*sinh(x) - 3/x**2*cosh(x)) def test_spherical_in_recurrence_real(self): # https://dlmf.nist.gov/10.51.E4 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x), (2*n + 1)/x*spherical_in(n, x)) def test_spherical_in_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x), (2*n + 1)/x*spherical_in(n, x)) def test_spherical_in_inf_real(self): # https://dlmf.nist.gov/10.52.E3 n = 5 x = np.array([-inf, inf]) assert_allclose(spherical_in(n, x), np.array([-inf, inf])) def test_spherical_in_inf_complex(self): # https://dlmf.nist.gov/10.52.E5 # Ideally, i1n(n, 1j*inf) = 0 and i1n(n, (1+1j)*inf) = (1+1j)*inf, but # this appears impossible to achieve because C99 regards any complex # value with at least one infinite part as a complex infinity, so # 1j*inf cannot be distinguished from (1+1j)*inf. Therefore, nan is # the correct return value. n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) assert_allclose(spherical_in(n, x), np.array([-inf, inf, nan])) def test_spherical_in_at_zero(self): # https://dlmf.nist.gov/10.52.E1 # But note that n = 0 is a special case: i0 = sinh(x)/x -> 1 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_in(n, x), np.array([1, 0, 0, 0, 0, 0])) class TestSphericalKn: def test_spherical_kn_exact(self): # https://dlmf.nist.gov/10.49.E13 x = np.array([0.12, 1.23, 12.34, 123.45]) assert_allclose(spherical_kn(2, x), pi/2*exp(-x)*(1/x + 3/x**2 + 3/x**3)) def test_spherical_kn_recurrence_real(self): # https://dlmf.nist.gov/10.51.E4 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose((-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x), (-1)**n*(2*n + 1)/x*spherical_kn(n, x)) def test_spherical_kn_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E4 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose((-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x), (-1)**n*(2*n + 1)/x*spherical_kn(n, x)) def test_spherical_kn_inf_real(self): # https://dlmf.nist.gov/10.52.E6 n = 5 x = np.array([-inf, inf]) assert_allclose(spherical_kn(n, x), np.array([-inf, 0])) def test_spherical_kn_inf_complex(self): # https://dlmf.nist.gov/10.52.E6 # The behavior at complex infinity depends on the sign of the real # part: if Re(z) >= 0, then the limit is 0; if Re(z) < 0, then it's # z*inf. This distinction cannot be captured, so we return nan. n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) assert_allclose(spherical_kn(n, x), np.array([-inf, 0, nan])) def test_spherical_kn_at_zero(self): # https://dlmf.nist.gov/10.52.E2 n =
np.array([0, 1, 2, 5, 10, 100])
numpy.array
import torch import torchvision import torchvision.transforms as transforms import numpy as np class IMBALANETINYIMGNET(torchvision.datasets.ImageFolder): cls_num = 200 def __init__(self, root, imb_type='exp', imb_factor=0.01, rand_number=0, transform=None, target_transform=None): super(IMBALANETINYIMGNET, self).__init__(root, transform, target_transform) np.random.seed(rand_number) img_num_list = self.get_img_num_per_cls(self.cls_num, imb_type, imb_factor) self.gen_imbalanced_data(img_num_list) def get_img_num_per_cls(self, cls_num, imb_type, imb_factor): img_max = len(self.samples) / cls_num img_num_per_cls = [] if imb_type == 'exp': for cls_idx in range(cls_num): num = img_max * (imb_factor**(cls_idx / (cls_num - 1.0))) img_num_per_cls.append(int(num)) elif imb_type == 'step': for cls_idx in range(cls_num // 2): img_num_per_cls.append(int(img_max)) for cls_idx in range(cls_num // 2): img_num_per_cls.append(int(img_max * imb_factor)) else: img_num_per_cls.extend([int(img_max)] * cls_num) return img_num_per_cls def gen_imbalanced_data(self, img_num_per_cls): new_data = [] new_targets = [] targets_np = np.array(self.targets, dtype=np.int64) classes =
np.unique(targets_np)
numpy.unique
'''Interpretation of the Siemens GSL functions. Author: <NAME> <<EMAIL>> Copyright (C) 2020 University of Oxford ''' import numpy as np def class_ori(sag_comp, cor_comp, tra_comp, debug): ''' Python implementation of IDEA-VB17/n4/pkg/MrServers/MrMeasSrv/SeqFW/libGSL/fGSLClassOri.cpp Function to determine whether a normal vector describes a sagittal, coronal or transverse slice. Result: CASE = 0: Sagittal CASE = 1: Coronal CASE = 2: Transverse :param sag_comp: Sagittal component of normal vector :param cor_comp: Coronal component of normal vector :param tra_comp: Transverse component of normal vector :return: case (0=Sagittal, 1=Coronal or 2=Transverse) ''' if debug: print(f'Normal vector = {sag_comp : 10.7f} {cor_comp : 10.7f} {tra_comp : 10.7f}.') # Compute some temporary values abs_sag_comp = np.abs(sag_comp) abs_cor_comp = np.abs(cor_comp) abs_tra_comp = np.abs(tra_comp) eq_sag_cor = np.isclose(abs_sag_comp, abs_cor_comp) eq_sag_tra = np.isclose(abs_sag_comp, abs_tra_comp) eq_cor_tra = np.isclose(abs_cor_comp, abs_tra_comp) # Determine the slice orientation (sag, cor, tra) if ((eq_sag_cor & eq_sag_tra) | (eq_sag_cor & (abs_sag_comp < abs_tra_comp)) | (eq_sag_tra & (abs_sag_comp > abs_cor_comp)) | (eq_cor_tra & (abs_cor_comp > abs_sag_comp)) | ((abs_sag_comp > abs_cor_comp) & (abs_sag_comp < abs_tra_comp)) | ((abs_sag_comp < abs_cor_comp) & (abs_cor_comp < abs_tra_comp)) | ((abs_sag_comp < abs_tra_comp) & (abs_tra_comp > abs_cor_comp)) | ((abs_cor_comp < abs_tra_comp) & (abs_tra_comp > abs_sag_comp))): if debug: print('Mainly transverse.') case = 2 # Transverse elif ((eq_sag_cor & (abs_sag_comp > abs_tra_comp)) | (eq_sag_tra & (abs_sag_comp < abs_cor_comp)) | ((abs_sag_comp < abs_cor_comp) & (abs_cor_comp > abs_tra_comp)) | ((abs_sag_comp > abs_tra_comp) & (abs_sag_comp < abs_cor_comp)) | ((abs_sag_comp < abs_tra_comp) & (abs_tra_comp < abs_cor_comp))): if debug: print('Mainly coronal.') case = 1 # Coronal elif ((eq_cor_tra & (abs_cor_comp < abs_sag_comp)) | ((abs_sag_comp > abs_cor_comp) & (abs_sag_comp > abs_tra_comp)) | ((abs_cor_comp > abs_tra_comp) & (abs_cor_comp < abs_sag_comp)) | ((abs_cor_comp < abs_tra_comp) & (abs_tra_comp < abs_sag_comp))): if debug: print('Mainly sagittal.') case = 0 # Sagital else: # Invalid slice orientation... raise ValueError('Error: Invalid slice orientation') return case def calc_prs(gs, phi, debug): ''' Python implementation of IDEA-VB17/n4/pkg/MrServers/MrMeasSrv/SeqFW/libGSL/fGSLCalcPRS.cpp Calculates the phase encoding and readout direction vectors :param gs: The GS vector (= slice normal vector) :param phi: The rotational angle around Gs :return: gp: phase direction vector :return: gr: read direction vector ''' # PCS axes SAGITTAL = 0 CORONAL = 1 TRANSVERSE = 2 # Start of function orientation = 0 # will be one of SAGITTAL, CORONAL or TRANSVERSE (0, 1, or 2) orientation = orientation + class_ori(gs[SAGITTAL], gs[CORONAL], gs[TRANSVERSE], debug) gp = np.zeros((3), dtype=float) if orientation == TRANSVERSE: gp[0] = 0.0 gp[1] = gs[2] * np.sqrt(1. / (gs[1] * gs[1] + gs[2] * gs[2])) gp[2] = -gs[1] * np.sqrt(1. / (gs[1] * gs[1] + gs[2] * gs[2])) elif orientation == CORONAL: gp[0] = gs[1] * np.sqrt(1. / (gs[0] * gs[0] + gs[1] * gs[1])) gp[1] = -gs[0] * np.sqrt(1. / (gs[0] * gs[0] + gs[1] * gs[1])) gp[2] = 0.0 elif orientation == SAGITTAL: gp[0] = -gs[1] * np.sqrt(1. / (gs[0] * gs[0] + gs[1] * gs[1])) gp[1] = gs[0] *
np.sqrt(1. / (gs[0] * gs[0] + gs[1] * gs[1]))
numpy.sqrt
import h5py import numpy as np import numpy.ma as ma import numpy.lib.recfunctions as rfn import logging ref_region_dtype = np.dtype([('start','i8'), ('stop','i8')]) def print_ref(grp): ''' Print out all references in file (or group) ''' l = list() grp.visititems(lambda n,d: l.append((n,d))\ if n.endswith('/ref') and isinstance(d,h5py.Dataset) else None ) if not len(l): return max_length = max([len(n) for n,d in l]) for n,d in l: print(n+' '*(max_length-len(n))+' '+str(d)) def print_data(grp): ''' Print out all datasets in file (or group) ''' l = list() grp.visititems(lambda n,d: l.append((n,d))\ if n.endswith('/data') and isinstance(d,h5py.Dataset) else None ) if not len(l): return max_length = max([len(n) for n,d in l]) for n,d in l: print(n+' '*(max_length-len(n))+' '+str(d)) def print_attr(grp): ''' Print out all attributes in file (or group) ''' l = list() grp.visititems(lambda n,d: l.append((n,d.attrs))\ if len(d.attrs) and not (n.endswith('/ref') or n.endswith('/ref_region'))\ else None ) if not len(l): return max_length = max([len(k) for n,d in l for k in d]) for n,d in l: print(n) for k,v in d.items(): print('\t'+k+':'+' '*(max_length-len(k))+' '+str(v)) def dereference_chain(sel, refs, data=None, regions=None, mask=None, ref_directions=None, indices_only=False): ''' Load a "chain" of references. Allows traversal of multiple layers of references, e.g. for three datasets ``A``, ``B``, and ``C`` linked ``A->B->C``. One can use a selection in ``A`` and load the ``C`` data associated with it. Example usage:: sel = slice(0,100) refs = [f['A/ref/B/ref'], f['C/ref/B/ref']] ref_dirs = [(0,1), (1,0)] data = f['C/data'] regions = [f['A/ref/B/ref_region'], f['B/ref/C/ref_region']] mask = np.r_[sel] > 50 c_data = dereference_chain(sel, refs, data, regions=regions, mask=mask, ref_directions=ref_dirs) c_data.shape # (100, max_a2b_assoc, max_b2c_assoc) :param sel: iterable of indices, a slice, or an integer, see ``sel`` argument in ``dereference`` :param refs: a list of reference datasets to load, in order, see ``ref`` argument in ``dereference`` :param data: a dataset to load dereferenced data from, optional if ``indices_only=True`` :param regions: lookup table into ``refs`` for each selection, see ``region`` argument in ``dereference`` :param mask: a boolean mask into the first selection, true will not load the entry :param ref_directions: intepretation of reference datasets, see ``ref_direction`` argument in ``dereference`` :param indices_only: flag to skip loading the data and instead just return indices into the final dataset ''' sel = np.r_[sel] mask = np.zeros_like(sel, dtype=bool) | (mask if mask is not None else False) sel = ma.array(sel, mask=mask, shrink=False) shape = (len(sel),) dref = None nsteps = len(refs) for i in range(nsteps): dset = data if i == nsteps-1 else None ref = refs[i] ref_dir = ref_directions[i] if ref_directions else (0,1) # default to (0,1) reg = regions[i] if regions else None dref = dereference(sel.data.ravel(), ref, data=dset, region=reg, mask=mask.ravel(), ref_direction=ref_dir, indices_only=True if i != nsteps-1 else indices_only) shape += dref.shape[-1:] mask = np.expand_dims(mask, axis=-1) | \ (rfn.structured_to_unstructured(dref.mask).any(axis=-1).reshape(shape) \ if dref.mask.dtype.kind == 'V' else dref.mask.reshape(shape)) dref = ma.array(dref.data.reshape(shape), mask=mask, shrink=False) if i != nsteps-1: sel = dref return dref def dereference(sel, ref, data=None, region=None, mask=None, ref_direction=(0,1), indices_only=False, as_masked=True): ''' Load ``data`` referred to by ``ref`` that corresponds to the desired positions specified in ``sel``. :param sel: iterable of indices, an index, or a ``slice`` to match against ``ref[:,ref_direction[0]]``. Return value will have same first dimension as ``sel``, e.g. ``dereference(slice(100), ref, data).shape[0] == 100`` :param ref: a shape (N,2) ``h5py.Dataset`` or array of pairs of indices linking ``sel`` and ``data`` :param data: a ``h5py.Dataset`` or array to load dereferenced data from, can be omitted if ``indices_only==True`` :param region: a 1D ``h5py.Dataset`` or array with a structured array type of [('start','i8'), ('stop','i8')]; 'start' defines the earliest index within the ``ref`` dataset for each value in ``sel``, and 'stop' defines the last index + 1 within the ``ref`` dataset (optional). If a ``h5py.Dataset`` is used, the ``sel`` spec will be used to load data from the dataset (i.e. ``region[sel]``), otherwise ``len(sel) == len(region)`` and a 1:1 correspondence is assumed :param mask: mask off specific items in selection (boolean, True == don't dereference selection), len(mask) == len(np.r_[sel]) :param ref_direction: defines how to interpret second dimension of ``ref``. ``ref[:,ref_direction[0]]`` are matched against items in ``sel``, and ``ref[:,ref_direction[1]]`` are indices into the ``data`` array (``default=(0,1)``). So for a simple example: ``dereference([0,1,2], [[1,0], [2,1]], ['A','B','C','D'], ref_direction=(0,1))`` returns an array equivalent to ``[[],['A'],['B']]`` and ``dereference([0,1,2], [[1,0], [2,1]], ['A','B','C','D'], ref_direction=(1,0))`` returns an array equivalent to ``[['B'],['C'],[]]`` :param indices_only: if ``True``, only returns the indices into ``data``, does not fetch data from ``data`` :returns: ``numpy`` masked array (or if ``as_masked=False`` a ``list``) of length equivalent to ``sel`` ''' # set up selection sel_mask = mask sel_idcs = np.r_[sel][~sel_mask] if sel_mask is not None else np.r_[sel] n_elem = len(sel_idcs) if sel_mask is None else len(sel_mask) return_dtype = data.dtype if not indices_only else ref.dtype if not len(sel_idcs) and n_elem: # special case for if there is nothing selected in the mask if as_masked: return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True, shrink=False) else: return [np.empty(0, data.dtype) for _ in range(n_elem)] elif not len(sel_idcs): if as_masked: return ma.array(np.empty((0,1), dtype=return_dtype), mask=True, shrink=False) else: return [] # load fast region lookup if region is not None: if isinstance(region, h5py.Dataset): if isinstance(sel, slice): region = region[sel] # load parent reference region information else: region_offset = np.min(sel_idcs) region_sel = slice(region_offset, int(np.max(sel_idcs)+1)) region = region[region_sel][sel_idcs - region_offset] else: region = region[sel_idcs] # load relevant references region_valid = region['start'] != region['stop'] if region is not None else None if not region is None and np.count_nonzero(region_valid) == 0: # special case for if there are no valid references if as_masked: return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True) else: return [np.empty(0, return_dtype) for _ in range(n_elem)] ref_offset = np.min(region[region_valid]['start']) if region is not None else 0 ref_sel = slice(ref_offset, int(np.max(region[region_valid]['stop']))) if region is not None else slice(ref_offset,len(ref)) ref = ref[ref_sel] # if no valid references, return if len(ref) == 0: if as_masked: return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True) else: return [np.empty(0, return_dtype) for _ in range(n_elem)] # load relevant data dset_offset = np.min(ref[:,ref_direction[1]]) dset_sel = slice(dset_offset, int(np.max(ref[:,ref_direction[1]])+1)) dset = data[dset_sel] if not indices_only else None # load child dataset region # create a region array, if one was not given if region is None: region = np.zeros(len(sel_idcs), dtype=ref_region_dtype) region['start'] = ref_sel.start region['stop'] = ref_sel.stop if not as_masked: # dump into list using subregion masks if indices_only: indices = [ ref[st:sp,ref_direction[1]][ (ref[st:sp,ref_direction[0]] == i) ] for i,st,sp in zip(sel_idcs, region['start']-ref_offset, region['stop']-ref_offset) ] return indices else: data = [ dset[ref[st:sp,ref_direction[1]][ (ref[st:sp,ref_direction[0]] == i) ] - dset_offset] for i,st,sp in zip(sel_idcs, region['start']-ref_offset, region['stop']-ref_offset) ] return data # the rest of this is index manipulation to convert from sel -> ref -> data # first using only the unique references and then casting it back into the # original selection # first get mapping from unique selection back into the selection uniq_sel, uniq_inv = np.unique(sel_idcs, return_inverse=True) # only use references that are relevant to the selection ref_mask = np.isin(ref[:,ref_direction[0]], uniq_sel) if not np.any(ref_mask): # special case if no valid references for selection return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True, shrink=False) # get the number of references per parent and rearrange so that references are in ordered by parent uniq, counts = np.unique(ref[ref_mask,ref_direction[0]], return_counts=True) reordering = np.argsort(uniq) uniq, counts = uniq[reordering], counts[reordering] max_counts = np.max(counts) # now, we'll fill a subarray consisting of unique elements that were requested (shape: (len(uniq_sel), max_counts) ) # get a mapping from the unique selection into the unique reference parents _,uniq_sel_idcs,uniq2uniq_sel_idcs = np.intersect1d(uniq_sel, uniq, assume_unique=False, return_indices=True) # set up subarrays for unique selection shape = (len(uniq_sel), max_counts) condensed_data = np.zeros(shape, dtype=return_dtype) condensed_mask = np.zeros(shape, dtype=bool) # block off and prepare slots for unique selection condensed_mask[uniq_sel_idcs] = np.arange(condensed_data.shape[1]).reshape(1,-1) < counts[uniq2uniq_sel_idcs].reshape(-1,1) view_dtype = np.dtype([('ref0',ref.dtype),('ref1',ref.dtype)]) sort_ref = np.argsort(ref[ref_mask].view(view_dtype), axis=0, order=[view_dtype.names[ref_direction[0]], view_dtype.names[ref_direction[1]]] ) # arrange by parent (then by child) # and fill slots if indices_only:
np.place(condensed_data, mask=condensed_mask, vals=ref[ref_mask,ref_direction[1]][sort_ref])
numpy.place
#!/usr/bin/env python # file: LogisticRegression.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== import daal4py as d4p import numpy as np class LogisticRegression: ''' ....Constructor to set LogisticRegression compute parameters ....''' def __init__( self, nClasses, dtype="float", penaltyL1=0, penaltyL2=0, interceptFlag=True, resultsToCompute="computeClassesLabels", optSolverParam = {} ): self.dtype = dtype self.nClasses = nClasses self.penaltyL1 = penaltyL1 self.penaltyL2 = penaltyL2 self.interceptFlag = interceptFlag self.optSolverParam = optSolverParam self.resultsToCompute = resultsToCompute def train(self, train_data, train_labels): dtype = (np.float64 if self.dtype == "double" else np.float32) optSolver = None #create a solver if self.optSolverParam['solverName'] == 'sgd': lrs = np.array([[self.optSolverParam['solverLearningRate']]], dtype=dtype) batchSize_ = int(self.optSolverParam['solverBatchSize']) method = self.optSolverParam["solverMethod"] if method == "defaultDense": batchSize_ = 1 optSolver = d4p.optimization_solver_sgd(function = None, learningRateSequence = lrs, method = method, accuracyThreshold = dtype(self.optSolverParam['solverAccuracyThreshold']), nIterations = int(self.optSolverParam['solverMaxIterations']), batchSize = batchSize_ ) if self.optSolverParam['solverName'] == 'lbfgs': sls = np.array([[self.optSolverParam['solverStepLength']]], dtype=dtype) optSolver = d4p.optimization_solver_lbfgs(function = None, stepLengthSequence=sls, accuracyThreshold = dtype(self.optSolverParam['solverAccuracyThreshold']), nIterations = int(self.optSolverParam['solverMaxIterations']), batchSize = int(self.optSolverParam['solverBatchSize']), correctionPairBatchSize = int(self.optSolverParam['solverCorrectionPairBatchSize']), L = int(self.optSolverParam['solverL']) ) if self.optSolverParam['solverName'] == 'adagrad': lr =
np.array([[self.optSolverParam['solverLearningRate']]], dtype=dtype)
numpy.array
# coding: utf-8 # Copyright (c) MoGroup at UMD. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import numpy as np from monty.json import MSONable from scipy import stats from scipy.optimize import curve_fit from pymatgen.io.vasp.outputs import Vasprun from pymatgen.util.coord import pbc_diff from pymatgen.core.structure import Structure from pymatgen.core.periodic_table import Specie import csv __author__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "0.1" __date__ = "6/6/2017" __credit__ = "Pymatgen Development Team" class DiffusivityAnalyzer(MSONable): def __init__(self, structure, displacements, specie, temperature, time_step, step_skip, time_intervals_number=1000, spec_dict=None): """ Calculate MSD from pre-processed data, and implemented linear fitting to obtain diffusivity. :param structure (Structure): initial structure :param displacements (np.array): numpy array, shape is [n_ions, n_steps, axis] :param specie (str): species string, can be Li or Li+, make sure structure has oxidation state accordingly. :param temperature (float): temperature of MD :param time_step (float): time step in MD :param step_skip (int): Sampling frequency of the displacements ( time_step is multiplied by this number to get the real time between measurements) :param time_intervals_number (int): number of time intervals. Default is 1000 means there are ~1000 time intervals. :param spec_dict (dict): spec dict of linear fitting. Default is {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} lower_bound is in unit of Angstrom square upper_bound is in unit of total time. 0.5 means upper fitting bound is 0.5*t_total minimum_msd_diff is in unit of Angstrom square. msd[upper_bound] - msd[lower_bound] should larger than minimum_msd_diff to do linear fitting. """ spec_dict = spec_dict if spec_dict is not None else {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} if not {'lower_bound', 'upper_bound', 'minimum_msd_diff'} <= set(spec_dict.keys()): raise Exception("spec_dict does not have enough parameters.") time_step_displacements = time_step * step_skip # prepare indices = [] framework_indices = [] for i, site in enumerate(structure): if site.specie.symbol == specie: indices.append(i) else: framework_indices.append(i) if len(indices) == 0: raise Exception("There is no specie {} in the structure".format(specie)) if len(framework_indices) == 0: dc = displacements else: framework_disp = displacements[framework_indices] drift = np.average(framework_disp, axis=0)[None, :, :] dc = displacements - drift df = structure.lattice.get_fractional_coords(dc) displacements_final_diffusion_ions = dc[indices] displacements_frac_final_diffusion_ions = df[indices] n_ions, n_steps, dim = displacements_final_diffusion_ions.shape # time intervals, dt dt_indices = np.arange(1, n_steps, max(int((n_steps - 1) / time_intervals_number), 1)) dt = dt_indices * time_step_displacements # calculate msd # define functions, algorithm from # http://stackoverflow.com/questions/34222272/computing-mean-square-displacement-using-python-and-fft def autocorrelation_fft(x): N = x.shape[0] F = np.fft.fft(x, n=2 * N) PSD = F * F.conjugate() res = np.fft.ifft(PSD) res = (res[:N]).real n = N * np.ones(N) -
np.arange(N)
numpy.arange
# -*- coding: utf-8 -*- import cv2 import numpy as np # Differential filter def differential_filter(img, K_size=3): H, W = img.shape # Zero padding pad = K_size // 2 out = np.zeros((H + pad * 2, W + pad * 2), dtype=np.float) out[pad: pad + H, pad: pad + W] = img.copy().astype(np.float) tmp = out.copy() outv = out.copy() outh = out.copy() # vertical kernel Kv = [[0., -1., 0.], [0., 1., 0.], [0., 0., 0.]] # horizontal kernel Kh = [[0., 0., 0.], [-1., 1., 0.], [0., 0., 0.]] ## filtering for y in range(H): for x in range(W): outv[pad+y, pad+x] = np.sum(Kv * tmp[y:y+K_size, x:x+K_size]) outh[pad+y, pad+x] =
np.sum(Kh * tmp[y:y+K_size, x:x+K_size])
numpy.sum
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Quantum algorithms ================== .. currentmodule:: thewalrus.quantum This submodule provides access to various utility functions that act on Gaussian quantum states. For more details on how the hafnian relates to various properties of Gaussian quantum states, see: * <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. "A detailed study of Gaussian Boson Sampling." `arXiv:1801.07488. (2018). <https://arxiv.org/abs/1801.07488>`_ * <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. "Gaussian boson sampling." `Physical review letters, 119(17), 170501. (2017). <https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.170501>`_ * <NAME>. "Franck-Condon factors by counting perfect matchings of graphs with loops." `Journal of Chemical Physics 150, 164113 (2019). <https://aip.scitation.org/doi/10.1063/1.5086387>`_ * <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. "Simulating realistic non-Gaussian state preparation." `arXiv:1905.07011. (2019). <https://arxiv.org/abs/1905.07011>`_ Fock states ----------- .. autosummary:: pure_state_amplitude state_vector density_matrix_element density_matrix Details ^^^^^^^ .. autofunction:: pure_state_amplitude .. autofunction:: state_vector .. autofunction:: density_matrix_element .. autofunction:: density_matrix Utility functions ----------------- .. autosummary:: reduced_gaussian Xmat Sympmat Qmat Covmat Amat Beta Means prefactor find_scaling_adjacency_matrix gen_Qmat_from_graph is_valid_cov is_pure_cov is_classical_cov total_photon_num_dist_pure_state gen_single_mode_dist gen_multi_mode_dist Details ^^^^^^^ """ # pylint: disable=too-many-arguments from itertools import count, product import numpy as np from scipy.optimize import root_scalar from scipy.special import factorial as fac from scipy.stats import nbinom from ._hafnian import hafnian, hafnian_repeated, reduction from ._hermite_multidimensional import hermite_multidimensional, hafnian_batched def reduced_gaussian(mu, cov, modes): r""" Returns the vector of means and the covariance matrix of the specified modes. Args: mu (array): a length-:math:`2N` ``np.float64`` vector of means. cov (array): a :math:`2N\times 2N` ``np.float64`` covariance matrix representing an :math:`N` mode quantum state. modes (int of Sequence[int]): indices of the requested modes Returns: tuple (means, cov): where means is an array containing the vector of means, and cov is a square array containing the covariance matrix. """ N = len(mu) // 2 # reduce rho down to specified subsystems if isinstance(modes, int): modes = [modes] if np.any(np.array(modes) > N): raise ValueError("Provided mode is larger than the number of subsystems.") if len(modes) == N: # reduced state is full state return mu, cov ind = np.concatenate([np.array(modes), np.array(modes) + N]) rows = ind.reshape(-1, 1) cols = ind.reshape(1, -1) return mu[ind], cov[rows, cols] def Xmat(N): r"""Returns the matrix :math:`X_n = \begin{bmatrix}0 & I_n\\ I_n & 0\end{bmatrix}` Args: N (int): positive integer Returns: array: :math:`2N\times 2N` array """ I = np.identity(N) O = np.zeros_like(I) X = np.block([[O, I], [I, O]]) return X def Sympmat(N): r"""Returns the matrix :math:`\Omega_n = \begin{bmatrix}0 & I_n\\ -I_n & 0\end{bmatrix}` Args: N (int): positive integer Returns: array: :math:`2N\times 2N` array """ I = np.identity(N) O = np.zeros_like(I) S = np.block([[O, I], [-I, O]]) return S def Qmat(cov, hbar=2): r"""Returns the :math:`Q` Husimi matrix of the Gaussian state. Args: cov (array): :math:`2N\times 2N xp-` Wigner covariance matrix hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: array: the :math:`Q` matrix. """ # number of modes N = len(cov) // 2 I = np.identity(N) x = cov[:N, :N] * 2 / hbar xp = cov[:N, N:] * 2 / hbar p = cov[N:, N:] * 2 / hbar # the (Hermitian) matrix elements <a_i^\dagger a_j> aidaj = (x + p + 1j * (xp - xp.T) - 2 * I) / 4 # the (symmetric) matrix elements <a_i a_j> aiaj = (x - p + 1j * (xp + xp.T)) / 4 # calculate the covariance matrix sigma_Q appearing in the Q function: # Q(alpha) = exp[-(alpha-beta).sigma_Q^{-1}.(alpha-beta)/2]/|sigma_Q| Q = np.block([[aidaj, aiaj.conj()], [aiaj, aidaj.conj()]]) + np.identity(2 * N) return Q def Covmat(Q, hbar=2): r"""Returns the Wigner covariance matrix in the :math:`xp`-ordering of the Gaussian state. This is the inverse function of Qmat. Args: Q (array): :math:`2N\times 2N` Husimi Q matrix hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: array: the :math:`xp`-ordered covariance matrix in the xp-ordering. """ # number of modes n = len(Q) // 2 I = np.identity(n) N = Q[0:n, 0:n] - I M = Q[n : 2 * n, 0:n] mm11a = 2 * (N.real + M.real) + np.identity(n) mm22a = 2 * (N.real - M.real) +
np.identity(n)
numpy.identity
if __name__ == '__main__': # This is a terrible hack just to be able to execute this file directly import sys sys.path.insert(0, '../') from worlds.game_objects import Actions import random, math, os, pickle import numpy as np """ Auxiliary class with the configuration parameters that the Game class needs """ class WaterWorldParams: def __init__(self, state_file = None, max_x = 1000, max_y = 700, b_num_colors = 6, b_radius = 20, b_velocity = 30, b_num_per_color = 10, use_velocities = True, ball_disappear = True): self.max_x = max_x self.max_y = max_y self.b_num_colors = b_num_colors self.b_radius = b_radius self.b_velocity = b_velocity self.a_vel_delta = b_velocity self.a_vel_max = 3*b_velocity self.b_num_per_color = b_num_per_color self.state_file = state_file self.use_velocities = use_velocities self.ball_disappear = ball_disappear class WaterWorld: def __init__(self, params): self.params = params self.use_velocities = params.use_velocities self._load_map() if params.state_file is not None: self.load_state(params.state_file) self.env_game_over = False # Setting up event detectors self.current_collisions_old = set() self._update_events() def _get_current_collision(self): ret = set() for b in self.balls: if self.agent.is_colliding(b): ret.add(b) return ret def _update_events(self): self.true_props = "" current_collisions = self._get_current_collision() for b in current_collisions - self.current_collisions_old: self.true_props += b.color self.current_collisions_old = current_collisions def execute_action(self, a, elapsedTime=0.1): action = Actions(a) # computing events self._update_events() # if balls disappear, then relocate balls that the agent is colliding before the action if self.params.ball_disappear: for b in self.balls: if self.agent.is_colliding(b): pos, vel = self._get_pos_vel_new_ball() b.update(pos, vel) # updating the agents velocity self.agent.execute_action(action) balls_all = [self.agent] + self.balls max_x, max_y = self.params.max_x, self.params.max_y # updating position for b in balls_all: b.update_position(elapsedTime) # handling collisions for i in range(len(balls_all)): b = balls_all[i] # walls if b.pos[0] - b.radius < 0 or b.pos[0] + b.radius > max_x: # Place ball against edge if b.pos[0] - b.radius < 0: b.pos[0] = b.radius else: b.pos[0] = max_x - b.radius # Reverse direction b.vel = b.vel * np.array([-1.0,1.0]) if b.pos[1] - b.radius < 0 or b.pos[1] + b.radius > max_y: # Place ball against edge if b.pos[1] - b.radius < 0: b.pos[1] = b.radius else: b.pos[1] = max_y - b.radius # Reverse directio b.vel = b.vel * np.array([1.0,-1.0]) def get_actions(self): """ Returns the list with the actions that the agent can perform """ return self.agent.get_actions() def get_state(self): return None # we are only using "simple reward machines" for the craft domain def get_true_propositions(self): """ Returns the string with the propositions that are True in this state """ return self.true_props # The following methods return different feature representations of the map ------------ def get_features(self): #_,features = self._get_features_Vis() _,features = self._get_features_HER() return features def _get_features_Vis(self): vel_max = float(self.params.a_vel_max) range_max = (self.params.max_x**2+self.params.max_y**2)**0.5 max_x = self.params.max_x max_y = self.params.max_y radius = self.params.b_radius agent = self.agent a_x, a_y = agent.pos[0], agent.pos[1] # The state space is even larger and continuous: # The agent has 30 eye sensors pointing in all # directions and in each direction is observes # 5 variables: the range, the type of sensed object (green, red), # and the velocity of the sensed object. # The agent's proprioception includes two additional sensors for # its own speed in both x and y directions. # This is a total of 152-dimensional state space. # map from object classes to numbers num_eyes = 16 # in practice, each eye goes to both sides num_classes = self.params.b_num_colors + 1 # I'm including the walls here # adding walls contact_points = {} for i in range(num_eyes): # features per eye: range, type, v_x, v_y angle_pos = i * 180 / num_eyes angle_neg = angle_pos + 180 # walls collisions col_pos = [] col_neg = [] if angle_pos == 0: col_pos.append(np.array([max_x, a_y])) col_neg.append(np.array([0, a_y])) elif angle_pos == 90: col_pos.append(np.array([a_x, max_y])) col_neg.append(np.array([a_x, 0])) else: m = math.tan(math.radians(angle_pos)) c = a_y - m * a_x w_n = np.array([(max_y - c)/m, max_y]) w_e = np.array([max_x, m*max_x + c]) w_w = np.array([0.0, c]) w_s = np.array([-c/m, 0.0]) if angle_pos < 90: col_pos.extend([w_n, w_e]) col_neg.extend([w_s, w_w]) else: col_pos.extend([w_n, w_w]) col_neg.extend([w_s, w_e]) # adding the points for p in col_pos: add_contact_point(contact_points, angle_pos, (dist(agent.pos,p),p,'W')) for p in col_neg: add_contact_point(contact_points, angle_neg, (dist(agent.pos,p),p,'W')) # Adding balls for b in self.balls: if agent.is_colliding(b): continue # computing the eyes that collide with this ball dd = dist(agent.pos, b.pos) theta = math.degrees(math.asin(b.radius/dd)) dx, dy = b.pos[0] - a_x, b.pos[1] - a_y alpha = normalize_angle(math.degrees(math.atan2(dy, dx))) alpha_plus = alpha + theta alpha_minus = alpha - theta if alpha_minus < 0: alpha_minus += 360 alpha_plus += 360 i = math.ceil((num_eyes * alpha_minus)/180) angle = i * 180 / num_eyes while angle <= alpha_plus: angle_real = normalize_angle(angle) # checking that the ball is in the rigth range if dd-b.radius < contact_points[angle_real][0]: p, q, r = b.pos[0], b.pos[1], b.radius if angle_real in [90, 270]: dis = r**2 - (a_x-p)**2 if dis < 0: # the line misses the ball print("It missed the ball?") else: # the line intersects the circle (in one or two points) for case in [-1,1]: x_p = a_x y_p = q+case*dis**0.5 c_p = np.array([x_p,y_p]) add_contact_point(contact_points, angle_real, (dist(agent.pos,c_p),c_p,b)) else: m = math.tan(math.radians(angle_real)) c = a_y - m * a_x A = m**2+1 B = 2*(m*c-m*q-p) C = q**2-r**2+p**2-2*c*q+c**2 dis = B**2-4*A*C if dis < 0: # the line misses the ball print("It missed the ball?", alpha, theta, alpha_minus, angle, alpha_plus) else: # the line intersects the circle (in one or two points) for case in [-1,1]: x_p = (-B+case*dis**0.5)/(2*A) y_p = m*x_p+c c_p = np.array([x_p,y_p]) add_contact_point(contact_points, angle_real, (dist(agent.pos,c_p),c_p,b)) i += 1 angle = i * 180 / num_eyes # range, type, v_x, v_y n_features_per_eye = 3+num_classes n_features = n_features_per_eye*2*num_eyes+2 features = np.zeros(n_features,dtype=np.float) colliding_points = [] for i in range(2*num_eyes): # features per eye: range, type, v_x, v_y dd, p, obj = contact_points[i * 180 / num_eyes] colliding_points.append(p) features[i*n_features_per_eye:(i+1)*n_features_per_eye] = get_eye_features(dd, obj, num_classes, range_max, vel_max) # adding the agents velocity features[n_features-2:n_features] = agent.vel / vel_max return colliding_points, features def _get_features_HER(self): # Absolute position and velocity of the anget + relative positions and velocities of the other balls # with respect to the agent if self.use_velocities: agent, balls = self.agent, self.balls n_features = 4 + len(balls) * 4 features = np.zeros(n_features,dtype=np.float) pos_max = np.array([float(self.params.max_x), float(self.params.max_y)]) vel_max = float(self.params.b_velocity + self.params.a_vel_max) features[0:2] = agent.pos/pos_max features[2:4] = agent.vel/float(self.params.a_vel_max) for i in range(len(balls)): # If the balls are colliding, I'll not include them # (because there us nothing that the agent can do about it) b = balls[i] if not self.params.ball_disappear or not agent.is_colliding(b): init = 4*(i+1) features[init:init+2] = (b.pos - agent.pos)/pos_max features[init+2:init+4] = (b.vel - agent.vel)/vel_max else: agent, balls = self.agent, self.balls n_features = 4 + len(balls) * 2 features = np.zeros(n_features,dtype=np.float) pos_max = np.array([float(self.params.max_x), float(self.params.max_y)]) vel_max = float(self.params.b_velocity + self.params.a_vel_max) features[0:2] = agent.pos/pos_max features[2:4] = agent.vel/float(self.params.a_vel_max) for i in range(len(balls)): # If the balls are colliding, I'll not include them # (because there us nothing that the agent can do about it) b = balls[i] if not self.params.ball_disappear or not agent.is_colliding(b): init = 2*i + 4 features[init:init+2] = (b.pos - agent.pos)/pos_max return [], features #return [b.pos for b in balls if not agent.is_colliding(b)], features def _is_collising(self, pos): for b in self.balls + [self.agent]: if np.linalg.norm(b.pos -
np.array(pos)
numpy.array
import numpy as np from pandas import PeriodIndex import pandas._testing as tm class TestFactorize: def test_factorize(self): idx1 = PeriodIndex( ["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"], freq="M" ) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M") arr, idx = idx1.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) idx2 = PeriodIndex( ["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"], freq="M" ) exp_arr =
np.array([2, 2, 1, 0, 2, 0], dtype=np.intp)
numpy.array
import numpy as np a = np.arange(24) print(a) # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] print(a.shape) # (24,) print(a.ndim) # 1 a_4_6 = a.reshape([4, 6]) print(a_4_6) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11] # [12 13 14 15 16 17] # [18 19 20 21 22 23]] print(a_4_6.shape) # (4, 6) print(a_4_6.ndim) # 2 a_2_3_4 = a.reshape([2, 3, 4]) print(a_2_3_4) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] print(a_2_3_4.shape) # (2, 3, 4) print(a_2_3_4.ndim) # 3 # a_5_6 = a.reshape([5, 6]) # ValueError: cannot reshape array of size 24 into shape (5,6) print(a.reshape(4, 6)) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11] # [12 13 14 15 16 17] # [18 19 20 21 22 23]] print(a.reshape(2, 3, 4)) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] print(np.reshape(a, [4, 6])) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11] # [12 13 14 15 16 17] # [18 19 20 21 22 23]] print(np.reshape(a, [2, 3, 4])) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] # print(np.reshape(a, [5, 6])) # ValueError: cannot reshape array of size 24 into shape (5,6) print(a.reshape(4, 6)) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11] # [12 13 14 15 16 17] # [18 19 20 21 22 23]] # print(np.reshape(a, 4, 6)) # ValueError: cannot reshape array of size 24 into shape (4,) print(a.reshape([4, 6], order='C')) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11] # [12 13 14 15 16 17] # [18 19 20 21 22 23]] print(a.reshape([4, 6], order='F')) # [[ 0 4 8 12 16 20] # [ 1 5 9 13 17 21] # [ 2 6 10 14 18 22] # [ 3 7 11 15 19 23]] print(a.reshape([2, 3, 4], order='C')) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] print(a.reshape([2, 3, 4], order='F')) # [[[ 0 6 12 18] # [ 2 8 14 20] # [ 4 10 16 22]] # # [[ 1 7 13 19] # [ 3 9 15 21] # [ 5 11 17 23]]] print(np.reshape(a, [4, 6], order='F')) # [[ 0 4 8 12 16 20] # [ 1 5 9 13 17 21] # [ 2 6 10 14 18 22] # [ 3 7 11 15 19 23]] # print(a.reshape([4, 6], 'F')) # TypeError: 'list' object cannot be interpreted as an integer print(np.reshape(a, [4, 6], 'F')) # [[ 0 4 8 12 16 20] # [ 1 5 9 13 17 21] # [ 2 6 10 14 18 22] # [ 3 7 11 15 19 23]] print(a.reshape([4, -1])) # [[ 0 1 2 3 4 5] # [ 6 7 8 9 10 11] # [12 13 14 15 16 17] # [18 19 20 21 22 23]] print(a.reshape([2, -1, 4])) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] # print(a.reshape([2, -1, -1])) # ValueError: can only specify one unknown dimension # print(a.reshape([2, -1, 5])) # ValueError: cannot reshape array of size 24 into shape (2,newaxis,5) a = np.arange(8) print(a) # [0 1 2 3 4 5 6 7] a_2_4 = a.reshape([2, 4]) print(a_2_4) # [[0 1 2 3] # [4 5 6 7]] print(np.shares_memory(a, a_2_4)) # True a[0] = 100 print(a) # [100 1 2 3 4 5 6 7] print(a_2_4) # [[100 1 2 3] # [ 4 5 6 7]] a_2_4[0, 0] = 0 print(a_2_4) # [[0 1 2 3] # [4 5 6 7]] print(a) # [0 1 2 3 4 5 6 7] a_2_4_copy = a.reshape([2, 4]).copy() print(a_2_4_copy) # [[0 1 2 3] # [4 5 6 7]] print(np.shares_memory(a, a_2_4_copy)) # False a[0] = 100 print(a) # [100 1 2 3 4 5 6 7] print(a_2_4_copy) # [[0 1 2 3] # [4 5 6 7]] a_2_4_copy[0, 0] = 200 print(a_2_4_copy) # [[200 1 2 3] # [ 4 5 6 7]] print(a) # [100 1 2 3 4 5 6 7] a = np.arange(6).reshape(2, 3) print(a) # [[0 1 2] # [3 4 5]] a_step = a[:, ::2] print(a_step) # [[0 2] # [3 5]] print(a_step.reshape(-1)) # [0 2 3 5] print(np.shares_memory(a_step, a_step.reshape(-1))) # False
np.info(a)
numpy.info
#!/usr/bin/env python ######################################################################################### # Spinal Cord Registration module # # --------------------------------------------------------------------------------------- # Copyright (c) 2020 NeuroPoly, Polytechnique Montreal <www.neuro.polymtl.ca> # # License: see the LICENSE.TXT ######################################################################################### import logging import os # FIXME import shutil from math import asin, cos, sin, acos import numpy as np from scipy import ndimage from nibabel import load, Nifti1Image, save from scipy.signal import argrelmax, medfilt from sklearn.decomposition import PCA from scipy.io import loadmat import spinalcordtoolbox.image as image from spinalcordtoolbox.math import laplacian from spinalcordtoolbox.registration.landmarks import register_landmarks from spinalcordtoolbox.utils import sct_progress_bar, copy_helper, run_proc, tmp_create # TODO [AJ] # introduce potential cleanup functions in case exceptions occur and # filesystem is left with temp artefacts everywhere? logger = logging.getLogger(__name__) class Paramreg(object): def __init__(self, step=None, type=None, algo='syn', metric='MeanSquares', samplingStrategy='None', samplingPercentage='0.2', iter='10', shrink='1', smooth='0', gradStep='0.5', deformation='1x1x0', init='', filter_size=5, poly='5', slicewise='0', laplacian='0', dof='Tx_Ty_Tz_Rx_Ry_Rz', smoothWarpXY='2', pca_eigenratio_th='1.6', rot_method='pca'): """ Class to define registration method. :param step: int: Step number (starts at 1, except for type=label which corresponds to step=0). :param type: {im, seg, imseg, label} Type of data used for registration. Use type=label only at step=0. :param algo: :param metric: :param samplingStrategy: {'Regular', 'Random', 'None'} :param samplingPercentage: [0, 1] :param iter: :param shrink: :param smooth: :param gradStep: :param deformation: :param init: :param filter_size: int: Size of the Gaussian kernel when filtering the cord rotation estimate across z. :param poly: :param slicewise: {'0', '1'}: Slice-by-slice 2d transformation. :param laplacian: :param dof: :param smoothWarpXY: :param pca_eigenratio_th: :param rot_method: {'pca', 'hog', 'pcahog'}: Rotation method to be used with algo=centermassrot. pca: approximate cord segmentation by an ellipse and finds it orientation using PCA's eigenvectors; hog: finds the orientation using the symmetry of the image; pcahog: tries method pca and if it fails, uses method hog. If using hog or pcahog, type should be set to 'imseg'." """ self.step = step self.type = type self.algo = algo self.metric = metric self.samplingStrategy = samplingStrategy self.samplingPercentage = samplingPercentage self.iter = iter self.shrink = shrink self.smooth = smooth self.laplacian = laplacian self.gradStep = gradStep self.deformation = deformation self.slicewise = slicewise self.init = init self.poly = poly # only for algo=slicereg self.filter_size = filter_size # only for algo=centermassrot self.dof = dof # only for type=label self.smoothWarpXY = smoothWarpXY # only for algo=columnwise self.pca_eigenratio_th = pca_eigenratio_th # only for algo=centermassrot self.rot_method = rot_method # only for algo=centermassrot self.rot_src = None # this variable is used to set the angle of the cord on the src image if it is known self.rot_dest = None # same as above for the destination image (e.g., if template, should be set to 0) # list of possible values for self.type self.type_list = ['im', 'seg', 'imseg', 'label'] # update constructor with user's parameters def update(self, paramreg_user): list_objects = paramreg_user.split(',') for object in list_objects: if len(object) < 2: raise ValueError("Invalid use of -param! Check usage (usage changed from previous version)") obj = object.split('=') setattr(self, obj[0], obj[1]) class ParamregMultiStep: """ Class to aggregate multiple Paramreg() classes into a dictionary. The method addStep() is used to build this class. """ def __init__(self, listParam=[]): self.steps = dict() for stepParam in listParam: if isinstance(stepParam, Paramreg): self.steps[stepParam.step] = stepParam else: self.addStep(stepParam) def addStep(self, stepParam): """ Checks if the step is already present. If it exists: update it. If not: add it. """ param_reg = Paramreg() param_reg.update(stepParam) if param_reg.step is None: raise ValueError("Parameters must contain 'step'!") else: if param_reg.step in self.steps: self.steps[param_reg.step].update(stepParam) else: self.steps[param_reg.step] = param_reg if int(param_reg.step) != 0 and param_reg.type not in param_reg.type_list: raise ValueError("Parameters must contain a type, either 'im' or 'seg'") def register_step_ants_slice_regularized_registration(src, dest, step, metricSize, fname_mask='', verbose=1): """ """ # Find the min (and max) z-slice index below which (and above which) slices only have voxels below a given # threshold. list_fname = [src, dest] if fname_mask: list_fname.append(fname_mask) mask_options = ['-x', fname_mask] else: mask_options = [] zmin_global, zmax_global = 0, 99999 # this is assuming that typical image has less slice than 99999 for fname in list_fname: im = image.Image(fname) zmin, zmax = image.find_zmin_zmax(im, threshold=0.1) if zmin > zmin_global: zmin_global = zmin if zmax < zmax_global: zmax_global = zmax # crop images (see issue #293) src_crop = image.add_suffix(src, '_crop') image.spatial_crop(image.Image(src), dict(((2, (zmin_global, zmax_global)),))).save(src_crop) dest_crop = image.add_suffix(dest, '_crop') image.spatial_crop(image.Image(dest), dict(((2, (zmin_global, zmax_global)),))).save(dest_crop) # update variables src = src_crop dest = dest_crop scr_regStep = image.add_suffix(src, '_regStep' + str(step.step)) # estimate transfo cmd = ['isct_antsSliceRegularizedRegistration', '-t', 'Translation[' + step.gradStep + ']', '-m', step.metric + '[' + ','.join([dest, src, '1', metricSize, step.samplingStrategy, step.samplingPercentage]) + ']', '-p', step.poly, '-i', step.iter, '-f', step.shrink, '-s', step.smooth, '-v', '1', # verbose (verbose=2 does not exist, so we force it to 1) '-o', '[step' + str(step.step) + ',' + scr_regStep + ']', # here the warp name is stage10 because # antsSliceReg add "Warp" ] + mask_options # Filepaths for output files generated by isct_antsSliceRegularizedRegistration warp_forward_out = 'step' + str(step.step) + 'Warp.nii.gz' warp_inverse_out = 'step' + str(step.step) + 'InverseWarp.nii.gz' txty_csv_out = 'step' + str(step.step) + 'TxTy_poly.csv' # FIXME: Allow these filepaths be specified as input arguments (to provide control over where files are output to) # run command status, output = run_proc(cmd, verbose, is_sct_binary=True) return warp_forward_out, warp_inverse_out, txty_csv_out def register_step_ants_registration(src, dest, step, masking, ants_registration_params, padding, metricSize, verbose=1): """ """ # Pad the destination image (because ants doesn't deform the extremities) # N.B. no need to pad if iter = 0 if not step.iter == '0': dest_pad = image.add_suffix(dest, '_pad') run_proc(['sct_image', '-i', dest, '-o', dest_pad, '-pad', '0,0,' + str(padding)]) dest = dest_pad # apply Laplacian filter if not step.laplacian == '0': logger.info(f"\nApply Laplacian filter") sigmas = [step.laplacian, step.laplacian, 0] src_img = image.Image(src) src_out = src_img.copy() src = image.add_suffix(src, '_laplacian') dest = image.add_suffix(dest, '_laplacian') sigmas = [sigmas[i] / src_img.dim[i + 4] for i in range(3)] src_out.data = laplacian(src_out.data, sigmas) src_out.save(path=src) dest_img = image.Image(dest) dest_out = dest_img.copy() dest_out.data = laplacian(dest_out.data, sigmas) dest_out.save(path=dest) # Estimate transformation logger.info(f"\nEstimate transformation") scr_regStep = image.add_suffix(src, '_regStep' + str(step.step)) cmd = ['isct_antsRegistration', '--dimensionality', '3', '--transform', step.algo + '[' + step.gradStep + ants_registration_params[step.algo.lower()] + ']', '--metric', step.metric + '[' + dest + ',' + src + ',1,' + metricSize + ']', '--convergence', step.iter, '--shrink-factors', step.shrink, '--smoothing-sigmas', step.smooth + 'mm', '--restrict-deformation', step.deformation, '--output', '[step' + str(step.step) + ',' + scr_regStep + ']', '--interpolation', 'BSpline[3]', '--verbose', '1', ] + masking # add init translation if step.init: init_dict = {'geometric': '0', 'centermass': '1', 'origin': '2'} cmd += ['-r', '[' + dest + ',' + src + ',' + init_dict[step.init] + ']'] # run command status, output = run_proc(cmd, verbose, is_sct_binary=True) # get appropriate file name for transformation if step.algo in ['rigid', 'affine', 'translation']: warp_forward_out = 'step' + str(step.step) + '0GenericAffine.mat' warp_inverse_out = '-step' + str(step.step) + '0GenericAffine.mat' else: warp_forward_out = 'step' + str(step.step) + '0Warp.nii.gz' warp_inverse_out = 'step' + str(step.step) + '0InverseWarp.nii.gz' return warp_forward_out, warp_inverse_out def register_step_slicewise_ants(src, dest, step, ants_registration_params, fname_mask, remove_temp_files, verbose=1): """ """ # if shrink!=1, force it to be 1 (otherwise, it generates a wrong 3d warping field). TODO: fix that! if not step.shrink == '1': logger.warning(f"\nWhen using slicewise with SyN or BSplineSyN, shrink factor needs to be one. Forcing shrink=1") step.shrink = '1' warp_forward_out = 'step' + str(step.step) + 'Warp.nii.gz' warp_inverse_out = 'step' + str(step.step) + 'InverseWarp.nii.gz' register_slicewise( fname_src=src, fname_dest=dest, paramreg=step, fname_mask=fname_mask, warp_forward_out=warp_forward_out, warp_inverse_out=warp_inverse_out, ants_registration_params=ants_registration_params, remove_temp_files=remove_temp_files, verbose=verbose ) return warp_forward_out, warp_inverse_out def register_step_slicewise(src, dest, step, ants_registration_params, remove_temp_files, verbose=1): """ """ # smooth data if not step.smooth == '0': logger.warning(f"\nAlgo {step.algo} will ignore the parameter smoothing.\n") warp_forward_out = 'step' + str(step.step) + 'Warp.nii.gz' warp_inverse_out = 'step' + str(step.step) + 'InverseWarp.nii.gz' register_slicewise( fname_src=src, fname_dest=dest, paramreg=step, fname_mask='', warp_forward_out=warp_forward_out, warp_inverse_out=warp_inverse_out, ants_registration_params=ants_registration_params, remove_temp_files=remove_temp_files, verbose=verbose ) return warp_forward_out, warp_inverse_out def register_step_label(src, dest, step, verbose=1): """ """ warp_forward_out = 'step' + step.step + '0GenericAffine.txt' warp_inverse_out = '-step' + step.step + '0GenericAffine.txt' register_landmarks(src, dest, step.dof, fname_affine=warp_forward_out, verbose=verbose) return warp_forward_out, warp_inverse_out def register_slicewise(fname_src, fname_dest, paramreg=None, fname_mask='', warp_forward_out='step0Warp.nii.gz', warp_inverse_out='step0InverseWarp.nii.gz', ants_registration_params=None, path_qc='./', remove_temp_files=0, verbose=0): """ Main function that calls various methods for slicewise registration. :param fname_src: Str or List: If List, first element is image, second element is segmentation. :param fname_dest: Str or List: If List, first element is image, second element is segmentation. :param paramreg: Class Paramreg() :param fname_mask: :param warp_forward_out: :param warp_inverse_out: :param ants_registration_params: :param path_qc: :param remove_temp_files: :param verbose: :return: """ # create temporary folder path_tmp = tmp_create(basename="register") # copy data to temp folder logger.info(f"\nCopy input data to temp folder...") if isinstance(fname_src, list): # TODO: swap 0 and 1 (to be consistent with the child function below) src_img = image.convert(image.Image(fname_src[0])) src_img.save(os.path.join(path_tmp, "src.nii"), mutable=True, verbose=verbose) src_seg = image.convert(image.Image(fname_src[1])) src_seg.save(os.path.join(path_tmp, "src_seg.nii"), mutable=True, verbose=verbose) dest_img = image.convert(image.Image(fname_dest[0])) dest_img.save(os.path.join(path_tmp, "dest.nii"), mutable=True, verbose=verbose) dest_seg = image.convert(image.Image(fname_dest[1])) dest_seg.save(os.path.join(path_tmp, "dest_seg.nii"), mutable=True, verbose=verbose) else: src_img = image.convert(image.Image(fname_src)) src_img.save(os.path.join(path_tmp, "src.nii"), mutable=True, verbose=verbose) dest_image = image.convert(image.Image(fname_dest)) dest_image.save(os.path.join(path_tmp, "dest.nii"), mutable=True, verbose=verbose) if fname_mask != '': mask_img = image.convert(image.Image(fname_mask)) mask_img.save(os.path.join(path_tmp, "mask.nii.gz"), mutable=True, verbose=verbose) # go to temporary folder curdir = os.getcwd() os.chdir(path_tmp) # Calculate displacement if paramreg.algo in ['centermass', 'centermassrot']: # translation of center of mass between source and destination in voxel space if paramreg.algo in 'centermass': rot_method = 'none' else: rot_method = paramreg.rot_method if rot_method in ['hog', 'pcahog']: src_input = ['src_seg.nii', 'src.nii'] dest_input = ['dest_seg.nii', 'dest.nii'] else: src_input = ['src.nii'] dest_input = ['dest.nii'] register2d_centermassrot( src_input, dest_input, paramreg=paramreg, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot_method=rot_method, filter_size=paramreg.filter_size, path_qc=path_qc, verbose=verbose, pca_eigenratio_th=float(paramreg.pca_eigenratio_th), ) elif paramreg.algo == 'columnwise': # scaling R-L, then column-wise center of mass alignment and scaling register2d_columnwise('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, verbose=verbose, path_qc=path_qc, smoothWarpXY=int(paramreg.smoothWarpXY), ) # ANTs registration else: # convert SCT flags into ANTs-compatible flags algo_dic = {'translation': 'Translation', 'rigid': 'Rigid', 'affine': 'Affine', 'syn': 'SyN', 'bsplinesyn': 'BSplineSyN', 'centermass': 'centermass'} paramreg.algo = algo_dic[paramreg.algo] # run slicewise registration register2d('src.nii', 'dest.nii', fname_mask=fname_mask, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, paramreg=paramreg, ants_registration_params=ants_registration_params, verbose=verbose, ) logger.info(f"\nMove warping fields...") copy_helper(warp_forward_out, curdir) copy_helper(warp_inverse_out, curdir) # go back os.chdir(curdir) if remove_temp_files: logger.info(f"rm -rf {path_tmp}") shutil.rmtree(path_tmp) def register2d_centermassrot(fname_src, fname_dest, paramreg=None, fname_warp='warp_forward.nii.gz', fname_warp_inv='warp_inverse.nii.gz', rot_method='pca', filter_size=0, path_qc='./', verbose=0, pca_eigenratio_th=1.6, th_max_angle=40): """ Rotate the source image to match the orientation of the destination image, using the first and second eigenvector of the PCA. This function should be used on segmentations (not images). This works for 2D and 3D images. If 3D, it splits the image and performs the rotation slice-by-slice. :param fname_src: List: Name of moving image. If rot=0 or 1, only the first element is used (should be a segmentation). If rot=2 or 3, the first element is a segmentation and the second is an image. :param fname_dest: List: Name of fixed image. If rot=0 or 1, only the first element is used (should be a segmentation). If rot=2 or 3, the first element is a segmentation and the second is an image. :param paramreg: Class Paramreg() :param fname_warp: name of output 3d forward warping field :param fname_warp_inv: name of output 3d inverse warping field :param rot_method: {'none', 'pca', 'hog', 'pcahog'}. Depending on the rotation method, input might be segmentation only or segmentation and image. :param filter_size: size of the gaussian filter for regularization along z for rotation angle (type: float). 0: no regularization :param path_qc: :param verbose: :param pca_eigenratio_th: threshold for the ratio between the first and second eigenvector of the estimated ellipse for the PCA rotation detection method. If below this threshold, the estimation will be discarded (poorly robust) :param th_max_angle: threshold of the absolute value of the estimated rotation using the PCA method, above which the estimation will be discarded (unlikely to happen genuinely and hence considered outlier) :return: """ # TODO: no need to split the src or dest if it is the template (we know its centerline and orientation already) if verbose == 2: import matplotlib matplotlib.use('Agg') # prevent display figure import matplotlib.pyplot as plt # Get image dimensions and retrieve nz logger.info(f"\nGet image dimensions of destination image...") nx, ny, nz, nt, px, py, pz, pt = image.Image(fname_dest[0]).dim logger.info(f" matrix size: {str(nx)} x {str(ny)} x {str(nz)}") logger.info(f" voxel size: {str(px)}mm x {str(py)}mm x {str(nz)}mm") # Split source volume along z logger.info(f"\nSplit input segmentation...") im_src = image.Image(fname_src[0]) split_source_list = image.split_img_data(im_src, 2) for im in split_source_list: im.save() # Split destination volume along z logger.info(f"\nSplit destination segmentation...") im_dest = image.Image(fname_dest[0]) split_dest_list = image.split_img_data(im_dest, 2) for im in split_dest_list: im.save() data_src = im_src.data data_dest = im_dest.data # if input data is 2D, reshape into pseudo 3D (only one slice) if len(data_src.shape) == 2: new_shape = list(data_src.shape) new_shape.append(1) new_shape = tuple(new_shape) data_src = data_src.reshape(new_shape) data_dest = data_dest.reshape(new_shape) # Deal with cases where both an image and segmentation are input if len(fname_src) > 1: # Split source volume along z logger.info(f"\nSplit input image...") im_src_im = image.Image(fname_src[1]) split_source_list = image.split_img_data(im_src_im, 2) for im in split_source_list: im.save() # Split destination volume along z logger.info(f"\nSplit destination image...") im_dest_im = image.Image(fname_dest[1]) split_dest_list = image.split_img_data(im_dest_im, 2) for im in split_dest_list: im.save() data_src_im = im_src_im.data data_dest_im = im_dest_im.data # initialize displacement and rotation coord_src = [None] * nz pca_src = [None] * nz coord_dest = [None] * nz pca_dest = [None] * nz centermass_src = np.zeros([nz, 2]) centermass_dest = np.zeros([nz, 2]) # displacement_forward = np.zeros([nz, 2]) # displacement_inverse = np.zeros([nz, 2]) angle_src_dest = np.zeros(nz) z_nonzero = [] th_max_angle *= np.pi / 180 # Loop across slices for iz in sct_progress_bar(range(0, nz), unit='iter', unit_scale=False, desc="Estimate cord angle for each slice", ascii=False, ncols=100): try: # compute PCA and get center or mass based on segmentation coord_src[iz], pca_src[iz], centermass_src[iz, :] = compute_pca(data_src[:, :, iz]) coord_dest[iz], pca_dest[iz], centermass_dest[iz, :] = compute_pca(data_dest[:, :, iz]) # detect rotation using the HOG method if rot_method in ['hog', 'pcahog']: angle_src_hog, conf_score_src = find_angle_hog(data_src_im[:, :, iz], centermass_src[iz, :], px, py, angle_range=th_max_angle) angle_dest_hog, conf_score_dest = find_angle_hog(data_dest_im[:, :, iz], centermass_dest[ iz, : ], px, py, angle_range=th_max_angle) # In case no maxima is found (it should never happen) if (angle_src_hog is None) or (angle_dest_hog is None): logger.warning(f"Slice #{str(iz)} not angle found in dest or src. It will be ignored.") continue if rot_method == 'hog': angle_src = -angle_src_hog # flip sign to be consistent with PCA output angle_dest = angle_dest_hog # Detect rotation using the PCA or PCA-HOG method if rot_method in ['pca', 'pcahog']: eigenv_src = pca_src[iz].components_.T[0][0], pca_src[iz].components_.T[1][0] eigenv_dest = pca_dest[iz].components_.T[0][0], pca_dest[iz].components_.T[1][0] # Make sure first element is always positive (to prevent sign flipping) if eigenv_src[0] <= 0: eigenv_src = tuple([i * (-1) for i in eigenv_src]) if eigenv_dest[0] <= 0: eigenv_dest = tuple([i * (-1) for i in eigenv_dest]) angle_src = angle_between(eigenv_src, [1, 0]) angle_dest = angle_between([1, 0], eigenv_dest) # compute ratio between axis of PCA pca_eigenratio_src = pca_src[iz].explained_variance_ratio_[0] / pca_src[iz].explained_variance_ratio_[1] pca_eigenratio_dest = pca_dest[iz].explained_variance_ratio_[0] / pca_dest[iz].explained_variance_ratio_[1] # angle is set to 0 if either ratio between axis is too low or outside angle range if pca_eigenratio_src < pca_eigenratio_th or angle_src > th_max_angle or angle_src < -th_max_angle: if rot_method == 'pca': angle_src = 0 elif rot_method == 'pcahog': logger.info("Switched to method 'hog' for slice: {}".format(iz)) angle_src = -angle_src_hog # flip sign to be consistent with PCA output if pca_eigenratio_dest < pca_eigenratio_th or angle_dest > th_max_angle or angle_dest < -th_max_angle: if rot_method == 'pca': angle_dest = 0 elif rot_method == 'pcahog': logger.info("Switched to method 'hog' for slice: {}".format(iz)) angle_dest = angle_dest_hog if not rot_method == 'none': # bypass estimation is source or destination angle is known a priori if paramreg.rot_src is not None: angle_src = paramreg.rot_src if paramreg.rot_dest is not None: angle_dest = paramreg.rot_dest # the angle between (src, dest) is the angle between (src, origin) + angle between (origin, dest) angle_src_dest[iz] = angle_src + angle_dest # append to list of z_nonzero z_nonzero.append(iz) # if one of the slice is empty, ignore it except ValueError: logger.warning(f"Slice #{str(iz)} is empty. It will be ignored.") # regularize rotation if not filter_size == 0 and (rot_method in ['pca', 'hog', 'pcahog']): # Filtering the angles by gaussian filter angle_src_dest_regularized = ndimage.filters.gaussian_filter1d(angle_src_dest[z_nonzero], filter_size) if verbose == 2: plt.plot(180 * angle_src_dest[z_nonzero] / np.pi, 'ob') plt.plot(180 * angle_src_dest_regularized / np.pi, 'r', linewidth=2) plt.grid() plt.xlabel('z') plt.ylabel('Angle (deg)') plt.title("Regularized cord angle estimation (filter_size: {})".format(filter_size)) plt.savefig(os.path.join(path_qc, 'register2d_centermassrot_regularize_rotation.png')) plt.close() # update variable angle_src_dest[z_nonzero] = angle_src_dest_regularized warp_x = np.zeros(data_dest.shape) warp_y = np.zeros(data_dest.shape) warp_inv_x = np.zeros(data_src.shape) warp_inv_y = np.zeros(data_src.shape) # construct 3D warping matrix for iz in sct_progress_bar(z_nonzero, unit='iter', unit_scale=False, desc="Build 3D deformation field", ascii=False, ncols=100): # get indices of x and y coordinates row, col = np.indices((nx, ny)) # build 2xn array of coordinates in pixel space coord_init_pix = np.array([row.ravel(), col.ravel(), np.array(np.ones(len(row.ravel())) * iz)]).T # convert coordinates to physical space coord_init_phy = np.array(im_src.transfo_pix2phys(coord_init_pix)) # get centermass coordinates in physical space centermass_src_phy = im_src.transfo_pix2phys([[centermass_src[iz, :].T[0], centermass_src[iz, :].T[1], iz]])[0] centermass_dest_phy = im_src.transfo_pix2phys([[centermass_dest[iz, :].T[0], centermass_dest[iz, :].T[1], iz]])[0] # build rotation matrix R = np.matrix(((cos(angle_src_dest[iz]), sin(angle_src_dest[iz])), (-sin(angle_src_dest[iz]), cos(angle_src_dest[iz])))) # build 3D rotation matrix R3d = np.eye(3) R3d[0:2, 0:2] = R # apply forward transformation (in physical space) coord_forward_phy = np.array(np.dot((coord_init_phy - np.transpose(centermass_dest_phy)), R3d) + np.transpose(centermass_src_phy)) # apply inverse transformation (in physical space) coord_inverse_phy = np.array(np.dot((coord_init_phy - np.transpose(centermass_src_phy)), R3d.T) + np.transpose(centermass_dest_phy)) # display rotations if verbose == 2 and not angle_src_dest[iz] == 0 and not rot_method == 'hog': # compute new coordinates coord_src_rot = coord_src[iz] * R coord_dest_rot = coord_dest[iz] * R.T # generate figure plt.figure(figsize=(9, 9)) # plt.ion() # enables interactive mode (allows keyboard interruption) for isub in [221, 222, 223, 224]: # plt.figure plt.subplot(isub) # ax = matplotlib.pyplot.axis() try: if isub == 221: plt.scatter(coord_src[iz][:, 0], coord_src[iz][:, 1], s=5, marker='o', zorder=10, color='steelblue', alpha=0.5) pcaaxis = pca_src[iz].components_.T pca_eigenratio = pca_src[iz].explained_variance_ratio_ plt.title('src') elif isub == 222: plt.scatter([coord_src_rot[i, 0] for i in range(len(coord_src_rot))], [coord_src_rot[i, 1] for i in range(len(coord_src_rot))], s=5, marker='o', zorder=10, color='steelblue', alpha=0.5) pcaaxis = pca_dest[iz].components_.T pca_eigenratio = pca_dest[iz].explained_variance_ratio_ plt.title('src_rot') elif isub == 223: plt.scatter(coord_dest[iz][:, 0], coord_dest[iz][:, 1], s=5, marker='o', zorder=10, color='red', alpha=0.5) pcaaxis = pca_dest[iz].components_.T pca_eigenratio = pca_dest[iz].explained_variance_ratio_ plt.title('dest') elif isub == 224: plt.scatter([coord_dest_rot[i, 0] for i in range(len(coord_dest_rot))], [coord_dest_rot[i, 1] for i in range(len(coord_dest_rot))], s=5, marker='o', zorder=10, color='red', alpha=0.5) pcaaxis = pca_src[iz].components_.T pca_eigenratio = pca_src[iz].explained_variance_ratio_ plt.title('dest_rot') plt.text(-2.5, -2, 'eigenvectors:', horizontalalignment='left', verticalalignment='bottom') plt.text(-2.5, -2.8, str(pcaaxis), horizontalalignment='left', verticalalignment='bottom') plt.text(-2.5, 2.5, 'eigenval_ratio:', horizontalalignment='left', verticalalignment='bottom') plt.text(-2.5, 2, str(pca_eigenratio), horizontalalignment='left', verticalalignment='bottom') plt.plot([0, pcaaxis[0, 0]], [0, pcaaxis[1, 0]], linewidth=2, color='red') plt.plot([0, pcaaxis[0, 1]], [0, pcaaxis[1, 1]], linewidth=2, color='orange') plt.axis([-3, 3, -3, 3]) plt.gca().set_aspect('equal', adjustable='box') except Exception as e: raise Exception plt.savefig(os.path.join(path_qc, 'register2d_centermassrot_pca_z' + str(iz) + '.png')) plt.close() # construct 3D warping matrix warp_x[:, :, iz] = np.array([coord_forward_phy[i, 0] - coord_init_phy[i, 0] for i in range(nx * ny)]).reshape((nx, ny)) warp_y[:, :, iz] = np.array([coord_forward_phy[i, 1] - coord_init_phy[i, 1] for i in range(nx * ny)]).reshape((nx, ny)) warp_inv_x[:, :, iz] = np.array([coord_inverse_phy[i, 0] - coord_init_phy[i, 0] for i in range(nx * ny)]).reshape((nx, ny)) warp_inv_y[:, :, iz] = np.array([coord_inverse_phy[i, 1] - coord_init_phy[i, 1] for i in range(nx * ny)]).reshape((nx, ny)) # Generate forward warping field (defined in destination space) generate_warping_field(fname_dest[0], warp_x, warp_y, fname_warp, verbose) generate_warping_field(fname_src[0], warp_inv_x, warp_inv_y, fname_warp_inv, verbose) def register2d_columnwise(fname_src, fname_dest, fname_warp='warp_forward.nii.gz', fname_warp_inv='warp_inverse.nii.gz', verbose=0, path_qc='./', smoothWarpXY=1): """ Column-wise non-linear registration of segmentations. Based on an idea from <NAME>. - Assumes src/dest are segmentations (not necessarily binary), and already registered by center of mass - Assumes src/dest are in RPI orientation. - Split along Z, then for each slice: - scale in R-L direction to match src/dest - loop across R-L columns and register by (i) matching center of mass and (ii) scaling. :param fname_src: :param fname_dest: :param fname_warp: :param fname_warp_inv: :param verbose: :return: """ # initialization th_nonzero = 0.5 # values below are considered zero # for display stuff if verbose == 2: import matplotlib matplotlib.use('Agg') # prevent display figure import matplotlib.pyplot as plt # Get image dimensions and retrieve nz logger.info(f"\nGet image dimensions of destination image...") nx, ny, nz, nt, px, py, pz, pt = image.Image(fname_dest).dim logger.info(f" matrix size: {str(nx)} x {str(ny)} x {str(nz)}") logger.info(f" voxel size: {str(px)}mm x {str(py)}mm x {str(nz)}mm") # Split source volume along z logger.info(f"\nSplit input volume...") im_src = image.Image('src.nii') split_source_list = image.split_img_data(im_src, 2) for im in split_source_list: im.save() # Split destination volume along z logger.info(f"\nSplit destination volume...") im_dest = image.Image('dest.nii') split_dest_list = image.split_img_data(im_dest, 2) for im in split_dest_list: im.save() # open image data_src = im_src.data data_dest = im_dest.data if len(data_src.shape) == 2: # reshape 2D data into pseudo 3D (only one slice) new_shape = list(data_src.shape) new_shape.append(1) new_shape = tuple(new_shape) data_src = data_src.reshape(new_shape) data_dest = data_dest.reshape(new_shape) # initialize forward warping field (defined in destination space) warp_x = np.zeros(data_dest.shape) warp_y = np.zeros(data_dest.shape) # initialize inverse warping field (defined in source space) warp_inv_x = np.zeros(data_src.shape) warp_inv_y = np.zeros(data_src.shape) # Loop across slices logger.info(f"\nEstimate columnwise transformation...") for iz in range(0, nz): logger.info(f"{str(iz)}/{str(nz)}..") # PREPARE COORDINATES # ============================================================ # get indices of x and y coordinates row, col = np.indices((nx, ny)) # build 2xn array of coordinates in pixel space # ordering of indices is as follows: # coord_init_pix[:, 0] = 0, 0, 0, ..., 1, 1, 1..., nx, nx, nx # coord_init_pix[:, 1] = 0, 1, 2, ..., 0, 1, 2..., 0, 1, 2 coord_init_pix = np.array([row.ravel(), col.ravel(), np.array(np.ones(len(row.ravel())) * iz)]).T # convert coordinates to physical space coord_init_phy = np.array(im_src.transfo_pix2phys(coord_init_pix)) # get 2d data from the selected slice src2d = data_src[:, :, iz] dest2d = data_dest[:, :, iz] # julien 20161105 #<<< # threshold at 0.5 src2d[src2d < th_nonzero] = 0 dest2d[dest2d < th_nonzero] = 0 # get non-zero coordinates, and transpose to obtain nx2 dimensions coord_src2d = np.array(
np.where(src2d > 0)
numpy.where
import numpy from nonbonded.library.statistics.statistics import ( StatisticType, bootstrap_residuals, compute_statistics, ) N_DATA_POINTS = 1000 N_ITERATIONS = 1000 def test_rmse(): """Test that the statistics module returns the 'correct' RMSE to within some noise given a set of noisy estimated values.""" expected_std = numpy.random.rand() + 1.0 estimated_values = numpy.random.normal(0.0, expected_std, N_DATA_POINTS) estimated_std = numpy.zeros(N_DATA_POINTS) (statistic_values, _, _) = compute_statistics( numpy.zeros(N_DATA_POINTS), numpy.array([None] * N_DATA_POINTS), estimated_values, estimated_std, N_ITERATIONS, statistic_types=[StatisticType.RMSE], ) assert numpy.isclose(statistic_values[StatisticType.RMSE], expected_std, rtol=0.1) def test_r2(): """Test that the statistics module returns the 'correct' R2 to within some noise given a set of noisy estimated values.""" measured_values = numpy.linspace(0.0, 1.0, N_DATA_POINTS) estimated_values = measured_values + numpy.random.rand() / 100.0 (statistic_values, _, _) = compute_statistics( measured_values, numpy.zeros(N_DATA_POINTS), estimated_values, numpy.zeros(N_DATA_POINTS), N_ITERATIONS, statistic_types=[StatisticType.R2], ) assert numpy.isclose(statistic_values[StatisticType.R2], 1.0, rtol=0.05) estimated_values = numpy.zeros(N_DATA_POINTS) +
numpy.random.rand()
numpy.random.rand
# -*- coding: iso-8859-15 -*- # # This software was written by <NAME> (<NAME>) # Copyright <NAME> # All rights reserved # This software is licenced under a 3-clause BSD style license # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are met: # #Redistributions of source code must retain the above copyright notice, #this list of conditions and the following disclaimer. # #Redistributions in binary form must reproduce the above copyright notice, #this list of conditions and the following disclaimer in the documentation #and/or other materials provided with the distribution. # #Neither the name of the University College London nor the names #of the code contributors may be used to endorse or promote products #derived from this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" #AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, #THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR #PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR #CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, #PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; #OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, #WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR #OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF #ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import division from __future__ import print_function from __future__ import absolute_import # Developed by <NAME> (MSSL/UCL) # uvotpy # (c) 2009-2017, see Licence from future.builtins import str from future.builtins import input from future.builtins import range __version__ = '2.9.0 20171209' import sys import optparse import numpy as np import matplotlib.pyplot as plt try: from astropy.io import fits as pyfits from astropy import wcs except: import pyfits import re import warnings try: import imagestats except: import stsci.imagestats as imagestats import scipy from scipy import interpolate from scipy.ndimage import convolve from scipy.signal import boxcar from scipy.optimize import leastsq from scipy.special import erf from numpy import polyfit, polyval ''' try: #from uvotpy import uvotplot,uvotmisc,uvotwcs,rationalfit,mpfit,uvotio import uvotplot import uvotmisc import uvotwcs import rationalfit import mpfit import uvotio except: pass ''' from uvotmisc import interpgrid, uvotrotvec, rdTab, rdList from generate_USNOB1_cat import get_usnob1_cat import datetime import os if __name__ != '__main__': anchor_preset = list([None,None]) bg_pix_limits = list([-100,-70,70,100]) bg_lower_ = list([None,None]) # (offset, width) in pix, e.g., [20,30], default [50,50] bg_upper_ = list([None,None]) # (offset, width) in pix, e.g., [20,30], default [50,50] offsetlimit = None #set Global parameters status = 0 do_coi_correction = True # if not set, disable coi_correction tempnames = list() tempntags = list() cval = -1.0123456789 interactive = True update_curve = True contour_on_img = False give_result = False # with this set, a call to getSpec returns all data give_new_result = False use_rectext = False background_method = 'boxcar' # alternatives 'splinefit' 'boxcar' background_smoothing = [50,7] # 'boxcar' default smoothing in dispersion and across dispersion in pix background_interpolation = 'linear' trackcentroiding = True # default (= False will disable track y-centroiding) global trackwidth trackwidth = 2.5 # width of extraction region in sigma (alternative default = 1.0) 2.5 was used for flux calibration. bluetrackwidth = 1.3 # multiplier width of non-order-overlapped extraction region [not yet active] write_RMF = False background_source_mag = 18.0 zeroth_blim_offset = 1.0 coi_half_width = None slit_width = 200 _PROFILE_BACKGROUND_ = False # start with severe sigma-clip f background, before going to smoothing today_ = datetime.date.today() datestring = today_.isoformat()[0:4]+today_.isoformat()[5:7]+today_.isoformat()[8:10] fileversion=1 calmode=True typeNone = type(None) senscorr = True # do sensitivity correction print(66*"=") print("uvotpy module uvotgetspec version=",__version__) print("<NAME> (c) 2009-2017, see uvotpy licence.") print("please use reference provided at http://github.com/PaulKuin/uvotpy") print(66*"=","\n") def getSpec(RA,DEC,obsid, ext, indir='./', wr_outfile=True, outfile=None, calfile=None, fluxcalfile=None, use_lenticular_image=True, offsetlimit=None, anchor_offset=None, anchor_position=[None,None], background_lower=[None,None], background_upper=[None,None], background_template=None, fixed_angle=None, spextwidth=13, curved="update", fit_second=False, predict2nd=True, skip_field_src=False, optimal_extraction=False, catspec=None,write_RMF=write_RMF, get_curve=None,fit_sigmas=True,get_sigma_poly=False, lfilt1=None, lfilt1_ext=None, lfilt2=None, lfilt2_ext=None, wheelpos=None, interactive=interactive, sumimage=None, set_maglimit=None, plot_img=True, plot_raw=True, plot_spec=True, zoom=True, highlight=False, uvotgraspcorr_on=True, ank_c_0offset = False, update_pnt=True, ifmotion=False, motion_file=None, anchor_x_offset=False, replace=None,ifextended=False, singleside_bkg = False, fixwidth = False, clobber=False, chatter=1): '''Makes all the necessary calls to reduce the data. Parameters ---------- ra, dec : float The Sky position (J2000) in **decimal degrees** obsid : str The observation ID number as a **String**. Typically that is something like "00032331001" and should be part of your grism filename which is something like "sw00032331001ugu_dt.img" ext : int number of the extension to process kwargs : dict optional keyword arguments, possible values are: - **fit_second** : bool fit the second order. Off since it sometimes causes problems when the orders overlap completely. Useful for spectra in top part detector - **background_lower** : list instead of default background list offset from spectrum as list of two numbers, like [20, 40]. Distance relative to spectrum - **background_upper** : list instead of default background list offset from spectrum as list of two numbers, like [20, 40]. Distance relative to spectrum - **offsetlimit** : None,int,[center,range] Default behaviour is to determine automatically any required offset from the predicted anchor position to the spectrum, and correct for that. The automated method may fail in the case of a weak spectrum and strong zeroth or first order next to the spectrum. Two methods are provided: (1) provide a number which will be used to limit the allowed offset. If within that limit no peak is identified, the program will stop and require you to provide a manual offset value. Try small numbers like 1, -1, 3, etc.. (2) if you already know the approximate y-location of the spectrum at the anchor x-position in the rotated small image strip around the spectrum, you can give this with a small allowed range for fine tuning as a list of two parameter values. The first value in the list must be the y-coordinate (by default the spectrum falls close to y=100 pixels), the second parameter the allowed adjustment to a peak value in pixels. For example, [105,2]. This will require no further interactive input, and the spectrum will be extracted using that offset. - **wheelpos**: {160,200,955,1000} filter wheel position for the grism filter mode used. Helpful for forcing Vgrism or UVgrism input when both are present in the directory. 160:UV Clocked, 200:UV Nominal, 955:V clocked, 1000:V nominal - **zoom** : bool when False, the whole extracted region is displayed, including zeroth order when present. - **clobber** : bool When True, overwrite earlier output (see also outfile) - **write_RMF** : bool When True, write the rmf file (will take extra time due to large matrix operations) - **use_lenticular_image** : bool When True and a lenticular image is present, it is used. If False, the grism image header WCS-S system will be used for the astrometry, with an automatic call to uvotgraspcorr for refinement. - **sumimage** : str Name summed image generated using ``sum_Extimage()``, will extract spectrum from summed image. - **wr_outfile** : bool If False, no output file is written - **outfile** : path, str Name of output file, other than automatically generated. - **calfile** : path, str calibration file name - **fluxcalfile** : path, str flux calibration file name or "CALDB" or None - **predict2nd** : bool predict the second order flux from the first. Overestimates in centre a lot. - **skip_field_src** : bool if True do not locate zeroth order positions. Can be used if absence internet connection or USNO-B1 server causes problems. - **optimal_extraction** : bool, obsolete Do not use.Better results with other implementation. - **catspec** : path optional full path to the catalog specification file for uvotgraspcorr. - **get_curve** : bool or path True: activate option to supply the curvature coefficients of all orders by hand. path: filename with coefficients of curvature - **uvotgraspcorr_on** : bool enable/disable rerun of uvotgraspcorr to update the WCS keywords - **update_pnt** : bool enable/disable update of the WCS keywords from the attitude file (this is done prior to running uvotgraspcorr is that is enabled) - **fit_sigmas** : bool fit the sigma of trackwidths if True (not implemented, always on) - **get_sigma_poly** : bool option to supply the polynomial for the sigma (not implemented) - **lfilt1**, **lfilt2** : str name if the lenticular filter before and after the grism exposure (now supplied by fileinfo()) - **lfilt1_ext**, **lfilt2_ext** : int extension of the lenticular filter (now supplied by fileinfo()) - **plot_img** : bool plot the first figure with the det image - **plot_raw** : bool plot the raw spectrum data - **plot_spec** : bool plot the flux spectrum - **highlight** : bool add contours to the plots to highlight contrasts - **chatter** : int verbosity of program - **set_maglimit** : int specify a magnitude limit to seach for background sources in the USNO-B1 catalog - **background_template** : numpy 2D array User provides a background template that will be used instead determining background. Must be in counts. Size and alignment must exactly match detector image. Returns ------- None, (give_result=True) compounded data (Y0, Y1, Y2, Y3, Y4) which are explained in the code, or (give_new_result=True) a data dictionary. Notes ----- **Quick Start** `getSpec(ra,dec,obsid, ext,)` should produce plots and output files **Which directory?** The program needs to be started from the CORRECT data directory. The attitude file [e.g., "sw<OBSID>pat.fits" ]is needed! A link or copy of the attitude file needs to be present in the directory or "../../auxil/" directory as well. **Global parameters** These parameters can be reset, e.g., during a (i)python session, before calling getSpec. - **trackwidth** : float width spectral extraction in units of sigma. The default is trackwidth = 2.5 The alternative default is trackwidth = 1.0 which gives better results for weak sources, or spectra with nearby contamination. However, the flux calibration and coincidence-loss correction give currently inconsistent results. When using trackwidth=1.0, rescale the flux to match trackwidth=2.5 which value was used for flux calibration and coincidence-loss correction. - **give_result** : bool set to False since a call to getSpec with this set will return all the intermediate results. See returns When the extraction slit is set to be straight ``curved="straight"`` it cuts off the UV part of the spectrum for spectra located in the top left and bottom right of the image. History ------- Version 2011-09-22 NPMK(MSSL) : handle case with no lenticular filter observation Version 2012-01-15 NPMK(MSSL) : optimal extraction is no longer actively supported until further notice Version 2013-10-23 NPMK(MSSL) : fixed bug so uvotgraspcorr gives same accuracy as lenticular filter Version 2014-01-01 NPMK(MSSL) : aperture correction for background added; output dictionary Version 2014-07-23 NPMK(MSSL) : coi-correction using new calibrared coi-box and factor Version 2014-08-04 NPMK(MSSL/UCL): expanded offsetlimit parameter with list option to specify y-range. Version 2015-12-03 NPMK(MSSL/UCL): change input parameter 'get_curve' to accept a file name with coefficients Version 2016-01-16 NPMK(MSSL/UCL): added options for background; disable automated centroiding of spectrum Example ------- from uvotpy.uvotgetspec import getSpec from uvotpy import uvotgetspec import os, shutil indir1 = os.getenv('UVOTPY') +'/test' indir2 = os.getcwd()+'/test/UVGRISM/00055900056/uvot/image' shutil.copytree(indir1, os.getcwd()+'/test' ) getSpec( 254.7129625, 34.3148667, '00055900056', 1, offsetlimit=1,indir=indir2, clobber=True ) ''' # (specfile, lfilt1_, lfilt1_ext_, lfilt2_, lfilt2_ext_, attfile), (method), \ # (Xphi, Yphi, date1), (dist12, ankerimg, ZOpos), expmap, bgimg, bg_limits_used, bgextra = Y0 # #( (dis,spnet,angle,anker,anker2,anker_field,ank_c), (bg,bg1,bg2,extimg,spimg,spnetimg,offset), # (C_1,C_2,img), hdr,m1,m2,aa,wav1 ) = Y1 # #fit,(coef0,coef1,coef2,coef3),(bg_zeroth,bg_first,bg_second,bg_third),(borderup,borderdown),apercorr,expospec=Y2 # #counts, variance, borderup, borderdown, (fractions,cnts,vars,newsigmas) = Y3 # #wav2p, dis2p, flux2p, qual2p, dist12p = Y4[0] # # where, # #(present0,present1,present2,present3),(q0,q1,q2,q3), \ # (y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(y1,dlim1L,dlim1U,sig1coef,sp_first,co_first),\ # (y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(y3,dlim3L,dlim3U,sig3coef,sp_third,co_third),\ # (x,xstart,xend,sp_all,quality,co_back) = fit # # dis = dispersion with zero at ~260nm[UV]/420nm[V] ; spnet = background-substracted spectrum from 'spnetimg' # angle = rotation-angle used to extract 'extimg' ; anker = first order anchor position in DET coordinates # anker2 = second order anker X,Y position ; anker_field = Xphi,Yphy input angles with respect to reference # ank_c = X,Y position of axis of rotation (anker) in 'extimg' # bg = mean background, smoothed, with sources removed # bg1 = one-sided background, sources removed, smoothed ; bg2 = same for background opposite side # extimg = image extracted of source and background, 201 pixels wide, all orders. # spimg = image centered on first order position ; spnetimg = background-subtracted 'spimg' # offset = offset of spectrum from expected position based on 'anchor' at 260nm[UVG]/420nm[VG], first order # C_1 = dispersion coefficients [python] first order; C_2 = same for second order # img = original image ; # WC_lines positions for selected WC star lines ; hdr = header for image # m1,m2 = index limits spectrum ; aa = indices spectrum (e.g., dis[aa]) # wav1 = wavelengths for dis[aa] first order (combine with spnet[aa]) # # when wr_outfile=True the program produces a flux calibrated output file by calling uvotio. # [fails if output file is already present and clobber=False] # # The background must be consistent with the width of the spectrum summed. from uvotio import fileinfo, rate2flux, readFluxCalFile from uvotplot import plot_ellipsoid_regions if (type(RA) == np.ndarray) | (type(DEC) == np.array): raise IOError("RA, and DEC arguments must be of float type ") if type(offsetlimit) == list: if len(offsetlimit) != 2: raise IOError("offsetlimit list must be [center, distance from center] in pixels") get_curve_filename = None a_str_type = type(curved) if chatter > 4 : print ("\n*****\na_str_type = ",a_str_type) print ("value of get_curve = ",get_curve) print ("type of parameter get_curve is %s\n"%(type(get_curve)) ) print ("type curved = ",type(curved)) if type(get_curve) == a_str_type: # file name: check this file is present if os.access(get_curve,os.F_OK): get_curve_filename = get_curve get_curve = True else: raise IOError( "ERROR: get_curve *%s* is not a boolean value nor the name of a file that is on the disk." %(get_curve) ) elif type(get_curve) == bool: if get_curve: get_curve_filename = None print("requires input of curvature coefficients") elif type(get_curve) == type(None): get_curve = False else: raise IOError("parameter get_curve should by type str or bool, but is %s"%(type(get_curve))) # check environment CALDB = os.getenv('CALDB') if CALDB == '': print('WARNING: The CALDB environment variable has not been set') HEADAS = os.getenv('HEADAS') if HEADAS == '': print('WARNING: The HEADAS environment variable has not been set') print('That is needed for the calls to uvot Ftools ') #SCAT_PRESENT = os.system('which scat > /dev/null') #if SCAT_PRESENT != 0: # print('WARNING: cannot locate the scat program \nDid you install WCSTOOLS ?\n') SESAME_PRESENT = os.system('which sesame > /dev/null') #if SESAME_PRESENT != 0: # print 'WARNING: cannot locate the sesame program \nDid you install the cdsclient tools?\n' # fix some parameters framtime = 0.0110329 # all grism images are taken in unbinned mode splineorder=3 getzmxmode='spline' smooth=50 testparam=None msg = "" ; msg2 = "" ; msg4 = "" attime = datetime.datetime.now() logfile = 'uvotgrism_'+obsid+'_'+str(ext)+'_'+'_'+attime.isoformat()[0:19]+'.log' if type(fluxcalfile) == bool: fluxcalfile = None tempnames.append(logfile) tempntags.append('logfile') tempnames.append('rectext_spectrum.img') tempntags.append('rectext') lfiltnames=np.array(['uvw2','uvm2','uvw1','u','b','v','wh']) ext_names =np.array(['uw2','um2','uw1','uuu','ubb','uvv','uwh']) filestub = 'sw'+obsid histry = "" for x in sys.argv: histry += x + " " Y0 = None Y2 = None Y3 = None Y4 = None Yfit = {} Yout = {"coi_level":None} # output dictionary (2014-01-01; replace Y0,Y1,Y2,Y3) lfilt1_aspcorr = "not initialized" lfilt2_aspcorr = "not initialized" qflag = quality_flags() ZOpos = None # parameters getSpec() Yout.update({'indir':indir,'obsid':obsid,'ext':ext}) Yout.update({'ra':RA,'dec':DEC,'wheelpos':wheelpos}) if type(sumimage) == typeNone: if background_template is not None: # convert background_template to a dictionary background_template = {'template':np.asarray(background_template), 'sumimg':False} try: ext = int(ext) except: print("fatal error in extension number: must be an integer value") # locate related lenticular images specfile, lfilt1_, lfilt1_ext_, lfilt2_, lfilt2_ext_, attfile = \ fileinfo(filestub,ext,directory=indir,wheelpos=wheelpos,chatter=chatter) # set some flags and variables lfiltinput = (lfilt1 != None) ^ (lfilt2 != None) lfiltpresent = lfiltinput | (lfilt1_ != None) | (lfilt2_ != None) if (type(lfilt1_) == typeNone) & (type(lfilt2_) == typeNone): # ensure the output is consistent with no lenticular filter solution use_lenticular_image = False # translate filt_id = {"wh":"wh","v":"vv","b":"bb","u":"uu","uvw1":"w1","uvm2":"m2","uvw2":"w2"} lfiltflag = False if ((type(lfilt1) == typeNone)&(type(lfilt1_) != typeNone)): lfilt1 = lfilt1_ lfilt1_ext = lfilt1_ext_ if chatter > 0: print("lenticular filter 1 from search lenticular images"+lfilt1+"+"+str(lfilt1_ext)) lfiltflag = True lfilt1_aspcorr = None try: hdu_1 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt1]+"_sk.img",lfilt1_ext) lfilt1_aspcorr = hdu_1["ASPCORR"] except: hdu_1 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt1]+"_sk.img.gz",lfilt1_ext) lfilt1_aspcorr = hdu_1["ASPCORR"] if ((type(lfilt2) == typeNone)&(type(lfilt2_) != typeNone)): lfilt2 = lfilt2_ lfilt2_ext = lfilt2_ext_ if chatter > 0: print("lenticular filter 2 from search lenticular images"+lfilt2+"+"+str(lfilt2_ext)) lfiltflag = True lfilt2_aspcorr = None try: hdu_2 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt2]+"_sk.img",lfilt2_ext) lfilt2_aspcorr = hdu_2["ASPCORR"] except: hdu_2 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt2]+"_sk.img.gz",lfilt2_ext) lfilt2_aspcorr = hdu_2["ASPCORR"] # report if chatter > 4: msg2 += "getSpec: image parameter values\n" msg2 += "ra, dec = (%6.1f,%6.1f)\n" % (RA,DEC) msg2 += "filestub, extension = %s[%i]\n"% (filestub, ext) if lfiltpresent & use_lenticular_image: msg2 += "first/only lenticular filter = "+lfilt1+" extension first filter = "+str(lfilt1_ext)+'\n' msg2 += " Aspect correction keyword : %s\n"%(lfilt1_aspcorr) if lfilt2_ext != None: msg2 += "second lenticular filter = "+lfilt2+" extension second filter = "+str(lfilt2_ext)+'\n' msg2 += " Aspect correction keyword : %s\n"%(lfilt2_aspcorr) if not use_lenticular_image: msg2 += "anchor position derived without lenticular filter\n" msg2 += "spectrum extraction preset width = "+str(spextwidth)+'\n' #msg2 += "optimal extraction "+str(optimal_extraction)+'\n' hdr = pyfits.getheader(specfile,int(ext)) if chatter > -1: msg += '\nuvotgetspec version : '+__version__+'\n' msg += ' Position RA,DEC : '+str(RA)+' '+str(DEC)+'\n' msg += ' Start date-time : '+str(hdr['date-obs'])+'\n' msg += ' grism file : '+specfile.split('/')[-1]+'['+str(ext)+']\n' msg += ' attitude file : '+attfile.split('/')[-1]+'\n' if lfiltpresent & use_lenticular_image: if ((lfilt1 != None) & (lfilt1_ext != None)): msg += ' lenticular file 1: '+lfilt1+'['+str(lfilt1_ext)+']\n' msg += ' aspcorr: '+lfilt1_aspcorr+'\n' if ((lfilt2 != None) & (lfilt2_ext != None)): msg += ' lenticular file 2: '+lfilt2+'['+str(lfilt2_ext)+']\n' msg += ' aspcorr: '+lfilt2_aspcorr+'\n' if not use_lenticular_image: msg += "anchor position derived without lenticular filter\n" if not 'ASPCORR' in hdr: hdr['ASPCORR'] = 'UNKNOWN' Yout.update({'hdr':hdr}) tstart = hdr['TSTART'] tstop = hdr['TSTOP'] wheelpos = hdr['WHEELPOS'] expo = hdr['EXPOSURE'] expmap = [hdr['EXPOSURE']] Yout.update({'wheelpos':wheelpos}) if 'FRAMTIME' not in hdr: # compute the frametime from the CCD deadtime and deadtime fraction #deadc = hdr['deadc'] #deadtime = 600*285*1e-9 # 600ns x 285 CCD lines seconds #framtime = deadtime/(1.0-deadc) framtime = 0.0110329 hdr.update('framtime',framtime,comment='frame time computed from deadc ') Yout.update({'hdr':hdr}) if chatter > 1: print("frame time computed from deadc - added to hdr") print("with a value of ",hdr['framtime']," ",Yout['hdr']['framtime']) if not 'detnam' in hdr: hdr.update('detnam',str(hdr['wheelpos'])) msg += ' exposuretime : %7.1f \n'%(expo) maxcounts = 1.1 * expo/framtime if chatter > 0: msg += ' wheel position : '+str(wheelpos)+'\n' msg += ' roll angle : %5.1f\n'% (hdr['pa_pnt']) msg += 'coincidence loss version: 2 (2014-07-23)\n' msg += '======================================\n' try: if ( (np.abs(RA - hdr['RA_OBJ']) > 0.4) ^ (np.abs(DEC - hdr['DEC_OBJ']) > 0.4) ): sys.stderr.write("\nWARNING: It looks like the input RA,DEC and target position in header are different fields\n") except (RuntimeError, TypeError, NameError, KeyError): pass msg2 += " cannot read target position from header for verification\n" if lfiltinput: # the lenticular filter(s) were specified on the command line. # check that the lenticular image and grism image are close enough in time. if type(lfilt1_ext) == typeNone: lfilt1_ext = int(ext) lpos = np.where( np.array([lfilt1]) == lfiltnames ) if len(lpos[0]) < 1: sys.stderr.write("WARNING: illegal name for the lenticular filter\n") lnam = ext_names[lpos] lfile1 = filestub+lnam[0]+'_sk.img' hdr_l1 = pyfits.getheader(lfile1,lfilt1_ext) tstart1 = hdr_l1['TSTART'] tstop1 = hdr_l1['TSTOP'] if not ( (np.abs(tstart-tstop1) < 20) ^ (np.abs(tstart1-tstop) < 20) ): sys.stderr.write("WARNING: check that "+lfile1+" matches the grism image\n") if lfilt2 != None: if type(lfilt2_ext) == typeNone: lfilt2_ext = lfilt1_ext+1 lpos = np.where( np.array([lfilt2]) == lfiltnames ) if len(lpos[0] < 1): sys.stderr.write("WARNING: illegal name for the lenticular filter\n") lnam = ext_names[lpos] lfile2 = filestub+lnam[0]+'_sk.img' hdr_l2 = pyfits.getheader(lfile1,lfilt1_ext) tstart2 = hdr_l2['TSTART'] tstop2 = hdr_l2['TSTOP'] if not ( (np.abs(tstart-tstop1) < 20) ^ (np.abs(tstart1-tstop) < 20) ): sys.stderr.write("WARNING: check that "+lfile2+" matches the grism image\n") if (not lfiltpresent) | (not use_lenticular_image): method = "grism_only" else: method = None if not senscorr: msg += "WARNING: No correction for sensitivity degradation applied.\n" # get the USNO-B1 catalog data for the field, & find the zeroth orders if (not skip_field_src): if chatter > 2: print("============== locate zeroth orders due to field sources =============") if wheelpos > 500: zeroth_blim_offset = 2.5 ZOpos = find_zeroth_orders(filestub, ext, wheelpos,indir=indir, set_maglimit=set_maglimit,clobber="yes", chatter=chatter, ) # use for the ftools the downloaded usnob1 catalog in file "search.ub1" using the # catspec parameter in the calls if os.access('catalog.spec',os.F_OK) & (catspec == None): catspec= 'catalog.spec' # retrieve the input angle relative to the boresight Xphi, Yphi, date1, msg3, lenticular_anchors = findInputAngle( RA, DEC, filestub, ext, uvotgraspcorr_on=uvotgraspcorr_on, update_pnt=update_pnt, msg="", \ wheelpos=wheelpos, lfilter=lfilt1, lfilter_ext=lfilt1_ext, \ lfilt2=lfilt2, lfilt2_ext=lfilt2_ext, method=method, \ attfile=attfile, catspec=catspec, indir=indir, chatter=chatter) Yout.update({"Xphi":Xphi,"Yphi":Yphi}) Yout.update({'lenticular_anchors':lenticular_anchors}) # read the anchor and dispersion out of the wavecal file anker, anker2, C_1, C_2, angle, calibdat, msg4 = getCalData(Xphi,Yphi,wheelpos, date1, \ calfile=calfile, chatter=chatter) hdrr = pyfits.getheader(specfile,int(ext)) if (hdrr['aspcorr'] == 'UNKNOWN') & (not lfiltpresent): msg += "WARNING: No aspect solution found. Anchor uncertainty large.\n" msg += "first order anchor position on detector in det coordinates:\n" msg += "anchor1=(%8.2f,%8.2f)\n" % (anker[0],anker[1]) msg += "first order dispersion polynomial (distance anchor, \n" msg += " highest term first)\n" for k in range(len(C_1)): msg += "DISP1_"+str(k)+"=%12.4e\n" % (C_1[k]) msg += "second order anchor position on detector in det coordinates:\n" msg += "anchor2=(%8.2f,%8.2f)\n" % (anker2[0],anker2[1]) msg += "second order dispersion polynomial (distance anchor2,\n" msg += " highest term first)\n" for k in range(len(C_2)): msg += "DISP2_"+str(k)+"=%12.4e\n" % (C_2[k]) #sys.stderr.write( "first order anchor = %s\n"%(anker)) #sys.stderr.write( "second order anchor = %s\n"%(anker2)) msg += "first order dispersion = %s\n"%(str(C_1)) msg += "second order dispersion = %s\n"%(str(C_2)) if chatter > 1: sys.stderr.write( "first order dispersion = %s\n"%(str(C_1)) ) sys.stderr.write( "second order dispersion = %s\n"%(str(C_2)) ) msg += "lenticular filter anchor positions (det)\n" msg += msg3 # override angle if fixed_angle != None: msg += "WARNING: overriding calibration file angle for extracting \n\t"\ "spectrum cal: "+str(angle)+'->'+str(fixed_angle)+" \n" angle = fixed_angle # override anchor position in det pixel coordinates if anchor_position[0] != None: cal_anker = anker anker = np.array(anchor_position) msg += "overriding anchor position with value [%8.1f,%8.1f]\n" % (anker[0],anker[1]) anker2 = anker2 -cal_anker + anker msg += "overriding anchor position 2nd order with value [%8.1f,%8.1f]\n"%(anker2[0],anker2[1]) anker_field = np.array([Xphi,Yphi]) theta=np.zeros(5)+angle # use the angle from first order everywhere. C_0 = np.zeros(3) # not in calibration file. Use uvotcal/zemax to get. C_3 = np.zeros(3) Cmin1 = np.zeros(3) msg += "field coordinates:\n" msg += "FIELD=(%9.4f,%9.4f)\n" % (Xphi,Yphi) # order distance between anchors dist12 = np.sqrt( (anker[0]-anker2[0])**2 + (anker[1]-anker2[1])**2 ) msg += "order distance 1st-2nd anchors :\n" msg += "DIST12=%7.1f\n" % (dist12) Yout.update({"anker":anker,"anker2":anker2,"C_1":C_1,"C_2":C_2,"theta":angle,"dist12":dist12}) # determine x,y locations of certain wavelengths on the image # TBD: add curvature if wheelpos < 500: wavpnt = np.arange(1700,6800,slit_width) else: wavpnt = np.arange(2500,6600,slit_width) dispnt=pixdisFromWave(C_1,wavpnt) # pixel distance to anchor if chatter > 0: msg2 += 'first order angle at anchor point: = %7.1f\n'%(angle) crpix = crpix1,crpix2 = hdr['crpix1'],hdr['crpix2'] crpix = np.array(crpix) # centre of image ankerimg = anker - np.array([1100.5,1100.5])+crpix xpnt = ankerimg[0] + dispnt*np.cos((180-angle)*np.pi/180) ypnt = ankerimg[1] + dispnt*np.sin((180-angle)*np.pi/180) msg += "1st order anchor on image at (%7.1f,%7.1f)\n"%(ankerimg[0],ankerimg[1]) if chatter > 4: msg += "Found anchor point; now extracting spectrum.\n" if chatter > 2: print("==========Found anchor point; now extracting spectrum ========") if type(offsetlimit) == typeNone: if wheelpos > 300: offsetlimit = 9 sys.stdout.write("automatically set the value for the offsetlimit = "+str(offsetlimit)+'\n') # find position zeroth order on detector from WCS-S after update from uvotwcs #if 'hdr' not in Yout: # hdr = pyfits.getheader(specfile,int(ext)) # Yout.update({'hdr':hdr}) zero_xy_imgpos = [-1,-1] if chatter > 1: print("zeroth order position on image...") try: wS =wcs.WCS(header=hdr,key='S',relax=True,) zero_xy_imgpos = wS.wcs_world2pix([[RA,DEC]],0) print("position not corrected for SIP = ", zero_xy_imgpos[0][0],zero_xy_imgpos[0][1]) zero_xy_imgpos = wS.sip_pix2foc(zero_xy_imgpos, 0)[0] if chatter > 1: "print zeroth order position on image:",zero_xy_imgpos except: pass Yout.update({'zeroxy_imgpos':zero_xy_imgpos}) # provide some checks on background inputs: if background_lower[0] != None: background_lower = np.abs(background_lower) if np.sum(background_lower) >= (slit_width-10): background_lower = [None,None] msg += "WARNING: background_lower set too close to edge image\n Using default\n" if background_upper[0] != None: background_upper = np.abs(background_upper) if np.sum(background_upper) >= (slit_width-10): background_upper = [None,None] msg += "WARNING: background_upper set too close to edge image\n Using default\n" # in case of summary file: if (not skip_field_src) & (ZOpos == None): if chatter > 2: print("DEBUG 802 ================== locate zeroth orders due to field sources =============") if wheelpos > 500: zeroth_blim_offset = 2.5 try: ZOpos = find_zeroth_orders(filestub, ext, wheelpos,indir=indir, set_maglimit=set_maglimit,clobber="yes", chatter=chatter, ) except: if type(sumimage) == typeNone: print ("exception to call find_zeroth_orders : skip_field_src = ",skip_field_src) pass # use for the ftools the downloaded usnob1 catalog in file "search.ub1" using the # catspec parameter in the calls if os.access('catalog.spec',os.F_OK) & (catspec == None): catspec= 'catalog.spec' if (not skip_field_src): Xim,Yim,Xa,Yb,Thet,b2mag,matched,ondetector = ZOpos pivot_ori=np.array([(ankerimg)[0],(ankerimg)[1]]) Y_ZOpos={"Xim":Xim,"Yim":Yim,"Xa":Xa,"Yb":Yb,"Thet":Thet,"b2mag":b2mag, "matched":matched,"ondetector":ondetector} Yout.update({"ZOpos":Y_ZOpos}) else: Yout.update({"ZOpos":None}) # find background, extract straight slit spectrum if chatter > 3 : print ("DEBUG 827 compute background") if sumimage != None: # initialize parameters for extraction summed extracted image print('reading summed image file : '+sumimage) print('ext label for output file is set to : ', ext) Y6 = sum_Extimage (None, sum_file_name=sumimage, mode='read') extimg, expmap, exposure, wheelpos, C_1, C_2, dist12, anker, \ (coef0, coef1,coef2,coef3,sig0coef,sig1coef,sig2coef,sig3coef), hdr = Y6 if background_template != None: background_template = {'extimg': background_template, 'sumimg': True} if (background_template['extimg'].size != extimg.size): print("ERROR") print("background_template.size=",background_template['extimg'].size) print("extimg.size=",extimg.size) raise IOError("The template does not match the sumimage dimensions") msg += "order distance 1st-2nd anchors :\n" msg += "DIST12=%7.1f\n" % (dist12) for k in range(len(C_1)): msg += "DISP1_"+str(k)+"=%12.4e\n" % (C_1[k]) msg += "second order dispersion polynomial (distance anchor2,\n" msg += " highest term first)\n" for k in range(len(C_2)): msg += "DISP2_"+str(k)+"=%12.4e\n" % (C_2[k]) print("first order anchor = ",anker) print("first order dispersion = %s"%(str(C_1))) print("second order dispersion = %s"%(str(C_2))) tstart = hdr['tstart'] ank_c = [100,500,0,2000] if type(offsetlimit) == typeNone: offset = 0 elif type(offsetlimit) == list: offset = offsetlimit[0]-96 ank_c[0] = offsetlimit[0] else: offset = offsetlimit # for sumimage used offsetlimit to set the offset ank_c[0] = 96+offsetlimit dis = np.arange(-500,1500) img = extimg # get background bg, bg1, bg2, bgsig, bgimg, bg_limits_used, bgextra = findBackground(extimg, background_lower=background_lower, background_upper=background_upper,) if singleside_bkg == 'bg1': bg2 = bg1 elif singleside_bkg == 'bg2': bg1 = bg2 else: pass skip_field_src = True spnet = bg1 # placeholder expo = exposure maxcounts = exposure/0.01 anker2 = anker + [dist12,0] spimg,spnetimg,anker_field = None, None, (0.,0.) m1,m2,aa,wav1 = None,None,None,None if type(outfile) == typeNone: outfile='sum_image_' Yfit.update({"coef0":coef0,"coef1":coef1,"coef2":coef2,"coef3":coef3, "sig0coef":sig0coef,"sig1coef":sig1coef,"sig2coef":sig2coef,"sig3coef":sig3coef} ) Yout.update({"anker":anker,"anker2":None, "C_1":C_1,"C_2":C_2, "Xphi":0.0,"Yphi":0.0, "wheelpos":wheelpos,"dist12":dist12, "hdr":hdr,"offset":offset}) Yout.update({"background_1":bg1,"background_2":bg2}) dropout_mask = None Yout.update({"zeroxy_imgpos":[1000,1000]}) else: # default extraction if chatter > 2 : print ("DEBUG 894 default extraction") # start with a quick straight slit extraction exSpIm = extractSpecImg(specfile,ext,ankerimg,angle,spwid=spextwidth, background_lower=background_lower, background_upper=background_upper, template = background_template, x_offset = anchor_x_offset, ank_c_0offset=ank_c_0offset, offsetlimit=offsetlimit, replace=replace, chatter=chatter, singleside_bkg=singleside_bkg) dis = exSpIm['dis'] spnet = exSpIm['spnet'] bg = exSpIm['bg'] bg1 = exSpIm['bg1'] bg2 = exSpIm['bg2'] bgsig = exSpIm['bgsigma'] bgimg = exSpIm['bgimg'] bg_limits_used = exSpIm['bg_limits_used'] bgextra = exSpIm['bgextras'] extimg = exSpIm['extimg'] spimg = exSpIm['spimg'] spnetimg = exSpIm['spnetimg'] offset = exSpIm['offset'] ank_c = exSpIm['ank_c'] if background_template != None: background_template ={"extimg":exSpIm["template_extimg"]} Yout.update({"template":exSpIm["template_extimg"]}) if exSpIm['dropouts']: dropout_mask = exSpIm['dropout_mask'] else: dropout_mask = None Yout.update({"background_1":bg1,"background_2":bg2}) #msg += "1st order anchor offset from spectrum = %7.1f\n"%(offset) #msg += "anchor position in rotated extracted spectrum (%6.1f,%6.1f)\n"%(ank_c[1],ank_c[0]) calibdat = None # free the memory if chatter > 2: print("============ straight slit extraction complete =================") if np.max(spnet) < maxcounts: maxcounts = 2.0*np.max(spnet) # initial limits spectrum (pixels) m1 = ank_c[1]-400 if wheelpos > 500: m1 = ank_c[1]-370 if m1 < 0: m1 = 0 if m1 < (ank_c[2]+30): m1 = ank_c[2]+30 m2 = ank_c[1]+2000 if wheelpos > 500: m2 = ank_c[1]+1000 if m2 >= len(dis): m2 = len(dis)-2 if m2 > (ank_c[3]-40): m2=(ank_c[3]-40) aa = list(range(int(m1),int(m2))) wav1 = polyval(C_1,dis[aa]) # get grism det image img = pyfits.getdata(specfile, ext) if isinstance(replace,np.ndarray): img = replace try: offset = np.asscalar(offset) except: pass Yout.update({"offset":offset}) Zbg = bg, bg1, bg2, bgsig, bgimg, bg_limits_used, bgextra net = extimg-bgextra[-1] var = extimg.copy() dims = np.asarray( img.shape ) dims = np.array([dims[1],dims[0]]) dims2 = np.asarray(extimg.shape) dims2 = np.array([dims2[1],dims2[0]]) msg += "Lower background from y = %i pix\nLower background to y = %i pix\n" % (bg_limits_used[0],bg_limits_used[1]) msg += "Upper background from y = %i pix\nUpper background to y = %i pix\n" % (bg_limits_used[2],bg_limits_used[3]) msg += "TRACKWID =%4.1f\n" % (trackwidth) # collect some results: if sumimage == None: Y0 = (specfile, lfilt1_, lfilt1_ext_, lfilt2_, lfilt2_ext_, attfile), (method), \ (Xphi, Yphi, date1), (dist12, ankerimg, ZOpos), expmap, bgimg, bg_limits_used, bgextra else: Y0 = None, None, None, (dist12, None, None), expmap, bgimg, bg_limits_used, bgextra angle = 0.0 # curvature from input (TBD how - placeholder with raw_input) # choose input coef or pick from plot # choose order to do it for if (get_curve & interactive) | (get_curve & (get_curve_filename != None)): if chatter > 3 : print ("DEBUG 978 get user-provided curve coefficients and extract spectrum") spextwidth = None # grab coefficients poly_1 = None poly_2 = None poly_3 = None if get_curve_filename == None: try: poly_1 = eval(input("give coefficients of first order polynomial array( [X^3,X^2,X,C] )")) poly_2 = eval(input("give coefficients of second order polynomial array( [X^2,X,C] )")) poly_3 = eval(input("give coefficients of third order polynomial array( [X,C] )")) except: print("failed") if (type(poly_1) != list) | (type(poly_2) != list) | (type(poly_3) != list): print("poly_1 type = ",type(poly_1)) print("poly_2 type = ",type(poly_2)) print("poly_3 type = ",type(poly_3)) raise IOError("the coefficients must be a list") poly_1 = np.asarray(poly_1) poly_2 = np.asarray(poly_2) poly_3 = np.asarray(poly_3) else: try: curfile = rdList(get_curve_filename) poly_1 = np.array(curfile[0][0].split(','),dtype=float) poly_2 = np.array(curfile[1][0].split(','),dtype=float) poly_3 = np.array(curfile[2][0].split(','),dtype=float) except: print("There seems to be a problem when readin the coefficients out of the file") print("The format is a list of coefficient separated by comma's, highest order first") print("The first line for the first order") print("The second line for the secons order") print("The third line for the third order") print("like, \n1.233e-10,-7.1e-7,3.01e-3,0.0.\n1.233e-5,-2.3e-2,0.03.0\n1.7e-1,0.9\n") print(get_curve_filename) print(curfile) print(poly_1) print(poly_2) print(poly_3) raise IOError("ERROR whilst reading curvature polynomial from file\n") print("Curvature coefficients were read in...\npoly_1: %s \npoly_2: %s \npoly_3: %s \n"% (poly_1,poly_2,poly_3)) fitorder, cp2, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,\ bg_second,bg_third), (borderup,borderdown), apercorr, expospec, msg, curved \ = curved_extraction( extimg, ank_c, anker, wheelpos, ZOpos=ZOpos, skip_field_sources=skip_field_src, offsetlimit=offsetlimit, predict_second_order=predict2nd, background_template=background_template, angle=angle, offset=offset, poly_1=poly_1, poly_2=poly_2, poly_3=poly_3, msg=msg, curved=curved, outfull=True, expmap=expmap, fit_second=fit_second, fit_third=fit_second, C_1=C_1,C_2=C_2,dist12=dist12, dropout_mask=dropout_mask, ifmotion=ifmotion, obsid=obsid,indir=indir,motion_file=motion_file, ank_c_0offset=ank_c_0offset, chatter=chatter,ifextended=ifextended, fixwidth=fixwidth) # fit_sigmas parameter needs passing (present0,present1,present2,present3),(q0,q1,q2,q3), ( y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),( y1,dlim1L,dlim1U,sig1coef,sp_first,co_first),( y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),( y3,dlim3L,dlim3U,sig3coef,sp_third,co_third),( x,xstart,xend,sp_all,quality,co_back) = fitorder # update the anchor y-coordinate if chatter > 3 : print ("DEBUG 1048 update anchor coordinate\noriginal ank_c=%s\ny1=%s"%(ank_c,y1)) ank_c[0] = y1[np.int(ank_c[1])] Yfit.update({"coef0":coef0,"coef1":coef1,"coef2":coef2,"coef3":coef3, "bg_zeroth":bg_zeroth,"bg_first":bg_first,"bg_second":bg_second,"bg_third":bg_third, "borderup":borderup,"borderdown":borderdown, "sig0coef":sig0coef,"sig1coef":sig1coef,"sig2coef":sig2coef,"sig3coef":sig3coef, "present0":present0,"present1":present1,"present2":present2,"present3":present3, "q0":q0,"q1":q1,"q2":q2,"q3":q3, "y0":y0,"dlim0L":dlim0L,"dlim0U":dlim0U,"sp_zeroth":sp_zeroth,"bg_zeroth":bg_zeroth,"co_zeroth":co_zeroth, "y1":y1,"dlim1L":dlim1L,"dlim1U":dlim1U,"sp_first": sp_first, "bg_first": bg_first, "co_first": co_first, "y2":y2,"dlim2L":dlim2L,"dlim2U":dlim2U,"sp_second":sp_second,"bg_second":bg_second,"co_second":co_second, "y3":y3,"dlim3L":dlim3L,"dlim3U":dlim3U,"sp_third": sp_third, "bg_third": bg_third, "co_third":co_third, "x":x,"xstart":xstart,"xend":xend,"sp_all":sp_all,"quality":quality,"co_back":co_back, "apercorr":apercorr,"expospec":expospec}) Yout.update({"ank_c":ank_c,"extimg":extimg,"expmap":expmap}) # curvature from calibration if spextwidth != None: if chatter > 3 : print ("DEBUG 1067 get curve coefficients from cal file and extract spectrum ") fitorder, cp2, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,\ bg_second,bg_third), (borderup,borderdown) , apercorr, expospec, msg, curved \ = curved_extraction( extimg,ank_c,anker, wheelpos, ZOpos=ZOpos, skip_field_sources=skip_field_src, offsetlimit=offsetlimit, background_lower=background_lower, background_upper=background_upper, \ background_template=background_template,\ angle=angle, offset=offset, outfull=True, expmap=expmap, msg = msg, curved=curved, fit_second=fit_second, fit_third=fit_second, C_1=C_1,C_2=C_2,dist12=dist12, dropout_mask=dropout_mask, ifmotion=ifmotion, obsid=obsid,indir=indir,motion_file=motion_file, ank_c_0offset=ank_c_0offset, chatter=chatter,ifextended=ifextended, fixwidth=fixwidth) (present0,present1,present2,present3),(q0,q1,q2,q3), \ (y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),( y1,dlim1L,dlim1U,sig1coef,sp_first,co_first),\ (y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),( y3,dlim3L,dlim3U,sig3coef,sp_third,co_third),\ (x,xstart,xend,sp_all,quality,co_back) = fitorder Yfit.update({"coef0":coef0,"coef1":coef1,"coef2":coef2,"coef3":coef3, "bg_zeroth":bg_zeroth,"bg_first":bg_first,"bg_second":bg_second,"bg_third":bg_third, "borderup":borderup,"borderdown":borderdown, "sig0coef":sig0coef,"sig1coef":sig1coef,"sig2coef":sig2coef,"sig3coef":sig3coef, "present0":present0,"present1":present1,"present2":present2,"present3":present3, "q0":q0,"q1":q1,"q2":q2,"q3":q3, "y0":y0,"dlim0L":dlim0L,"dlim0U":dlim0U,"sp_zeroth":sp_zeroth,"bg_zeroth":bg_zeroth,"co_zeroth":co_zeroth, "y1":y1,"dlim1L":dlim1L,"dlim1U":dlim1U,"sp_first": sp_first, "bg_first": bg_first, "co_first": co_first, "y2":y2,"dlim2L":dlim2L,"dlim2U":dlim2U,"sp_second":sp_second,"bg_second":bg_second,"co_second":co_second, "y3":y3,"dlim3L":dlim3L,"dlim3U":dlim3U,"sp_third": sp_third, "bg_third": bg_third, "co_third":co_third, "x":x,"xstart":xstart,"xend":xend,"sp_all":sp_all,"quality":quality,"co_back":co_back, "apercorr":apercorr,"expospec":expospec}) ank_c[0] = y1[int(ank_c[1])] Yout.update({"ank_c":ank_c,"extimg":extimg,"expmap":expmap}) msg += "orders present:" if present0: msg += "0th order, " if present1: msg += "first order" if present2: msg += ", second order" if present3: msg += ", third order " print('1224 CCCCCCCCCCCCC', coef1) print(RA,DEC) print(anker) print(ank_c) msg += '\nparametrized order curvature:\n' if present0: for k in range(len(coef0)): msg += "COEF0_"+str(k)+"=%12.4e\n" % (coef0[k]) if present1: for k in range(len(coef1)): msg += "COEF1_"+str(k)+"=%12.4e\n" % (coef1[k]) if present2: for k in range(len(coef2)): msg += "COEF2_"+str(k)+"=%12.4e\n" % (coef2[k]) if present3: for k in range(len(coef3)): msg += "COEF3_"+str(k)+"=%12.4e\n" % (coef3[k]) msg += '\nparametrized width slit:\n' if present0: for k in range(len(sig0coef)): msg += "SIGCOEF0_"+str(k)+"=%12.4e\n" % (sig0coef[k]) if present1: for k in range(len(sig1coef)): msg += "SIGCOEF1_"+str(k)+"=%12.4e\n" % (sig1coef[k]) if present2: for k in range(len(sig2coef)): msg += "SIGCOEF2_"+str(k)+"=%12.4e\n" % (sig2coef[k]) if present3: for k in range(len(sig3coef)): msg += "SIGCOEF3_"+str(k)+"=%12.4e\n" % (sig3coef[k]) if chatter > 3 : print ("DEBUG 1142 done spectral extraction, now calibrate") offset = ank_c[0]-slit_width/2 msg += "best fit 1st order anchor offset from spectrum = %7.1f\n"%(offset) msg += "anchor position in rotated extracted spectrum (%6.1f,%6.1f)\n"%(ank_c[1],y1[int(ank_c[1])]) msg += msg4 Yout.update({"offset":offset}) #2012-02-20 moved updateFitorder to curved_extraction #if curved == "update": # fit = fitorder2 #else: # fit = fitorder fit = fitorder if optimal_extraction: # development dropped, since mod8 causes slit width oscillations # also requires a good second order flux and coi calibration for # possible further development of order splitting. # result in not consistent now. print("Starting optimal extraction: This can take a few minutes ......\n\t "\ "........\n\t\t .............") Y3 = get_initspectrum(net,var,fit,160,ankerimg,C_1=C_1,C_2=C_2,dist12=dist12, predict2nd=predict2nd, chatter=1) counts, variance, borderup, borderdown, (fractions,cnts,vars,newsigmas) = Y3 # need to test that C_2 is valid here if predict2nd: Y4 = predict_second_order(dis,(sp_first-bg_first), C_1,C_2, dist12, quality,dlim1L, dlim1U,wheelpos) wav2p, dis2p, flux2p, qual2p, dist12p = Y4[0] # retrieve the effective area Y7 = readFluxCalFile(wheelpos,anchor=anker,spectralorder=1,arf=fluxcalfile,msg=msg,chatter=chatter) EffArea1 = Y7[:-1] msg = Y7[-1] Y7 = readFluxCalFile(wheelpos,anchor=anker,spectralorder=2,arf=None,msg=msg,chatter=chatter) if type(Y7) == tuple: EffArea2 = Y7[:-1] else: if type(Y7) != typeNone: msg = Y7 EffArea2 = None # note that the output differs depending on parameters given, i.e., arf, anchor Yout.update({"effarea1":EffArea1,"effarea2":EffArea2}) if interactive: import matplotlib.pyplot as plt if (plot_img) & (sumimage == None): #plt.winter() # make plot of model on image [figure 1] #xa = np.where( (dis < 1400) & (dis > -300) ) bga = bg.copy() fig1 = plt.figure(1); plt.clf() img[img <=0 ] = 1e-16 plt.imshow(np.log(img),vmin=np.log(bga.mean()*0.1),vmax=np.log(bga.mean()*4)) levs = np.array([5,15,30,60,120,360]) * bg.mean() if highlight: plt.contour(img,levels=levs) # plot yellow wavelength marker # TBD : add curvature plt.plot(xpnt,ypnt,'+k',markersize=14) if not skip_field_src: plot_ellipsoid_regions(Xim,Yim, Xa,Yb,Thet,b2mag,matched,ondetector, pivot_ori,pivot_ori,dims,17.,) if zoom: #plt.xlim(np.max(np.array([0.,0.])),np.min(np.array([hdr['NAXIS1'],ankerimg[0]+400]))) #plt.ylim(np.max(np.array([0.,ankerimg[1]-400 ])), hdr['NAXIS2']) plt.xlim(0,2000) plt.ylim(0,2000) else: plt.xlim(0,2000) plt.ylim(0,2000) plt.savefig(indir+'/'+obsid+'_map.png',dpi=150) #plt.show() plt.close() if (plot_raw): #plt.winter() nsubplots = 2 #if not fit_second: nsubplots=3 # make plot of spectrum [figure 2] fig2 = plt.figure(2); plt.clf() plt.subplots_adjust(top=1,hspace=0, wspace=0) # image slice ax21 = plt.subplot(nsubplots,1,1) ac = -ank_c[1] net[net<=0.] = 1e-16 #plt.imshow(np.log10(net),vmin=-0.8,vmax=0.8, #~FIXME: # extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]), # origin='lower',cmap=plt.cm.winter) plt.imshow(np.log10(net),vmin=-10,vmax=2, extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]), origin='lower')#,cmap=plt.cm.winter) #plt.imshow(extimg,vmin=0,vmax=50, # extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]), # origin='lower')#,cmap=plt.cm.winter) if highlight: plt.contour(np.log10(net),levels=[1,1.3,1.7,2.0,3.0], extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]), origin='lower') #plt.imshow( extimg,vmin= (bg1.mean())*0.1,vmax= (bg1.mean()+bg1.std())*2, extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]) ) #levels = np.array([5,10,20,40,70,90.]) #levels = spnet[ank_c[2]:ank_c[3]].max() * levels * 0.01 #if highlight: plt.contour(net,levels=levels,extent=(ac,ac+extimg.shape[1],0,extimg.shape[0])) # cross_section_plot: cp2 = cp2/np.max(cp2)*100 #plt.plot(ac+cp2+ank_c[1],np.arange(len(cp2)),'k',lw=2,alpha=0.6,ds='steps') #~TODO: # plot zeroth orders if not skip_field_src: pivot= np.array([ank_c[1],ank_c[0]-offset]) #pivot_ori=ankerimg mlim = 17. if wheelpos > 500: mlim = 15.5 plot_ellipsoid_regions(Xim,Yim,Xa,Yb,Thet,b2mag, matched,ondetector, pivot,pivot_ori, dims2,mlim, img_angle=angle-180.0,ax=ax21) # plot line on anchor location #plt.plot([ac+ank_c[1],ac+ank_c[1]],[0,slit_width],'k',lw=2) plt.plot(0,ank_c[0],'kx',MarkerSize=5) #~TODO: # plot position centre of orders #if present0: plt.plot(ac+q0[0],y0[q0[0]],'k--',lw=1.2) #plt.plot( ac+q1[0],y1[q1[0]],'k--',lw=1.2) #if present2: plt.plot(ac+q2[0],y2[q2[0]],'k--',alpha=0.6,lw=1.2) #if present3: plt.plot(ac+q3[0],y3[q3[0]],'k--',alpha=0.3,lw=1.2) # plot borders slit region if present0: plt.plot(ac+q0[0],borderup [0,q0[0]],'r-') plt.plot(ac+q0[0],borderdown[0,q0[0]],'r-') if present1: plt.plot(ac+q1[0],borderup [1,q1[0]],'r-',lw=1.2) plt.plot(ac+q1[0],borderdown[1,q1[0]],'r-',lw=1.2) if present2: plt.plot(ac+q2[0],borderup [2,q2[0]],'r-',alpha=0.6,lw=1) plt.plot(ac+q2[0],borderdown[2,q2[0]],'r-',alpha=0.6,lw=1) if present3: plt.plot(ac+q3[0],borderup [3,q3[0]],'r-',alpha=0.3,lw=1.2) plt.plot(ac+q3[0],borderdown[3,q3[0]],'r-',alpha=0.3,lw=1.2) # plot limits background plt_bg = np.ones(len(q1[0])) if (background_lower[0] == None) & (background_upper[0] == None): background_lower = [0,50] ; background_upper = [slit_width-50,slit_width] plt.plot(ac+q1[0],plt_bg*(background_lower[1]),'-k',lw=1.5 ) plt.plot(ac+q1[0],plt_bg*(background_upper[0]),'-k',lw=1.5 ) else: if background_lower[0] != None: plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]-background_lower[0]),'-k',lw=1.5 ) plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]-background_lower[1]),'-k',lw=1.5 ) elif background_lower[1] != None: plt.plot(ac+q1[0],plt_bg*(background_lower[1]),'-k',lw=1.5 ) if background_upper[1] != None: plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]+background_upper[0]),'-k',lw=1.5 ) plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]+background_upper[1]),'-k',lw=1.5 ) elif background_upper[0] != None: plt.plot(ac+q1[0],plt_bg*(background_upper[0]),'-k',lw=1.5 ) # rescale, title plt.ylim(0,slit_width) #plt.ylim(50,150) if not zoom: xlim1 = ac+ank_c[2] xlim2 = ac+ank_c[3] else: xlim1 = max(ac+ank_c[2], -420) xlim2 = min(ac+ank_c[3],1400) plt.xlim(xlim1,xlim2) plt.title(obsid+'+'+str(ext)) # first order raw data plot ax22 = plt.subplot(nsubplots,1,2) plt.rcParams['legend.fontsize'] = 'small' if curved == 'straight': p1, = plt.plot( dis[ank_c[2]:ank_c[3]], spnet[ank_c[2]:ank_c[3]],'k', ds='steps',lw=0.5,alpha=0.5,label='straight') p2, = plt.plot( dis[ank_c[2]:ank_c[3]], spextwidth*(bg1[ank_c[2]:ank_c[3]]+bg2[ank_c[2]:ank_c[3]])*0.5, 'b',alpha=0.5,label='background') plt.legend([p1,p2],['straight','background'],loc=0,) if curved != "straight": p3, = plt.plot(x[q1[0]],(sp_first-bg_first)[q1[0]],'r',ds='steps',label='spectrum') plt.plot(x[q1[0]],(sp_first-bg_first)[q1[0]],'k',alpha=0.2,ds='steps',label='_nolegend_') p7, = plt.plot(x[q1[0]], bg_first[q1[0]],'y',alpha=0.5,lw=1.1,ds='steps',label='background') # bad pixels: qbad = np.where(quality[q1[0]] > 0) p4, = plt.plot(x[qbad],(sp_first-bg_first)[qbad],'xk',markersize=4) #p7, = plt.plot(x[q1[0]],(bg_first)[q1[0]],'r-',alpha=0.3,label='curve_bkg') # annotation #plt.legend([p3,p4,p7],['spectrum','suspect','background'],loc=0,) plt.legend([p3,p7],['spectrum','background'],loc=0,) maxbg = np.max(bg_first[q1[0]][np.isfinite(bg_first[q1[0]])]) topcnt = 1.2 * np.max([np.max(spnet[q1[0]]),maxbg, np.max((sp_first-bg_first)[q1[0]])]) plt.ylim(np.max([ -20, np.min((sp_first-bg_first)[q1[0]])]), np.min([topcnt, maxcounts])) if optimal_extraction: p5, = plt.plot(x[q1[0]],counts[1,q1[0]],'g',alpha=0.5,ds='steps',lw=1.2,label='optimal' ) p6, = plt.plot(x[q1[0]],counts[1,q1[0]],'k',alpha=0.5,ds='steps',lw=1.2,label='_nolegend_' ) p7, = plt.plot(x[q1[0]], bg_first[q1[0]],'y',alpha=0.7,lw=1.1,ds='steps',label='background') plt.legend([p3,p5,p7],['spectrum','optimal','background'],loc=0,) topcnt = 1.2 * np.max((sp_first-bg_first)[q1[0]]) ylim1,ylim2 = -10, np.min([topcnt, maxcounts]) plt.ylim( ylim1, ylim2 ) #plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1]) plt.xlim(xlim1,xlim2) plt.ylabel('1st order counts') ''' # plot second order ax23 = plt.subplot(nsubplots,1,3) plt.rcParams['legend.fontsize'] = 'small' #plt.xlim(ank_c[2],ank_c[3]) if fit_second: if curved != 'straight': p1, = plt.plot(x[q2[0]],(sp_second-bg_second)[q2[0]],'r',label='spectrum') plt.plot(x[q2[0]],(sp_second-bg_second)[q2[0]],'k',alpha=0.2,label='_nolegend_') p7, = plt.plot(x[q2[0]],(bg_second)[q2[0]],'y',alpha=0.7,lw=1.1,label='background') qbad = np.where(quality[q2[0]] > 0) p2, = plt.plot(x[qbad],(sp_second-bg_second)[qbad],'+k',alpha=0.3,label='suspect') plt.legend((p1,p7,p2),('spectrum','background','suspect'),loc=2) plt.ylim(np.max([ -100, np.min((sp_second-bg_second)[q2[0]])]), \ np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts])) plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1]) if optimal_extraction: p3, = plt.plot(x[q2[0]],counts[2,q2[0]],'g',alpha=0.5,ds='steps',label='optimal' ) plt.legend((p1,p7,p2,p3),('spectrum','background','suspect','optimal',),loc=2) #plt.ylim(np.max([ -10,np.min(counts[2,q2[0]]), np.min((sp_second-bg_second)[q2[0]])]),\ # np.min([np.max(counts[2,q2[0]]), np.max((sp_second-bg_second)[q2[0]]), maxcounts])) plt.ylim( ylim1,ylim2 ) if predict2nd : p4, = plt.plot(dis2p+dist12,flux2p, ds='steps',label='predicted') p5, = plt.plot(dis2p[np.where(qual2p != 0)]+dist12,flux2p[np.where(qual2p != 0)],'+k',label='suspect',markersize=4) if optimal_extraction & fit_second: plt.legend((p1,p2,p3,p4,p5),('curved','suspect','optimal','predicted','suspect'),loc=2) #plt.ylim(np.max([ -100,np.min(counts[2,q2[0]]), np.min((sp_second-bg_second)[q2[0]])]),\ # np.min([np.max(counts[2,q2[0]]), np.max((sp_second-bg_second)[q2[0]]), maxcounts])) plt.ylim( ylim1,ylim2 ) elif optimal_extraction: plt.legend((p1,p7,p4,p5),('curved','background','predicted','suspect'),loc=2) plt.ylim(np.max([ -10, np.min((sp_second-bg_second)[q2[0]])]), \ np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts])) elif fit_second: plt.legend((p1,p2,p4,p5),('curved','suspect','predicted','suspect'),loc=2) plt.ylim(np.max([ -10, np.min((sp_second-bg_second)[q2[0]])]), \ np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts])) else: plt.legend((p4,p5),('predicted','suspect'),loc=2) plt.ylim(np.max([ -10, np.min((sp_second-bg_second)[q2[0]])]), \ np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts])) plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1]) plt.xlim(xlim1,xlim2) plt.ylabel('2nd order counts') ''' ''' if fit_second: ax24 = plt.subplot(nsubplots,1,4) plt.rcParams['legend.fontsize'] = 'small' if (len(q3[0]) > 1) & (curved != "xxx"): p1, = plt.plot(x[q3[0]],(sp_third-bg_third)[q3[0]],'r',label='spectrum') plt.plot(x[q3[0]],(sp_third-bg_third)[q3[0]],'k',alpha=0.2,label='_nolegend_') qbad = np.where(quality[q3[0]] > 0) p2, = plt.plot(x[qbad],(sp_third-bg_third)[qbad],'xk',alpha=0.3,label='suspect') p3, = plt.plot(x[q3[0]],bg_third[q3[0]],'y',label='background') plt.legend([p1,p3,p2],['spectrum','background','suspect'],loc=2) plt.ylim(np.max([ -100, np.min((sp_second-bg_second)[q3[0]])]),\ np.min([np.max((sp_third-bg_third)[q3[0]]), maxcounts])) if optimal_extraction: p4, = plt.plot(x[q3[0]],counts[3,q3[0]],'b',alpha=0.5,ds='steps',label='optimal' ) plt.legend([p1,p3,p2,p4],['spectrum','background','suspect','optimal',],loc=2) #plt.ylim(np.max([ -100,np.min(counts[3,q3[0]]), np.min((sp_second-bg_second)[q3[0]])]),\ # np.min([np.max(counts[3,q3[0]]), np.max((sp_third-bg_third)[q3[0]]), maxcounts])) plt.ylim( ylim1,ylim2 ) #plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1]) plt.xlim(xlim1,xlim2) plt.ylabel(u'3rd order counts') plt.xlabel(u'pixel distance from anchor position') ''' plt.savefig(indir+'/'+obsid+'_count.png',dpi=150) #plt.show() if (plot_spec): #plt.winter() # NEED the flux cal applied! nsubplots = 1 if not fit_second: nsubplots = 1 fig3 = plt.figure(3) plt.clf() wav1 = polyval(C_1,x[q1[0]]) ax31 = plt.subplot(nsubplots,1,1) if curved != "xxx": # PSF aperture correction applies on net rate, but background # needs to be corrected to default trackwidth linearly rate1 = ((sp_first[q1[0]]-bg_first[q1[0]] ) * apercorr[1,[q1[0]]] /expospec[1,[q1[0]]]).flatten() bkgrate1 = ((bg_first)[q1[0]] * (2.5/trackwidth) /expospec[1,[q1[0]]]).flatten() print("computing flux for plot; frametime =",framtime) flux1,wav1,coi_valid1 = rate2flux(wav1,rate1, wheelpos, bkgrate=bkgrate1, co_sprate = (co_first[q1[0]]/expospec[1,[q1[0]]]).flatten(), co_bgrate = (co_back [q1[0]]/expospec[1,[q1[0]]]).flatten(), pixno=x[q1[0]], #sig1coef=sig1coef, sigma1_limits=[2.6,4.0], arf1=fluxcalfile, arf2=None, effarea1=EffArea1, spectralorder=1, swifttime=tstart, #trackwidth = trackwidth, anker=anker, #option=1, fudgespec=1.32, frametime=framtime, debug=False,chatter=1) #flux1_err = 0.5*(rate2flux(,,rate+err,,) - rate2flux(,,rate-err,,)) p1, = plt.plot(wav1[np.isfinite(flux1)],flux1[np.isfinite(flux1)], color='darkred',label=u'curved') p11, = plt.plot(wav1[np.isfinite(flux1)&(coi_valid1==False)], flux1[np.isfinite(flux1)&(coi_valid1==False)],'.', color='lawngreen', label="too bright") # PROBLEM quality flags !!! qbad1 = np.where((quality[np.array(x[q1[0]],dtype=int)] > 0) & (quality[np.array(x[q1[0]],dtype=int)] < 16)) qbad2 = np.where((quality[np.array(x[q1[0]],dtype=int)] > 0) & (quality[np.array(x[q1[0]],dtype=int)] == qflag.get("bad"))) plt.legend([p1,p11],[u'calibrated spectrum',u'too bright - not calibrated']) if len(qbad2[0]) > 0: p2, = plt.plot(wav1[qbad2],flux1[qbad2], '+k',markersize=4,label=u'bad data') plt.legend([p1,p2],[u'curved',u'bad data']) plt.ylabel(u'1st order flux $(erg\ cm^{-2} s^{-1} \AA^{-1)}$') # find reasonable limits flux get_flux_limit = flux1[int(len(wav1)*0.3):int(len(wav1)*0.7)] get_flux_limit[get_flux_limit==np.inf] = np.nan get_flux_limit[get_flux_limit==-np.inf]= np.nan qf = np.nanmax(get_flux_limit) if qf > 2e-12: qf = 2e-12 plt.ylim(0.001*qf,1.2*qf) plt.xlim(1600,6000) if optimal_extraction: # no longer supported (2013-04-24) print("OPTIMAL EXTRACTION IS NO LONGER SUPPORTED") wav1 = np.polyval(C_1,x[q1[0]]) #flux1 = rate2flux(wav1, counts[1,q1[0]]/expo, wheelpos, spectralorder=1, arf1=fluxcalfile) flux1,wav1,coi_valid1 = rate2flux(wav1,counts[1,q1[0]]/expo, wheelpos, bkgrate=bgkrate1, co_sprate = (co_first[q1[0]]/expospec[1,[q1[0]]]).flatten(), co_bgrate = (co_back [q1[0]]/expospec[1,[q1[0]]]).flatten(), pixno=x[q1[0]], #sig1coef=sig1coef, sigma1_limits=[2.6,4.0], arf1=fluxcalfile, arf2=None, spectralorder=1, swifttime=tstart, #trackwidth = trackwidth, anker=anker, #option=1, fudgespec=1.32, frametime=framtime, debug=False,chatter=1) p3, = plt.plot(wav1, flux1,'g',alpha=0.5,ds='steps',lw=2,label='optimal' ) p4, = plt.plot(wav1,flux1,'k',alpha=0.5,ds='steps',lw=2,label='_nolegend_' ) #plt.legend([p1,p2,p3],['curved','suspect','optimal'],loc=0,) plt.legend([p1,p3],['curved','optimal'],loc=0,) qf = (flux1 > 0.) & (flux1 < 1.0e-11) plt.ylim( -0.01*np.max(flux1[qf]), 1.2*np.max(flux1[qf]) ) plt.ylabel(u'1st order count rate') plt.xlim(np.min(wav1)-10,np.max(wav1)) plt.title(obsid+'+'+str(ext)) ''' if fit_second: ax32 = plt.subplot(nsubplots,1,2) plt.plot([1650,3200],[0,1]) plt.text(2000,0.4,'NO SECOND ORDER DATA',fontsize=16) if curved != 'xxx': wav2 = polyval(C_2,x[q2[0]]-dist12) rate2 = ((sp_second[q2[0]]-bg_second[q2[0]])* apercorr[2,[q2[0]]].flatten()/expospec[2,[q2[0]]].flatten() ) bkgrate2 = ((bg_second)[q2[0]] * (2.5/trackwidth) /expospec[2,[q2[0]]]).flatten() flux2,wav2,coi_valid2 = rate2flux(wav2, rate2, wheelpos, bkgrate=bkgrate2, co_sprate = (co_second[q2[0]]/expospec[2,[q2[0]]]).flatten(), co_bgrate = (co_back [q2[0]]/expospec[2,[q2[0]]]).flatten(), pixno=x[q2[0]], arf1=fluxcalfile, arf2=None, frametime=framtime, effarea2=EffArea2, spectralorder=2,swifttime=tstart, anker=anker2, debug=False,chatter=1) #flux1_err = rate2flux(wave,rate_err, wheelpos, spectralorder=1,) plt.cla() print('#############################') print(wav2[100],flux2[100],wav2,flux2) p1, = plt.plot(wav2,flux2,'r',label='curved') plt.plot(wav2,flux2,'k',alpha=0.2,label='_nolegend_') qbad1 = np.where((quality[np.array(x[q2[0]],dtype=int)] > 0) & (quality[np.array(x[q2[0]],dtype=int)] < 16)) p2, = plt.plot(wav2[qbad1],flux2[qbad1],'+k',markersize=4,label='suspect data') plt.legend(['uncalibrated','suspect data']) plt.ylabel(u'estimated 2nd order flux') plt.xlim(1600,3200) qf = (flux1 > 0.) & (flux1 < 1.0e-11) if np.sum(qf[0]) > 0: plt.ylim( -0.01*np.max(flux1[qf]), 1.2*np.max(flux1[qf]) ) #else: plt.ylim(1e-16,2e-12) else: plt.ylim(1e-12,1e-11) # final fix to limits of fig 3,1 y31a,y31b = ax31.get_ylim() setylim = False if y31a < 1e-16: y31a = 1e-16 setylim = True if y31b > 1e-12: y31b = 1e-12 setylim = True if setylim: ax31.set_ylim(bottom=y31a,top=y31b) # ''' plt.xlabel(u'$\lambda(\AA)$',fontsize=16) plt.savefig(indir+'/'+obsid+'_flux.png',dpi=150) # to plot the three figures #plt.show() # output parameter Y1 = ( (dis,spnet,angle,anker,anker2,anker_field,ank_c), (bg,bg1,bg2,extimg,spimg,spnetimg,offset), (C_1,C_2,img), hdr,m1,m2,aa,wav1 ) # output parameter Y2 = fit, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first, bg_second,bg_third), (borderup,borderdown), apercorr, expospec Yout.update({"Yfit":Yfit}) # writing output to a file #try: if wr_outfile: # write output file if ((chatter > 0) & (not clobber)): print("trying to write output files") import uvotio if (curved == 'straight') & (not optimal_extraction): ank_c2 = np.copy(ank_c) ; ank_c2[1] -= m1 F = uvotio.wr_spec(RA,DEC,filestub,ext, hdr,anker,anker_field[0],anker_field[1], dis[aa],wav1, spnet[aa]/expo,bg[aa]/expo, bg1[aa]/expo,bg2[aa]/expo, offset,ank_c2,extimg, C_1, history=None,chatter=1, clobber=clobber, calibration_mode=calmode, interactive=interactive) elif not optimal_extraction: if fileversion == 2: Y = Yout elif fileversion == 1: Y = (Y0,Y1,Y2,Y4) F = uvotio.writeSpectrum(RA,DEC,filestub,ext, Y, fileoutstub=outfile, arf1=fluxcalfile, arf2=None, fit_second=fit_second, write_rmffile=write_RMF, fileversion=1, used_lenticular=use_lenticular_image, history=msg, calibration_mode=calmode, chatter=chatter, clobber=clobber ) elif optimal_extraction: Y = (Y0,Y1,Y2,Y3,Y4) F = uvotio.OldwriteSpectrum(RA,DEC,filestub,ext, Y, mode=2, quality=quality, interactive=False,fileout=outfile, updateRMF=write_rmffile, \ history=msg, chatter=5, clobber=clobber) #except (RuntimeError, IOError, ValueError): # print "ERROR writing output files. Try to call uvotio.wr_spec." # pass # clean up fake file if tempntags.__contains__('fakefilestub'): filestub = tempnames[tempntags.index('fakefilestub')] os.system('rm '+indir+filestub+'ufk_??.img ') # update Figure 3 to use the flux... # TBD # write the summary sys.stdout.write(msg) sys.stdout.write(msg2) flog = open(logfile,'a') flog.write(msg) flog.write(msg2) flog.close() #plt.show() if give_result: return Y0, Y1, Y2, Y3, Y4 if give_new_result: return Yout def extractSpecImg(file,ext,anker,angle,anker0=None,anker2=None, anker3=None,\ searchwidth=35,spwid=13,offsetlimit=None, fixoffset=None, background_lower=[None,None], background_upper=[None,None], template=None, x_offset = False, ank_c_0offset=False, replace=None, clobber=True,chatter=2,singleside_bkg=False): ''' extract the grism image of spectral orders plus background using the reference point at 2600A in first order. Parameters ---------- file : str input file location ext : int extension of image anker : list, ndarray X,Y coordinates of the 2600A (1) point on the image in image coordinates angle : float angle of the spectrum at 2600A in first order from zemax e.g., 28.8 searchwidth : float find spectrum with this possible offset ( in crowded fields it should be set to a smaller value) template : dictionary template for the background. use_rectext : bool If True then the HEADAS uvotimgrism program rectext is used to extract the image This is a better way than using ndimage.rotate() which does some weird smoothing. offsetlimit : None, float/int, list if None, search for y-offset predicted anchor to spectrum using searchwidth if float/int number, search for offset only up to a distance as given from y=100 if list, two elements, no more. [y-value, delta-y] for search of offset. if delta-y < 1, fixoffset = y-value. History ------- 2011-09-05 NPMK changed interpolation in rotate to linear, added a mask image to make sure to keep track of the new pixel area. 2011-09-08 NPMK incorporated rectext as new extraction and removed interactive plot, curved, and optimize which are now olsewhere. 2014-02-28 Add template for the background as an option 2014-08-04 add option to provide a 2-element list for the offsetlimit to constrain the offset search range. ''' import numpy as np import os, sys try: from astropy.io import fits as pyfits except: import pyfits import scipy.ndimage as ndimage #out_of_img_val = -1.0123456789 now a global Tmpl = (template != None) if Tmpl: if template['sumimg']: raise IOError("extractSpecImg should not be called when there is sumimage input") if chatter > 4: print('extractSpecImg parameters: file, ext, anker, angle') print(file,ext) print(anker,angle) print('searchwidth,chatter,spwid,offsetlimit, :') print(searchwidth,chatter,spwid,offsetlimit) img, hdr = pyfits.getdata(file,ext,header=True) if isinstance(replace,np.ndarray): img = replace # wcs_ = wcs.WCS(header=hdr,) # detector coordinates DETX,DETY in mm # wcsS = wcs.WCS(header=hdr,key='S',relax=True,) # TAN-SIP coordinate type if Tmpl: if (img.shape != template['template'].shape) : print("ERROR") print("img.shape=", img.shape) print("background_template.shape=",template['template'].shape) raise IOError("The templare array does not match the image") wheelpos = hdr['WHEELPOS'] if chatter > 4: print('wheelpos:', wheelpos) if not use_rectext: # now we want to extend the image array and place the anchor at the centre s1 = 0.5*img.shape[0] s2 = 0.5*img.shape[1] d1 = -(s1 - anker[1]) # distance of anker to centre img d2 = -(s2 - anker[0]) n1 = 2.*abs(d1) + img.shape[0] + 400 # extend img with 2.x the distance of anchor n2 = 2.*abs(d2) + img.shape[1] + 400 #return img, hdr, s1, s2, d1, d2, n1, n2 if 2*int(n1/2) ==
int(n1)
numpy.int
import numpy as np from lsst import geom import tqdm from ..matching import do_balrogesque_matching def _make_balrogesque_cat(n, seed): rng = np.random.RandomState(seed=seed) data = np.zeros(n, dtype=[("ra", "f8"), ("dec", "f8"), ("flux", "f8")]) data["ra"] = rng.uniform(size=n) * 1/60 data["dec"] = np.arcsin(rng.uniform(size=n, low=-1/60, high=1/60)) / np.pi * 180.0 data["flux"] = rng.uniform(size=n, low=1, high=10) return data def test_do_balrogesque_matching(): fsi_det_cat = _make_balrogesque_cat(100, 34489) fsi_truth_cat = _make_balrogesque_cat(100000, 3448) orig_det_cat = _make_balrogesque_cat(10000, 43) match_flag, match_index = do_balrogesque_matching( fsi_det_cat, orig_det_cat, fsi_truth_cat, "flux", ) # make sure we get all types of matches in our test assert set(
np.unique(match_flag)
numpy.unique
import matplotlib.pyplot as plt import sklearn.datasets as skdata import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn import metrics numeros = skdata.load_digits() target = numeros['target'] imagenes = numeros['images'] n_imagenes = len(target) data = imagenes.reshape((n_imagenes, -1)) # para volver a tener los datos como imagen basta hacer data.reshape((n_imagenes, 8, 8)) print(np.shape(data)) scaler = StandardScaler() x_2, x_validation, y_2, y_validation = train_test_split(data, target, train_size=0.8) x_train, x_test, y_train, y_test = train_test_split(x_2, y_2, train_size=0.5) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) x_validation = scaler.transform(x_validation) cov = np.cov(x_train.T) valores, vectores = np.linalg.eig(cov) valores = np.real(valores) vectores = np.real(vectores) ii =
np.argsort(-valores)
numpy.argsort
# Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: BSD 3 clause import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..utils import check_arrays from ..utils import atleast2d_or_csc from ..utils import array2d from ..utils import atleast2d_or_csr from ..utils import safe_asarray from ..utils import warn_if_not_float from ..utils.sparsefuncs import inplace_csr_row_normalize_l1 from ..utils.sparsefuncs import inplace_csr_row_normalize_l2 from ..utils.sparsefuncs import inplace_csr_column_scale from ..utils.sparsefuncs import mean_variance_axis0 from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'Normalizer', 'OneHotEncoder', 'Scaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) if isinstance(std_, np.ndarray): std_[std_ == 0.0] = 1.0 elif std_ == 0.: std_ = 1. else: std_ = None return mean_, std_ def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) warn_if_not_float(X, estimator='The scale function') if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis0(X) var[var == 0.0] = 1.0 inplace_csr_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) warn_if_not_float(X, estimator='The scale function') mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ if with_std: Xr /= std_ return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Standardizes features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The standardization is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This standardization is often used as an alternative to zero mean, unit variance scaling. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default is True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- `min_` : ndarray, shape (n_features,) Per feature adjustment for minimum. `scale_` : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_arrays(X, sparse_format="dense", copy=self.copy)[0] warn_if_not_float(X, estimator=self) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min # Do not scale constant features data_range[data_range == 0.0] = 1.0 self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ X = check_arrays(X, sparse_format="dense", copy=self.copy)[0] X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ X = check_arrays(X, sparse_format="dense", copy=self.copy)[0] X -= self.min_ X /= self.scale_ return X class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- `mean_` : array of floats with shape [n_features] The mean value for each feature in the training set. `std_` : array of floats with shape [n_features] The standard deviation for each feature in the training set. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_arrays(X, copy=self.copy, sparse_format="csr")[0] if warn_if_not_float(X, estimator=self): X = X.astype(np.float) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis0(X)[1] self.std_ = np.sqrt(var) self.std_[var == 0.0] = 1.0 else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ copy = copy if copy is not None else self.copy X = check_arrays(X, copy=copy, sparse_format="csr")[0] if warn_if_not_float(X, estimator=self): X = X.astype(np.float) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_csr_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_csr_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class Scaler(StandardScaler): def __init__(self, copy=True, with_mean=True, with_std=True): warnings.warn("Scaler was renamed to StandardScaler. The old name " " will be removed in 0.15.", DeprecationWarning) super(Scaler, self).__init__(copy, with_mean, with_std) def normalize(X, norm='l2', axis=1, copy=True): """Normalize a dataset along any axis Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1' or 'l2', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_arrays(X, sparse_format=sparse_format, copy=copy)[0] warn_if_not_float(X, 'The normalize function') if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) else: if norm == 'l1': norms = np.abs(X).sum(axis=1)[:, np.newaxis] norms[norms == 0.0] = 1.0 elif norm == 'l2': norms = np.sqrt(np.sum(X ** 2, axis=1))[:, np.newaxis] norms[norms == 0.0] = 1.0 X /= norms if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Parameters ---------- norm : 'l1' or 'l2', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ atleast2d_or_csr(X) return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy atleast2d_or_csr(X) return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default is True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ sparse_format = "csr" # We force sparse format to be either csr or csc. if hasattr(X, "format"): if X.format in ["csr", "csc"]: sparse_format = X.format X = check_arrays(X, sparse_format=sparse_format, copy=copy)[0] if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default is True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ atleast2d_or_csr(X) return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = array2d(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ K = array2d(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = safe_asarray(X) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = atleast2d_or_csc(X, copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected =
np.sum(sel)
numpy.sum
import pandas as pd import numpy as np import logging from flarestack.analyses.ccsn.necker_2019.ccsn_helpers import \ raw_sn_catalogue_name, updated_sn_catalogue_name, sn_times, pdf_names, conservative_redshift_addition from flarestack.analyses.ccsn.stasik_2017.shared_ccsn import sn_catalogue_name import math logging.getLogger().setLevel("INFO") # columns in raw catalogues columns = np.array(['name', 'discovery', 'ra', 'dec', 'redshift', 'lum dist [Mpc]', 'weight', 'flag']) # columns for output catalogues columns_out = columns.copy() columns_out[columns == 'lum dist [Mpc]'] = 'distance' columns_out = np.array([ 'source_name', 'ref_time_mjd', 'ra_rad', 'dec_rad', 'redshift', 'distance_mpc', 'weight', 'flag' ]) # columns to be added to_add = { 'names': ['injection_weight_modifier'], 'values': [1.], 'formats': ['<f8'] } columns_out = np.append(columns_out, to_add['names']) # data type for PDF catalogues dt = { 'names': columns_out, 'formats': ['<U50', 'i'] + ['<f8'] * 6 + to_add['formats'] } # columns that are not to be replaced when looking for values in catalogues of different PDFs not_to_be_replaced = ['weight'] not_to_be_replaced_inds = [np.where(columns == col_name)[0][0] for col_name in not_to_be_replaced] keep_inds = np.delete(np.array(range(len(columns))), not_to_be_replaced_inds) keep_inds_out = np.append(keep_inds, [np.where(columns_out == col)[0][0] for col in to_add['names']]) # data type for combined catalogues dt_comb = { 'names': columns_out[keep_inds_out], 'formats': np.array(dt['formats'])[keep_inds_out] } def load_catalogue(sn_type, pdf_name, include_flagged=False, z_add=0): """ load the catalogue from the csv file :param sn_type: string, e.g. 'IIP' :param pdf_name: string, e.g. '300 day box', '0.2 decay function', 'missed_objects' :param include_flagged: bool, if True also objects that are flagged are included :param z_add: float, optional, if given, this number is added to all redshifts :return: np.ndarray, columns name, discovery, ra, dec, redshift, distance, weight """ logging.info(f'loading the catalogue for {sn_type}: {pdf_name}') csv_filename = raw_sn_catalogue_name(sn_type) logging.info(f'filename: {csv_filename}') raw_catalogues = pd.read_csv(csv_filename) # get only the part of the catalogue that belongs to the given PDF col_catalogue = np.array(raw_catalogues.catalogue) logging.debug(f'looking for the right pdf in {col_catalogue}') pdf_names_mask = [type(ob) is str for ob in col_catalogue] pdf_names = col_catalogue[pdf_names_mask] pdf_names_inds = np.where(pdf_names_mask)[0] if len(np.where(pdf_names == pdf_name)[0]) < 1: raise IndexError(f'PDF {pdf_name} not available for {sn_type}') else: pdf_name_ind = np.where(pdf_names == pdf_name)[0][0] # if the last PDF in the list is selected, get everything until last row if pdf_name_ind == len(pdf_names) - 1: inds = [pdf_names_inds[pdf_name_ind]+3, None] else: inds = [pdf_names_inds[pdf_name_ind]+3, pdf_names_inds[pdf_name_ind+1]-2] logging.debug(f'The pdf names are stored under indices {pdf_names_inds}') logging.debug(f'Getting elements [{inds[0]} : {inds[1]}]') name_ind_in_columns = np.where(columns == 'name')[0][0] logging.debug(f'index of "name" in columns is {name_ind_in_columns}') catalogue = np.array( raw_catalogues.values[ inds[0] : inds[1], keymap(columns, raw_catalogues) ] ) logging.debug(f'after selecting right PDF: {catalogue}') # get only rows with the values, e.g. the rows where 'name' is not NaN objects_names_inds = [] for i, element in enumerate(catalogue[:, name_ind_in_columns]): if type(element) is (list or np.array): if len(element) > 1: raise ValueError(f'more than one name for object') else: element = element[0] if type(element) is str: objects_names_inds += [i] logging.debug(f'getting the rows with indices {objects_names_inds}') catalogue = catalogue[objects_names_inds, :] logging.debug(f'after removing NaNs from the name column: \n {catalogue}') # for empty rows, get the values from other catalogues (except weights!) for i, row in enumerate(catalogue): this_discovery = row[columns == 'discovery'][0] if np.isnan(this_discovery): logging.debug(f'discovery for row {i} is NaN') raw_cat_arr = raw_catalogues.values[:, keymap(columns, raw_catalogues)] # select only rows where the name is the name of this row raw_cat_arr = raw_cat_arr[raw_cat_arr[:, name_ind_in_columns] == row[name_ind_in_columns], :] replacement = raw_cat_arr[ np.invert( np.isnan( np.array(raw_cat_arr[:, np.where(columns == 'discovery')[0][0]], dtype='<f8') ) ), keep_inds ] logging.debug(f'replacing this row with {replacement}') catalogue[i][keep_inds] = replacement logging.debug(f'after replacing missing fields with values from other PDFs: \n {catalogue}') add_list = [to_add['values']] * len(catalogue) logging.debug(f'adding {add_list} to array') catalogue = np.append(catalogue, add_list, axis=1) logging.debug(f'after adding columns: \n {catalogue}') # convert strings with commas to floats for i, format in enumerate(dt['formats']): if ('f' in format) and (type(catalogue[0,i]) is str): logging.debug(f'converting {columns_out[i]}: {catalogue[:,i]} to floats') catalogue[:,i] = [float(st.replace(',', '.')) for st in catalogue[:, i]] logging.debug(f'after converting strings to floats: \n {catalogue}') # set the right data type to array catalogue = np.array( [tuple(row) for row in catalogue], dtype=dt ) logging.debug(f'after setting the right data type: \n {catalogue}') # convert ra and dec to radians conversion_factor = math.pi/180 catalogue['ra_rad'] = catalogue['ra_rad']*conversion_factor catalogue['dec_rad'] = catalogue['dec_rad']*conversion_factor logging.debug(f'after converting to radians: \n {catalogue}') if not include_flagged: catalogue = catalogue[np.isnan(catalogue['flag'])] logging.debug(f'after removing flagged objects: \n {catalogue}') if z_add: logging.debug(f'adding {z_add} to all redshifts!') catalogue['redshift'] += z_add return catalogue def keymap(keys, raw_catalogue): indices = [ np.where(np.array(raw_catalogue.columns) == key)[0][0] if len(np.where(np.array(raw_catalogue.columns) == key)) <= 1 else np.where(np.array(raw_catalogue.columns) == key) for key in keys ] logging.debug(f'keymap gives indices {indices} for keys {keys}') return indices class InconsistencyError(Exception): def __init__(self, msg): self.message = msg # ======================== # # === execute building === # # ======================== # if __name__ == '__main__': logging.info('building catalogues') for z_add in [0, conservative_redshift_addition]: if z_add: logging.debug(f'adding {z_add} to all redshifts!') for flag in [True, False]: msg = 'Including flagged objects' if flag else 'Not including flagged objects' logging.info(msg) for sn_type in sn_times: logging.info(f'building catalogue for sn type {sn_type}') start = True for pdf_type in sn_times[sn_type]: logging.info(f'pdf type: {pdf_type}') for pdf_time in sn_times[sn_type][pdf_type]: # get catalogues for individual PDFs pdf_name = pdf_names(pdf_type, pdf_time) logging.info(f'pdf time: {pdf_time}') catalogue = load_catalogue(sn_type, pdf_name, include_flagged=flag, z_add=z_add) savename = updated_sn_catalogue_name(sn_type, pdf_name, flagged=flag, z_conservative=z_add) np.save(savename, catalogue) # combine with previous PDF-catalogues catalogue_red = catalogue[columns_out[keep_inds_out]] if start: combined_catalogue = catalogue_red start = False new_mask = np.invert([name in combined_catalogue['source_name'] for name in catalogue_red['source_name']]) new_objects = catalogue_red[new_mask] combined_catalogue = np.array(list(combined_catalogue) + list(new_objects), dtype=dt_comb) # check consistency # treat field 'flag' separately because difficulty with comparing NaNs in lists special_field = 'flag' to_check = columns_out[keep_inds_out][np.invert(columns_out[keep_inds_out] == special_field)] for old in catalogue_red: element_in_combined_catalogue = \ combined_catalogue[combined_catalogue['source_name'] == old['source_name']][0] if (not np.array_equiv(old[to_check] ,element_in_combined_catalogue[to_check])) or \ not (
np.isnan(old[special_field])
numpy.isnan
from typing import Type import torch import os import unittest import heat as ht import numpy as np from ...tests.test_suites.basic_test import TestCase class TestLinalgBasics(TestCase): def test_cross(self): a = ht.eye(3) b = ht.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]) # different types cross = ht.cross(a, b) self.assertEqual(cross.shape, a.shape) self.assertEqual(cross.dtype, a.dtype) self.assertEqual(cross.split, a.split) self.assertEqual(cross.comm, a.comm) self.assertEqual(cross.device, a.device) self.assertTrue(ht.equal(cross, ht.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]))) # axis a = ht.eye(3, split=0) b = ht.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=ht.float, split=0) cross = ht.cross(a, b) self.assertEqual(cross.shape, a.shape) self.assertEqual(cross.dtype, a.dtype) self.assertEqual(cross.split, a.split) self.assertEqual(cross.comm, a.comm) self.assertEqual(cross.device, a.device) self.assertTrue(ht.equal(cross, ht.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]))) a = ht.eye(3, dtype=ht.int8, split=1) b = ht.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=ht.int8, split=1) cross = ht.cross(a, b, axis=0) self.assertEqual(cross.shape, a.shape) self.assertEqual(cross.dtype, a.dtype) self.assertEqual(cross.split, a.split) self.assertEqual(cross.comm, a.comm) self.assertEqual(cross.device, a.device) self.assertTrue(ht.equal(cross, ht.array([[0, 0, -1], [-1, 0, 0], [0, -1, 0]]))) # test axisa, axisb, axisc np.random.seed(42) np_a = np.random.randn(40, 3, 50) np_b = np.random.randn(3, 40, 50) np_cross = np.cross(np_a, np_b, axisa=1, axisb=0) a = ht.array(np_a, split=0) b = ht.array(np_b, split=1) cross = ht.cross(a, b, axisa=1, axisb=0) self.assert_array_equal(cross, np_cross) cross_axisc = ht.cross(a, b, axisa=1, axisb=0, axisc=1) np_cross_axisc = np.cross(np_a, np_b, axisa=1, axisb=0, axisc=1) self.assert_array_equal(cross_axisc, np_cross_axisc) # test vector axes with 2 elements b_2d = ht.array(np_b[:-1, :, :], split=1) cross_3d_2d = ht.cross(a, b_2d, axisa=1, axisb=0) np_cross_3d_2d = np.cross(np_a, np_b[:-1, :, :], axisa=1, axisb=0) self.assert_array_equal(cross_3d_2d, np_cross_3d_2d) a_2d = ht.array(np_a[:, :-1, :], split=0) cross_2d_3d = ht.cross(a_2d, b, axisa=1, axisb=0) np_cross_2d_3d = np.cross(np_a[:, :-1, :], np_b, axisa=1, axisb=0) self.assert_array_equal(cross_2d_3d, np_cross_2d_3d) cross_z_comp = ht.cross(a_2d, b_2d, axisa=1, axisb=0) np_cross_z_comp = np.cross(np_a[:, :-1, :], np_b[:-1, :, :], axisa=1, axisb=0) self.assert_array_equal(cross_z_comp, np_cross_z_comp) a_wrong_split = ht.array(np_a[:, :-1, :], split=2) with self.assertRaises(ValueError): ht.cross(a_wrong_split, b, axisa=1, axisb=0) with self.assertRaises(ValueError): ht.cross(ht.eye(3), ht.eye(4)) with self.assertRaises(ValueError): ht.cross(ht.eye(3, split=0), ht.eye(3, split=1)) if torch.cuda.is_available(): with self.assertRaises(ValueError): ht.cross(ht.eye(3, device="gpu"), ht.eye(3, device="cpu")) with self.assertRaises(TypeError): ht.cross(ht.eye(3), ht.eye(3), axis="wasd") with self.assertRaises(ValueError): ht.cross(ht.eye(3, split=0), ht.eye(3, split=0), axis=0) def test_dot(self): # ONLY TESTING CORRECTNESS! ALL CALLS IN DOT ARE PREVIOUSLY TESTED # cases to test: data2d =
np.ones((10, 10))
numpy.ones
###################################################### # Suboptiaml solver for the set/vertex cover problem (CITATION) # O(n^3) time with O(log n) suboptimality. # We solve a linear # Problem: # minimize c^T x # subject to Ax >= e # A is a set of sets. Each column represent a set of elements. # e = (1, 1, ..., 1) # x is a 0-1 vector with size of n # Dual of the problem # maximize e^T y # subject to y^T A <= c # Js = {j | y^T Aj = cj} # Solution <- x(Js) # Then we greedily remove a redundant element from the solution. ####################################################### import numpy as np from scipy.optimize import linprog def find_cover(A, c): # First we solve a dual of the linear relaxation. dual_c = -1 * np.ones(A.shape[0]) dual_A = A.transpose() dual_b = c print(dual_A) ret = linprog(c=dual_c, A_ub=dual_A, b_ub=dual_b) y = ret.x costs = np.matmul(y.transpose(), A) print("y=", y) print("costs=", costs) print("c=", c) # x(Js) will be a feasible solution with a bound of O(log n). Js = [] x =
np.zeros(A.shape[1])
numpy.zeros
import numpy as np import cv2 import open3d as o3d from Config import Config from matplotlib import pyplot as plt from Optimizer import * from Keyframe import * from utilities import rot_to_angle, rot_to_heading from scipy.spatial.transform import Rotation class Tracking: """Track the input image with respect to previous images""" """fx=fy=f=imageWidth /(2 * tan(CameraFOV * π / 360))""" def __init__(self): self.current_frame = None self.ref_keyframe = None self.image_queue = [] # ? self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # create BFMatcher object self.insert_new_kf = False self.new_kf_inserted = False self.tracking_success = False self.map = [] # self.current_rot = np.eye(3) # self.current_pos = np.array([0, 0, 0]) self.current_pose = np.eye(4) self.fx = Config().fx self.fy = Config().fy self.cx = Config().cx self.cy = Config().cy self.bf = Config().bf self.reprojection_threshold = 0.3 self.n_loop_closures = 0 # Counter for the number of verified loop closures self.grid_dim = (31, 31, 10) # x_grid, z_grid, [x,z,heading uncertainty + 1 layer occupancy] self.grid_center = (self.grid_dim[0]//2, self.grid_dim[1]//2, (self.grid_dim[2]-1)//2) self.grid_length = 8.0 self.grid_size = self.grid_length/self.grid_dim[0] self.grid_size_angle = 2*np.pi/(self.grid_dim[2]-1) # if e.g. grid_dim[2] == 11, then 9 divisions self.pgo = PoseGraphOptimizerGTSAM() self.result = None self.marginals = None self.loop_closure_inserted = False def grab_frame(self, frame): self.current_frame = frame if not self.ref_keyframe: self.ref_keyframe = Keyframe(frame) self.ref_keyframe.key_point_initializer() self.ref_keyframe.set_pose(np.eye(3), [0, 0, 0]) self.map.append(self.ref_keyframe) self.result, self.marginals = self.pgo.add_node_optimize(self.ref_keyframe) return True else: return self.track() def track(self): n_matched = 0 candidate_ref_keyframe = None new_kf = None list_kf = [kf[0] for kf in self.ref_keyframe.neighbors] # if self.ref_keyframe not in list_kf: # list_kf.append(self.ref_keyframe) if self.ref_keyframe in list_kf: list_kf.remove(self.ref_keyframe) list_kf = sorted(list_kf, key=lambda x: x.kfID, reverse=False) list_kf.append(self.ref_keyframe) list_kf_n = len(list_kf) list_kf_correspondence = [] count_success = 0 n_max = 0 if list_kf_n == 1: self.insert_new_kf = True for i in range(list_kf_n - 1, -1, -1): key_fr = list_kf[i] if count_success <= 3 or (self.new_kf_inserted and not self.tracking_success): flag_success, rel_pose, matches = self.visual_odometry_teaser(self.current_frame, key_fr) else: break if not flag_success: del list_kf[i] # is this really necessary? if i == list_kf_n-1: # If tracking reference keyframe failed, insert new kf self.insert_new_kf = True continue else: # Decide if the current frame should be converted into a new keyframe list_kf_correspondence.insert(0, (rel_pose, matches)) if i == list_kf_n-1 and (len(matches) < 0.55*key_fr.n_kp or len(matches) < 300): self.insert_new_kf = True print("Decided to convert to kf, matches: ", len(matches), " KPs: ", key_fr.n_kp, " KFID: ", key_fr.kfID) if len(matches) > 0.85*key_fr.n_kp: self.tracking_success = True print("Tracking was successful!") # list_kf_correspondence[i] = len(matches) count_success += 1 # if i == len(list_kf) - 1: rel_rot = rel_pose[:3, :3] rel_trans = rel_pose[:3, 3] rot = key_fr.rot().dot(rel_rot) # rot = rel_rot.dot(key_fr.rot()) trans = key_fr.pos() + key_fr.rot().dot(rel_trans) # trans = rel_trans + rel_rot.dot(key_fr.pos()) self.current_pose[0:3, 0:3] = rot self.current_pose[0:3, 3] = trans # if self.insert_new_kf and not self.new_kf_inserted: # Convert current frame into new kf if self.insert_new_kf and not self.new_kf_inserted: # Convert current frame into new kf self.new_kf_inserted = True new_kf = Keyframe(self.current_frame) # Now add key points to the new kf self.map.append(new_kf) new_kf.set_pose(rot, trans) if self.new_kf_inserted: for p in matches: idx_kf = p.queryIdx idx_cf = p.trainIdx kp = key_fr.get_key_point(idx_kf) if kp: new_kf.add_key_point(idx_cf, kp) else: d = key_fr.depth[idx_kf] pos = np.array([(key_fr.fp[idx_kf].pt[0]-self.cx)/self.fx*d, (key_fr.fp[idx_kf].pt[1]-self.cy)/self.fy*d, d]) pos = key_fr.rot().dot(pos) + key_fr.pos() kp = key_fr.new_key_point(idx_kf, pos) new_kf.add_key_point(idx_cf, kp) print("New KF initialized: <", new_kf.kfID, "> ", len(new_kf.key_points)) score = Keyframe.kfdb.score_l1(new_kf.bow, key_fr.bow, normalize=True) key_fr.neighbors.append((new_kf, rel_pose, score)) new_kf.neighbors.append((key_fr, np.linalg.inv(rel_pose), score)) # Change the reference kf to the one with max correspondence n_matched = len(matches) if n_matched > n_max: candidate_ref_keyframe = key_fr n_max = n_matched if self.new_kf_inserted: # self.ref_keyframe = new_kf print("New KF Neighbors: ", [kf[0].kfID for kf in new_kf.neighbors]) if candidate_ref_keyframe: self.ref_keyframe = candidate_ref_keyframe print("REF KF: ", self.ref_keyframe.kfID, " keypoints: ", len(self.ref_keyframe.key_points), " Neighbors: ", [kf_[0].kfID for kf_ in self.ref_keyframe.neighbors]) else: print("Number of matched features: ", n_matched) # Check BOW vectors for loop closure detection if self.new_kf_inserted: list_candidates = Keyframe.kfdb.get_candidates(new_kf) print("THE LIST OF CANDIDATES FOR LOOP CLOSURE: ", [kf.kfID for kf in list_candidates]) for kf in list_candidates: self.loop_closure_teaser(new_kf, kf) if self.new_kf_inserted: self.result, self.marginals = self.pgo.add_node_optimize(new_kf) self.insert_new_kf = False self.new_kf_inserted = False self.tracking_success = False return count_success > 0 def visual_odometry_teaser(self, current_f, key_f): flag_reproject = True # kf_des = key_f.des # Fetch descriptors from the keypoints of key_frame kf_des = np.zeros([key_f.n_kp, 32], dtype=np.uint8) kf_kp_indices = [] for idx, kp_idx in enumerate(key_f.key_points): kf_des[idx, :] = key_f.key_points[kp_idx].des kf_kp_indices.append(kp_idx) # Match keypoint descriptors with the features of the current frame matches = self.matcher.match(kf_des, current_f.des) # matches = sorted(matches, key=lambda x: x.distance) # Sort them in the order of their distance. if len(matches) < 30: print("VO failed due to lack of feature matches: ", len(matches)) return False, None, [] # if len(matches) < key_f.n_kp * 0.55 or len(matches) < 300: # self.insert_new_kf = True # print("Decision to convert to kf, matches: ", len(matches), " KPs: ", key_f.n_kp, " KFID: ", key_f.kfID) src = np.zeros((3, len(matches)), dtype=float) dst = np.zeros((3, len(matches)), dtype=float) for idx, p in enumerate(matches): p.queryIdx = kf_kp_indices[p.queryIdx] src[:, idx] = self.obs_to_3d(current_f.fp[p.trainIdx].pt[0], current_f.fp[p.trainIdx].pt[1], current_f.depth[p.trainIdx]) dst[:, idx] = self.obs_to_3d(key_f.fp[p.queryIdx].pt[0], key_f.fp[p.queryIdx].pt[1], key_f.depth[p.queryIdx]) optim = PoseOptimizerTeaser() pose = optim.optimize(src, dst) rot = pose[0:3, 0:3] trans = pose[0:3, 3] edge_outlier = [] for idx, p in enumerate(matches): pf = self.obs_to_3d(current_f.fp[p.trainIdx].pt[0], current_f.fp[p.trainIdx].pt[1], current_f.depth[p.trainIdx]) pkf = self.obs_to_3d(key_f.fp[p.queryIdx].pt[0], key_f.fp[p.queryIdx].pt[1], key_f.depth[p.queryIdx]) error = pkf - rot.dot(pf) - trans # print(np.linalg.norm(error)) if np.linalg.norm(error) < 2: edge_outlier.append(False) else: edge_outlier.append(True) if np.linalg.norm(pose[0:3, 3]) > 2: print("VO failed due to bad translation: ", np.linalg.norm(pose[0:3, 3]), " matches: ", len(matches)) return False, None, [] elif len(edge_outlier) - np.sum(edge_outlier) < 60: print("VO failed due to lack of enough matches: ", len(edge_outlier) - np.sum(edge_outlier)) return False, None, [] matches_inlier = [p for idx, p in enumerate(matches) if not edge_outlier[idx]] if flag_reproject: fp_inliers_idx_kf = [p.queryIdx for p in matches_inlier] fp_inliers_idx_f = [p.trainIdx for p in matches_inlier] new_matches = self.reproject_features(current_f, key_f, pose, fp_inliers_idx_f, fp_inliers_idx_kf) matches_inlier.extend(new_matches) print("VO succeeded, init. inliers: ", len(edge_outlier) - np.sum(edge_outlier)) return True, pose, matches_inlier def reproject_features(self, current_f, key_f, pose, fp_inliers_idx_f, fp_inliers_idx_kf): rot = pose[0:3, 0:3] trans = pose[0:3, 3] n_inliers = len(fp_inliers_idx_kf) # assert len(fp_inliers_idx_kf) == len(fp_inliers_idx_f) if len(key_f.fp)-n_inliers < 50 or len(current_f.fp)-n_inliers < 50: return [] kf_des = np.empty([len(key_f.fp)-n_inliers, 32], dtype=np.uint8) f_des = np.empty([len(current_f.fp)-n_inliers, 32], dtype=np.uint8) kf_indices = [] f_indices = [] counter = 0 for idx, fp in enumerate(current_f.fp): if idx in fp_inliers_idx_f: continue f_des[counter, :] = current_f.des[idx, :] counter += 1 f_indices.append(idx) counter = 0 for idx, fp in enumerate(key_f.fp): if idx in fp_inliers_idx_kf: continue kf_des[counter, :] = key_f.des[idx, :] counter += 1 kf_indices.append(idx) matches = self.matcher.match(kf_des, f_des) n_reprojected = 0 new_matches = [] for p in matches: p.queryIdx = kf_indices[p.queryIdx] p.trainIdx = f_indices[p.trainIdx] dkf = key_f.depth[p.queryIdx] df = current_f.depth[p.trainIdx] pkf = self.obs_to_3d(key_f.fp[p.queryIdx].pt[0], key_f.fp[p.queryIdx].pt[1], dkf) pf = self.obs_to_3d(current_f.fp[p.trainIdx].pt[0], current_f.fp[p.trainIdx].pt[1] , df) error = pkf - rot.dot(pf) - trans # print(np.linalg.norm(error)) if np.linalg.norm(error) < self.reprojection_threshold: n_reprojected += 1 kp = key_f.new_key_point(p.queryIdx, pkf) key_f.add_key_point(p.queryIdx, kp) new_matches.append(p) print(n_reprojected, " new keypoints created on kf ", key_f.kfID, "from tracking frame", current_f.id) return new_matches def obs_to_3d(self, u, v, d): return np.array([(u - self.cx) / self.fx * d, (v - self.cy) / self.fy * d, d]) def obs_to_stereo(self, u, v, d): return np.array([u, u - self.bf / d, v]) def loop_closure_teaser(self, new_kf, loop_kf): # If temporal gap is small, disregard this candidate if new_kf.kfID - loop_kf.kfID < 10: return # Calculate the similarity score and compare with neighbors new_score = Keyframe.kfdb.score_l1(new_kf.bow, loop_kf.bow, normalize=True) candidate_kf = loop_kf for kf, _, _ in loop_kf.neighbors: neighbor_score = Keyframe.kfdb.score_l1(new_kf.bow, kf.bow, normalize=True) if neighbor_score > new_score: new_score = neighbor_score candidate_kf = kf loop_kf = candidate_kf if loop_kf in new_kf.neighbors_list(): return min_score = 1 for _, _, score in loop_kf.neighbors: min_score = min(min_score, score) if min_score > new_score: return # If the absolute positions and orientations are not close enough, return # if np.linalg.norm(new_kf.pos()-loop_kf.pos()) > 2 or \ # rot_to_angle(np.matmul(new_kf.rot(), loop_kf.rot().T)) > 20/180*np.pi*np.sqrt(2): # return # Find matches, and return if few matches matches = self.matcher.match(loop_kf.des, new_kf.des) if len(matches) < 100: return src = np.zeros((3, len(matches)), dtype=float) dst = np.zeros((3, len(matches)), dtype=float) for idx, p in enumerate(matches): src[:, idx] = self.obs_to_3d(new_kf.fp[p.trainIdx].pt[0], new_kf.fp[p.trainIdx].pt[1], new_kf.depth[p.trainIdx]) dst[:, idx] = self.obs_to_3d(loop_kf.fp[p.queryIdx].pt[0], loop_kf.fp[p.queryIdx].pt[1], loop_kf.depth[p.queryIdx]) optim = PoseOptimizerTeaser() pose = optim.optimize(src, dst) rot = pose[0:3, 0:3] trans = pose[0:3, 3] errors = dst-rot.dot(src)-trans.reshape((3, 1)) outliers = [] n_outliers = 0 n_inliers = 0 for idx in range(len(matches)): if
np.linalg.norm(errors[:, idx])
numpy.linalg.norm
# -*- coding: utf-8 -*- """Orientation models.""" import numpy as np from .closures import compute_closure def jeffery_ode(a, t, xi, L, closure="IBOF", **kwargs): """ODE describing Jeffery's model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME> 'The motion of ellipsoidal particles immersed in a viscous fluid', Proceedings of the Royal Society A, 1922. https://doi.org/10.1098/rspa.1922.0078 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) return dadt.ravel() def folgar_tucker_ode(a, t, xi, L, Ci=0.0, closure="IBOF", **kwargs): """ODE describing the Folgar-Tucker model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME> III, 'Orientation behavior of fibers in concentrated suspensions', Journal of Reinforced Plastic Composites 3, 98-119, 1984. https://doi.org/10.1177%2F073168448400300201 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) + 2 * Ci * G * (delta - 3 * a) ) return dadt.ravel() def maier_saupe_ode(a, t, xi, L, Ci=0.0, U0=0.0, closure="IBOF", **kwargs): """ODE using Folgar-Tucker constant and Maier-Saupe potential. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.1). U0 : float Maier-Saupe Potential (in 3D stable for y U0 < 8 Ci). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, <NAME>, 'Comparative numerical study of two concentrated fiber suspension models', Journal of Non-Newtonian Fluid Mechanics 165, 764-781, 2010. https://doi.org/10.1016/j.jnnfm.2010.04.001 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) + 2 * G * ( Ci * (delta - 3 * a) + U0 * (np.einsum("ik,kj->ij", a, a) - np.einsum("ijkl,kl->ij", A, a)) ) ) return dadt.ravel() def iard_ode(a, t, xi, L, Ci=0.0, Cm=0.0, closure="IBOF", **kwargs): """ODE describing iARD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Cm : float Anisotropy factor (0 < Cm < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'An objective tensor to predict anisotropic fiber orientation in concentrated suspensions', Journal of Rheology 60, 215, 2016. https://doi.org/10.1122/1.4939098 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) D2 = np.einsum("ik,kj->ij", D, D) D2_norm = np.sqrt(1.0 / 2.0 * np.einsum("ij,ij", D2, D2)) Dr = Ci * (delta - Cm * D2 / D2_norm) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_iard = G * ( 2 * Dr - 2 * np.trace(Dr) * a - 5 * np.einsum("ik,kj->ij", Dr, a) - 5 * np.einsum("ik,kj->ij", a, Dr) + 10 * np.einsum("ijkl,kl->ij", A, Dr) ) dadt = dadt_HD + dadt_iard return dadt.ravel() def iardrpr_ode( a, t, xi, L, Ci=0.0, Cm=0.0, alpha=0.0, beta=0.0, closure="IBOF", **kwargs ): """ODE describing iARD-RPR model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Cm : float Anisotropy factor (0 < Cm < 1). alpha : float Retardance rate (0 < alpha < 1). beta : float Retardance tuning factor (0< beta < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'An objective tensor to predict anisotropic fiber orientation in concentrated suspensions', Journal of Rheology 60, 215, 2016. https://doi.org/10.1122/1.4939098 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) D2 = np.einsum("ik,kj->ij", D, D) D2_norm = np.sqrt(1.0 / 2.0 * np.einsum("ij,ij", D2, D2)) Dr = Ci * (delta - Cm * D2 / D2_norm) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2.0 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_iard = G * ( 2.0 * Dr - 2.0 * np.trace(Dr) * a - 5.0 * np.einsum("ik,kj->ij", Dr, a) - 5.0 * np.einsum("ik,kj->ij", a, Dr) + 10.0 * np.einsum("ijkl,kl->ij", A, Dr) ) dadt_temp = dadt_HD + dadt_iard # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] # Estimation of eigenvalue rates (rotated back) dadt_diag = np.einsum("ik, kl, lj->ij", np.transpose(R), dadt_temp, R) lbd0 = dadt_diag[0, 0] lbd1 = dadt_diag[1, 1] lbd2 = dadt_diag[2, 2] # Computation of IOK tensor by rotation IOK = np.zeros((3, 3)) IOK[0, 0] = alpha * (lbd0 - beta * (lbd0 ** 2.0 + 2.0 * lbd1 * lbd2)) IOK[1, 1] = alpha * (lbd1 - beta * (lbd1 ** 2.0 + 2.0 * lbd0 * lbd2)) IOK[2, 2] = alpha * (lbd2 - beta * (lbd2 ** 2.0 + 2.0 * lbd0 * lbd1)) dadt_rpr = -np.einsum("ik, kl, lj->ij", R, IOK, np.transpose(R)) dadt = dadt_temp + dadt_rpr return dadt.ravel() def mrd_ode( a, t, xi, L, Ci=0.0, D1=1.0, D2=0.8, D3=0.15, closure="IBOF", **kwargs ): """ODE describing MRD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). D1 : type Anisotropy factors (D1 > 0). D2 : type Anisotropy factors (D2 > 0). D3 : type Anisotropy factors (D3 > 0). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, <NAME> and <NAME>, 'Using New Anisotropic Rotational Diffusion Model To Improve Prediction Of Short Fibers in Thermoplastic InjectionMolding', ANTEC, Orlando, 2018. """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) C_hat = np.array([[D1, 0.0, 0.0], [0.0, D2, 0.0], [0.0, 0.0, D3]]) # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] C = Ci * np.einsum("ij,jk,kl->il", R, C_hat, np.transpose(R)) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_mrd = G * ( 2 * C - 2 * np.trace(C) * a - 5 * np.einsum("ik,kj->ij", C, a) - 5 * np.einsum("ik,kj->ij", a, C) + 10 * np.einsum("ijkl,kl->ij", A, C) ) dadt = dadt_HD + dadt_mrd return dadt.ravel() def pard_ode(a, t, xi, L, Ci=0.0, Omega=0.0, closure="IBOF", **kwargs): """ODE describing pARD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Omega : type Anisotropy factor (0.5 < Omega < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions', Journal of Rheology 62, 313, 2017. https://doi.org/10.1122/1.4998520 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) C_hat = np.array( [[1.0, 0.0, 0.0], [0.0, Omega, 0.0], [0.0, 0.0, 1.0 - Omega]] ) # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] C = Ci * np.einsum("ij,jk,kl->il", R, C_hat, np.transpose(R)) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_pard = G * ( 2 * C - 2 * np.trace(C) * a - 5 * np.einsum("ik,kj->ij", C, a) - 5 * np.einsum("ik,kj->ij", a, C) + 10 * np.einsum("ijkl,kl->ij", A, C) ) dadt = dadt_HD + dadt_pard return dadt.ravel() def pardrpr_ode( a, t, xi, L, Ci=0.0, Omega=0.0, alpha=0.0, closure="IBOF", **kwargs ): """ODE describing pARD-RPR model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Omega : type Anisotropy factor (0.5 < Omega < 1). alpha : float Retardance rate (0 < alpha < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions', Journal of Rheology 62, 313, 2017. https://doi.org/10.1122/1.4998520 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) C_hat = np.array( [[1.0, 0.0, 0.0], [0.0, Omega, 0.0], [0.0, 0.0, 1.0 - Omega]] ) # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] C = Ci * np.einsum("ij,jk,kl->il", R, C_hat, np.transpose(R)) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_pard = G * ( 2 * C - 2 * np.trace(C) * a - 5 * np.einsum("ik,kj->ij", C, a) - 5 * np.einsum("ik,kj->ij", a, C) + 10 * np.einsum("ijkl,kl->ij", A, C) ) dadt_temp = dadt_HD + dadt_pard # Estimation of eigenvalue rates (rotated back) dadt_diag = np.einsum("ik, kl, lj->ij", np.transpose(R), dadt_temp, R) lbd0 = dadt_diag[0, 0] lbd1 = dadt_diag[1, 1] lbd2 = dadt_diag[2, 2] # Computation of IOK tensor by rotation IOK = np.zeros((3, 3)) IOK[0, 0] = alpha * lbd0 IOK[1, 1] = alpha * lbd1 IOK[2, 2] = alpha * lbd2 dadt_rpr = -np.einsum("ik, kl, lj->ij", R, IOK, np.transpose(R)) dadt = dadt_temp + dadt_rpr return dadt.ravel() def rsc_ode(a, t, xi, L, Ci=0.0, kappa=1.0, closure="IBOF", **kwargs): """ODE describing RSC model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). kappa : float Strain reduction factor (0 < kappa < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, and <NAME>, 'An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence', Journal of Rheology 52, 1179, 2008. https://doi.org/10.1122/1.2946437 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) w, v = np.linalg.eig(a) L = ( w[0] * np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + w[1] * np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + w[2] * np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) M = ( np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) tensor4 = A + (1.0 - kappa) * (L - np.einsum("ijmn,mnkl->ijkl", M, A)) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", tensor4, D) ) + 2 * kappa * Ci * G * (delta - 3 * a) ) return dadt.ravel() def ard_rsc_ode( a, t, xi, L, b1=0.0, kappa=1.0, b2=0, b3=0, b4=0, b5=0, closure="IBOF", **kwargs ): """ODE describing ARD-RSC model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. b1 : float First parameter of rotary diffusion tensor (0 < b1 < 0.1). kappa : float Strain reduction factor (0 < kappa < 1). b2 : type Second parameter of rotary diffusion tensor. b3 : type Third parameter of rotary diffusion tensor. b4 : type Fourth parameter of rotary diffusion tensor. b5 : type Fith parameter of rotary diffusion tensor. closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, 'An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics', Journal of Non-Newtonian Fluid Mechanics 156, 165-176, 2009. https://doi.org/10.1016/j.jnnfm.2008.08.002 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) w, v = np.linalg.eig(a) L = ( w[0] * np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + w[1] * np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + w[2] * np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) M = ( np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) if G > 0.0: C = ( b1 * delta + b2 * a + b3 * np.einsum("ik,kj->ij", a, a) + b4 * D / G + b5 * np.einsum("ik,kj->ij", D, D) / (G * G) ) else: C = np.eye(3) tensor4 = A + (1.0 - kappa) * (L - np.einsum("ijmn,mnkl->ijkl", M, A)) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", tensor4, D) ) + G * ( 2 * (C - (1 - kappa) * np.einsum("ijkl,kl->ij", M, C)) - 2 * kappa * np.trace(C) * a - 5 * (
np.einsum("ik,kj->ij", C, a)
numpy.einsum
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for intersecting B |eacute| zier curves via geometric methods. The functions here are pure Python and many have equivalent implementations written in Fortran and exposed via a Cython wrapper. .. |eacute| unicode:: U+000E9 .. LATIN SMALL LETTER E WITH ACUTE :trim: """ import itertools import numpy as np from bezier.hazmat import curve_helpers from bezier.hazmat import helpers as _py_helpers from bezier.hazmat import intersection_helpers # Set the threshold for exponent at half the bits available, this way one round # of Newton's method can (usually) finish the job by squaring the error. _ERROR_VAL = 0.5 ** 26 _MAX_INTERSECT_SUBDIVISIONS = 20 _MAX_CANDIDATES = 64 _UNHANDLED_LINES = ( "If both curves are lines, the intersection should have " "been computed already." ) _TOO_MANY_TEMPLATE = ( "The number of candidate intersections is too high.\n" "{:d} candidate pairs." ) _NO_CONVERGE_TEMPLATE = ( "Curve intersection failed to converge to approximately linear " "subdivisions after {:d} iterations." ) _MIN_INTERVAL_WIDTH = 0.5 ** 40 def bbox_intersect(nodes1, nodes2): r"""Bounding box intersection predicate. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Determines if the bounding box of two sets of control points intersects in :math:`\mathbf{R}^2` with non-trivial intersection (i.e. tangent bounding boxes are insufficient). .. note:: Though we assume (and the code relies on this fact) that the nodes are two-dimensional, we don't check it. Args: nodes1 (numpy.ndarray): Set of control points for a B |eacute| zier shape. nodes2 (numpy.ndarray): Set of control points for a B |eacute| zier shape. Returns: int: Enum from :class:`.BoxIntersectionType` indicating the type of bounding box intersection. """ left1, right1, bottom1, top1 = _py_helpers.bbox(nodes1) left2, right2, bottom2, top2 = _py_helpers.bbox(nodes2) if right2 < left1 or right1 < left2 or top2 < bottom1 or top1 < bottom2: return BoxIntersectionType.DISJOINT if ( right2 == left1 or right1 == left2 or top2 == bottom1 or top1 == bottom2 ): return BoxIntersectionType.TANGENT else: return BoxIntersectionType.INTERSECTION def linearization_error(nodes): r"""Compute the maximum error of a linear approximation. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. .. note:: This is a helper for :class:`.Linearization`, which is used during the curve-curve intersection process. We use the line .. math:: L(s) = v_0 (1 - s) + v_n s and compute a bound on the maximum error .. math:: \max_{s \in \left[0, 1\right]} \|B(s) - L(s)\|_2. Rather than computing the actual maximum (a tight bound), we use an upper bound via the remainder from Lagrange interpolation in each component. This leaves us with :math:`\frac{s(s - 1)}{2!}` times the second derivative in each component. The second derivative curve is degree :math:`d = n - 2` and is given by .. math:: B''(s) = n(n - 1) \sum_{j = 0}^{d} \binom{d}{j} s^j (1 - s)^{d - j} \cdot \Delta^2 v_j Due to this form (and the convex combination property of B |eacute| zier Curves) we know each component of the second derivative will be bounded by the maximum of that component among the :math:`\Delta^2 v_j`. For example, the curve .. math:: B(s) = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s)^2 + \left[\begin{array}{c} 3 \\ 1 \end{array}\right] 2s(1 - s) + \left[\begin{array}{c} 9 \\ -2 \end{array}\right] s^2 has :math:`B''(s) \equiv \left[\begin{array}{c} 6 \\ -8 \end{array}\right]` which has norm :math:`10` everywhere, hence the maximum error is .. math:: \left.\frac{s(1 - s)}{2!} \cdot 10\right|_{s = \frac{1}{2}} = \frac{5}{4}. .. image:: ../../images/linearization_error.png :align: center .. testsetup:: linearization-error, linearization-error-fail import numpy as np import bezier from bezier.hazmat.geometric_intersection import linearization_error .. doctest:: linearization-error >>> nodes = np.asfortranarray([ ... [0.0, 3.0, 9.0], ... [0.0, 1.0, -2.0], ... ]) >>> linearization_error(nodes) 1.25 .. testcleanup:: linearization-error import make_images make_images.linearization_error(nodes) As a **non-example**, consider a "pathological" set of control points: .. math:: B(s) = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s)^3 + \left[\begin{array}{c} 5 \\ 12 \end{array}\right] 3s(1 - s)^2 + \left[\begin{array}{c} 10 \\ 24 \end{array}\right] 3s^2(1 - s) + \left[\begin{array}{c} 30 \\ 72 \end{array}\right] s^3 By construction, this lies on the line :math:`y = \frac{12x}{5}`, but the parametrization is cubic: :math:`12 \cdot x(s) = 5 \cdot y(s) = 180s(s^2 + 1)`. Hence, the fact that the curve is a line is not accounted for and we take the worse case among the nodes in: .. math:: B''(s) = 3 \cdot 2 \cdot \left( \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s) + \left[\begin{array}{c} 15 \\ 36 \end{array}\right] s\right) which gives a nonzero maximum error: .. doctest:: linearization-error-fail >>> nodes = np.asfortranarray([ ... [0.0, 5.0, 10.0, 30.0], ... [0.0, 12.0, 24.0, 72.0], ... ]) >>> linearization_error(nodes) 29.25 Though it may seem that ``0`` is a more appropriate answer, consider the **goal** of this function. We seek to linearize curves and then intersect the linear approximations. Then the :math:`s`-values from the line-line intersection is lifted back to the curves. Thus the error :math:`\|B(s) - L(s)\|_2` is more relevant than the underyling algebraic curve containing :math:`B(s)`. .. note:: It may be more appropriate to use a **relative** linearization error rather than the **absolute** error provided here. It's unclear if the domain :math:`\left[0, 1\right]` means the error is **already** adequately scaled or if the error should be scaled by the arc length of the curve or the (easier-to-compute) length of the line. Args: nodes (numpy.ndarray): Nodes of a curve. Returns: float: The maximum error between the curve and the linear approximation. """ _, num_nodes = nodes.shape degree = num_nodes - 1 if degree == 1: return 0.0 second_deriv = nodes[:, :-2] - 2.0 * nodes[:, 1:-1] + nodes[:, 2:] worst_case = np.max(np.abs(second_deriv), axis=1) # max_{0 <= s <= 1} s(1 - s)/2 = 1/8 = 0.125 multiplier = 0.125 * degree * (degree - 1) # NOTE: worst_case is 1D due to np.max(), so this is the vector norm. return multiplier * np.linalg.norm(worst_case, ord=2) def segment_intersection(start0, end0, start1, end1): r"""Determine the intersection of two line segments. Assumes each line is parametric .. math:: \begin{alignat*}{2} L_0(s) &= S_0 (1 - s) + E_0 s &&= S_0 + s \Delta_0 \\ L_1(t) &= S_1 (1 - t) + E_1 t &&= S_1 + t \Delta_1. \end{alignat*} To solve :math:`S_0 + s \Delta_0 = S_1 + t \Delta_1`, we use the cross product: .. math:: \left(S_0 + s \Delta_0\right) \times \Delta_1 = \left(S_1 + t \Delta_1\right) \times \Delta_1 \Longrightarrow s \left(\Delta_0 \times \Delta_1\right) = \left(S_1 - S_0\right) \times \Delta_1. Similarly .. math:: \Delta_0 \times \left(S_0 + s \Delta_0\right) = \Delta_0 \times \left(S_1 + t \Delta_1\right) \Longrightarrow \left(S_1 - S_0\right) \times \Delta_0 = \Delta_0 \times \left(S_0 - S_1\right) = t \left(\Delta_0 \times \Delta_1\right). .. note:: Since our points are in :math:`\mathbf{R}^2`, the "traditional" cross product in :math:`\mathbf{R}^3` will always point in the :math:`z` direction, so in the above we mean the :math:`z` component of the cross product, rather than the entire vector. For example, the diagonal lines .. math:: \begin{align*} L_0(s) &= \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s) + \left[\begin{array}{c} 2 \\ 2 \end{array}\right] s \\ L_1(t) &= \left[\begin{array}{c} -1 \\ 2 \end{array}\right] (1 - t) + \left[\begin{array}{c} 1 \\ 0 \end{array}\right] t \end{align*} intersect at :math:`L_0\left(\frac{1}{4}\right) = L_1\left(\frac{3}{4}\right) = \frac{1}{2} \left[\begin{array}{c} 1 \\ 1 \end{array}\right]`. .. image:: ../../images/segment_intersection1.png :align: center .. testsetup:: segment-intersection1, segment-intersection2 import numpy as np from bezier.hazmat.geometric_intersection import segment_intersection .. doctest:: segment-intersection1 :options: +NORMALIZE_WHITESPACE >>> start0 = np.asfortranarray([0.0, 0.0]) >>> end0 = np.asfortranarray([2.0, 2.0]) >>> start1 = np.asfortranarray([-1.0, 2.0]) >>> end1 = np.asfortranarray([1.0, 0.0]) >>> s, t, _ = segment_intersection(start0, end0, start1, end1) >>> s 0.25 >>> t 0.75 .. testcleanup:: segment-intersection1 import make_images make_images.segment_intersection1(start0, end0, start1, end1, s) Taking the parallel (but different) lines .. math:: \begin{align*} L_0(s) &= \left[\begin{array}{c} 1 \\ 0 \end{array}\right] (1 - s) + \left[\begin{array}{c} 0 \\ 1 \end{array}\right] s \\ L_1(t) &= \left[\begin{array}{c} -1 \\ 3 \end{array}\right] (1 - t) + \left[\begin{array}{c} 3 \\ -1 \end{array}\right] t \end{align*} we should be able to determine that the lines don't intersect, but this function is not meant for that check: .. image:: ../../images/segment_intersection2.png :align: center .. doctest:: segment-intersection2 :options: +NORMALIZE_WHITESPACE >>> start0 = np.asfortranarray([1.0, 0.0]) >>> end0 = np.asfortranarray([0.0, 1.0]) >>> start1 = np.asfortranarray([-1.0, 3.0]) >>> end1 = np.asfortranarray([3.0, -1.0]) >>> _, _, success = segment_intersection(start0, end0, start1, end1) >>> success False .. testcleanup:: segment-intersection2 import make_images make_images.segment_intersection2(start0, end0, start1, end1) Instead, we use :func:`parallel_lines_parameters`: .. testsetup:: segment-intersection2-continued import numpy as np from bezier.hazmat.geometric_intersection import ( parallel_lines_parameters ) start0 = np.asfortranarray([1.0, 0.0]) end0 = np.asfortranarray([0.0, 1.0]) start1 = np.asfortranarray([-1.0, 3.0]) end1 = np.asfortranarray([3.0, -1.0]) .. doctest:: segment-intersection2-continued >>> disjoint, _ = parallel_lines_parameters(start0, end0, start1, end1) >>> disjoint True .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Args: start0 (numpy.ndarray): A 1D NumPy ``2``-array that is the start vector :math:`S_0` of the parametric line :math:`L_0(s)`. end0 (numpy.ndarray): A 1D NumPy ``2``-array that is the end vector :math:`E_0` of the parametric line :math:`L_0(s)`. start1 (numpy.ndarray): A 1D NumPy ``2``-array that is the start vector :math:`S_1` of the parametric line :math:`L_1(s)`. end1 (numpy.ndarray): A 1D NumPy ``2``-array that is the end vector :math:`E_1` of the parametric line :math:`L_1(s)`. Returns: Tuple[float, float, bool]: Pair of :math:`s_{\ast}` and :math:`t_{\ast}` such that the lines intersect: :math:`L_0\left(s_{\ast}\right) = L_1\left(t_{\ast}\right)` and then a boolean indicating if an intersection was found (i.e. if the lines aren't parallel). """ delta0 = end0 - start0 delta1 = end1 - start1 cross_d0_d1 = _py_helpers.cross_product(delta0, delta1) if cross_d0_d1 == 0.0: return None, None, False else: start_delta = start1 - start0 s = _py_helpers.cross_product(start_delta, delta1) / cross_d0_d1 t = _py_helpers.cross_product(start_delta, delta0) / cross_d0_d1 return s, t, True def parallel_lines_parameters(start0, end0, start1, end1): r"""Checks if two parallel lines ever meet. Meant as a back-up when :func:`segment_intersection` fails. .. note:: This function assumes but never verifies that the lines are parallel. In the case that the segments are parallel and lie on **different** lines, then there is a **guarantee** of no intersection. However, if they are on the exact same line, they may define a shared segment coincident to both lines. In :func:`segment_intersection`, we utilized the normal form of the lines (via the cross product): .. math:: \begin{align*} L_0(s) \times \Delta_0 &\equiv S_0 \times \Delta_0 \\ L_1(t) \times \Delta_1 &\equiv S_1 \times \Delta_1 \end{align*} So, we can detect if :math:`S_1` is on the first line by checking if .. math:: S_0 \times \Delta_0 \stackrel{?}{=} S_1 \times \Delta_0. If it is not on the first line, then we are done, the segments don't meet: .. image:: ../../images/parallel_lines_parameters1.png :align: center .. testsetup:: parallel-different1, parallel-different2 import numpy as np from bezier.hazmat.geometric_intersection import ( parallel_lines_parameters ) .. doctest:: parallel-different1 >>> # Line: y = 1 >>> start0 = np.asfortranarray([0.0, 1.0]) >>> end0 = np.asfortranarray([1.0, 1.0]) >>> # Vertical shift up: y = 2 >>> start1 = np.asfortranarray([-1.0, 2.0]) >>> end1 = np.asfortranarray([3.0, 2.0]) >>> disjoint, _ = parallel_lines_parameters(start0, end0, start1, end1) >>> disjoint True .. testcleanup:: parallel-different1 import make_images make_images.helper_parallel_lines( start0, end0, start1, end1, "parallel_lines_parameters1.png") If :math:`S_1` **is** on the first line, we want to check that :math:`S_1` and :math:`E_1` define parameters outside of :math:`\left[0, 1\right]`. To compute these parameters: .. math:: L_1(t) = S_0 + s_{\ast} \Delta_0 \Longrightarrow s_{\ast} = \frac{\Delta_0^T \left( L_1(t) - S_0\right)}{\Delta_0^T \Delta_0}. For example, the intervals :math:`\left[0, 1\right]` and :math:`\left[\frac{3}{2}, 2\right]` (via :math:`S_1 = S_0 + \frac{3}{2} \Delta_0` and :math:`E_1 = S_0 + 2 \Delta_0`) correspond to segments that don't meet: .. image:: ../../images/parallel_lines_parameters2.png :align: center .. doctest:: parallel-different2 >>> start0 = np.asfortranarray([1.0, 0.0]) >>> delta0 = np.asfortranarray([2.0, -1.0]) >>> end0 = start0 + 1.0 * delta0 >>> start1 = start0 + 1.5 * delta0 >>> end1 = start0 + 2.0 * delta0 >>> disjoint, _ = parallel_lines_parameters(start0, end0, start1, end1) >>> disjoint True .. testcleanup:: parallel-different2 import make_images make_images.helper_parallel_lines( start0, end0, start1, end1, "parallel_lines_parameters2.png") but if the intervals overlap, like :math:`\left[0, 1\right]` and :math:`\left[-1, \frac{1}{2}\right]`, the segments meet: .. image:: ../../images/parallel_lines_parameters3.png :align: center .. testsetup:: parallel-different3, parallel-different4 import numpy as np from bezier.hazmat.geometric_intersection import ( parallel_lines_parameters ) start0 = np.asfortranarray([1.0, 0.0]) delta0 = np.asfortranarray([2.0, -1.0]) end0 = start0 + 1.0 * delta0 .. doctest:: parallel-different3 >>> start1 = start0 - 1.5 * delta0 >>> end1 = start0 + 0.5 * delta0 >>> disjoint, parameters = parallel_lines_parameters( ... start0, end0, start1, end1) >>> disjoint False >>> parameters array([[0. , 0.5 ], [0.75, 1. ]]) .. testcleanup:: parallel-different3 import make_images make_images.helper_parallel_lines( start0, end0, start1, end1, "parallel_lines_parameters3.png") Similarly, if the second interval completely contains the first, the segments meet: .. image:: ../../images/parallel_lines_parameters4.png :align: center .. doctest:: parallel-different4 >>> start1 = start0 + 4.5 * delta0 >>> end1 = start0 - 3.5 * delta0 >>> disjoint, parameters = parallel_lines_parameters( ... start0, end0, start1, end1) >>> disjoint False >>> parameters array([[1. , 0. ], [0.4375, 0.5625]]) .. testcleanup:: parallel-different4 import make_images make_images.helper_parallel_lines( start0, end0, start1, end1, "parallel_lines_parameters4.png") .. note:: This function doesn't currently allow wiggle room around the desired value, i.e. the two values must be bitwise identical. However, the most "correct" version of this function likely should allow for some round off. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Args: start0 (numpy.ndarray): A 1D NumPy ``2``-array that is the start vector :math:`S_0` of the parametric line :math:`L_0(s)`. end0 (numpy.ndarray): A 1D NumPy ``2``-array that is the end vector :math:`E_0` of the parametric line :math:`L_0(s)`. start1 (numpy.ndarray): A 1D NumPy ``2``-array that is the start vector :math:`S_1` of the parametric line :math:`L_1(s)`. end1 (numpy.ndarray): A 1D NumPy ``2``-array that is the end vector :math:`E_1` of the parametric line :math:`L_1(s)`. Returns: Tuple[bool, Optional[numpy.ndarray]]: A pair of * Flag indicating if the lines are disjoint. * An optional ``2 x 2`` matrix of ``s-t`` parameters only present if the lines aren't disjoint. The first column will contain the parameters at the beginning of the shared segment and the second column will correspond to the end of the shared segment. """ # NOTE: There is no corresponding "enable", but the disable only applies # in this lexical scope. # pylint: disable=too-many-branches delta0 = end0 - start0 line0_const = _py_helpers.cross_product(start0, delta0) start1_against = _py_helpers.cross_product(start1, delta0) if line0_const != start1_against: return True, None # Each array is a 1D vector, so we can use the vector dot product. norm0_sq = np.vdot(delta0, delta0) # S1 = L1(0) = S0 + sA D0 # <==> sA D0 = S1 - S0 # ==> sA (D0^T D0) = D0^T (S1 - S0) s_val0 = np.vdot(start1 - start0, delta0) / norm0_sq # E1 = L1(1) = S0 + sB D0 # <==> sB D0 = E1 - S0 # ==> sB (D0^T D0) = D0^T (E1 - S0) s_val1 = np.vdot(end1 - start0, delta0) / norm0_sq # s = s_val0 + t (s_val1 - s_val0) # t = 0 <==> s = s_val0 # t = 1 <==> s = s_val1 # t = -s_val0 / (s_val1 - s_val0) <==> s = 0 # t = (1 - s_val0) / (s_val1 - s_val0) <==> s = 1 if s_val0 <= s_val1: # In this branch the segments are moving in the same direction, i.e. # (t=0<-->s=s_val0) are both less than (t=1<-->s_val1). if 1.0 < s_val0: return True, None elif s_val0 < 0.0: start_s = 0.0 start_t = -s_val0 / (s_val1 - s_val0) else: start_s = s_val0 start_t = 0.0 if s_val1 < 0.0: return True, None elif 1.0 < s_val1: end_s = 1.0 end_t = (1.0 - s_val0) / (s_val1 - s_val0) else: end_s = s_val1 end_t = 1.0 else: # In this branch the segments are moving in opposite directions, i.e. # in (t=0<-->s=s_val0) and (t=1<-->s_val1) we have 0 < 1 # but ``s_val0 > s_val1``. if s_val0 < 0.0: return True, None elif 1.0 < s_val0: start_s = 1.0 start_t = (s_val0 - 1.0) / (s_val0 - s_val1) else: start_s = s_val0 start_t = 0.0 if 1.0 < s_val1: return True, None elif s_val1 < 0.0: end_s = 0.0 end_t = s_val0 / (s_val0 - s_val1) else: end_s = s_val1 end_t = 1.0 parameters = np.asfortranarray([[start_s, end_s], [start_t, end_t]]) return False, parameters def line_line_collide(line1, line2): """Determine if two line segments meet. This is a helper for :func:`convex_hull_collide` in the special case that the two convex hulls are actually just line segments. (Even in this case, this is only problematic if both segments are on a single line.) Args: line1 (numpy.ndarray): ``2 x 2`` array of start and end nodes. line2 (numpy.ndarray): ``2 x 2`` array of start and end nodes. Returns: bool: Indicating if the line segments collide. """ s, t, success = segment_intersection( line1[:, 0], line1[:, 1], line2[:, 0], line2[:, 1] ) if success: return _py_helpers.in_interval( s, 0.0, 1.0 ) and _py_helpers.in_interval(t, 0.0, 1.0) else: disjoint, _ = parallel_lines_parameters( line1[:, 0], line1[:, 1], line2[:, 0], line2[:, 1] ) return not disjoint def convex_hull_collide(nodes1, nodes2): """Determine if the convex hulls of two curves collide. .. note:: This is a helper for :func:`from_linearized`. Args: nodes1 (numpy.ndarray): Control points of a first curve. nodes2 (numpy.ndarray): Control points of a second curve. Returns: bool: Indicating if the convex hulls collide. """ polygon1 = _py_helpers.simple_convex_hull(nodes1) _, polygon_size1 = polygon1.shape polygon2 = _py_helpers.simple_convex_hull(nodes2) _, polygon_size2 = polygon2.shape if polygon_size1 == 2 and polygon_size2 == 2: return line_line_collide(polygon1, polygon2) else: return _py_helpers.polygon_collide(polygon1, polygon2) def from_linearized(first, second, intersections): """Determine curve-curve intersection from pair of linearizations. .. note:: This assumes that at least one of ``first`` and ``second`` is not a line. The line-line case should be handled "early" by :func:`check_lines`. .. note:: This assumes the caller has verified that the bounding boxes for ``first`` and ``second`` actually intersect. If there is an intersection along the segments, adds that intersection to ``intersections``. Otherwise, returns without doing anything. Args: first (Linearization): First curve being intersected. second (Linearization): Second curve being intersected. intersections (list): A list of existing intersections. Raises: ValueError: If ``first`` and ``second`` both have linearization error of ``0.0`` (i.e. they are both lines). This is because this function expects the caller to have used :func:`check_lines` already. """ # NOTE: There is no corresponding "enable", but the disable only applies # in this lexical scope. # pylint: disable=too-many-return-statements s, t, success = segment_intersection( first.start_node, first.end_node, second.start_node, second.end_node ) bad_parameters = False if success: if not ( _py_helpers.in_interval(s, 0.0, 1.0) and _py_helpers.in_interval(t, 0.0, 1.0) ): bad_parameters = True else: if first.error == 0.0 and second.error == 0.0: raise ValueError(_UNHANDLED_LINES) # Just fall back to a Newton iteration starting in the middle of # the given intervals. bad_parameters = True s = 0.5 t = 0.5 if bad_parameters: # In the unlikely case that we have parallel segments or segments # that intersect outside of [0, 1] x [0, 1], we can still exit # if the convex hulls don't intersect. if not convex_hull_collide(first.curve.nodes, second.curve.nodes): return # Now, promote ``s`` and ``t`` onto the original curves. orig_s = (1 - s) * first.curve.start + s * first.curve.end orig_t = (1 - t) * second.curve.start + t * second.curve.end refined_s, refined_t = intersection_helpers.full_newton( orig_s, first.curve.original_nodes, orig_t, second.curve.original_nodes ) refined_s, success = _py_helpers.wiggle_interval(refined_s) if not success: return refined_t, success = _py_helpers.wiggle_interval(refined_t) if not success: return add_intersection(refined_s, refined_t, intersections) def add_intersection(s, t, intersections): r"""Adds an intersection to list of ``intersections``. .. note:: This is a helper for :func:`from_linearized` and :func:`endpoint_check`. These functions are used (directly or indirectly) by :func:`all_intersections` exclusively, and that function has a Fortran equivalent. Accounts for repeated intersection points. If the intersection has already been found, does nothing. If ``s`` is below :math:`2^{-10}`, it will be replaced with ``1 - s`` and compared against ``1 - s'`` for all ``s'`` already in ``intersections``. (Similar if ``t`` is below the :attr:`~bezier.hazmat.intersection_helpers.ZERO_THRESHOLD`.) This is perfectly "appropriate" since evaluating a B |eacute| zier curve requires using both ``s`` and ``1 - s``, so both values are equally relevant. Compares :math:`\|p - q\|` to :math:`\|p\|` where :math:`p = (s, t)` is current candidate intersection (or the "normalized" version, such as :math:`p = (1 - s, t)`) and :math:`q` is one of the already added intersections. If the difference is below :math:`2^{-36}` (i.e. :attr:`~bezier.hazmat.intersection_helpers.NEWTON_ERROR_RATIO`) then the intersection is considered to be duplicate. Args: s (float): The first parameter in an intersection. t (float): The second parameter in an intersection. intersections (list): List of existing intersections. """ if not intersections: intersections.append((s, t)) return if s < intersection_helpers.ZERO_THRESHOLD: candidate_s = 1.0 - s else: candidate_s = s if t < intersection_helpers.ZERO_THRESHOLD: candidate_t = 1.0 - t else: candidate_t = t norm_candidate = np.linalg.norm([candidate_s, candidate_t], ord=2) for existing_s, existing_t in intersections: # NOTE: |(1 - s1) - (1 - s2)| = |s1 - s2| in exact arithmetic, so # we just compute ``s1 - s2`` rather than using # ``candidate_s`` / ``candidate_t``. Due to round-off, these # differences may be slightly different, but only up to machine # precision. delta_s = s - existing_s delta_t = t - existing_t norm_update = np.linalg.norm([delta_s, delta_t], ord=2) if ( norm_update < intersection_helpers.NEWTON_ERROR_RATIO * norm_candidate ): return intersections.append((s, t)) def endpoint_check( first, node_first, s, second, node_second, t, intersections ): r"""Check if curve endpoints are identical. .. note:: This is a helper for :func:`tangent_bbox_intersection`. These functions are used (directly or indirectly) by :func:`all_intersections` exclusively, and that function has a Fortran equivalent. Args: first (SubdividedCurve): First curve being intersected (assumed in :math:`\mathbf{R}^2`). node_first (numpy.ndarray): 1D ``2``-array, one of the endpoints of ``first``. s (float): The parameter corresponding to ``node_first``, so expected to be one of ``0.0`` or ``1.0``. second (SubdividedCurve): Second curve being intersected (assumed in :math:`\mathbf{R}^2`). node_second (numpy.ndarray): 1D ``2``-array, one of the endpoints of ``second``. t (float): The parameter corresponding to ``node_second``, so expected to be one of ``0.0`` or ``1.0``. intersections (list): A list of already encountered intersections. If these curves intersect at their tangency, then those intersections will be added to this list. """ if _py_helpers.vector_close(node_first, node_second): orig_s = (1 - s) * first.start + s * first.end orig_t = (1 - t) * second.start + t * second.end add_intersection(orig_s, orig_t, intersections) def tangent_bbox_intersection(first, second, intersections): r"""Check if two curves with tangent bounding boxes intersect. .. note:: This is a helper for :func:`intersect_one_round`. These functions are used (directly or indirectly) by :func:`all_intersections` exclusively, and that function has a Fortran equivalent. If the bounding boxes are tangent, intersection can only occur along that tangency. If the curve is **not** a line, the **only** way the curve can touch the bounding box is at the endpoints. To see this, consider the component .. math:: x(s) = \sum_j W_j x_j. Since :math:`W_j > 0` for :math:`s \in \left(0, 1\right)`, if there is some :math:`k` with :math:`x_k < M = \max x_j`, then for any interior :math:`s` .. math:: x(s) < \sum_j W_j M = M. If all :math:`x_j = M`, then :math:`B(s)` falls on the line :math:`x = M`. (A similar argument holds for the other three component-extrema types.) .. note:: This function assumes callers will not pass curves that can be linearized / are linear. In :func:`all_intersections`, curves are pre-processed to do any linearization before the subdivision / intersection process begins. Args: first (SubdividedCurve): First curve being intersected (assumed in :math:`\mathbf{R}^2`). second (SubdividedCurve): Second curve being intersected (assumed in :math:`\mathbf{R}^2`). intersections (list): A list of already encountered intersections. If these curves intersect at their tangency, then those intersections will be added to this list. """ node_first1 = first.nodes[:, 0] node_first2 = first.nodes[:, -1] node_second1 = second.nodes[:, 0] node_second2 = second.nodes[:, -1] endpoint_check( first, node_first1, 0.0, second, node_second1, 0.0, intersections ) endpoint_check( first, node_first1, 0.0, second, node_second2, 1.0, intersections ) endpoint_check( first, node_first2, 1.0, second, node_second1, 0.0, intersections ) endpoint_check( first, node_first2, 1.0, second, node_second2, 1.0, intersections ) def bbox_line_intersect(nodes, line_start, line_end): r"""Determine intersection of a bounding box and a line. We do this by first checking if either the start or end node of the segment are contained in the bounding box. If they aren't, then checks if the line segment intersects any of the four sides of the bounding box. .. note:: This function is "half-finished". It makes no distinction between "tangent" intersections of the box and segment and other types of intersection. However, the distinction is worthwhile, so this function should be "upgraded" at some point. Args: nodes (numpy.ndarray): Points (``2 x N``) that determine a bounding box. line_start (numpy.ndarray): Beginning of a line segment (1D ``2``-array). line_end (numpy.ndarray): End of a line segment (1D ``2``-array). Returns: int: Enum from :class:`.BoxIntersectionType` indicating the type of bounding box intersection. """ left, right, bottom, top = _py_helpers.bbox(nodes) if _py_helpers.in_interval( line_start[0], left, right ) and _py_helpers.in_interval(line_start[1], bottom, top): return BoxIntersectionType.INTERSECTION if _py_helpers.in_interval( line_end[0], left, right ) and _py_helpers.in_interval(line_end[1], bottom, top): return BoxIntersectionType.INTERSECTION # NOTE: We allow ``segment_intersection`` to fail below (i.e. # ``success=False``). At first, this may appear to "ignore" # some potential intersections of parallel lines. However, # no intersections will be missed. If parallel lines don't # overlap, then there is nothing to miss. If they do overlap, # then either the segment will have endpoints on the box (already # covered by the checks above) or the segment will contain an # entire side of the box, which will force it to intersect the 3 # edges that meet at the two ends of those sides. The parallel # edge will be skipped, but the other two will be covered. # Bottom Edge s_bottom, t_bottom, success = segment_intersection( np.asfortranarray([left, bottom]), np.asfortranarray([right, bottom]), line_start, line_end, ) if ( success and _py_helpers.in_interval(s_bottom, 0.0, 1.0) and _py_helpers.in_interval(t_bottom, 0.0, 1.0) ): return BoxIntersectionType.INTERSECTION # Right Edge s_right, t_right, success = segment_intersection( np.asfortranarray([right, bottom]), np.asfortranarray([right, top]), line_start, line_end, ) if ( success and _py_helpers.in_interval(s_right, 0.0, 1.0) and _py_helpers.in_interval(t_right, 0.0, 1.0) ): return BoxIntersectionType.INTERSECTION # Top Edge s_top, t_top, success = segment_intersection( np.asfortranarray([right, top]), np.asfortranarray([left, top]), line_start, line_end, ) if ( success and _py_helpers.in_interval(s_top, 0.0, 1.0) and _py_helpers.in_interval(t_top, 0.0, 1.0) ): return BoxIntersectionType.INTERSECTION # NOTE: We skip the "last" edge. This is because any curve # that doesn't have an endpoint on a curve must cross # at least two, so we will have already covered such curves # in one of the branches above. return BoxIntersectionType.DISJOINT def intersect_one_round(candidates, intersections): """Perform one step of the intersection process. .. note:: This is a helper for :func:`all_intersections` and that function has a Fortran equivalent. Checks if the bounding boxes of each pair in ``candidates`` intersect. If the bounding boxes do not intersect, the pair is discarded. Otherwise, the pair is "accepted". Then we attempt to linearize each curve in an "accepted" pair and track the overall linearization error for every curve encountered. Args: candidates (Union[list, itertools.chain]): An iterable of pairs of curves (or linearized curves). intersections (list): A list of already encountered intersections. If any intersections can be readily determined during this round of subdivision, then they will be added to this list. Returns: list: Returns a list of the next round of ``candidates``. """ next_candidates = [] # NOTE: In the below we replace ``isinstance(a, B)`` with # ``a.__class__ is B``, which is a 3-3.5x speedup. for first, second in candidates: both_linearized = False if first.__class__ is Linearization: if second.__class__ is Linearization: both_linearized = True bbox_int = bbox_intersect( first.curve.nodes, second.curve.nodes ) else: bbox_int = bbox_line_intersect( second.nodes, first.start_node, first.end_node ) else: if second.__class__ is Linearization: bbox_int = bbox_line_intersect( first.nodes, second.start_node, second.end_node ) else: bbox_int = bbox_intersect(first.nodes, second.nodes) if bbox_int == BoxIntersectionType.DISJOINT: continue if bbox_int == BoxIntersectionType.TANGENT and not both_linearized: # NOTE: Ignore tangent bounding boxes in the linearized case # because ``tangent_bbox_intersection()`` assumes that both # curves are not linear. tangent_bbox_intersection(first, second, intersections) continue if both_linearized: # If both ``first`` and ``second`` are linearizations, then # we can intersect them immediately. from_linearized(first, second, intersections) continue # If we haven't ``continue``-d, add the accepted pair. # NOTE: This may be a wasted computation, e.g. if ``first`` # or ``second`` occur in multiple accepted pairs (the caller # only passes one pair at a time). However, in practice # the number of such pairs will be small so this cost # will be low. lin1 = map(Linearization.from_shape, first.subdivide()) lin2 = map(Linearization.from_shape, second.subdivide()) next_candidates.extend(itertools.product(lin1, lin2)) return next_candidates def prune_candidates(candidates): """Reduce number of candidate intersection pairs. .. note:: This is a helper for :func:`all_intersections`. Uses more strict bounding box intersection predicate by forming the actual convex hull of each candidate curve segment and then checking if those convex hulls collide. Args: candidates (List[Union[SubdividedCurve, Linearization]]): An iterable of pairs of curves (or linearized curves). Returns: List[Union[SubdividedCurve, Linearization]]: A pruned list of curve pairs. """ pruned = [] # NOTE: In the below we replace ``isinstance(a, B)`` with # ``a.__class__ is B``, which is a 3-3.5x speedup. for first, second in candidates: if first.__class__ is Linearization: nodes1 = first.curve.nodes else: nodes1 = first.nodes if second.__class__ is Linearization: nodes2 = second.curve.nodes else: nodes2 = second.nodes if convex_hull_collide(nodes1, nodes2): pruned.append((first, second)) return pruned def make_same_degree(nodes1, nodes2): """Degree-elevate a curve so two curves have matching degree. Args: nodes1 (numpy.ndarray): Set of control points for a B |eacute| zier curve. nodes2 (numpy.ndarray): Set of control points for a B |eacute| zier curve. Returns: Tuple[numpy.ndarray, numpy.ndarray]: The potentially degree-elevated nodes passed in. """ _, num_nodes1 = nodes1.shape _, num_nodes2 = nodes2.shape for _ in range(num_nodes2 - num_nodes1): nodes1 = curve_helpers.elevate_nodes(nodes1) for _ in range(num_nodes1 - num_nodes2): nodes2 = curve_helpers.elevate_nodes(nodes2) return nodes1, nodes2 def coincident_parameters(nodes1, nodes2): r"""Check if two B |eacute| zier curves are coincident. Does so by projecting each segment endpoint onto the other curve .. math:: B_1(s_0) = B_2(0) \\ B_1(s_m) = B_2(1) \\ B_1(0) = B_2(t_0) \\ B_1(1) = B_2(t_n) and then finding the "shared interval" where both curves are defined. If such an interval can't be found (e.g. if one of the endpoints can't be located on the other curve), returns :data:`None`. If such a "shared interval" does exist, then this will specialize each curve onto that shared interval and check if the new control points agree. Args: nodes1 (numpy.ndarray): Set of control points for a B |eacute| zier curve. nodes2 (numpy.ndarray): Set of control points for a B |eacute| zier curve. Returns: Optional[Tuple[Tuple[float, float], ...]]: A ``2 x 2`` array of parameters where the two coincident curves meet. If they are not coincident, returns :data:`None`. """ # NOTE: There is no corresponding "enable", but the disable only applies # in this lexical scope. # pylint: disable=too-many-return-statements,too-many-branches nodes1, nodes2 = make_same_degree(nodes1, nodes2) s_initial = curve_helpers.locate_point( nodes1, nodes2[:, 0].reshape((2, 1), order="F") ) s_final = curve_helpers.locate_point( nodes1, nodes2[:, -1].reshape((2, 1), order="F") ) if s_initial is not None and s_final is not None: # In this case, if the curves were coincident, then ``curve2`` # would be "fully" contained in ``curve1``, so we specialize # ``curve1`` down to that interval to check. specialized1 = curve_helpers.specialize_curve( nodes1, s_initial, s_final ) if _py_helpers.vector_close( specialized1.ravel(order="F"), nodes2.ravel(order="F") ): return ((s_initial, 0.0), (s_final, 1.0)) else: return None t_initial = curve_helpers.locate_point( nodes2, nodes1[:, 0].reshape((2, 1), order="F") ) t_final = curve_helpers.locate_point( nodes2, nodes1[:, -1].reshape((2, 1), order="F") ) if t_initial is None and t_final is None: # An overlap must have two endpoints and since at most one of the # endpoints of ``curve2`` lies on ``curve1`` (as indicated by at # least one of the ``s``-parameters being ``None``), we need (at least) # one endpoint of ``curve1`` on ``curve2``. return None if t_initial is not None and t_final is not None: # In this case, if the curves were coincident, then ``curve1`` # would be "fully" contained in ``curve2``, so we specialize # ``curve2`` down to that interval to check. specialized2 = curve_helpers.specialize_curve( nodes2, t_initial, t_final ) if _py_helpers.vector_close( nodes1.ravel(order="F"), specialized2.ravel(order="F") ): return ((0.0, t_initial), (1.0, t_final)) else: return None if s_initial is None and s_final is None: # An overlap must have two endpoints and since exactly one of the # endpoints of ``curve1`` lies on ``curve2`` (as indicated by exactly # one of the ``t``-parameters being ``None``), we need (at least) # one endpoint of ``curve1`` on ``curve2``. return None # At this point, we know exactly one of the ``s``-parameters and exactly # one of the ``t``-parameters is not ``None``. if s_initial is None: if t_initial is None: # B1(s_final) = B2(1) AND B1(1) = B2(t_final) start_s = s_final end_s = 1.0 start_t = 1.0 end_t = t_final else: # B1(0) = B2(t_initial) AND B1(s_final) = B2(1) start_s = 0.0 end_s = s_final start_t = t_initial end_t = 1.0 else: if t_initial is None: # B1(s_initial) = B2(0) AND B1(1 ) = B2(t_final) start_s = s_initial end_s = 1.0 start_t = 0.0 end_t = t_final else: # B1(0) = B2(t_initial) AND B1(s_initial) = B2(0) start_s = 0.0 end_s = s_initial start_t = t_initial end_t = 0.0 width_s = abs(start_s - end_s) width_t = abs(start_t - end_t) if width_s < _MIN_INTERVAL_WIDTH and width_t < _MIN_INTERVAL_WIDTH: return None specialized1 = curve_helpers.specialize_curve(nodes1, start_s, end_s) specialized2 = curve_helpers.specialize_curve(nodes2, start_t, end_t) if _py_helpers.vector_close( specialized1.ravel(order="F"), specialized2.ravel(order="F") ): return ((start_s, start_t), (end_s, end_t)) else: return None def check_lines(first, second): """Checks if two curves are lines and tries to intersect them. .. note:: This is a helper for :func:`.all_intersections`. If they are not lines / not linearized, immediately returns :data:`False` with no "return value". If they are lines, attempts to intersect them (even if they are parallel and share a coincident segment). Args: first (Union[SubdividedCurve, Linearization]): First curve being intersected. second (Union[SubdividedCurve, Linearization]): Second curve being intersected. Returns: Tuple[bool, Optional[Tuple[numpy.ndarray, bool]]]: A pair of * Flag indicating if both candidates in the pair are lines. * Optional "result" populated only if both candidates are lines. When this result is populated, it will be a pair of * array of parameters of intersection * flag indicating if the two candidates share a coincident segment """ # NOTE: In the below we replace ``isinstance(a, B)`` with # ``a.__class__ is B``, which is a 3-3.5x speedup. if not ( first.__class__ is Linearization and second.__class__ is Linearization and first.error == 0.0 and second.error == 0.0 ): return False, None s, t, success = segment_intersection( first.start_node, first.end_node, second.start_node, second.end_node ) if success: if _py_helpers.in_interval(s, 0.0, 1.0) and _py_helpers.in_interval( t, 0.0, 1.0 ): intersections = np.asfortranarray([[s], [t]]) result = intersections, False else: result = np.empty((2, 0), order="F"), False else: disjoint, params = parallel_lines_parameters( first.start_node, first.end_node, second.start_node, second.end_node, ) if disjoint: result = np.empty((2, 0), order="F"), False else: result = params, True return True, result def all_intersections(nodes_first, nodes_second): r"""Find the points of intersection among a pair of curves. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. .. note:: This assumes both curves are in :math:`\mathbf{R}^2`, but does not **explicitly** check this. However, functions used here will fail if that assumption fails, e.g. :func:`bbox_intersect` and :func:`newton_refine() <.hazmat.intersection_helpers.newton_refine>`. Args: nodes_first (numpy.ndarray): Control points of a curve to be intersected with ``nodes_second``. nodes_second (numpy.ndarray): Control points of a curve to be intersected with ``nodes_first``. Returns: Tuple[numpy.ndarray, bool]: An array and a flag: * A ``2 x N`` array of intersection parameters. Each row contains a pair of values :math:`s` and :math:`t` (each in :math:`\left[0, 1\right]`) such that the curves intersect: :math:`B_1(s) = B_2(t)`. * Flag indicating if the curves are coincident. Raises: ValueError: If the subdivision iteration does not terminate before exhausting the maximum number of subdivisions. NotImplementedError: If the subdivision process picks up too many candidate pairs. This typically indicates tangent curves or coincident curves (though there are mitigations for those cases in place). """ curve_first = SubdividedCurve(nodes_first, nodes_first) curve_second = SubdividedCurve(nodes_second, nodes_second) candidate1 = Linearization.from_shape(curve_first) candidate2 = Linearization.from_shape(curve_second) # Handle the line-line intersection case as a one-off. both_linear, result = check_lines(candidate1, candidate2) if both_linear: return result candidates = [(candidate1, candidate2)] intersections = [] coincident = False for _ in range(_MAX_INTERSECT_SUBDIVISIONS): candidates = intersect_one_round(candidates, intersections) if len(candidates) > _MAX_CANDIDATES: candidates = prune_candidates(candidates) # If pruning didn't fix anything, we check if the curves are # coincident and "fail" if they aren't. if len(candidates) > _MAX_CANDIDATES: params = coincident_parameters(nodes_first, nodes_second) if params is None: raise NotImplementedError( _TOO_MANY_TEMPLATE.format(len(candidates)) ) intersections = params coincident = True # Artificially empty out candidates so that this # function exits. candidates = [] # If none of the candidate pairs have been accepted, then there are # no more intersections to find. if not candidates: if intersections: # NOTE: The transpose of a C-ordered array is Fortran-ordered, # i.e. this is on purpose. return np.array(intersections, order="C").T, coincident return
np.empty((2, 0), order="F")
numpy.empty
import unittest import numpy as np from ddt import ddt, data from ...methods.convolution.convolve import convolve from ...methods.transforms.poisson_noise import poisson_noise @ddt class TestConvolve(unittest.TestCase): @data( [np.ones([10, 10, 10]), np.ones([3, 3, 4])], [np.ones([10, 10]), np.ones([3, 4])], [np.ones([10]), np.ones([3])], ) def test_dimensions(self, case): img, psf = case self.assertEqual(len(convolve(img, psf).shape), len(img.shape)) @data( [
np.ones([10, 10, 10])
numpy.ones
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © %YEAR% <> # # Distributed under terms of the %LICENSE% license. """ This module is used to train liver model with intensity. First use organ_localizator module to train intensity independent model. """ from loguru import logger # logger = logging.getLogger() import os import sys import os.path as op sys.path.append(op.join(op.dirname(os.path.abspath(__file__)), "../../imcut/")) import argparse import glob import traceback import numpy as np import imma import io3d def add_fv_extern_into_modelparams(modelparams): """ String description in modelparams key fv_extern is substututed wiht function :param modelparams: :return: """ # import PyQt4; PyQt4.QtCore.pyqtRemoveInputHook() # import ipdb; ipdb.set_trace() if "fv_type" in modelparams.keys() and modelparams['fv_type'] == 'fv_extern': if type(modelparams['fv_extern']) == str: fv_extern_str = modelparams['fv_extern'] if fv_extern_str == "intensity_localization_fv": modelparams['fv_extern'] = intensity_localization_fv elif fv_extern_str == "localization_fv": modelparams['fv_extern'] = localization_fv elif fv_extern_str == "intensity_localization_2steps_fv": modelparams['fv_extern'] = intensity_localization_2steps_fv elif fv_extern_str == "near_blur_intensity_localization_fv": modelparams['fv_extern'] = near_blur_intensity_localization_fv print("blur intensity") elif fv_extern_str == "with_ribs_fv": modelparams['fv_extern'] = with_ribs_fv logger.debug('with_ribs_fv used') else: logger.error("problem in modelparam fv_extern descritprion") return modelparams def with_ribs_fv(data3dr, voxelsize_mm, seeds=None, unique_cls=None): # scale """ Feature vector use intensity and body_navigation module with ribs. Implemented by <NAME> :param data3dr: :param voxelsize_mm: :param seeds: :param unique_cls: :return: """ pass def near_blur_intensity_localization_fv(data3dr, voxelsize_mm, seeds=None, unique_cls=None): # scale """ Use organ_localizator features plus intensity features :param data3dr: :param voxelsize_mm: :param seeds: :param unique_cls: :return: """ import scipy import numpy as np import os.path as op try: from lisa import organ_localizator except: import organ_localizator # print "po importech" fv = [] f0 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=0.5).reshape(-1, 1) f1 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=3).reshape(-1, 1) #f2 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=5).reshape(-1, 1) - f0 #f3 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=10).reshape(-1, 1) - f0 #f4 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=20).reshape(-1, 1) - f0 # position #ss = lisa.body_navigation.BodyNavigation(data3dr, voxelsize_mm) #ss.feature_function(data3d, voxelsize_mm) #fd1 = ss.dist_to_lungs().reshape(-1, 1) #fd2 = ss.dist_to_spine().reshape(-1, 1) #fd3 = ss.dist_sagittal().reshape(-1, 1) #fd4 = ss.dist_coronal().reshape(-1, 1) #fd5 = ss.dist_to_surface().reshape(-1, 1) #fd6 = ss.dist_diaphragm().reshape(-1, 1) # print "pred f6" f6 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=[20, 1, 1]).reshape(-1, 1) - f1 f7 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=[1, 20, 1]).reshape(-1, 1) - f1 f8 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=[1, 1, 20]).reshape(-1, 1) - f1 # print "pred organ_localizator" ol = organ_localizator.OrganLocalizator() ol.load(op.expanduser("~/lisa_data/liver.ol.p")) fdall = ol.feature_function(data3dr, voxelsize_mm) middle_liver = ol.predict_w(data3dr, voxelsize_mm, 0.85) mn = np.median(data3dr[middle_liver==1]) fdn = np.ones(f0.shape) * mn # print "fv shapes ", f0.shape, fd2.shape, fd3.shape fv = np.concatenate([ f0, f1, # f2, f3, f4, # fd1, fd2, fd3, fd4, fd5, fd6, fdall, f6, f7, f8, fdn, ], 1) if seeds is not None: # logger.debug("seeds " + str(seeds)) # print "seeds ", seeds sd = seeds.reshape(-1,1) selection = np.in1d(sd, unique_cls) fv = fv[selection] sd = sd[selection] # sd = sd[] return fv, sd return fv def localization_fv(data3dr, voxelsize_mm, seeds=None, unique_cls=None): # scale import scipy import numpy as np import os.path as op try: from lisa import organ_localizator except: import organ_localizator import organ_localizator fvall = organ_localizator.localization_fv(data3dr, voxelsize_mm) return combine_fv_and_seeds([fvall], seeds, unique_cls) def combine_fv_and_seeds(feature_vectors, seeds=None, unique_cls=None): """ Function can be used to combine information from feature vector and seeds. This functionality can be implemented more efficiently. :param feature_vector: :param seeds: :param unique_cls: :return: """ if type(feature_vectors) != list: logger.error("Wrong type: feature_vectors should be list") return fv = np.concatenate(feature_vectors, 1) if seeds is not None: # logger.debug("seeds " + str(seeds)) # print "seeds ", seeds sd = seeds.reshape(-1,1) selection = np.in1d(sd, unique_cls) fv = fv[selection] sd = sd[selection] # sd = sd[] return fv, sd return fv return def intensity_localization_fv(data3dr, voxelsize_mm, seeds=None, unique_cls=None): # scale """ Use organ_localizator features plus intensity features :param data3dr: :param voxelsize_mm: :param seeds: :param unique_cls: :return: """ import scipy import numpy as np import os.path as op try: from lisa import organ_localizator except: import organ_localizator f0 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=0.5).reshape(-1, 1) f1 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=3).reshape(-1, 1) import organ_localizator fvall = organ_localizator.localization_fv(data3dr, voxelsize_mm) # fvall = organ_localizator.localization_intensity_fv(data3dr, voxelsize_mm) fv = np.concatenate([ f0, f1, # f2, f3, # f4, # fd1, fd2, fd3, fd4, fd5, fd6, fvall, # f6, f7, f8, ], 1) if seeds is not None: # logger.debug("seeds " + str(seeds)) # print "seeds ", seeds sd = seeds.reshape(-1,1) selection = np.in1d(sd, unique_cls) fv = fv[selection] sd = sd[selection] # sd = sd[] return fv, sd return fv def intensity_localization_2steps_fv(data3dr, voxelsize_mm, seeds=None, unique_cls=None): # scale """ Use organ_localizator features plus intensity features :param data3dr: :param voxelsize_mm: :param seeds: :param unique_cls: :return: """ import scipy import numpy as np import os.path as op try: from lisa import organ_localizator except: import organ_localizator # print "po importech" fv = [] f0 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=0.5).reshape(-1, 1) f1 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=3).reshape(-1, 1) # f2 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=5).reshape(-1, 1) - f0 # f3 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=10).reshape(-1, 1) - f0 # f4 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=20).reshape(-1, 1) - f0 # position #ss = lisa.body_navigation.BodyNavigation(data3dr, voxelsize_mm) #ss.feature_function(data3d, voxelsize_mm) #fd1 = ss.dist_to_lungs().reshape(-1, 1) #fd2 = ss.dist_to_spine().reshape(-1, 1) #fd3 = ss.dist_sagittal().reshape(-1, 1) #fd4 = ss.dist_coronal().reshape(-1, 1) #fd5 = ss.dist_to_surface().reshape(-1, 1) #fd6 = ss.dist_diaphragm().reshape(-1, 1) # print "pred f6" # f6 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=[10, 1, 1]).reshape(-1, 1) - f1 # f7 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=[1, 10, 1]).reshape(-1, 1) - f1 # f8 = scipy.ndimage.filters.gaussian_filter(data3dr, sigma=[1, 1, 10]).reshape(-1, 1) - f1 # print "pred organ_localizator" ol = organ_localizator.OrganLocalizator() ol.load(op.expanduser("~/lisa_data/liver.ol.p")) fdall = ol.feature_function(data3dr, voxelsize_mm) middle_liver = ol.predict_w(data3dr, voxelsize_mm, 0.85) mn = np.median(data3dr[middle_liver==1]) fdn = np.ones(f0.shape) * mn # print "fv shapes ", f0.shape, fd2.shape, fd3.shape fv = np.concatenate([ f0, f1, # f2, f3, # f4, # fd1, fd2, fd3, fd4, fd5, fd6, fdall, # f6, f7, f8, fdn, ], 1) if seeds is not None: # logger.debug("seeds " + str(seeds)) # print "seeds ", seeds sd = seeds.reshape(-1,1) selection = np.in1d(sd, unique_cls) fv = fv[selection] sd = sd[selection] # sd = sd[] return fv, sd return fv class ModelTrainer(): def __init__(self, feature_function=None, modelparams={}): from imcut import pycut self.working_voxelsize_mm = [1.5, 1.5, 1.5] self.data=None self.target=None # self.cl = sklearn.naive_bayes.GaussianNB() # self.cl = sklearn.mixture.GMM() #self.cl = sklearn.tree.DecisionTreeClassifier() if feature_function is None: feature_function = intensity_localization_fv # self.feature_function = feature_function modelparams_working = { 'fv_type': "fv_extern", 'fv_extern': feature_function, 'type': 'gmmsame', 'params': {'cvtype': 'full', 'n_components': 15}, 'adaptation': 'original_data', } modelparams = add_fv_extern_into_modelparams(modelparams) modelparams_working.update(modelparams) self.cl = pycut.Model(modelparams=modelparams_working) def _fv(self, data3dr, voxelsize_mm): fev = self.cl.features_from_image(data3dr, voxelsize_mm) # print fev return fev def _add_to_training_data(self, data3dr, voxelsize_mm, segmentationr): # print "funkce _add_to_training_data () " # print data3dr.shape # print segmentationr.shape fv = self._fv(data3dr, voxelsize_mm) data = fv[::50] target = np.reshape(segmentationr, [-1, 1])[::50] # print "shape ", data.shape, " ", target.shape if self.data is None: self.data = data self.target = target else: self.data = np.concatenate([self.data, data], 0) self.target = np.concatenate([self.target, target], 0) # self.cl.fit(data, target) #f1[segmentationr == 0] def fit(self): # print "sf fit data shape ", self.data.shape self.cl.fit(self.data, self.target) def predict(self, data3d, voxelsize_mm): data3dr = imma.image.resize_to_mm(data3d, voxelsize_mm, self.working_voxelsize_mm) fv = self._fv(data3dr) # print "shape predict ", fv.shape, pred = self.cl.predict(fv) # print "predict ", pred.shape, return imma.image.resize_to_shape(pred.reshape(data3dr.shape), data3d.shape) def scores(self, data3d, voxelsize_mm): data3dr = imma.image.resize_to_mm(data3d, voxelsize_mm, self.working_voxelsize_mm) fv = self._fv(data3dr) # print "shape predict ", fv.shape, scoreslin = self.cl.scores(fv) scores = {} for key in scoreslin: scores[key] = imma.image.resize_to_shape(scoreslin[key].reshape(data3dr.shape), data3d.shape) return scores def __preprocessing(data3d): pass def add_train_data(self, data3d, segmentation, voxelsize_mm): data3dr = imma.image.resize_to_mm(data3d, voxelsize_mm, self.working_voxelsize_mm) segmentationr = imma.image.resize_to_shape(segmentation, data3dr.shape) logger.debug(str(np.unique(segmentationr))) logger.debug(str(data3dr.shape) + str(segmentationr.shape)) self._add_to_training_data(data3dr, self.working_voxelsize_mm, segmentationr) #f1 scipy.ndimage.filters.gaussian_filter(data3dr, sigma=5) def train_liver_model_from_sliver_data(self, *args, **kwargs): """ see train_sliver_from_dir() :param args: :param kwargs: :return: """ return self.train_organ_model_from_dir(*args, **kwargs) def train_organ_model_from_dir( self, output_file="~/lisa_data/liver_intensity.Model.p", reference_dir='~/data/medical/orig/sliver07/training/', orig_pattern="*orig*[1-9].mhd", ref_pattern="*seg*[1-9].mhd", label=1, segmentation_key=False ): """ :param output_file: :param reference_dir: :param orig_pattern: :param ref_pattern: :param label: label with the segmentation, if string is used, list of labels "slab" is used (works for .pklz) :param segmentation_key: Load segmentation from "segmentation" key in .pklz file :return: """ logger.debug("label: {}".format(str(label))) reference_dir = op.expanduser(reference_dir) orig_fnames = glob.glob(reference_dir + orig_pattern) ref_fnames = glob.glob(reference_dir + ref_pattern) orig_fnames.sort() ref_fnames.sort() if len(orig_fnames) == 0: logger.warning("No file found in path:\n{}".format(reference_dir + orig_pattern)) print(ref_fnames) for oname, rname in zip(orig_fnames, ref_fnames): logger.debug(oname) data3d_orig, metadata = io3d.datareader.read(oname, dataplus_format=False) vs_mm1 = metadata['voxelsize_mm'] data3d_seg, metadata = io3d.datareader.read(rname, dataplus_format=False) vs_mm = metadata['voxelsize_mm'] if segmentation_key is not None: data3d_seg = metadata['segmentation'] if type(label) == str: try: label = metadata["slab"][label] except: logger.error(traceback.format_exc()) logger.error("Problem with label\nRequested label: {}\n".format(str(label))) if "slab" in metadata.keys(): logger.error("slab:") logger.error(str(metadata['slab'])) logger.error("unique numeric labels in segmentation:\n{}".format(str(np.unique(data3d_seg)))) raise # liver have label 1, background have label 2 data3d_seg = (data3d_seg == label).astype(np.int8) # sf.add_train_data(data3d_orig, data3d_seg, voxelsize_mm=vs_mm) try: self.add_train_data(data3d_orig, data3d_seg, voxelsize_mm=vs_mm) except: traceback.print_exc() print("problem - liver model") pass # fvhn = copy.deepcopy(fvh) #fhs_list.append(fvh) self.fit() output_file = op.expanduser(output_file) print("Saved into: ", output_file) self.cl.save(output_file) def train_liver_model_from_sliver_data(*args, **kwargs ): return train_organ_model_from_dir(*args, **kwargs) def train_organ_model_from_dir( output_file="~/lisa_data/liver_intensity.Model.p", reference_dir='~/data/medical/orig/sliver07/training/', orig_pattern="*orig*[1-9].mhd", ref_pattern="*seg*[1-9].mhd", label=1, segmentation_key=False, modelparams={} ): sf = ModelTrainer(modelparams=modelparams) sf.train_organ_model_from_dir( output_file=output_file, reference_dir=reference_dir, orig_pattern=orig_pattern, ref_pattern=ref_pattern, label=label, segmentation_key=segmentation_key ) return sf.data, sf.target def model_score_from_sliver_data( # output_file="~/lisa_data/liver_intensity.Model.p", sliver_reference_dir='~/data/medical/orig/sliver07/training/', orig_pattern="*orig*[1-9].mhd", ref_pattern="*seg*[1-9].mhd", modelparams={}, likelihood_ratio=0.5, savefig=False, savefig_fn_prefix='../graphics/bn-symmetry-', show=False, label='', ): """ :param label: text label added to all records in output table :param sliver_reference_dir: :param orig_pattern: :param ref_pattern: :param modelparams: :param likelihood_ratio: float number between 0 and 1, scalar or list. Set the segmentation threshodl :param savefig: :param savefig_fn_prefix: :param show: show images :return: """ import pandas as pd from imcut import pycut import sed3 import matplotlib.pyplot as plt import volumetry_evaluation sliver_reference_dir = op.expanduser(sliver_reference_dir) orig_fnames = glob.glob(sliver_reference_dir + orig_pattern) ref_fnames = glob.glob(sliver_reference_dir + ref_pattern) orig_fnames.sort() ref_fnames.sort() evaluation_all = [] for oname, rname in zip(orig_fnames, ref_fnames): print(oname) data3d_orig, metadata = io3d.datareader.read(oname, dataplus_format=False) vs_mm1 = metadata['voxelsize_mm'] data3d_seg, metadata = io3d.datareader.read(rname, dataplus_format=False) vs_mm = metadata['voxelsize_mm'] mdl = pycut.Model(modelparams=modelparams) # m0 = mdl.mdl[2] # len(m0.means_) vs_mmr = [1.5, 1.5, 1.5] data3dr = imma.image.resize_to_mm(data3d_orig, vs_mm1, vs_mmr) lik1 = mdl.likelihood_from_image(data3dr, vs_mmr, 0) lik2 = mdl.likelihood_from_image(data3dr, vs_mmr, 1) if
np.isscalar(likelihood_ratio)
numpy.isscalar
import matplotlib.pyplot as plt import numpy as np import pickle from datetime import date with open('mhws_data.pkl', 'rb') as f: [dates, t, sst, mhws, clim] = pickle.load(f) ev =
np.argmax(mhws['intensity_max'])
numpy.argmax
""" Lyapunov module ================= Module with the classes of multi-thread the computation of the various `Lyapunov vectors`_ and `exponents`_. Integrate using the `Runge-Kutta method`_ defined in the :mod:`~.integrators.integrate` module. See :cite:`lyap-KP2012` for more details on the Lyapunov vectors theoretical framework. Module classes -------------- * :class:`LyapunovsEstimator` to estimate the Backward and Forward Lyapunov Vectors (BLVs and FLVs) along a trajectory * :class:`CovariantLyapunovsEstimator` to estimate the Covariant Lyapunov Vectors (CLVs) along a trajectory .. _Lyapunov vectors: https://en.wikipedia.org/wiki/Lyapunov_vector .. _exponents: https://en.wikipedia.org/wiki/Lyapunov_exponent .. _Runge-Kutta method: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods .. _Numba: https://numba.pydata.org/ References ---------- .. bibliography:: ../model/ref.bib :labelprefix: LYAP- :keyprefix: lyap- """ from numba import njit import numpy as np import qgs.integrators.integrate as integrate from qgs.functions.util import normalize_matrix_columns, solve_triangular_matrix, reverse import multiprocessing class LyapunovsEstimator(object): """Class to compute the Forward and Backward `Lyapunov vectors`_ and `exponents`_ along a trajectory of a dynamical system .. math:: \\dot{\\boldsymbol{x}} = \\boldsymbol{f}(t, \\boldsymbol{x}) with a set of :class:`LyapProcess` and a specified `Runge-Kutta method`_. The tangent linear model must also be provided. I.e. one must provide the linearized ODEs .. math :: \\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x} where :math:`\\boldsymbol{\\mathrm{J}} = \\frac{\\partial \\boldsymbol{f}}{\\partial \\boldsymbol{x}}` is the Jacobian matrix of :math:`\\boldsymbol{f}`. The method used to compute the Lyapunov vectors is the one introduced by Benettin et al. :cite:`lyap-BGGS1980`. Parameters ---------- num_threads: None or int, optional Number of :class:`LyapProcess` workers (threads) to use. If `None`, use the number of machine's cores available. Default to `None`. b: None or ~numpy.ndarray, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. c: None or ~numpy.ndarray, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. a: None or ~numpy.ndarray, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. number_of_dimensions: None or int, optional Allow to hardcode the dynamical system dimension. If `None`, evaluate the dimension from the callable :attr:`func`. Default to `None`. Attributes ---------- num_threads: int Number of :class:`LyapProcess` workers (threads) to use. b: ~numpy.ndarray Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~numpy.ndarray Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~numpy.ndarray Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . n_dim: int Dynamical system dimension. n_vec: int The number of Lyapunov vectors to compute. n_traj: int The number of trajectories (initial conditions) computed at the last estimation performed by the estimator. n_records: int The number of saved states of the last estimation performed by the estimator. ic: ~numpy.ndarray Store the estimator initial conditions. func: callable Last function :math:`\\boldsymbol{f}` used by the estimator. func_jac: callable Last Jacobian matrix function :math:`\\boldsymbol{J}` used by the estimator. """ def __init__(self, num_threads=None, b=None, c=None, a=None, number_of_dimensions=None): if num_threads is None: self.num_threads = multiprocessing.cpu_count() else: self.num_threads = num_threads # Default is RK4 if a is None and b is None and c is None: self.c = np.array([0., 0.5, 0.5, 1.]) self.b = np.array([1./6, 1./3, 1./3, 1./6]) self.a = np.zeros((len(self.c), len(self.b))) self.a[1, 0] = 0.5 self.a[2, 1] = 0.5 self.a[3, 2] = 1. else: self.a = a self.b = b self.c = c self.ic = None self._time = None self._pretime = None self._recorded_traj = None self._recorded_exp = None self._recorded_vec = None self.n_traj = 0 self.n_dim = number_of_dimensions self.n_records = 0 self.n_vec = 0 self.write_steps = 0 self._adjoint = False self._forward = -1 self._inverse = 1. self.func = None self.func_jac = None self._ics_queue = None self._lyap_queue = None self._processes_list = list() def terminate(self): """Stop the workers (threads) and release the resources of the estimator.""" for process in self._processes_list: process.terminate() process.join() def start(self): """Start or restart the workers (threads) of the estimator. Warnings -------- If the estimator was not previously terminated, it will be terminated first in the case of a restart. """ self.terminate() self._processes_list = list() self._ics_queue = multiprocessing.JoinableQueue() self._lyap_queue = multiprocessing.Queue() for i in range(self.num_threads): self._processes_list.append(LyapProcess(i, self.func, self.func_jac, self.b, self.c, self.a, self._ics_queue, self._lyap_queue)) for process in self._processes_list: process.daemon = True process.start() def set_bca(self, b=None, c=None, a=None, ic_init=True): """Set the coefficients of the `Runge-Kutta method`_ and restart the estimator. .. _Runge-Kutta method: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods Parameters ---------- b: None or ~numpy.ndarray, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. c: None or ~numpy.ndarray, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. a: None or ~numpy.ndarray, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. ic_init: bool, optional Re-initialize or not the initial conditions of the estimator. Default to `True`. """ if a is not None: self.a = a if b is not None: self.b = b if c is not None: self.c = c if ic_init: self.ic = None self.start() def set_func(self, f, fjac): """Set the `Numba`_-jitted function :math:`\\boldsymbol{f}` and Jacobian matrix function :math:`\\boldsymbol{\\mathrm{J}}` to integrate. .. _Numba: https://numba.pydata.org/ Parameters ---------- f: callable The `Numba`_-jitted function :math:`\\boldsymbol{f}`. Should have the signature ``f(t, x)`` where ``x`` is the state value and ``t`` is the time. fjac: callable The `Numba`_-jitted Jacobian matrix function :math:`\\boldsymbol{J}`. Should have the signature ``J(t, x)`` where ``x`` is the state value and ``t`` is the time. Warnings -------- This function restarts the estimator! """ self.func = f self.func_jac = fjac self.start() def compute_lyapunovs(self, t0, tw, t, dt, mdt, ic=None, write_steps=1, n_vec=None, forward=False, adjoint=False, inverse=False): """Estimate the Lyapunov vectors using the Benettin algorithm along a given trajectory, always integrating the said trajectory forward in time from `ic` at `t0` to time `t`. The result of the estimation can be obtained afterward by calling :meth:`get_lyapunovs`. If `forward` is `True`, it yields the Forward Lyapunov Vectors (FLVs) between `t0` and `tw`, otherwise, returns the Backward Lyapunov Vectors (BLVs) between `tw` and `t`. Parameters ---------- t0: float Initial time of the time integration. Corresponds to the initial condition's `ic` time. tw: float Time at which the algorithm start to store the Lyapunov vectors. Define thus also the transient before the which the Lyapunov vectors are considered as having not yet converged. Must be between `t0` and `t`. t: float Final time of the time integration. Corresponds to the final condition. dt: float Timestep of the integration. mdt: float Micro-timestep to integrate the tangent linear equation between the nonlinear system `dt` timesteps. Should be smaller or equal to `dt`. ic: None or ~numpy.ndarray(float), optional Initial conditions of the system. Can be a 1D or a 2D array: * 1D: Provide a single initial condition. Should be of shape (`n_dim`,) where `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`. * 2D: Provide an ensemble of initial condition. Should be of shape (`n_traj`, `n_dim`) where `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`, and where `n_traj` is the number of initial conditions. If `None`, use the initial conditions stored in :attr:`ic`. If then :attr:`ic` is `None`, use a zero initial condition. Default to `None`. forward: bool, optional If `True`, yield the `Forward Lyapunov Vectors` (FLVs) between `t0` and `tw`. If `False`, yield the `Backward Lyapunov Vectors` (BLVs) between `tw` and `t`. Default to `False`, i.e. Backward Lyapunov Vectors estimation. adjoint: bool, optional If true, integrate the tangent :math:`\\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x}` , else, integrate the adjoint linear model :math:`\\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}^T(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x}`. Integrate the tangent model by default. inverse: bool, optional Whether or not to invert the Jacobian matrix :math:`\\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\rightarrow \\boldsymbol{\\mathrm{J}}^{-1}(t, \\boldsymbol{x})`. `False` by default. write_steps: int, optional Save the state of the integration in memory every `write_steps` steps. The other intermediary steps are lost. It determines the size of the returned objects. Default is 1. Set to 0 to return only the final state. n_vec: int, optional The number of Lyapunov vectors to compute. Should be smaller or equal to :attr:`n_dim`. """ if self.func is None or self.func_jac is None: print('No function to integrate defined!') return 0 if ic is None: i = 1 while True: self.ic = np.zeros(i) try: x = self.func(0., self.ic) except: i += 1 else: break i = len(self.func(0., self.ic)) self.ic = np.zeros(i) else: self.ic = ic if len(self.ic.shape) == 1: self.ic = self.ic.reshape((1, -1)) self.n_traj = self.ic.shape[0] self.n_dim = self.ic.shape[1] if n_vec is not None: self.n_vec = n_vec else: self.n_vec = self.n_dim self._pretime = np.concatenate((np.arange(t0, tw, dt), np.full((1,), tw))) self._time = np.concatenate((np.arange(tw, t, dt), np.full((1,), t))) self.write_steps = write_steps if forward: self._forward = 1 else: self._forward = -1 self._adjoint = adjoint self._inverse = 1. if inverse: self._inverse *= -1. if write_steps == 0: self.n_records = 1 else: if not forward: tot = self._time[::self.write_steps] self.n_records = len(tot) if tot[-1] != self._time[-1]: self.n_records += 1 else: tot = self._pretime[::self.write_steps] self.n_records = len(tot) if tot[-1] != self._pretime[-1]: self.n_records += 1 self._recorded_traj = np.zeros((self.n_traj, self.n_dim, self.n_records)) self._recorded_vec = np.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) self._recorded_exp = np.zeros((self.n_traj, self.n_vec, self.n_records)) for i in range(self.n_traj): self._ics_queue.put((i, self._pretime, self._time, mdt, self.ic[i], self.n_vec, self.write_steps, self._forward, self._adjoint, self._inverse)) self._ics_queue.join() for i in range(self.n_traj): args = self._lyap_queue.get() self._recorded_traj[args[0]] = args[1] self._recorded_exp[args[0]] = args[2] self._recorded_vec[args[0]] = args[3] def get_lyapunovs(self): """Returns the result of the previous Lyapunov vectors estimation. Returns ------- time, traj, exponents, vectors: ~numpy.ndarray The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D array of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the input initial conditions, it is maximum a 4D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is squeezed. """ if self._forward == -1: tt = self._time else: tt = self._pretime if self.write_steps > 0: if tt[::self.write_steps][-1] == tt[-1]: return tt[::self.write_steps], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_vec) else: return np.concatenate((tt[::self.write_steps], np.full((1,), tt[-1]))), \ np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), np.squeeze(self._recorded_vec) else: return tt[-1], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_vec) class LyapProcess(multiprocessing.Process): """:class:`LyapunovsEstimator`'s workers class. Allows to multi-thread Lyapunov vectors estimation. Parameters ---------- processID: int Number identifying the worker. func: callable `Numba`_-jitted function to integrate assigned to the worker. func_jac: callable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~numpy.ndarray, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~numpy.ndarray, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~numpy.ndarray, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . ics_queue: multiprocessing.JoinableQueue Queue to which the worker ask for initial conditions and parameters input. lyap_queue: multiprocessing.Queue Queue to which the worker returns the estimation results. Attributes ---------- processID: int Number identifying the worker. func: callable `Numba`_-jitted function to integrate assigned to the worker. func_jac: callable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~numpy.ndarray Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~numpy.ndarray Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~numpy.ndarray Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . """ def __init__(self, processID, func, func_jac, b, c, a, ics_queue, lyap_queue): super().__init__() self.processID = processID self._ics_queue = ics_queue self._lyap_queue = lyap_queue self.func = func self.func_jac = func_jac self.a = a self.b = b self.c = c def run(self): """Main worker computing routine. Perform the estimation with the fetched initial conditions and parameters.""" while True: args = self._ics_queue.get() if args[7] == -1: recorded_traj, recorded_exp, recorded_vec = _compute_backward_lyap_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4][np.newaxis, :], args[5], args[6], args[8], args[9], self.b, self.c, self.a) else: recorded_traj, recorded_exp, recorded_vec = _compute_forward_lyap_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4][np.newaxis, :], args[5], args[6], args[8], args[9], self.b, self.c, self.a) self._lyap_queue.put((args[0], np.squeeze(recorded_traj), np.squeeze(recorded_exp), np.squeeze(recorded_vec))) self._ics_queue.task_done() @njit def _compute_forward_lyap_jit(f, fjac, time, posttime, mdt, ic, n_vec, write_steps, adjoint, inverse, b, c, a): ttraj = integrate._integrate_runge_kutta_jit(f, np.concatenate((time[:-1], posttime)), ic, 1, 1, b, c, a) recorded_traj, recorded_exp, recorded_vec = _compute_forward_lyap_traj_jit(f, fjac, time, posttime, ttraj, mdt, n_vec, write_steps, adjoint, inverse, b, c, a) return recorded_traj, recorded_exp, recorded_vec @njit def _compute_forward_lyap_traj_jit(f, fjac, time, posttime, ttraj, mdt, n_vec, write_steps, adjoint, inverse, b, c, a): traj = ttraj[:, :, :len(time)] posttraj = ttraj[:, :, len(time)-1:] n_traj = ttraj.shape[0] n_dim = ttraj.shape[1] Id = np.zeros((1, n_dim, n_dim)) Id[0] = np.eye(n_dim) if write_steps == 0: n_records = 1 else: tot = time[::write_steps] n_records = len(tot) if tot[-1] != time[-1]: n_records += 1 recorded_vec = np.zeros((n_traj, n_dim, n_vec, n_records)) recorded_traj = np.zeros((n_traj, n_dim, n_records)) recorded_exp = np.zeros((n_traj, n_vec, n_records)) rposttime = reverse(posttime) rtime = reverse(time) for i_traj in range(n_traj): y = np.zeros((1, n_dim)) qr = np.linalg.qr(np.random.random((n_dim, n_vec))) q = qr[0] m_exp = np.zeros((n_dim)) for ti, (tt, dt) in enumerate(zip(rposttime[:-1], np.diff(rposttime))): y[0] = posttraj[i_traj, :, -1-ti] subtime = np.concatenate((np.arange(tt + dt, tt, mdt), np.full((1,), tt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, -1, 0, b, c, a, adjoint, inverse, integrate._zeros_func) q_new = prop[0, :, :, 0] @ q qr = np.linalg.qr(q_new) q = qr[0] r = qr[1] iw = -1 for ti, (tt, dt) in enumerate(zip(rtime[:-1], np.diff(rtime))): y[0] = traj[i_traj, :, -1-ti] m_exp = np.log(np.abs(np.diag(r)))/dt if write_steps > 0 and np.mod(ti, write_steps) == 0: recorded_exp[i_traj, :, iw] = m_exp recorded_traj[i_traj, :, iw] = y[0] recorded_vec[i_traj, :, :, iw] = q iw -= 1 subtime = np.concatenate((np.arange(tt + dt, tt, mdt), np.full((1,), tt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, -1, 0, b, c, a, adjoint, inverse, integrate._zeros_func) q_new = prop[0, :, :, 0] @ q qr = np.linalg.qr(q_new) q = qr[0] r = qr[1] recorded_exp[i_traj, :, 0] = m_exp recorded_traj[i_traj, :, 0] = y[0] recorded_vec[i_traj, :, :, 0] = q return recorded_traj, recorded_exp, recorded_vec @njit def _compute_backward_lyap_jit(f, fjac, pretime, time, mdt, ic, n_vec, write_steps, adjoint, inverse, b, c, a): ttraj = integrate._integrate_runge_kutta_jit(f, np.concatenate((pretime[:-1], time)), ic, 1, 1, b, c, a) recorded_traj, recorded_exp, recorded_vec = _compute_backward_lyap_traj_jit(f, fjac, pretime, time, ttraj, mdt, n_vec, write_steps, adjoint, inverse, b, c, a) return recorded_traj, recorded_exp, recorded_vec @njit def _compute_backward_lyap_traj_jit(f, fjac, pretime, time, ttraj, mdt, n_vec, write_steps, adjoint, inverse, b, c, a): pretraj = ttraj[:, :, :len(pretime)] traj = ttraj[:, :, (len(pretime)-1):] n_traj = ttraj.shape[0] n_dim = ttraj.shape[1] Id = np.zeros((1, n_dim, n_dim)) Id[0] = np.eye(n_dim) if write_steps == 0: n_records = 1 else: tot = time[::write_steps] n_records = len(tot) if tot[-1] != time[-1]: n_records += 1 recorded_vec = np.zeros((n_traj, n_dim, n_vec, n_records)) recorded_traj = np.zeros((n_traj, n_dim, n_records)) recorded_exp = np.zeros((n_traj, n_vec, n_records)) for i_traj in range(n_traj): y = np.zeros((1, n_dim)) y[0] = pretraj[i_traj, :, 0] qr = np.linalg.qr(np.random.random((n_dim, n_vec))) q = qr[0] m_exp = np.zeros((n_dim)) for ti, (tt, dt) in enumerate(zip(pretime[:-1], np.diff(pretime))): subtime = np.concatenate((np.arange(tt, tt + dt, mdt), np.full((1,), tt + dt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, 1, 0, b, c, a, adjoint, inverse, integrate._zeros_func) y[0] = pretraj[i_traj, :, ti+1] q_new = prop[0, :, :, 0] @ q qr = np.linalg.qr(q_new) q = qr[0] r = qr[1] iw = 0 for ti, (tt, dt) in enumerate(zip(time[:-1], np.diff(time))): m_exp = np.log(np.abs(np.diag(r)))/dt if write_steps > 0 and np.mod(ti, write_steps) == 0: recorded_exp[i_traj, :, iw] = m_exp recorded_traj[i_traj, :, iw] = y[0] recorded_vec[i_traj, :, :, iw] = q iw += 1 subtime = np.concatenate((np.arange(tt, tt + dt, mdt), np.full((1,), tt + dt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, 1, 0, b, c, a, adjoint, inverse, integrate._zeros_func) y[0] = traj[i_traj, :, ti+1] q_new = prop[0, :, :, 0] @ q qr = np.linalg.qr(q_new) q = qr[0] r = qr[1] recorded_exp[i_traj, :, -1] = m_exp recorded_traj[i_traj, :, -1] = y[0] recorded_vec[i_traj, :, :, -1] = q return recorded_traj, recorded_exp, recorded_vec class CovariantLyapunovsEstimator(object): """Class to compute the Covariant `Lyapunov vectors`_ (CLVs) and `exponents`_ along a trajectory of a dynamical system .. math:: \\dot{\\boldsymbol{x}} = \\boldsymbol{f}(t, \\boldsymbol{x}) with a set of :class:`LyapProcess` and a specified `Runge-Kutta method`_. The tangent linear model must also be provided. I.e. one must provide the linearized ODEs .. math :: \\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x} where :math:`\\boldsymbol{\\mathrm{J}} = \\frac{\\partial \\boldsymbol{f}}{\\partial \\boldsymbol{x}}` is the Jacobian matrix of :math:`\\boldsymbol{f}`. Parameters ---------- num_threads: None or int, optional Number of :class:`LyapProcess` workers (threads) to use. If `None`, use the number of machine's cores available. Default to `None`. b: None or ~numpy.ndarray, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. c: None or ~numpy.ndarray, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. a: None or ~numpy.ndarray, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. number_of_dimensions: None or int, optional Allow to hardcode the dynamical system dimension. If `None`, evaluate the dimension from the callable :attr:`func`. Default to `None`. method: int, optional Allow to select the method used to compute the CLVs. Presently can be `0` or `1`: * `0`: Uses the method of Ginelli et al. :cite:`lyap-GPTCLP2007`. Suitable for a trajectory not too long (depends on the memory available). * `1`: Uses the method of the intersection of the subspace spanned by the BLVs and FLVs described in :cite:`lyap-ER1985` and :cite:`lyap-KP2012` (see also :cite:`lyap-DPV2021`, Appendix A). Suitable for longer trajectories (uses less memory). Default to `0`, i.e. Ginelli et al. algorithm. noise_pert: float, optional Noise perturbation amplitude parameter of the diagonal of the R matrix in the QR decomposition during the Ginelli step. Mainly done to avoid ill-conditioned matrices near tangencies (see :cite:`lyap-KP2012`). Default to 0 (no perturbation). Only apply if using the Ginelli et al. algorithm, i.e. if ``method=0``. Attributes ---------- num_threads: int Number of :class:`LyapProcess` workers (threads) to use. b: ~numpy.ndarray Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~numpy.ndarray Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~numpy.ndarray Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . n_dim: int Dynamical system dimension. n_vec: int The number of Lyapunov vectors to compute. n_traj: int The number of trajectories (initial conditions) computed at the last estimation performed by the estimator. n_records: int The number of saved states of the last estimation performed by the estimator. ic: ~numpy.ndarray Store the estimator initial conditions. func: callable Last function :math:`\\boldsymbol{f}` used by the estimator. func_jac: callable Last Jacobian matrix function :math:`\\boldsymbol{J}` used by the estimator. method: int Select the method used to compute the CLVs: * `0`: Uses the method of Ginelli et al. :cite:`lyap-GPTCLP2007`. Suitable for a trajectory not too long (depends on the memory available). * `1`: Uses the method of the intersection of the subspaces spanned by the BLVs and FLVs described in :cite:`lyap-ER1985` and :cite:`lyap-KP2012` (see also :cite:`lyap-DPV2021`, Appendix A). Suitable for longer trajectories (uses less memory). noise_pert: float Noise perturbation parameter of the diagonal of the matrix resulting from the backpropagation during the Ginelli step. Mainly done to avoid ill-conditioned matrices near tangencies (see :cite:`lyap-KP2012`). Only apply if using the Ginelli et al. algorithm, i.e. if ``method=0``. """ def __init__(self, num_threads=None, b=None, c=None, a=None, number_of_dimensions=None, noise_pert=0., method=0): if num_threads is None: self.num_threads = multiprocessing.cpu_count() else: self.num_threads = num_threads # Default is RK4 if a is None and b is None and c is None: self.c = np.array([0., 0.5, 0.5, 1.]) self.b = np.array([1./6, 1./3, 1./3, 1./6]) self.a = np.zeros((len(self.c), len(self.b))) self.a[1, 0] = 0.5 self.a[2, 1] = 0.5 self.a[3, 2] = 1. else: self.a = a self.b = b self.c = c self.noise_pert = noise_pert self.ic = None self._time = None self._pretime = None self._aftertime = None self._recorded_traj = None self._recorded_exp = None self._recorded_vec = None self._recorded_bvec = None self._recorded_fvec = None self.n_traj = 0 self.n_dim = number_of_dimensions self.n_records = 0 self.n_vec = 0 self.write_steps = 0 self.method = method self.func = None self.func_jac = None self._ics_queue = None self._clv_queue = None self._processes_list = list() def terminate(self): """Stop the workers (threads) and release the resources of the estimator.""" for process in self._processes_list: process.terminate() process.join() def set_noise_pert(self, noise_pert): """Set the noise perturbation :attr:`noise_pert` parameter. Parameters ---------- noise_pert: float, optional Noise perturbation amplitude parameter of the diagonal of the R matrix in the QR decomposition during the Ginelli step. Mainly done to avoid ill-conditioned matrices near tangencies (see :cite:`lyap-KP2012`). Only apply if using the Ginelli et al. algorithm, i.e. if :attr:`method` is 0. """ self.noise_pert = noise_pert self.start() def set_bca(self, b=None, c=None, a=None, ic_init=True): """Set the coefficients of the `Runge-Kutta method`_ and restart the estimator. .. _Runge-Kutta method: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods Parameters ---------- b: None or ~numpy.ndarray, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. c: None or ~numpy.ndarray, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. a: None or ~numpy.ndarray, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. ic_init: bool, optional Re-initialize or not the initial conditions of the estimator. Default to `True`. """ if a is not None: self.a = a if b is not None: self.b = b if c is not None: self.c = c if ic_init: self.ic = None self.start() def start(self): """Start or restart the workers (threads) of the estimator. Warnings -------- If the estimator was not previously terminated, it will be terminated first in the case of a restart. """ self.terminate() self._processes_list = list() self._ics_queue = multiprocessing.JoinableQueue() self._clv_queue = multiprocessing.Queue() for i in range(self.num_threads): self._processes_list.append(ClvProcess(i, self.func, self.func_jac, self.b, self.c, self.a, self._ics_queue, self._clv_queue, self.noise_pert)) for process in self._processes_list: process.daemon = True process.start() def set_func(self, f, fjac): """Set the `Numba`_-jitted function :math:`\\boldsymbol{f}` and Jacobian matrix function :math:`\\boldsymbol{\\mathrm{J}}` to integrate. .. _Numba: https://numba.pydata.org/ Parameters ---------- f: callable The `Numba`_-jitted function :math:`\\boldsymbol{f}`. Should have the signature ``f(t, x)`` where ``x`` is the state value and ``t`` is the time. fjac: callable The `Numba`_-jitted Jacobian matrix function :math:`\\boldsymbol{J}`. Should have the signature ``J(t, x)`` where ``x`` is the state value and ``t`` is the time. Warnings -------- This function restarts the estimator! """ self.func = f self.func_jac = fjac self.start() def compute_clvs(self, t0, ta, tb, tc, dt, mdt, ic=None, write_steps=1, n_vec=None, method=None, backward_vectors=False, forward_vectors=False): """Estimate the Covariant Lyapunov Vectors (CLVs) along a given trajectory, always integrating the said trajectory forward in time from `ic` at `t0` to time `tc`. Return the CLVs between `ta` and `tb`. The result of the estimation can be obtained afterward by calling :meth:`get_clvs`. Parameters ---------- t0: float Initial time of the time integration. Corresponds to the initial condition's `ic` time. ta: float Define the time span between `t0` and `ta` of the first part of the algorithm, which obtain the convergence to the Backward Lyapunov vectors (initialization of the Benettin algorithm). tb: float Define the time span between `ta` and `tb` where the Covariant Lyapunov Vectors are computed. tc: float Final time of the time integration algorithm. Define the time span between `tb` and `tc` where, depending on the value of :attr:`method`, the convergence to the Forward Lyapunov Vectors or to the Covariant Lyapunov Vectors (thanks to the Ginelli steps) is obtained. dt: float Timestep of the integration. mdt: float Micro-timestep to integrate the tangent linear equation between the nonlinear system `dt` timesteps. Should be smaller or equal to `dt`. ic: None or ~numpy.ndarray(float), optional Initial conditions of the system. Can be a 1D or a 2D array: * 1D: Provide a single initial condition. Should be of shape (`n_dim`,) where `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`. * 2D: Provide an ensemble of initial condition. Should be of shape (`n_traj`, `n_dim`) where `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`, and where `n_traj` is the number of initial conditions. If `None`, use the initial conditions stored in :attr:`ic`. If then :attr:`ic` is `None`, use a zero initial condition. Default to `None`. write_steps: int, optional Save the state of the integration in memory every `write_steps` steps. The other intermediary steps are lost. It determines the size of the returned objects. Default is 1. Set to 0 to return only the final state. n_vec: int, optional The number of Lyapunov vectors to compute. Should be smaller or equal to :attr:`n_dim`. method: int, optional Allow to select the method used to compute the CLVs. Presently can be `0` or `1`: * `0`: Uses the method of Ginelli et al. :cite:`lyap-GPTCLP2007`. Suitable for a trajectory not too long (depends on the memory available). * `1`: Uses the method of the intersection of the subspace spanned by the BLVs and FLVs described in :cite:`lyap-ER1985` and :cite:`lyap-KP2012` (see also :cite:`lyap-DPV2021`, Appendix A). Suitable for longer trajectories (uses less memory). Use the Ginelli et al. algorithm if not provided. backward_vectors: bool, optional Store also the computed Backward Lyapunov vectors between `ta` and `tb`. Only applies if ``method=1``. Does not store the BLVs if not provided. forward_vectors: bool, optional Store also the computed Forward Lyapunov vectors between `ta` and `tb`. Only applies if ``method=1``. Does not store the FLVs if not provided. """ if self.func is None or self.func_jac is None: print('No function to integrate defined!') return 0 if ic is None: i = 1 while True: self.ic = np.zeros(i) try: x = self.func(0., self.ic) except: i += 1 else: break i = len(self.func(0., self.ic)) self.ic = np.zeros(i) else: self.ic = ic if len(self.ic.shape) == 1: self.ic = self.ic.reshape((1, -1)) self.n_traj = self.ic.shape[0] self.n_dim = self.ic.shape[1] if n_vec is not None: self.n_vec = n_vec else: self.n_vec = self.n_dim if method is not None: self.method = method self._pretime = np.concatenate((np.arange(t0, ta, dt), np.full((1,), ta))) self._time = np.concatenate((np.arange(ta, tb, dt), np.full((1,), tb))) self._aftertime = np.concatenate((np.arange(tb, tc, dt), np.full((1,), tc))) self.write_steps = write_steps if write_steps == 0: self.n_records = 1 else: tot = self._time[::self.write_steps] self.n_records = len(tot) if tot[-1] != self._time[-1]: self.n_records += 1 self._recorded_traj = np.zeros((self.n_traj, self.n_dim, self.n_records)) self._recorded_vec = np.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) self._recorded_exp = np.zeros((self.n_traj, self.n_vec, self.n_records)) if self.method == 1: if forward_vectors: self._recorded_fvec = np.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) if backward_vectors: self._recorded_bvec = np.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) for i in range(self.n_traj): self._ics_queue.put((i, self._pretime, self._time, self._aftertime, mdt, self.ic[i], self.n_vec, self.write_steps, self.method)) self._ics_queue.join() for i in range(self.n_traj): args = self._clv_queue.get() self._recorded_traj[args[0]] = args[1] self._recorded_exp[args[0]] = args[2] self._recorded_vec[args[0]] = args[3] if self.method == 1: if forward_vectors: self._recorded_fvec[args[0]] = args[5] if backward_vectors: self._recorded_bvec[args[0]] = args[4] def get_clvs(self): """Returns the result of the previous CLVs estimation. Returns ------- time, traj, exponents, vectors: ~numpy.ndarray The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D array of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the input initial conditions, it is maximum a 4D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is squeezed. """ if self.write_steps > 0: if self._time[::self.write_steps][-1] == self._time[-1]: return self._time[::self.write_steps], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_vec) else: return np.concatenate((self._time[::self.write_steps], np.full((1,), self._time[-1]))), \ np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), np.squeeze(self._recorded_vec) else: return self._time[-1], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_vec) def get_blvs(self): """Returns the BLVs obtained during the previous CLVs estimation. Returns ------- time, traj, exponents, vectors: ~numpy.ndarray The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D array of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the input initial conditions, it is maximum a 4D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is squeezed. Warnings -------- The BLVs are only available if :attr:`method` is set to 1. """ if self._recorded_bvec is None: return None if self.write_steps > 0: if self._time[::self.write_steps][-1] == self._time[-1]: return self._time[::self.write_steps], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_bvec) else: return np.concatenate((self._time[::self.write_steps], np.full((1,), self._time[-1]))), \ np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), np.squeeze(self._recorded_bvec) else: return self._time[-1], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_bvec) def get_flvs(self): """Returns the FLVs obtained during the previous CLVs estimation. Returns ------- time, traj, exponents, vectors: ~numpy.ndarray The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D array of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D array of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the input initial conditions, it is maximum a 4D array of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is squeezed. Warnings -------- The FLVs are only available if :attr:`method` is set to 1. """ if self._recorded_fvec is None: return None if self.write_steps > 0: if self._time[::self.write_steps][-1] == self._time[-1]: return self._time[::self.write_steps], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_fvec) else: return np.concatenate((self._time[::self.write_steps], np.full((1,), self._time[-1]))), \ np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), np.squeeze(self._recorded_fvec) else: return self._time[-1], np.squeeze(self._recorded_traj), np.squeeze(self._recorded_exp), \ np.squeeze(self._recorded_fvec) class ClvProcess(multiprocessing.Process): """:class:`CovariantLyapunovsEstimator`'s workers class. Allows to multi-thread Lyapunov vectors estimation. Parameters ---------- processID: int Number identifying the worker. func: callable `Numba`_-jitted function to integrate assigned to the worker. func_jac: callable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~numpy.ndarray, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~numpy.ndarray, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~numpy.ndarray, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . ics_queue: multiprocessing.JoinableQueue Queue to which the worker ask for initial conditions and parameters input. clv_queue: multiprocessing.Queue Queue to which the worker returns the estimation results. Attributes ---------- processID: int Number identifying the worker. func: callable `Numba`_-jitted function to integrate assigned to the worker. func_jac: callable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~numpy.ndarray Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~numpy.ndarray Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~numpy.ndarray Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . """ def __init__(self, processID, func, func_jac, b, c, a, ics_queue, clv_queue, noise_pert): super().__init__() self.processID = processID self._ics_queue = ics_queue self._clv_queue = clv_queue self.func = func self.func_jac = func_jac self.a = a self.b = b self.c = c self.noise_pert = noise_pert def run(self): """Main worker computing routine. Perform the estimation with the fetched initial conditions and parameters.""" while True: args = self._ics_queue.get() method = args[8] if method == 0: recorded_traj, recorded_exp, recorded_vec = _compute_clv_gin_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4], args[5][np.newaxis, :], args[6], args[7], self.b, self.c, self.a, self.noise_pert) self._clv_queue.put((args[0], np.squeeze(recorded_traj), np.squeeze(recorded_exp), np.squeeze(recorded_vec))) else: recorded_traj, recorded_exp, recorded_vec, backward_vec, forward_vec = _compute_clv_sub_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4], args[5][np.newaxis, :], args[7], self.b, self.c, self.a) self._clv_queue.put((args[0], np.squeeze(recorded_traj),
np.squeeze(recorded_exp)
numpy.squeeze
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest import numpy as np import qiskit from ddt import ddt, data as test_data, unpack from qiskit import QuantumRegister, QuantumCircuit from qiskit.providers.aer import AerJob from qiskit.providers.aer.backends.aerbackend import AerBackend from qiskit.result import Result from scipy import sparse from scipy.sparse import linalg from dc_qiskit_algorithms.ControlledStatePreparation import ControlledStatePreparationGate logging.basicConfig(format=logging.BASIC_FORMAT, level='ERROR') log = logging.getLogger(__name__) log.setLevel(logging.INFO) # noinspection NonAsciiCharacters @ddt class ControlledMottonenStatePrepTests(unittest.TestCase): @unpack @test_data( {'matrix': [ [+0.1, +0.1], [+0.2, +0.1], [+0.3, +0.1], [+0.4, +0.1] ]} ) def test_angle_matrix_y(self, matrix): matrix = sparse.dok_matrix(matrix) columns_norm = linalg.norm(matrix, axis=0) matrix = matrix.multiply(np.power(columns_norm, -1)).todense() abs_matrix = np.abs(matrix) log.info("Input Matrix (Y):\n" + str(abs_matrix)) iso_gate = ControlledStatePreparationGate(matrix) angle_matrix = iso_gate._to_angle_matrix_y() log.info("Final Angle Matrix (Y):\n" + str(angle_matrix.todense())) # The recovery is done by using a pre factor of 1/2 given the definition of the R_y gate matrix_recovered = sparse.dok_matrix(matrix.shape) for col in range(angle_matrix.shape[1]): matrix_recovered[0, col] = np.cos(0.5 * angle_matrix[0, col]) * np.cos(0.5 * angle_matrix[1, col]) matrix_recovered[1, col] = np.cos(0.5 * angle_matrix[0, col]) * np.sin(0.5 * angle_matrix[1, col]) matrix_recovered[2, col] = np.sin(0.5 * angle_matrix[0, col]) * np.cos(0.5 * angle_matrix[2, col]) matrix_recovered[3, col] = np.sin(0.5 * angle_matrix[0, col]) * np.sin(0.5 * angle_matrix[2, col]) log.info("Recovered Matrix (Y):\n" + str(matrix_recovered.multiply(columns_norm).todense())) self.assertAlmostEqual(np.linalg.norm(abs_matrix - matrix_recovered), 0.0, delta=1e-13) @unpack @test_data( {'matrix': [ [-0.1, +0.1], [+0.1, +0.1], [-0.1, +0.1], [+0.1, +0.1] ]} ) def test_angle_matrix_z(self, matrix): matrix = sparse.dok_matrix(matrix) columns_norm = linalg.norm(matrix, axis=0) matrix = matrix.multiply(np.power(columns_norm, -1)).todense() phase_matrix = np.angle(matrix) log.info("Input Phase Matrix (Z):\n" + str(phase_matrix)) iso_gate = ControlledStatePreparationGate(matrix) angle_matrix, global_phase = iso_gate._to_angle_matrix_z() angle_matrix = sparse.vstack([global_phase, angle_matrix]).todok() log.info("Final Angle Matrix (Z):\n" + str(angle_matrix.todense())) # The recovery is done by using a pre factor of 1/2 given the definition of the R_y gate matrix_recovered = sparse.dok_matrix(matrix.shape) for col in range(angle_matrix.shape[1]): matrix_recovered[0, col] = np.angle(np.exp(1.0j * angle_matrix[0, col]) * np.exp(-0.5j * angle_matrix[1, col]) * np.exp(-0.5j * angle_matrix[2, col])) matrix_recovered[1, col] = np.angle(np.exp(1.0j * angle_matrix[0, col]) * np.exp(-0.5j * angle_matrix[1, col]) * np.exp(+0.5j * angle_matrix[2, col])) matrix_recovered[2, col] = np.angle(np.exp(1.0j * angle_matrix[0, col]) * np.exp(+0.5j * angle_matrix[1, col]) * np.exp(-0.5j * angle_matrix[3, col])) matrix_recovered[3, col] = np.angle(np.exp(1.0j * angle_matrix[0, col]) * np.exp(+0.5j * angle_matrix[1, col]) * np.exp(+0.5j * angle_matrix[3, col])) global_phases = np.unique(phase_matrix - matrix_recovered.todense(), axis=0) self.assertEqual(global_phases.shape, (1, matrix_recovered.shape[1])) matrix_recovered_1 = global_phases + matrix_recovered log.info("Recovered Matrix (Z):\n" + str(matrix_recovered_1)) self.assertAlmostEqual(np.linalg.norm(phase_matrix - matrix_recovered_1), 0.0, delta=1e-13) @unpack @test_data( {'matrix': [ [+0.1, +0.1], [+0.2, +0.1], [+0.3, +0.1], [+0.4, +0.1] ]}, {'matrix': [ [-0.1, +0.1], [+0.1, -0.1], [+0.1, +0.1], [+0.1, -0.1] ]}, {'matrix': [ [+0.5, +0.1, +0.5, +0.1], [+0.1, +0.1, +0.5, +0.0], [+0.3, +0.1, +0.1, +0.1], [+0.1, +0.1, +0.0, +0.0] ]}, {'matrix': np.asarray([ [+0.5, +0.1, +0.1, +0.0], [+0.1, -0.4, +0.1, +0.0], [+0.2, +0.4, +0.1, +1.0], [+0.1, +0.1, +0.7, +0.0] ])} ) def test_define(self, matrix): log.info("STARTING TEST") matrix = sparse.dok_matrix(matrix) columns_norm = linalg.norm(matrix, axis=0) matrix_normed: np.matrix = matrix.multiply(np.power(columns_norm, -1)).todense() target_qubits = int(np.ceil(np.log2(matrix.shape[0]))) control_qubits = int(np.ceil(np.log2(matrix.shape[1]))) # We can compute the expected state vector by assuming we use an equal superposition (hadamard) on the # control qubits. We need to not only use the normed matrix, but also factor in the Hadamard factors 2^{-n/2} theoretical_state_vector: np.ndarray = np.asarray(matrix_normed.ravel(order='F')).reshape(-1) * np.power(2, -control_qubits / 2) log.info(f"Expected State: {theoretical_state_vector.tolist()}") ctrl_qb = QuantumRegister(control_qubits, name='ctrl') tgt_qb = QuantumRegister(target_qubits, name='tgt') qc = QuantumCircuit(tgt_qb, ctrl_qb) # The numbering is LSB on the left / MSB on the right. This creates unexpected results if not taken into account qc.h(ctrl_qb) qc.append(ControlledStatePreparationGate(matrix_normed), list(ctrl_qb) + list(reversed(tgt_qb))) # The the resulting state vector from the state vector simulator backend: AerBackend = qiskit.Aer.get_backend('statevector_simulator') job: AerJob = qiskit.execute(qc, backend) result: Result = job.result() vector: np.ndarray = result.get_statevector() # Computing the test: # The extraced state from the simulation is allowed to be off by a common (global) phase # If this is the case, taking the angle difference and correcting it, should give the same vector correction = np.angle(theoretical_state_vector[0]) - np.angle(vector[0]) vector_phase_corrected = vector * np.exp(1.0j * correction) log.info(f"Actual State: {theoretical_state_vector.tolist()}") diff = vector_phase_corrected - theoretical_state_vector self.assertAlmostEqual(np.linalg.norm(diff), 0.0, places=13) if log.level == logging.DEBUG: basic_qc = qiskit.transpile(qc, optimization_level=0, basis_gates=['uni_rot_rz', 'uni_rot_ry', 'state_prep_möttönen', 'h']) log.debug(f"\n{basic_qc.draw(fold=-1)}") basic_qc = qiskit.transpile(qc, optimization_level=0, basis_gates=['rz', 'cp', 'cx', 'ry', 'p', 'h']) log.debug(f"\n{basic_qc.draw(fold=-1)}") basic_qc = qiskit.transpile(qc, optimization_level=3, basis_gates=['u3', 'u2', 'u1', 'cx']) log.debug(f"\n{basic_qc.draw(fold=-1)}") log.debug('Theoretical result:') log.debug(np.round(theoretical_state_vector, decimals=4).tolist()) log.debug('Absolute:') log.debug(np.round(np.abs(vector), decimals=4).tolist()) log.debug(np.round(np.abs(theoretical_state_vector), decimals=4).tolist()) log.debug('Angle:') corrected_angle_vector = correction + np.angle(vector) corrected_angle_vector = np.fmod(corrected_angle_vector, 2*np.pi) log.debug(np.round(corrected_angle_vector, decimals=4).tolist()) log.debug(np.round(np.angle(theoretical_state_vector), decimals=4).tolist()) log.debug('TEST:') angle_diff = corrected_angle_vector - np.angle(theoretical_state_vector) abs_diff =
np.abs(vector)
numpy.abs
""" lorentz ------- helper functions for the lorentz notebook. """ #---------------- Importing relevant modules ---------------- import numpy as np # For arrays. import matplotlib.pyplot as plt # For plotting. import matplotlib.animation as animation # For animations. from IPython.display import HTML # For displaying in jupyter. import pandas as pd # For reading and saving labeled data. from numpy import genfromtxt # For reading data from file. #---------------- Implemented functions --------------------- def findnearest(array, value): """Returns the nearest element of an array to a number. Parameters ---------- array : numpy array The array for which we want to know the closest element to the provided value. value : float The value we want to find in the array. Returns ------- float The element of the array closest to the value provided. """ idx = np.abs(array - value).argmin() return array[idx] def plot_empty_space(): """Plots an empty plot to represent empty space. """ time = genfromtxt('data/lz_time.csv', delimiter=',') space = genfromtxt('data/lz_space.csv', delimiter=',') fig, ax = plt.subplots(figsize =(10,7)) plt.plot(space,time,linewidth=0,label='Playground') plt.legend() plt.show() def plot_light_cones(): """Plots light cones with labels for different regions of spacetime. """ time = genfromtxt('data/lz_time.csv', delimiter=',') space = genfromtxt('data/lz_space.csv', delimiter=',') line1 = genfromtxt('data/lz_line1.csv', delimiter=',') line2 = genfromtxt('data/lz_line2.csv', delimiter=',') fig, ax = plt.subplots(figsize =(10,7)) plt.plot(space,line1,linewidth=1,color='red') plt.plot(space,line2,linewidth=1,color='red') plt.xlim(-20,20) plt.ylim(-10,20) plt.annotate(' Causal Future',(-5,10), xytext=(0.5, 0.9), textcoords='axes fraction', fontsize=16, horizontalalignment='center', verticalalignment='top') plt.annotate('Causal Past',(-5,10), xytext=(0.5, 0.1), textcoords='axes fraction', fontsize=16, horizontalalignment='center', verticalalignment='top') plt.annotate('Acausal region',(0,10), xytext=(0.8, 0.4), textcoords='axes fraction', fontsize=16, horizontalalignment='center', verticalalignment='top') plt.annotate('Acausal region',(0,10), xytext=(0.2, 0.4), textcoords='axes fraction', fontsize=16, horizontalalignment='center', verticalalignment='top') plt.title('Light Cones') plt.show() def plot_event_at_origin(): """PLots an event at the origin of a set of light cones. """ time = genfromtxt('data/lz_time.csv', delimiter=',') space = genfromtxt('data/lz_space.csv', delimiter=',') line1 = genfromtxt('data/lz_line1.csv', delimiter=',') line2 = genfromtxt('data/lz_line2.csv', delimiter=',') fig, ax = plt.subplots(figsize =(10,7)) plt.plot(space,line1,linewidth=1,color='red') plt.plot(space,line2,linewidth=1,color='red') plt.xlim(-20,20) plt.ylim(-2,20) plt.plot([0], [0], 'o') plt.title('Transform of an event at the origin') plt.show() def plot_flashing_lighthouse(): """Plots the sequence of lights flashing at a lighthouse. """ time = genfromtxt('data/lz_time.csv', delimiter=',') space = genfromtxt('data/lz_space.csv', delimiter=',') line1 = genfromtxt('data/lz_line1.csv', delimiter=',') line2 = genfromtxt('data/lz_line2.csv', delimiter=',') line3 = genfromtxt('data/lz_line3.csv', delimiter=',') line4 = genfromtxt('data/lz_line4.csv', delimiter=',') fig, ax = plt.subplots(figsize =(10,7)) plt.plot(space,line1,linewidth=1,color='red') plt.plot(space,line2,linewidth=1,color='red') plt.xlim(-20,20) plt.ylim(-2,20) plt.plot(line3, line4, 'o') plt.title('Flashing lighthouse at the origin') plt.show() def lorentz(v): """Defines the Lorentz transformation as a 2x2 matrix. Parameters ---------- v : float A velocity for which we want to apply the lorentz transform. Returns ------- np.ndarray The lorentz transformation matrix associated with the velocity. """ gamma=1.0/np.sqrt(1-v*v) return np.array([[gamma,-gamma*v],[-gamma*v,gamma]]) def plot_lighthouse_transform(): """Plots a transformed persepective of a lighthouse. """ time = genfromtxt('data/lz_time.csv', delimiter=',') space = genfromtxt('data/lz_space.csv', delimiter=',') line1 = genfromtxt('data/lz_line1.csv', delimiter=',') line2 = genfromtxt('data/lz_line2.csv', delimiter=',') line3 = genfromtxt('data/lz_line3.csv', delimiter=',') line4 = genfromtxt('data/lz_line4.csv', delimiter=',') line5 = pd.read_hdf('data/lz_line5.hdf', 'line5') line6 = pd.read_hdf('data/lz_line6.hdf', 'line6') line5 = line5[findnearest(line5.columns,0.8)] line6 = line6[findnearest(line6.columns,0.8)] fig, ax = plt.subplots(figsize =(10,7)) plt.plot(space,line1,linewidth=1,color='red') plt.plot(space,line2,linewidth=1,color='red') plt.xlim(-20,20) plt.ylim(-2,20) plt.plot(line6, line5, 'o') plt.plot(line3, line4, 'o',color='green') plt.title('Flashing lighthouse at the origin - moving observer') plt.show() def animation_lorentz_1(): """Creates an animation showing how regularly spaced events move through space for a moving observer. Returns ------- HTML-animation Animation of regularly spaced events being transfomed by the lorentz transform. """ time=np.linspace(-6,20,100) space=np.linspace(-20,20,100) line1=np.linspace(-20,20,100) line2=np.linspace(20,-20,100) line3=np.zeros(11) line4=np.linspace(0,10,11) line5 = pd.read_hdf('data/lz_line5.hdf', 'line5') line6 = pd.read_hdf('data/lz_line6.hdf', 'line6') def datagen(u=1.05): """Generates the velocities used for the run function in the animation. Parameters ---------- u : float, optional The initial velocity value. Yields ------ float Successive velocity values used in the animation. """ while u > -1: u -= 0.05 yield u def init(): """Initial Frame of the animation. """ l1.set_data(space,line1) l2.set_data(space,line2) l4.set_data(line3, line4) ax.set_xlim(-20,20) ax.set_ylim(-2,20) def run(u): """Updates sucssesive frames in the animation. Parameters ---------- u : float Velocity for which the events are being transformed in each frame. Returns ------- matplotlib line This line has its data updated in each frame. """ l3.set_data(line6[findnearest(line6.columns, u)], line5[findnearest(line5.columns, u)]) text.set_text('$u$ = {:.2f}c'.format(u)) return l3 fig, ax = plt.subplots(figsize =(10,7)) ax.set_xlabel('distance') ax.set_ylabel('time') l1, = ax.plot([], [], lw=1,color='red') l2, = ax.plot([], [], lw=1,color='red') l3, = ax.plot([], [], 'o', color = 'blue') l4, = ax.plot([], [], 'o', color = 'green') text = plt.text(10,3,'$u$ = {:.2f}'.format(0.1), size = 20) ani = animation.FuncAnimation(fig, run, datagen, blit=False, interval=100, repeat=True, init_func=init) return HTML(ani.to_jshtml()) def animation_with_hyperbolae(): """Creates an animation showing how regularly spaced events move through space for a moving observer with hyperbolae. Returns ------- HTML-animation Animation of regually spaced events being transfomed and moved along hyperbolae. """ time=np.linspace(-6,20,100) space=
np.linspace(-20,20,100)
numpy.linspace
import matplotlib.pyplot as plt import numpy as np from MLG import imagepath, paperpath, path from imageio import imread import matplotlib.cbook as cbook from MLG.utils import color_own from matplotlib import rc __all__ = ['dark','Image_Window','Image_precision','Image_Illustration','Image_Illustration_Multi','Image_compare_micro','Image_astroshift', 'create_all_Image'] def dark(onof = 0): if onof is 'on': plt.style.use('dark_background') elif onof is 'off': plt.style.use('default') elif onof == True: plt.style.use('dark_background') else: plt.style.use('default') def Image_Window(string = 'resolve_Window', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) else: black = color_own([0.,0.,0.,1]) c1 = color_own([0,1,1,1]) c2 = color_own([1,0,0,1]) c3 = color_own([1,1,0.2,1]) c4 = color_own([0.4,0.4,0.4,1]) c_star = [c1,c2,c3,c4] c_grid1 = color_own([0,int(dark),1,1]) c_grid2 = color_own([0.5,1,0,1]) star= np.array([[0, 0],[0.1,0.9],[-1,-1.1],[-0.5,0.1]]) fig = plt.figure(figsize = [12,12]) x_width = 0.059 y_width = 0.177 #------------------------------------------------------------ # axis plt.xticks( fontsize = 25) plt.yticks( fontsize = 25) plt.grid(True) plt.axis('equal') plt.axis([-1.5,1.5,-1.4,1.6]) plt.ylabel('Across-scan direction (AC) [arcsec]', fontsize = 30) plt.xlabel('Along-scan direction (AL) [arcsec]', fontsize = 30) #------------------------------------------------------------ #------------------------------------------------------------ #Grid Major Star for i in range(-6,7): plt.plot([-6*x_width,6*x_width], [i*y_width,i*y_width], c = c_grid1,linewidth = 3) plt.plot([i*x_width,i*x_width], [-6*y_width,6*y_width], c = c_grid1, linewidth = 3) plt.text(0,1.4,"Along-scan direction\n $12\,\mathrm{pix} \\times 0.059 \mathrm{''/pix} = 0.708\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 0) plt.text(0.7,0,"Across-scan direction\n $12\,\mathrm{pix} \\times 0.177 \mathrm{''/pix} = 2.124\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 90) plt.arrow(0,6*y_width+2*x_width, -6*x_width+0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(0,6*y_width+2*x_width, 6*x_width-0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, -6*y_width+0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, 6*y_width-0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.scatter(star[:1,0], star[:1,1], marker=(5, 1),c = c_star[:1], s = [3000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_1.png', format = 'png') #------------------------------------------------------------ #------------------------------------------------------------ #Grid Minor Star plt.scatter(star[1:3,0], star[1:3,1], marker=(5, 1),c = c_star[1:3], s = [2000,2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_2.png', format = 'png') for i in range(-5,8): plt.plot([-15*x_width,-6*x_width], [i*y_width,i*y_width], c = c_grid2,linewidth = 3, zorder = -1) for i in range(-15,-5): plt.plot([i*x_width,i*x_width], [-5*y_width,7*y_width], c = c_grid2, linewidth = 3, zorder = -1) plt.scatter(star[3:,0], star[3:,1], marker=(5, 1),c = c_star[3:], s = [2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_3.png', format = 'png') #------------------------------------------------------------ fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_precision(string = 'Sig_vs_Gmag', Gaia_precision = path+'InputTable/resolution_Gaia.png', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0.5,1,0,1]) color5 = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0,1,0,1]) color5 = color_own([1,1,0,1]) fig = plt.figure(figsize = [12,10]) Gmag = np.arange(4,22,0.01) datafile = cbook.get_sample_data(Gaia_precision) img = imread(datafile) z = 10 ** (0.4 * (np.maximum(Gmag, 14) - 15)) #(14-np.minimum(Gmag, 14)) z2 = 10 ** (0.4 * (np.maximum(Gmag, 12) - 15)) sig_pi = (-1.631 + 680.766 * z2 + 32.732 * z2**2)**0.5/1000 sig_fov2 =(-1.631 + 680.766 * z + 32.732 * z**2)**0.5/1000 *7.75 +0.1 sig_fov3 = sig_fov2 / np.sqrt(9) plt.plot([0,1],[-5,-5], c = color1, linewidth = 3, label = 'formal precision from Gaia DR2 (per CCD)' ) plt.plot([0,1],[-5,-5], c = color2, linewidth = 3, label = 'actual precision from Gaia DR2 (per CCD)' ) plt.yticks([np.log10(i) for i in [20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02, 0.01]],[20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02,0.01], fontsize = 25) plt.xticks( fontsize = 25) plt.ylabel('Standard deviation of AL field angle [mas]', fontsize = 30) plt.xlabel('G magnitude', fontsize = 30) plt.imshow(img, zorder=0, extent=[5, 21.04, np.log10(0.0195),np.log10(10)]) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.plot(Gmag,np.log10(sig_pi), '--',c = color3, dashes =(5,5), linewidth = 3, label= 'predicted end-of-mission parallax error') if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov2), ':' , c = color4, linewidth = 5, label= 'used Standard deviation (per CCD)' ) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_3.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov3) ,c = color5,linewidth = 7, label= 'used Standard deviation for 9 CCD observations' ) plt.plot([5, 21.04, 21.04,5,5], [np.log10(0.0195),np.log10(0.0195),np.log10(10),np.log10(10),np.log10(0.0195)], linewidth = 2, color = [0.5,0.5,0.5,1], zorder = 0.1) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration(string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0,1,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0.5,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0,0,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x2 = np.linspace(3,7,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 1.5 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') for i in range(len(t)): xm1 =np.array([-1,1]) * np.cos(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1]) * np.sin(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1]) * np.cos(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1]) * np.sin(scandir[i]) + Y2[t[i]] dsc = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttx2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i % 2 == 0: plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = color1,linewidth = 3 , linestyle= '--',dashes=(10, 10)) plt.plot(ttX2[1:3],ttY2[1:3],color = color2, linewidth = 3,linestyle= '-') plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') if i% 2 == 0: plt.plot(xm2,ym2, color = black, linewidth = 3,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 3,zorder = 1) else: plt.plot(xm2,ym2, color = 'grey', linewidth = 2, zorder = -1) plt.plot(xm1,ym1, color = 'grey', linewidth = 2, zorder = -1) #if i ==0 : plt.plot(x1,y1, color = color3, linewidth = 3) plt.plot(x2,y2, color = color1, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) plt.plot(X2,Y2, color = color2, linewidth = 3) plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = color3, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') plt.text(4,7.5,'Star 1',color = color2,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration2 (string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi #Position_lens x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) #unlensed Position_source x2 = np.linspace(5,9,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 2 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') #--------------------------------------------------------------- #axis plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = grey, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') #--------------------------------------------------------------- # Motion source plt.plot(x1,y1, color = grey, linewidth = 7) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.text(4,7.5,'Source',color = blue,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') plt.plot(x2,y2, color = cyan, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(X2,Y2, color = blue, linewidth = 3) for i in range(len(t)): plt.plot([x2[t[i]],X2[t[i]]],[y2[t[i]],Y2[t[i]]],':',color = black) fig.savefig(imagepath + string + '_3.png', format = 'png') delta = 0.05 for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y2[t[i]] plt.plot(xm2,ym2, color = black, linewidth = 1,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 1,zorder = 1) fig.savefig(imagepath + string + '_4.png', format = 'png') for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y2[t[i]] dsc = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttx2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i % 2 == 0: plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color= orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color= orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = red,linewidth = 3 , linestyle= '--',dashes=(10, 10)) plt.plot(ttX2[1:3],ttY2[1:3],color = orange, linewidth = 3,linestyle= '-') plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') #if i ==0 : fig.savefig(imagepath + string + '_5.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration_Multi(string = 'Illustration_Multi'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,.5,0,1]) else: black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x2 = np.linspace(3,7,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x3 = np.linspace(12,10,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y3 =
np.linspace(8,6,100)
numpy.linspace
import pytest def test_auto_config_get_tpot_config(): from foreshadow.estimators.config import get_tpot_config setup1 = get_tpot_config("classification", include_preprocessors=True) setup2 = get_tpot_config("regression", include_preprocessors=True) setup3 = get_tpot_config("classification") setup4 = get_tpot_config("regression") assert set(setup3.keys()).issubset(set(setup1.keys())) assert setup1 != setup3 assert set(setup4.keys()).issubset(set(setup2.keys())) assert setup2 != setup4 def test_auto_config_invalid_input(): from foreshadow.estimators.config import get_tpot_config with pytest.raises(ValueError) as e: _ = get_tpot_config("test") assert "type_:" in str(e.value) def test_invalid_problem_type(): from foreshadow.estimators import AutoEstimator with pytest.raises(ValueError) as e: _ = AutoEstimator(problem_type="test") assert "problem type must be in " in str(e.value) def test_invalid_auto(): from foreshadow.estimators import AutoEstimator with pytest.raises(ValueError) as e: _ = AutoEstimator(auto="test") assert "auto must be in " in str(e.value) def test_invalid_kwargs_not_dict(): from foreshadow.estimators import AutoEstimator with pytest.raises(ValueError) as e: _ = AutoEstimator( problem_type="regression", auto="tpot", estimator_kwargs="test" ) assert str(e.value) == "estimator_kwargs must be a valid kwarg dictionary" @pytest.mark.skip( reason=( "auto-sklearn is a pain to install waiting on: " "https://github.com/automl/auto-sklearn/pull/703" ) ) def test_override_kwarg_dict(): from foreshadow.estimators import AutoEstimator # if this is erroring make sure that auto_sklearn is installed ae = AutoEstimator( problem_type="regression", auto="autosklearn", estimator_kwargs={"include_preprocessors": ["kitchen_sinks"]}, ) est = ae.construct_estimator([1, 2, 3]) assert est.include_preprocessors == ["kitchen_sinks"] def test_temp(): import pandas as pd import numpy as np from foreshadow.estimators import AutoEstimator y = pd.DataFrame(np.array([0] * 50 + [1] * 50)) ae1 = AutoEstimator() _ = ae1.construct_estimator(y) _ = AutoEstimator() @pytest.mark.skip( reason=( "auto-sklearn is a pain to install waiting on: " "https://github.com/automl/auto-sklearn/pull/703" ) ) def test_default_estimator_setup_classification(): import numpy as np import pandas as pd from autosklearn.classification import AutoSklearnClassifier from foreshadow.estimators import AutoEstimator y = pd.DataFrame(np.array([0] * 50 + [1] * 50)) ae = AutoEstimator() est = ae.construct_estimator(y) assert isinstance(est, AutoSklearnClassifier) def test_default_estimator_setup_classification_autosklearn_not_installed( mocker ): import numpy as np import pandas as pd from tpot import TPOTClassifier from foreshadow.estimators import AutoEstimator mocker.patch.dict("sys.modules", {"autosklearn": None}) y = pd.DataFrame(np.array([0] * 50 + [1] * 50)) ae = AutoEstimator() with pytest.warns(Warning) as w: est = ae.construct_estimator(y) assert isinstance(est, TPOTClassifier) assert "is not available, defaulting to" in str(w[0].message) def test_default_estimator_setup_regression(): import numpy as np import pandas as pd from tpot import TPOTRegressor from foreshadow.estimators import AutoEstimator y = pd.DataFrame(np.random.normal(0, 1, 200)) ae = AutoEstimator() est = ae.construct_estimator(y) assert isinstance(est, TPOTRegressor) @pytest.mark.skip( reason="Waiting on issue https://github.com/automl/auto-sklearn/issues/514" ) @pytest.mark.slowest def test_auto_default_to_autosklearn(): import random import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from foreshadow.estimators import AutoEstimator seed = 0 np.random.seed(seed) random.seed(seed) X = pd.DataFrame(np.array([0] * 50 + [1] * 50).reshape((-1, 1))) y = pd.DataFrame(np.array([0] * 50 + [1] * 50)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1) ae = AutoEstimator( problem_type="classification", auto="autosklearn", estimator_kwargs={"time_left_for_this_task": 20, "seed": seed}, ) ae.fit(X, y) ae_predict = ae.predict(X_test) ae_predict_proba = ae.predict_proba(X_test) ae_score = ae.score(X_test, y_test) expected_predict = np.array([0, 1, 0, 1, 1, 1, 0, 1, 1, 1]) expected_predict_proba = np.array( [ [0.8584763163857105, 0.14152368227318532], [0.13621543275812661, 0.8637845659007688], [0.8584763163857105, 0.14152368227318532], [0.13621543275812661, 0.8637845659007688], [0.13621543275812661, 0.8637845659007688], [0.13621543275812661, 0.8637845659007688], [0.8584763163857105, 0.14152368227318532], [0.13621543275812661, 0.8637845659007688], [0.1362179604041567, 0.863782038254739], [0.1362179604041567, 0.863782038254739], ] ) expected_score = 1.0 raise Exception() assert
np.allclose(ae_predict, expected_predict)
numpy.allclose
import scipy.stats import numpy as np def f_test(sample_x, sample_y, larger_varx_alt): """ Computes the F-value and corresponding p-value for a pair of samples and alternative hypothesis. Parameters ---------- sample_x : list A random sample x1,...,xnx. Let its (underlying) variance be ox^2 and its sample variance Sx^2. sample_y : list A random sample y1,...,yny. Let its (underlying) variance be oy^2 and its sample variance Sy^2. larger_varx_alt : bool True if alternative hypothesis is ox^2 > oy^2. False if ox^2 < oy^2. Returns ------- f_value : float Sx^2 / Sy^2 as defined in 'A Quick, Compact, Two-Sample Dispersion Test: Count Five'. p_value : float Let F be the F-distribution with nx, ny df. 1 - P(F < f_value) if larger_varx_alt = True, P(F < f_value) otherwise. More extreme F = Sx^2 / Sy^2 values for alternative ox^2 > oy^2 are to the right. More extreme F values for ox^2 < oy^2 are to the left. """ # calculate unbiased sample variances (n-1 in the denominator) sample_var_x = np.var(sample_x, ddof=1) sample_var_y = np.var(sample_y, ddof=1) f_value = sample_var_x/sample_var_y nx = len(sample_x) ny = len(sample_y) # compute P(F < f_value) with nx-1, ny-1 df cdf = scipy.stats.f.cdf(f_value, nx-1, ny-1) # More extreme f_value = Sx^2 / Sy^2 values for alternative ox^2 > oy^2. ox^2 being even bigger would be represented by larger quotient Sx^2 / Sy^2. # More extreme f_value for ox^2 < oy^2 are to the left. ox^2 being even smaller would be represented by smaller quotient. p_value = 1 - cdf if larger_varx_alt else cdf return f_value, p_value def f1_test(sample_x, sample_y, larger_varx_alt): """ Computes the F1-value as defined in 'Fixing the F Test for Equal Variances' and corresponding p-value for a pair of samples and alternative hypothesis. Parameters ---------- sample_x : list A random sample x1,...,xnx. Let its (underlying) variance be ox^2 and its sample variance Sx^2. sample_y : list A random sample y1,...,yny. Let its (underlying) variance be oy^2 and its sample variance Sy^2. larger_varx_alt : bool True if alternative hypothesis is ox^2 > oy^2. False if ox^2 < oy^2. Returns ------- p_value : float Let F be the F-distribution with rx, ry df as specified in equation (1) of 'Fixing the F Test for Equal Variances'. 1 - P(F < f_value) if larger_varx_alt = True, P(F < f_value) otherwise. """ # calculate unbiased sample variances (n-1 in the denominator) sample_var_x =
np.var(sample_x, ddof=1)
numpy.var
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pymc3 as pm class DCA: def __init__(self, period=30, cash=300.): self.period = period self.cash = cash class Investor: def __init__(self, dca=DCA()): self.cash = 0. self.invested = 0. self.shares = 0 self.returns = 0. self.gains = 0. self.dca = dca class BuyAndHoldInvestmentStrategy: def __init__(self, investor=Investor(), tr_cost=2.): self.investor = investor self.tr_cost = tr_cost def invest(self, data, ring=None, position=None): if len(data.keys()) == 0: return indexes = data.index[data.index % self.investor.dca.period == 0] if ring is not None and position is not None: index_selector = np.arange(len(indexes)) indexes = indexes[index_selector % ring == position] prices = data.ix[indexes].values prices = prices.reshape(prices.shape[0], ) invested = np.full((len(prices),), fill_value=self.investor.dca.cash) invest_minus_tr_cost = np.subtract(invested, 2.) shares = np.round(np.divide(invest_minus_tr_cost, prices)) real_invest = np.multiply(shares, prices) cash = np.sum(np.subtract(invest_minus_tr_cost, real_invest)) self.investor.shares = np.sum(shares) self.investor.invested = np.sum(invested) try: self.investor.gains =
np.sum(shares)
numpy.sum
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import copy import importlib.resources import json import logging import os import platform import random import tempfile import time import cv2 import networkx as nx import numpy as np from ai2thor.build import arch_platform_map, build_name from ai2thor.controller import Controller from fuzzywuzzy import fuzz import teach.meta_data_files.ai2thor_resources as ai2thor_resources import teach.meta_data_files.config as config_directory from teach.dataset.initialization import Initialization from teach.dataset.pose import Pose from teach.logger import create_logger from teach.settings import get_settings from teach.simulators.simulator_base import SimulatorBase # Commit where FillLiquid bug is fixed: https://github.com/allenai/ai2thor/issues/844 COMMIT_ID = "fdc047690ee0ab7a91ede50d286bd387d379713a" # debug manual flag debug_print_all_sim_steps = False logger = create_logger(__name__) class TEAChController(Controller): def __init__(self, base_dir: str, **kwargs): self._base_dir = base_dir os.makedirs(base_dir, exist_ok=True) super().__init__(**kwargs) @staticmethod def build_local_executable_path(base_dir: str, commit_id: str, release_dir: str = "releases"): """Helper method to build the path to the local executable. Useful when executable is pre-downloaded.""" arch = arch_platform_map[platform.system()] name = build_name(arch, commit_id) return os.path.join(base_dir, release_dir, name, name) @staticmethod def base_dir_in_tmp(): tempdir = tempfile.gettempdir() base_dir = os.path.join(tempdir, "ai2thor") os.makedirs(base_dir, exist_ok=True) return base_dir @property def base_dir(self): return self._base_dir class SimulatorTHOR(SimulatorBase): def __init__( self, task_type="eqa_complex", comments=None, fps=25, logger_name=__name__, logger_level=logging.DEBUG, dir_out=None, s3_bucket_name=None, web_window_size=900, commander_embodied=False, visibility_distance=1.5, ): """ Constructor for Simulator_THOR - a wrapper over AI2-THOR :param task_type: Type of task. This is currently user-defined. Default = 'eqa_complex' :type task_type: String :param comments: Informative comments for the entire data collection session. Default = None (use current day, time) :type comments: String :param fps: Maximum frame rate for video feed. Default = 25 :type fps: Integer :param logger_name: Name of logger. Default = __name__ (name of the current module) :type logger_name: String :param logger_level: Level for logger. Default = logging.DEBUG :type logger_level: Enumeration. See logging.setLevel() :param dir_out: Output directory for logging :type dir_out: String :param s3_bucket_name: S3 bucket for logging :type s3_bucket_name: String :param web_window_size: Window/ image sizes (square) to be used by simulator; 900 for TEACh data collection :type web_window_size: Int :param commander_embodied: True if the Commander should also be allowed to interact with objects; False for TEACh data collection :type commander_embodied: Bool :param visibility_distance: Max distance an agent can be from an object to successfully interact with it; 1.5 for TEACh data collection :type visibility_distance: Float """ time_start = time.time() super().__init__( task_type, comments, fps=fps, logger_name=logger_name, logger_level=logger_level, dir_out=dir_out, s3_bucket_name=s3_bucket_name, ) time_base_init = time.time() logger.info("Initializing simulator... time to init Simulator_base: %s sec" % (time_base_init - time_start)) self.controller = None teach_settings = get_settings() self.controller_base_dir = teach_settings.AI2THOR_BASE_DIR use_local_exe = teach_settings.AI2THOR_USE_LOCAL_EXE self.controller_local_executable_path = ( TEAChController.build_local_executable_path(self.controller_base_dir, COMMIT_ID) if use_local_exe else None ) self.world_type = "Kitchen" self.world = None self.grid_size = 0.25 self.hotspot_pixel_width = 10 self.web_window_size = web_window_size self.commander_embodied = commander_embodied self.randomize_object_search = False self.visibility_distance = visibility_distance self.object_target_camera_idx = None self.navigation_graph = self.navigation_points = None self.topdown_cam_orth_size = self.topdown_lower_left_xz = None # Used for MapGoals self.floor_oid = None # used for handoffs to temporarily store objects on the floor # The following is a dictionary for custom object metadata. When adding custom object properties, DO NOT use # property names already used by AI2-THOR. If the same property is needed here, prefix the property name with # the project for which you are using it. For example, the AI2-THOR property isSliced could be changed to # simbotIsSliced if the project simbot needed custom behaviour from isSliced self.__custom_object_metadata = dict() # Affordances by action type - identifies what properties an object must satisfy for it to be possible to take # an action on it; Used in highlighting valid objects in TEACh data collection interface to assist annotators self.action_to_affordances = { "Pickup": [{"pickupable": True, "isPickedUp": False}], "Place": [{"receptacle": True}], "Open": [{"openable": True, "isOpen": False}], "Close": [{"openable": True, "isOpen": True}], "ToggleOn": [{"toggleable": True, "isToggled": False}], "ToggleOff": [{"toggleable": True, "isToggled": True}], "Slice": [{"sliceable": True, "isSliced": False}], "Dirty": [{"dirtyable": True, "isDirty": False}], "Clean": [{"dirtyable": True, "isDirty": True}], "Fill": [{"canFillWithLiquid": True, "isFilledWithLiquid": False}], "Empty": [{"canFillWithLiquid": True, "isFilledWithLiquid": True}], "Pour": [ {"canFillWithLiquid": True, "isFilledWithLiquid": False}, {"objectType": "Sink"}, {"objectType": "SinkBasin"}, {"objectType": "Bathtub"}, {"objectType": "BathtubBasin"}, ], "Break": [{"breakable": True, "isBroken": False}], } time_end = time.time() logger.info("Finished initializing simulator. Total time: %s sec" % (time_end - time_start)) def set_task(self, task, task_params=None, comments=""): """ Set the current task to provided Task_THOR object Tasks are defined in json files under task_definitions :param task: instance of Task_THOR class :param task_params list of parameters to the task, possibly empty; must match definition nparams in length :param comments: Informative comments for the current task. Default = '' :type comments: String """ logger.debug("Setting task = %s" % str(task)) new_task = copy.deepcopy(task) if task_params is not None: new_task.task_params = task_params new_task.comments = comments new_task.episodes = [] if self.current_episode is None else [self.current_episode] self._dataset.add_task(new_task) self.current_task = new_task self.logger.debug("New task: %d, %s, %s, %s" % (task.task_id, task.task_name, comments, str(task.task_params))) self.to_broadcast["info"] = {"message": ""} logger.info("SimulatorTHOR set_task done New task: %d, %s, %s" % (task.task_id, task.task_name, comments)) def set_task_by_id(self, task_id: int, task_params=None, comments=""): """ Set the current task to task defined in default_definitions.json with provided task_id :param task_id: task id number from task definition json file :param task_params list of parameters to the task, possibly empty; must match definition nparams in length :param comments: Informative comments for the current task. Default = '' :type comments: String """ task = self._dataset.definitions.map_tasks_id2info[task_id] task.task_params = task_params self.set_task(task=task, task_params=task_params, comments=comments) def set_task_by_name(self, task_name: str, task_params=None, comments=""): """ Set the current task to task defined in default_definitions.json with provided task_name :param task_name task name from task definition json file :param task_params list of parameters to the task, possibly empty; must match definition nparams in length :param comments: Informative comments for the current task. Default = '' :type comments: String """ task = self._dataset.definitions.map_tasks_name2info[task_name] task.task_params = task_params self.set_task(task=task, task_params=task_params, comments=comments) def __add_obj_classes_for_objs(self): """ For each object in AI2-THOR metadata, update with manually defined object classes to be tracked in custom properties """ # Load custom object classes with importlib.resources.open_text(ai2thor_resources, "custom_object_classes.json") as file_handle: custom_object_classes = json.load(file_handle) # Assign custom classes to each object all_objects = self.get_objects(self.controller.last_event) for obj in all_objects: cur_obj_classes = [obj["objectType"]] if obj["objectType"] == "Sink": cur_obj_classes += ["SinkBasin"] if obj["objectType"] == "SinkBasin": cur_obj_classes += ["Sink"] if obj["objectType"] == "Bathtub": cur_obj_classes += ["BathtubBasin"] if obj["objectType"] == "BathtubBasin": cur_obj_classes += ["Bathtub"] if obj["objectType"] in custom_object_classes: cur_obj_classes += custom_object_classes[obj["objectType"]] self.__update_custom_object_metadata(obj["objectId"], "simbotObjectClass", cur_obj_classes) def __init_custom_object_metadata(self): """ Reset custom object metadata to initial state: erase previously tracked properties, add manual classes for all objects and check for custom property updates from current state """ self.__custom_object_metadata = dict() self.__add_obj_classes_for_objs() self.__check_per_step_custom_properties() def __check_per_step_custom_properties(self, objs_before_step=None): """ Check whether any custom object properties need to be updated; Should be called after taking each action """ # Update whether things got cleaned and filled with water self.__update_sink_interaction_outcomes(self.controller.last_event) # Update whether a mug should be filled with coffee self.__update_custom_coffee_prop(self.controller.last_event, objs_before_step) # Update whether things got cooked self.__update_custom_property_cooked(self.controller.last_event) # Check for objects that are boiled at the start of the episode self.__update_custom_property_boiled(objs_before_step, self.controller.last_event) def __update_custom_object_metadata(self, object_id, custom_property_name, custom_property_value): """ Update custom properties """ if object_id not in self.__custom_object_metadata: self.__custom_object_metadata[object_id] = dict() self.__custom_object_metadata[object_id][custom_property_name] = custom_property_value def __append_to_custom_object_metadata_list(self, object_id, custom_property_name, custom_property_value): """ Add values to custom properties that are lists """ if object_id not in self.__custom_object_metadata: self.__custom_object_metadata[object_id] = dict() if custom_property_name not in self.__custom_object_metadata[object_id]: self.__custom_object_metadata[object_id][custom_property_name] = list() if custom_property_value not in self.__custom_object_metadata[object_id][custom_property_name]: self.__custom_object_metadata[object_id][custom_property_name].append(custom_property_value) def __delete_from_custom_object_metadata_list(self, object_id, custom_property_name, custom_property_value): """ Delete values from custom properties that are lists """ if ( object_id in self.__custom_object_metadata and custom_property_name in self.__custom_object_metadata[object_id] and custom_property_value in self.__custom_object_metadata[object_id][custom_property_name] ): del self.__custom_object_metadata[object_id][custom_property_name][ self.__custom_object_metadata[object_id][custom_property_name].index(custom_property_value) ] def __delete_object_from_custom_object_metadata(self, object_id): """ Delete custom properties of an object :param object_id: ID of object whose properties are to be deleted """ if object_id in self.__custom_object_metadata: del self.__custom_object_metadata[object_id] for oid in self.__custom_object_metadata: for prop in self.__custom_object_metadata[oid]: if ( type(self.__custom_object_metadata[oid][prop]) is list and object_id in self.__custom_object_metadata[oid][prop] ): del self.__custom_object_metadata[oid][prop][ self.__custom_object_metadata[oid][prop].index(object_id) ] elif object_id == self.__custom_object_metadata[oid][prop]: self.__custom_object_metadata[oid][prop] = None def __transfer_custom_metadata_on_slicing_cracking(self, objects): """ When objects get sliced or cracked, their object IDs change because one object may become multiple objects. Transfer custom properties from the original object to the new object(s) :param objects: Output of get_objects() """ objects_to_delete = set() for obj in objects: transfer_needed = False orig_obj_id = None if "Sliced" in obj["objectId"]: transfer_needed = True orig_obj_id = "|".join(obj["objectId"].split("|")[:-1]) if "Cracked" in obj["objectId"]: transfer_needed = True orig_obj_id = "|".join(obj["objectId"].split("|")[:-1]) if transfer_needed and orig_obj_id is not None and orig_obj_id in self.__custom_object_metadata: self.__custom_object_metadata[obj["objectId"]] = copy.deepcopy( self.__custom_object_metadata[orig_obj_id] ) if ( "simbotLastParentReceptacle" in self.__custom_object_metadata[obj["objectId"]] and self.__custom_object_metadata[obj["objectId"]]["simbotLastParentReceptacle"] is not None ): poid = self.__custom_object_metadata[obj["objectId"]]["simbotLastParentReceptacle"] self.__append_to_custom_object_metadata_list(poid, "simbotIsReceptacleOf", obj["objectId"]) objects_to_delete.add(orig_obj_id) for obj_id in objects_to_delete: self.__delete_object_from_custom_object_metadata(obj_id) def get_objects(self, event=None): """ Return objects augmented by custom properties :param event: Simulator event to be used to obtain object properties, usually self.controller.last_event to get current object states """ if event is None: if self.commander_embodied: event = self.controller.last_event.events[0] else: event = self.controller.last_event for obj in event.metadata["objects"]: if obj["objectId"] in self.__custom_object_metadata: obj.update(self.__custom_object_metadata[obj["objectId"]]) return event.metadata["objects"] def get_inventory_objects(self, event): """ Return objects held in hand by agents :param event: Simulator event to be used to obtain object properties, usually self.controller.last_event to get current object states """ for obj in event.metadata["inventoryObjects"]: if obj["objectId"] in self.__custom_object_metadata: obj.update(self.__custom_object_metadata[obj["objectId"]]) return event.metadata["inventoryObjects"] def start_new_episode( self, world=None, world_type=None, object_tuples=None, commander_embodied=None, episode_id=None, randomize_object_search=False, ): """ Start a new episode in a random scene :param world: AI2-THOR floor plan to be used or None; if None a random scene (matching specified world_type if provided) is used :param world_type: One of "Kitchen", "Bedroom", "Bathroom", "Living room" or None; if world is None and world_type is specified, a random world of the specified world_type is used :param object_tuples: Used to specify initial states of objects :param commander_embodied: True if the Commander should also be allowed to interact with objects; False for TEACh data collection :param episode_id: Used to specify a custom episode ID :param randomize_object_search: If True, attempts to search for objects will return a random object of type matching the search string; if false, the object closest to the agent is always returned on search """ logger.info("In simulator_THOR.start_new_episode, world = %s world_type = %s" % (world, world_type)) self.randomize_object_search = randomize_object_search if commander_embodied is not None: self.commander_embodied = commander_embodied else: self.commander_embodied = False logger.info("SimulatorTHOR warning: commander_embodied was not set on first episode init; default to False") if world is None: world_type, world = self.select_random_world(world_type=world_type) super().start_new_episode( world=world, world_type=world_type, object_tuples=object_tuples, commander_embodied=commander_embodied, episode_id=episode_id, randomize_object_search=randomize_object_search, ) logger.info("In SimulatorTHOR.start_new_episode, before __launch_simulator") self.__launch_simulator(world=world, world_type=world_type) logger.info("In SimulatorTHOR.start_new_episode, completed __launch_simulator") self.__init_custom_object_metadata() state = self.get_scene_object_locs_and_states() self.current_episode.initial_state = Initialization( time_start=0, agents=state["agents"], objects=state["objects"], custom_object_metadata=self.__custom_object_metadata, ) def save(self, file_name=None): """ Save the session using the current state as the final simulator state. This does not shut down the simulator. Call done() instead if simulator should be shut down after this :param file_name: If file_name is not None, the simulator session is saved in the same format as original games """ # Add final state to log. state = self.get_scene_object_locs_and_states() self.current_episode.final_state = Initialization( time_start=time.time() - self.start_time, agents=state["agents"], objects=state["objects"], custom_object_metadata=self.__custom_object_metadata, ) # Save log file super().save(file_name=file_name) def done(self, file_name=None): """ Shut down the simulator and save the session with final simulator state; Should be called at end of collection/ replay of an episode :param file_name: If file_name is not None, the simulator session is saved in the same format as original games """ # Add final state to log. state = self.get_scene_object_locs_and_states() self.current_episode.final_state = Initialization( time_start=time.time() - self.start_time, agents=state["agents"], objects=state["objects"], custom_object_metadata=self.__custom_object_metadata, ) # End AI2-THOR Unity process self.controller.stop() self.controller = None # Save log file and change current_episode metadata in the base super().done(file_name=file_name) def __argmin(self, lst): """ Return the index of the least element in l """ return lst.index(min(lst)) def __get_nearest_object_face_to_position(self, obj, pos): """ Examine the AI2-THOR property 'axisAlignedBoundingBox'['cornerPoints'] and return the pose closest to target pose specified in param pos :param obj: the object to examine the faces of :param pos: the target position to get near """ coords = ["x", "y", "z"] if obj["pickupable"]: # For pickupable objects we don't actually need to examine corner points and doing so sometimes causes # errors with clones return obj["position"] xzy_obj_face = { c: obj["axisAlignedBoundingBox"]["cornerPoints"][ self.__argmin( [ np.abs(obj["axisAlignedBoundingBox"]["cornerPoints"][pidx][coords.index(c)] - pos[c]) for pidx in range(len(obj["axisAlignedBoundingBox"]["cornerPoints"])) ] ) ][coords.index(c)] for c in coords } return xzy_obj_face def __aim_camera_at_object(self, obj, camera_id): """ Position camera specified by camera_id such that object obj is visible; Used to set target object view for TEACh data collection interface :param obj: Object to face - an element of the output of get_objects() :param camera_id: A valid camera ID """ nav_point_idx = self.__get_nav_graph_point(obj["position"]["x"], obj["position"]["z"]) face_obj_rot = self.__get_nav_graph_rot( self.navigation_points[nav_point_idx]["x"], self.navigation_points[nav_point_idx]["z"], obj["position"]["x"], obj["position"]["z"], ) # Calculate the angle at which to look at the object to center it. # We look from the head height of the agent [https://github.com/allenai/ai2thor/issues/266] # Head gaze is the hypotenuse of a right triangle whose legs are the xz (floor) distance to the obj and the # difference in gaze versus object height. # To get the object 'face' instead of center (which could be out of frame, especially for large objects like # drawers and cabinets), we decide the x,z,y position of the obj as the min distance to its corners. xzy_obj_face = self.__get_nearest_object_face_to_position(obj, self.navigation_points[nav_point_idx]) xz_dist = np.sqrt( np.power(xzy_obj_face["x"] - self.navigation_points[nav_point_idx]["x"], 2) + np.power(xzy_obj_face["z"] - self.navigation_points[nav_point_idx]["z"], 2) ) y_diff = 1.8 - xzy_obj_face["y"] theta = np.arctan(y_diff / xz_dist) * 180.0 / np.pi if not np.isclose(xz_dist, 0) else 0 action = dict( action="UpdateThirdPartyCamera", thirdPartyCameraId=camera_id, rotation=dict(x=theta, y=self.__get_y_rot_from_xz(face_obj_rot[0], face_obj_rot[1]), z=0), position=dict( x=self.navigation_points[nav_point_idx]["x"], y=1.8, z=self.navigation_points[nav_point_idx]["z"] ), ) if debug_print_all_sim_steps: logger.info("step %s", action) self.controller.step(action) return nav_point_idx, face_obj_rot def teleport_agent_to_face_object(self, obj, agent_id, force_face=None, get_closest=True): """ Move agent to a position where object obj is visible :param obj: Object to face - an element of the output of get_objects() :param agent_id: 0 for Commander and 1 for Driver/ Follower :param force_face: Specify a particular target rotation :param get_closest: If True the agent is always places at closest position; if false, nucleus sampling within a distance radius around the target object is used """ # Get point and facing direction. tried_points = set() face_obj_rot = nav_point_idx = None while face_obj_rot is None or (force_face is not None and face_obj_rot != force_face): nav_point_idx = self.__get_nav_graph_point( obj["position"]["x"], obj["position"]["z"], exclude_points=tried_points, get_closest=get_closest ) if nav_point_idx is None: return False, None, None face_obj_rot = self.__get_nav_graph_rot( self.navigation_points[nav_point_idx]["x"], self.navigation_points[nav_point_idx]["z"], obj["position"]["x"], obj["position"]["z"], ) tried_points.add(nav_point_idx) if force_face is not None and force_face != face_obj_rot: return False, nav_point_idx, face_obj_rot # Teleport agent_pose = ( self.controller.last_event.events[agent_id].metadata["agent"] if self.commander_embodied else self.controller.last_event.metadata["agent"] ) action = dict( action="Teleport", agentId=agent_id, rotation=dict( x=agent_pose["rotation"]["x"], y=self.__get_y_rot_from_xz(face_obj_rot[0], face_obj_rot[1]), z=agent_pose["rotation"]["z"], ), position=dict( x=self.navigation_points[nav_point_idx]["x"], y=agent_pose["position"]["y"], z=self.navigation_points[nav_point_idx]["z"], ), horizon=0, ) if debug_print_all_sim_steps: logger.info("step %s", action) event = self.controller.step(action) if not event.metadata["lastActionSuccess"]: return False, nav_point_idx, face_obj_rot return True, nav_point_idx, face_obj_rot def obj_dist_to_nearest_agent(self, obj): """ Return Euclidean distance between a given object and the nearest agent in the sim. """ if self.commander_embodied: # For immobile commander, only check what object is closest to driver. events = [self.controller.last_event.events[0]] else: events = [self.controller.last_event] ds = [ np.linalg.norm( [ obj["position"]["x"] - e.metadata["agent"]["position"]["x"], obj["position"]["y"] - e.metadata["agent"]["position"]["y"], obj["position"]["z"] - e.metadata["agent"]["position"]["z"], ] ) for e in events ] return min(ds) def __agent_dist_to_agent(self, agent_id_a, agent_id_b): """ Return Euclidean distance between two agents in the sim. """ a_agent_pos = self.controller.last_event.events[agent_id_a].metadata["agent"]["position"] b_agent_pos = self.controller.last_event.events[agent_id_b].metadata["agent"]["position"] return np.linalg.norm([a_agent_pos[c] - b_agent_pos[c] for c in ["x", "y", "z"]]) def check_episode_preconditions(self, task): """ Check whether the current simulator state is one in which the input task can be completed :param task: Instance of Task_THOR; task to be checked """ return task.check_episode_preconditions(self, self.get_objects(self.controller.last_event)) def check_episode_progress(self, task): """ Check completion status of input task given the current simulator state :param task: Instance of Task_THOR; task to be checked :return: (task_desc:str, success:bool, subgoal_status:list) Each element of subgoal_status is a dict with keys 'success':bool, 'description':str and 'steps':list Each element of subgoal_status[idx]['steps'] is a dict with keys 'success':bool, 'objectId':str, 'objectType':str, 'desc':str """ progress_check_output = task.check_episode_progress(self.get_objects(self.controller.last_event), self) return ( progress_check_output["description"], progress_check_output["success"], progress_check_output["subgoals"], progress_check_output["goal_conditions_total"], progress_check_output["goal_conditions_satisfied"], ) def __get_nearest_object_matching_search_str(self, query, exclude_inventory=False): """ Obtain the nearest object to the commander OR driver matching the given search string. :param query: the search string to check against AI2-THOR objectType of objects (uses fuzzy matching) :param exclude_inventory: if True, don't include inventory objects as candidates (e.g., nothing held will return) """ closest_obj = closest_str_ratio = closet_obj_d_to_agent = None if self.commander_embodied: le = self.controller.last_event.events[0] inv_objs = self.get_inventory_objects(self.controller.last_event.events[0]) inv_objs.extend(self.get_inventory_objects(self.controller.last_event.events[1])) else: le = self.controller.last_event inv_objs = self.get_inventory_objects(le) inv_obj_ids = [o["objectId"] for o in inv_objs] for obj in le.metadata["objects"]: if exclude_inventory and obj["objectId"] in inv_obj_ids: logger.info("%s in inv; skipping" % obj["objectId"]) continue str_ratio = fuzz.ratio(obj["objectType"], query) if ( str_ratio > 0 and # Closer string match or equal string match but closer to agent ( closest_obj is None or str_ratio > closest_str_ratio or # Physically closer to closest agent. (str_ratio == closest_str_ratio and self.obj_dist_to_nearest_agent(obj) < closet_obj_d_to_agent) ) ): closest_obj = obj closest_str_ratio = str_ratio closet_obj_d_to_agent = self.obj_dist_to_nearest_agent(obj) return closest_obj def __get_random_object_matching_search_str(self, query, exclude_inventory=False): """ Obtain a random object to the commander OR driver matching the given search string. :param query: the search string to check against AI2-THOR objectType of objects (uses fuzzy matching) :param exclude_inventory: if True, don't include inventory objects as candidates (e.g., nothing held will return) """ if self.commander_embodied: le = self.controller.last_event.events[0] inv_objs = self.get_inventory_objects(self.controller.last_event.events[0]) inv_objs.extend(self.get_inventory_objects(self.controller.last_event.events[1])) else: le = self.controller.last_event inv_objs = self.get_inventory_objects(le) inv_obj_ids = [o["objectId"] for o in inv_objs] candidate_objects = self.get_objects(le) if exclude_inventory: candidate_objects = [obj for obj in candidate_objects if obj["objectId"] not in inv_obj_ids] str_ratios = [fuzz.ratio(obj["objectType"], query) for obj in candidate_objects] max_ratio = np.max(str_ratios) max_ratio_idxs = [idx for idx in range(len(str_ratios)) if np.isclose(max_ratio, str_ratios[idx])] closest_match_objects = [candidate_objects[idx] for idx in max_ratio_idxs] return np.random.choice(closest_match_objects) def get_target_object_seg_mask(self, oid): """ Get a numpy array with 1s on oid segmentation mask and 0s elsewhere. :param oid: ID of object to be highlighted in the mask """ r = self.get_hotspots( agent_id=None, camera_id=self.object_target_camera_idx, object_id=oid, return_full_seg_mask=True ) return r def set_target_object_view(self, oid, search): """ Move target object third party camera to look at specified objectId and returns associated hotspots :param oid: ID of object to be shown or None :param search: if oid is None, search string to use for fuzzy matching of object type """ assert oid is None or search is None le = self.controller.last_event.events[0] if self.commander_embodied else self.controller.last_event if oid is None: # need to choose an oid via search first if self.randomize_object_search: obj = self.__get_random_object_matching_search_str(search, exclude_inventory=True) else: obj = self.__get_nearest_object_matching_search_str(search, exclude_inventory=True) if obj is None: return False else: obj = self.__get_object_by_id(le.metadata["objects"], oid) if obj is False: return False # First, teleport the camera to the nearest navigable point to the object of interest. if self.navigation_graph is None: self.__generate_navigation_graph() nav_point_idx, face_obj_rot = self.__aim_camera_at_object(obj, self.object_target_camera_idx) # Get hotspots of the object from this vantage point. shown_obj_id = obj["objectId"] enc_obj_hotspots = self.get_hotspots( agent_id=None, camera_id=self.object_target_camera_idx, object_id=obj["objectId"] ) parent_receptacles = self.get_parent_receptacles(obj, self.get_objects(self.controller.last_event)) # Back off to container if object is fully occluded. if len(enc_obj_hotspots["hotspots"]) == 0: if parent_receptacles is not None and len(parent_receptacles) > 0: logger.warning('no hotspots for obj "%s", so checking parentReceptacles' % obj["objectId"]) for receptacle_obj in parent_receptacles: if "Floor" in receptacle_obj: # ignore the floor as a parent since hotspotting it isn't helpful continue logger.info("... trying %s" % receptacle_obj) shown_obj_id = receptacle_obj enc_obj_hotspots = self.get_hotspots( agent_id=None, camera_id=self.object_target_camera_idx, object_id=receptacle_obj ) if len(enc_obj_hotspots["hotspots"]) == 0: # Couldn't see receptacle, so recenter camera and get a new frame nav_point_idx, face_obj_rot = self.__aim_camera_at_object( le.get_object(receptacle_obj), self.object_target_camera_idx ) enc_obj_hotspots = self.get_hotspots( agent_id=None, camera_id=self.object_target_camera_idx, object_id=receptacle_obj ) if len(enc_obj_hotspots["hotspots"]) == 0: # Put camera back on target object. nav_point_idx, face_obj_rot = self.__aim_camera_at_object( obj, self.object_target_camera_idx ) if len(enc_obj_hotspots["hotspots"]) > 0: break # got a hotspot view for this parent if len(enc_obj_hotspots["hotspots"]) == 0: logger.warning( 'no hotspots for obj "%s", and no parentReceptacles hotspots,' % obj["objectId"] + "so getting hotspots for nearest receptacle..." ) nn_objs = [obj["objectId"]] while len(nn_objs) < 6: # try limited number of nearby objects nn_obj = self.__get_object_by_position( le.metadata["objects"], obj["position"], ignore_object_ids=nn_objs ) logger.info("... trying %s" % nn_obj["objectId"]) if nn_obj["receptacle"]: if "Floor" not in nn_obj["objectId"]: # ignore the floor as a parent shown_obj_id = nn_obj["objectId"] enc_obj_hotspots = self.get_hotspots( agent_id=None, camera_id=self.object_target_camera_idx, object_id=nn_obj["objectId"] ) if len(enc_obj_hotspots["hotspots"]) == 0: # Couldn't see receptacle, so recenter camera and get a new frame nav_point_idx, face_obj_rot = self.__aim_camera_at_object( nn_obj, self.object_target_camera_idx ) enc_obj_hotspots = self.get_hotspots( agent_id=None, camera_id=self.object_target_camera_idx, object_id=nn_obj["objectId"] ) if len(enc_obj_hotspots["hotspots"]) == 0: # Put camera back on target object. nav_point_idx, face_obj_rot = self.__aim_camera_at_object( obj, self.object_target_camera_idx ) if len(enc_obj_hotspots["hotspots"]) > 0: break # got a hotspot view for this candidate receptacle nn_objs.append(nn_obj["objectId"]) # If no receptacle hotspots can be found at all, just return the frame looking "at" the object. if len(enc_obj_hotspots["hotspots"]) == 0: logger.warning("no hotspots for parentReceptacles %s" % parent_receptacles) shown_obj_id = "" # Prep metadata to be sent up for UI. obj_view_pos_norm = self.__get_click_normalized_position_from_xz( self.navigation_points[nav_point_idx]["x"], self.navigation_points[nav_point_idx]["z"] ) obj_data = { "success": True, "oid": obj["objectId"], # the object matching the query "shown_oid": shown_obj_id, # The object whose hotspots are shown "view_pos_norm": obj_view_pos_norm, # Location of the viewing camera on the topdown map "view_rot_norm": [face_obj_rot[0], -face_obj_rot[1]], # flip y from thor coords "pos_norm": self.__get_click_normalized_position_from_xz(obj["position"]["x"], obj["position"]["z"]), } obj_data.update({"view_%s" % k: enc_obj_hotspots[k] for k in enc_obj_hotspots}) # hotspot array and width data return obj_data def encode_image(self, img): return super().encode_image(img) def get_parent_receptacles(self, obj, objects): """ Recursively traces custom properties that track where objects were placed to identify receptacles of an object when AI2-THOR's property parentReceptacles fails :param obj: The object whose receptacles need to be identified :param objects: Output of get_objects() """ if "parentReceptacles" in obj and obj["parentReceptacles"] is not None: return obj["parentReceptacles"] elif "simbotLastParentReceptacle" in obj: immediate_parent_receptacle = obj["simbotLastParentReceptacle"] if immediate_parent_receptacle is not None and immediate_parent_receptacle != obj["objectId"]: # Second clause is to prevent infinite recursion in weird corner cases that should ideally never happen parent_receptacles = [immediate_parent_receptacle] immediate_parent_receptacle_obj = self.__get_object_by_id(objects, immediate_parent_receptacle) if type(immediate_parent_receptacle_obj) == dict: further_parent_receptacles = self.get_parent_receptacles(immediate_parent_receptacle_obj, objects) if further_parent_receptacles is not None: parent_receptacles += further_parent_receptacles return parent_receptacles return None def success(self): """ When an episode ends, the parent function of done() will call this to see whether the episode can stop. """ return True # with the THOR backend, we can just say go ahead and stop def __get_agent_poses(self): """ Return current poses of agents """ if self.controller is None: return None if self.commander_embodied: cmd_xy = self.__get_agent_click_normalized_position(agent_id=0) cmd_r = self.__get_agent_click_rotation(agent_id=0) dri_xy = self.__get_agent_click_normalized_position(agent_id=1) dri_r = self.__get_agent_click_rotation(agent_id=1) return [(cmd_xy[0], cmd_xy[1], cmd_r[0], cmd_r[1]), (dri_xy[0], dri_xy[1], dri_r[0], dri_r[1])] else: e = self.controller.last_event cmd_xy = self.__get_agent_click_normalized_position(agent_metadata=e.metadata["thirdPartyCameras"][0]) cmd_r = self.__get_agent_click_rotation(agent_metadata=e.metadata["thirdPartyCameras"][0]) dri_xy = self.__get_agent_click_normalized_position() dri_r = self.__get_agent_click_rotation() return [(cmd_xy[0], cmd_xy[1], cmd_r[0], cmd_r[1]), (dri_xy[0], dri_xy[1], dri_r[0], dri_r[1])] def __get_nav_graph_point(self, thor_x, thor_z, exclude_points=None, get_closest=True): """ Get the index in the navigation graph nearest to the given x,z coord in AI2-THOR coordinates :param thor_x: x coordinate on AI2-THOR floor plan :param thor_z: z coordinate on AI2-THOR floor plan :param exclude_points: Any navigation graph points that cannot be used :param get_closest: If false, instead of returning closest navigation graph point, do nucleus sampling around the coordinate; if True return the closest navigation graph point """ if self.navigation_graph is None: self.__generate_navigation_graph() t_point = nearest_t_d = None distances = [] for idx in range(len(self.navigation_points)): if exclude_points is not None and idx in exclude_points: distances.append(float("inf")) continue d = np.abs(self.navigation_points[idx]["x"] - thor_x) + np.abs(self.navigation_points[idx]["z"] - thor_z) distances.append(d) if t_point is None or d < nearest_t_d: t_point = idx nearest_t_d = d if not get_closest: # rather than returning closest point, do nucleus sampling on softmax of 1/d scores = [np.exp(1.0 / d) for d in distances] dps = {idx: scores[idx] / sum(scores) for idx in range(len(scores))} dnps = {} nucleus_density = 0.1 nucleus_sum = 0 for k, v in sorted(dps.items(), key=lambda item: item[1], reverse=True): dnps[k] = v if nucleus_sum < nucleus_density or len(dnps) == 0 else 0 nucleus_sum += v nps = [dnps[idx] for idx in range(len(scores))] nps = [p / sum(nps) for p in nps] t_point = np.random.choice(list(range(len(self.navigation_points))), p=nps) return t_point def __get_nav_graph_rot(self, thor_x, thor_z, thor_facing_x, thor_facing_z): """ Get the cardinal direction to rotate to, to be facing (thor_facing_x, thor_facing_x=z) when standing at (thor_x, thor_z) :param thor_x: x Coordinate on Ai2-THOR floor plan where agent is standing :param thor_z: z Coordinate on Ai2-THOR floor plan where agent is standing :param thor_facing_x: x Coordinate on Ai2-THOR floor plan where agent is desired to face :param thor_facing_z: z Coordinate on Ai2-THOR floor plan where agent is desired to face """ # Determine target rotation. if np.abs(thor_x - thor_facing_x) > np.abs(thor_z - thor_facing_z): # Difference is greater in the x direction. if thor_x - thor_facing_x > 0: # Destination to the x left t_rot = (-1, 0) else: t_rot = (1, 0) else: # Difference is greater in the z direction if thor_z - thor_facing_z > 0: # Destination to the z above t_rot = (0, -1) else: t_rot = (0, 1) return t_rot def __generate_navigation_graph(self): """ Generate navigation graph: We construct a directed graph with nodes representing agent position and rotation. For every occupiable grid point on the map, we create four nodes for each orientation. Orientation nodes at a single occupiable point are connected with directed edges for turns. Occupiable positions are connected with directed edges that preserve orientation. """ if debug_print_all_sim_steps: logger.info("step %s", "GetReachablePositions") event = self.controller.step(action="GetReachablePositions") p = event.metadata["actionReturn"] ng = nx.DiGraph() rotations = [[1, 0], [-1, 0], [0, 1], [0, -1]] for idx in range(len(p)): for rx, rz in rotations: ng.add_node((idx, rx, rz)) for idx in range(len(p)): for irx, irz in rotations: for jrx, jrz in rotations: if irx + jrx == 0 or irz + jrz == 0: continue # antipodal or identical ng.add_edge((idx, irx, irz), (idx, jrx, jrz)) for jdx in range(len(p)): if idx == jdx: continue rx = rz = None if np.isclose(p[idx]["z"] - p[jdx]["z"], 0): if np.isclose(p[idx]["x"] - p[jdx]["x"], self.grid_size): rx = -1 rz = 0 elif np.isclose(p[idx]["x"] - p[jdx]["x"], -self.grid_size): rx = 1 rz = 0 elif np.isclose(p[idx]["x"] - p[jdx]["x"], 0): if np.isclose(p[idx]["z"] - p[jdx]["z"], self.grid_size): rx = 0 rz = -1 elif
np.isclose(p[idx]["z"] - p[jdx]["z"], -self.grid_size)
numpy.isclose
# HaloFeedback import warnings from abc import ABC, abstractmethod import matplotlib.pyplot as plt import numpy as np from scipy.integrate import simpson from scipy.special import ellipeinc, ellipkinc, ellipe, betainc from scipy.special import gamma as Gamma from scipy.special import beta as Beta # ------------------ G_N = 4.300905557082141e-3 # [(km/s)^2 pc/M_sun] [Legacy: 4.3021937e-3] c = 299792.458 # [km/s] [Legacy: 2.9979e5] # Conversion factors pc_to_km = 3.085677581491367e13 # [km] [Legacy: 3.085677581e13] # Numerical parameters N_GRID = 10000 # Number of grid points in the specific energy. N_KICK = 50 # Number of points to use for integration over Delta-epsilon. [Legacy: 50] float_2eps = 2.0 * np.finfo(float).eps # ------------------ def ellipeinc_alt(phi, m): """ An alternative elliptic function that is valid for m > 1.""" beta = np.arcsin(np.clip(np.sqrt(m) * np.sin(phi), 0, 1)) return np.sqrt(m) * ellipeinc(beta, 1 / m) + ((1 - m) / np.sqrt(m)) * ellipkinc(beta, 1 / m) class DistributionFunction(ABC): """ Base class for phase space distribution of a DM spike surrounding a black hole with an orbiting body. Child classes must implement the following: Methods - rho_init(): initial density function - f_init() initial phase-space distribution function Attributes - r_sp: DM halo extent [pc]. Used for making grids for the calculation. - IDstr_model: ID string used for file names. """ def __init__(self, m1: float = 1e3, m2: float = 1.0, mDM: float = 0): self.m1 = m1 # [M_sun] self.m2 = m2 # [M_sun] self.mDM = mDM # [M_sun] self.r_isco = 6.0 * G_N * m1 / c ** 2 # Initialise grid of r, eps and f(eps) and append an extra loose grid far away. self.r_grid = np.geomspace(self.r_isco, 1e5 * self.r_isco, int(0.9 *N_GRID)) self.r_grid = np.append( self.r_grid, np.geomspace(1.01 * self.r_grid[-1], 1e3 * self.r_sp, int(0.1*N_GRID)) ) self.r_grid = np.sort(self.r_grid) self.eps_grid = self.psi(self.r_grid) self.f_eps = self.f_init(self.eps_grid) # Density of states self.DoS = ( np.sqrt(2) * (np.pi * G_N * self.m1) ** 3 * self.eps_grid ** (-5/2) ) # Define a string which specifies the model parameters # and numerical parameters (for use in file names etc.) self.IDstr_num = "lnLambda=%.1f" % (np.log(np.sqrt(m2/m1)),) @abstractmethod def rho_init(self, r): """ The initial dark matter density [M_sun/pc^3] of the system at distance r from the halo center. Parameters: - r : distance [pc] from center of spike. """ pass @abstractmethod def f_init(self, eps): """ The initial phase-space distribution function at energy eps. Parameters - eps : float or np.array Energy per unit mass in (km/s)^2 """ pass def plotDF(self): """ Plots the initial and current distribution function of the spike. """ plt.figure() plt.loglog(self.eps_grid, self.f_init(self.eps_grid), "k--", label = "Initial DF") plt.loglog(self.eps_grid, self.f_eps) plt.ylabel(r"$f(\mathcal{E})$ [$M_\odot$ pc$^{-3}$ (km/s)$^{-3}$]") plt.xlabel(r"$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$ [(km/s)$^2$]") plt.legend() plt.show() return plt.gca() def psi(self, r: float) -> float: """ The gravitational potential [km^2/s^2] at distance r [pc].""" return G_N *self.m1 /r # [km^2/s^2] def v_max(self, r: float) -> float: """ The maximum velocity [km/s] allowed for bound orbits in the system at position r [pc].""" return np.sqrt(2 * self.psi(r)) # [km/s] def rho(self, r: float, v_cut: float = -1) -> float: """ Returns the local density [M_sun/pc^3] of the dark matter particles at position r [pc] from the halo center, that move slower than v_cut [km/s]. Parameters: - r: The distance from the dark matter halo center. - v_cut : maximum speed to include in density calculation (defaults to v_max if not specified) """ if v_cut < 0: v_cut = self.v_max(r) v_cut = np.clip(v_cut, 0, self.v_max(r)) vlist = np.sqrt(np.linspace(0, v_cut ** 2, 20000)) # Interpolate the integrand onto the new array vlist. flist = np.interp(self.psi(r) - 0.5 * vlist ** 2, self.eps_grid[::-1], self.f_eps[::-1], left = 0, right = 0, ) integ = vlist ** 2 * flist return 4 * np.pi *simpson(integ, vlist) # [M_sun/pc^3] def averageVelocity(self, r: float) -> float: """ Returns the local average velocity [km/s] <u> from the velocity distribution of the dark matter particles at position r [pc] from the halo center. """ v_cut = self.v_max(r) # Interpolate the integrand onto the new array vlist. v_cut = np.clip(v_cut, 0, self.v_max(r)) vlist = np.sqrt(np.linspace(0, v_cut**2, 250)) flist = np.interp(self.psi(r) -0.5 *vlist **2, self.eps_grid[::-1], self.f_eps[::-1], left = 0, right = 0, ) integ = vlist ** 3 * flist return np.sqrt(np.trapz(integ, vlist) / np.trapz(vlist ** 2 * flist, vlist)) # [km/s] def averageSquaredVelocity(self, r: float) -> float: """ Returns the local average squared velocity [km/s] <u^2> (or root mean squared velocity) from the velocity distribution of the dark matter particles at position r [pc] from the halo center. """ v_cut = self.v_max(r) # Interpolate the integrand onto the new array vlist. v_cut = np.clip(v_cut, 0, self.v_max(r)) vlist = np.sqrt(np.linspace(0, v_cut**2, 250)) flist = np.interp(self.psi(r) -0.5 *vlist **2, self.eps_grid[::-1], self.f_eps[::-1], left = 0, right = 0, ) integ = vlist ** 4 * flist return np.sqrt(np.trapz(integ, vlist) / np.trapz(vlist ** 2 * flist, vlist)) # [km/s] def velocityDispersion(self, r: float) -> float: """ Returns the local velocity dispersion [km/s] from the velocity distribution of the dark matter particles at position r [pc] from the halo center. """ u2 = self.averageSquaredVelocity(r) u = self.averageSquaredVelocity(r) return np.sqrt(u2 -u**2) # [km/s] def m(self) -> float: """ The total mass [M_sun] of the binary system. """ return self.m1 +self.m2 # [M_sun] def mu(self) -> float: """ The reduced mass [M_sun] of the binary system. """ return self.m1 *self.m2 /self.m() # [M_sun] def totalMass(self) -> float: """ The total mass of dark matter particles in the halo. """ return simpson(-self.P_eps(), self.eps_grid) def totalEnergy(self) -> float: """ The total energy of the dark matter halo. """ return simpson(-self.P_eps() * self.eps_grid, self.eps_grid) def b_90(self, r2: float, Delta_u: float) -> float: """ The impact parameter [pc] at which dark matter particles are deflected at a 90 degree angle. Delta_u relative velocity of the orbiting body and dark matter particles, usually set at u_orb of the companion object m2. """ return G_N *(self.m2 +self.mDM) / (Delta_u ** 2) # [pc] def b_min(self, r2: float, v_orb: float) -> float: """ The minimum impact parameter [pc] is the radius of the companion m2. """ return self.R/pc_to_km if self.R != -1 else 6.0 * G_N * self.m2/ c ** 2 # [pc] def b_max(self, r2: float, v_orb: float = -1) -> float: """ The maximum impact parameter [pc] as calculated from gravitational force equivalance O(sqrt(q)). Parameters: - r2 is the separation [pc] of the two components. - v_orb is the instant velocity [km/s] of the orbiting body. If not specified, defaults to circular orbital velocity. """ if v_orb == -1: v_orb = np.sqrt(G_N * (self.m1 + self.m2) / r2) # [km/s] return np.sqrt(self.m2/self.m1) *r2 # [pc] def Lambda(self, r2: float, v_orb: float = -1) -> float: """ The coulomb logarithm of the dynamical friction force induced by the dark matter particles. Parameters: - r2 is the separation [pc] of the two components. - v_orb is the instant velocity [km/s] of the orbiting body. If not specified, defaults to circular orbital velocity. """ if v_orb == -1: v_orb = np.sqrt(G_N * (self.m1 + self.m2) / r2) # [km/s] b90 = self.b_90(r2, v_orb) # [pc] return np.sqrt((self.b_max(r2, v_orb)**2 +b90**2)/(self.b_min(r2, v_orb)**2 +b90**2)) def eps_min(self, r2: float, v_orb: float) -> float: """ The minimum energy for the average delta_eps calculation in calc_delta_eps().""" return 2 * v_orb ** 2 / (1 + self.b_max(r2, v_orb) ** 2 / self.b_90(r2, v_orb) ** 2) def eps_max(self, r2: float, v_orb: float) -> float: return 2 * v_orb ** 2 / (1 + self.b_min(r2, v_orb) ** 2 / self.b_90(r2, v_orb) ** 2) def df(self, r2: float, v_orb: float, v_cut: float = -1) -> np.array: """The change of the distribution function f(eps) during an orbit. Parameters: - r2 is the radial position [pc] of the perturbing body. - v_orb is the orbital velocity [km/s] of the perturbing body. - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_max(r) (i.e. all particles). """ df_minus = self.df_minus(r2, v_orb, v_cut, N_KICK) df_plus = self.df_plus(r2, v_orb, v_cut, N_KICK) # TODO: What is this meant for? N_plus = 1 # np.trapz(self.DoS*f_plus, self.eps_grid) N_minus = 1 # np.trapz(-self.DoS*f_minus, self.eps_grid) return df_minus + df_plus *(N_minus/N_plus) def dfdt(self, r2: float, v_orb: float, v_cut: float = -1) -> np.array: """Time derivative of the distribution function f(eps). Parameters: - r2 is the radial position [pc] of the perturbing body. - v_orb is the orbital velocity [km/s] of the perturbing body. - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_max(r) (i.e. all particles). """ T_orb = self.T_orb(r2) # [s] return self.df(r2, v_orb, v_cut) /T_orb def delta_f(self, r0: float, v_orb: float, dt: float, v_cut: float = -1) -> np.array: """[Deprecated] This shouldn't be used in new applications. TODO: Remove? Change in f over a time-step dt where it is automatically adjusted to prevent f_eps from becoming negative. Parameters: - r2 is the radial position [pc] of the perturbing body. - v_orb is the orbital velocity [km/s] of the perturbing body. - dt: time-step [s] - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_max(r) (i.e. all particles). """ f_minus = self.dfdt_minus(r0, v_orb, v_cut, N_KICK) * dt # Don't remove more particles than there are particles... correction = np.clip(self.f_eps / (-f_minus + 1e-50), 0, 1) f_minus = np.clip(f_minus, -self.f_eps, 0) f_plus = self.dfdt_plus(r0, v_orb, v_cut, N_KICK, correction) * dt return f_minus + f_plus def P_delta_eps(self, r: float, v: float, delta_eps: float) -> float: """ Calcuate PDF for delta_eps. """ norm = self.b_90(r, v) ** 2 / (self.b_max(r, v) ** 2 - self.b_min(r, v) ** 2) return 2 * norm * v ** 2 / (delta_eps ** 2) def P_eps(self): """Calculate the PDF d{P}/d{eps}""" return ( np.sqrt(2) * np.pi ** 3 * (G_N * self.m1) ** 3 * self.f_eps / self.eps_grid ** 2.5 ) def calc_delta_eps(self, r: float, v: float, n_kick: int = 1) -> list: """ Calculate average delta_eps integrated over different bins (and the corresponding fraction of particles which scatter with that delta_eps). """ eps_min = self.eps_min(r, v) eps_max = self.eps_max(r, v) norm = self.b_90(r, v) ** 2 / (self.b_max(r, v) ** 2 - self.b_min(r, v) ** 2) eps_edges = np.linspace(eps_min, eps_max, n_kick + 1) def F_norm(eps): return -norm * 2 * v ** 2 / (eps) def F_avg(eps): return -norm * 2 * v ** 2 * np.log(eps) frac = np.diff(F_norm(eps_edges)) eps_avg = np.diff(F_avg(eps_edges)) / frac return eps_avg, frac def dEdt_DF(self, r: float, v_orb: float = -1, v_cut: float = -1, average: bool = False) -> float: """Rate of change of energy due to DF (km/s)^2 s^-1 M_sun. Parameters: - r is the radial position of the perturbing body [pc] - v_orb the velocity [km/s] of the body, when not given assume circular Keplerian orbits. - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_max(r) (i.e. all particles) - average determines whether to average over different radii (average = False is default and should be correct). """ if v_orb < 0: v_orb = np.sqrt(G_N * (self.m1 + self.m2) / r) # [km/s] if average: warnings.warn( "Setting 'average = True' is not necessarily the right thing to do..." ) r_list = r + np.linspace(-1, 1, 3) * self.b_max(r, v_orb) rho_list = np.array([self.rho(r1, v_cut) for r1 in r_list]) rho_eff = np.trapz(rho_list * r_list, r_list) / np.trapz(r_list, r_list) else: rho_eff = self.rho(r, v_cut) return 4 *np.pi * G_N **2 * self.m2 *(self.m2 +self.mDM) * rho_eff * np.log(self.Lambda(r, v_orb)) / v_orb /pc_to_km # [km] def E_orb(self, a: float) -> float: """ The orbital energy of the binary system at semi-major axis [pc]. """ return -0.5 * G_N * (self.m1 + self.m2) / a def T_orb(self, a: float) -> float: """ The orbital period of the binary system at semi-major axis [pc]. """ return (2 * np.pi * np.sqrt(pc_to_km ** 2 * a ** 3 / (G_N * (self.m1 + self.m2))) ) # [s] def interpolate_DF(self, eps_old, correction = 1): """ Internal function for interpolating the DF on df_plus calculations. """ # Distribution of particles before they scatter if hasattr(correction, "__len__"): f_old = np.interp( eps_old[::-1], self.eps_grid[::-1], self.f_eps[::-1] * correction[::-1], left=0, right=0, )[::-1] else: f_old = np.interp( eps_old[::-1], self.eps_grid[::-1], self.f_eps[::-1], left=0, right=0 )[::-1] return f_old def delta_eps_of_b(self, r2: float, v_orb: float, b: float) -> float: """ The change of energy based on the impact parameter of the scattering. """ b90 = self.b_90(r2, v_orb) # [pc] return -2 * v_orb ** 2 * (1 + b**2 / b90**2) ** -1 # --------------------- # ----- df/dt ---- # --------------------- def df_minus(self, r0: float, v_orb: float, v_cut: float = -1, n_kick: int = 1) -> np.array: """Particles to remove from the distribution function at energy E. """ if v_cut < 0: v_cut = self.v_max(r0) df = np.zeros(N_GRID) # Calculate sizes of kicks and corresponding weights for integration if n_kick == 1: # Replace everything by the average if n_kick = 1 delta_eps_list = ( -2 * v_orb ** 2 * np.log(1 + self.Lambda(r0, v_orb) ** 2) / self.Lambda(r0, v_orb) ** 2, ) frac_list = (1,) else: b_list = np.geomspace(self.b_min(r0, v_orb), self.b_max(r0, v_orb), n_kick) delta_eps_list = self.delta_eps_of_b(r0, v_orb, b_list) # Step size for trapezoidal integration step = delta_eps_list[1:] - delta_eps_list[:-1] step = np.append(step, 0) step = np.append(0, step) # Make sure that the integral is normalised correctly renorm = np.trapz(self.P_delta_eps(r0, v_orb, delta_eps_list), delta_eps_list) frac_list = 0.5 * (step[:-1] + step[1:]) / renorm # Sum over the kicks for delta_eps, b, frac in zip(delta_eps_list, b_list, frac_list): # Define which energies are allowed to scatter mask = (self.eps_grid > self.psi(r0) * (1 - b / r0) - 0.5 * v_cut ** 2) & ( self.eps_grid < self.psi(r0) * (1 + b / r0) ) r_eps = G_N * self.m1 / self.eps_grid[mask] r_cut = G_N * self.m1 / (self.eps_grid[mask] + 0.5 * v_cut ** 2) L1 = np.minimum((r0 - r0 ** 2 / r_eps) / b, 0.999999) alpha1 = np.arccos(L1) L2 = np.maximum((r0 - r0 ** 2 / r_cut) / b, -0.999999) alpha2 = np.arccos(L2) m = (2 * b / r0) / (1 - (r0 / r_eps) + b / r0) mask1 = (m <= 1) & (alpha2 > alpha1) mask2 = (m > 1) & (alpha2 > alpha1) N1 = np.zeros(len(m)) if np.any(mask1): N1[mask1] = ellipe(m[mask1]) - ellipeinc( (np.pi - alpha2[mask1]) / 2, m[mask1] ) if np.any(mask2): N1[mask2] = ellipeinc_alt((np.pi - alpha1[mask2]) / 2, m[mask2]) df[mask] += ( -frac * self.f_eps[mask] * (1 + b ** 2 / self.b_90(r0, v_orb) ** 2) ** 2 * np.sqrt(1 - r0 / r_eps + b / r0) * N1 ) norm = ( 2 * np.sqrt(2 * (self.psi(r0))) * 4 * np.pi ** 2 * r0 * (self.b_90(r0, v_orb) ** 2 / (v_orb) ** 2) ) result = norm * df / self.DoS result[self.eps_grid >= 0.9999 *self.psi(self.r_isco)] *= 0 return result def df_plus(self, r0: float, v_orb: float, v_cut: float = -1, n_kick: int = 1, correction = 1) -> np.array: """Particles to add back into distribution function from E - dE -> E. """ if v_cut < 0: v_cut = self.v_max(r0) df = np.zeros(N_GRID) # Calculate sizes of kicks and corresponding weights for integration if n_kick == 1: # Replace everything by the average if n_kick = 1 delta_eps_list = ( -2 * v_orb ** 2 * np.log(1 + self.Lambda(r0, v_orb) ** 2) / self.Lambda(r0, v_orb) ** 2, ) frac_list = (1,) else: b_list = np.geomspace(self.b_min(r0, v_orb), self.b_max(r0, v_orb), n_kick) delta_eps_list = self.delta_eps_of_b(r0, v_orb, b_list) # Step size for trapezoidal integration step = delta_eps_list[1:] - delta_eps_list[:-1] step = np.append(step, 0) step = np.append(0, step) # Make sure that the integral is normalised correctly renorm = np.trapz(self.P_delta_eps(r0, v_orb, delta_eps_list), delta_eps_list) frac_list = 0.5 * (step[:-1] + step[1:]) / renorm # Sum over the kicks for delta_eps, b, frac in zip(delta_eps_list, b_list, frac_list): # Value of specific energy before the kick eps_old = self.eps_grid - delta_eps # Define which energies are allowed to scatter mask = (eps_old > self.psi(r0) * (1 - b / r0) - 0.5 * v_cut ** 2) & ( eps_old < self.psi(r0) * (1 + b / r0) ) # Sometimes, this mask has no non-zero entries if np.any(mask): r_eps = G_N * self.m1 / eps_old[mask] r_cut = G_N * self.m1 / (eps_old[mask] + 0.5 * v_cut ** 2) # Distribution of particles before they scatter f_old = self.interpolate_DF(eps_old[mask], correction) L1 = np.minimum((r0 - r0 ** 2 / r_eps) / b, 0.999999) alpha1 = np.arccos(L1) L2 = np.maximum((r0 - r0 ** 2 / r_cut) / b, -0.999999) alpha2 = np.arccos(L2) m = (2 * b / r0) / (1 - (r0 / r_eps) + b / r0) mask1 = (m <= 1) & (alpha2 > alpha1) mask2 = (m > 1) & (alpha2 > alpha1) N1 = np.zeros(len(m)) if np.any(mask1): N1[mask1] = ellipe(m[mask1]) - ellipeinc( (np.pi - alpha2[mask1]) / 2, m[mask1] ) if np.any(mask2): N1[mask2] = ellipeinc_alt( (np.pi - alpha1[mask2]) / 2, m[mask2] ) # - ellipeinc_alt((np.pi - alpha2[mask2])/2, m[mask2]) df[mask] += ( frac * f_old * (1 + b ** 2 / self.b_90(r0, v_orb) ** 2) ** 2 * np.sqrt(1 - r0 / r_eps + b / r0) * N1 ) norm = ( 2 * np.sqrt(2 * (self.psi(r0))) * 4 * np.pi ** 2 * r0 * (self.b_90(r0, v_orb) ** 2 / (v_orb) ** 2) ) result = norm * df / self.DoS result[self.eps_grid >= 0.9999 *self.psi(self.r_isco)] *= 0 return result def dEdt_ej(self, r0: float, v_orb: float, v_cut: float = -1, n_kick: int = N_KICK, correction = np.ones(N_GRID)): """Calculate carried away by particles which are completely unbound. Parameters: - r0 : radial position of the perturbing body [pc] - v_orb: orbital velocity [km/s] - v_cut: optional, only scatter with particles slower than v_cut [km/s] defaults to v_max(r) (i.e. all particles) - n_kick: optional, number of grid points to use when integrating over Delta-eps (defaults to N_KICK = 100). """ if v_cut < 0: v_cut = self.v_max(r0) T_orb = (2 * np.pi * r0 * pc_to_km) / v_orb dE = np.zeros(N_GRID) # Calculate sizes of kicks and corresponding weights for integration if n_kick == 1: # Replace everything by the average if n_kick = 1 delta_eps_list = ( -2 * v_orb ** 2 * np.log(1 + self.Lambda(r0, v_orb) ** 2) / self.Lambda(r0, v_orb) ** 2, ) frac_list = (1,) else: b_list = np.geomspace(self.b_min(r0, v_orb), self.b_max(r0, v_orb), n_kick) delta_eps_list = self.delta_eps_of_b(r0, v_orb, b_list) # Step size for trapezoidal integration step = delta_eps_list[1:] - delta_eps_list[:-1] step = np.append(step, 0) step = np.append(0, step) # Make sure that the integral is normalised correctly renorm = np.trapz(self.P_delta_eps(r0, v_orb, delta_eps_list), delta_eps_list) frac_list = 0.5 * (step[:-1] + step[1:]) / renorm # Sum over the kicks for delta_eps, b, frac in zip(delta_eps_list, b_list, frac_list): # Maximum impact parameter which leads to the ejection of particles b_ej_sq = self.b_90(r0, v_orb) ** 2 * ((2 * v_orb ** 2 / self.eps_grid) - 1) # Define which energies are allowed to scatter mask = ( (self.eps_grid > self.psi(r0) * (1 - b / r0) - 0.5 * v_cut ** 2) & (self.eps_grid < self.psi(r0) * (1 + b / r0)) & (b ** 2 < b_ej_sq) ) r_eps = G_N * self.m1 / self.eps_grid[mask] r_cut = G_N * self.m1 / (self.eps_grid[mask] + 0.5 * v_cut ** 2) if np.any(mask): L1 = np.minimum((r0 - r0 ** 2 / r_eps) / b, 0.999999) alpha1 = np.arccos(L1) L2 = np.maximum((r0 - r0 ** 2 / r_cut) / b, -0.999999) alpha2 = np.arccos(L2) m = (2 * b / r0) / (1 - (r0 / r_eps) + b / r0) mask1 = (m <= 1) & (alpha2 > alpha1) mask2 = (m > 1) & (alpha2 > alpha1) N1 = np.zeros(len(m)) if np.any(mask1): N1[mask1] = ellipe(m[mask1]) - ellipeinc( (np.pi - alpha2[mask1]) / 2, m[mask1] ) if
np.any(mask2)
numpy.any
#!/usr/bin/env python # Copyright (c) 2017, United States Government, as represented by the # Administrator of the National Aeronautics and Space Administration. # # All rights reserved. # # The Astrobee platform is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Generates target corner detection files from a set of bagfiles in a directory containing images. Optionally prunes overlapping detections to help prevent having too many detections in one area and potentially biasing the calibrator. """ import argparse import os import sys import aslam_cv_backend as acvb import cv2 import get_bags_with_topic import kalibr_camera_calibration as kcc import kalibr_common as kc import numpy as np class Corner: def __init__(self, corner_id, target_corner, image_corner): self.id = corner_id self.target_corner = np.array([target_corner[0], target_corner[1]]) self.image_corner = np.array([image_corner[0], image_corner[1]]) class Corners: def __init__(self, observation): self.id_corner_map = {} target_corners = observation.getCornersTargetFrame() image_corners = observation.getCornersImageFrame() ids = observation.getCornersIdx() for i in range(len(target_corners)): corner = Corner(ids[i], target_corners[i], image_corners[i]) self.id_corner_map[corner.id] = corner def similar(self, other_corners, threshold): # Make sure keys are the same if not set(self.id_corner_map.keys()) == set( other_corners.id_corner_map.keys() ): return False norm_sums = 0 for corner_id in self.id_corner_map.keys(): a = ( self.id_corner_map[corner_id].image_corner - other_corners.id_corner_map[corner_id].image_corner ) image_diff_norm = np.linalg.norm( self.id_corner_map[corner_id].image_corner - other_corners.id_corner_map[corner_id].image_corner ) norm_sums += image_diff_norm mean_norm = norm_sums / float(len(self.id_corner_map.keys())) if mean_norm < threshold: print( "Ignoring image, mean " + str(mean_norm) + " below threshold " + str(threshold) ) return True return False class AddedCorners: def __init__(self, threshold): self.corners = [] self.threshold = threshold def add_corners(self, corners): self.corners.append(corners) def redundant(self, new_corners): if len(self.corners) == 0: return False for corners in self.corners: if corners.similar(new_corners, self.threshold): return True return False def save_corners(observation, filename): target_corners = observation.getCornersTargetFrame() image_corners = observation.getCornersImageFrame() ids = observation.getCornersIdx() with open(filename, "w") as corners_file: for i in range(len(target_corners)): corners_file.write( "%0.17g %0.17g %0.17g %0.17g %0.17g\n" % ( ids[i], target_corners[i][0], target_corners[i][1], image_corners[i][0], image_corners[i][1], ) ) def save_images_from_dataset_with_target_detections( dataset, detector, output_directory, added_corners ): for timestamp, image in dataset.readDataset(): success, observation = detector.findTargetNoTransformation( timestamp,
np.array(image)
numpy.array
""" Copyright 2018 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) Some math functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange import numpy as np import scipy.linalg as la from ..hyp_defs import float_cpu def logdet_pdmat(A): """Log determinant of positive definite matrix. """ assert(A.shape[0] == A.shape[1]) R=la.cholesky(A) return 2*np.sum(np.log(np.diag(R))) def invert_pdmat(A, right_inv=False, return_logdet=False, return_inv=False): """Inversion of positive definite matrices. Returns lambda function f that multiplies the inverse of A times a vector. Args: A: Positive definite matrix right_inv: If False, f(v)=A^{-1}v; if True f(v)=v' A^{-1} return_logdet: If True, it also returns the log determinant of A. return_inv: If True, it also returns A^{-1} Returns: Lambda function that multiplies A^{-1} times vector. Cholesky transform of A upper triangular Log determinant of A A^{-1} """ assert(A.shape[0] == A.shape[1]) R=la.cholesky(A, lower=False) if right_inv: fh=lambda x: la.cho_solve((R, False), x.T).T else: fh=lambda x: la.cho_solve((R, False), x) #fh=lambda x: la.solve_triangular(R, la.solve_triangular(R.T, x, lower=True), lower=False) r = [fh, R] logdet = None invA = None if return_logdet: logdet=2*np.sum(np.log(np.diag(R))) r.append(logdet) if return_inv: invA=fh(np.eye(A.shape[0])) r.append(invA) return r def invert_trimat(A, lower=False, right_inv=False, return_logdet=False, return_inv=False): """Inversion of triangular matrices. Returns lambda function f that multiplies the inverse of A times a vector. Args: A: Triangular matrix. lower: if True A is lower triangular, else A is upper triangular. right_inv: If False, f(v)=A^{-1}v; if True f(v)=v' A^{-1} return_logdet: If True, it also returns the log determinant of A. return_inv: If True, it also returns A^{-1} Returns: Lambda function that multiplies A^{-1} times vector. Log determinant of A A^{-1} """ if right_inv: fh=lambda x: la.solve_triangular(A.T, x.T, lower=not(lower)).T else: fh=lambda x: la.solve_triangular(A, x, lower=lower) if return_logdet or return_inv: r = [fh] else: r = fh if return_logdet: logdet=np.sum(np.log(np.diag(A))) r.append(logdet) if return_inv: invA=fh(np.eye(A.shape[0])) r.append(invA) return r def softmax(r, axis=-1): """ Returns: y = \exp(r)/\sum(\exp(r)) """ max_r=np.max(r, axis=axis, keepdims=True) r=np.exp(r-max_r) r/=
np.sum(r, axis=axis, keepdims=True)
numpy.sum