prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
#!/apps/anaconda3/bin/python3
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import sys
import re
import time
import json
import multiprocessing
import collections
import serial
import socket
import py3toolbox as tb
import pyqtgraph as pg
from random import randint
from multiprocessing import Process, Pipe
from pyqtgraph.Qt import QtGui, QtCore
from collections import deque , defaultdict
def get_config():
config = {
'_DATA_SOURCE_' : ['SERIAL', 'FILE', 'NETWORK'],
'DATA_SOURCE' : 'FILE',
'NETWORK_HOST' : '192.168.1.142',
'NETWORK_PORT' : 80,
'SERIAL_PORT' : 'COM3',
'SERIAL_RATE' : 115200,
'SERIAL_TIMEOUT' : 1,
'LOG_SOURCE_DATA' : False,
'DATA_FEED_WAIT' : True,
'DROP_FRAME' : True,
'REFRESH_RATE' : 20,
'DATA_FILE' : './sample.data',
'LOG_FILE' : '/tmp/1.log',
'FILE_TEST' : True,
'DEBUG_MODE' : False,
'ANTIALIAS' : True,
'PEN_WIDTH' : 0,
'WIN_SIZE_X' : 1400,
'WIN_SIZE_Y' : 800,
'WIN_TITLE' : 'Realtime Data Visualizer',
'CUSTOM_CONFIG' : False,
'layouts' : {
'win_layout' : (5,3),
'boards' : {
'1' : { 'layout' : (1,1,1,1), 'max_entries' : 100 },
'2' : { 'layout' : (1,2,1,1), 'max_entries' : 100 },
'3' : { 'layout' : (1,3,1,1), 'max_entries' : 100 },
'4' : { 'layout' : (2,1,1,1), 'max_entries' : 100 },
'5' : { 'layout' : (2,2,1,1), 'max_entries' : 100 },
'6' : { 'layout' : (2,3,1,1), 'max_entries' : 100 },
'7' : { 'layout' : (3,1,1,1), 'max_entries' : 100 },
'8' : { 'layout' : (3,2,1,1), 'max_entries' : 100 },
'9' : { 'layout' : (3,3,1,1), 'max_entries' : 100 },
'10' : { 'layout' : (4,1,1,1), 'max_entries' : 100 },
'11' : { 'layout' : (4,2,1,1), 'max_entries' : 100 },
'12' : { 'layout' : (4,3,1,1), 'max_entries' : 100 },
'13' : { 'layout' : (5,1,1,3), 'max_entries' : 400 }
}
},
'data_config' : {
'ax' : { 'board_id' : '1', 'color' : 'b' },
'ay' : { 'board_id' : '2', 'color' : 'g' },
'az' : { 'board_id' : '3', 'color' : 'r' },
'gx' : { 'board_id' : '4', 'color' : 'c' },
'gy' : { 'board_id' : '5', 'color' : 'm' },
'gz' : { 'board_id' : '6', 'color' : 'y' },
'ax_raw' : { 'board_id' : '1', 'color' : (60,60,60) },
'ay_raw' : { 'board_id' : '2', 'color' : (60,60,60) },
'az_raw' : { 'board_id' : '3', 'color' : (60,60,60) },
'gx_raw' : { 'board_id' : '4', 'color' : (60,60,60) },
'gy_raw' : { 'board_id' : '5', 'color' : (60,60,60) },
'gz_raw' : { 'board_id' : '6', 'color' : (60,60,60) },
'Pitch' : { 'board_id' : '7', 'color' : 'r' },
'Yaw' : { 'board_id' : '8', 'color' : 'g' },
'Roll' : { 'board_id' : '9', 'color' : 'b' },
'err_P' : { 'board_id' :'10', 'color' : 'r' },
'err_I' : { 'board_id' :'11', 'color' : 'g' },
'err_D' : { 'board_id' :'12', 'color' : 'b' },
'Error' : { 'board_id' :'13', 'color' : 'w' },
'PID' : { 'board_id' :'13', 'color' : 'r' },
'g_int' : { 'board_id' :'13', 'color' : 'g' },
'g_pitch' : { 'board_id' :'13', 'color' : 'b' }
}
}
return config
class DataReader(multiprocessing.Process):
def __init__(self, out_q) :
multiprocessing.Process.__init__(self)
self.config = get_config()
self.out_q = out_q
self.data_dic = {}
self.data_count = 0
self.sample_rate = 0
self.receive_time = time.time()
def read_serial_data(self, serial_port, serial_rate, serial_timeout):
if self.config['LOG_SOURCE_DATA'] == True and self.config['FILE_TEST'] == False :
tb.rm_file(self.config['DATA_FILE'])
ser = serial.Serial(port=serial_port , baudrate=serial_rate, timeout=serial_timeout)
print("connected to: " + ser.portstr)
this_line = ""
while True:
try :
one_byte = ser.read(1)
if len(one_byte) < 1 : continue
if one_byte == b"\r": #method should returns bytes
self.data_count +=1
# print (this_line)
parsed_data = self.parse_csv_data(this_line)
if parsed_data is not None:
self.push_out_q(parsed_data)
if self.config['LOG_SOURCE_DATA'] == True:
tb.write_file(file_name=self.config['DATA_FILE'], text=this_line + "\n", mode="a")
this_line = ""
else:
this_line += one_byte.decode('ascii')
except Exception as err:
print (err)
time.sleep(1)
pass
def read_network_data(self, host, port) :
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect((host, port))
while True:
this_line = client.recv(4096).decode("utf-8")
parsed_data = self.parse_csv_data(this_line)
if parsed_data is not None:
self.push_out_q(parsed_data)
if self.config['LOG_SOURCE_DATA'] == True:
tb.write_file(file_name=self.config['DATA_FILE'], text=this_line + "\n", mode="a")
pass
def read_file_data(self, data_file):
data_fh = open(data_file, "r")
for data_line in data_fh.read().splitlines(True):
if (len(data_line) >= 1) :
self.push_out_q(self.parse_csv_data(data_line))
def parse_csv_data(self, data_str):
data_json = None
for rec in data_str.split(','):
if len(rec) < 1 : continue
m = re.match("\s*(\w+)\s*\=\s*([^\,]+)\s*", rec)
if m:
self.data_dic[m.group(1)] = float(m.group(2).rstrip())
data_json = json.dumps(self.data_dic)
else:
return None
if self.config['DEBUG_MODE'] == 'Y' :
tb.write_log(self.config['LOG_FILE'],data_json)
return data_json
def push_out_q(self, data_message):
#self.sample_rate = int(1 / (time.time() - self.receive_time))
#print ('sample rate = ', self.sample_rate, data_message)
#self.receive_time = time.time()
self.out_q.put(data_message)
#self.out_q.send(data_message)
def run(self):
#self.create_task_sync_files()
if self.config['DATA_SOURCE'] == 'FILE':
self.read_file_data(self.config['DATA_FILE'])
elif self.config['DATA_SOURCE'] == 'SERIAL' :
self.read_serial_data(self.config['SERIAL_PORT'],self.config['SERIAL_RATE'], int(self.config['SERIAL_TIMEOUT']))
elif self.config['DATA_SOURCE'] == 'NETWORK':
self.read_network_data(self.config['NETWORK_HOST'],self.config['NETWORK_PORT'])
class Visualizer(multiprocessing.Process):
def __init__(self,in_q=None):
multiprocessing.Process.__init__(self)
self.config = get_config()
self.in_q = in_q
self.trace_data = {}
# data stuff
self.fps = 0
# PyQtGRaph stuff
self.app = QtGui.QApplication([])
self.win = pg.GraphicsWindow(title="Basic plotting")
self.win.addLayout(row=self.config['layouts']['win_layout'][0], col=self.config['layouts']['win_layout'][1])
self.win.resize(self.config['WIN_SIZE_X'],self.config['WIN_SIZE_Y'])
self.win.setWindowTitle(self.config['WIN_TITLE'])
pg.setConfigOptions(antialias=self.config['ANTIALIAS'])
self.init_plots()
# for FPS calculation
self.last = time.time()
def init_plots(self):
self.boards = {}
for b in self.config['layouts']['boards'].keys():
cfg = self.config['layouts']['boards'][b]['layout']
t_row = cfg[0]
t_col = cfg[1]
t_rowspan = cfg[2]
t_colspan = cfg[3]
title = None
for d in self.config['data_config'].keys():
if self.config['data_config'][d]['board_id'] == b :
if title is None : title=d
else: title += ',' + d
self.boards[b] = self.win.addPlot(row=t_row, col=t_col, rowspan=t_rowspan, colspan=t_colspan, title=title)
def init_trace_data (self, key):
max_entries = self.config['layouts']['boards'][self.config['data_config'][key]['board_id']]['max_entries']
self.trace_data[key] = {}
self.trace_data[key]['color'] = self.config['data_config'][key]['color']
self.trace_data[key]['x_data'] = | np.arange(0,max_entries,1) | numpy.arange |
import numpy as np
## requires pytest
import sys
sys.path.append('../')
from line_scan import line_scan
equal = np.testing.assert_array_equal
'''
I line can go from....
lr - left to right
rl = right to left
ud - up to down
du - down to up
mg - slope greater than 1
ml - slope less than one
me - slope equal to one
Or it can be a completely...
h, horizontal
v, vertical
The following tests account for all possible combinations of orientation and slope.
'''
############## lr_ud
def test_lr_ud_mg():
a, b = [np.array([1, 10]), np.array([4, 2])]
expected_answer = [[1, 10], [1, 9], [1, 8], [2, 7], [2, 6], [2, 5], [3, 4], [3, 3], [4, 2]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_lr_ud_ml():
a, b = np.array([1, 10]), np.array([10, 5])
expected_answer = [[1, 10], [2, 9], [3, 8], [4, 8], [5, 7], [6, 7], [7, 6], [8, 6], [9, 5], [10, 5]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_lr_ud_me():
a, b = np.array([1, 10]), np.array([10, 1])
expected_answer = [[1, 10], [2, 9], [3, 8], [4, 7], [5, 6], [6, 5], [7, 4], [8, 3], [9, 2], [10, 1]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
############## lr_du
def test_lr_du_mg():
a, b = [np.array([1, 2]), np.array([4, 10])]
expected_answer = [[1, 2], [1, 3], [1, 4], [2, 5], [2, 6], [2, 7], [3, 8], [3, 9], [4, 10]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_lr_du_ml():
a, b = [np.array([1, 5]), np.array([10, 10])]
expected_answer = [[1, 5], [2, 5], [3, 6], [4, 6], [5, 7], [6, 7], [7, 8], [8, 8], [9, 9], [10, 10]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_lr_du_me():
a, b = [np.array([1, 1]), np.array([10, 10])]
expected_answer = [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [10, 10]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
############## rl_ud
def test_rl_ud_mg():
a, b = [np.array([4, 10]), np.array([1, 2])]
expected_answer = [[4, 10], [3, 9], [3, 8], [2, 7], [2, 6], [2, 5], [1, 4]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_rl_ud_ml():
a, b = [np.array([8, 10]), np.array([1, 5])]
expected_answer = [[8, 10], [7, 9], [6, 8], [5, 7], [4, 7], [3, 6]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_rl_ud_me():
a, b = [np.array([8, 10]), np.array([4, 5])]
expected_answer = [[8, 10], [7, 9], [6, 8], [5, 7]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
############## rl_du
def test_rl_du_mg():
a, b = [np.array([4, 2]), np.array([1, 10])]
expected_answer = [[4, 2], [3, 3], [3, 4], [2, 5], [2, 6], [2, 7], [1, 8]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_rl_du_ml(): #-0.444444444444
a, b = [np.array([10, 2]), np.array([1, 6])]
expected_answer = [[10, 2], [9, 2], [8, 2], [7, 3], [6, 3], [5, 4], [4, 4], [3, 5]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_rl_du_me():
a, b = [np.array([11, 5]), np.array([1, 15])]
expected_answer = [[11, 5], [10, 6], [9, 7], [8, 8], [7, 9], [6, 10], [5, 11], [4, 12], [3, 13]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
############### h
def test_rl_h():
a, b = [np.array([10, 4]), np.array([2, 4])]
expected_answer = [[10, 4], [9, 4], [8, 4], [7, 4], [6, 4], [5, 4], [4, 4]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_lr_h():
a, b = [np.array([2, 4]), np.array([10, 4])]
expected_answer = [[2, 4], [3, 4], [4, 4], [5, 4], [6, 4], [7, 4], [8, 4], [9, 4], [10, 4]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
############### v
def test_v_du():
a, b = [np.array([10, 2]), np.array([10, 8])]
expected_answer = [[10, 2], [10, 3], [10, 4], [10, 5], [10, 6], [10, 7], [10, 8]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
def test_v_ud():
a, b = [np.array([10, 10]), np.array([10, 2])]
expected_answer = [[10, 10], [10, 9], [10, 8], [10, 7], [10, 6], [10, 5], [10, 4]]
equal(np.array(line_scan(a, b)), np.array(expected_answer))
################################################################################
points = {}
points['lrudmg'] = [np.array([1,10]), np.array([4,2])]
points['lrudml'] = [np.array([1,10]), np.array([10,5])]
points['lrudme'] = [np.array([1,10]), np.array([10,1])]
points['lrdumg'] = [np.array([1,2]), np.array([4,10])]
points['lrduml'] = [np.array([1,5]), np.array([10,10])]
points['lrdume'] = [np.array([1,1]), np.array([10,10])]
points['rludmg'] = [ np.array([4,10]), np.array([1,2])]
points['rludml'] = [ np.array([8,10]), np.array([1,5])]
points['rludme'] = [np.array([8,10]), np.array([4,5])]
points['rldumg'] = [ np.array([4,2]), np.array([1,10])]
points['rlduml'] = [ | np.array([10,2]) | numpy.array |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
from typing import List, Tuple, Any, Dict, Callable
import numpy as np
from . import utils
from . import corefuncs
from .. import instrumentation as inst
from ..common import tools
from ..common.typetools import ArrayLike
class ArtificialVariable:
# pylint: disable=too-many-instance-attributes,too-many-arguments
# TODO: refactor, this is not more used for instrumentation, so using the
# Variable framework is not necessary
def __init__(self, dimension: int, num_blocks: int, block_dimension: int,
translation_factor: float, rotation: bool, hashing: bool, only_index_transform: bool) -> None:
self._dimension = dimension
self._transforms: List[utils.Transform] = []
self.rotation = rotation
self.translation_factor = translation_factor
self.num_blocks = num_blocks
self.block_dimension = block_dimension
self.only_index_transform = only_index_transform
self.hashing = hashing
self.dimension = self._dimension if not self.hashing else 1 # external dim?
def _initialize(self) -> None:
"""Delayed initialization of the transforms to avoid slowing down the instance creation
(makes unit testing much faster).
This functions creates the random transform used upon each block (translation + optional rotation).
"""
# use random indices for blocks
indices = np.random.choice(self._dimension, self.block_dimension * self.num_blocks, replace=False).tolist()
indices.sort() # keep the indices sorted sorted so that blocks do not overlap
for transform_inds in tools.grouper(indices, n=self.block_dimension):
self._transforms.append(utils.Transform(transform_inds, translation_factor=self.translation_factor, rotation=self.rotation))
def process(self, data: ArrayLike, deterministic: bool = True) -> np.ndarray: # pylint: disable=unused-argument
if not self._transforms:
self._initialize()
if self.hashing:
state = | np.random.get_state() | numpy.random.get_state |
# This initializes the problem class for SWE
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
from parameters import Nx, Ny, Lx, Ly
from parameters import rho, grav, dt, dx, dy, ft
from parameters import K
from parameters import plot_viz, num_steps_per_plot, num_samples, num_train
# Common functions for spatial discretizations
def state_reconstruction(q,Nx,Ny):
# Weno5
pad = 3
qtemp = periodic_bc(q,pad)
# Smoothness indicators in x
beta_0 = 13.0/12.0*(qtemp[pad-2:pad+Nx-2,:]-2.0*qtemp[pad-1:pad+Nx-1,:]+qtemp[pad:Nx+pad,:])**2 \
+ 1.0/4.0*(qtemp[pad-2:pad+Nx-2,:]-4.0*qtemp[pad-1:pad+Nx-1,:]+3.0*qtemp[pad:Nx+pad,:])**2
beta_1 = 13.0/12.0*(qtemp[pad-1:pad+Nx-1,:]-2.0*qtemp[pad:pad+Nx,:]+qtemp[pad+1:Nx+pad+1,:])**2 \
+ 1.0/4.0*(qtemp[pad-1:pad+Nx-1,:]-qtemp[pad+1:pad+Nx+1,:])**2
beta_2 = 13.0/12.0*(qtemp[pad:pad+Nx,:]-2.0*qtemp[pad+1:pad+Nx+1,:]+qtemp[pad+2:Nx+pad+2,:])**2 \
+ 1.0/4.0*(3.0*qtemp[pad:pad+Nx,:]-4.0*qtemp[pad+1:pad+Nx+1,:]+qtemp[pad+2:Nx+pad+2,:])**2
# nonlinear weights in x
alpha_0 = (1.0/10.0)/((beta_0+1.0e-6)**2)
alpha_1 = (6.0/10.0)/((beta_1+1.0e-6)**2)
alpha_2 = (3.0/10.0)/((beta_2+1.0e-6)**2)
# Find nonlinear weights
w_0 = (alpha_0/(alpha_0+alpha_1+alpha_2))/6.0
w_1 = (alpha_1/(alpha_0+alpha_1+alpha_2))/6.0
w_2 = (alpha_2/(alpha_0+alpha_1+alpha_2))/6.0
# Find state reconstructions in x - wave to right (at i+1/2)
qxright = w_0*(2.0*qtemp[pad-2:pad+Nx-2,:]-7.0*qtemp[pad-1:pad+Nx-1,:]+11.0*qtemp[pad:pad+Nx,:]) \
+ w_1*(-qtemp[pad-1:pad+Nx-1,:]+5.0*qtemp[pad:pad+Nx,:]+2.0*qtemp[pad+1:pad+Nx+1,:]) \
+ w_2*(2.0*qtemp[pad:pad+Nx,:]+5.0*qtemp[pad+1:pad+Nx+1,:]-qtemp[pad+2:pad+Nx+2,:])
# Find state reconstructions in x - wave to left (at i+1/2)
qxleft = w_0*(2.0*qtemp[pad+2:pad+Nx+2,:]-7.0*qtemp[pad+1:pad+Nx+1,:]+11.0*qtemp[pad:pad+Nx,:]) \
+ w_1*(-qtemp[pad+1:pad+Nx+1,:]+5.0*qtemp[pad:pad+Nx,:]+2.0*qtemp[pad-1:pad+Nx-1,:]) \
+ w_2*(2.0*qtemp[pad:pad+Nx,:]+5.0*qtemp[pad-1:pad+Nx-1,:]-qtemp[pad-2:pad+Nx-2,:])
qxleft = qxleft[:,pad:pad+Ny]
qxright = qxright[:,pad:pad+Ny]
# Smoothness indicators in y
beta_0 = 13.0/12.0*(qtemp[:,pad-2:pad+Ny-2]-2.0*qtemp[:,pad-1:pad+Ny-1]+qtemp[:,pad:Ny+pad])**2 \
+ 1.0/4.0*(qtemp[:,pad-2:pad+Ny-2]-4.0*qtemp[:,pad-1:pad+Ny-1]+3.0*qtemp[:,pad:Ny+pad])**2
beta_1 = 13.0/12.0*(qtemp[:,pad-1:pad+Ny-1]-2.0*qtemp[:,pad:pad+Ny]+qtemp[:,pad+1:Ny+pad+1])**2 \
+ 1.0/4.0*(qtemp[:,pad-1:pad+Ny-1]-qtemp[:,pad+1:pad+Ny+1])**2
beta_2 = 13.0/12.0*(qtemp[:,pad:pad+Ny]-2.0*qtemp[:,pad+1:pad+Ny+1]+qtemp[:,pad+2:Ny+pad+2])**2 \
+ 1.0/4.0*(3.0*qtemp[:,pad:pad+Ny]-4.0*qtemp[:,pad+1:pad+Ny+1]+qtemp[:,pad+2:Ny+pad+2])**2
# nonlinear weights in x
alpha_0 = (1.0/10.0)/((beta_0+1.0e-6)**2)
alpha_1 = (6.0/10.0)/((beta_1+1.0e-6)**2)
alpha_2 = (3.0/10.0)/((beta_2+1.0e-6)**2)
# Find nonlinear weights
w_0 = (alpha_0/(alpha_0+alpha_1+alpha_2))/6.0
w_1 = (alpha_1/(alpha_0+alpha_1+alpha_2))/6.0
w_2 = (alpha_2/(alpha_0+alpha_1+alpha_2))/6.0
# Find state reconstructions in y - qright (at i+1/2)
qyright = w_0*(2.0*qtemp[:,pad-2:pad+Ny-2]-7.0*qtemp[:,pad-1:pad+Ny-1]+11.0*qtemp[:,pad:pad+Ny]) \
+ w_1*(-qtemp[:,pad-1:pad+Ny-1]+5.0*qtemp[:,pad:pad+Ny]+2.0*qtemp[:,pad+1:pad+Ny+1]) \
+ w_2*(2.0*qtemp[:,pad:pad+Ny]+5.0*qtemp[:,pad+1:pad+Ny+1]-qtemp[:,pad+2:pad+Ny+2])
# Find state reconstructions in y - wave to left (at i+1/2)
qyleft = w_0*(2.0*qtemp[:,pad+2:pad+Ny+2]-7.0*qtemp[:,pad+1:pad+Ny+1]+11.0*qtemp[:,pad:pad+Ny]) \
+ w_1*(-qtemp[:,pad+1:pad+Ny+1]+5.0*qtemp[:,pad:pad+Ny]+2.0*qtemp[:,pad-1:pad+Ny-1]) \
+ w_2*(2.0*qtemp[:,pad:pad+Ny]+5.0*qtemp[:,pad-1:pad+Ny-1]-qtemp[:,pad-2:pad+Ny-2])
qyleft = qyleft[pad:pad+Nx,:]
qyright = qyright[pad:pad+Nx,:]
return qxleft, qxright, qyleft, qyright
def reimann_solve(spec_rad,fl,fr,ql,qr,dim):
# Rusanov reimann solver
pad = 3
srt = periodic_bc(spec_rad,pad)
if dim == 'x':
srt = np.maximum.reduce([srt[pad-3:Nx+pad-3,pad:Ny+pad],srt[pad-2:Nx+pad-2,pad:Ny+pad],srt[pad-1:Nx+pad-1,pad:Ny+pad],\
srt[pad:Nx+pad,pad:Ny+pad],srt[pad+1:Nx+pad+1,pad:Ny+pad],srt[pad+2:Nx+pad+2,pad:Ny+pad],srt[pad+3:Nx+pad+3,pad:Ny+pad]])
flux = 0.5*(fr+fl) + 0.5*srt*(qr+ql)
return flux
else:
srt = np.maximum.reduce([srt[pad:Nx+pad,pad-3:Ny+pad-3],srt[pad:Nx+pad,pad-2:Ny+pad-2],srt[pad:Nx+pad,pad-1:Ny+pad-1],\
srt[pad:Nx+pad,pad:Ny+pad],srt[pad:Nx+pad,pad+1:Ny+pad+1],srt[pad:Nx+pad,pad+2:Ny+pad+2],srt[pad:Nx+pad,pad+3:Ny+pad+3]])
flux = 0.5*(fr+fl) + 0.5*srt*(qr+ql)
return flux
def periodic_bc(q,pad):
qtemp = np.zeros(shape=(q.shape[0]+2*pad,q.shape[1]+2*pad),dtype='double')
# Periodicity updates
qtemp[pad:Nx+pad,pad:Ny+pad] = q[:,:]
# x direction periodicity
qtemp[0:pad,:] = qtemp[Nx-pad:Nx,:]
qtemp[Nx+pad:,:] = qtemp[pad:2*pad,:]
# y direction periodicity
qtemp[:,0:pad] = qtemp[:,Ny-pad:Ny]
qtemp[:,Ny+pad:] = qtemp[:,pad:2*pad]
return qtemp
def spectral_radius(q1,q2):
sound_speed = 2.0*np.sqrt(q1/rho*grav)
u = q2/q1
return np.maximum.reduce([np.abs(u+sound_speed),np.abs(u-sound_speed),\
np.abs(sound_speed)])
def flux_reconstruction(q1,q2,q3):
spec_rad_x = spectral_radius(q1,q2)
spec_rad_y = spectral_radius(q1,q3)
q1xleft, q1xright, q1yleft, q1yright = state_reconstruction(q1,Nx,Ny)
q2xleft, q2xright, q2yleft, q2yright = state_reconstruction(q2,Nx,Ny)
q3xleft, q3xright, q3yleft, q3yright = state_reconstruction(q3,Nx,Ny)
# Reconstructing fluxes for q1
f1xleft = np.copy(q2xleft)
f1xright = np.copy(q2xright)
f1x = reimann_solve(spec_rad_x,f1xleft,f1xright,q1xleft,q1xright,'x')
f1yleft = np.copy(q3yleft)
f1yright = np.copy(q3yright)
f1y = reimann_solve(spec_rad_y,f1yleft,f1yright,q1yleft,q1yright,'y')
# Reconstructing fluxes for q2
f2xleft = (q2xleft**2)/(q1xleft) + 0.5*(q1xleft**2)*(grav/rho)
f2xright = (q2xright**2)/(q1xright) + 0.5*(q1xright**2)*(grav/rho)
f2x = reimann_solve(spec_rad_x,f1xleft,f2xright,q2xleft,q2xright,'x')
f2yleft = (q2yleft*q3yleft/q1yleft)
f2yright = (q2yright*q3yright/q1yright)
f2y = reimann_solve(spec_rad_y,f2yleft,f2yright,q2yleft,q2yright,'y')
# Reconstructing fluxes for q3
f3xleft = (q2xleft*q3xleft/q1xleft)
f3xright = (q2xright*q3xright/q1xright)
f3x = reimann_solve(spec_rad_x,f3xleft,f3xright,q3xleft,q3xright,'x')
f3yleft = (q3yleft**2)/(q1yleft) + 0.5*(q1yleft**2)*(grav/rho)
f3yright = (q3yright**2)/(q1yright) + 0.5*(q1yright**2)*(grav/rho)
f3y = reimann_solve(spec_rad_y,f3yleft,f3yright,q3yleft,q3yright,'y')
return f1x, f1y, f2x, f2y, f3x, f3y
# Plotting functions
def plot_coefficients(Ytilde):
fig,ax = plt.subplots(nrows=1,ncols=4)
ax[0].plot(Ytilde[0,:],label='Mode 1')
ax[1].plot(Ytilde[1,:],label='Mode 2')
ax[2].plot(Ytilde[2,:],label='Mode 3')
ax[3].plot(Ytilde[3,:],label='Mode 4')
plt.legend()
plt.show()
def plot_fields_debug(X,Y,q,label,iter):
fig = plt.figure(figsize = (11, 7))
ax = Axes3D(fig)
surf = ax.plot_surface(X, Y, q, rstride = 1, cstride = 1,
cmap = plt.cm.jet, linewidth = 0, antialiased = True)
ax.set_title('Visualization', fontname = "serif", fontsize = 17)
ax.set_xlabel("x [m]", fontname = "serif", fontsize = 16)
ax.set_ylabel("y [m]", fontname = "serif", fontsize = 16)
if label == 'q1':
ax.set_zlim((0,2))
elif label == 'q2':
ax.set_zlim((-1,1))
else:
ax.set_zlim((-1,1))
plt.savefig(label+'_'+str(iter)+'.png')
# Shallow water equations class
class shallow_water(object):
"""docstring for ClassName"""
def __init__(self,args=[0,0]):
self.Nx = Nx
self.Ny = Ny
self.Lx = Lx
self.Ly = Ly
x = np.linspace(-self.Lx/2, self.Lx/2, self.Nx) # Array with x-points
y = np.linspace(-self.Ly/2, self.Ly/2, self.Ny) # Array with y-points
# Meshgrid for plotting
self.X, self.Y = np.meshgrid(x, y)
# Initialize fields
self.initialize(args)
# Field storage for viz
self.q_list = []
# Plot interval
self.plot_interval = num_steps_per_plot
# Field storage for ROM
self.snapshots_pod = [] # at plot interval
def initialize(self,args=[0,0]):
loc_x = args[0]
loc_y = args[1]
# There are three conserved quantities - initialize
self.q1 = 1.0+(rho*np.exp(-((self.X-loc_x)**2/(2*(0.05)**2) + (self.Y-loc_y)**2/(2*(0.05)**2))))
self.q2 = np.zeros(shape=(self.Nx,self.Ny),dtype='double')
self.q3 = np.zeros(shape=(self.Nx,self.Ny),dtype='double')
def right_hand_side(self,q1,q2,q3):
f1x, f1y, f2x, f2y, f3x, f3y = flux_reconstruction(q1,q2,q3) # these are all i+1/2
# Periodicity
pad = 1
f1xtemp = periodic_bc(f1x,pad)
f1ytemp = periodic_bc(f1y,pad)
f2xtemp = periodic_bc(f2x,pad)
f2ytemp = periodic_bc(f2y,pad)
f3xtemp = periodic_bc(f3x,pad)
f3ytemp = periodic_bc(f3y,pad)
r1 = 1.0/dx*(f1xtemp[pad:Nx+pad,pad:Ny+pad]-f1xtemp[pad-1:Nx+pad-1,pad:Ny+pad]) + 1.0/dy*(f1ytemp[pad:Nx+pad,pad:Ny+pad]-f1ytemp[pad:Nx+pad,pad-1:Ny+pad-1])
r2 = 1.0/dx*(f2xtemp[pad:Nx+pad,pad:Ny+pad]-f2xtemp[pad-1:Nx+pad-1,pad:Ny+pad]) + 1.0/dy*(f2ytemp[pad:Nx+pad,pad:Ny+pad]-f2ytemp[pad:Nx+pad,pad-1:Ny+pad-1])
r3 = 1.0/dx*(f3xtemp[pad:Nx+pad,pad:Ny+pad]-f3xtemp[pad-1:Nx+pad-1,pad:Ny+pad]) + 1.0/dy*(f3ytemp[pad:Nx+pad,pad:Ny+pad]-f3ytemp[pad:Nx+pad,pad-1:Ny+pad-1])
return -r1, -r2, -r3
def integrate_rk(self):
# Equally spaced time integration
q1temp = np.copy(self.q1)
q2temp = np.copy(self.q2)
q3temp = np.copy(self.q3)
r1_k1, r2_k1, r3_k1 = self.right_hand_side(q1temp,q2temp,q3temp) # Note switch in sign
q1temp[:,:] = self.q1[:,:] + dt*(r1_k1[:,:])
q2temp[:,:] = self.q2[:,:] + dt*(r2_k1[:,:])
q3temp[:,:] = self.q3[:,:] + dt*(r3_k1[:,:])
r1_k2, r2_k2, r3_k2 = self.right_hand_side(q1temp,q2temp,q3temp) # Note switch in sign
q1temp[:,:] = self.q1[:,:] + 0.125*dt*r1_k1[:,:] + 0.125*dt*r1_k2[:,:]
q2temp[:,:] = self.q2[:,:] + 0.125*dt*r2_k1[:,:] + 0.125*dt*r2_k2[:,:]
q3temp[:,:] = self.q3[:,:] + 0.125*dt*r3_k1[:,:] + 0.125*dt*r3_k2[:,:]
r1_k3, r2_k3, r3_k3 = self.right_hand_side(q1temp,q2temp,q3temp) # Note switch in sign
self.q1[:,:] = self.q1[:,:] + (1.0/6.0)*dt*r1_k1[:,:] + (1.0/6.0)*dt*r1_k2[:,:] + (2.0/3.0)*dt*r1_k3[:,:]
self.q2[:,:] = self.q2[:,:] + (1.0/6.0)*dt*r2_k1[:,:] + (1.0/6.0)*dt*r2_k2[:,:] + (2.0/3.0)*dt*r2_k3[:,:]
self.q3[:,:] = self.q3[:,:] + (1.0/6.0)*dt*r3_k1[:,:] + (1.0/6.0)*dt*r3_k2[:,:] + (2.0/3.0)*dt*r3_k3[:,:]
def solve(self):
self.t = 0
plot_iter = 0
save_iter = 0
# Save initial conditions
flattened_data = np.concatenate((self.q1.flatten(),self.q2.flatten(),self.q3.flatten()),axis=0)
self.snapshots_pod.append(flattened_data)
while self.t < ft:
print('Time is:',self.t)
self.t = self.t + dt
self.integrate_rk()
if plot_iter == self.plot_interval:
# Save snapshots
flattened_data = np.concatenate((self.q1.flatten(),self.q2.flatten(),self.q3.flatten()),axis=0)
self.snapshots_pod.append(flattened_data)
if plot_viz:
plot_fields_debug(self.X,self.Y,self.q1,'q1',save_iter)
plot_iter = 0
save_iter = save_iter + 1
plot_iter = plot_iter + 1
print('Solution finished')
class shallow_water_rom(object):
def __init__(self,snapshot_matrix_pod,snapshot_matrix_test):
"""
K - number of POD DOF for GP
snapshot_matrix_pod - At snapshot location
"""
self.K = K
self.q1_snapshot_matrix_pod = snapshot_matrix_pod[:Nx*Ny,:]
self.q2_snapshot_matrix_pod = snapshot_matrix_pod[Nx*Ny:2*Nx*Ny,:]
self.q3_snapshot_matrix_pod = snapshot_matrix_pod[2*Nx*Ny:,:]
self.q1_snapshot_matrix_test = snapshot_matrix_test[:Nx*Ny,:]
self.q2_snapshot_matrix_test = snapshot_matrix_test[Nx*Ny:2*Nx*Ny,:]
self.q3_snapshot_matrix_test = snapshot_matrix_test[2*Nx*Ny:,:]
# Plot interval
self.plot_interval = num_steps_per_plot
# Plot related
self.Nx = Nx
self.Ny = Ny
self.Lx = Lx
self.Ly = Ly
x = np.linspace(-self.Lx/2, self.Lx/2, self.Nx) # Array with x-points
y = np.linspace(-self.Ly/2, self.Ly/2, self.Ny) # Array with y-points
# Meshgrid for plotting
self.X, self.Y = np.meshgrid(x, y)
def method_of_snapshots(self,snapshot_matrix_pod,snapshot_matrix_test):
"""
Read snapshot_matrix (field or nonlinear term) and compute the POD bases and coefficients
snapshot_matrix_pod - N x S - where N is DOF, S snapshots
V - truncated POD basis matrix - shape: NxK - K is truncation number
Ytilde - shape: KxS - POD basis coefficients for train data
Ytilde_test - shape: KxS - POD basis coefficients for test data
"""
new_mat = np.matmul(np.transpose(snapshot_matrix_pod),snapshot_matrix_pod)
w,v = np.linalg.eig(new_mat)
# Bases
V = np.real(np.matmul(snapshot_matrix_pod,v))
trange = np.arange(np.shape(V)[1])
V[:,trange] = V[:,trange]/np.sqrt(w[:])
# Truncate phis
V = V[:,0:self.K] # Columns are modes
# Find POD coefficients
Ytilde = np.matmul(np.transpose(V),snapshot_matrix_pod)
Ytilde_test = np.matmul(np.transpose(V),snapshot_matrix_test)
return w, V, Ytilde, Ytilde_test
def svd_method(self,snapshot_matrix_pod):
"""
Read snapshot_matrix (field or nonlinear term) and compute the POD bases and coefficients
snapshot_matrix_pod - N x S - where N is DOF, S snapshots
V - truncated POD basis matrix - shape: NxK - K is truncation number
Ytilde - shape: KxS - POD basis coefficients
"""
phi, S, Vt = np.linalg.svd(snapshot_matrix_pod)
Ytilde = np.matmul(phi.T[:,truncation],snapshot_matrix)
Ytilde_test = np.matmul(phi.T[:,truncation],snapshot_matrix_test)
return S, phi.T[:,self.K], Ytilde, Ytilde_test
def generate_pod(self):
# Do the POD of the conserved variables
self.q1_w, self.q1_V, self.q1_Ytilde, self.q1_Ytilde_test = self.method_of_snapshots(self.q1_snapshot_matrix_pod,self.q1_snapshot_matrix_test)
self.q2_w, self.q2_V, self.q2_Ytilde, self.q2_Ytilde_test = self.method_of_snapshots(self.q2_snapshot_matrix_pod,self.q2_snapshot_matrix_test)
self.q3_w, self.q3_V, self.q3_Ytilde, self.q3_Ytilde_test = self.method_of_snapshots(self.q3_snapshot_matrix_pod,self.q3_snapshot_matrix_test)
# Print captured energy - using definition in https://arxiv.org/pdf/1308.3276.pdf
print('Capturing ',np.sum(self.q1_w[0:self.K])/np.sum(self.q1_w),'% variance in conserved variable 1')
print('Capturing ',np.sum(self.q2_w[0:self.K])/np.sum(self.q2_w),'% variance in conserved variable 2')
print('Capturing ',np.sum(self.q3_w[0:self.K])/np.sum(self.q3_w),'% variance in conserved variable 3')
np.save('PCA_Vectors_q1.npy',self.q1_V) # The POD bases
np.save('PCA_Vectors_q2.npy',self.q2_V)
np.save('PCA_Vectors_q3.npy',self.q3_V)
np.save('PCA_Coefficients_q1_train.npy',self.q1_Ytilde) # The true projection
np.save('PCA_Coefficients_q2_train.npy',self.q2_Ytilde)
np.save('PCA_Coefficients_q3_train.npy',self.q3_Ytilde)
np.save('PCA_Coefficients_q1_test.npy',self.q1_Ytilde_test) # The true projection
np.save('PCA_Coefficients_q2_test.npy',self.q2_Ytilde_test)
np.save('PCA_Coefficients_q3_test.npy',self.q3_Ytilde_test)
def load_pregenerated_pod(self):
self.q1_V = np.load('PCA_Vectors_q1.npy') # The POD bases
self.q2_V = np.load('PCA_Vectors_q2.npy')
self.q3_V = np.load('PCA_Vectors_q3.npy')
self.q1_Ytilde = np.load('PCA_Coefficients_q1_train.npy') # The true projection
self.q2_Ytilde = np.load('PCA_Coefficients_q2_train.npy')
self.q3_Ytilde = np.load('PCA_Coefficients_q3_train.npy')
self.q1_Ytilde_test = np.load('PCA_Coefficients_q1_test.npy') # The true projection
self.q2_Ytilde_test = np.load('PCA_Coefficients_q2_test.npy')
self.q3_Ytilde_test = np.load('PCA_Coefficients_q3_test.npy')
def plot_reconstruction_error(self):
fig,ax = plt.subplots(ncols=3)
ax[0].plot(self.q1_w[:]/np.sum(self.q1_w))
ax[1].plot(self.q2_w[:]/np.sum(self.q2_w))
ax[2].plot(self.q3_w[:]/np.sum(self.q3_w))
plt.show()
def solve(self):
from time import time
num_test = int(num_samples-num_train)
self.q1_snapshots = | np.copy(self.q1_Ytilde_test) | numpy.copy |
import os
import cv2
import numpy as np
import os
import shutil
import time
import random
import math
import functools
def _find_minrect(img, image_name, output_dir=None, debug_type=0, thresh_x = 120, morphology = False, channel='all', overlapthresh=.3):
# param@debug_type:0,not debug; 1,store bbox file; 2,store middle caculate file; 3,show window
source = img.copy()
# step1: blur image
max_area = source.shape[0] * source.shape[1]
# Apply gaussian blur to the grayscale image
# blur = cv2.pyrMeanShiftFiltering(source, 31, 91)
sharpen = source
# blur = cv2.pyrMeanShiftFiltering(source, 21, 51)
# kernel_sharpen = np.array([[-1,-1,-1,-1,-1],
# [-1,2,2,2,-1],
# [-1,2,8,2,-1],
# [-2,2,2,2,-1],
# [-1,-1,-1,-1,-1]])/8.0
# kernel_sharpen = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
# sharpen = cv2.filter2D(sharpen, -1, kernel_sharpen)
if channel == 'all':
sharpen = cv2.cvtColor(sharpen, cv2.COLOR_BGR2GRAY)
else:
b, g, r = cv2.split(sharpen)
if channel == 'b':
sharpen = b
elif channel == 'g':
sharpen = g
elif channel == 'r':
sharpen = r
else:
sharpen = cv2.cvtColor(sharpen, cv2.COLOR_BGR2GRAY)
# 双向滤波比较不错
# blur = cv2.bilateralFilter(blur, 3, 30, 30)
# blur = cv2.split(blur)[0]
# blur = cv2.equalizeHist(blur)
# blur = cv2.GaussianBlur(blur, (5, 5), 0)
if debug_type>1:
sharpen_path = os.path.join(output_dir, channel+'_'+'sharpen_'+image_name)
cv2.imwrite(sharpen_path, sharpen)
# step2: sobel caculate edges
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
x = cv2.Sobel(sharpen, cv2.CV_64F, 1, 0, ksize=-1)
y = cv2.Sobel(sharpen, cv2.CV_64F, 0, 1, ksize=-1)
edges = cv2.subtract(x, y)
edges = cv2.convertScaleAbs(edges)
# absX = cv2.convertScaleAbs(x) # 转回uint8
# absY = cv2.convertScaleAbs(y)
#
# edges = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
# edges = cv2.bilateralFilter(edges, 5, 75, 75)
# edges = cv2.GaussianBlur(edges, (5, 5), 0)
# edges = cv2.dilate(edges, kernel)
# edges = cv2.dilate(edges, kernel)
# edges = cv2.dilate(edges, kernel)
# edges = cv2.erode(edges, kernel)
# edges = cv2.erode(edges, kernel)
# edges = cv2.erode(edges, kernel)
# edges = cv2.GaussianBlur(edges, (9, 9),0)
if debug_type>1:
edges_path = os.path.join(output_dir, channel+'_'+'edges_'+image_name)
cv2.imwrite(edges_path, edges)
# step3: binary edges
_, thresh1 = cv2.threshold(edges, thresh_x, 255, cv2.THRESH_BINARY)
thresh2 = thresh1
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# thresh2 = cv2.erode(thresh2, kernel)
if morphology:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh2 = cv2.morphologyEx(thresh2, cv2.MORPH_CLOSE, kernel)
# thresh2 = cv2.dilate(thresh2, kernel)
# thresh2 = cv2.dilate(thresh2, kernel)
# thresh2 = cv2.dilate(thresh2, kernel)
# thresh2 = cv2.dilate(thresh2, kernel)
# thresh2 = cv2.dilate(thresh2, kernel)
# thresh2 = cv2.erode(thresh2, kernel)
# thresh = cv2.GaussianBlur(thresh, (3, 3), 0)
# _, thresh = cv2.threshold(gray, x, 255, cv2.THRESH_BINARY_INV)
# thresh = cv2.GaussianBlur(thresh, (5, 5), 0)
if debug_type>1:
thresh1_path = os.path.join(output_dir, channel+'_'+'thresh1_'+image_name)
cv2.imwrite(thresh1_path, thresh1)
if morphology:
thresh2_path = os.path.join(output_dir, channel+'_'+'thresh2_' + image_name)
cv2.imwrite(thresh2_path, thresh2)
# Find the edges
# edges = cv2.Canny(gray,x1,x2)
# edges = gray
# step4: Detect contours
_, contours, _ = cv2.findContours(thresh2, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
print('find contours: {}'.format(len(contours)))
# print('first contour: {}'.format(contours[0]))
# step5: contour filter with area
area_to_contour = {}
for cnt in contours:
cnt = cv2.convexHull(cnt, returnPoints=True)
leftmost = cnt[cnt[:, :, 0].argmin()][0][0]
rightmost = cnt[cnt[:, :, 0].argmax()][0][0]
topmost = cnt[cnt[:, :, 1].argmin()][0][1]
bottommost = cnt[cnt[:, :, 1].argmax()][0][1]
# print('%d,%d,%d,%d' %(leftmost,rightmost,topmost,bottommost))
# return
area = (bottommost-topmost) * (rightmost-leftmost)
if area < max_area/100: # 去除面积过小的物体
continue
# if area > max_area*.9: # 去除面积过大的物体
# continue
area_to_contour[area] = cnt
# print(tuple(cnt[cnt[:, :, 0].argmin()][0]))
# print(tuple(cnt[cnt[:, :, 0].argmax()][0]))
# step6: caculate bounding box and draw contours
drawing_contours = np.zeros(source.shape, np.uint8)
areas = sorted(area_to_contour, reverse=True)
index = 0
min_rectes = []
for area in areas:
index += 1
# if index > top_n:
# break
cnt = area_to_contour[area]
color = np.random.randint(0, 255, (3)).tolist() # Select a random color
if debug_type > 1:
cv2.drawContours(drawing_contours, [cnt], 0, color, 1)
min_rect = cv2.minAreaRect(cnt)
min_rectes.append(min_rect)
# if debug_type > 1:
# drawing_contours = cv2.rectangle(drawing_contours, (x, y), (x + w, y + h), (0, 255, 0), 2)
if debug_type>1:
contours_path = os.path.join(output_dir, channel+'_'+'contours_'+image_name)
cv2.imwrite(contours_path, drawing_contours)
# step7: nms min rect
# min_rectes = _non_max_suppression_minrect(min_rectes, .3)
if debug_type > 1 and len(min_rectes) > 0:
minrect = np.copy(source)
for min_rect in min_rectes:
points = cv2.boxPoints(min_rect)
points = np.int0(points)
minrect = cv2.drawContours(minrect,[points],0,(0, 0, 255),1)
minrect_path = os.path.join(output_dir, channel+'_'+'minrect_'+image_name)
cv2.imwrite(minrect_path, minrect)
if debug_type>2:
cv2.imshow(channel+'_'+'input', sharpen)
cv2.imshow(channel+'_'+'edges', edges)
cv2.imshow(channel+'_'+'thresh1', thresh1)
if morphology:
cv2.imshow(channel+'_'+'thresh2', thresh2)
cv2.imshow(channel+'_'+'drawing_contours', drawing_contours)
return min_rectes
class Point(object):
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return '[{},{}]'.format(self.x,self.y)
def cmp(a, b, c):
if a.x-c.x >= 0 and b.x-c.x < 0:
return -1
if a.x-c.x == 0 and b.x-c.x == 0:
# return a.y > b.y
if a.y > b.y:
return -1
elif a.y < b.y:
return 1
return 0
det = (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y)
if det < 0:
return 1
if det > 0:
return -1
d1 = (a.x - c.x) * (a.x - c.x) + (a.y - c.y) * (a.y - c.y)
d2 = (b.x - c.x) * (b.x - c.x) + (b.y - c.y) * (b.y - c.y)
# return d1 > d2
if d1 > d2:
return -1
elif d1 < d2:
return 1
return 0
def _rotated_rectangle_intersection_area(s_rect,m_rect,debug=False):
r1 = cv2.rotatedRectangleIntersection(s_rect, m_rect)
if r1[0] == 0:
return 0, None
elif r1[0] == 2:
return s_rect[1][0]*s_rect[1][1], None
x = 0
y = 0
p = []
len_p = r1[1].shape[0]
for i in range(len_p):
p.append(Point(r1[1][i][0][0], r1[1][i][0][1]))
x += r1[1][i][0][0]
y += r1[1][i][0][1]
c = Point(x / len_p, y / len_p)
if debug:
print('source:{}'.format(''.join(map(str,p))))
pp = sorted(p, key=functools.cmp_to_key(lambda x, y: cmp(x, y, c)))
if debug:
print('sorted:{}'.format(''.join(map(str,pp))))
r = | np.full((len_p, 2), 0.0, dtype='float32') | numpy.full |
from __future__ import division
import os
import numpy as np
from fdint import fdk, ifd1h
from ifg.units_converter import SiAtomicConverter
from ifg.utils import dump_to_csv
THRESHOLD = 1e10
def _1d_call(func, array, *args, **kwargs):
return func(array.reshape(-1), *args, **kwargs).reshape(array.shape)
def _fdk(array, k):
return fdk(k, array)
def get_chemical_potential(vv, tt, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG chemical potential mu in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: `mu[i][j]` - chemical potential in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
to_inverse = np.sqrt(2) * np.pi ** 2 / (gbar * tt ** (1.5) * vv)
mu_div_temperature = _1d_call(ifd1h, to_inverse)
mu = mu_div_temperature * tt
# mu = np.multiply(temperature, mu_div_temperature.T).T
return mu
def get_F_potential(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG Helmholtz potential F in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:param chemical_potential: Chemical potential in atomic units.
:return: F[i][j] - Helmholtz free energy in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
# y = chemical_potential/temperature
y = chemical_potential / tt
F = gbar / np.sqrt(2.0) / np.pi ** 2 * tt ** (2.5) * vv
F *= y * _1d_call(_fdk, y, k=0.5) - 2.0 / 3.0 * _1d_call(_fdk, y, k=1.5)
return F
def get_pressure(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG pressure P in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: P[i][j] - Pressure in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
pressure = (
gbar * np.sqrt(2) / (3 * np.pi ** 2) * tt ** (2.5) * _1d_call(_fdk, y, k=1.5)
)
return pressure
def get_energy(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG energy E in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: E[i][j] - Energy in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
energy = (
gbar * vv / (np.sqrt(2) * np.pi ** 2) * tt ** 2.5 * _1d_call(_fdk, y, k=1.5)
)
return energy
def get_entropy(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG entropy S in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: S[i][j] - Entropy in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
# There is a precision problem with "-" (minus) operator
# We'll use asymptotic formula for low temperatures to avoid that problem
y_low = y[y < THRESHOLD]
vv_low, vv_high = vv[y < THRESHOLD], vv[y >= THRESHOLD]
tt_low, tt_high = tt[y < THRESHOLD], tt[y >= THRESHOLD]
# high temperatures - low numbers
S_low = (
-gbar
* np.sqrt(2)
/ (6 * np.pi ** 2)
* tt_low ** (3 / 2)
* vv_low
* (
3 * y_low * _1d_call(_fdk, y_low, k=1 / 2)
- 5 * _1d_call(_fdk, y_low, k=3 / 2)
)
)
# low temperatures - high numbers
S_high = (gbar * np.pi / 6) ** (2 / 3) * tt_high * vv_high ** (2 / 3)
return np.concatenate((S_low, S_high)).reshape(y.shape)
def get_heat_capacity_volume(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG heat capacity C_V in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: C_V[i][j] - C_V in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
# There is a precision problem with "-" (minus) operator
# We'll use asymptotic formula for high temperatures to avoid that problem
y_low = y[y < THRESHOLD]
vv_low, vv_high = vv[y < THRESHOLD], vv[y >= THRESHOLD]
tt_low, tt_high = tt[y < THRESHOLD], tt[y >= THRESHOLD]
# high temperatures - low numbers
C_V_low = 5 * _1d_call(_fdk, y_low, k=-1 / 2) * _1d_call(_fdk, y_low, k=3 / 2)
C_V_low -= 9 * _1d_call(_fdk, y_low, k=1 / 2) ** 2
C_V_low *= gbar * np.sqrt(2) / (4 * np.pi ** 2) * tt_low ** (3 / 2) * vv_low
C_V_low /= _1d_call(_fdk, y_low, k=-1 / 2)
# low temperatures - high numbers
C_V_high = (gbar * np.pi / 6) ** (2 / 3) * tt_high * vv_high ** (2 / 3)
return np.concatenate((C_V_low, C_V_high)).reshape(y.shape)
def get_heat_capacity_pressure(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG heat capacity C_P in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: C_P[i][j] - C_P in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
# There is a precision problem with "-" (minus) operator
# We'll use asymptotic formula for high temperatures to avoid that problem
y_low = y[y < THRESHOLD]
vv_low, vv_high = vv[y < THRESHOLD], vv[y >= THRESHOLD]
tt_low, tt_high = tt[y < THRESHOLD], tt[y >= THRESHOLD]
# high temperatures - low numbers
C_P_low = 5 * gbar * np.sqrt(2) / (36 * np.pi ** 2) * tt_low ** (3 / 2) * vv_low
C_P_low *= (
5 * _1d_call(_fdk, y_low, k=-1 / 2) * _1d_call(_fdk, y_low, k=3 / 2)
- 9 * _1d_call(_fdk, y_low, k=1 / 2) ** 2
)
C_P_low *= _1d_call(_fdk, y_low, k=3 / 2) / _1d_call(_fdk, y_low, k=1 / 2) ** 2
# low temperatures - high numbers
C_P_high = (gbar * np.pi / 6) ** (2 / 3) * tt_high * vv_high ** (2 / 3)
return np.concatenate((C_P_low, C_P_high)).reshape(y.shape)
def get_sound_speed_temperature(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG sound speed C_T in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: C_T[i][j] - C_T in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
C_T = (
2 ** (1 / 4)
* np.sqrt(gbar)
/ np.pi
* np.sqrt(vv)
* tt ** (5 / 4)
* _1d_call(_fdk, y, k=1 / 2)
/ np.sqrt(_1d_call(_fdk, y, k=-1 / 2))
)
return C_T
def get_sound_speed_entropy(vv, tt, chemical_potential, gbar=2.0, *args, **kwargs):
# type: (np.ndarray, np.ndarray, np.ndarray, float, list, dict) -> np.ndarray
"""Get IFG sound speed C_S in atomic units.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param chemical_potential: Chemical potential in atomic units.
:param gbar: degeneracy factor, for IFG g = 2s + 1
:return: C_S[i][j] - C_S in atomic units.
*i*-th index is for temperature, *j*-th one is for volume
"""
y = chemical_potential / tt
C_S = (
np.sqrt(5)
* np.sqrt(gbar)
* 2 ** (1 / 4)
/ (3 * np.pi)
* tt ** (5 / 4)
* np.sqrt(vv * _1d_call(_fdk, y, k=3 / 2))
)
return C_S
def get_all_properties(vv, tt, gbar=2.0, csv_dir=None):
# type: (np.ndarray, np.ndarray, float, str) -> dict
"""Calculate all properties and save them to csv file.
:param vv: Matrix of specific volumes in atomic units.
:param tt: Matrix of temperatures in atomic units.
:param vv: Specific volume in atomic units
:param tt: Temperature in atomic units
:param gbar: degeneracy factor, for IFG g = 2s + 1
:param csv_dir: Directory to save csv files to
:return: dict {'property_name': ndarray}
"""
properties = dict(
mu=get_chemical_potential,
F=get_F_potential,
p=get_pressure,
S=get_entropy,
C_P=get_heat_capacity_pressure,
C_V=get_heat_capacity_volume,
C_T=get_sound_speed_temperature,
C_S=get_sound_speed_entropy,
)
for key in properties.keys():
properties[key] = properties[key](
vv=vv, tt=tt, gbar=gbar, chemical_potential=properties["mu"]
)
if csv_dir:
for i, volume in enumerate(vv[0, :]):
dump_to_csv(
os.path.join(
os.getcwd(),
csv_dir,
"{}_v={}_atomic_units.csv".format(key, volume),
),
np.array([tt[0, :], properties[key][:, i]]).T,
)
return properties
class IfgCalculator:
def __init__(
self,
temperatures=None,
volumes=None,
thetas=None,
densities=None,
rs=None,
input_in_si=None,
output_in_si=None,
g=None,
mr=None,
):
# def __init__(self, specific_volumes, temperatures,
# input_in_si, output_in_si, g=2., mr=1.):
# type: (np.ndarray, np.ndarray, bool, bool, float, float) -> None
"""Main class for IFG calculations.
:param volumes, rs, densities: Array of volumes, rs or densities, respectively
(only one parameter is possible)
:param temperatures, thetas: Array of temperatures or thetas, respectively
(only one parameter is possible; in case of thetas the length of
thetas array should be not more than 1)
:param input_in_is: Whether input values are in SI units (False - atomic units, default)
:param output_in_si: Whether output values are in SI units (False - atomic units, default)
:param g: degeneracy of spin states, g = 2s + 1, s - spin, g = 2 by default
:param mr: mass of particles with respect to electron mass, mr = 1 by default
"""
# Default values
input_in_si_default = False
output_in_si_default = False
g_default = 2.0
mr_default = 1.0
# Checking if temperatures or thetas argument is given
if temperatures is None and thetas is None:
raise ValueError("temperatures or thetas parameter is obligatory")
# Checking if both temperatures and thetas arguments are given
if temperatures is not None and thetas is not None:
raise ValueError(
"Only one named parameter must be used for temperature: temperatures or thetas"
)
# Checking if any of volumes or densities of rs argument is given
if volumes is None and densities is None and rs is None:
raise ValueError(
"One of volumes or densities or rs parameter is obligatory"
)
# Cannot have more than one argument
if sum([x is not None for x in (volumes, densities, rs)]) > 1:
raise ValueError(
"Only one named parameter must be used for volume: volumes or densities or rs"
)
# If volumes argument is given, simply convert to np.ndarray
if volumes is not None:
volumes = np.array(volumes)
# If densities argument is given, calculate volumes
if densities is not None:
volumes = 1.0 / np.array(densities)
# If rs argument is given, calculate volumes
if rs is not None:
volumes = 4.0 * np.pi * np.array(rs) ** 3 / 3.0
# If temperatures argument is given, simply convert to np.ndarray
if temperatures is not None:
temperatures = | np.array(temperatures) | numpy.array |
import numpy as np
from sklearn.cross_decomposition import PLSRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import cross_val_score
from sklearn.utils import shuffle
from numpy.linalg import matrix_rank as rank
# Single step feature selection method
class MCUVE:
def __init__(self, x, y, ncomp=1, nrep=500, testSize=0.2):
self.x = x
self.y = y
# The number of latent components should not be larger than any dimension size of independent matrix
self.ncomp = min([ncomp, rank(x)])
self.nrep = nrep
self.testSize = testSize
self.criteria = None
self.featureIndex = None
self.featureR2 = np.full(self.x.shape[1], np.nan)
self.selFeature = None
def calcCriteria(self):
PLSCoef = np.zeros((self.nrep, self.x.shape[1]))
ss = ShuffleSplit(n_splits=self.nrep, test_size=self.testSize)
step = 0
for train, test in ss.split(self.x, self.y):
xtrain = self.x[train, :]
ytrain = self.y[train]
plsModel = PLSRegression(min([self.ncomp, rank(xtrain)]))
plsModel.fit(xtrain, ytrain)
PLSCoef[step, :] = plsModel.coef_.T
step += 1
meanCoef = np.mean(PLSCoef, axis=0)
stdCoef = np.std(PLSCoef, axis=0)
self.criteria = meanCoef / stdCoef
def evalCriteria(self, cv=3):
self.featureIndex = np.argsort(-np.abs(self.criteria))
for i in range(self.x.shape[1]):
xi = self.x[:, self.featureIndex[:i + 1]]
if i<self.ncomp:
regModel = LinearRegression()
else:
regModel = PLSRegression(min([self.ncomp, rank(xi)]))
cvScore = cross_val_score(regModel, xi, self.y, cv=cv)
self.featureR2[i] = np.mean(cvScore)
def cutFeature(self, *args):
cuti = np.argmax(self.featureR2)
self.selFeature = self.featureIndex[:cuti+1]
if len(args) != 0:
returnx = list(args)
i = 0
for argi in args:
if argi.shape[1] == self.x.shape[1]:
returnx[i] = argi[:, self.selFeature]
i += 1
return tuple(returnx)
class RT(MCUVE):
def calcCriteria(self):
# calculate normal pls regression coefficient
plsmodel0=PLSRegression(self.ncomp)
plsmodel0.fit(self.x, self.y)
# calculate noise reference regression coefficient
plsCoef0=plsmodel0.coef_
PLSCoef = np.zeros((self.nrep, self.x.shape[1]))
for i in range(self.nrep):
randomidx = list(range(self.x.shape[0]))
np.random.shuffle(randomidx)
ytrain = self.y[randomidx]
plsModel = PLSRegression(self.ncomp)
plsModel.fit(self.x, ytrain)
PLSCoef[i, :] = plsModel.coef_.T
plsCoef0 = np.tile(np.reshape(plsCoef0, [1, -1]), [ self.nrep, 1])
criteria = np.sum(np.abs(PLSCoef) > np.abs(plsCoef0), axis=0)/self.nrep
self.criteria = criteria
def evalCriteria(self, cv=3):
# Note: small P value indicating important feature
self.featureIndex = np.argsort(self.criteria)
for i in range(self.x.shape[1]):
xi = self.x[:, self.featureIndex[:i + 1]]
if i<self.ncomp:
regModel = LinearRegression()
else:
regModel = PLSRegression(min([self.ncomp, rank(xi)]))
cvScore = cross_val_score(regModel, xi, self.y, cv=cv)
self.featureR2[i] = np.mean(cvScore)
class VC(RT):
def calcCriteria(self, cv=3):
# calculate normal pls regression coefficient
nVar = self.x.shape[1]
sampleMatrix = np.ndarray([self.nrep,self.x.shape[1]], dtype=int)
sampleMatrix[:, :] = 0
errVector = np.ndarray([self.nrep,1])
# The number of variable in combination should less than the total variable number
if nVar > self.ncomp:
nSample = max([self.ncomp, nVar//10])
else:
nSample = max([1, nVar-1])
sampleidx = range(self.x.shape[1])
for i in range(self.nrep):
sampleidx = shuffle(sampleidx)
seli = sampleidx[:nSample]
plsModel = PLSRegression(n_components=min([self.ncomp, rank(self.x[:, seli])]))
plsModel.fit(self.x[:, seli], self.y)
sampleMatrix[i, seli] = 1
yhati=cross_val_predict(plsModel, self.x[:, seli], self.y, cv=cv)
errVector[i] = np.sqrt(mean_squared_error(yhati, self.y))
plsModel = PLSRegression(n_components=self.ncomp)
plsModel.fit(sampleMatrix, errVector)
self.criteria = plsModel.coef_.ravel()
# Recursive feature selection method
class MSVC:
def __init__(self, x, y, ncomp=1, nrep=7000, ncut=50, testSize=0.2):
self.x = x
self.y = y
# The number of latent components should not be larger than any dimension size of independent matrix
self.ncomp = min([ncomp, | rank(x) | numpy.linalg.matrix_rank |
# -*- coding: utf-8 -*-
"""
This code allows us to run classical clustering approaches namely Kmeans, Spherical Kmeans and Auto-encoder
"""
import numpy as np
import pandas as pd
from sklearn.utils import check_random_state
from coclust import clustering
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from coclust.evaluation.external import accuracy
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn import metrics
import time
import random
from keras.models import Model
from keras.layers import Dense, Input
def random_init(n_clusters, n_cols, random_state=None):
"""Create a random column cluster assignment matrix.
Each row contains 1 in the column corresponding to the cluster where the
processed data matrix column belongs, 0 elsewhere.
Parameters
----------
n_clusters: int
Number of clusters
n_cols: int
Number of columns of the data matrix (i.e. number of rows of the
matrix returned by this function)
random_state : int or :class:`numpy.RandomState`, optional
The generator used to initialize the cluster labels. Defaults to the
global numpy random number generator.
Returns
-------
matrix
Matrix of shape (``n_cols``, ``n_clusters``)
"""
if random_state == None:
W_a = np.random.randint(n_clusters, size=n_cols)
else:
random_state = check_random_state(random_state)
W_a = random_state.randint(n_clusters, size=n_cols)
W = np.zeros((n_cols, n_clusters))
W[np.arange(n_cols), W_a] = 1
return W
def purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)
global_path = './data/'
path_to_save = './results/resultViewClustering/'
nom_BDD = ['DBLP1','DBLP2','PubMed_Diabets' ,'classic3', 'classic4', 'ag_news']
nCLusters = [3,3,3,3, 4, 4]
nbrIteration = 30
nbSlices = 8
nbAlgorithms = 3
df_results = pd.DataFrame(columns=["Dataset", "Time", "ACC", "NMI", "ARI", "Purity",'Algorithm','View'],
index=np.arange(nbrIteration * ((len(nom_BDD) * nbSlices*nbAlgorithms ))).tolist())
cpt = 0
for nb in range(len(nom_BDD)):
print('###############################################')
print('nom_BDD ', nom_BDD[nb])
bdd_name = nom_BDD[nb]
inf_doc = pd.read_csv(global_path+bdd_name+'/' + bdd_name+'.csv', delimiter=',')
abstracts = np.asarray(inf_doc['text']).astype(str).tolist()
# print(inf_doc)
labels_all = np.asarray(inf_doc['label']).astype(int)
n_new = inf_doc.shape[0]
d_new = inf_doc.shape[1]
labels = labels_all[0:n_new]
labels = labels.tolist()
##################################################################
# hyperparameters #
##################################################################
K = nCLusters[nb]
print('K ', K)
del inf_doc
##################################################################
# Load DBLP1 dataset #
##################################################################
simBow = np.load(global_path +bdd_name+'/' + 'view_bow' + '.npz')
simBow = simBow['arr_0']
print('simBow ', simBow.shape)
simBert = np.load(global_path +bdd_name+'/' + 'view_bert-base-cased' + '.npz')
simBert = simBert['arr_0']
simBertLPCA = np.load(global_path +bdd_name+'/' + 'view_avgpca__bert-large-cased' + '.npz')
simBertLPCA = simBertLPCA['arr_0']
print('simBertLPCA ', simBertLPCA.shape)
simRoBertLPCA = np.load(global_path +bdd_name+'/' + 'view_avgpca__roberta-large' + '.npz')
simRoBertLPCA = simRoBertLPCA['arr_0']
simRoBerta = np.load(global_path +bdd_name+'/' + 'view_roberta-large' + '.npz')
simRoBerta = simRoBerta['arr_0']
simSentenceRoBerta = np.load(global_path +bdd_name+'/'+ 'sim_sentenceRoberta' +'.npz')
simSentenceRoBerta = simSentenceRoBerta['arr_0']
print('simSentenceRoBerta ', simSentenceRoBerta.shape)
simGlove = np.load(global_path +bdd_name+'/' + 'view_glove' + '.npz')
simGlove = simGlove['arr_0']
print('simGlove ', simGlove.shape)
simW2V = np.load(global_path +bdd_name+'/' + 'view_w2v' + '.npz')
simW2V = simW2V['arr_0']
simEntity = np.load(global_path +bdd_name+'/' + 'view_entity' + '.npz')
simEntity = simEntity['arr_0']
print('simEntity ', simEntity.shape)
viewsNames = ['BOW','Bert','BertLPCA','RoBertLPCA', 'SentenceRo', 'GLOVE', 'W2V','Entity']
data = [simBow,simBert,simBertLPCA,simRoBertLPCA,simSentenceRoBerta,simGlove,simW2V,simEntity]
print(len(data))
del simBow
del simGlove
del simW2V
del simBert
del simRoBerta
del simEntity
del simBertLPCA
del simRoBertLPCA
##################################################################
########################## Version Hard #########################
##################################################################
for v_ in range(len(data)):
viewName = viewsNames[v_]
data_view = data[v_]
print('###############################################')
print('viewName ',viewName)
for it in range(nbrIteration):
random.seed(it)
np.random.seed(it)
print("iter " + str(it))
##########################################################
print('################### skmeans ######################')
Z_init = random_init(K, n_new)
colSum= data_view.sum(0)
print('colSum',colSum)
print(np.sum(colSum==0))
start_time = time.time()
model = clustering.spherical_kmeans.SphericalKmeans(n_clusters=K, max_iter=100, n_init=1,tol=1e-09, weighting=False)
model.fit(data_view)
end_time = time.time()
phiK = model.labels_
phiK = np.asarray(phiK)
time_ = end_time - start_time
acc = np.around(accuracy(labels, phiK), 3)
nmi = np.around(normalized_mutual_info_score(labels, phiK), 3)
ari = np.around(adjusted_rand_score(labels, phiK), 3)
purity = np.around(purity_score(labels, phiK), 3)
print("Accuracy : ", acc)
print("nmi : ", nmi)
print("ari : ", ari)
print("purity : ", purity)
df_results.Algorithm[cpt] = 'Skmeans'
df_results.View[cpt] = viewName
df_results.Dataset[cpt] = bdd_name
df_results.Time[cpt] = str(time_)
df_results.ACC[cpt] = str(acc)
df_results.NMI[cpt] = str(nmi)
df_results.ARI[cpt] = str(ari)
df_results.Purity[cpt] = str(purity)
cpt = cpt + 1
##########################################################
print('################### kmeans ######################')
Z_init = random_init(K, n_new)
start_time = time.time()
kmeans = KMeans(n_clusters=K, random_state=0).fit(data_view)
end_time = time.time()
phiK = kmeans.labels_
phiK = | np.asarray(phiK) | numpy.asarray |
# This code is part of Mthree.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=no-name-in-module
"""Test collection classes"""
import numpy as np
from qiskit import QuantumCircuit, execute
from qiskit.test.mock import FakeAthens
import mthree
def test_mit_overhead():
"""Test if mitigation overhead over collection is same as loop
"""
backend = FakeAthens()
qc = QuantumCircuit(5)
qc.h(2)
qc.cx(2, 1)
qc.cx(2, 3)
qc.cx(1, 0)
qc.cx(3, 4)
qc.measure_all()
raw_counts = execute([qc]*10, backend).result().get_counts()
mit = mthree.M3Mitigation(backend)
mit.cals_from_system()
mit_counts = mit.apply_correction(raw_counts, qubits=range(5),
return_mitigation_overhead=True)
ind_overheads = np.asarray([cnt.mitigation_overhead for cnt in mit_counts])
assert | np.allclose(mit_counts.mitigation_overhead, ind_overheads) | numpy.allclose |
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 3 17:27:46 2018
@author: <NAME>
Implementation of information representation based multi-layer classifier using GFMM
Note: Currently, all samples in the dataset must be normalized to the range of [0, 1] before using this class
"""
import sys, os
sys.path.insert(0, os.path.pardir)
import numpy as np
import math
import ast
import time
import multiprocessing
from functionhelper.bunchdatatype import Bunch
from functionhelper.membershipcalc import memberG, asym_similarity_one_many
from functionhelper.preprocessinghelper import read_file_in_chunks_group_by_label, read_file_in_chunks, string_to_boolean, loadDataset
from functionhelper.hyperboxadjustment import isOverlap, hyperboxOverlapTest, modifiedIsOverlap, hyperboxContraction
from concurrent.futures import ProcessPoolExecutor, as_completed
def get_num_cpu_cores():
num_cores = multiprocessing.cpu_count()
if num_cores >= 4:
num_cores = num_cores - 2
return num_cores
class Info_Presentation_Multi_Layer_Classifier_GFMM(object):
def __init__(self, teta = [0.1, 0.5], gamma = 1, simil_thres = 0.5, oper = 'min'):
self.gamma = gamma
self.teta_onl = teta[0]
self.higher_teta = teta[1:]
self.oper = oper
self.simil_thres = simil_thres
def homogeneous_hyperbox_expansion(self, X_l, X_u, patClassId, current_hyperboxes):
"""
Expand current hyperboxes to cover input patterns, all input samples have the same label with each other as well as current hyperboxes (if exists)
Update the number of patterns contained in the hyperboxes and their centroids of samples
INPUT
Xl Input data lower bounds (rows = objects, columns = features)
Xu Input data upper bounds (rows = objects, columns = features)
patClassId Input data class labels (crisp). patClassId[i] = 0 corresponds to an unlabeled item
current_hyperboxes A list of current hyperboxes in the Bunch datatype (properties: lower, upper, classId, no_pat, centroid)
OUTPUT
result A bunch data size with lower and upper bounds, class labels of hyperboxes
"""
yX = X_l.shape[0]
V = current_hyperboxes.lower
W = current_hyperboxes.upper
classId = current_hyperboxes.classId
no_Pats = current_hyperboxes.no_pat
centroid = current_hyperboxes.centroid
# for each input sample
for i in range(yX):
classOfX = patClassId[i]
if V.size == 0: # no model provided - starting from scratch
V = np.array([X_l[i]])
W = np.array([X_u[i]])
classId = np.array([patClassId[i]])
no_Pats = np.array([1])
centroid = np.array([(X_l[i] + X_u[i]) / 2])
else:
b = memberG(X_l[i], X_u[i], V, W, self.gamma, self.oper)
index = np.argsort(b)[::-1]
bSort = b[index];
if bSort[0] != 1:
adjust = False
for j in index:
# test violation of max hyperbox size and class labels
if ((np.maximum(W[j], X_u[i]) - | np.minimum(V[j], X_l[i]) | numpy.minimum |
import copy
import numpy as np
import torch
mat = torch.Tensor(np.load('/home/FQuinton/Bureau/data_pse/META/stats.npy')).int()
dic = {
0: "Prairie",
1: "Triticale",
2: "Maïs",
3: "Seigle",
4: "Blé",
5: "Colza",
6: "<NAME>",
7: "Tournesol",
8: "Vigne",
9: "Soja",
10: "Sorghum",
11: "Luzerne",
12: "<NAME>",
13: "<NAME>",
14: "<NAME>",
15: "Fleurs fruits legumes",
16: "<NAME>",
17: "<NAME>",
18: "<NAME>",
19: "<NAME>"
}
mat_norm = torch.zeros((20,20,20))
for i in range(20):
for j in range(20):
for k in range(20):
if(torch.sum(mat[i][j]) != 0):
mat_norm[i][j][k] = mat[i][j][k]/torch.sum(mat[i][j])
else :
mat_norm[i][j][k] = 0
max_list = []
mat_copy = copy.deepcopy(mat_norm)
for i in range(500):
val = torch.where(mat_copy == torch.amax(mat_copy))
mat_copy[val[0][0]][val[1][0]][val[2][0]] = -1
if(torch.sum(mat[val[0][0]][val[1][0]]).item() > 9 and round(mat_norm[val[0][0]][val[1][0]][val[2][0]].item(),2) > 0.1):
max_list.append([round(mat_norm[val[0][0]][val[1][0]][val[2][0]].item(),2),
torch.sum(mat[val[0][0]][val[1][0]]).item(),
mat[val[0][0]][val[1][0]][val[2][0]].item(),
dic[val[0][0].item()],
dic[val[1][0].item()],
dic[val[2][0].item()]])
max_list.sort(reverse = True)
m = np.array(max_list)
m = m[:,2].astype(int)
n = | np.sum(m) | numpy.sum |
import numpy as np
import networkx as nx
import itertools
from collections import deque
from tempfile import NamedTemporaryFile
from distutils.spawn import find_executable
from subprocess import check_call
from xml.etree import cElementTree
from ..constants import res, log
_METERS_TO_INCHES = 1.0 / .0254
_STEP_FACETER = find_executable('export_product_asm')
def load_step(file_obj, file_type=None):
'''
Use the STEPtools Inc. Author Tools binary to mesh a STEP file,
and return a list of Trimesh objects.
Using this over openCASCADE as it is signifigantly more stable (though not OSS.)
STEPtools Inc. provides the binary under this license:
http://www.steptools.com/demos/license_author.html
To install the required binary ('export_product_asm') into PATH:
wget http://www.steptools.com/demos/stpidx_author_linux_x86_64_16.0.zip
unzip stpidx_author_linux_x86_64_16.0.zip
sudo cp stpidx_author_linux_x86_64/bin/export_product_asm /usr/bin/
Arguments
----------
file_obj: file like object containing step file
file_type: unused
Returns
----------
meshes: list of Trimesh objects (with correct metadata set from STEP file)
'''
with NamedTemporaryFile() as out_file:
with NamedTemporaryFile(suffix='.STEP') as in_file:
if hasattr(file_obj, 'read'):
in_file.write(file_obj.read())
in_file.seek(0)
file_name = in_file.name
else:
file_name = file_obj
check_call([_STEP_FACETER, file_name,
'-tol', str(res.mesh),
'-o', out_file.name])
t = cElementTree.parse(out_file)
meshes = {}
# get the meshes without metadata from the XML document
for shell in t.findall('shell'):
# query the xml structure for vertices and faces
vertices = np.array([v.get('p').split() for v in shell.findall('.//v')],
dtype=np.float)
faces = np.array([f.get('v').split() for f in shell.findall('.//f')],
dtype = np.int)
# normals aren't always returned but faces have correct winding
# so they are autogenerated correctly from dot products
mesh = {'vertices': vertices,
'faces' : faces,
'metadata': {}}
# store the mesh by id reference
meshes[shell.get('id')] = mesh
try:
# populate the graph of shapes and transforms
g = nx.MultiDiGraph()
# keys: {mesh id : shape id}
mesh_shape = {}
# assume that the document has consistant units
to_inches = None
for shape in t.findall('shape'):
shape_id = shape.get('id')
shape_unit = shape.get('unit')
mesh_id = shape.get('shell')
if not shape_unit is None:
to_inches = float(shape_unit.split()[1]) * _METERS_TO_INCHES
if not mesh_id is None:
for i in mesh_id.split():
mesh_shape[i] = shape_id
#g.node[shape_id]['mesh'] = mesh_id
g.add_node(shape_id, {'mesh' : mesh_id})
for child in shape.getchildren():
child_id = child.get('ref')
transform = np.array(child.get('xform').split(),
dtype=np.float).reshape((4,4)).T
g.add_edge(shape_id, child_id, transform=transform)
# which product ID has the root shape
prod_root = t.getroot().get('root')
shape_root = None
for prod in t.findall('product'):
prod_id = prod.get('id')
prod_name = prod.get('name')
prod_shape = prod.get('shape')
if prod_id == prod_root:
shape_root = prod_shape
g.node[prod_shape]['product_name'] = prod_name
# now that the assembly tree has been populated, traverse it to
# find the final transforms and quantities for the meshes we extracted
for mesh_id in meshes.keys():
shape_id = mesh_shape[mesh_id]
transforms_all = deque()
path_str = deque()
if shape_id == shape_root:
paths = [[shape_id, shape_id]]
else:
paths = nx.all_simple_paths(g, shape_root, shape_id)
paths = np.array(list(paths))
garbage, unique = np.unique(['.'.join(i) for i in paths], return_index=True)
paths = paths[unique]
for path in paths:
path_name = [g.node[i]['product_name'] for i in path[:-1]]
edges = np.column_stack((path[:-1],
path[:-1])).reshape(-1)[1:-1].reshape((-1,2))
transforms = [np.eye(4)]
for e in edges:
# get every transform from the edge
local = [i['transform'] for i in g.edge[e[0]][e[1]].values()]
# all the transforms are sequential, so we want combinations
transforms = [np.dot(*i) for i in itertools.product(transforms, local)]
transforms_all.extend(transforms)
path_str.extend(['/'.join(path_name)]*len(transforms))
meshes[mesh_id]['vertices'] *= to_inches
meshes[mesh_id]['metadata']['units'] = 'inches'
meshes[mesh_id]['metadata']['name'] = path_name[-1]
meshes[mesh_id]['metadata']['paths'] = | np.array(path_str) | numpy.array |
#!/usr/bin/env python
import sys, os
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import mcmc_sampler_sbm
from estimate_cluster import estimate_clustering
from sklearn.cluster import KMeans
from scipy.stats import mode
from collections import Counter
from matplotlib2tikz import save as tikz_save
## Boolean type for parser
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
#########################################
## Analysis of the Enron Email Network ##
#########################################
## Import the dataset
enron = np.loadtxt('Datasets/enron_edges.txt',dtype=int,delimiter='\t')-1
###### MODEL ARGUMENTS
## PARSER to give parameter values
parser = argparse.ArgumentParser()
# Boolean variable for coclustering
parser.add_argument("-c","--coclust", type=str2bool, dest="coclust", default=False, const=False, nargs="?",\
help="Boolean variable for coclustering, default FALSE")
# Boolean variable to use second level clustering (default True)
parser.add_argument("-s","--sord", type=str2bool, dest="second_order_clustering", default=True, const=False, nargs="?",\
help="Boolean variable for second level clustering, default TRUE")
# Add options for .tex figures
parser.add_argument("-t","--tex", type=str2bool, dest="tex_figures", default=False, const=False, nargs="?",\
help="Boolean variable for .tex figures, default FALSE")
# Burnin
parser.add_argument("-B","--nburn", type=int, dest="nburn", default=25000, const=True, nargs="?",\
help="Integer: length of burnin, default 25000")
# Number of samples
parser.add_argument("-M","--nsamp", type=int, dest="nsamp", default=500000, const=True, nargs="?",\
help="Integer: length of MCMC chain after burnin, default 500000")
## Set destination folder for output
parser.add_argument("-f","--folder", type=str, dest="dest_folder", default="Results", const=True, nargs="?",\
help="String: name of the destination folder for the output files (*** the folder must exist ***)")
## Parse arguments
args = parser.parse_args()
coclust = args.coclust
second_order_clustering = args.second_order_clustering
tex_figures = args.tex_figures
nburn = args.nburn
nsamp = args.nsamp
dest_folder = args.dest_folder
# Create output directory if doesn't exist
if dest_folder != '' and not os.path.exists(dest_folder):
os.mkdir(dest_folder)
## Create the adjacency matrix
n = np.max(enron)+1
A = np.zeros((n,n))
for link in enron:
A[link[0],link[1]] = 1.0
## Construct the Gibbs sampling object
g = mcmc_sampler_sbm.mcmc_sbm(A,m=25)
## Initialise the clusters using k-means
if not coclust:
g.init_cluster(z=KMeans(n_clusters=5).fit(g.X['s'][:,:5]).labels_ if g.directed else KMeans(n_clusters=5).fit(g.X[:,:5]).labels_)
else:
g.init_cocluster(zs=KMeans(n_clusters=5).fit(g.X['s'][:,:5]).labels_,zr=KMeans(n_clusters=5).fit(g.X['r'][:,:5]).labels_)
## Average within-cluster variance
v = {}
v['s'] = np.zeros(g.m)
v['r'] = np.zeros(g.m)
for key in ['s','r']:
for k in range(g.K[key] if g.coclust else g.K):
v[key] += np.var(g.X[key][(g.z[key] if g.coclust else g.z) == k],axis=0) / (g.K[key] if g.coclust else g.K)
## Initialise d
g.init_dim(d=g.K[key] if g.coclust else g.K,delta=0.1,d_constrained=False)
## Initialise the parameters of the Gaussian distribution
g.prior_gauss_left_directed(mean0s=np.zeros(g.m),mean0r=np.zeros(g.m),Delta0s=np.diag(v['s']),Delta0r=np.diag(v['r']))
g.prior_gauss_right_directed(sigma0s=np.var(g.X['s'],axis=0),sigma0r=np.var(g.X['r'],axis=0))
## Initialise the second level clustering
if second_order_clustering:
if coclust:
g.init_group_variance_coclust(vs=range(g.K['s']),vr=range(g.K['r']))
else:
g.init_group_variance_clust(v=range(g.K),beta=1.0)
## MCMC sampler
d = []
if g.coclust:
K = {}
Ko = {}
if second_order_clustering:
H = {}
Ho = {}
for key in ['s','r']:
K[key] = []
Ko[key] = []
if second_order_clustering:
H[key] = []
Ho[key] = []
else:
K = []
Ko = []
if second_order_clustering:
H = []
Ho = []
## Posterior similarity matrix
if g.coclust:
psm = {}
for key in ['s','r']:
psm[key] = np.zeros((n,n))
else:
psm = np.zeros((n,n))
## Sampler
for s in range(nburn+nsamp):
## Print status of MCMC
if s < nburn:
sys.stdout.write("\r+++ Burnin +++ %d / %d " % (s+1,nburn))
sys.stdout.flush()
elif s == nburn:
sys.stdout.write("\n")
elif s < nburn + nsamp - 1:
sys.stdout.write("\r+++ Sweeps +++ %d / %d " % (s+1-nburn,nsamp))
sys.stdout.flush()
else:
sys.stdout.write("\r+++ Sweeps +++ %d / %d\n " % (s+1-nburn,nsamp))
## Choice of the move
if second_order_clustering:
## - with second order clustering
move = np.random.choice(['gibbs_comm','split_merge','change_dim','prop_empty','gibbs_comm_so','split_merge_so','prop_empty_so'])
else:
## - without second order clustering
move = np.random.choice(['gibbs_comm','split_merge','change_dim','prop_empty'])
if move == 'gibbs_comm':
g.gibbs_communities()
elif move == 'split_merge':
g.split_merge()
elif move == 'change_dim':
g.dimension_change(prop_step=3)
elif move == 'gibbs_comm_so':
g.gibbs_second_order()
elif move == 'split_merge_so':
g.split_merge_second_order()
elif move == 'prop_empty_so':
g.propose_empty_second_order()
else:
g.propose_empty()
## Update the parameters
if s >= nburn:
d += [g.d]
if g.coclust:
for key in ['s','r']:
K[key] += [g.K[key]]
Ko[key] += [g.Ko[key]]
if second_order_clustering:
H[key] += [g.H[key]]
Ho[key] += [np.sum(g.vk[key] > 0)]
psm[key] += np.equal.outer(g.z[key],g.z[key])
else:
K += [g.K]
Ko += [g.Ko]
if second_order_clustering:
H += [g.H]
Ho += [np.sum(g.vk > 0)]
psm += np.equal.outer(g.z,g.z)
## Convert to arrays
d = np.array(d)
if coclust:
for key in ['s','r']:
K[key] = np.array(K[key])
Ko[key] = np.array(Ko[key])
if second_order_clustering:
H[key] = np.array(H[key])
Ho[key] = np.array(Ho[key])
else:
K = np.array(K)
Ko = np.array(Ko)
if second_order_clustering:
H = np.array(H)
Ho = np.array(Ho)
## Save files
if dest_folder == '':
np.savetxt('d.txt',d,fmt='%d')
if coclust:
for key in ['s','r']:
np.savetxt('K_'+key+'.txt',K[key],fmt='%d')
np.savetxt('Ko_'+key+'.txt',Ko[key],fmt='%d')
if second_order_clustering:
np.savetxt('H_'+key+'.txt',H[key],fmt='%d')
np.savetxt('Ho_'+key+'.txt',Ho[key],fmt='%d')
np.savetxt('psm_'+key+'.txt',psm[key]/float(np.max(psm[key])),fmt='%f')
else:
np.savetxt('K.txt',K,fmt='%d')
np.savetxt('Ko.txt',Ko,fmt='%d')
if second_order_clustering:
np.savetxt('H.txt',H,fmt='%d')
np.savetxt('Ho.txt',Ho,fmt='%d')
np.savetxt('psm.txt',psm/float(np.max(psm)),fmt='%f')
else:
np.savetxt(dest_folder+'/d.txt',d,fmt='%d')
if coclust:
for key in ['s','r']:
np.savetxt(dest_folder+'/K_'+key+'.txt',K[key],fmt='%d')
np.savetxt(dest_folder+'/Ko_'+key+'.txt',Ko[key],fmt='%d')
if second_order_clustering:
np.savetxt(dest_folder+'/H_'+key+'.txt',H[key],fmt='%d')
np.savetxt(dest_folder+'/Ho_'+key+'.txt',Ho[key],fmt='%d')
np.savetxt(dest_folder+'/psm_'+key+'.txt',psm[key]/float(np.max(psm[key])),fmt='%f')
else:
np.savetxt(dest_folder+'/d.txt',d,fmt='%d')
np.savetxt(dest_folder+'/K.txt',K,fmt='%d')
np.savetxt(dest_folder+'/Ko.txt',Ko,fmt='%d')
if second_order_clustering:
np.savetxt(dest_folder+'/H.txt',H,fmt='%d')
np.savetxt(dest_folder+'/Ho.txt',Ho,fmt='%d')
np.savetxt(dest_folder+'/psm.txt',psm/float(np.max(psm)),fmt='%f')
##### Plots #####
## Scree plot
U,S,V = np.linalg.svd(A)
plt.figure()
plt.plot(np.arange(len(S))+1,S,c='black')
plt.plot(np.arange(len(S))+1,S,'.',markersize=.3,c='black')
plt.plot(mode(d)[0][0]+1,S[mode(d)[0][0]],"o",c='red')
if dest_folder == '':
if not tex_figures:
plt.savefig('scree_plot.pdf')
else:
tikz_save('scree_plot.tex')
else:
if not tex_figures:
plt.savefig(dest_folder+'/scree_plot.pdf')
else:
tikz_save(dest_folder+'/scree_plot.tex')
## Posterior barplot (unrestricted)
if coclust:
for key in ['s','r']:
plt.figure()
fig, ax = plt.subplots()
ax.bar(np.array(Counter(Ko[key]).keys())-.35,Counter(Ko[key]).values(),width=0.35,color='black',align='edge',alpha=.8,label='$K_\\varnothing$')
if second_order_clustering:
ax.bar(np.array(Counter(Ho[key]).keys()),Counter(Ho[key]).values(),width=0.35,color='gray',align='edge',alpha=.8,label='$H_\\varnothing$')
leg = ax.legend()
ax.axvline(x=mode(d)[0][0],linestyle='--',c='red')
if dest_folder == '':
if not tex_figures:
plt.savefig('posterior_barplot_unrestricted_'+key+'.pdf')
else:
tikz_save('posterior_barplot_unrestricted_'+key+'.tex')
else:
if not tex_figures:
plt.savefig(dest_folder+'/posterior_barplot_unrestricted_'+key+'.pdf')
else:
tikz_save(dest_folder+'/posterior_barplot_unrestricted_'+key+'.tex')
else:
plt.figure()
fig, ax = plt.subplots()
ax.bar(np.array(Counter(Ko).keys())-.35,Counter(Ko).values(),width=0.35,color='black',align='edge',alpha=.8,label='$K_\\varnothing$')
if second_order_clustering:
ax.bar(np.array(Counter(Ho).keys()),Counter(Ho).values(),width=0.35,color='gray',align='edge',alpha=.8,label='$H_\\varnothing$')
leg = ax.legend()
ax.axvline(x=mode(d)[0][0],linestyle='--',c='red')
if dest_folder == '':
if not tex_figures:
plt.savefig('posterior_barplot_unrestricted.pdf')
else:
tikz_save('posterior_barplot_unrestricted.tex')
else:
if not tex_figures:
plt.savefig(dest_folder+'/posterior_barplot_unrestricted.pdf')
else:
tikz_save(dest_folder+'/posterior_barplot_unrestricted.tex')
## Posterior barplot (restricted)
if coclust:
for key in ['s','r']:
plt.figure()
fig, ax = plt.subplots()
ax.bar(np.array(Counter((Ko[key])[Ko[key] >= d]).keys())-.35,Counter((Ko[key])[Ko[key] >= d]).values(),width=0.35,
color='black',align='edge',alpha=.8,label='$K_\\varnothing$')
if second_order_clustering:
ax.bar(np.array(Counter((Ho[key])[Ko[key] >= d]).keys()),Counter((Ho[key])[Ko[key] >= d]).values(),width=0.35,
color='gray',align='edge',alpha=.8,label='$H_\\varnothing$')
leg = ax.legend()
ax.axvline(x=mode(d)[0][0],linestyle='--',c='red')
if dest_folder == '':
if not tex_figures:
plt.savefig('posterior_barplot_restricted_'+key+'.pdf')
else:
tikz_save('posterior_barplot_restricted_'+key+'.tex')
else:
if not tex_figures:
plt.savefig(dest_folder+'/posterior_barplot_restricted_'+key+'.pdf')
else:
tikz_save(dest_folder+'/posterior_barplot_restricted_'+key+'.tex')
else:
plt.figure()
fig, ax = plt.subplots()
ax.bar(np.array(Counter(Ko[Ko >= d]).keys())-.35,Counter(Ko[Ko >= d]).values(),width=0.35,color='black',align='edge',alpha=.8,label='$K_\\varnothing$')
if second_order_clustering:
ax.bar(np.array(Counter(Ho[Ko >= d]).keys()),Counter(Ho[Ko >= d]).values(),width=0.35,color='gray',align='edge',alpha=.8,label='$H_\\varnothing$')
leg = ax.legend()
ax.axvline(x=mode(d)[0][0],linestyle='--',c='red')
if dest_folder == '':
if not tex_figures:
plt.savefig('posterior_barplot_restricted.pdf')
else:
tikz_save('posterior_barplot_restricted.tex')
else:
if not tex_figures:
plt.savefig(dest_folder+'/posterior_barplot_restricted.pdf')
else:
tikz_save(dest_folder+'/posterior_barplot_restricted.tex')
## MAP for clustering
if coclust:
cc_pear = {}
cc_map = {}
for key in ['s','r']:
cc_pear[key] = estimate_clustering(psm[key])
cc_map[key] = estimate_clustering(psm[key],k=mode(Ko[key])[0][0])
if dest_folder == '':
| np.savetxt('pear_clusters_'+key+'.txt',cc_pear[key],fmt='%d') | numpy.savetxt |
import os
import numpy as np
import h5py as h5
import glob
import shutil
from .data_reader import DataReader_pred
from .predict_fn import pred_fn
import pkg_resources
model_dir = pkg_resources.resource_filename('phasenet', os.path.join('model', '190703-214543'))
script_path = os.path.dirname(os.path.realpath(__file__))
def format_data_hdf5(data, root_PN_inputs='.', filename='data.h5'):
"""Format data for PhasetNet (hdf5).
Save the data array in an hdf5 file such that PhaseNet can process it.
Parameters
-------------
data: (n_stations, 3, n_samples) nd.array
Numpy array with the continuous 3-component seismic data
on which we want to pick the P- and S-wave arrivals.
root_PN_inputs: string, default to '.'
Path to the root folder where formatted data will be stored.
filename: string, default to 'data.h5'
Name of the file listing the filenames of all 3-component
time series to process.
"""
import h5py as h5
with h5.File(os.path.join(root_PN_inputs, filename), 'w') as f:
f.create_group('data')
for i in range(data.shape[0]):
# place the component axis at the end
three_comp_data = np.swapaxes(data[i, ...], 0, 1)
f['data'].create_dataset(f'sample{i}', data=three_comp_data)
def format_data_ram(data):
"""Format data for PhasetNet.
Build the data dictionary for PhaseNet.
Parameters
-------------
data: (n_stations, 3, n_samples) nd.array
Numpy array with the continuous 3-component seismic data
on which we want to pick the P- and S-wave arrivals.
"""
data_pn = {}
for i in range(data.shape[0]):
data_pn[f'sample{i}'] = np.swapaxes(data[i, ...], 0, 1)
return data_pn
def run_pred(input_length,
model_path=model_dir,
data=None,
data_path='./dataset/waveform_pred/',
log_dir='./dataset/log/',
data_file='./dataset/data.h5',
format='hdf5',
amplitude=False,
batch_size=1,
threshold_P=0.6,
threshold_S=0.6,
**kwargs):
"""Run PhaseNet and fetch its raw output: the P and S probabilities.
Results are stored at the user-defined location `output_filename`. Extra
kwargs are passed to `phasenet.predict_fn.pred_fn`.
Parameters
------------
input_length: int
Duration, in samples, of the 3-component seismograms.
model_path: string, default to '/home/ebeauce/PhaseNet/model/190703-214543'
Path to the trained model. It is of course necessary to change the
default value to the adequate value on your machine (e.g. where you
downloaded PhaseNet).
data_path: string, default to './dataset/waveform_pred/'
Path to the folder with the 3-component seismograms in npz files.
log_dir: string, default to './dataset/log/'
data_list: string, default to './dataset/data_list.csv'
output_filename: string, default to './prediction.npy'
Name of the file with PhaseNet's outputs.
batch_size: int, default to 1
Number of 3-component seismograms processed by PhaseNet
at once. This should to take into account the machine's RAM.
threshold_P: float, default to 0.6
P-wave identification threshold. When PhaseNet's raw output
(proba) exceeds `threshold_P`, a detection is triggered.
threshold_S: float, default to 0.6
S-wave identification threshold. When PhaseNet's raw output
(proba) exceeds `threshold_S`, a detection is triggered.
"""
if format == 'hdf5':
data_reader = DataReader_pred(
format='hdf5',
data_list='', # not used with hdf5 format
hdf5_file=data_file,
hdf5_group='data',
amplitude=amplitude)
elif format == 'ram':
data_reader = DataReader_pred(
format='ram',
data=data,
amplitude=amplitude)
PhaseNet_proba, PhaseNet_picks = pred_fn(
data_reader, model_dir=model_path, log_dir=log_dir,
batch_size=batch_size, input_length=input_length,
min_p_prob=threshold_P, min_s_prob=threshold_S,
**kwargs)
if format == 'hdf5':
# PhaseNet does not take care of closing the hdf5 file
data_reader.h5.close()
return PhaseNet_proba, PhaseNet_picks
def automatic_picking(data,
station_names,
PN_base=None,
PN_dataset_name=None,
format='ram',
mini_batch_size=126,
threshold_P=0.6,
threshold_S=0.6,
**kwargs):
"""Wrapper function to call PhaseNet from a python script.
Extra kwargs are passed to `phasenet.predict_fn.pred_fn`.
Parameters
-----------
data: (n_events, n_stations, 3, n_samples) nd.array
Numpy array with the continuous 3-component seismograms of
`n_events` earthquakes recorded at a network of `n_stations`
stations.
station_names: list or array of strings
Name of the `n_stations` stations of the array, in the same
order as given in `data`.
PN_base: string, default to None
Path to the root folder where PhaseNet formatted data will
be stored. Required if `format='ram'`.
PN_dataset_name: string, default to None
Name of the folder, inside `PN_base`, where the formatted data
of a given experiment will be stored. Required if `format='ram'`.
mini_batch_size: int, default to 126
Number of 3-component seismograms processed by PhaseNet
at once. This should to take into account the machine's RAM.
threshold_P: float, default to 0.6
P-wave identification threshold. When PhaseNet's raw output
(proba) exceeds `threshold_P`, a detection is triggered.
threshold_S: float, default to 0.6
S-wave identification threshold. When PhaseNet's raw output
(proba) exceeds `threshold_S`, a detection is triggered.
Returns
---------
PhaseNet_probas: (n_events, n_stations, n_samples, 2) numpy.narray, float
Probabilities of P- and S-wave arrival on the continuous time axis.
PhaseNet_probas[..., 0] is the P-wave probability.
PhaseNet_probas[..., 1] is the S-wave probability.
PhaseNet_picks: dictionary
Dictionary with four fields: 'P_proba', 'P_picks',
'S_proba', 'S_picks'. Each of these fields contains
another dictionary with one entry per station. Finally,
the content of each PhaseNet_picks[field][station] is an
(n_events, numpy.ndarrays) array of arrays with all picks and
associated probabilities for each event.
"""
if format == 'hdf5':
if not os.path.isdir(PN_base):
print(f'Creating the formatted data root folder at {PN_base}')
os.mkdir(PN_base)
# clean up input/output directories if necessary
root_PN_inputs = os.path.join(PN_base, PN_dataset_name)
if not os.path.isdir(root_PN_inputs):
print(f'Creating the experiment root folder at {root_PN_inputs}')
os.mkdir(root_PN_inputs)
else:
PN_base = ''
root_PN_inputs = ''
# assume the data were provided in the shape
# (n_events x n_stations x 3-comp x time_duration)
n_events = data.shape[0]
n_stations = data.shape[1]
input_length = data.shape[3]
# for efficiency, we merge the event and the station axes
batch_size = n_events*n_stations
print('n events: {:d}, n stations: {:d}, batch size (n events x n stations): {:d}'.
format(n_events, n_stations, batch_size))
data = data.reshape(batch_size, 3, input_length)
# make sure the minibatch size is not larger than the
# total number of traces
minibatch_size = min(mini_batch_size, batch_size)
# generate the input files necessary for PhaseNet
if format == 'hdf5':
format_data_hdf5(data, root_PN_inputs=root_PN_inputs)
data_pn = None
elif format == 'ram':
data_pn = format_data_ram(data)
# call PhaseNet
PhaseNet_proba, PhaseNet_picks = run_pred(
input_length,
data_file=os.path.join(root_PN_inputs, 'data.h5'),
log_dir=os.path.join(root_PN_inputs, 'log'),
batch_size=mini_batch_size,
threshold_P=threshold_P,
threshold_S=threshold_S,
format=format,
data=data_pn,
**kwargs)
# the new PhaseNet_proba is an array of time series with [..., 0] = proba of P arrival
# and [..., 1] = proba of S arrival (the original [..., 0] was simply 1 - Pp - Ps)
PhaseNet_proba = PhaseNet_proba.reshape((n_events, n_stations, input_length, 3))[..., 1:]
PhaseNet_picks = PhaseNet_picks.reshape((n_events, n_stations, 2, 2))
# return picks in a comprehensive python dictionary
picks = {}
picks['P_picks'] = {}
picks['P_proba'] = {}
picks['S_picks'] = {}
picks['S_proba'] = {}
for s in range(n_stations):
# (n_events, arrays): array of arrays with all detected P-arrival picks
picks['P_picks'][station_names[s]] = PhaseNet_picks[:, s, 0, 0]
# (n_events, arrays): array of arrays with probabilities of all detected P-arrival picks
picks['P_proba'][station_names[s]] = PhaseNet_picks[:, s, 0, 1]
# (n_events, arrays): array of arrays with all detected S-arrival picks
picks['S_picks'][station_names[s]] = PhaseNet_picks[:, s, 1, 0]
# (n_events, arrays): array of arrays with probabilities of all detected S-arrival picks
picks['S_proba'][station_names[s]] = PhaseNet_picks[:, s, 1, 1]
if format == 'hdf5':
# clean up when done
shutil.rmtree(root_PN_inputs)
return PhaseNet_proba, picks
# --------------------------------------------------------------------------------
# The following functions were tailored for template matching applications
# --------------------------------------------------------------------------------
def get_best_picks(picks, buffer_length=50):
"""Filter picks to keep the best one on each 3-comp seismogram.
"""
for st in picks['P_picks'].keys():
for n in range(len(picks['P_picks'][st])):
pp = picks['P_picks'][st][n]
ps = picks['S_picks'][st][n]
# ----------------
# remove picks form the buffer length
valid_P_picks = picks['P_picks'][st][n] > int(buffer_length)
valid_S_picks = picks['S_picks'][st][n] > int(buffer_length)
picks['P_picks'][st][n] = picks['P_picks'][st][n][valid_P_picks]
picks['S_picks'][st][n] = picks['S_picks'][st][n][valid_S_picks]
picks['P_proba'][st][n] = picks['P_proba'][st][n][valid_P_picks]
picks['S_proba'][st][n] = picks['S_proba'][st][n][valid_S_picks]
# take only the highest probability trigger
if len(picks['S_picks'][st][n]) > 0:
best_S_trigger = picks['S_proba'][st][n].argmax()
picks['S_picks'][st][n] = picks['S_picks'][st][n][best_S_trigger]
picks['S_proba'][st][n] = picks['S_proba'][st][n][best_S_trigger]
# update P picks: keep only those that are before the best S pick
valid_P_picks = picks['P_picks'][st][n] < picks['S_picks'][st][n]
picks['P_picks'][st][n] = picks['P_picks'][st][n][valid_P_picks]
picks['P_proba'][st][n] = picks['P_proba'][st][n][valid_P_picks]
else:
# if no valid S pick: fill in with nan
picks['S_picks'][st][n] = np.nan
picks['S_proba'][st][n] = np.nan
if len(picks['P_picks'][st][n]) > 0:
best_P_trigger = picks['P_proba'][st][n].argmax()
picks['P_picks'][st][n] = picks['P_picks'][st][n][best_P_trigger]
picks['P_proba'][st][n] = picks['P_proba'][st][n][best_P_trigger]
else:
# if no valid P pick: fill in with nan
picks['P_picks'][st][n] = np.nan
picks['P_proba'][st][n] = np.nan
# convert picks to float to allow NaNs
picks['P_picks'][st] = np.float32(picks['P_picks'][st])
picks['S_picks'][st] = np.float32(picks['S_picks'][st])
picks['P_proba'][st] = np.float32(picks['P_proba'][st])
picks['S_proba'][st] = np.float32(picks['S_proba'][st])
return picks
def get_all_picks(picks, buffer_length=50):
"""Combine all picks from multiple events (1 station) in one array.
This function makes sense when the (n_events, n_stations, n_components,
n_samples) `data` array given to `automatic_picking` is an array of
`n_events` similar earthquakes (i.e. similar locations, and therefore
similar expected picks).
Then, each station has potentially many P-wave and S-wave
picks with which we can define a mean value and an error (see
`fit_probability_density`).
Parameters
---------------
picks: dictionary
Picks returned by `automatic_picking`.
buffer_length: int, default to 50
Due to some edge effects, PhaseNet tends to trigger false detections
at the beginning of a 3-comp seismogram. `buffer_length` is the time,
in samples, to ignore at the beginning.
Returns
-----------
picks: dictionary
A dictionary with 4 fields: `P_picks`, 'S_picks', 'P_proba',
'S_proba', and each of these fields is itself a dictionary for one
entry for each station.
Example: picks['P_picks']['station1'] = [124, 123, 126, 250] means that
4 P-wave picks were identified on station1, with possibly one outlier at
sample 250.
"""
for st in picks['P_picks'].keys():
P_picks = []
P_proba = []
S_picks = []
S_proba = []
for n in range(len(picks['P_picks'][st])):
pp = picks['P_picks'][st][n]
ps = picks['S_picks'][st][n]
# ----------------
# remove picks from the buffer length
valid_P_picks = picks['P_picks'][st][n] > int(buffer_length)
valid_S_picks = picks['S_picks'][st][n] > int(buffer_length)
picks['P_picks'][st][n] = picks['P_picks'][st][n][valid_P_picks]
picks['S_picks'][st][n] = picks['S_picks'][st][n][valid_S_picks]
picks['P_proba'][st][n] = picks['P_proba'][st][n][valid_P_picks]
picks['S_proba'][st][n] = picks['S_proba'][st][n][valid_S_picks]
# take all picks
P_picks.extend(picks['P_picks'][st][n].tolist())
P_proba.extend(picks['P_proba'][st][n].tolist())
S_picks.extend(picks['S_picks'][st][n].tolist())
S_proba.extend(picks['S_proba'][st][n].tolist())
picks['P_picks'][st] = np.int32(P_picks)
picks['S_picks'][st] = np.int32(S_picks)
picks['P_proba'][st] = | np.float32(P_proba) | numpy.float32 |
"""Auditory Filterbanks and scales for Speech and Audio Analysis.
The Gammatone filterbank is a direct translation of <NAME>' Gammatone-like
spectrograms package [1], which is partly and a direct translation of Malcolm
Slaney's Auditory toolbox [2].
References:
[1]: https://labrosa.ee.columbia.edu/matlab/gammatonegram/
[2]: https://engineering.purdue.edu/~malcolm/interval/1998-010/
"""
import numpy as np
from scipy import signal
from .util import fftfreqz, freqz
def dft2mel(nfft, sr=8000., nfilts=0, width=1., minfrq=0., maxfrq=4000.,
sphinx=False, constamp=True):
"""Map linear discrete frequencies to Mel scale."""
if nfilts == 0:
nfilts = np.int(np.ceil(hz2mel(np.array([maxfrq]), sphinx)[0]/2))
weights = np.zeros((nfilts, nfft))
# dft index -> linear frequency in hz
dftfrqs = np.arange(nfft/2+1, dtype=np.float)/nfft * sr
maxmel, minmel = hz2mel(np.array([maxfrq, minfrq]), sphinx)
binfrqs = mel2hz(minmel+np.linspace(0., 1., nfilts+2)
* (maxmel-minmel), sphinx)
for i in range(nfilts):
fs = binfrqs[i:i+3].copy()
fs = fs[1] + width*(fs-fs[1]) # adjust bandwidth if needed
loslope = (dftfrqs - fs[0])/(fs[1] - fs[0])
hislope = (fs[2] - dftfrqs)/(fs[2] - fs[1])
weights[i, 0:nfft/2+1] = np.maximum(0, np.minimum(loslope, hislope))
if constamp:
# Slaney-style mel is scaled to be approx constant E per channel
weights = np.diag(
2/(binfrqs[2:nfilts+2]-binfrqs[:nfilts])).dot(weights)
weights[:, nfft/2+1:] = 0 # avoid aliasing
return weights, binfrqs[1:]
def hz2dft(freq, sr, nfft):
"""Map frequency in Hz to discrete Fourier transform bins.
Parameters
----------
freq: array_like
Frequency in hz
sr: int
Sampling rate in hz
nfft: int
Number of DFT bins in range [0, 2*pi)
Returns
-------
bins: array_like
Frequency bin numbers
"""
return (freq/sr * nfft).astype('int')
def hz2mel(f, sphinx=True):
"""Convert linear frequency to mel frequency scale."""
if sphinx:
return 2595. * np.log10(1+f/700.)
# match Slaney's toolbox
f0, f_sp, brkfrq = 0., 200./3, 1000.
brkpt = (brkfrq - f0) / f_sp
logstep = np.exp(np.log(6.4)/27.)
z = np.empty_like(f)
lower = f < brkfrq # np.less(f,brkfrq)
higher = np.logical_not(lower)
z[lower] = (f[lower] - f0) / f_sp
z[higher] = brkpt + | np.log(f[higher]/brkfrq) | numpy.log |
import argparse
import sys
import optax
import torch
import numpy as np
import time
import jax
import jax.numpy as jnp
import matplotlib as mp
import haiku as hk
import dill as pickle
try:
mp.use("Qt5Agg")
mp.rc('text', usetex=True)
mp.rcParams['text.latex.preamble'] = [r"\usepackage{amsmath}"]
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.cm as cm
except ImportError:
pass
import deep_lagrangian_networks.jax_HNN_model as hnn
import deep_lagrangian_networks.jax_DeLaN_model as delan
import deep_lagrangian_networks.jax_Black_Box_model as black_box
from deep_lagrangian_networks.utils import load_dataset, init_env, activations
from deep_lagrangian_networks.jax_integrator import symplectic_euler, explicit_euler, runge_kutta_4
def running_mean(x, n):
cumsum = np.cumsum(np.concatenate([x[0] * np.ones((n,)), x]))
return (cumsum[n:] - cumsum[:-n]) / n
if __name__ == "__main__":
n_plot = 5
dataset = "uniform"
model_id = ["structured", "black_box", "structured", "black_box", "black_box"]
module_key = ["DeLaN", "DeLaN", "HNN", "HNN", "Network"]
colors = {
"DeLaN structured": cm.get_cmap(cm.Set1)(0),
"DeLaN black_box": cm.get_cmap(cm.Set1)(1),
"HNN structured": cm.get_cmap(cm.Set1)(2),
"HNN black_box": cm.get_cmap(cm.Set1)(3),
"Network black_box": cm.get_cmap(cm.Set1)(4),
}
results = {}
for i in range(n_plot):
with open(f"data/results/{module_key[i]}_{model_id[i]}_{dataset}.pickle", "rb") as file:
results[module_key[i] + " " + model_id[i]] = pickle.load(file)
if dataset == "char":
train_data, test_data, divider, dt = load_dataset(
filename="data/character_data.pickle",
test_label=["e", "q", "v"])
elif dataset == "uniform":
train_data, test_data, divider, dt = load_dataset(
filename="data/uniform_data.pickle",
test_label=["Test 0", "Test 1", "Test 2"])
else:
raise ValueError
vpt_th = 1.e-2
for i in range(n_plot):
key = f"{module_key[i]} {model_id[i]}"
n_seeds = results[key]['forward_model']['q_error'].shape[0]
xd_error = np.mean(results[key]['forward_model']['xd_error']), 2. * np.std(results[key]['forward_model']['xd_error'])
n_test = 2
vpt = np.zeros((0, n_test))
for i in range(n_seeds):
vpt_i = []
for j in range(n_test):
traj = np.concatenate([
results[key]['forward_model']['q_error'][i, divider[j]:divider[j+1]],
results[key]['forward_model']['q_error'][i, -1:] * 0.0 + 1.])
vpt_i = vpt_i + [np.argwhere(traj >= vpt_th)[0, 0]]
vpt = np.concatenate([vpt, np.array([vpt_i])])
vpt = np.mean(vpt), np.std(vpt)
unit = r"\text{s}"
string = f"${xd_error[0]:.1e}{'}'} \pm {xd_error[1]:.1e}{'}'}$ & ${vpt[0]*dt:.2f}{unit} \pm {vpt[1]*dt:.2f}{unit}$ \\\\".replace("e-", r"\mathrm{e}{-").replace("e+", r"\mathrm{e}{+")
print(f"{key:20} - " + string)
test_labels, test_qp, test_qv, test_qa, test_p, test_pd, test_tau, test_m, test_c, test_g = test_data
tau_g, tau_c, tau_m, tau = jnp.array(test_g), jnp.array(test_c), jnp.array(test_m), jnp.array(test_tau)
q, qd, qdd = jnp.array(test_qp), jnp.array(test_qv), jnp.array(test_qa)
p, pd = jnp.array(test_p), jnp.array(test_pd)
dHdt = jax.vmap(jnp.dot, [0, 0])(qd, tau)
H = jnp.concatenate([dt * jnp.cumsum(dHdt[divider[i]: divider[i+1]]) for i in range(3)])
def smoothing(x):
return np.concatenate([running_mean(x[divider[i]:divider[i + 1]], 10) for i in range(3)])
print("\n################################################")
print("Plotting Performance:")
# Alpha of the graphs:
plot_alpha = 0.8
y_offset = -0.15
n_test = 2
# Plot the performance:
q_low = np.clip(1.5 * np.min(np.array(q), axis=0), -np.inf, -0.01)
q_max = np.clip(1.5 * np.max(np.array(q), axis=0), 0.01, np.inf)
if dataset == "char":
q_max = np.array([0.25, 3.])
q_low = np.array([-1.25, 1.])
qd_low = np.clip(1.5 * np.min(qd, axis=0), -np.inf, -0.01)
qd_max = np.clip(1.5 * np.max(qd, axis=0), 0.01, np.inf)
p_low = np.clip(1.2 * np.min(p, axis=0), -np.inf, -0.01)
p_max = np.clip(1.2 * np.max(p, axis=0), 0.01, np.inf)
H_lim = [-0.01, +0.01] if dataset == "uniform" else [-2.75, +2.75]
err_min, err_max = 1.e-5, 1.e3
plt.rc('text', usetex=True)
color_i = ["r", "b", "g", "k"]
ticks = np.array(divider)
ticks = (ticks[:-1] + ticks[1:]) / 2
fig = plt.figure(figsize=(24.0 / 1.54, 8.0 / 1.54), dpi=100)
fig.subplots_adjust(left=0.06, bottom=0.12, right=0.98, top=0.95, wspace=0.24, hspace=0.2)
fig.canvas.set_window_title('')
legend = [
mp.patches.Patch(color=colors["DeLaN structured"], label="DeLaN - Structured Lagrangian"),
mp.patches.Patch(color=colors["DeLaN black_box"], label="DeLaN - Black-Box Lagrangian"),
mp.patches.Patch(color=colors["HNN structured"], label="HNN - Structured Hamiltonian"),
mp.patches.Patch(color=colors["HNN black_box"], label="HNN - Black-Box Hamiltonian"),
mp.patches.Patch(color=colors["Network black_box"], label="Feed-Forward Network"),
mp.patches.Patch(color="k", label="Ground Truth")]
ax0 = fig.add_subplot(3, 4, 1)
ax0.set_title(r"Generalized Position $\mathbf{q}$")
ax0.text(s=r"\textbf{Joint 0}", x=-0.25, y=.5, fontsize=12, fontweight="bold", rotation=90,
horizontalalignment="center", verticalalignment="center", transform=ax0.transAxes)
ax0.set_ylabel(r"$\mathbf{q}_0$ [Rad]")
ax0.get_yaxis().set_label_coords(-0.2, 0.5)
ax0.set_ylim(q_low[0], q_max[0])
ax0.set_xticks(ticks)
ax0.set_xticklabels(test_labels)
[ax0.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))]
ax0.set_xlim(divider[0], divider[n_test])
ax0.yaxis.set_label_coords(y_offset, 0.5)
ax1 = fig.add_subplot(3, 4, 5)
ax1.text(s=r"\textbf{Joint 1}", x=-.25, y=0.5, fontsize=12, fontweight="bold", rotation=90,
horizontalalignment="center", verticalalignment="center", transform=ax1.transAxes)
ax1.set_ylabel(r"$\mathbf{q}_1$ [Rad]")
ax1.get_yaxis().set_label_coords(-0.2, 0.5)
ax1.set_ylim(q_low[1], q_max[1])
ax1.set_xticks(ticks)
ax1.set_xticklabels(test_labels)
[ax1.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))]
ax1.set_xlim(divider[0], divider[n_test])
ax1.yaxis.set_label_coords(y_offset, 0.5)
ax2 = fig.add_subplot(3, 4, 9)
ax2.text(s=r"\textbf{Error}", x=-.25, y=0.5, fontsize=12, fontweight="bold", rotation=90,
horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes)
ax2.text(s=r"\textbf{(a)}", x=.5, y=-0.35, fontsize=12, fontweight="bold", horizontalalignment="center",
verticalalignment="center", transform=ax2.transAxes)
ax2.get_yaxis().set_label_coords(-0.2, 0.5)
ax2.set_xticks(ticks)
ax2.set_xticklabels(test_labels)
[ax2.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))]
ax2.set_xlim(divider[0], divider[n_test])
ax2.set_ylim(err_min, err_max)
ax2.set_yscale('log')
ax2.set_ylabel(r"Position Error")
ax2.yaxis.set_label_coords(y_offset, 0.5)
ax2.axhline(vpt_th, color="k", linestyle="--")
# Plot Ground Truth Torque:
ax0.plot(q[:, 0], color="k")
ax1.plot(q[:, 1], color="k")
# Plot DeLaN Torque:
for key in results.keys():
color = colors[key]
q_pred = results[key]["forward_model"]["q_pred"]
q_error = results[key]["forward_model"]["q_error"]
q_pred_min, q_pred_mean, q_pred_max = np.min(q_pred, axis=0), np.median(q_pred, axis=0), | np.max(q_pred, axis=0) | numpy.max |
import os
import os.path as osp
import tempfile
import numpy as np
import pytest
import torch
from mmhuman3d.models import HybrIK_trainer, HybrIKHead
from mmhuman3d.models.builder import build_body_model
from mmhuman3d.models.utils.inverse_kinematics import (
batch_get_3children_orient_svd,
batch_get_pelvis_orient,
batch_get_pelvis_orient_svd,
batch_inverse_kinematics_transform,
)
def generate_weights(output_dir):
"""Generate a SMPL model weight file to initialize SMPL model, and generate
a 3D joints regressor file."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
joint_regressor_file = os.path.join(output_dir, 'J_regressor_h36m.npy')
np.save(joint_regressor_file, np.zeros([17, 6890]))
smpl_mean_file = os.path.join(output_dir, 'h36m_mean_beta.npy')
np.save(smpl_mean_file, np.zeros([
10,
]))
return
def test_HybrIK_head():
tmpdir = tempfile.TemporaryDirectory()
# generate weight file for SMPL model.
generate_weights(tmpdir.name)
# initialize models
head = HybrIKHead(
smpl_mean_params=osp.join(tmpdir.name, 'h36m_mean_beta.npy'))
smpl = build_body_model(
dict(
type='HybrIKSMPL',
model_path='data/body_models/smpl',
extra_joints_regressor=osp.join(tmpdir.name,
'J_regressor_h36m.npy')))
if torch.cuda.is_available():
head = head.cuda()
smpl = smpl.cuda()
with pytest.raises(TypeError):
_ = HybrIKHead()
with pytest.raises(TypeError):
_ = HybrIKHead(
feature_channel=[512, 8],
smpl_mean_params='data/body_models/h36m_mean_beta.npy')
# mock inputs
batch_size = 4
input_shape = (batch_size, 512, 8, 8)
mm_inputs = _demo_head_inputs(input_shape)
features = mm_inputs.pop('features')
trans_inv = mm_inputs.pop('trans_inv')
joint_root = mm_inputs.pop('joint_root')
depth_factor = mm_inputs.pop('depth_factor')
intrinsic_param = mm_inputs.pop('intrinsic_param')
if torch.cuda.is_available():
predictions = head(features, trans_inv, intrinsic_param, joint_root,
depth_factor, smpl)
pred_keys = [
'pred_phi', 'pred_delta_shape', 'pred_shape', 'pred_pose',
'pred_uvd_jts', 'pred_xyz_jts_24', 'pred_xyz_jts_24_struct',
'pred_xyz_jts_17', 'pred_vertices', 'maxvals'
]
for k in pred_keys:
assert k in predictions
assert predictions[k].shape[0] == batch_size
with pytest.raises(RuntimeError):
joint_root = torch.zeros((6, 3)).cuda()
_ = head(features, trans_inv, intrinsic_param, joint_root,
depth_factor, smpl)
with pytest.raises(RuntimeError):
joint_root = torch.zeros((batch_size, 3))
_ = head(features, trans_inv, intrinsic_param, joint_root,
depth_factor, smpl)
tmpdir.cleanup()
def test_HybrIK_trainer():
tmpdir = tempfile.TemporaryDirectory()
# generate weight file for SMPL model.
generate_weights(tmpdir.name)
model_cfg = dict(
backbone=dict(
type='ResNet',
depth=34,
out_indices=[3],
norm_eval=False,
init_cfg=dict(
type='Pretrained', checkpoint='torchvision://resnet34')),
head=dict(
type='HybrIKHead',
smpl_mean_params=osp.join(tmpdir.name, 'h36m_mean_beta.npy')),
body_model=dict(
type='HybrIKSMPL',
model_path= # noqa: E251
'data/body_models/smpl',
extra_joints_regressor=osp.join(tmpdir.name,
'J_regressor_h36m.npy')),
loss_beta=dict(type='MSELoss', loss_weight=1),
loss_theta=dict(type='MSELoss', loss_weight=0.01),
loss_twist=dict(type='MSELoss', loss_weight=0.01),
loss_uvd=dict(type='L1Loss', loss_weight=1),
)
model = HybrIK_trainer(**model_cfg)
if torch.cuda.is_available():
model = model.cuda()
input_shape = (4, 3, 256, 256)
mm_inputs = _demo_mm_inputs(input_shape)
img = mm_inputs.pop('img')
img_metas = mm_inputs.pop('img_metas')
if torch.cuda.is_available():
output = model.forward_train(img, img_metas, **mm_inputs)
assert isinstance(output, dict)
assert 'loss_beta' in output
assert output['loss_beta'].dtype == torch.float32
with torch.no_grad():
output = model.forward_test(img, img_metas, **mm_inputs)
assert isinstance(output, dict)
for k in ['vertices', 'xyz_17', 'uvd_jts', 'xyz_24', 'image_path']:
assert k in output
tmpdir.cleanup()
def test_IK_functions():
N = 4
mm_inputs = _demo_IK_inputs(N)
pose_skeleton = mm_inputs['pose_skeleton']
phis = mm_inputs['phis']
rest_pose = mm_inputs['rest_pose']
children = mm_inputs['children']
parents = mm_inputs['parents']
rel_pose_skeleton = mm_inputs['rel_pose_skeleton']
rel_rest_pose = mm_inputs['rel_rest_pose']
rot_mat_chain_parent = mm_inputs['rot_mat_chain_parent']
global_orient = None
dtype = torch.float32
rot_mat, rot_rest_pose = batch_inverse_kinematics_transform(
pose_skeleton,
global_orient,
phis,
rest_pose,
children,
parents,
dtype,
train=False,
leaf_thetas=None)
assert rot_mat.shape == (N, 24, 3, 3)
assert rot_rest_pose.shape == (N, 29, 3)
rot_mat, rot_rest_pose = batch_inverse_kinematics_transform(
pose_skeleton,
global_orient,
phis,
rest_pose,
children,
parents,
dtype,
train=True,
leaf_thetas=None)
assert rot_mat.shape == (N, 24, 3, 3)
assert rot_rest_pose.shape == (N, 29, 3)
global_orient_mat = batch_get_pelvis_orient(rel_pose_skeleton.clone(),
rel_rest_pose.clone(), parents,
children, dtype)
assert global_orient_mat.shape == (N, 3, 3)
global_orient_mat = batch_get_pelvis_orient_svd(rel_pose_skeleton.clone(),
rel_rest_pose.clone(),
parents, children, dtype)
assert global_orient_mat.shape == (N, 3, 3)
rot_mat = batch_get_3children_orient_svd(rel_pose_skeleton, rel_rest_pose,
rot_mat_chain_parent, children,
dtype)
assert rot_mat.shape == (N, 3, 3)
def _demo_mm_inputs(input_shape=(1, 3, 256, 256)):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
trans_inv = np.zeros([N, 2, 3])
intrinsic_param = np.zeros([N, 3, 3])
joint_root = np.zeros([N, 3])
depth_factor = np.ones([N, 1])
target_uvd_29 = np.zeros([N, 87])
target_xyz_24 = np.zeros([N, 72])
target_weight_24 = np.ones([N, 72])
target_weight_29 = np.ones([N, 87])
target_xyz_17 = np.zeros([N, 51])
target_weight_17 = np.ones([N, 51])
target_theta = np.zeros([N, 96])
target_beta = np.zeros([N, 10])
target_smpl_weight = np.ones([N, 1])
target_theta_weight = np.ones([N, 96])
target_twist = np.zeros([N, 23, 2])
target_twist_weight = np.ones([N, 23, 2])
bbox = np.zeros([N, 4])
img_metas = [{
'img_shape': (H, W, C),
'center': np.array([W / 2, H / 2]),
'scale': np.array([0.5, 0.5]),
'rotation': 0,
'image_path': '<demo>.png',
} for _ in range(N)]
mm_inputs = {
'img': torch.FloatTensor(imgs).requires_grad_(True),
'trans_inv': torch.FloatTensor(trans_inv),
'intrinsic_param': torch.FloatTensor(intrinsic_param),
'joint_root': torch.FloatTensor(joint_root),
'depth_factor': torch.FloatTensor(depth_factor),
'target_uvd_29': torch.FloatTensor(target_uvd_29),
'target_xyz_24': torch.FloatTensor(target_xyz_24),
'target_weight_24': torch.FloatTensor(target_weight_24),
'target_weight_29': torch.FloatTensor(target_weight_29),
'target_xyz_17': torch.FloatTensor(target_xyz_17),
'target_weight_17': torch.FloatTensor(target_weight_17),
'target_theta': torch.FloatTensor(target_theta),
'target_beta': torch.FloatTensor(target_beta),
'target_smpl_weight': torch.FloatTensor(target_smpl_weight),
'target_theta_weight': torch.FloatTensor(target_theta_weight),
'target_twist': torch.FloatTensor(target_twist),
'target_twist_weight': torch.FloatTensor(target_twist_weight),
'bbox': torch.FloatTensor(bbox),
'img_metas': img_metas,
'sample_idx': | np.arange(N) | numpy.arange |
# ----------------------
# eval script for youcook2
# writen by <NAME>
# ----------------------
from __future__ import division
import numpy as np
import os
import json
import pickle
from tqdm import tqdm
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
import pdb
def parse_gt(root, dataset, gt_file, anno_file, vid_list_file, class_file, img_size, sample_num, thr, phase):
"""parse the box annotation
:param: dataset: dataset Name
:param gt_file: file name for store the box gt json file
:param anno_file: file name for store the segment time json file
:param vid_list_file: video list file name
:param class_path: file name for store the class label, stored in ./data/YouCookII/annotations/, each row is the name of a class
:param img_size: tuple (h, w) to specify the image size.
:param sample_num: sample number [int], 5: sample 5 frames per segment; 0: sample all frames per segment
:param thr: iou thresh greater than which the box and gt are matched
:output recs: record list of dict, each dict for a box, dict['label'], ['bbox'], ['thr'], ['img_idx']
"""
# load bbox ground truth
gt_path = os.path.join(root, dataset, 'annotations', gt_file)
with open(gt_path) as f:
gt = json.load(f)
# load anno segment time grond truth
anno_path = os.path.join(root, dataset, 'annotations', anno_file)
with open(anno_path) as f:
anno = json.load(f)
# get vid_ids:
vid_list_path = os.path.join(root, dataset, 'split', vid_list_file)
vid_ids = []
with open(vid_list_path) as f:
for line in f:
vid_ids.append(line.rstrip('\n').split('/')[-1])
# get class label list
class_list_path = os.path.join(root, dataset, 'annotations', class_file)
class_list = []
with open(class_list_path) as f:
for line in f:
class_list.append(line.rstrip('\n'))
# Parse the box annotation
print('start parsing box annotation...')
# iterate over each vid
img_count = 0
# recs: store the all dict of labels.
recs = []
for vid_ind, vid_id in enumerate(tqdm(vid_ids)):
h = gt['database'][vid_id]['height']
w = gt['database'][vid_id]['width']
eta_y = img_size[0]/h
eta_x = img_size[1]/w
# segs: list of tuple [(start, end)]
segs = [anno['database'][vid_id]['annotations'][i]['segment'] for i in range(len(anno['database'][vid_id]['annotations']))]
# seg_list: labeled seg
seg_list = [int(i) for i in gt['database'][vid_id]['annotations'].keys()]
seg_list.sort()
for seg_ind, seg in enumerate(segs):
# if the curretn segment is labeled
if seg_ind in seg_list:
obj_list = [int(i) for i in gt['database'][vid_id]['annotations'][str(seg_ind)].keys()]
obj_list.sort()
# frame_length: number of frame in the video segment
frame_length = seg[1] - seg[0]
# get the sampled frame index (if we are evaluation, we do not need to sample, all frames are needed)
# two senarios (now I only have the sampled data, so we need the sampled)
# 1. iterate over sampled frames
# 2. iterate over all frames
frame_list = range(frame_length) if sample_num == 0 else np.round(np.linspace(0, frame_length-1, sample_num)).astype('int')
# iterate over frame
for frame_ind in frame_list:
rec = {}
labels = []
bboxes = []
thrs = []
img_ids = []
# iterate over each box, if the frame id is labeled
for obj_ind in range(len(gt['database'][vid_id]['annotations'][str(seg_ind)].keys())):
# judge if the box should append to annotations
if (gt['database'][vid_id]['annotations'][str(seg_ind)][str(obj_ind)]['boxes'][str(frame_ind)]['outside'] == 0 and
gt['database'][vid_id]['annotations'][str(seg_ind)][str(obj_ind)]['boxes'][str(frame_ind)]['occluded'] == 0):
label = gt['database'][vid_id]['annotations'][str(seg_ind)][str(obj_ind)]['label']
# lemmatize the label
lemmatizer = WordNetLemmatizer()
label = str(lemmatizer.lemmatize(label, pos=wordnet.NOUN))
bbox = [gt['database'][vid_id]['annotations'][str(seg_ind)][str(obj_ind)]['boxes'][str(frame_ind)]['{}'.format(axis)] for axis in ['xtl', 'ytl', 'xbr', 'ybr']]
bbox[0], bbox[2] = bbox[0]*eta_x, bbox[2]*eta_x
bbox[1], bbox[3] = bbox[1]*eta_y, bbox[3]*eta_y
bbox = [int(i) for i in bbox]
labels.append(label)
bboxes.append(bbox)
thrs.append(thr)
img_ids.append(img_count)
rec['label'] = labels
rec['bbox'] = bboxes
rec['thr'] = thrs
rec['img_ids'] = img_ids
img_count += 1
recs.append(rec)
# if the segment is not labelled, padded with emtpy recs, but each frame should have one.
else:
# frame_length: number of frame in the video segment
frame_length = seg[1] - seg[0]
# get the sampled frame index (if we are evaluation, we do not need to sample, all frames are needed)
# two senarios (now I only have the sampled data, so we need the sampled)
# 1. iterate over sampled frames
# 2. iterate over all frames
frame_list = range(frame_length) if sample_num == 0 else np.round(np.linspace(0, frame_length-1, sample_num)).astype('int')
# iterate over frame
for frame_ind in frame_list:
rec = {}
rec['label'] = []
rec['bbox'] = []
rec['thr'] = []
rec['img_ids'] = []
recs.append(rec)
img_count += 1
# write recs to pkl cache file
cache_path = os.path.join('cache', dataset, 'gtbox_{}_sample_{}.pkl'.format(phase, sample_num))
with open(cache_path, 'wb') as f:
pickle.dump(recs, f)
return recs
def phrase_accuracy(recs, dets, class_list):
""" evaluate the detection result by phrase
assume the frame number in recs are the same with the frame number in dets
param: dets: detection result, list of four lists [[img_ids], [obj_labels], [obj_bboxes], [obj_confs]]
param: recs: record list of gt dict, each dict for a box, dict['label'], ['bbox'], ['thr'], ['img_idx']
param: class_list: list of all class
"""
# accuracy calculation method: for each phrase, it will ground the box in the current segmentation.
img_ids = np.array(dets[0])
obj_labels = np.array(dets[1])
obj_bboxes = np.array(dets[2])
obj_confs = np.array(dets[3])
# sort by img_ids
order = np.argsort(img_ids)
img_ids = img_ids[order]
obj_labels = obj_labels[order]
obj_bboxes = obj_bboxes[order]
obj_confs = obj_confs[order]
gt_img_id = recs[-1]['img_ids']
# store labels, confs, bboxes w.r.t image cell
obj_confs = obj_confs[order]
num_imgs = np.max(img_ids) + 1
obj_labels_cell = [None] * num_imgs
obj_confs_cell = [None] * num_imgs
obj_bboxes_cell = [None] * num_imgs
start_i = 0
id = img_ids[0]
for i in range(0, len(img_ids)):
if i == len(img_ids) - 1 or img_ids[i + 1] != id:
conf = obj_confs[start_i:i + 1]
label = obj_labels[start_i:i + 1]
bbox = obj_bboxes[start_i:i + 1, :]
sorted_inds = np.argsort(-conf)
obj_labels_cell[id] = label[sorted_inds]
obj_confs_cell[id] = conf[sorted_inds]
obj_bboxes_cell[id] = bbox[sorted_inds, :]
if i < len(img_ids) - 1:
id = img_ids[i + 1]
start_i = i + 1
# calculation accuracy w.r.t box. If the ground of the phrase class is correct, then it is matched.
match_num = 0
# construct incremental class label
# class match list: list of the matched number in each class
class_match_count = np.zeros(len(class_list), dtype=int)
# class_count: count how many is counted
class_count = np.zeros(len(class_list), dtype=int)
for img_id in range(num_imgs):
rec = recs[img_id]
# first loop det
obj_dict = {}
if obj_bboxes_cell[img_id] is None:
continue
for obj_label, obj_conf, obj_bbox in zip(obj_labels_cell[img_id], obj_confs_cell[img_id], obj_bboxes_cell[img_id]):
# second loop gt
for gt_label, gt_bbox, thr, img_idx in zip(rec['label'], rec['bbox'], rec['thr'], rec['img_ids']):
# calculate IoU
if obj_label != gt_label:
continue
# now obj_label == gt_label, check if it is the first time to add obj_label to obj_dict
if not obj_label in obj_dict.keys():
obj_dict[obj_label] = 0
class_ind = class_list.index(gt_label)
class_count[class_ind] += 1
elif obj_dict[obj_label] == 1:
# if the object has been matched, continue
continue
bi = [
np.max((obj_bbox[0], gt_bbox[0])),
np.max((obj_bbox[1], gt_bbox[1])),
np.min((obj_bbox[2], gt_bbox[2])),
np.min((obj_bbox[3], gt_bbox[3]))
]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap as area of intersection / area of union
ua = (obj_bbox[2] - obj_bbox[0] + 1.) * (obj_bbox[3] - obj_bbox[1] + 1.) + \
(gt_bbox[2] - gt_bbox[0] + 1.) * \
(gt_bbox[3] - gt_bbox[1] + 1.) - iw*ih
ov = iw * ih / ua
# makes sure that this object is detected according
# to its individual threshold
if ov >= thr:
match_num += 1
class_match_count[class_ind] += 1
# to prevent one phrase matched multiple gt.
obj_dict[obj_label] = 1
# class
class_accuracy = class_match_count/(class_count + 1e-6)
cls_mean_accuracy = np.mean(class_accuracy)
mean_accuracy = np.sum(class_match_count)/np.sum(class_count)
""" # uncomment to see per category accuracy
for p in zip(class_list, class_accuracy):
print ('{:10s}{:0.2%}'.format(p[0]+':', p[1]))
"""
print ('macro query accuracy: {:0.2%}'.format(cls_mean_accuracy))
print ('micro query accuracy: {:0.2%}'.format(mean_accuracy))
return cls_mean_accuracy
def box_accuracy(recs, dets, class_list):
""" evaluate the detection result by phrase
assume the frame number in recs are the same with the frame number in dets
param: dets: detection result, list of four lists [[img_ids], [obj_labels], [obj_bboxes], [obj_confs]]
param: recs: record list of gt dict, each dict for a box, dict['label'], ['bbox'], ['thr'], ['img_idx']
param: class_list: list of all class
"""
# accuracy calculation method: for each phrase, it will ground the box in the current segmentation.
img_ids = np.array(dets[0])
obj_labels = np.array(dets[1])
obj_bboxes = np.array(dets[2])
obj_confs = np.array(dets[3])
# sort by img_ids
order = np.argsort(img_ids)
img_ids = img_ids[order]
obj_labels = obj_labels[order]
obj_bboxes = obj_bboxes[order]
obj_confs = obj_confs[order]
gt_img_id = recs[-1]['img_ids']
# store labels, confs, bboxes w.r.t image cell
obj_confs = obj_confs[order]
num_imgs = np.max(img_ids) + 1
obj_labels_cell = [None] * num_imgs
obj_confs_cell = [None] * num_imgs
obj_bboxes_cell = [None] * num_imgs
start_i = 0
id = img_ids[0]
for i in range(0, len(img_ids)):
if i == len(img_ids) - 1 or img_ids[i + 1] != id:
conf = obj_confs[start_i:i + 1]
label = obj_labels[start_i:i + 1]
bbox = obj_bboxes[start_i:i + 1, :]
sorted_inds = np.argsort(-conf)
obj_labels_cell[id] = label[sorted_inds]
obj_confs_cell[id] = conf[sorted_inds]
obj_bboxes_cell[id] = bbox[sorted_inds, :]
if i < len(img_ids) - 1:
id = img_ids[i + 1]
start_i = i + 1
# calculation accuracy w.r.t box. If the ground of the phrase class is correct, then it is matched.
match_num = 0
# construct incremental class label
# class match list: list of the matched number in each class
class_match_count = np.zeros(len(class_list), dtype=int)
# class_count: count how many is counted
class_count = np.zeros(len(class_list), dtype=int)
for img_id in range(num_imgs):
rec = recs[img_id]
# first loop gt
for gt_label, gt_bbox, thr, img_idx in zip(rec['label'], rec['bbox'], rec['thr'], rec['img_ids']):
class_ind = class_list.index(gt_label)
class_count[class_ind] += 1
if obj_bboxes_cell[img_id] is None:
continue
# second loop dets
for obj_label, obj_conf, obj_bbox in zip(obj_labels_cell[img_id], obj_confs_cell[img_id], obj_bboxes_cell[img_id]):
# calculate IoU
if obj_label != gt_label:
continue
bi = [
np.max((obj_bbox[0], gt_bbox[0])),
| np.max((obj_bbox[1], gt_bbox[1])) | numpy.max |
# -*- coding: utf-8 -*-
"""
Created on Thu May 27 11:53:42 2021
@author: Shubham
"""
import os, numpy as np
import cv2
import random
import torch
import torch.utils.data as data
import xml.etree.ElementTree as ET
from abc import ABCMeta, abstractmethod
import scipy.cluster.vq as vq
import pickle
import pandas as pd
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
from cv2 import imread, resize
from numpy import concatenate
from sklearn.metrics import accuracy_score
from sklearn.semi_supervised import LabelPropagation
from sklearn.model_selection import train_test_split
import argparse
from imblearn.under_sampling import RandomUnderSampler
from skimage import feature
import warnings
warnings.filterwarnings("ignore")
"""
Data Loader reading the files, extracting individual objects from each image
"""
class DataLoader(data.Dataset):
def __init__(self,data_path="", trainval='trainval',transform=None):
self.data_path = data_path
self.transform = transform
self.trainval = trainval
self.__init_classes()
self.names, self.labels, self.lable_set, self.bounding_box = self.__dataset_info()
def __getitem__(self, index):
self.data = []
self.lables = []
x = imread(self.data_path+'JPEGImages/'+self.names[index]+'.jpg')
#x = resize(x, (256,256))
#print(self.bounding_box[index])
x_min, y_min, x_max, y_max = self.bounding_box[index]
for i in range(len(x_min)):
#print(i)
sub_img = x[y_min[i]:y_max[i],x_min[i]:x_max[i]]
#print(sub_img.shape)
#sub_img = resize(sub_img, (64,64))
sub_img = cv2.resize(sub_img, (64, 64),
interpolation=cv2.INTER_NEAREST)
self.data.append(sub_img)
self.lables.append(self.lable_set[index][i])
#print(self.lable_set[index])
#print(len(self.lable_set[index]))
#print(len(self.bounding_box[index]))
#x = Image.fromarray(x)
if self.transform !=None:
x = self.transform(x)
y = self.labels[index]
#return x, y
def __fetchdata__(self):
return self.data, self.lables
def __len__(self):
return len(self.names)
def __dataset_info(self):
#annotation_files = os.listdir(self.data_path+'/Annotations')
with open(self.data_path+'ImageSets/Main/'+self.trainval+'.txt') as f:
annotations = f.readlines()
annotations = [n[:-1] for n in annotations]
names = []
labels = []
lable_set = []
bounding_box = []
for af in annotations:
filename = os.path.join(self.data_path,'Annotations',af)
tree = ET.parse(filename+'.xml')
objs = tree.findall('object')
num_objs = len(objs)
bdg_box = [obj.find('bndbox') for obj in objs]
x_min = [int(box.find('xmin').text.lower().strip()) for box in bdg_box]
y_min = [int(box.find('ymin').text.lower().strip()) for box in bdg_box]
x_max = [int(box.find('xmax').text.lower().strip()) for box in bdg_box]
y_max = [int(box.find('ymax').text.lower().strip()) for box in bdg_box]
coords = (x_min, y_min, x_max, y_max)
boxes_cl = np.zeros((num_objs), dtype=np.int32)
temp_lbls = []
for ix, obj in enumerate(objs):
cls = self.class_to_ind[obj.find('name').text.lower().strip()]
boxes_cl[ix] = cls
temp_lbls.append(cls)
lbl = np.zeros(self.num_classes)
lbl[boxes_cl] = 1
labels.append(lbl)
names.append(af)
lable_set.append(temp_lbls)
bounding_box.append(coords)
return np.array(names), np.array(labels).astype(np.float32), lable_set, bounding_box
def __init_classes(self):
self.classes = ('aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
self.num_classes = len(self.classes)
self.class_to_ind = dict(zip(self.classes, range(self.num_classes)))
"""
local binary pattern
"""
class LocalBinaryPatterns:
def __init__(self, numPoints, radius):
# store the number of points and radius
self.numPoints = numPoints
self.radius = radius
def describe(self, image, eps=1e-7):
# compute the Local Binary Pattern representation
# of the image, and then use the LBP representation
# to build the histogram of patterns
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
lbp = feature.local_binary_pattern(image, self.numPoints,
self.radius, method="uniform")
(hist, _) = np.histogram(lbp.ravel(),
bins=np.arange(0, self.numPoints + 3),
range=(0, self.numPoints + 2))
# normalize the histogram
hist = hist.astype("float")
hist /= (hist.sum() + eps)
# return the histogram of Local Binary Patterns
return hist
"""
color layout descriptor
"""
class DescriptorComputer:
__metaclass__ = ABCMeta
@abstractmethod
def compute(self, frame):
pass
class ColorLayoutComputer(DescriptorComputer):
def __init__(self):
self.rows = 8
self.cols = 8
self.prefix = "CLD"
def compute(self, img):
averages = np.zeros((self.rows,self.cols,3))
imgH, imgW, _ = img.shape
for row in range(self.rows):
for col in range(self.cols):
row_start = int(imgH/self.rows * row)
row_end = int(imgH/self.rows * (row+1))
col_start = int(imgW/self.cols*col)
col_end = int(imgW/self.cols*(col+1))
slice1 = img[row_start:row_end, col_start:col_end]
#slice1 = img[imgH/self.rows * row: imgH/self.rows * (row+1), imgW/self.cols*col : imgW/self.cols*(col+1)]
#print(slice)
average_color_per_row = np.mean(slice1, axis=0)
average_color = np.mean(average_color_per_row, axis=0)
average_color = np.uint8(average_color)
averages[row][col][0] = average_color[0]
averages[row][col][1] = average_color[1]
averages[row][col][2] = average_color[2]
icon = cv2.cvtColor(np.array(averages, dtype=np.uint8), cv2.COLOR_BGR2YCR_CB)
y, cr, cb = cv2.split(icon)
dct_y = cv2.dct( | np.float32(y) | numpy.float32 |
#Current key bindings:
#left/right arrow: change direction (forward/backword, respectively) and make a step in that direction
#space bar: start/stop the animation
#from Scientific.IO.NetCDF import NetCDFFile as Dataset
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from threading import Timer
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
from netCDF4 import Dataset
i=0
surf=None
#1: forward; 0:backward
direction=1
#timestep
simstep=20
#animation flag
animating=False
stopped=True
#User interaction
def key_press_handler(event):
global direction
global animating
global stopped
already_animating = animating
print('press', event.key)
if (event.key=='right'):
print("right")
direction=1
elif (event.key=='left'):
print("left")
direction=0
elif (event.key==' '):
animating=not animating
if (not already_animating and stopped): update()
def get_data(filename):
data = []
print("Reading from " + filename)
ds = Dataset(filename, "r", format="NETCDF4")
#if (ds.iteration!=it): print("ERROR: requested it: " + str(it) + "; read it: " + str(ds.iteration))
data[:] = ds.variables["data"]
ds.close()
return data
#last=None
def update():
#print('press', event.key)
global i
global fig
global surf
global last
global simstep
global direction
global animating
global stopped
#i = i + (direction)*simstep - (1-direction)*simstep
i = i + 2*simstep*direction - simstep
if (i<=0):
i=0
return
#create x,y data (size of plate)
x = np.arange(0, 100)
y = np.arange(0, 100)
#last = solver.compute(i, last);
data = get_data("../output/data_" + str(i))
#data = last.data
print("update i:%i" % i)
xx, yy = np.meshgrid(x, y)
#print data
ax.clear()
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Temperature')
#make the plot
surf = ax.plot_surface(xx, yy, data, cmap=cm.coolwarm, vmin=0, vmax=20)
#source box (cache/simulator)
ctxt = "CACHE"
ccolor = "green"
fcolor = "black"
#ax.text(-10, 8, 27, ctxt, bbox=dict(facecolor=ccolor, alpha=0.5, boxstyle='round,pad=1'), color=fcolor, fontweight='bold', fontsize=12, verticalalignment='center')
ax.set_autoscale_on(False)
ax.set_zlim(0,20)
#fig.canvas.draw()
plt.draw()
#keep animating if animating==true
if (animating):
Timer(0.001, update).start()
stopped=False
else: stopped=True
#now this is useless
return (xx, yy, data)
#init plot
fig = plt.figure()
ax = fig.gca(projection='3d')
#Labels
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Temperature')
ax.zaxis.set_major_locator(LinearLocator(10))
#surf = ax.plot_surface(xx, yy, data)
xx,yy,data = update()
#install key handlers
fig.canvas.mpl_connect('key_press_event', key_press_handler)
surf.set_clim(vmin=0, vmax=20)
#colorbar
fig.colorbar(surf, shrink=0.5, aspect=5)
| np.set_printoptions(precision=3) | numpy.set_printoptions |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# MIT License
#
# Copyright (c) 2019, 2020 MACNICA Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
'''A collection of utility classes for video applications.
'''
import sys
import queue
import threading
import cv2
import time
import numpy as np
import argparse
import datetime
import logging
class VideoAppUtilsError(Exception):
pass
class VideoAppUtilsEosError(VideoAppUtilsError):
pass
class VideoAppUtilsDeviceError(VideoAppUtilsError):
pass
class PipelineWorker():
'''A worker thread for a stage in a software pipeline.
This class is an abstruct class. Sub classes inherited from this class
should implement a process stage of a software pipeline.
+------------------+ +------------------+ +------------------+
| PipelineWorker#1 | | PipelineWorker#2 | | PipelineWorker#3 |<-get()
| getData()->(Q)-----> process()->(Q)-----> process()->(Q)----->
+------------------+ +------------------+ +------------------+
Attributes:
queue: Queue to store outputs processed by this instance.
source: Data source (assumped to be other PipelineWorker instance)
destination: Data destination
(assumped to be other PipelineWorker instance)
sem: Semaphore to lock this instance.
flag: If ture, the processing loop is running.
numDrops: Total number of dropped outputs.
thread: Worker thread runs the _run instance method.
'''
def __init__(self, qsize, source=None, drop=True):
'''
Args:
qsize(int): Output queue capacity
source(PipelineWorker): Data source. If ommited, derived class
should implement the getData method.
'''
self.queue = queue.Queue(qsize)
self.source = source
if self.source is not None:
self.source.destination = self
self.drop = drop
self.destination = None
self.sem = threading.Semaphore(1)
self.flag = False
self.numDrops = 0
self._error = False
def __del__(self):
pass
def __repr__(self):
return '%02d %06d' % (self.qsize(), self.numDrops)
def process(self, srcData):
'''Data processing(producing) method called in thread loop.
Derived classes should implement this method.
Args:
srcData: Source data
'''
return (False, None)
def getData(self):
'''Returns a output to data consumer.
'''
if self.source is None:
return None
else:
return self.source.get()
def __run(self):
logging.info('%s thread started' % (self.__class__.__name__))
with self.sem:
self.flag = True
while True:
with self.sem:
if self.flag == False:
break
dat = None
try:
src = self.getData()
except VideoAppUtilsEosError:
self._error = True
logging.info('End of Stream detected')
else:
try:
ret, dat = self.process(src)
if ret == False:
self._error = True
dat = None
logging.info('Processing error')
except Exception as e:
self._error = True
dat = None
logging.critical(e)
if self.drop and self.queue.full():
self.queue.get(block=True)
self.numDrops += 1
self.queue.put(dat)
logging.info('%s thread terminated' % (self.__class__.__name__))
def clear(self):
try:
while True:
self.queue.get(block=False)
except queue.Empty:
return
def start(self):
'''Starts the worker thread.
'''
self.thread = threading.Thread(target=self.__run)
self.thread.start()
def get(self):
'''Gets a output.
'''
if self._error:
logging.info('VideoAppUtilsEosError')
raise VideoAppUtilsEosError
return None
return self.queue.get(block=True)
def stop(self):
'''Stops the worker thread.
'''
with self.sem:
self.flag = False
self.clear()
self.thread.join()
def qsize(self):
'''Returns the number of the current queued outputs
'''
sz = 0
with self.sem:
sz = self.queue.qsize()
return sz
class ContinuousVideoCapture(PipelineWorker):
'''Video capture workeer thread
'''
GST_STR_CSI = 'nvarguscamerasrc \
! video/x-raw(memory:NVMM), width=(int)%d, height=(int)%d, \
format=(string)NV12, framerate=(fraction)%d/1 \
! nvvidconv \
! video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx \
! videoconvert \
! appsink'
def __init__(self, cameraId, width, height, \
fps=None, qsize=30, fourcc=None):
'''
Args:
cameraId(int): Camera device ID, if negative number specified,
the CSI camera will be selected.
width(int): Capture width
height(int): Capture height
fps(int): Frame rate
qsize(int): Capture queue capacity
fourcc(str): Capture format FOURCC string
'''
super().__init__(qsize)
if cameraId < 0:
# CSI camera
if fps is None:
fps = 30
gstCmd = ContinuousVideoCapture.GST_STR_CSI \
% (width, height, fps, width, height)
self.capture = cv2.VideoCapture(gstCmd, cv2.CAP_GSTREAMER)
if self.capture.isOpened() is False:
raise VideoAppUtilsDeviceError( \
'CSI camera could not be opened.')
else:
# USB camera
# Open the camera device
self.capture = cv2.VideoCapture(cameraId,cv2.CAP_V4L2)
if self.capture.isOpened() is False:
raise VideoAppUtilsDeviceError( \
'Camera %d could not be opened.' % (cameraId))
# Set the capture parameters
self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, width)
self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
if fourcc is not None:
self.capture.set(cv2.CAP_PROP_FOURCC, \
cv2.VideoWriter_fourcc(*fourcc))
if fps is not None:
self.capture.set(cv2.CAP_PROP_FPS, fps)
# Get the actual frame size
# Not work for OpenCV 4.1
self.width = self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)
self.height = self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
def __del__(self):
super().__del__()
self.capture.release()
def getData(self):
ret, frame = self.capture.read()
if ret == False:
raise VideoAppUtilsEosError
return frame
def process(self, srcData):
return (True, srcData)
class VideoDecoder(PipelineWorker):
GST_STR_DEC_H264 = 'filesrc location=%s \
! qtdemux name=demux demux.video_0 \
! queue \
! h264parse \
! omxh264dec \
! nvvidconv \
! video/x-raw, format=(string)BGRx \
! videoconvert \
! appsink'
GST_STR_DEC_H265 = 'filesrc location=%s \
! qtdemux name=demux demux.video_0 \
! queue \
! h265parse \
! omxh265dec \
! nvvidconv \
! video/x-raw, format=(string)BGRx \
! videoconvert \
! appsink'
def __init__(self, file, qsize=30, repeat=False, h265=False):
'''
Args:
file(str):
qsize(int): Capture queue capacity
'''
super().__init__(qsize)
self.repeat = repeat
if h265:
self.gstCmd = VideoDecoder.GST_STR_DEC_H265 % (file)
else:
self.gstCmd = VideoDecoder.GST_STR_DEC_H264 % (file)
#self.capture = cv2.VideoCapture(self.gstCmd, cv2.CAP_GSTREAMER)
self.capture= cv2.VideoCapture(file)
if self.capture.isOpened() == False:
raise VideoAppUtilsEosError('%s could not be opened.' % (file))
# Get the frame size
self.width = self.capture.get(cv2.CAP_PROP_FRAME_WIDTH)
self.height = self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
self.frames = 0
def __del__(self):
super().__del__()
self.capture.release()
def getData(self):
ret, frame = self.capture.read()
if ret == False:
if self.repeat:
# Reopen the video file
self.capture.release()
self.capture = cv2.VideoCapture(self.gstCmd, cv2.CAP_GSTREAMER)
if self.capture.isOpened() == False:
raise VideoAppUtilsEosError( \
'%s could not be re-opened.' % (file))
frame = None
ret, frame = self.capture.read()
if ret == False:
raise VideoAppUtilsEosError
else:
logging.info('End of stream at frame %d' % (self.frames))
raise VideoAppUtilsEosError
self.frames += 1
return frame
def process(self, srcData):
return (True, srcData)
class IntervalCounter():
'''A counter to measure the interval between the measure method calls.
Attributes:
numSamples: Number of samples to calculate the average.
samples: Buffer to store the last N intervals.
lastTime: Last time stamp
count: Total counts
'''
def __init__(self, numSamples):
'''
Args:
numSamples(int): Number of samples to calculate the average.
'''
self.numSamples = numSamples
self.samples = | np.zeros(self.numSamples) | numpy.zeros |
from __future__ import print_function
import numpy as np
from scipy.linalg import eigh, expm, norm
from scipy.sparse import csr_matrix, spmatrix
from math import factorial
import warnings
from functools import reduce
try:
import qutip
except ImportError:
qutip = None
class Setup(object):
sparse = False
def __init__(self, H0, Hcs, c_ops=None, loss_vec=None, sparse=False):
self.sparse = sparse
if c_ops is None:
c_ops = []
self.c_ops = c_ops = self.map_from_qobj(c_ops)
self.H0 = self.from_qobj(H0)
for op in c_ops:
self.H0 += -0.5j*op.conj().T.dot(op)
dim = self.H0.shape[0]
assert self.H0.shape == (dim, dim)
self.Hcs = self.map_from_qobj(Hcs)
n_ctrls = self.Hcs.shape[0]
if not self.sparse:
assert self.Hcs.shape == (n_ctrls, dim, dim), self.Hcs.shape
self.hermitian = True
for H in [self.H0] + list(self.Hcs):
if self.sparse:
H = H.toarray()
if not np.allclose(H, H.conj().T):
print('Non-Hermitian hamiltonian detected!')
self.hermitian = False
break
self.loss_vec = loss_vec
def from_qobj(self, A, sparse=None):
if sparse is None:
sparse = self.sparse
if qutip is not None and isinstance(A, qutip.Qobj):
arr = np.squeeze(A.full())
elif sparse and isinstance(A, spmatrix):
return A.tocsr()
else:
arr = np.asarray(A).copy().astype(complex)
if sparse and arr.ndim == 2 and arr.shape[0] == arr.shape[1]:
return csr_matrix(arr)
return arr
def map_from_qobj(self, A, sparse=None):
return np.array([self.from_qobj(a, sparse=sparse) for a in A])
def get_fids(self, controls, aux_params, dt):
raise NotImplementedError
def set_dtype(self, dtype):
self.H0 = self.H0.astype(dtype)
self.Hcs = [Hc.astype(dtype) for Hc in self.Hcs]
class StateTransferSetup(Setup):
r"""Optimize a problem of the form
.. math::
\max_\epsilon \big|\sum_k \langle \text{final}_k| U(\epsilon) |\text{init}_k\rangle\big|
Since the absolute value is taken after the sum, this results in a coherent evolution of
the initial states into the final states.
"""
def __init__(self, H0, Hcs, inits, finals, c_ops=None, gauge_ops=None, loss_vec=None, coherent=True, sparse=False, use_taylor=False):
self.use_taylor = use_taylor
self.taylor_order = 5
if not use_taylor:
if sparse:
warnings.warn('Exact (non-taylor) method incompatible with sparse matrices, using dense matrices')
sparse = False
super(StateTransferSetup, self).__init__(H0, Hcs, c_ops=c_ops, loss_vec=loss_vec, sparse=sparse)
self.inits = self.map_from_qobj(inits)
self.finals = self.map_from_qobj(finals)
self.gauge_ops = None
self.coherent = coherent
if gauge_ops is not None:
self.gauge_ops = self.map_from_qobj(gauge_ops, sparse=False)
def optimize_taylor_order(self, max_norm, plen, dt, aux_params=None, tol=1e-6):
if aux_params is None:
aux_params = []
orders = []
for _ in range(3):
ctrls = max_norm * np.random.randn(len(self.Hcs), plen)
self.taylor_order = 5
prev_psi = self.get_fids(ctrls, aux_params, dt)[0]
rel_err = 1
while rel_err > tol:
self.taylor_order += 1
psi = self.get_fids(ctrls, aux_params, dt)[0]
rel_err = np.sum(np.abs(psi - prev_psi)**2) / np.sum(np.abs(psi)**2)
print('Taylor order:', self.taylor_order, 'Rel Err:', rel_err)
prev_psi = psi
orders.append(self.taylor_order)
self.taylor_order = max(orders)
print('Using taylor order', self.taylor_order)
def __getitem__(self, item):
return [self.H0, self.Hcs, self.inits, self.finals, self.gauge_ops][item]
def get_fids(self, controls, aux_params, dt):
if self.use_taylor:
return taylor_states_fidelity(
controls, self.H0, self.Hcs,
self.inits, self.finals, dt=dt,
gauge_vals=aux_params, gauge_ops=self.gauge_ops, hermitian=self.hermitian,
coherent=self.coherent, loss_vec=self.loss_vec, order=self.taylor_order
)
else:
return states_fidelity(
controls, self.H0, self.Hcs, self.inits, self.finals, dt=dt,
gauge_vals=aux_params, gauge_ops=self.gauge_ops, hermitian=self.hermitian,
coherent=self.coherent, loss_vec=self.loss_vec
)
def set_dtype(self, dtype):
super(StateTransferSetup, self).set_dtype(dtype)
self.inits = self.inits.astype(dtype)
self.finals = self.finals.astype(dtype)
if self.gauge_ops is not None:
self.gauge_ops = self.gauge_ops.astype(dtype)
class UnitarySetup(Setup):
r"""Optimize a problem of the form
.. math::
\max_\epsilon \big|\text{Tr}[U_\text{target} U(\epsilon)^\dagger]\big|
"""
def __init__(self, H0, Hcs, U_target, c_ops=None, gauge_ops=None):
super(UnitarySetup, self).__init__(H0, Hcs, c_ops=c_ops)
self.U_target = self.from_qobj(U_target)
self.gauge_ops = None
if gauge_ops is not None:
self.gauge_ops = self.map_from_qobj(gauge_ops)
def __getitem__(self, item):
return [self.H0, self.Hcs, self.U_target][item]
def get_fids(self, controls, aux_params, dt):
return prop_fidelity(
controls, self.H0, self.Hcs, self.U_target, aux_params, self.gauge_ops, dt,
hermitian=self.hermitian, loss_vec=self.loss_vec
)
def set_dtype(self, dtype):
super(UnitarySetup, self).set_dtype(dtype)
self.U_target = self.U_target.astype(dtype)
if self.gauge_ops is not None:
self.gauge_ops = self.gauge_ops
class ExpectationSetup(Setup):
def __init__(self, H0, Hcs, inits, expect_ops, c_ops=None):
super(ExpectationSetup, self).__init__(H0, Hcs, c_ops=c_ops)
self.inits = self.from_qobj(inits) #map_from_qobj(inits)
self.expect_ops = self.from_qobj(expect_ops) #map_from_qobj(expect_ops)
def __getitem__(self, item):
return [self.H0, self.Hcs, self.inits, self.expect_ops][item]
def get_fids(self, controls, aux_params, dt):
prop, fid, d_fid = get_expectation(controls, self.H0, self.Hcs, self.inits, self.expect_ops, dt)
return prop, fid, d_fid, np.zeros_like(aux_params)
def set_dtype(self, dtype):
super(ExpectationSetup, self).set_dtype(dtype)
self.inits = self.inits.astype(dtype)
self.expect_ops = self.expect_ops.astype(dtype)
class LindbladSetup(StateTransferSetup):
def __init__(self, H0, Hcs, inits, finals, c_ops, loss_vec=None, **kwargs):
L0 = self.make_liouvillian(H0) + sum(map(self.make_dissipator, c_ops))
Lcs = np.array(list(map(self.make_liouvillian, Hcs)))
inits = self.map_from_qobj(inits)
finals = self.map_from_qobj(finals)
if inits[0].shape[0] != L0.shape[0]:
rho_inits = [np.outer(i1, i2.conj()).flatten() for i1 in inits for i2 in inits]
rho_finals = [np.outer(f1, f2.conj()).flatten() for f1 in finals for f2 in finals]
else:
rho_inits = inits
rho_finals = finals
super(LindbladSetup, self).__init__(L0, Lcs, rho_inits, rho_finals, **kwargs)
# self.hermitian = False
def get_fids(self, controls, aux_params, dt):
prop, fid, d_fid, d_fid_aux = super(LindbladSetup, self).get_fids(controls, aux_params, dt)
fid = np.sqrt(fid)
d_fid = d_fid / fid
d_fid_aux = d_fid_aux / fid
return prop, fid, d_fid, d_fid_aux
def make_liouvillian(self, H):
H = self.from_qobj(H)
I = np.eye(H.shape[0])
return (np.kron(I, H) - np.kron(H.T, I))
def make_dissipator(self, c_op):
c_op = self.from_qobj(c_op)
cd = c_op.T.conj()
c = c_op
cdc = cd.dot(c)
I = np.eye(c_op.shape[0])
return 1j * (np.kron(cd.T, c) - 0.5 * (np.kron(I, cdc) + np.kron(cdc.T, I)))
class SubspaceSetup(StateTransferSetup):
def get_fids(self, controls, aux_params, dt):
assert not self.use_taylor
return states_fidelity(
controls, self.H0, self.Hcs, self.inits, self.finals, dt=dt,
gauge_vals=aux_params, gauge_ops=self.gauge_ops, hermitian=self.hermitian,
coherent=False, subspace_contain=True, loss_vec=self.loss_vec
)
def states_fidelity(controls, H_drift, H_controls, inits, finals, gauge_vals=None, gauge_ops=None,
dt=1, hermitian=True, coherent=True, subspace_contain=False, loss_vec=None):
n_ctrls, plen = controls.shape
n_states = len(inits)
use_gauge = gauge_ops is not None
dim = H_drift.shape[0]
H_drift = dt * H_drift
H_controls = dt * np.array(H_controls)
# TODO: Don't re-initialize every time if possible
props = np.empty((plen, dim, dim), H_drift.dtype)
d_props = np.empty((n_ctrls, plen, dim, dim), H_drift.dtype)
for i, time_slice in enumerate(controls.T):
H = H_drift + sum(c*Hc for c,Hc in zip(time_slice, H_controls))
if hermitian:
props[i], d_props[:, i, :, :] = step_propagator(H, H_controls, loss_vec)
else:
props[i], d_props[:, i, :, :] = step_propagator_nonhermitian(H, H_controls)
if use_gauge:
g_sum = sum(g_val*g_op for g_val, g_op in zip(gauge_vals, gauge_ops))
g_prop, d_g_props = step_propagator(g_sum, gauge_ops)
props = np.concatenate((props, [g_prop]))
prop_inits = [inits.T]
for prop in props:
prop_inits.append(prop.dot(prop_inits[-1]))
prop_finals = [finals.conj()]
for prop in reversed(props):
prop_finals.append(prop_finals[-1].dot(prop))
prop_finals.reverse()
if coherent:
ovlp = np.sum(prop_finals[-1].T * prop_inits[-1])
fid = abs(ovlp)
d_ovlps = []
for i, (pi, pf) in enumerate(zip(prop_inits[:plen], prop_finals[1:])):
for d_prop in d_props[:, i]:
d_ovlps.append(np.sum(pf.T * d_prop.dot(pi)))
d_ovlps = np.array(d_ovlps).reshape((plen, n_ctrls)).T
d_fids = (ovlp.real*d_ovlps.real + ovlp.imag*d_ovlps.imag) / (fid)
elif subspace_contain:
ovlps = prop_finals[-1].dot(prop_inits[-1])
a_ovlps = np.abs(ovlps)**2
fid = np.sum(a_ovlps)
d_fids = []
for i, (pi, pf) in enumerate(zip(prop_inits[:plen], prop_finals[1:])):
for d_prop in d_props[:, i]:
d_ovlp = pf.dot(d_prop.dot(pi))
d_a_ovlps = 2 * (ovlps.real*d_ovlp.real + ovlps.imag*d_ovlp.imag)
d_fids.append(np.sum(d_a_ovlps))
d_fids = np.array(d_fids).reshape((plen, n_ctrls)).T
else:
ovlps = np.sum(prop_finals[-1].T * prop_inits[-1], axis=0)
a_ovlps = np.abs(ovlps)**2
fid = np.sum(a_ovlps)
d_fids = []
for i, (pi, pf) in enumerate(zip(prop_inits[:plen], prop_finals[1:])):
for d_prop in d_props[:, i]:
d_ovlp = pf.T * d_prop.dot(pi)
d_a_ovlps = 2 * (ovlps.real*d_ovlp.real + ovlps.imag*d_ovlp.imag)
d_fids.append(np.sum(d_a_ovlps))
d_fids = np.array(d_fids).reshape((plen, n_ctrls)).T
if not use_gauge:
return prop_inits[-1], fid / n_states, d_fids / n_states, []
d_g_ovlps = []
pi = prop_inits[-2]
pf = prop_finals[-1]
for d_prop in d_g_props:
d_g_ovlps.append(np.sum(pf.T * d_prop.dot(pi)))
d_g_ovlps = np.array(d_g_ovlps)
d_g_fids = (ovlp.real*d_g_ovlps.real + ovlp.imag*d_g_ovlps.imag) / (fid)
return prop_inits[-1], fid / n_states, d_fids / n_states, d_g_fids / n_states
def get_expectation(controls, H_drift, H_controls, init, expect_op, dt=1):
H_drift = dt * H_drift
H_controls = dt * np.array(H_controls)
tot_prop, d_tot_props, _ = total_propagator(controls, H_drift, H_controls)
final = tot_prop.dot(init)
d_finals = np.einsum('ijkl,l->ijk', d_tot_props, init)
expect = final.conj().T.dot(expect_op).dot(final).real
d_op_finals = np.einsum('ij,klj->kli', expect_op, d_finals)
d_expects = 2*np.einsum('i,jki->jk', final.conj(), d_op_finals).real
return tot_prop, expect, d_expects
def prop_fidelity(controls, H_drift, H_controls, U_target, gauge_vals, gauge_ops, dt=1,
hermitian=True, loss_vec=None):
"""
Get the total propagator as well as the fidelity to a given target
defined as abs(Tr(U_target . U.conj().T)) and the gradient of the fidelity
with respect to the controls
"""
H_drift = dt * H_drift
H_controls = dt * np.array(H_controls)
tot_prop, d_tot_props, d_g_props = total_propagator(
controls, H_drift, H_controls, gauge_vals, gauge_ops, hermitian=hermitian, loss_vec=loss_vec
)
return prop_fidelity_from_U(tot_prop, d_tot_props, d_g_props, U_target)
def prop_fidelity_from_U(U, dUs, d_g_Us, U_target):
norm = np.sum(abs(U_target)**2)
overlap = np.sum(U_target.conj() * U) / norm
d_overlaps = np.sum(U_target.conj() * dUs, axis=(2,3)) / norm
fid = abs(overlap)
d_fid = (overlap.real*d_overlaps.real + overlap.imag*d_overlaps.imag) / fid
if len(d_g_Us) == 0:
d_g_fid = []
else:
d_g_overlaps = np.sum(U_target.conj() * d_g_Us, axis=(1,2)) / norm
d_g_fid = (overlap.real*d_g_overlaps.real + overlap.imag*d_g_overlaps.imag) / fid
return U, fid, d_fid, d_g_fid
def total_propagator(controls, H_drift, H_controls, gauge_vals=None, gauge_ops=None,
hermitian=True, loss_vec=None):
"""
Compute step propagator for each time point and take product
to find the total propagator. Similarly find the derivative
of the propagator with respect to the controls.
:param controls: (N_CTRLS, PLEN) real array
:param H_drift: (DIM, DIM) complex array
:param H_controls: (N_CTRLS, DIM, DIM) complex array
:return: (U_total, [d(U_total)/d(controls)])
"""
n_ctrls, plen = controls.shape
dim = H_drift.shape[0]
use_gauge = gauge_ops is not None
props = np.empty((plen, dim, dim), H_drift.dtype)
d_props = np.empty((n_ctrls, plen, dim, dim), H_drift.dtype)
for i, time_slice in enumerate(controls.T):
H = H_drift + sum(c*Hc for c,Hc in zip(time_slice, H_controls))
if hermitian:
props[i], d_props[:, i, :, :] = step_propagator(H, H_controls, loss_vec)
else:
props[i], d_props[:, i, :, :] = step_propagator_nonhermitian(H, H_controls)
if use_gauge:
g_sum = sum(g_val*g_op for g_val, g_op in zip(gauge_vals, gauge_ops))
g_prop, d_g_props = step_propagator(g_sum, gauge_ops)
props = np.concatenate((props, [g_prop]))
ahead = [np.identity(dim)]
for prop in props[:-1]:
ahead.append(prop.dot(ahead[-1]))
behind = [np.identity(dim)]
for prop in reversed(props[1:]):
behind.append(behind[-1].dot(prop))
behind.reverse()
tot_prop = props[-1].dot(ahead[-1])
d_tot_props = [list(map(mdot, list(zip(behind, d_props[i], ahead)))) for i in range(n_ctrls)]
if not use_gauge:
return tot_prop, np.array(d_tot_props), []
d_g_tot_props = [mdot((behind[-1], d_prop, ahead[-1])) for d_prop in d_g_props]
return tot_prop, np.array(d_tot_props), np.array(d_g_tot_props)
def total_propagator_only(controls, H_drift, H_controls, gauge_vals=None, gauge_ops=None,
hermitian=True, loss_vec=None, step_props=False):
n_ctrls, plen = controls.shape
dim = H_drift.shape[0]
use_gauge = gauge_ops is not None
props = np.empty((plen, dim, dim), H_drift.dtype)
for i, time_slice in enumerate(controls.T):
H = H_drift + sum(c*Hc for c,Hc in zip(time_slice, H_controls))
if hermitian:
props[i] = step_propagator(H, H_controls, loss_vec, prop_only=True)
else:
props[i] = step_propagator_nonhermitian(H, H_controls, prop_only=True)
if use_gauge:
raise NotImplemented # not tested
g_sum = sum(g_val*g_op for g_val, g_op in zip(gauge_vals, gauge_ops))
g_prop, d_g_props = step_propagator(g_sum, gauge_ops)
props = np.concatenate((props, [g_prop]))
ahead = [np.identity(dim)]
for prop in props[:-1]:
ahead.append(prop.dot(ahead[-1]))
tot_prop = props[-1].dot(ahead[-1])
if step_props:
return tot_prop, props
return tot_prop
def step_propagator_nonhermitian(A, Bs, n=3, beta=0.1, prop_only=False):
d = max(int(np.ceil(np.log2(norm(A)/beta))), 0)
X = -1j*A / 2**d
Ys = [-1j*B / 2**d for B in Bs]
X2 = X / 2
eX2 = expm(X2)
eX = eX2.dot(eX2)
if prop_only:
eA = eX
for k in range(d):
eA = eA.dot(eA)
return eA
coef = lambda k: 1.0 / factorial(2*k + 1)
deXs = []
for Y in Ys:
G = coef(n)*Y
for k in reversed(list(range(n))):
C1 = G.dot(X2) - X2.dot(G)
C2 = C1.dot(X2) - X2.dot(C1)
G = coef(k)*Y + C2
deXs.append(eX2.dot(G).dot(eX2))
eA = eX
deAs = deXs
for k in range(d):
deAs = [eA.dot(deA) + deA.dot(eA) for deA in deAs]
eA = eA.dot(eA)
return eA, deAs
def step_propagator(H, dHs, loss_vec=None, prop_only=False):
"""
Compute e^(-i*H) and (matrix-valued) derivatives in
the directions Hc for Hc in Hcs.
See doi:10.1006/aama.1995.1017, equation (7)
:param H: hermitian matrix to take exponential of
:param dHs: list of hermitian matrices to take derivatives in the direction of
:return: (prop, grads)
"""
vals, basis = eigh(H)
i_vals = -1j*vals
basis_hc = basis.conj().T
prop = (np.exp(i_vals) * basis).dot(basis_hc)
if prop_only:
return prop
# Loewner matrix G
z = -(i_vals.reshape((-1, 1)) - i_vals)
z_mask = abs(z) < 1e-8
G = np.zeros_like(z)
G[~z_mask] = (np.exp(z[~z_mask]) - 1) / z[~z_mask]
G[z_mask] = 1 + z[z_mask] / 2
left = prop.dot(basis) # todo: eliminate this operation by adjusting G
d_props = []
for dH in dHs:
inner = G * basis_hc.dot(dH.dot(basis))
d_prop = -1j * left.dot(inner.dot(basis_hc))
d_props.append(d_prop)
if loss_vec is not None:
prop = (loss_vec * prop.T).T
d_props = [(loss_vec * d_prop.T).T for d_prop in d_props]
return prop, np.array(d_props)
def get_unitary(controls, H_drift, H_controls, dt):
U = np.eye(H_drift.shape[0])
for i, time_slice in enumerate(controls.T):
H = H_drift + sum(c*Hc for c,Hc in zip(time_slice, H_controls))
U = expm(-1j*H*dt).dot(U)
return U
def mdot(ops):
"""
Take the dot product of an arbitrary number of terms
"""
return reduce(np.dot, ops)
def taylor_states_fidelity(controls, H0, Hcs, inits, finals, dt=1, gauge_vals=None, gauge_ops=None,
hermitian=True, coherent=True, loss_vec=None, order=5):
if gauge_ops is not None and len(gauge_ops) == 0:
gauge_ops = None
if gauge_ops is not None:
assert len(gauge_ops) == len(gauge_vals)
nctrls, plen = controls.shape
n_states, dim = inits.shape
if isinstance(H0, np.ndarray):
H0_hc = H0.conj().T
Hcs_hc = [hc.conj().T for hc in Hcs]
else:
H0_hc = H0.conj().T.tocsr()
Hcs_hc = [hc.conj().T.tocsr() for hc in Hcs]
if gauge_ops is not None:
g_sum = sum(g_val*g_op for g_val, g_op in zip(gauge_vals, gauge_ops))
g_prop, d_g_props = step_propagator(g_sum, gauge_ops)
# Propagate forward, with derivative
prop_inits = [inits.T]
d_prop_inits = []
for cs in controls.T:
L = -1j*dt*(H0 + sum(c*Hc for c, Hc in zip(cs, Hcs)))
psi = prop_inits[-1].copy()
# Next psi is sum over taylor terms psi_k = (L^k)/(k!)psi_0
psi_k = psi
d_psis = [0]*len(Hcs)
d_psi_ks = [np.zeros_like(psi) for _ in range(len(Hcs))]
for k in range(1, order+1):
for i, Hc in enumerate(Hcs):
d_psi_ks[i] = (L.dot(d_psi_ks[i]) + -1j*dt*Hc.dot(psi_k)) / k
d_psis[i] += d_psi_ks[i]
psi_k = L.dot(psi_k) / k
psi += psi_k
if loss_vec is not None:
psi = (loss_vec * psi.T).T
d_psis = [(loss_vec * d_psi.T).T for d_psi in d_psis]
prop_inits.append(psi)
d_prop_inits.append(d_psis)
if gauge_ops is not None:
d_prop_inits.append([dg.dot(prop_inits[-1]) for dg in d_g_props])
prop_inits.append(g_prop.dot(prop_inits[-1]))
# Propagate backward, derivative not needed
prop_finals = [finals.T]
if gauge_ops is not None:
prop_finals.append(g_prop.conj().T.dot(prop_finals[-1]))
for cs in reversed(controls.T):
Lhc = 1j*dt*(H0_hc + sum(c*Hc for c, Hc in zip(cs, Hcs_hc)))
psi = prop_finals[-1].copy()
if loss_vec is not None:
psi = (loss_vec * psi.T).T
psi_k = psi
for k in range(1, order+1):
psi_k = Lhc.dot(psi_k) / k
psi += psi_k
prop_finals.append(psi)
prop_finals.reverse()
# Compute fid
if coherent:
ovlp = np.sum(prop_finals[-1].conj() * prop_inits[-1]) / n_states
fid = abs(ovlp)
else:
ovlps = np.sum(prop_finals[-1].conj() * prop_inits[-1], axis=0)
a_ovlps = np.abs(ovlps)**2
fid = np.sum(a_ovlps) / n_states
# Check overlaps
# for pi, pf in zip(prop_inits, prop_finals):
# ovlp2 = np.sum(pf.conj() * pi) / n_states
# assert np.allclose(ovlp, ovlp2), (ovlp, ovlp2)
# Compute d_fid / d_controls
d_fids = []
if coherent:
for i, prop_final in enumerate(prop_finals[1:]):
for d_prop_init in d_prop_inits[i]:
d_ovlp = np.sum(prop_final.conj() * d_prop_init) / n_states
d_fids.append((d_ovlp.real * ovlp.real + d_ovlp.imag * ovlp.imag) / fid)
else:
for i, prop_final in enumerate(prop_finals[1:]):
for d_prop_init in d_prop_inits[i]:
d_ovlp = prop_final.conj() * d_prop_init
d_a_ovlps = 2 * (ovlps.real*d_ovlp.real + ovlps.imag*d_ovlp.imag)
d_fids.append(np.sum(d_a_ovlps) / n_states)
d_g_fids = np.array([])
if gauge_ops is not None:
ng = len(gauge_ops)
d_g_fids = np.array(d_fids[-ng:])
d_fids = d_fids[:-ng]
d_fids = np.array(d_fids).reshape((plen, nctrls)).T
return prop_inits[-1], fid, d_fids, d_g_fids
if __name__ == '__main__':
from .preparations import random_hermitian
dim = 5
n_gauge = 3
n_ctrls = 2
plen = 10
idx = 0
_, U_target = eigh(random_hermitian(dim))
H0 = random_hermitian(dim)
Hcs = [random_hermitian(dim) for _ in range(n_ctrls)]
gauge_ops = [random_hermitian(dim) for _ in range(n_gauge)]
gauge_vals = np.random.randn(n_gauge)
controls = | np.random.randn(n_ctrls, plen) | numpy.random.randn |
###
### Date: 25/11/2021
### Author: Konrad (Veinar)
###
from functools import singledispatchmethod
import numpy as np
class NeuralNetwork:
# Constructor
def __init__(self, num_Input, num_Hidden, num_Output, learning_rate=0.1) -> None:
# Get values from args (size/shape of NN)
self.input_nodes = num_Input
self.hidden_nodes = num_Hidden
self.output_nodes = num_Output
# Randomize weights on layer Input-Hidden
self.weights_ih = np.random.default_rng(np.random.randint(1, 100)).random(
(self.hidden_nodes, self.input_nodes)
)
# self.weights_ih = np.ones((self.hidden_nodes, self.input_nodes))
# Randomize weights in layer Hidden-Output
self.weights_ho = np.random.default_rng(np.random.randint(1, 100)).random(
(self.output_nodes, self.hidden_nodes)
)
# self.weights_ho = np.ones((self.output_nodes, self.hidden_nodes))
# Set BIAS for layers Hidden and Output
self.bias_h = np.ones((self.hidden_nodes, 1))
# self.bias_h = np.random.default_rng(np.random.randint(1, 100)).random(
# (self.hidden_nodes, 1)
# )
self.bias_o = np.ones((self.output_nodes, 1))
# self.bias_o = np.random.default_rng(np.random.randint(1, 100)).random(
# (self.output_nodes, 1)
# )
self.bias_h *= -1
self.bias_o *= -1
# Declare learning rate
self.learning_rate = learning_rate
# Set variables for errors per every layer
self.hidden_error = None
self.output_error = None
# Set variables for layers after sigmoid function
self.output = None
self.hidden = None
# Put data into NN
def feedforward(self, input):
# Make vertical array out of input
input = np.array(input)
input = np.vstack(input)
self.hidden = np.dot(self.weights_ih, input)
self.hidden = np.add(self.hidden, self.bias_h)
# Activation function for hidden layer
self.hidden = self.sigmoid(self.hidden)
self.output = np.dot(self.weights_ho, self.hidden)
self.output = np.add(self.output, self.bias_o)
# Activation function for output layer
self.output = self.sigmoid(self.output)
return self.output
# Activation function
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
# Devirative for activation function
def derivative_sigmoid(self, x):
return self.sigmoid(x) * (1 - self.sigmoid(x))
# Simplified diverative for activation function (for use in backpropagation)
def calculate_gradient(self, x):
return x * (1 - x)
# Backpropagation of NN
def backpropagation(self, inputs, targets) -> None:
# Feed NN
self.output = self.feedforward(inputs)
# TODO: delete this
np.printoptions(suppress=True)
# Make vertical matrix out of input
input = np.array(inputs)
input = np.vstack(input)
# Make vertical matrix out of targets
target = np.array(targets)
target = np.vstack(target)
# Calculate output error which is diffrence between target and output
# ERROR = TARGET - OUTPUT
self.output_error = np.subtract(target, self.output)
# OK! [rows = output_num, cols = 1]
# Calculate hidden layer errors
transposed_weights_ho = np.transpose(self.weights_ho)
self.hidden_error = np.dot(transposed_weights_ho, self.output_error)
# OK! [rows = hidden_num, cols = 1]
# -----------------------------------------------------------------
# Calculate delta to weights in HO layer
# -----------------------------------------------------------------
# DeltaHO = LEARN_RATE * output_error * (output * (1 - output)) -dot- hidden^T
delta_weights_ho = np.multiply(self.output_error, self.learning_rate)
delta_bias_o = self.calculate_gradient(delta_weights_ho)
delta_weights_ho = self.calculate_gradient(delta_weights_ho)
hidden_transposed = np.transpose(self.hidden)
delta_weights_ho = np.dot(delta_weights_ho, hidden_transposed)
# OK! same size as weights_ho
# -----------------------------------------------------------------
# Calculate delta to weights in IH layer
# -----------------------------------------------------------------
# DeltaIH = LEARN_RATE * hidden_error * (hidden * (1 - hidden)) -dot- Input^T
delta_weights_ih = np.multiply(self.hidden_error, self.learning_rate)
delta_bias_h = self.calculate_gradient(delta_weights_ih)
delta_weights_ih = self.calculate_gradient(delta_weights_ih)
input_transposed = | np.transpose(input) | numpy.transpose |
"""This Module contains basic Contextual Multi-Armed Bandit Algorithms."""
import copy
import math
import random
from abc import ABC, abstractmethod
import numpy as np
from pandas import DataFrame, Series
from scipy.stats import norm
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
class MABInterface(ABC):
"""Abstract base class for various Multi-Armed Bandit Algorithms."""
@abstractmethod
def select_arm(self) -> None:
"""Decide which arm should be selected."""
pass
@abstractmethod
def update(self) -> None:
"""Update the information about the arms."""
pass
@abstractmethod
def batch_update(self) -> None:
"""Update the information about the arms."""
pass
class LinUCB(MABInterface):
"""Linear Upper Confidence Bound Algorithm for Contextual Multi-Armed Bandit Problem.
References
-------
[1] <NAME>, <NAME>, John, and <NAME>.:
A contextual-bandit approach to personalized news article recommendation.
In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, 2010.
"""
def __init__(self, n_arms: int, feature_dim: int, alpha: float =1.0, warmup: int =15, batch_size: int=0) -> None:
"""Initialize class.
:param n_arms: the number of given arms.
:param feature_dim: dimentions of context matrix.
:param alpha: the hyper-parameter which represents how often the algorithm explore.
:param warmup: how many times the algorithms randomly explore arms at first.
:param batch_size: the size of information about rewards given in a update.
"""
self.n_arms = n_arms
self.feature_dim = feature_dim
self.warmup = warmup
self.alpha = alpha
self.theta = [copy.deepcopy(np.zeros(self.feature_dim)) for i in np.arange(n_arms)] # d * 1
self.A_inv = [copy.deepcopy(np.matrix(np.identity(self.feature_dim))) for i in np.arange(self.n_arms)] # d * d
self.b = [copy.deepcopy(np.matrix(np.zeros(self.feature_dim)).T) for i in np.arange(self.n_arms)] # d * 1
self.data_size = 0
self.batch_size = batch_size
self._A_inv = [copy.deepcopy(np.matrix(np.identity(self.feature_dim))) for i in np.arange(self.n_arms)] # d * d
self._b = [copy.deepcopy(np.matrix(np.zeros(self.feature_dim)).T) for i in np.arange(self.n_arms)] # d * 1
self.counts = np.zeros(self.n_arms, dtype=int)
self.rewards = 0
def select_arm(self, x: np.matrix) -> int:
"""Decide which arm should be selected.
:param x: observed context matrix.
:return: index of the selected arm.
"""
if True in (self.counts < self.warmup):
result = np.where(self.counts < self.warmup)[0][0]
else:
ucb_values = np.zeros(self.n_arms)
self.theta = np.concatenate([self.A_inv[i].dot(self.b[i]) for i in np.arange(self.n_arms)], axis=1) # user_dim * n_arms
mu_hat = self.theta.T.dot(x) # n_arms * 1
sigma_hat = self.alpha * np.concatenate([np.sqrt(x.T.dot(self.A_inv[i].dot(x))) for i in np.arange(self.n_arms)], axis=0) # n_arms * 1
result = np.argmax(mu_hat + sigma_hat)
return result
def update(self, x: np.matrix, chosen_arm: int, reward: float) -> None:
"""Update the information about the arms.
:param x: observed context matrix.
:param chosen_arm: index of the chosen arm.
:param reward: reward from the chosen arm.
"""
self.counts[chosen_arm] += 1
self.rewards += reward
self.A_inv[chosen_arm] -= self.A_inv[chosen_arm].dot(x.dot(x.T.dot(self.A_inv[chosen_arm]))) / (1 + x.T.dot(self.A_inv[chosen_arm].dot(x)))
self.b[chosen_arm] += x * reward # d * 1
def batch_update(self, x: np.matrix, chosen_arm: int, reward: float) -> None:
"""Update the information about the arms with a new batch of data.
:param x: observed context matrix.
:param chosen_arm: index of the chosen arm.
:param reward: reward from the chosen arm.
"""
self.data_size += 1
self.counts[chosen_arm] += 1
self.rewards += reward
self._A_inv[chosen_arm] -= self._A_inv[chosen_arm].dot(x.dot(x.T.dot(self._A_inv[chosen_arm]))) / (1 + x.T.dot(self._A_inv[chosen_arm].dot(x))) # d * d
self._b[chosen_arm] += x * reward # d * 1
if self.data_size % self.batch_size == 0:
self.A_inv = copy.deepcopy(self._A_inv) # d * d
self.b = copy.deepcopy(self._b) # d * 1
class HybridLinUCB(MABInterface):
"""Hybrid Linear Upper Confidence Bound Algorithm for Contextual Multi-Armed Bandit Problem.
References
-------
[1] <NAME>, <NAME>, Langford, John, and Schapire, <NAME>.:
A contextual-bandit approach to personalized news article recommendation.
In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, 2010.
"""
def __init__(self, n_arms: int, z_dim: int, x_dim: int, alpha: float =1.0, warmup: int =15, batch_size: int=0) -> None:
"""Initialize class.
:param n_arms: the number of given arms.
:param z_dim: dimensions of context matrix which is common to all arms.
:param x_dim: dimentions of context matrix which is unique to earch arm.
:param alpha: the hyper-parameter which represents how often the algorithm explore.
:param warmup: how many times the algorithms randomly explore arms at first.
:param batch_size: the size of information about rewards given in a update.
"""
self.n_arms = n_arms
self.z_dim = z_dim # k
self.x_dim = x_dim # d
self.warmup = warmup
self.alpha = alpha
self.beta = np.zeros(self.z_dim)
self.theta = None # d * 1
# matrices which are common to all context
self.A_zero = np.matrix(np.identity(self.z_dim)) # k * k
self.b_zero = np.matrix(np.zeros(self.z_dim)).T # k * 1
# matrices which are different for each context
self.A_inv = [copy.deepcopy(np.matrix(np.identity(self.x_dim))) for i in np.arange(self.n_arms)]
self.B = [copy.deepcopy(np.matrix(np.zeros((self.x_dim, self.z_dim)))) for i in range(self.n_arms)] # d * k
self.b = [copy.deepcopy(np.matrix(np.zeros(self.x_dim)).T) for i in range(self.n_arms)] # d * 1
self.data_size = 0
self.batch_size = batch_size
self._A_zero = np.matrix(np.identity(self.z_dim)) # k * k
self._b_zero = np.matrix(np.zeros(self.z_dim)).T # k * 1
self._A_inv = [copy.deepcopy(np.matrix(np.identity(self.x_dim))) for i in range(self.n_arms)] # d * d
self._B = [copy.deepcopy(np.matrix(np.zeros((self.x_dim, self.z_dim)))) for i in range(self.n_arms)] # d * k
self._b = [copy.deepcopy(np.matrix(np.zeros(self.x_dim)).T) for i in range(self.n_arms)] # d * 1
self.counts = np.zeros(self.n_arms, dtype=int)
self.rewards = 0
def select_arm(self, x: np.matrix) -> int:
"""Decide which arm should be selected.
:param x: observed context matrix.
:return: index of the selected arm.
"""
z = x[:][:self.z_dim]
x = x[:][self.z_dim:]
if True in (self.counts < self.warmup):
result = np.where(self.counts < self.warmup)[0][0]
else:
ucb_values = np.zeros(self.n_arms)
self.beta = np.linalg.inv(self.A_zero).dot(self.b_zero) # k * 1
self.theta = [self.A_inv[i].dot(self.b[i] - self.B[i].dot(self.beta)).A.reshape(self.x_dim) for i in np.arange(self.n_arms)] # d * 1
mu_hat = [z.T.dot(self.beta) + x.T.dot(self.theta[i]) for i in np.arange(self.n_arms)]
s1 = z.T.dot(np.linalg.inv(self.A_zero)).dot(z).A[0]
s2 = - 2 * np.array([z.T.dot(np.linalg.inv(self.A_zero)).dot(self.B[i].T).dot(self.A_inv[i]).dot(x) for i in | np.arange(self.n_arms) | numpy.arange |
"""Transform a roidb into a trainable roidb by adding a bunch of metadata."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datasets
import numpy as np
from model.utils.config import cfg
import PIL
import pdb
import os
from nuscenes import NuScenes
from nuscenes.utils.geometry_utils import view_points, BoxVisibility
import pickle
def prepare_roidb():
"""Enrich the imdb's roidb by adding some derived quantities that
are useful for training. This function precomputes the maximum
overlap, taken over ground-truth boxes, between each ROI and
each ground-truth box. The class with maximum overlap is also
recorded.
"""
classes = ('__background__',
'pedestrian', 'barrier', 'trafficcone', 'bicycle', 'bus', 'car', 'construction', 'motorcycle', 'trailer', 'truck')
nusc_path = '/data/sets/nuscenes'
nusc= NuScenes(version='v1.0-trainval', dataroot = nusc_path, verbose= True)
if os.path.exists('lib/roi_data_layer/roidb_nuscenes_mini.pkl'):
print("Reading roidb..")
pickle_in = open("lib/roi_data_layer/roidb_nuscenes_mini.pkl","rb")
roidb = pickle.load(pickle_in)
return nusc, roidb
else:
file_dir = os.path.dirname(os.path.abspath(__file__))
roots = file_dir.split('/')[:-2]
root_dir = ""
for folder in roots:
if folder != "":
root_dir = root_dir + "/" + folder
PATH = root_dir + '/data/train_mini.txt'
with open(PATH) as f:
image_token = [x.strip() for x in f.readlines()]
roidb = []
print("Loading roidb...")
for i in range(len(image_token)):
im_token = image_token[i]
sample_data = nusc.get('sample_data', im_token)
image_name = sample_data['filename']
image_path = nusc_path + '/' + image_name
data_path, boxes, camera_intrinsic = nusc.get_sample_data(im_token, box_vis_level=BoxVisibility.ALL)
gt_boxes = []
gt_cls = []
for box in boxes:
visibility_token = nusc.get('sample_annotation', box.token)['visibility_token']
vis_level = int(nusc.get('visibility', visibility_token)['token'])
if (vis_level == 3) or (vis_level == 4):
visible = True
else:
visible = False
if visible == True:
if box.name.split('.')[0] == 'vehicle':
if box.name.split('.')[1] != 'emergency':
name = box.name.split('.')[1]
else:
name = ''
elif box.name.split('.')[0] == 'human':
name = 'pedestrian'
elif box.name.split('.')[0] == 'movable_object':
if box.name.split('.')[1] != 'debris' and box.name.split('.')[1] != 'pushable_pullable':
name = box.name.split('.')[1]
else:
name = ''
else:
name = ''
if name != '':
corners= view_points(box.corners(), view=camera_intrinsic, normalize=True)[:2,:]
box = np.zeros(4)
box[0]= | np.min(corners[0]) | numpy.min |
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import numpy as np
import blosum as bl
from random import randint
def load_pssm(namefile, aa) :
"""
Lecture d'un fichier .aamtx et renvoie matrice PSSM
"""
with open (namefile, 'r') as f :
for line in f :
if line[0] == '>' :
name = line[1:-1]
elif line[0] in aa :
seq = line[:-1]
pssm = []
else :
pssm.append([float(j) for j in line[:-1].split(' ') if j])
return(name, list(seq), pssm)
def calc_score(vect1, vect2) :
"""
Calcule du score d'alignement entre 2 aa pour une position donnée
"""
s = 0
n1, n2 = len(vect1), len(vect2)
for i in range(n1) :
for j in range(n2) :
s += vect1[i]*vect2[j]
return(s)
def calc_gap_optimal(nq, nt, pssmQ, pssmT, blosum):
"""
Fonction qui calcule et renvoie les pénalités d'ouverture (po) et d'extension de gap (pe) optimales
"""
gaps = np.arange(0.1, 10, 0.1)
A = []
scores = []
blsmean = blosum.stack().mean()
blsstd = blosum.stack().std()
for gap in gaps:
A.append((gap - blsmean) / blsstd)
# Scores - random PSSM
for i in range(nq):
for j in range(nt):
ri, rj = randint(0, nq-1), randint(0, nt-1) #sélection des indices de la pssm de manière aléatoires
scores.append(calc_score(pssmQ[ri], pssmT[rj]))
smean = np.array(scores).mean()
sstd = np.array(scores).std()
po = []
pe = []
for i in range(len(A)):
po.append((A[i] * sstd) + smean)
pe.append(po[i] * 10 / 100)
return(-np.array(po).mean(), -np.array(pe).mean())
def init_matInsert(i, j, po):
"""
Initialisation matrice des ajouts de gaps (au niveau de la Query (Q)
ou au niveau de la template (T)) entre aaQ (en position i) et aaT (en position j)
"""
if i > 0:
return -np.inf
else:
if j > 0 and i == 0:
return po*j
else:
return 0
def init_matMatch(i, j):
"""
Initialisation matrice des matchs (M) entre aaQ (en position i) et aaT (en position j)
"""
if j == 0 and i == 0:
return 0
else:
if j == 0 or i == 0:
return -np.inf
else:
return 0
def scores_propositions(i, j, M, Q, T, pssmQ, pssmT, p, type_score):
"""
Calcul des propositions de scores d'alignement aaQ - aaT
"""
propositions = []
if type_score == 'M':
score = calc_score(pssmQ[i-1], pssmT[j-1])
propositions.append(score + M[i-1,j-1])
propositions.append(Q[i,j])
propositions.append(T[i,j])
elif type_score == 'Q':
propositions.append(M[i,j-1] + p)
propositions.append(Q[i,j-1] + p)
propositions.append(T[i,j-1] + p)
elif type_score == 'T':
propositions.append(M[i-1,j] + p)
propositions.append(Q[i-1,j] + p)
propositions.append(T[i-1,j] + p)
return(propositions)
def crea_matrix(fileQ, fileT):
"""
Création et initialisation des matrices des matchs (M) et des insertions de gaps (Q et T)
(Méthode affine)
"""
aa, blosum = bl.load_blosum("bin/salut_1.0/data/BLOSUM62.txt")
nameQ, seqQ, pssmQ = load_pssm(fileQ, aa)
nameT, seqT, pssmT = load_pssm(fileT, aa)
if len(seqQ) != len(pssmQ):
print(">>> ERREUR : La longueur de la séquence QUERY est différente du nombre de lignes lues dans la PSSM QUERY\n")
sys.exit(1)
elif len(seqT) != len(pssmT):
print(">>> ERREUR : La longueur de la séquence TEMPLATE est différente du nombre de lignes lues dans la PSSM TEMPLATE\n")
sys.exit(1)
nq, nt = len(seqQ)+1, len(seqT)+1
po, pe = calc_gap_optimal(len(seqQ), len(seqT), pssmQ, pssmT, blosum)
M = | np.zeros((nq, nt)) | numpy.zeros |
# -*- coding: utf-8 -*-
import time
from utils import letterbox_image,exp,minAreaLine,draw_lines,minAreaRectBox,draw_boxes,line_to_line,sqrt,rotate_bound,timer,is_in
from line_split import line_split
import numpy as np
import cv2
from PIL import Image
from skimage import measure
import json
# crnn
from crnn.crnn_torch import crnnOcr, crnnOcr2
tableNetPath = 'UNet/table.weights'
SIZE = 512,512
tableNet = cv2.dnn.readNetFromDarknet(tableNetPath.replace('.weights','.cfg'),tableNetPath)
def dnn_table_predict(img,prob=0.5):
imgResize,fx,fy,dx,dy = letterbox_image(img,SIZE)
imgResize = np.array(imgResize)
imgW,imgH = SIZE
image = cv2.dnn.blobFromImage(imgResize,1,size=(imgW,imgH),swapRB=False)
image = np.array(image)/255
tableNet.setInput(image)
out=tableNet.forward()
out = exp(out[0]) # shape(2,512,512) , 2指的是横纵线两个类对应的map
out = out[:,dy:,dx:] # 虽然左上点对上了,但是右方或下方的padding没去掉?
return out,fx,fy,dx,dy
def get_seg_table(img,prob,row=10,col=10):
out,fx,fy,dx,dy = dnn_table_predict(img,prob)
rows = out[0]
cols = out[1]
labels=measure.label(cols>prob,connectivity=2)
regions = measure.regionprops(labels)
ColsLines = [minAreaLine(line.coords) for line in regions if line.bbox[2]-line.bbox[0]>col ]
# if debug:
# cv2.imwrite('_cols.jpg',labels*255)
labels=measure.label(rows>prob,connectivity=2)
regions = measure.regionprops(labels)
RowsLines = [minAreaLine(line.coords) for line in regions if line.bbox[3]-line.bbox[1]>row ]
# RowsLines[0] = [xmin,ymin,xmax,ymax]注x指横向上,y指纵向上
# if debug:
# cv2.imwrite('_rows.jpg',labels*255)
imgW,imgH = SIZE
tmp =np.zeros((imgH-2*dy,imgW-2*dx),dtype='uint8')
tmp = draw_lines(tmp,ColsLines+RowsLines,color=255, lineW=1)
# 闭运算:先膨胀后腐蚀,用来连接被误分为许多小块的对象
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
tmp = cv2.morphologyEx(tmp, cv2.MORPH_CLOSE, kernel,iterations=1)
seg_table = cv2.resize(tmp,None,fx=1.0/fx,fy=1.0/fy,interpolation=cv2.INTER_CUBIC)
degree = 0.0
if len(RowsLines) >= 3:
degree = np.array([np.arctan2(bbox[3]-bbox[1],bbox[2]-bbox[0]) for bbox in RowsLines])
degree = np.mean(-degree*180.0/np.pi)
return seg_table,degree
def find_tables(img_seg):
# from the seg image, detect big bounding box and decide how many tables in the picture
tables = []
h,w = img_seg.shape
_,contours, hierarchy = cv2.findContours(img_seg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
table_flag = True
contourArea = cv2.contourArea(contour)
if contourArea < h * w * 0.05:
table_flag = False
if not table_flag:
continue
contour = contour.reshape((-1, 2))
xmin,ymin = np.min(contour,axis=0)
xmax,ymax = np.max(contour,axis=0)
tables.append([xmin,ymin,xmax,ymax])
tables = sorted(tables,key=lambda x : x[1])
return np.array(tables)
def find_cells(img_seg,tables):
if not len(tables):
return []
h,w = img_seg.shape
tabelLabels=measure.label(img_seg==0,connectivity=2)
regions=measure.regionprops(tabelLabels)
rboxes= []
for table in tables:
tmp = []
for i,region in enumerate(regions):
if h*w*0.0001 < region.bbox_area <h*w*0.5:
rbox = np.array(map(int,region.bbox))[[1,0,3,2]]
if is_in(rbox,table):
tmp.append(rbox)
rboxes.append(np.array(tmp))
return np.array(rboxes)
def annotate_cell(img,cells):
# now cells is a ndarray with shape (n,4)
res = np.array([{'text':''} for cell in cells])
# start col
sc = 0
idx = cells[:, 0].argsort()
cells = cells[idx]
res = res[idx]
eps = np.diff(cells,axis=0)[:,0]
mean = np.mean(eps)
breakpoints = np.where(eps >= mean)[0]
for i,item in enumerate(res):
item['start_col'] = sc
if i in breakpoints:
sc += 1
# end col
ec = 0
idx = cells[:, 2].argsort()
cells = cells[idx]
res = res[idx]
eps = np.diff(cells,axis=0)[:,2]
#print(eps)
mean = np.mean(eps)
breakpoints = np.where(eps >= mean)[0]
for i,item in enumerate(res):
item['end_col'] = ec
if i in breakpoints:
ec += 1
# start row
sr = 0
idx = cells[:, 1].argsort()
cells = cells[idx]
res = res[idx]
eps = np.diff(cells,axis=0)[:,1]
mean = np.mean(eps)
breakpoints = np.where(eps >= mean)[0]
for i,item in enumerate(res):
item['start_row'] = sr
if i in breakpoints:
sr += 1
# end row
er = 0
idx = cells[:, 3].argsort()
cells = cells[idx]
res = res[idx]
eps = np.diff(cells,axis=0)[:,3]
mean = np.mean(eps)
breakpoints = np.where(eps >= mean)[0]
for i,item in enumerate(res):
item['end_row'] = er
if i in breakpoints:
er += 1
batch_list_text = []
for i,([xmin,ymin,xmax,ymax],info) in enumerate(zip(cells,res)):
lines = line_split(img[ymin:ymax,xmin:xmax],y=ymin,x=xmin)
for [_xmin,_ymin,_xmax,_ymax] in lines:
#cv2.imwrite('./part/'+str(i)+'_'+str(_ymax)+'.jpg',img[_ymin:_ymax,_xmin:_xmax])
partImg = img[_ymin:_ymax,_xmin:_xmax]
partImg = Image.fromarray(partImg).convert('L')
batch_list_text.append((i, partImg.convert('L')))
try:
i_value, batch_text = crnnOcr2(batch_list_text)
except:
print("!"*20)
print('CUDA OUT OF MEMORY, SPLIT BATCH')
print("!"*20)
pt = int(len(batch_list_text)/4)
i_value1, batch_text1 = crnnOcr2(batch_list_text[:pt])
i_value2, batch_text2 = crnnOcr2(batch_list_text[pt:2*pt])
i_value3, batch_text3 = crnnOcr2(batch_list_text[2*pt:3*pt])
i_value4, batch_text4 = crnnOcr2(batch_list_text[3*pt:])
i_value = i_value1 + i_value2 + i_value3 + i_value4
batch_text = batch_text1 + batch_text2 + batch_text3 + batch_text4
for i,text in zip(i_value,batch_text):
res[i]['text'] += text.encode("UTF-8")+ '\n'
res = res.tolist()
res = sorted(res,key=lambda x: (x['start_row'], x['start_col']))
return res,er+1,ec+1
def find_text(tables,w,h):
#find the non-table area for PSENet detection
if not len(tables):
return np.array([[0,0,w,h]])
Y1 = tables[:,[1,3]]
Y2 = []
for i in range(len(Y1)):
if i+1 == len(Y1):
Y2.append(Y1[i])
break
if Y1[i][1] >= Y1[i+1][0]: # ymax1 >= ymin2
Y1[i+1][0] = Y1[i][0]
Y1[i+1][1] = max(Y1[i][1],Y1[i+1][1])
continue
else:
Y2.append(Y1[i])
Y2 = np.array(Y2).reshape(-1,)
Y2 = | np.append(0,Y2) | numpy.append |
"""Test CrabNet's fit and predict via `get_model()` and `predict()`."""
import numpy as np
from crabnet.utils.data import get_data
from crabnet.data.materials_data import elasticity
from crabnet.crabnet_ import CrabNet
import pandas as pd
from matbench.bench import MatbenchBenchmark
from time import time
train_df, val_df = get_data(elasticity, dummy=True)
def test_crabnet():
cb = CrabNet(
compute_device="cpu",
verbose=True,
losscurve=False,
learningcurve=False,
epochs=40,
)
cb.fit(train_df)
train_pred, train_sigma = cb.predict(val_df, return_uncertainty=True)
return train_pred, train_sigma
def test_crabnet_300_epochs():
cb = CrabNet(
compute_device="cpu",
verbose=True,
losscurve=False,
learningcurve=False,
epochs=300,
)
cb.fit(train_df)
train_pred, train_sigma = cb.predict(val_df, return_uncertainty=True)
return train_pred, train_sigma
def test_extend_features():
train_df["state_var0"] = np.random.rand(train_df.shape[0])
val_df["state_var0"] = np.random.rand(val_df.shape[0])
cb = CrabNet(verbose=True, extend_features=["state_var0"], epochs=40)
cb.fit(train_df)
train_pred, train_sigma = cb.predict(val_df, return_uncertainty=True)
return train_pred, train_sigma
def test_matbench_expt_gap():
t0 = time()
mb = MatbenchBenchmark(autoload=False, subset=["matbench_expt_gap"])
for task in mb.tasks:
task.load()
for fold in [task.folds[0]]:
# Inputs are either chemical compositions as strings
# or crystal structures as pymatgen.Structure objects.
# Outputs are either floats (regression tasks) or bools (classification tasks)
train_inputs, train_outputs = task.get_train_and_val_data(fold)
train_df = pd.DataFrame({"formula": train_inputs, "target": train_outputs})
# Get testing data
test_inputs = task.get_test_data(fold, include_target=False)
test_df = pd.DataFrame(
{"formula": test_inputs, "target": np.zeros(test_inputs.shape[0])}
)
# adjust parameters to have it run quickly on CPU
crab = CrabNet(
epochs=80,
d_model=64,
batch_size=256,
heads=2,
out_hidden=list( | np.array([1024, 512, 256, 128]) | numpy.array |
# Copyrighrt 2020, by the California Institute of Technology.
# ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged.
# Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology.
# This software may be subject to U.S. export control laws.
# By accepting this software, the user agrees to comply with all applicable U.S. export laws and regulations.
# User has the responsibility to obtain export licenses, or other export authority as may be required before exporting
# such information to foreign countries or providing access to foreign persons.
# Codes last tested 05 April 2020 by MW and IF
import uuid
import urllib3
import os
import xarray as xr
import numpy as np
import netCDF4 as nc4
import imp
import datetime
import swath_references as ref
from bs4 import BeautifulSoup
########################################################################################################################
# these are some tools to help generate the metadata
########################################################################################################################
#step 1: read in the variables from the regridded file
def read_regridded_swath(filePath):
print(' Opening ' + str(filePath))
if filePath.exists():
data = xr.open_dataset(str(filePath))
else:
print(' regridded swath file not found! aborting!')
exit()
variables = []
variableNames = []
coordinates = []
coordinateNames = []
for data_var in data.data_vars.keys():
if np.size( | np.array(data[data_var]) | numpy.array |
# Practice sites
#https://www.machinelearningplus.com/python/101-numpy-exercises-python/
#http://www.cs.umd.edu/~nayeem/courses/MSML605/files/04_Lec4_List_Numpy.pdf
#https://www.gormanalysis.com/blog/python-numpy-for-your-grandma/
#https://nickmccullum.com/advanced-python/numpy-indexing-assignment/
# 1. Import numpy as np and see the version
# Difficulty Level: L1
# Q. Import numpy as np and print the version number.
##? 1. Import numpy as np and see the version
# Difficulty Level: L1
# Q. Import numpy as np and print the version number.
import numpy as np
print(np.__version__)
##? 2. How to create a 1D array?
# Difficulty Level: L1
# Q. Create a 1D array of numbers from 0 to 9
arr = np.arange(10)
arr
##? 3. How to create a boolean array?
# Difficulty Level: L1
# Q. Create a 3×3 numpy array of all True’s
arr = np.full((3,3), True, dtype=bool)
arr
##? 4. How to extract items that satisfy a given condition from 1D array?
# Difficulty Level: L1
# Q. Extract all odd numbers from arr
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[arr % 2 == 1]
##? 5. How to replace items that satisfy a condition with another value in numpy array?
# Difficulty Level: L1
# Q. Replace all odd numbers in arr with -1
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[arr % 2 == 1] = -1
arr
##? 6. How to replace items that satisfy a condition without affecting the original array?
# Difficulty Level: L2
# Q. Replace all odd numbers in arr with -1 without changing arr
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#1 np.where
out = np.where(arr % 2 == 1, -1, arr)
out
#2 list comp
out = np.array([-1 if x % 2 == 1 else x for x in arr])
out
##? 7. How to reshape an array?
# Difficulty Level: L1
# Q. Convert a 1D array to a 2D array with 2 rows
arr = np.arange(10)
arr.reshape(2, -1)
# Setting y to -1 automatically decides number of columns.
# Could do the same with
arr.reshape(2, 5)
##? 8. How to stack two arrays vertically?
# Difficulty Level: L2
# Q. Stack arrays a and b vertically
a = np.arange(10).reshape(2, -1)
b = np.repeat(1, 10).reshape(2, -1)
#1
np.vstack([a, b])
#2
np.concatenate([a, b], axis=0)
#3
np.r_[a, b]
# 9. How to stack two arrays horizontally?
# Difficulty Level: L2
# Q. Stack the arrays a and b horizontally.
a = np.arange(10).reshape(2, -1)
b = np.repeat(1, 10).reshape(2, -1)
#1
np.hstack([a, b])
#2
np.concatenate([a, b], axis=1)
#3
np.c_[a, b]
##? 10. How to generate custom sequences in numpy without hardcoding?
# Difficulty Level: L2
# Q. Create the following pattern without hardcoding.
# Use only numpy functions and the below input array a.
a = np.array([1,2,3])
np.r_[np.repeat(a,3), np.tile(a, 3)]
##? 11. How to get the common items between two python numpy arrays?
# Difficulty Level: L2
# Q. Get the common items between a and b
a = np.array([1,2,3,2,3,4,3,4,5,6])
b = np.array([7,2,10,2,7,4,9,4,9,8])
np.intersect1d(a, b)
##? 12. How to remove from one array those items that exist in another?
# Difficulty Level: L2
# Q. From array a remove all items present in array b
a = np.array([1,2,3,4,5])
b = np.array([5,6,7,8,9])
# From 'a' remove all of 'b'
np.setdiff1d(a,b)
##? 13. How to get the positions where elements of two arrays match?
# Difficulty Level: L2
# Q. Get the positions where elements of a and b match
a = np.array([1,2,3,2,3,4,3,4,5,6])
b = np.array([7,2,10,2,7,4,9,4,9,8])
np.where(a==b)
# 14. How to extract all numbers between a given range from a numpy array?
# Difficulty Level: L2
# Q. Get all items between 5 and 10 from a.
a = np.array([2, 6, 1, 9, 10, 3, 27])
#1
idx = np.where((a>=5) & (a<=10))
a[idx]
#2
idx = np.where(np.logical_and(a >= 5, a <= 10))
a[idx]
#3
a[(a >= 5) & (a <= 10)]
##? 15. How to make a python function that handles scalars to work on numpy arrays?
# Difficulty Level: L2
# Q. Convert the function maxx that works on two scalars, to work on two arrays.
def maxx(x:np.array, y:np.array):
"""Get the maximum of two items"""
if x >= y:
return x
else:
return y
a = np.array([5, 7, 9, 8, 6, 4, 5])
b = np.array([6, 3, 4, 8, 9, 7, 1])
pair_max = np.vectorize(maxx, otypes=[float])
pair_max(a, b)
##? 16. How to swap two columns in a 2d numpy array?
# Difficulty Level: L2
# Q. Swap columns 1 and 2 in the array arr.
arr = np.arange(9).reshape(3,3)
arr
arr[:, [1, 0, 2]]
#by putting brackets inside the column slice. You have access to column indices
##? 17. How to swap two rows in a 2d numpy array?
# Difficulty Level: L2
# Q. Swap rows 1 and 2 in the array arr:
arr = np.arange(9).reshape(3,3)
arr
arr[[0, 2, 1], :]
#same goes here for the rows
##? 18. How to reverse the rows of a 2D array?
# Difficulty Level: L2
# Q. Reverse the rows of a 2D array arr.
# Input
arr = np.arange(9).reshape(3,3)
arr
arr[::-1, :]
#or
arr[::-1]
# 19. How to reverse the columns of a 2D array?
# Difficulty Level: L2
# Q. Reverse the columns of a 2D array arr.
# Input
arr = np.arange(9).reshape(3,3)
arr
arr[:,::-1]
##? 20. How to create a 2D array containing random floats between 5 and 10?
# Difficulty Level: L2
# Q. Create a 2D array of shape 5x3 to contain random decimal numbers between 5 and 10.
arr = np.arange(9).reshape(3,3)
#1
rand_arr = np.random.randint(low=5, high=10, size=(5,3)) + np.random.random((5,3))
rand_arr
#2
rand_arr = np.random.uniform(5, 10, size=(5,3))
rand_arr
##? 21. How to print only 3 decimal places in python numpy array?
# Difficulty Level: L1
# Q. Print or show only 3 decimal places of the numpy array rand_arr.
rand_arr = np.random.random((5,3))
rand_arr
rand_arr = np.random.random([5,3])
np.set_printoptions(precision=3)
rand_arr[:4]
##? 22. How to pretty print a numpy array by suppressing the scientific notation (like 1e10)?
# Difficulty Level: L1
# Q. Pretty print rand_arr by suppressing the scientific notation (like 1e10)
#Reset printoptions
np.set_printoptions(suppress=False)
# Create the random array
np.random.seed(100)
rand_arr = np.random.random([3,3])/1e3
rand_arr
#Set precision and suppress e notation
np.set_printoptions(suppress=True, precision=6)
rand_arr
##? 23. How to limit the number of items printed in output of numpy array?
# Difficulty Level: L1
# Q. Limit the number of items printed in python numpy array a to a maximum of 6 elements.
a = np.arange(15)
#set the elements to print in threshold
np.set_printoptions(threshold=6)
a
# reset the threshold to default
np.set_printoptions(threshold=1000)
##? 24. How to print the full numpy array without truncating
# Difficulty Level: L1
# Q. Print the full numpy array a without truncating.
a = np.arange(15)
# reset the threshold to default
np.set_printoptions(threshold=1000)
a
##? 25. How to import a dataset with numbers and texts keeping the text intact in python numpy?
# Difficulty Level: L2
# Q. Import the iris dataset keeping the text intact.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype="object")
names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')
iris[:3]
##? 26. How to extract a particular column from 1D array of tuples?
# Difficulty Level: L2
# Q. Extract the text column species from the 1D iris imported in previous question.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8")
species = np.array([col[4] for col in iris_1d])
species[:5]
##? 27. How to convert a 1d array of tuples to a 2d numpy array?
# Difficulty Level: L2
# Q. Convert the 1D iris to 2D array iris_2d by omitting the species text field.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8")
#1
no_species_2d = np.array([row.tolist()[:4] for row in iris_1d])
no_species_2d[:3]
#2
# Can directly specify columns to use with the "usecols" method
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
no_species_2d = np.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8", usecols=[0,1,2,3])
no_species_2d[:3]
##? 28. How to compute the mean, median, standard deviation of a numpy array?
# Difficulty: L1
# Q. Find the mean, median, standard deviation of iris's sepallength (1st column)
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8")
sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0])
# or
sepal = np.array([col[0] for col in iris_1d])
# or
sepal = np.array([col.tolist()[0] for col in iris_1d])
mu, med, sd = np.mean(sepal), np.median(sepal), np.std(sepal)
np.set_printoptions(precision=2)
print(f'The mean is {mu} \nThe median is {med} \nThe standard deviation is {sd}')
##? 29. How to normalize an array so the values range exactly between 0 and 1?
# Difficulty: L2
# Q. Create a normalized form of iris's sepallength whose values range exactly between 0 and 1 so that the minimum has value 0 and maximum has value 1.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_1d = np.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8")
sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0])
#1
smax, smin = np.max(sepal), np.min(sepal)
S = (sepal-smin)/(smax-smin)
S
#2
S = (sepal-smin)/sepal.ptp()
S
##? 30. How to compute the softmax score?
# Difficulty Level: L3
# Q. Compute the softmax score of sepallength.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
sepal = np.genfromtxt(url, delimiter=',', dtype=float, usecols=[0], encoding="utf-8")
#or
sepal = np.genfromtxt(url, delimiter=',', dtype='object')
sepal = np.array([float(row[0]) for row in sepal])
# https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python"""
#1
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x/ e_x.sum(axis=0)
softmax(sepal)
##? 31. How to find the percentile scores of a numpy array?
# Difficulty Level: L1
# Q. Find the 5th and 95th percentile of iris's sepallength
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
sepal = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0])
np.percentile(sepal, q=[5, 95])
##? 32. How to insert values at random positions in an array?
# Difficulty Level: L2
# Q. Insert np.nan values at 20 random positions in iris_2d dataset
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', encoding="utf-8")
#Can change object to float if you want
#1
i, j = np.where(iris_2d)
# i, j contain the row numbers and column numbers of the 600 elements of Irix_x
np.random.seed(100)
iris_2d[np.random.choice(i, 20), np.random.choice((j), 20)] = np.nan
#Checking nans in 2nd column
np.isnan(iris_2d[:, 1]).sum()
#Looking over all rows/columns
np.isnan(iris_2d[:, :]).sum()
#2
np.random.seed(100)
iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)]=np.nan
#Looking over all rows/columns
np.isnan(iris_2d[:, :]).sum()
##? 33. How to find the position of missing values in numpy array?
# Difficulty Level: L2
# Q. Find the number and position of missing values in iris_2d's sepallength (1st column)
# ehh already did that? Lol. Using above filtered array from method 2 in
# question 32
np.isnan(iris_2d[:, 0]).sum()
#Indexes of which can be found with
np.where(np.isnan(iris_2d[:, 0]))
##? 34. How to filter a numpy array based on two or more conditions?
# Difficulty Level: L3
# Q. Filter the rows of iris_2d that has petallength (3rd column) > 1.5
# and sepallength (1st column) < 5.0
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
filt_cond = (iris_2d[:,0] < 5.0) & (iris_2d[:, 2] > 1.5)
iris_2d[filt_cond]
##? 35. How to drop rows that contain a missing value from a numpy array?
# Difficulty Level: L3:
# Q. Select the rows of iris_2d that does not have any nan value.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan
#1
#No direct numpy implementation
iris_drop = np.array([~np.any(np.isnan(row)) for row in iris_2d])
#Look at first 5 rows of drop
iris_2d[iris_drop][:5]
#2
iris_2d[np.sum(np.isnan(iris_2d), axis=1)==0][:5]
##? 36. How to find the correlation between two columns of a numpy array?
# Difficulty Level: L2
# Q. Find the correlation between SepalLength(1st column) and PetalLength(3rd column) in iris_2d
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
#1
np.corrcoef(iris_2d[:, 0], iris_2d[:, 2])[0, 1]
#2
from scipy.stats.stats import pearsonr
corr, p_val = pearsonr(iris_2d[:, 0], iris_2d[:, 2])
print(corr)
# Correlation coef indicates the degree of linear relationship between two numeric variables.
# It can range between -1 to +1.
# The p-value roughly indicates the probability of an uncorrelated system producing
# datasets that have a correlation at least as extreme as the one computed.
# The lower the p-value (<0.01), greater is the significance of the relationship.
# It is not an indicator of the strength.
#> 0.871754157305
##? 37. How to find if a given array has any null values?
# Difficulty Level: L2
# Q. Find out if iris_2d has any missing values.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
np.isnan(iris_2d[:, :]).any()
##? 38. How to replace all missing values with 0 in a numpy array?
# Difficulty Level: L2
# Q. Replace all occurrences of nan with 0 in numpy array
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan
#Check for nans
np.any(~np.isnan(iris_2d[:, :]))
#Set Indexes of of the nans = 0
iris_2d[np.isnan(iris_2d)] = 0
#Check the same indexes
np.where(iris_2d==0)
#Check first 10 rows
iris_2d[:10]
##? 39. How to find the count of unique values in a numpy array?
# Difficulty Level: L2
# Q. Find the unique values and the count of unique values in iris's species
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object', encoding="utf-8")
names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')
#1
species = np.array([row.tolist()[4] for row in iris])
np.unique(species, return_counts=True)
#2
np.unique(iris[:, 4], return_counts=True)
##? 40. How to convert a numeric to a categorical (text) array?
# Difficulty Level: L2
# Q. Bin the petal length (3rd) column of iris_2d to form a text array, such that if petal length is:
# Less than 3 --> 'small'
# 3-5 --> 'medium'
# '>=5 --> 'large'
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')
#1
#Bin the petal length
petal_length_bin = np.digitize(iris[:, 2].astype('float'), [0, 3, 5, 10])
#Map it to respective category.
label_map = {1: 'small', 2: 'medium', 3: 'large', 4: np.nan}
petal_length_cat = [label_map[x] for x in petal_length_bin]
petal_length_cat[:4]
#or
petal_length_cat = np.array(list(map(lambda x: label_map[x], petal_length_bin)))
petal_length_cat[:4]
##? 41. How to create a new column from existing columns of a numpy array?
# Difficulty Level: L2
# Q. Create a new column for volume in iris_2d,
# where volume is (pi x petallength x sepal_length^2)/3
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='object')
# Compute volume
sepallength = iris_2d[:, 0].astype('float')
petallength = iris_2d[:, 2].astype('float')
volume = (np.pi * petallength*sepallength**2)/3
# Introduce new dimension to match iris_2d's
volume = volume[:, np.newaxis]
# Add the new column
out = np.hstack([iris_2d, volume])
out[:4]
##? 42. How to do probabilistic sampling in numpy?
# Difficulty Level: L3
# Q. Randomly sample iris's species such that setosa
# is twice the number of versicolor and virginica
# Import iris keeping the text column intact
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
#Get species column
species = iris[:, 4]
#1 Generate Probablistically.
np.random.seed(100)
a = np.array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])
out = np.random.choice(a, 150, p=[0.5, 0.25, 0.25])
#Checking counts
np.unique(out[:], return_counts=True)
#2 Probablistic Sampling #preferred
np.random.seed(100)
probs = np.r_[np.linspace(0, 0.500, num=50), np.linspace(0.501, .0750, num=50), np.linspace(.751, 1.0, num=50)]
index = np.searchsorted(probs, np.random.random(150))
species_out = species[index]
print(np.unique(species_out, return_counts=True))
# Approach 2 is preferred because it creates an index variable that can be
# used to sample 2d tabular data.
##? 43. How to get the second largest value of an array when grouped by another array?
# Difficulty Level: L2
# Q. What is the value of second longest petallength of species setosa
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')
petal_setosa = iris[iris[:, 4]==b'Iris-setosa', [2]].astype('float')
#1
#Note. Option 1 will return the second largest value 1.7, but with no repeats (np.unique()
np.unique(np.sort(petal_setosa))[-2]
#Note, options 2 and 3. these will return 1.9 because that is the second largest value.
#2
petal_setosa[np.argpartition(petal_setosa, -2)[-2]]
#3
petal_setosa[petal_setosa.argsort()[-2]]
#4
unq = np.unique(petal_setosa)
unq[np.argpartition(unq, -2)[-2]]
#Note: This method still gives back 1.9. As that is the 2nd largest value,
#So you'd have to filter for unique values. Then do the argpart on the unq array
##? 44. How to sort a 2D array by a column
# Difficulty Level: L2
# Q. Sort the iris dataset based on sepallength column.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
# dtype = [('sepallength', float), ('sepalwidth', float), ('petallength', float), ('petalwidth', float),('species', 'S10')]
iris = np.genfromtxt(url, delimiter=',', dtype="object")
names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')
#1
print(iris[iris[:,0].argsort()][:20])
#2
#!Only captures first column to sort
np.sort(iris[:, 0], axis=0)
#3
sorted(iris, key=lambda x: x[0])
##? 45. How to find the most frequent value in a numpy array?
# Difficulty Level: L1
# Q. Find the most frequent value of petal length (3rd column) in iris dataset.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')
vals, counts = np.unique(iris[:, 2], return_counts=True)
print(vals[np.argmax(counts)])
##? 46. How to find the position of the first occurrence of a value greater than a given value?
# Difficulty Level: L2
# Q. Find the position of the first occurrence of a value greater than 1.0 in petalwidth 4th column of iris dataset.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
#1
np.argwhere(iris[:, 3].astype(float) > 1.0)[0]
# 47. How to replace all values greater than a given value to a given cutoff?
# Difficulty Level: L2
# Q. From the array a, replace all values greater than 30 to 30 and less than 10 to 10.
np.set_printoptions(precision=2)
np.random.seed(100)
a = np.random.uniform(1,50, 20)
#1
np.clip(a, a_min=10, a_max=30)
#2
np.where(a < 10, 10, np.where(a > 30, 30, a))
#Tangent - Filtering condition
#Say we only want the values above 10 and below 30. Or operator | should help there.
filt_cond = (a < 10) | (a > 30)
a[filt_cond]
##? 48. How to get the positions of top n values from a numpy array?
# Difficulty Level: L2
# Q. Get the positions of top 5 maximum values in a given array a.
np.random.seed(100)
a = np.random.uniform(1,50, 20)
#1
a.argsort()[:5]
#2
np.argpartition(-a, 5)[:5]
# or (order is reversed though)
np.argpartition(a, -5)[-5:]
#To get the values.
#1
a[a.argsort()][-5:]
#2
np.sort(a)[-5:]
#3
np.partition(a, kth=-5)[-5:]
#4
a[np.argpartition(-a, 5)][:5]
#or
a[np.argpartition(a, -5)][-5:]
##? 49. How to compute the row wise counts of all possible values in an array?
# Difficulty Level: L4
# Q. Compute the counts of unique values row-wise.
np.random.seed(100)
arr = np.random.randint(1,11,size=(6, 10))
#Add a column of of the counts of each row
#Tangent fun
counts = np.array([ | np.unique(row) | numpy.unique |
import numpy as np
import matplotlib.pyplot as plt
import math
import os
import os.path as op
from datetime import datetime
from isstools.conversions import xray
from subprocess import call
import re
import collections
import pandas as pd
import h5py
from pathlib import Path
class XASdata:
def __init__(self, db = None, **kwargs):
self.energy = np.array([])
self.data = np.array([])
self.encoder_file = ''
self.i0_file = ''
self.it_file = ''
self.ir_file = ''
self.iff_file = ''
self.data_manager = XASDataManager()
self.header_read = ''
self.db = db
def loadADCtrace(self, filename = '', filepath = '/GPFS/xf08id/pizza_box_data/'):
keys = ['times', 'timens', 'counter', 'adc']
if os.path.isfile('{}{}'.format(filepath, filename)):
df = pd.read_table('{}{}'.format(filepath, filename), delim_whitespace=True, comment='#', names=keys, index_col=False)
df['timestamp'] = df['times'] + 1e-9 * df['timens']
#del df['times']
#del df['timens']
df['adc'] = df['adc'].apply(lambda x: (int(x, 16) >> 8) - 0x40000 if (int(x, 16) >> 8) > 0x1FFFF else int(x, 16) >> 8) * 7.62939453125e-05
return df.iloc[:, 4:1:-1]
else:
return -1
def loadADCtraceDB(self, uid, stream_name):
hdr = self.db[uid]
dd = [_['data'] for _ in self.db.get_events(hdr, stream_name=stream_name, fill=True)]
result = {}
for chunk in dd:
for key in chunk.keys():
if key in result:
result[key] = np.concatenate((result[key], chunk[key]))
continue
result[key] = chunk[key]
columns = list(dd[0][stream_name][0]._asdict().keys())
df = pd.DataFrame(result[stream_name], columns=columns)
df['timestamp'] = df['ts_s'] + 1e-9 * df['ts_ns']
df['adc'] = df['adc'].apply(lambda x: (x >> 8) - 0x40000 if (x >> 8) > 0x1FFFF else x >> 8) * 7.62939453125e-05
return df
def loadENCtrace(self, filename = '', filepath = '/GPFS/xf08id/pizza_box_data/'):
keys = ['times', 'timens', 'encoder', 'counter', 'di']
if os.path.isfile('{}{}'.format(filepath, filename)):
df = pd.read_table('{}{}'.format(filepath, filename), delim_whitespace=True, comment='#', names=keys, index_col=False)
df['timestamp'] = df['times'] + 1e-9 * df['timens']
df['encoder'] = df['encoder'].apply(lambda x: int(x) if int(x) <= 0 else -(int(x) ^ 0xffffff - 1))
return df.iloc[:, [5, 2]]
else:
return -1
def loadENCtraceDB(self, uid, stream_name):
hdr = self.db[uid]
dd = [_['data'] for _ in self.db.get_events(hdr, stream_name=stream_name, fill=True)]
result = {}
for chunk in dd:
for key in chunk.keys():
if key in result:
result[key] = np.concatenate((result[key], chunk[key]))
continue
result[key] = chunk[key]
columns = list(dd[0][stream_name][0]._asdict().keys())
df = pd.DataFrame(result[stream_name], columns=columns)
df['timestamp'] = df['ts_s'] + 1e-9 * df['ts_ns']
df['encoder'] = df['encoder'].apply(lambda x: x if x <= 0 else -(x ^ 0xffffff - 1))
return df.iloc[:, [5, 2]]
def loadTRIGtrace(self, filename = '', filepath = '/GPFS/xf08id/pizza_box_data/'):
keys = ['times', 'timens', 'encoder', 'counter', 'di']
if os.path.isfile('{}{}'.format(filepath, filename)):
df = pd.read_table('{}{}'.format(filepath, filename), delim_whitespace=True, comment='#', names=keys, index_col=False)
df['timestamp'] = df['times'] + 1e-9 * df['timens']
df = df.iloc[::2]
#df = df[df['counter'] % 2 == 0]
return df.iloc[:, [5, 3]]
else:
return -1
def loadTRIGtraceDB(self, uid, stream_name):
hdr = self.db[uid]
dd = [_['data'] for _ in self.db.get_events(hdr, stream_name=stream_name, fill=True)]
result = {}
for chunk in dd:
for key in chunk.keys():
if key in result:
result[key] = np.concatenate((result[key], chunk[key]))
continue
result[key] = chunk[key]
columns = list(dd[0][stream_name][0]._asdict().keys())
df = pd.DataFrame(result[stream_name], columns=columns)
df['timestamp'] = df['ts_s'] + 1e-9 * df['ts_ns']
df = df.iloc[::2]
return df.iloc[:, [5, 3]]
def read_header(self, filename):
test = ''
line = '#'
with open(filename) as myfile:
while line[0] == '#':
line = next(myfile)
test += line
return test[:-len(line)]
class XASdataGeneric(XASdata):
def __init__(self, pulses_per_deg, db = None, db_analysis = None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.arrays = {}
self.interp_arrays = {}
self.db = db
self.db_analysis = db_analysis
self.pulses_per_deg = pulses_per_deg
#if self.db is None:
# print('The databroker was not passed as argument to the parser.\nSome features will be disabled.')
self.uid = ''
def process(self, uid):
self.load(uid)
self.uid = uid
self.interpolate()
def load(self, uid):
#if self.db is None:
# raise Exception('The databroker was not passed as argument to the parser. This feature is disabled.')
self.arrays = {}
self.interp_arrays = {}
self.uid = uid
has_encoder = False
for i in self.db[uid]['descriptors']:
if 'filename' in i['data_keys'][i['name']]:
name = i['name']
if name == 'pb9_enc1' or name == 'hhm_theta':
has_encoder = name
if 'devname' in i['data_keys'][i['name']]:
name = i['data_keys'][i['name']]['devname']
if name == 'hhm_theta':
has_encoder = name
if i['data_keys'][i['name']]['source'] == 'pizzabox-di-file':
data = self.loadTRIGtrace(i['data_keys'][i['name']]['filename'], '')
if i['data_keys'][i['name']]['source'] == 'pizzabox-adc-file':
data = self.loadADCtrace(i['data_keys'][i['name']]['filename'], '')
if i['name'] + ' offset' in self.db[uid]['start'] and type(data) == pd.core.frame.DataFrame:
data.iloc[:, 1] = data.iloc[:, 1] - self.db[uid]['start'][i['name'] + ' offset']
if i['data_keys'][i['name']]['source'] == 'pizzabox-enc-file':
data = self.loadENCtrace(i['data_keys'][i['name']]['filename'], '')
#if type(data) == np.ndarray:
self.arrays[name] = data
if has_encoder is not False:
energy = self.arrays.get(has_encoder).copy()
if 'angle_offset' in self.db[uid]['start']:
energy.iloc[:, 1] = xray.encoder2energy(energy.iloc[:, 1], self.pulses_per_deg, -float(self.db[uid]['start']['angle_offset']))
energy.columns = ['timestamp', 'energy']
del self.arrays[has_encoder]
self.arrays['energy'] = energy
def loadDB(self, uid):
# if self.db is None:
# raise Exception('The databroker was not passed as argument to the parser. This feature is disabled.')
self.arrays = {}
self.interp_arrays = {}
self.uid = uid
has_encoder = False
for i in self.db[uid]['descriptors']:
stream_name = i['name']
name = i['name']
if name == 'pb9_enc1' or name == 'hhm_theta':
has_encoder = name
if 'devname' in i['data_keys'][i['name']]:
name = i['data_keys'][i['name']]['devname']
if name == 'hhm_theta':
has_encoder = name
if i['data_keys'][i['name']]['source'] == 'pizzabox-di-file':
data = self.loadTRIGtraceDB(uid, stream_name)
if i['data_keys'][i['name']]['source'] == 'pizzabox-adc-file':
data = self.loadADCtraceDB(uid, stream_name)
if i['name'] + ' offset' in self.db[uid]['start'] and type(data) == pd.core.frame.DataFrame:
data.iloc[:, 1] = data.iloc[:, 1] - self.db[uid]['start'][i['name'] + ' offset']
if i['data_keys'][i['name']]['source'] == 'pizzabox-enc-file':
data = self.loadENCtraceDB(uid, stream_name)
# if type(data) == np.ndarray:
self.arrays[name] = data
if has_encoder is not False:
energy = self.arrays.get(has_encoder).copy()
if 'angle_offset' in self.db[uid]['start']:
energy.iloc[:, 1] = xray.encoder2energy(energy.iloc[:, 1], self.pulses_per_deg,
-float(self.db[uid]['start']['angle_offset']))
energy.columns = ['timestamp', 'energy']
del self.arrays[has_encoder]
self.arrays['energy'] = energy
def read_header(self, filename):
if filename[-3:] == 'txt' or filename[-3:] == 'dat':
test = ''
line = '#'
with open(filename) as myfile:
while line[0] == '#':
line = next(myfile)
test += line
return test[:-len(line)]
elif filename[-4:] == 'hdf5':
f = h5py.File(filename, mode='r')
header = dict(f.attrs)
f.close()
del header['start_time']
del header['stop_time']
del header['name']
header = '\n'.join([f'# {key}: {header[key]}' for key in header]) + '\n#\n#'
return header
def loadInterpFile(self, filename):
self.arrays = {}
self.interp_arrays = {}
if not op.exists(filename):
raise IOError(f'The requested file {filename} does not exist.')
header = self.read_header(filename)
self.uid = header[header.find('UID') + 5: header.find('\n', header.find('UID'))]
keys = header[header.rfind('#'):][1:-1].split()
timestamp_index = -1
if 'Timestamp (s)' in keys:
timestamp_index = keys.index('Timestamp (s)')
elif 'timestamp' in keys:
timestamp_index = keys.index('timestamp')
df = pd.read_table(filename, delim_whitespace=True, comment='#', names=keys, index_col=False).sort_values(keys[1])
df['1'] = pd.Series(np.ones(len(df.iloc[:, 0])), index=df.index)
self.interp_df = df
for index, key in enumerate(df.keys()):
if index != timestamp_index:
self.interp_arrays[key] = np.array([df.iloc[:, timestamp_index].values, df.iloc[:, index]]).transpose()
self.interp_arrays['1'] = np.array([df.iloc[:, timestamp_index].values, np.ones(len(df.iloc[:, 0]))]).transpose()
def loadInterpFileHDF5(self, filename):
self.arrays = {}
self.interp_arrays = {}
if not op.exists(filename):
raise IOError(f'The requested file {filename} does not exist.')
# opening a file:
f = h5py.File(filename, mode='r')
df = pd.DataFrame({key: value for key, value in zip(f.keys(), f.values())})
self.interp_df = df
self.md = dict(f.attrs)
self.uid = self.md['real_uid']
#for attr in f.attrs:
# print(attr, f.attrs[attr])
keys = list(f.keys())
if 'timestamp' in keys:
timestamp_index = keys.index('timestamp')
for index, key in enumerate(df.keys()):
if index != timestamp_index:
self.interp_arrays[key] = np.array([df.iloc[:, timestamp_index].values, df.iloc[:, index]]).transpose()
self.interp_arrays['1'] = np.array([df.iloc[:, timestamp_index].values, np.ones(len(df.iloc[:, 0]))]).transpose()
f.close()
def loadInterpFromDB(self, uid):
if self.db_analysis is None:
raise IOError('No db_analysis was passed to the parser in the initialization')
hdr = self.db_analysis[uid]
dd = [_['data'] for _ in self.db_analysis.get_events(hdr, stream_name='interpolated', fill=True)]
result = {}
for chunk in [chunk['interpolated'] for chunk in dd]:
for key in chunk.keys():
if key in result:
result[key] = np.concatenate((result[key], chunk[key]))
continue
result[key] = chunk[key]
df = pd.DataFrame(result)
if 'Ones' in df.columns:
new_keys = list(df.columns)
new_keys[new_keys.index('Ones')] = '1'
df.columns = new_keys
self.interp_df = df
keys = list(df.keys())
if 'timestamp' in keys:
timestamp_index = keys.index('timestamp')
for index, key in enumerate(df.keys()):
if index != timestamp_index:
self.interp_arrays[key] = np.array([df.iloc[:, timestamp_index].values, df.iloc[:, index]]).transpose()
self.interp_arrays['1'] = np.array([df.iloc[:, timestamp_index].values, np.ones(len(df.iloc[:, 0]))]).transpose()
def interpolate(self, key_base = 'i0'):
min_timestamp = max([self.arrays.get(key).iloc[0, 0] for key in self.arrays])
max_timestamp = min([self.arrays.get(key).iloc[len(self.arrays.get(key)) - 1, 0] for key in
self.arrays if len(self.arrays.get(key).iloc[:, 0]) > 5])
try:
if key_base not in self.arrays.keys():
raise ValueError('Could not find "{}" in the loaded scan. Pick another key_base for the interpolation.'.format(key_base))
except ValueError as err:
print(err.args[0], '\nAborted...')
return
timestamps = self.arrays[key_base].iloc[:,0]
condition = timestamps < min_timestamp
timestamps = timestamps[np.sum(condition):]
condition = timestamps > max_timestamp
timestamps = timestamps[: len(timestamps) - np.sum(condition)]
#time = [np.mean(array) for array in np.array_split(self.arrays[key_base][:,0], len(timestamps))]
for key in self.arrays.keys():
if len(self.arrays.get(key).iloc[:, 0]) > 5 * len(timestamps):
time = [ | np.mean(array) | numpy.mean |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([0,1,0,0,0,1,1,0,0]) | numpy.array |
"""Tests for the atmos_flux_inversion package.
Includes tests using random data, analytic solutions, and checks that
different methods agree for simple problems.
"""
from __future__ import print_function, division
import fractions
import itertools
import operator
import os.path
import atexit
import pickle
import math
import sys
try:
from functools import reduce
except ImportError:
# reduce used to be a builtin
pass
import numpy as np
import numpy.linalg as np_la
import numpy.linalg as la
import numpy.testing as np_tst
import scipy.linalg
import scipy.sparse
import scipy.optimize
# Import from scipy.linalg if not using dask
from scipy.linalg import cholesky
from scipy.sparse.linalg.interface import LinearOperator, MatrixLinearOperator
import unittest2
import pyfftw
import pandas as pd
import xarray
try:
import sparse
HAVE_SPARSE = True
except ImportError:
HAVE_SPARSE = False
import atmos_flux_inversion.optimal_interpolation
import atmos_flux_inversion.correlations
import atmos_flux_inversion.covariances
import atmos_flux_inversion.variational
import atmos_flux_inversion.remapper
import atmos_flux_inversion.wrapper
import atmos_flux_inversion.linalg
import atmos_flux_inversion.noise
import atmos_flux_inversion.psas
import atmos_flux_inversion.util
from atmos_flux_inversion.linalg import tolinearoperator
if os.path.exists(".pyfftw.pickle"):
with open(".pyfftw.pickle", "rb") as wis_in:
WISDOM = pickle.load(wis_in)
if isinstance(WISDOM[0], str):
WISDOM = [wis.encode("ascii")
for wis in WISDOM]
pyfftw.import_wisdom(WISDOM)
del WISDOM, wis_in
def save_wisdom():
"""Save accumulated pyfftw wisdom.
Saves in hidden file in current directory.
Should help speed up subsequent test runs.
"""
with open(".pyfftw.pickle", "wb") as wis_out:
pickle.dump(pyfftw.export_wisdom(), wis_out, 2)
atexit.register(save_wisdom)
del save_wisdom
# If adding other inexact methods to the list tested, be sure to add
# those to the `if "var" in name or "psas" in name` and
# `if "psas" in name` tests as applicable.
ALL_METHODS = (
atmos_flux_inversion.optimal_interpolation.simple,
atmos_flux_inversion.optimal_interpolation.fold_common,
atmos_flux_inversion.optimal_interpolation.save_sum,
atmos_flux_inversion.optimal_interpolation.scipy_chol,
atmos_flux_inversion.variational.simple,
atmos_flux_inversion.variational.incremental,
atmos_flux_inversion.variational.incr_chol,
atmos_flux_inversion.psas.simple,
atmos_flux_inversion.psas.fold_common,
)
ITERATIVE_METHOD_START = 4
"""Where the iterative methods start in the above list.
Used to test failure modes for these solvers.
"""
PRECISE_DTYPE = np.float128
"""The dtype used to represent analytic results.
These are initialized as :class:`fractions.Fraction` then converted to
this dtype for the comparison.
"""
ITERATIVE_STATE_TOLERANCE = 1e-3
ITERATIVE_COVARIANCE_TOLERANCE = 1e-1
EXACT_TOLERANCE = 1e-7
DTYPE = np.float64
"""Default dtype for certain tests."""
def getname(method):
"""Descriptive name for the function.
A name combining the function name and module.
Parameters
----------
method: callable
Returns
-------
name: str
"""
module = method.__module__
group = module.split(".")[-1]
variant = method.__name__
return "{group:s} ({variant:s})".format(group=group,
variant=variant)
def expectFailureIf(condition):
"""Mark a test as XFAIL based on condition.
Wrapper to make :func:`unittest2.expectedFailure` conditional.
Parameters
----------
condition: bool
Returns
-------
decorator: func
"""
if condition:
return unittest2.expectedFailure
return lambda fun: fun
class TestInversionSimple(unittest2.TestCase):
"""Test inversions using simple cases."""
def test_scalar_equal_variance(self):
"""Test a direct measurement of a scalar state."""
bg = np.atleast_1d(2.)
bg_cov = np.atleast_2d(1.)
obs = np.atleast_1d(3.)
obs_cov = np.atleast_2d(1.)
obs_op = np.atleast_2d(1.)
for method in ALL_METHODS:
name = getname(method)
with self.subTest(method=name):
post, post_cov = method(
bg, bg_cov, obs, obs_cov, obs_op)
np_tst.assert_allclose(post, 2.5)
np_tst.assert_allclose(post_cov, .5)
def test_scalar_unequal_variance(self):
"""Test assimilation of a direct measurement fo a scalar state.
Variances not equal.
"""
bg = np.atleast_1d(15.)
bg_cov = np.atleast_2d(2.)
obs = np.atleast_1d(14.)
obs_cov = np.atleast_2d(1.)
obs_op = np.atleast_2d(1.)
for method in ALL_METHODS:
with self.subTest(method=getname(method)):
post, post_cov = method(
bg, bg_cov, obs, obs_cov, obs_op)
np_tst.assert_allclose(
post, PRECISE_DTYPE(14 + fractions.Fraction(1, 3)))
np_tst.assert_allclose(
post_cov, PRECISE_DTYPE(fractions.Fraction(2, 3)))
def test_multiple_priors(self):
"""Test doing multiple assimilations at once.
Simple test.
"""
bg = np.array([[2., 3.]])
bg_cov = np.atleast_2d(1.)
obs = np.array([[3., 4.]])
obs_cov = np.atleast_2d(1.)
obs_op = np.atleast_2d(1.)
for method in ALL_METHODS[:ITERATIVE_METHOD_START]:
name = getname(method)
with self.subTest(method=name):
post, post_cov = method(
bg, bg_cov, obs, obs_cov, obs_op)
np_tst.assert_allclose(post, [[2.5, 3.5]])
np_tst.assert_allclose(post_cov, .5)
def test_homework_one(self):
"""Verify that this can reproduce the answers to HW1.
Make sure the answers here are within roundoff of the analytic
solutions.
"""
bg = np.array((18., 15., 22.))
bg_var = np.array((2., 2., 2.))
bg_corr = np.array(((1, .5, .25),
(.5, 1, .5),
(.25, .5, 1)))
obs = np.array((19., 14.))
obs_var = np.array((1., 1.))
obs_op = np.array(((1., 0., 0.),
(0., 1., 0.)))
bg_std = np.sqrt(bg_var)
bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std)))
# obs_std = np.sqrt(obs_var)
# Assume no correlations between observations.
obs_cov = np.diag(obs_var)
for method in ALL_METHODS:
# Setup for expected degradation of solutions
name = getname(method)
# The default for assert_allclose
cov_rtol = state_rtol = EXACT_TOLERANCE
with self.subTest(method=name):
# Also tested above in scalar_unequal_variance
with self.subTest(problem=3):
state_college_index = 1
post, post_cov = method(
bg[state_college_index],
bg_cov[state_college_index, state_college_index],
obs[state_college_index],
obs_cov[state_college_index, state_college_index],
obs_op[state_college_index, state_college_index])
np_tst.assert_allclose(
post, np.asanyarray(14 + fractions.Fraction(1, 3),
dtype=PRECISE_DTYPE),
rtol=state_rtol)
np_tst.assert_allclose(
post_cov, np.asanyarray(fractions.Fraction(2, 3),
dtype=PRECISE_DTYPE),
rtol=cov_rtol)
with self.subTest(problem=4):
state_college_index = 1
post, post_cov = method(
bg, bg_cov,
obs[state_college_index],
obs_cov[state_college_index, state_college_index],
obs_op[state_college_index, :])
np_tst.assert_allclose(
post, np.asanyarray((17 + fractions.Fraction(2, 3),
14 + fractions.Fraction(1, 3),
21 + fractions.Fraction(2, 3)),
dtype=PRECISE_DTYPE),
rtol=state_rtol)
with self.subTest(problem=5):
pittsburgh_index = 0
post, post_cov = method(
bg, bg_cov,
obs[pittsburgh_index],
obs_cov[pittsburgh_index, pittsburgh_index],
obs_op[pittsburgh_index, :])
np_tst.assert_allclose(
post,
np.asanyarray((18 + fractions.Fraction(2, 3),
15 + fractions.Fraction(1, 3),
22 + fractions.Fraction(1, 6)),
PRECISE_DTYPE),
rtol=state_rtol)
with self.subTest(problem=7):
state_college_index = 1
post, post_cov = method(
bg, bg_cov,
obs[state_college_index],
4 * obs_cov[state_college_index, state_college_index],
obs_op[state_college_index, :])
np_tst.assert_allclose(
post, np.asanyarray((17 + fractions.Fraction(5, 6),
14 + fractions.Fraction(2, 3),
21 + fractions.Fraction(5, 6)),
dtype=PRECISE_DTYPE),
rtol=state_rtol)
with self.subTest(problem=8):
post, post_cov = method(
bg, bg_cov, obs, obs_cov, obs_op)
# background correlations make this problem not
# strictly linear, at least without doing
# sequential inversions. Have not verified by hand
np_tst.assert_allclose(
post, np.asanyarray(
(18 + fractions.Fraction(1, 2),
14 + fractions.Fraction(1, 2),
21 + fractions.Fraction(3, 4)),
dtype=PRECISE_DTYPE),
rtol=state_rtol)
def test_sequential_assimilations(self):
"""Make sure this follows Bayes' rule."""
bg = np.array((18., 15., 22.))
bg_var = np.array((2., 2., 2.))
bg_corr = np.array(((1, .5, .25),
(.5, 1, .5),
(.25, .5, 1)))
obs = np.array((19., 14.))
obs_var = np.array((1., 1.))
obs_op = np.array(((1., 0., 0.),
(0., 1., 0.)))
bg_std = np.sqrt(bg_var)
bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std)))
# obs_std = np.sqrt(obs_var)
# Assume no correlations between observations.
obs_cov = np.diag(obs_var)
for method in ALL_METHODS:
name = getname(method)
if "var" in name.lower() or "psas" in name.lower():
state_rtol = ITERATIVE_STATE_TOLERANCE
cov_rtol = ITERATIVE_COVARIANCE_TOLERANCE
else:
# The default for assert_allclose
cov_rtol = state_rtol = EXACT_TOLERANCE
with self.subTest(method=name):
inter1, inter_cov1 = method(
bg, bg_cov, obs[0], obs_cov[0, 0],
obs_op[0, :])
post1, post_cov1 = method(
inter1, inter_cov1, obs[1], obs_cov[1, 1],
obs_op[1, :])
post2, post_cov2 = method(
bg, bg_cov, obs, obs_cov, obs_op)
np_tst.assert_allclose(
post1, post2, rtol=state_rtol)
if "psas" in name.lower():
# The second covariance isn't positive definite (one
# positive entry) and no entry shares the order of
# magnitude between the two.
raise unittest2.SkipTest("Known Failure: PSAS Covariances")
np_tst.assert_allclose(
post_cov1, post_cov2, rtol=cov_rtol)
def test_iterative_failures(self):
"""Test failure modes of iterative solvers."""
bg_stds = np.logspace(-8, 1, 10)
bg_corr = scipy.linalg.toeplitz(
np.arange(1, .9, -.01))
bg_cov = np.diag(bg_stds).dot(bg_corr).dot(np.diag(bg_stds))
bg_vals = np.arange(10)
obs_op = np.eye(3, 10)
obs_vals = 10 - np.arange(3)
obs_cov = np.diag((10, 1e-3, 1e-6)) / 8
for method in ALL_METHODS[ITERATIVE_METHOD_START:]:
name = getname(method)
with self.subTest(method=name):
with self.assertRaises(
atmos_flux_inversion.ConvergenceError) as cxt_mgr:
method(bg_vals, bg_cov, obs_vals, obs_cov, obs_op)
conv_err = cxt_mgr.exception
self.assertTrue(hasattr(conv_err, "guess"))
self.assertTrue(hasattr(conv_err, "result"))
self.assertIsInstance(conv_err.result,
scipy.optimize.OptimizeResult)
self.assertTrue(hasattr(conv_err, "hess_inv"))
class TestGaussianNoise(unittest2.TestCase):
"""Test the properties of the gaussian noise."""
def test_ident_cov(self):
"""Test generation with identity as covariance."""
sample_shape = 3
cov = np.eye(sample_shape)
noise = atmos_flux_inversion.noise.gaussian_noise(cov, int(1e6))
np_tst.assert_allclose(noise.mean(axis=0),
np.zeros((sample_shape,)),
rtol=1e-2, atol=1e-2)
np_tst.assert_allclose(np.cov(noise.T), cov,
rtol=1e-2, atol=1e-2)
def test_shape(self):
"""Make sure the returned shapes are correct."""
sample_shape = (3,)
sample_cov = np.eye(sample_shape[0])
for shape in ((), (6,), (2, 3)):
with self.subTest(shape=shape):
res = atmos_flux_inversion.noise.gaussian_noise(
sample_cov, shape)
self.assertEqual(res.shape, shape + sample_shape)
with self.subTest(shape=5):
res = atmos_flux_inversion.noise.gaussian_noise(
sample_cov, 5)
self.assertEqual(res.shape, (5,) + sample_shape)
with self.subTest(shape=None):
res = atmos_flux_inversion.noise.gaussian_noise(
sample_cov, None)
self.assertEqual(res.shape, sample_shape)
def test_operator(self):
"""Test that the code works with operator covariances."""
diagonal = (1, .5, .3, .2, .1)
sample_cov = atmos_flux_inversion.covariances.DiagonalOperator(
diagonal)
sample_shape = (len(diagonal),)
noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6))
np_tst.assert_allclose(noise.mean(axis=0),
np.zeros(sample_shape),
rtol=1e-2, atol=1e-2)
np_tst.assert_allclose(np.cov(noise.T), np.diag(diagonal),
rtol=1e-2, atol=1e-2)
def test_kron_op(self):
"""Test that large kronecker operators don't break the handling."""
op1 = scipy.linalg.toeplitz(.6 ** np.arange(15))
diag = (1, .9, .8, .7, .6, .5, .4, .3, .2, .1)
op2 = atmos_flux_inversion.covariances.DiagonalOperator(diag)
combined = atmos_flux_inversion.util.kronecker_product(op1, op2)
noise = atmos_flux_inversion.noise.gaussian_noise(combined, int(1e5))
np_tst.assert_allclose(noise.mean(axis=0),
np.zeros(combined.shape[0]),
rtol=1.1e-2, atol=1.1e-2)
np_tst.assert_allclose(np.cov(noise.T),
scipy.linalg.kron(op1, np.diag(diag)),
rtol=3e-2, atol=3e-2)
def test_off_diagonal(self):
"""Test that the code works with off-diagonal elements."""
sample_cov = scipy.linalg.toeplitz((1, .5, .25, .125))
sample_shape = (4,)
noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6))
np_tst.assert_allclose(noise.mean(axis=0),
np.zeros(sample_shape),
rtol=1e-2, atol=1e-2)
np_tst.assert_allclose(np.cov(noise.T), sample_cov,
rtol=1e-2, atol=1e-2)
def test_slow_decay(self):
"""Test that the code handles slowly-decaying covariances."""
sample_cov = scipy.linalg.toeplitz(.8 ** np.arange(10))
sample_shape = (10,)
noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6))
np_tst.assert_allclose(noise.mean(axis=0),
np.zeros(sample_shape),
rtol=1e-2, atol=1e-2)
np_tst.assert_allclose(np.cov(noise.T), sample_cov,
rtol=1e-2, atol=1e-2)
def test_fails(self):
"""Test that construction fails on invalid input."""
self.assertRaises(ValueError,
atmos_flux_inversion.noise.gaussian_noise,
np.ones(10))
self.assertRaises(ValueError,
atmos_flux_inversion.noise.gaussian_noise,
np.eye(3, 2))
class TestCorrelations(unittest2.TestCase):
"""Test the generation of correlation matrices."""
def test_far_correl(self):
"""Test the correlation between points far apart.
Should be zero.
"""
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction
.__subclasses__()):
with self.subTest(corr_class=corr_class.__name__):
corr_fun = corr_class(1e-8)
corr = corr_fun(1e8)
self.assertAlmostEqual(corr, 0)
def test_near_correl(self):
"""Test 2D correlation between near points.
Should be one.
"""
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction
.__subclasses__()):
with self.subTest(corr_class=corr_class.__name__):
corr_fun = corr_class(1e8)
corr = corr_fun(1e-8)
self.assertAlmostEqual(corr, 1)
def test_2d_np_fromfunction(self):
"""Test that the structure works with np.fromfunction.
This is how the integration tests will get background
covariances, so this needs to work.
"""
test_size = (int(15), int(20))
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction
.__subclasses__()):
with self.subTest(corr_class=getname(corr_class)):
corr_fun = corr_class(2.)
corr = np.fromfunction(corr_fun.correlation_from_index,
shape=test_size * 2, dtype=float)
corr_mat = corr.reshape((np.prod(test_size),) * 2)
# test postitive definite
try:
chol_upper = cholesky(corr_mat)
except la.LinAlgError:
self.fail("corr_mat not positive definite")
# test symmetry
np_tst.assert_allclose(chol_upper.T.dot(chol_upper),
corr_mat,
rtol=1e-4, atol=1e-4)
def test_2d_make_matrix(self):
"""Test make_matrix for 2D correlations.
Checks against original value.
This test is really slow.
"""
# 30x25 Gaussian 10 not close
test_nx = 30
test_ny = 20
test_points = test_ny * test_nx
# TODO: speed up
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for dist in (1, 5, 10, 15):
with self.subTest(corr_class=getname(corr_class),
dist=dist):
if (
corr_class ==
atmos_flux_inversion.correlations.
GaussianCorrelation
):
raise unittest2.SkipTest(
"Gaussian({0:d}) correlations ill-conditioned".
format(dist)
)
corr_fun = corr_class(dist)
corr_mat = atmos_flux_inversion.correlations.make_matrix(
corr_fun, (test_ny, test_nx))
# Make sure diagonal elements are ones
np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6)
# check if it matches the original
np_tst.assert_allclose(
corr_mat,
np.fromfunction(
corr_fun.correlation_from_index,
(test_ny, test_nx, test_ny, test_nx)
).reshape((test_points, test_points)),
# rtol=1e-13: Gaussian 10 and 15 fail
# atol=1e-15: Gaussian 1 and 5 fail
rtol=1e-5, atol=1e-6)
# check if it actually is positive definite
cholesky(corr_mat)
def test_1d_np_fromfunction(self):
"""Test that the structure works with np.fromfunction.
This is how the integration tests will get background
covariances, so this needs to work.
"""
test_size = (200,)
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction
.__subclasses__()):
with self.subTest(corr_class=getname(corr_class)):
# This fails with a correlation length of 5
corr_fun = corr_class(2.)
corr = np.fromfunction(corr_fun.correlation_from_index,
shape=test_size * 2, dtype=float)
corr_mat = corr.reshape((np.prod(test_size),) * 2)
# test postitive definite
chol_upper = cholesky(corr_mat)
# test symmetry
np_tst.assert_allclose(chol_upper.T.dot(chol_upper),
corr_mat,
rtol=1e-4, atol=1e-4)
def test_1d_make_matrix(self):
"""Test make_matrix for 1D correlations.
Checks against original value.
"""
test_nt = 200
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for dist in (1, 5, 10, 30):
with self.subTest(corr_class=getname(corr_class),
dist=dist):
if (
corr_class ==
atmos_flux_inversion.correlations.
GaussianCorrelation
):
raise unittest2.SkipTest(
"Gaussian({0:d}) correlations ill-conditioned".
format(dist)
)
corr_fun = corr_class(dist)
corr_mat = atmos_flux_inversion.correlations.make_matrix(
corr_fun,
test_nt
)
# Make sure diagonal elements are ones
np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6)
# check if it matches the original
np_tst.assert_allclose(
corr_mat,
np.fromfunction(
corr_fun.correlation_from_index, (test_nt, test_nt)
).reshape((test_nt, test_nt)),
# rtol=1e-13: Gaussian 10 and 15 fail
# atol=1e-15: Gaussian 1 and 5 fail
rtol=2e-7, atol=5e-7
)
# check if it actually is positive definite
chol_upper = cholesky(corr_mat)
# test symmetry
np_tst.assert_allclose(chol_upper.T.dot(chol_upper),
corr_mat,
rtol=1e-4, atol=1e-4)
def test_fft_correlation_structure(self):
"""Ensure the FFT-based operators satisfy conditions of correlation matrices.
Checks for symmetry and ones on the diagonal.
"""
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for test_shape in ((300,), (20, 30)):
test_size = int(np.prod(test_shape, dtype=int))
for dist in (1, 3, 10, 30):
for is_cyclic in (True, False):
corr_fun = corr_class(dist)
corr_op = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_function(corr_fun, test_shape, is_cyclic))
# This is the fastest way to get column-major
# order from da.eye.
corr_mat = corr_op.dot(np.eye(test_size).T)
with self.subTest(
corr_class=getname(corr_class), dist=dist,
test_shape=test_shape, is_cyclic=is_cyclic,
test="symmetry"):
np_tst.assert_allclose(corr_mat, corr_mat.T,
rtol=1e-14, atol=1e-15)
with self.subTest(
corr_class=getname(corr_class), dist=dist,
test_shape=test_shape, is_cyclic=is_cyclic,
test="self-correlation"):
np_tst.assert_allclose(np.diag(corr_mat), 1)
def test_1d_fft_correlation_cyclic(self):
"""Test HomogeneousIsotropicCorrelation for cyclic 1D arrays.
Check against `make_matrix` and ignore values near the edges
of the domain where the two methods are different.
"""
test_nt = 512
test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt),
np.eye(100, test_nt)[-1])
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for dist in (1, 3, 10):
# Magic numbers
# May need to increase for larger test_nt
noncorr_dist = 20 + 8 * dist
corr_fun = corr_class(dist)
corr_mat = atmos_flux_inversion.correlations.make_matrix(
corr_fun, test_nt)
corr_op = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_function(corr_fun, test_nt))
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
inverse="no"):
np_tst.assert_allclose(
corr_op.dot(test_vec)[noncorr_dist:-noncorr_dist],
corr_mat.dot(test_vec)[noncorr_dist:-noncorr_dist],
rtol=1e-3, atol=1.5e-3)
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
inverse="yes"):
if ((corr_class is atmos_flux_inversion.correlations.
GaussianCorrelation and
dist >= 3)):
# Gaussian(3) has FFT less
# well-conditioned than make_matrix
raise unittest2.SkipTest(
"Gaussian({0:d}) correlations ill-conditioned".
format(dist))
elif ((corr_class is atmos_flux_inversion.correlations.
BalgovindCorrelation and
dist == 10)):
# This one distance is problematic
# Roughly 3% of the points disagree
# for the last half of the tests
# I have no idea why
raise unittest2.SkipTest(
"Balgovind(10) correlations weird")
np_tst.assert_allclose(
corr_op.solve(
test_vec)[noncorr_dist:-noncorr_dist],
la.solve(
corr_mat,
test_vec)[noncorr_dist:-noncorr_dist],
rtol=1e-3, atol=2e-3
)
def test_1d_fft_correlation_acyclic(self):
"""Test HomogeneousIsotropicCorrelation for acyclic 1D arrays.
Check against `make_matrix` and ignore values near the edges
of the domain where the two methods are different.
"""
test_nt = 512
test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt),
np.eye(100, test_nt)[-1])
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for dist in (1, 3, 10):
# Magic numbers
# May need to increase for larger test_nt
corr_fun = corr_class(dist)
corr_mat = atmos_flux_inversion.correlations.make_matrix(
corr_fun, test_nt)
corr_op = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_function(corr_fun, test_nt, False))
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
inverse="no"):
np_tst.assert_allclose(
corr_op.dot(test_vec),
corr_mat.dot(test_vec),
rtol=1e-3, atol=1e-5)
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
inverse="yes"):
self.assertRaises(
NotImplementedError, corr_op.solve, test_vec)
def test_2d_fft_correlation_cyclic(self):
"""Test HomogeneousIsotropicCorrelation for cyclic 2D arrays.
Check against `make_matrix` and ignore values near the edges
where the two methods differ.
"""
test_shape = (20, 30)
test_size = np.prod(test_shape)
test_lst = (np.zeros(test_size),
np.ones(test_size),
np.arange(test_size),
np.eye(10 * test_shape[0], test_size)[-1])
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for dist in (1, 3):
# Magic numbers
# May need to increase for larger domains
noncorr_dist = 20 + 8 * dist
corr_fun = corr_class(dist)
corr_mat = atmos_flux_inversion.correlations.make_matrix(
corr_fun, test_shape)
corr_op = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_function(corr_fun, test_shape))
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
direction="forward"):
np_tst.assert_allclose(
corr_op.dot(test_vec).reshape(test_shape)
[noncorr_dist:-noncorr_dist,
noncorr_dist:-noncorr_dist],
corr_mat.dot(test_vec).reshape(test_shape)
[noncorr_dist:-noncorr_dist,
noncorr_dist:-noncorr_dist],
rtol=1e-3, atol=1e-5)
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
direction="backward"):
if ((corr_class is atmos_flux_inversion.correlations.
GaussianCorrelation and
dist >= 3)):
# Gaussian(3) has FFT less
# well-conditioned than make_matrix
raise unittest2.SkipTest(
"Gaussian({0:d}) correlations ill-conditioned".
format(dist))
np_tst.assert_allclose(
corr_op.solve(
test_vec).reshape(test_shape)
[noncorr_dist:-noncorr_dist,
noncorr_dist:-noncorr_dist],
la.solve(
corr_mat,
test_vec).reshape(test_shape)
[noncorr_dist:-noncorr_dist,
noncorr_dist:-noncorr_dist],
rtol=1e-3, atol=1e-5)
def test_2d_fft_correlation_acyclic(self):
"""Test HomogeneousIsotropicCorrelation for acyclic 2D arrays.
Check against `make_matrix` and ignore values near the edges
where the two methods differ.
"""
test_shape = (20, 30)
test_size = np.prod(test_shape)
test_lst = (np.zeros(test_size),
np.ones(test_size),
np.arange(test_size),
np.eye(10 * test_shape[0], test_size)[-1])
for corr_class in (
atmos_flux_inversion.correlations.DistanceCorrelationFunction.
__subclasses__()):
for dist in (1, 3):
# Magic numbers
# May need to increase for larger domains
corr_fun = corr_class(dist)
corr_mat = atmos_flux_inversion.correlations.make_matrix(
corr_fun, test_shape)
corr_op = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_function(corr_fun, test_shape, False))
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
direction="forward"):
np_tst.assert_allclose(
corr_op.dot(test_vec).reshape(test_shape),
corr_mat.dot(test_vec).reshape(test_shape),
rtol=1e-3, atol=1e-5)
for i, test_vec in enumerate(test_lst):
with self.subTest(corr_class=getname(corr_class),
dist=dist, test_num=i,
direction="backward"):
self.assertRaises(
NotImplementedError, corr_op.solve, test_vec)
def test_homogeneous_from_array_cyclic(self):
"""Make sure cyclic from_array can be roundtripped.
Also tests that odd state sizes work.
"""
test_size = 25
corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation
for dist in (1, 3, 5):
with self.subTest(dist=dist):
corr_fun = corr_class(dist)
corr_op1 = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_function(corr_fun, test_size, True))
first_column = corr_op1.dot(np.eye(test_size, 1)[:, 0])
corr_op2 = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_array(first_column))
np_tst.assert_allclose(
corr_op1.dot(np.eye(test_size)),
corr_op2.dot(np.eye(test_size)))
def test_kron_composition(self):
"""Test that `kron` works similar to composition of the domains."""
HomogeneousIsotropicCorrelation = (
atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation
)
corr_class = atmos_flux_inversion.correlations.GaussianCorrelation
corr_fun = corr_class(5)
shape1 = (5,)
shape2 = (7,)
corr_op1 = (HomogeneousIsotropicCorrelation.
from_function(corr_fun, shape1))
corr_op2 = (HomogeneousIsotropicCorrelation.
from_function(corr_fun, shape2))
kron_corr = corr_op1.kron(corr_op2)
direct_corr = (HomogeneousIsotropicCorrelation.
from_function(corr_fun, shape1 + shape2))
self.assertEqual(kron_corr.shape, direct_corr.shape)
self.assertEqual(kron_corr._underlying_shape,
direct_corr._underlying_shape)
np_tst.assert_allclose(kron_corr._corr_fourier,
direct_corr._corr_fourier)
np_tst.assert_allclose(kron_corr._fourier_near_zero,
direct_corr._fourier_near_zero)
def test_kron_results(self):
"""Test the Kronecker product implementation."""
HomogeneousIsotropicCorrelation = (
atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation)
corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation
test_shapes = (20, 25, (5, 6))
distances = (3, 5,)
for dist1, shape1, dist2, shape2 in itertools.product(
distances, test_shapes, repeat=2):
with self.subTest(dist1=dist1, dist2=dist2):
corr_fun1 = corr_class(dist1)
corr_fun2 = corr_class(dist2)
corr_op1 = (
HomogeneousIsotropicCorrelation.
from_function(corr_fun1, shape1))
corr_op2 = (
HomogeneousIsotropicCorrelation.
from_function(corr_fun2, shape2))
size1 = np.prod(shape1)
size2 = np.prod(shape2)
corr_mat1 = corr_op1.dot(np.eye(size1))
corr_mat2 = corr_op2.dot(np.eye(size2))
full_corr1 = corr_op1.kron(corr_op2)
full_corr2 = scipy.linalg.kron(np.asarray(corr_mat1),
np.asarray(corr_mat2))
self.assertIsInstance(
corr_op1, HomogeneousIsotropicCorrelation)
test_vec = np.arange(size1 * size2)
np_tst.assert_allclose(
full_corr1.dot(test_vec),
full_corr2.dot(test_vec))
test_mat = np.eye(size1 * size2)
np_tst.assert_allclose(
full_corr1.dot(test_mat),
full_corr2.dot(test_mat))
def test_kron_delegate(self):
"""Test that kron delegates where appropriate."""
op1 = (atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_array((1, .5, .25)))
mat2 = np.eye(5)
combined_op = op1.kron(mat2)
self.assertIsInstance(
combined_op,
atmos_flux_inversion.linalg.SchmidtKroneckerProduct
)
def test_sqrt_direct(self):
"""Test the square root in the most direct manner possible.
Checks whether matrices corresponding to sqrt.T@sqrt and the
original matrix are approximately equal.
"""
operator = (atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_array((1, .5, .25, .125)))
sqrt = operator.sqrt()
sqrt_squared = sqrt.T.dot(sqrt)
mat = np.eye(4)
np_tst.assert_allclose(operator.dot(mat),
sqrt_squared.dot(mat))
def test_from_function_direct(self):
"""Directly test the output of from_function."""
corr_func = (atmos_flux_inversion.correlations.
ExponentialCorrelation(1 / np.log(2)))
from_function = (
atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation.
from_function)
toeplitz = scipy.linalg.toeplitz
with self.subTest(is_cyclic=False, nd=1):
corr_op = from_function(corr_func, [10], False)
np_tst.assert_allclose(
corr_op.dot(np.eye(10)),
toeplitz(0.5 ** np.arange(10)))
with self.subTest(is_cyclic=False, nd=2):
corr_op = from_function(corr_func, [2, 3], False)
same_row = toeplitz(0.5 ** np.array([0, 1, 2]))
other_row = toeplitz(
0.5 ** np.array([1, np.sqrt(2), np.sqrt(5)]))
np_tst.assert_allclose(
corr_op.dot(np.eye(6)),
np.block([[same_row, other_row],
[other_row, same_row]]))
corr_op = from_function(corr_func, [4, 6], False)
same_row = toeplitz(0.5 ** np.arange(6))
next_row = toeplitz(
0.5 ** np.array([1, np.sqrt(2), np.sqrt(5),
np.sqrt(10), np.sqrt(17),
np.sqrt(26)]))
row_after_next = toeplitz(
0.5 ** np.array([2, np.sqrt(5), np.sqrt(8),
np.sqrt(13), np.sqrt(20),
np.sqrt(29)]))
two_rows_on = toeplitz(
0.5 ** np.array([3, np.sqrt(10), np.sqrt(13),
np.sqrt(18), 5, np.sqrt(34)]))
np_tst.assert_allclose(
corr_op.dot(np.eye(24)),
np.block([[same_row, next_row, row_after_next, two_rows_on],
[next_row, same_row, next_row, row_after_next],
[row_after_next, next_row, same_row, next_row],
[two_rows_on, row_after_next, next_row, same_row]]))
with self.subTest(is_cyclic=True, nd=1):
corr_op = from_function(corr_func, [10], True)
np_tst.assert_allclose(
corr_op.dot(np.eye(10)),
toeplitz(
0.5 ** np.array([0, 1, 2, 3, 4, 5, 4, 3, 2, 1])))
with self.subTest(is_cyclic=True, nd=2):
corr_op = from_function(corr_func, [4, 6])
same_row = toeplitz(
0.5 ** np.array([0, 1, 2, 3, 2, 1]))
next_row = toeplitz(
0.5 ** np.array([1, np.sqrt(2), np.sqrt(5),
np.sqrt(10), np.sqrt(5), np.sqrt(2)]))
row_after_next = toeplitz(
0.5 ** np.array([2, np.sqrt(5), np.sqrt(8),
np.sqrt(13), np.sqrt(8), np.sqrt(5)]))
np_tst.assert_allclose(
corr_op.dot(np.eye(24)),
np.block([[same_row, next_row, row_after_next, next_row],
[next_row, same_row, next_row, row_after_next],
[row_after_next, next_row, same_row, next_row],
[next_row, row_after_next, next_row, same_row]]))
def test_inv(self):
"""Test inverse matches linalg."""
corr_func = (atmos_flux_inversion.correlations.
ExponentialCorrelation(1 / np.log(2)))
from_function = (
atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation.
from_function)
for test_shape in (10, 11, (3, 3), (4, 4)):
with self.subTest(test_shape=test_shape):
corr_op = from_function(corr_func, test_shape)
test_size = np.prod(test_shape)
ident = np.eye(test_size)
np_tst.assert_allclose(
corr_op.inv().dot(ident),
la.inv(corr_op.dot(ident)),
rtol=1e-5, atol=1e-5)
def test_acyclic_inv_fails(self):
"""Test inverse fails for acyclic correlations."""
corr_func = (atmos_flux_inversion.correlations.
ExponentialCorrelation(1 / np.log(2)))
from_function = (
atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation.
from_function)
for test_shape in (10, 11, (3, 3), (4, 4)):
with self.subTest(test_shape=test_shape):
corr_op = from_function(corr_func, test_shape,
is_cyclic=False)
self.assertRaises(
NotImplementedError,
corr_op.inv)
def test_wrong_shape_fails(self):
"""Test that a vector of the wrong shape fails noisily."""
corr_func = (atmos_flux_inversion.correlations.
ExponentialCorrelation(2))
corr_op = (
atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation.
from_function(corr_func, (3, 4)))
self.assertRaises(
ValueError,
corr_op.solve,
np.arange(5))
def test_cyclic_from_array(self):
"""Test from_array with assumed cyclic correlations."""
array = [1, .5, .25, .125, .0625, .125, .25, .5]
op = (atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_array(array))
mat = scipy.linalg.toeplitz(array)
np_tst.assert_allclose(op.dot(np.eye(*mat.shape)),
mat)
def test_acyclic_from_array(self):
"""Test from_array with correlations assumed acyclic."""
array = [1, .5, .25, .125, .0625, .03125]
op = (atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_array(array, False))
mat = scipy.linalg.toeplitz(array)
np_tst.assert_allclose(op.dot(np.eye(*mat.shape)),
mat)
@unittest2.skipUnless(HAVE_SPARSE, "sparse not installed")
def test_sparse(self):
"""Test HomogeneousIsotropicCorrelations work on sparse.COO."""
array = 2. ** -np.arange(6)
op = (atmos_flux_inversion.correlations.
HomogeneousIsotropicCorrelation.
from_array(array, False))
mat = scipy.linalg.toeplitz(array)
np_tst.assert_allclose(op.dot(sparse.eye(*mat.shape)),
mat)
class TestSchmidtKroneckerProduct(unittest2.TestCase):
"""Test the Schmidt Kronecker product implementation for LinearOperators.
This class tests the implementation based on the Schmidt decomposition.
"""
def test_identity(self):
"""Test that the implementation works with identity matrices."""
test_sizes = (4, 5)
SchmidtKroneckerProduct = (
atmos_flux_inversion.linalg.SchmidtKroneckerProduct)
# I want to be sure either being smaller works.
# Even versus odd also causes problems occasionally
for size1, size2 in itertools.product(test_sizes, repeat=2):
with self.subTest(size1=size1, size2=size2):
mat1 = np.eye(size1)
mat2 = np.eye(size2)
full_mat = SchmidtKroneckerProduct(
mat1, mat2)
big_ident = np.eye(size1 * size2)
np_tst.assert_allclose(
full_mat.dot(big_ident),
big_ident)
def test_identical_submatrices(self):
"""Test whether the implementation will generate identical blocks."""
mat1 = np.ones((3, 3))
mat2 = ((1, .5, .25), (.5, 1, .5), (.25, .5, 1))
np_tst.assert_allclose(
atmos_flux_inversion.linalg.SchmidtKroneckerProduct(
mat1, mat2).dot(np.eye(9)),
np.tile(mat2, (3, 3)))
def test_constant_blocks(self):
"""Test whether the implementation will produce constant blocks."""
mat1 = ((1, .5, .25), (.5, 1, .5), (.25, .5, 1))
mat2 = np.ones((3, 3))
np_tst.assert_allclose(
atmos_flux_inversion.linalg.SchmidtKroneckerProduct(
mat1, mat2).dot(np.eye(9)),
np.repeat(np.repeat(mat1, 3, 0), 3, 1))
def test_entangled_state(self):
"""Test whether the implementation works with entangled states."""
sigmax = np.array(((0, 1), (1, 0)))
sigmaz = np.array(((1, 0), (0, -1)))
operator = atmos_flux_inversion.linalg.SchmidtKroneckerProduct(
sigmax, sigmaz)
matrix = scipy.linalg.kron(sigmax, sigmaz)
# (k01 - k10) / sqrt(2)
epr_state = (0, .7071, -.7071, 0)
np_tst.assert_allclose(
operator.dot(epr_state),
matrix.dot(epr_state))
def test_drop_small(self):
"""Test that the implementation properly drops small components."""
SchmidtKroneckerProduct = (
atmos_flux_inversion.linalg.SchmidtKroneckerProduct)
# I want to be sure either being smaller works.
# Even versus odd also causes problems occasionally
mat1 = np.eye(2)
mat2 = np.eye(3)
full_mat = SchmidtKroneckerProduct(
mat1, mat2)
test_vec = np.array([1, 0, 0,
0, 1e-15, 0])
np_tst.assert_allclose(
full_mat.dot(test_vec),
np.eye(6, 1)[:, 0])
def test_transpose(self):
"""Test that SchmidtKroneckerProduct can be transposed."""
mat1 = np.eye(2)
mat2 = np.eye(3)
op = atmos_flux_inversion.linalg.SchmidtKroneckerProduct(
mat1, mat2
)
op_transpose = op.T
np_tst.assert_allclose(
op_transpose.dot(np.eye(6)),
np.eye(6))
class TestYMKroneckerProduct(unittest2.TestCase):
"""Test the YM13 Kronecker product implementation for LinearOperators.
This tests the
:class:`~atmos_flux_inversion.linalg.DaskKroneckerProductOperator`
implementation based on the algorithm in Yadav and Michalak (2013)
"""
def test_identity(self):
"""Test that the implementation works with identity matrices."""
test_sizes = (4, 5)
DaskKroneckerProductOperator = (
atmos_flux_inversion.linalg.DaskKroneckerProductOperator)
# I want to be sure either being smaller works.
# Even versus odd also causes problems occasionally
for size1, size2 in itertools.product(test_sizes, repeat=2):
with self.subTest(size1=size1, size2=size2):
mat1 = np.eye(size1)
mat2 = np.eye(size2)
full_mat = DaskKroneckerProductOperator(
mat1, mat2)
big_ident = np.eye(size1 * size2)
np_tst.assert_allclose(
full_mat.dot(big_ident),
big_ident)
def test_identical_submatrices(self):
"""Test whether the implementation will generate identical blocks."""
mat1 = np.ones((3, 3))
mat2 = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1)))
np_tst.assert_allclose(
atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
mat1, mat2).dot(np.eye(9)),
np.tile(mat2, (3, 3)))
def test_constant_blocks(self):
"""Test whether the implementation will produce constant blocks."""
mat1 = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1)))
mat2 = np.ones((3, 3))
np_tst.assert_allclose(
atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
mat1, mat2).dot(np.eye(9)),
np.repeat(np.repeat(mat1, 3, 0), 3, 1))
def test_entangled_state(self):
"""Test whether the implementation works with entangled states."""
sigmax = np.array(((0, 1), (1, 0)))
sigmaz = np.array(((1, 0), (0, -1)))
operator = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
sigmax, sigmaz)
matrix = scipy.linalg.kron(sigmax, sigmaz)
# (k01 - k10) / sqrt(2)
epr_state = (0, .7071, -.7071, 0)
np_tst.assert_allclose(
operator.dot(epr_state),
matrix.dot(epr_state))
@unittest2.skipUnless(HAVE_SPARSE, "sparse not installed")
def test_sparse(self):
"""Test that DaskKroneckerProductOperator works on sparse.COO."""
sigmax = np.array(((0, 1), (1, 0)))
sigmaz = np.array(((1, 0), (0, -1)))
operator = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
sigmax, sigmaz)
matrix = scipy.linalg.kron(sigmax, sigmaz)
epr_state = np.array((0, .7071, -.7071, 0))
np_tst.assert_allclose(
operator.dot(sparse.COO(epr_state)),
matrix.dot(epr_state))
def test_transpose(self):
"""Test whether the transpose is properly implemented."""
mat1 = np.eye(3)
mat2 = atmos_flux_inversion.covariances.DiagonalOperator((1, 1))
mat3 = np.eye(4)
DaskKroneckerProductOperator = (
atmos_flux_inversion.linalg.DaskKroneckerProductOperator)
with self.subTest(check="symmetric"):
product = DaskKroneckerProductOperator(
mat1, mat2)
self.assertIs(product.T, product)
with self.subTest(check="asymmetric1"):
mat1[0, 1] = 1
product = DaskKroneckerProductOperator(
mat1, mat2)
transpose = product.T
self.assertIsNot(transpose, product)
np_tst.assert_allclose(transpose._operator1,
mat1.T)
with self.subTest(check="asymmetric2"):
product = DaskKroneckerProductOperator(
mat3, mat1)
transpose = product.T
self.assertIsNot(transpose, product)
self.assertIs(transpose._operator1, mat3)
np_tst.assert_allclose(transpose._operator2.A,
mat1.T)
with self.subTest(check="asymmetric3"):
product = DaskKroneckerProductOperator(
mat1, mat1)
transpose = product.T
np_tst.assert_allclose(transpose._operator1,
mat1.T)
np_tst.assert_allclose(transpose._operator2.A,
mat1.T)
with self.subTest(check="rectangular"):
product = DaskKroneckerProductOperator(
mat1[:2], mat3[:3])
transpose = product.T
np_tst.assert_allclose(transpose._operator1,
mat1[:2].T)
np_tst.assert_allclose(transpose._operator2.A,
mat3[:3].T)
def test_sqrt(self):
"""Test whether the sqrt method works as intended."""
matrix1 = np.eye(2)
matrix2 = atmos_flux_inversion.covariances.DiagonalOperator((1, 2, 3))
tester = np.eye(6)
product = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
matrix1, matrix2)
sqrt = product.sqrt()
proposed = sqrt.T.dot(sqrt)
np_tst.assert_allclose(proposed.dot(tester), product.dot(tester))
# Should I check the submatrices or assume that's covered?
def test_quadratic_form(self):
"""Test whether quadratic_form returns the intended result."""
matrix1 = scipy.linalg.toeplitz((1., 1/3., 1/9., 1/27., 1/81.)) # noqa
matrix2 = scipy.linalg.toeplitz((1., .5, .25, .125, .0625, .03125))
product = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
matrix1, matrix2)
tester = np.eye(product.shape[0])
dense_product = scipy.linalg.kron(matrix1, matrix2)
test_vec = np.arange(product.shape[0])
np_tst.assert_allclose(product.quadratic_form(tester),
dense_product)
np_tst.assert_allclose(product.quadratic_form(test_vec),
test_vec.dot(dense_product.dot(test_vec)))
test_op = atmos_flux_inversion.linalg.DiagonalOperator(test_vec)
self.assertRaises(
TypeError,
product.quadratic_form,
test_op)
self.assertRaises(
ValueError,
product.quadratic_form,
test_vec[:-1])
@unittest2.skipUnless(HAVE_SPARSE, "sparse not installed")
def test_quadratic_form_sparse(self):
"""Test that quadratic_form works on sparse.COO."""
matrix1 = scipy.linalg.toeplitz(3. ** -np.arange(4))
matrix2 = scipy.linalg.toeplitz(5. ** -np.arange(5))
product = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
matrix1, matrix2)
tester = sparse.eye(product.shape[0])
dense_product = scipy.linalg.kron(matrix1, matrix2)
np_tst.assert_allclose(product.quadratic_form(tester),
dense_product)
def test_matrix_linop(self):
"""Test that the implementation works with MatrixLinearOperator."""
test_sizes = (4, 5)
DaskKroneckerProductOperator = (
atmos_flux_inversion.linalg.DaskKroneckerProductOperator)
# I want to be sure either being smaller works.
# Even versus odd also causes problems occasionally
for size1, size2 in itertools.product(test_sizes, repeat=2):
with self.subTest(size1=size1, size2=size2):
mat1 = tolinearoperator(np.eye(size1))
mat2 = np.eye(size2)
full_mat = DaskKroneckerProductOperator(
mat1, mat2)
big_ident = np.eye(size1 * size2)
np_tst.assert_allclose(
full_mat.dot(big_ident),
big_ident)
def test_fails_not_array(self):
"""Test for failure if the first operator is not an array.
The implementation requires it. The implementation should
fail quickly, not slowly.
"""
mat1 = atmos_flux_inversion.linalg.DiagonalOperator(np.arange(10))
mat2 = np.eye(3)
self.assertRaises(
ValueError,
atmos_flux_inversion.linalg.DaskKroneckerProductOperator,
mat1, mat2)
def test_sqrt_fails(self):
"""Test that the square root fails for bad inputs.
Specifically, non-square arrays and asymmetric arrays.
"""
kron_op = atmos_flux_inversion.linalg.DaskKroneckerProductOperator
self.assertRaises(
ValueError,
kron_op(np.eye(3, 2), np.eye(3)).sqrt)
self.assertRaises(
ValueError,
kron_op(np.eye(3), np.eye(2, 3)).sqrt)
self.assertRaises(
ValueError,
kron_op(np.array([[1, 1], [0, 1]]), np.eye(3)).sqrt)
@unittest2.skipUnless(HAVE_SPARSE, "sparse not installed")
def test_sparse_first_argument(self):
"""Test sparse.COO in the first position."""
row = np.exp(-np.arange(20))
row[row < 0.005] = 0
matrix1 = scipy.linalg.toeplitz(row)
operator1 = sparse.COO(matrix1)
operator2 = sparse.eye(15)
kron_op = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
operator1, operator2)
kron_mat = scipy.linalg.kron(matrix1, operator2.todense())
np_tst.assert_allclose(
kron_op.dot(np.eye(kron_op.shape[0])),
kron_mat)
np_tst.assert_allclose(
kron_op.dot(sparse.eye(kron_op.shape[0])).todense(),
kron_mat)
@unittest2.skipUnless(HAVE_SPARSE, "sparse not installed")
@unittest2.expectedFailure
def test_sparse_kron_quadratic_form(self):
"""Test that quadratic form of all sparse works."""
row = np.exp(-np.arange(20))
row[row < 0.005] = 0
matrix1 = scipy.linalg.toeplitz(row)
operator1 = sparse.COO(row)
operator2 = sparse.eye(15)
kron_op = atmos_flux_inversion.linalg.DaskKroneckerProductOperator(
operator1, operator2)
kron_mat = scipy.linalg.kron(matrix1, operator2.todense())
np_tst.assert_allclose(
kron_op.quadratic_form(sparse.eye(kron_op.shape[0])).todense(),
kron_mat)
class TestUtilKroneckerProduct(unittest2.TestCase):
"""Test atmos_flux_inversion.util.kronecker_product."""
def test_delegation(self):
"""Test that it delegates to subclasses where appropriate."""
HomogeneousIsotropicCorrelation = (
atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation)
corr_class = atmos_flux_inversion.correlations.GaussianCorrelation
corr_fun = corr_class(5)
op1 = HomogeneousIsotropicCorrelation.from_function(corr_fun, 15)
op2 = HomogeneousIsotropicCorrelation.from_function(corr_fun, 20)
combined_op = atmos_flux_inversion.util.kronecker_product(op1, op2)
proposed_result = HomogeneousIsotropicCorrelation.from_function(
corr_fun, (15, 20))
self.assertIsInstance(combined_op, HomogeneousIsotropicCorrelation)
self.assertSequenceEqual(combined_op.shape,
tuple(np.multiply(op1.shape, op2.shape)))
self.assertEqual(combined_op._underlying_shape,
proposed_result._underlying_shape)
np_tst.assert_allclose(combined_op._fourier_near_zero,
proposed_result._fourier_near_zero)
np_tst.assert_allclose(combined_op._corr_fourier,
proposed_result._corr_fourier,
rtol=1e-5, atol=1e-6)
def test_array_array(self):
"""Test array-array Kronecker product."""
mat1 = np.eye(2)
mat2 = np.eye(3)
combined_op = atmos_flux_inversion.util.kronecker_product(mat1, mat2)
self.assertIsInstance(combined_op, np.ndarray)
self.assertSequenceEqual(combined_op.shape,
tuple(np.multiply(mat1.shape, mat2.shape)))
np_tst.assert_allclose(combined_op, scipy.linalg.kron(mat1, mat2))
def test_large_array_array(self):
"""Test large array-array Kronecker products.
At some point it becomes faster to use Y&M kronecker
representation than the dense one.
"""
mat1 = np.eye(1 << 5)
mat2 = np.eye(1 << 6)
combined = atmos_flux_inversion.util.kronecker_product(mat1, mat2)
self.assertIsInstance(
combined, atmos_flux_inversion.linalg.DaskKroneckerProductOperator)
self.assertSequenceEqual(combined.shape,
tuple(np.multiply(mat1.shape, mat2.shape)))
def test_array_sparse(self):
"""Test array-sparse matrix Kronecker products."""
mat1 = np.eye(3)
mat2 = scipy.sparse.eye(10)
combined_op = atmos_flux_inversion.util.kronecker_product(mat1, mat2)
big_ident = np.eye(30)
self.assertIsInstance(
combined_op,
atmos_flux_inversion.linalg.DaskKroneckerProductOperator
)
self.assertSequenceEqual(combined_op.shape,
tuple(np.multiply(mat1.shape, mat2.shape)))
np_tst.assert_allclose(combined_op.dot(big_ident),
big_ident)
def test_linop_array(self):
"""Test linop-sparse Kronecker products."""
op1 = atmos_flux_inversion.linalg.DiagonalOperator(np.arange(15))
mat2 = np.eye(10)
combined_op = atmos_flux_inversion.util.kronecker_product(op1, mat2)
self.assertIsInstance(
combined_op,
atmos_flux_inversion.linalg.SchmidtKroneckerProduct
)
self.assertSequenceEqual(combined_op.shape,
tuple(np.multiply(op1.shape, mat2.shape)))
class TestUtilSchmidtDecomposition(unittest2.TestCase):
"""Test the Schimdt decomposition code in atmos_flux_inversion.linalg."""
def setUp(self):
"""Set up the test vectors."""
from scipy.linalg import kron
# The notation here is borrowed from quantum computation. I
# use the k prefix to indicate the vector has precisely one
# nonzero entry, a one. The digits following are the binary
# representation of the zero-based index of that one.
self.k0 = np.array((1, 0)).reshape(-1, 1)
self.k1 = np.array((0, 1)).reshape(-1, 1)
self.k00 = kron(self.k0, self.k0)
self.k01 = kron(self.k0, self.k1)
self.k10 = kron(self.k1, self.k0)
self.k11 = kron(self.k1, self.k1)
self.k000 = kron(self.k0, self.k00)
self.k001 = kron(self.k0, self.k01)
self.k010 = kron(self.k0, self.k10)
self.k011 = kron(self.k0, self.k11)
self.k100 = kron(self.k1, self.k00)
self.k101 = kron(self.k1, self.k01)
self.k110 = kron(self.k1, self.k10)
self.k111 = kron(self.k1, self.k11)
def test_simple_combinations(self):
"""Test many combinations of vectors."""
possibilities = (
self.k0, self.k1,
self.k00, self.k01, self.k10, self.k11)
for vec1, vec2 in itertools.product(possibilities, possibilities):
with self.subTest(vec1=vec1[:, 0], vec2=vec2[:, 0]):
composite_state = scipy.linalg.kron(vec1, vec2)
lambdas, vecs1, vecs2 = (
atmos_flux_inversion.linalg.schmidt_decomposition(
composite_state, vec1.shape[0], vec2.shape[0]))
np_tst.assert_allclose(np.nonzero(lambdas),
[[0]])
np_tst.assert_allclose(np.abs(vecs1[0]),
vec1[:, 0])
np_tst.assert_allclose(np.abs(vecs2[0]),
vec2[:, 0])
np_tst.assert_allclose(
lambdas[0] *
scipy.linalg.kron(
np.asarray(vecs1[:1].T),
np.asarray(vecs2[:1].T)),
composite_state)
def test_composite_compination(self):
"""Test composite combinations."""
sqrt2 = math.sqrt(2)
rsqrt2 = 1 / sqrt2
# b00 = (k00 + k11) / sqrt2
# b01 = (k00 - k11) / sqrt2
# b10 = (k01 + k10) / sqrt2
# b11 = (k01 - k10) / sqrt2
composite_state = (
scipy.linalg.kron(self.k0, self.k00) +
scipy.linalg.kron(self.k1, self.k01)) / sqrt2
res_lambda, res_vec1, res_vec2 = (
atmos_flux_inversion.linalg.schmidt_decomposition(
composite_state, 2, 4))
self.assertEqual(res_vec1.shape, (2, 2))
self.assertEqual(res_vec2.shape, (2, 4))
np_tst.assert_allclose(res_lambda, (rsqrt2, rsqrt2))
np_tst.assert_allclose(
sum(lambd * scipy.linalg.kron(
np.asarray(vec1).reshape(-1, 1),
np.asarray(vec2).reshape(-1, 1))
for lambd, vec1, vec2 in zip(res_lambda, res_vec1, res_vec2)),
composite_state)
def test_epr_state(self):
"""Test that it correctly decomposes the EPR state."""
sqrt2o2 = math.sqrt(2) / 2
epr_state = (self.k01 - self.k10) * sqrt2o2
lambdas, vecs1, vecs2 = (
atmos_flux_inversion.linalg.schmidt_decomposition(
epr_state, 2, 2
)
)
lambdas = np.asarray(lambdas)
vecs1 = np.asarray(vecs1)
vecs2 = np.asarray(vecs2)
self.assertEqual(len(lambdas), 2)
# This will not recover the original decomposition
np_tst.assert_allclose(lambdas, (sqrt2o2, sqrt2o2))
self.assertAlmostEqual(np.prod(lambdas), .5)
for vec1, vec2 in zip(vecs1, vecs2):
if np.allclose(np.abs(vec1), self.k0[:, 0]):
sign = 1
else:
sign = -1
np_tst.assert_allclose(vec1, sign * vec2[-1::-1])
np_tst.assert_allclose(
sum(lambd * scipy.linalg.kron(
np.asarray(vec1).reshape(-1, 1),
np.asarray(vec2).reshape(-1, 1))
for lambd, vec1, vec2 in zip(lambdas, vecs1, vecs2)),
epr_state)
def test_failure(self):
"""Test that schmidt_decomposition fails on invalid input."""
schmidt_decomp = atmos_flux_inversion.linalg.schmidt_decomposition
schmidt_decomp(np.eye(6, 1), 2, 3)
schmidt_decomp(np.arange(6), 2, 3)
self.assertRaises(
ValueError, schmidt_decomp, np.eye(6, 2), 2, 3)
def test_big_vector(self):
"""Test size of results for large vectors."""
vec = np.arange(1000, dtype=float)
lambdas, uvecs, vvecs = (
atmos_flux_inversion.linalg.schmidt_decomposition(vec, 10, 100))
self.assertLessEqual(len(lambdas), 10)
self.assertNotIn(0, lambdas)
np_tst.assert_allclose(
sum(lambd[...] * scipy.linalg.kron(
vec1.reshape(-1, 1),
vec2.reshape(-1, 1))[:, 0]
for lambd, vec1, vec2 in zip(lambdas, uvecs, vvecs)),
vec, atol=1e-10)
def test_small_nonzero(self):
"""Test that all returned data is significant."""
vec = np.eye(20, 1)
lambdas, uvecs, vvecs = (
atmos_flux_inversion.linalg.schmidt_decomposition(vec, 4, 5))
self.assertNotIn(0, lambdas)
def test_zeros(self):
"""Test that function gives sensible output on zero input."""
vec = np.zeros(20)
lambdas, uvecs, vvecs = (
atmos_flux_inversion.linalg.schmidt_decomposition(vec, 4, 5)
)
self.assertSequenceEqual(lambdas, [0])
class TestUtilIsOdd(unittest2.TestCase):
"""Test atmos_flux_inversion.linalg.is_odd."""
MAX_TO_TEST = 100
def test_known_odd(self):
"""Test known odd numbers."""
is_odd = atmos_flux_inversion.linalg_interface.is_odd
for i in range(1, self.MAX_TO_TEST, 2):
with self.subTest(i=i):
self.assertTrue(is_odd(i))
def test_known_even(self):
"""Test known even numbers."""
is_odd = atmos_flux_inversion.linalg_interface.is_odd
for i in range(0, self.MAX_TO_TEST, 2):
with self.subTest(i=i):
self.assertFalse(is_odd(i))
class TestUtilToLinearOperator(unittest2.TestCase):
"""Test atmos_flux_inversion.linalg.tolinearoperator."""
def test_tolinearoperator(self):
"""Test that tolinearoperator returns LinearOperators."""
tolinearoperator = atmos_flux_inversion.linalg.tolinearoperator
for trial in (0, 1., (0, 1), [0, 1], ((1, 0), (0, 1)),
[[0, 1.], [1., 0]], np.arange(5),
scipy.sparse.identity(8), | np.arange(10) | numpy.arange |
'''
Comparison of Continuation/Generalized-inverse (G/Ginv) method
and Continuation/Generalized Minimum RESidual (C/GMRES) method
Two-link Arm system
Made in Feb. 2022 ver. 0.1
Fer. 2022 ver. 0.1.1
Bug fixed.
BSD 2-Clause License
Copyright (c) 2022, <NAME>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import numpy as np
import matplotlib.pyplot as plt
from CGinv import C_Ginv
from CGMRES import C_GMRES
import time
###########################
## simulation parameters ##
###########################
##################################
## common simulation parameters ##
##################################
state_dim=4 # state dimension
input_dim=2 # input dimension
t0=0.0 # initial time [s]
N=4 # Integration steps within the MPC computation
dt=0.01 # Time step for evolution of actual time [s]
Tf=1.0 # Simulation duration [s]
max_iter=int((Tf-t0)/dt)+1 # iteration of simulation (for loop iteration)
####################
## Initial state ##
####################
x_init=np.zeros(state_dim)
x_init[0]=-np.pi/180*45
x_init[1]=-np.pi/180*60
x_init[0]=-np.pi/180*45
x_init[1]=-np.pi/180*60
###################
## target state ##
###################
x_ref=np.zeros(state_dim)
#############################################
#############################################
#############################################
## Parameters for C/Ginv simulation ##
#############################################
#############################################
#############################################
diff_order=2 # k of u^(k)=0
T_CGinv=0.13 # Prediction horizon [s] for C/Ginv
zeta_CGinv=1/dt # coefficient for continuation method
## parameters for Gauss-Newton methods
tol_CGinv = 1e-5 # terminates iteration when norm(Func) < tol
max_iter_GaussNewton = 15 # maximum iteration of Gauss-Newton method
k_CGinv = 1 # damping coefficient inside Gauss-Newton method
#############################################
#############################################
#############################################
## Parameters for C/GMRES simulation ##
#############################################
#############################################
T_CGMRES=0.24 # Prediction horizon [s] for C/GMRES
zeta_CGMRES=1/dt # coefficient for continuation method
########################################
## J= x(t+T)^T*S*x(t+T)/2 ##
## +Int[x^T*Q*x/2+u^T*R*u/2]dt ##
########################################
Q=np.eye(state_dim, state_dim)
R=np.eye(input_dim, input_dim)
S=np.eye(state_dim, state_dim)
Q[0,0]=40
Q[1,1]=20
Q[2,2]=0.01
Q[3,3]=0.01
R[0,0]=0.1
R[1,1]=0.1
S[0,0]=4
S[1,1]=2
S[2,2]=0.001
S[3,3]=0.001
Q[0,0]=40
Q[1,1]=20
Q[2,2]=0.01
Q[3,3]=0.01
R[0,0]=0.07
R[1,1]=0.07
S[0,0]=4
S[1,1]=2
S[2,2]=0.001
S[3,3]=0.001
## parameters for Iteration methods
tol_CGMRES = 1e-5 # terminates iteration when norm(Func) < tol
max_iter_Newton = 15 # maximum iteration of Gauss-Newton method
max_iter_FDGMRES = 2 # maximum iteration of Gauss-Newton method
k_CGMRES = 1 # damping coefficient inside Gauss-Newton method
## file_name for saving graphs ##
file_name='Compare_Two-linkArm_TGinv'+str(T_CGinv)+'TGMRES'+str(T_CGMRES)+'N'+str(N)+'dt'+str(dt)
##################################
## u^(2)=0 ###
##################################
def dUdt_2nd_order(U):
dUdt=np.zeros(U.shape[0])
dUdt[0]=U[2]
dUdt[1]=U[3]
dUdt[2]=0
dUdt[3]=0
return dUdt
##################################
## u^(3)=0 ###
##################################
def dUdt_3rd_order(U):
dUdt=np.zeros(U.shape[0])
dUdt[0]=U[2]
dUdt[1]=U[3]
dUdt[2]=U[4]
dUdt[3]=U[5]
dUdt[4]=0
dUdt[5]=0
return dUdt
##################################
## u^(K)=0 ###
##################################
class dUdt:
def __init__(self, diff_odr, input_dim):
self.diff_odr=diff_odr
self.input_dim=input_dim
def Kth_order(self, U):
dUdt=np.zeros(U.shape[0])
diff_order=self.diff_odr
input_dim=self.input_dim
for i in range(diff_order-1):
for j in range(input_dim):
dUdt[input_dim*i+j]=U[input_dim+input_dim*i+j]
for i in range(input_dim):
dUdt[input_dim*diff_order-1-i]=0
return dUdt
###########################
## Two-link arm system ##
###########################
## system parameters ##
#######################
m1=0.25#[kg]
l1=0.5#[m]
I1=0.0125#[kgm^2]
m2=0.25#[kg]
l2=0.5#[m]
I2=0.0125#[kgm^2]
######################################
## state func of Double pendulumn ###
######################################
def plant(t, x, u):
dxdt = np.zeros(x.shape[0])
Mat=np.zeros([2,2])
Mat[0,0]=(m1/4+m2)*l1*l1+I1
Mat[0,1]=m2*l1*l2/2*np.cos(x[0]-x[1])
Mat[1,0]=Mat[0,1]
Mat[1,1]= m2/4*l2*l2+I2
C=np.zeros(2)
C[0]=-m2*l1*l2/2*x[3]**2*np.sin(x[0]-x[1])\
+u[0]-u[1]
C[1]= m2*l1*l2/2*x[2]**2*np.sin(x[0]-x[1])\
+u[1]
tmp=np.linalg.solve(Mat,C)
dxdt[0]=x[2]
dxdt[1]=x[3]
dxdt[2]=tmp[0]
dxdt[3]=tmp[1]
return dxdt
############################
############################
############################
############################
## C/Ginv simulation part ##
############################
############################
############################
############################
###########################
## Controller definition ##
###########################
UFunc=dUdt(diff_order, input_dim)
#CGinv=C_Ginv(plant, dUdt_2nd_order, input_dim)
#CGinv=C_Ginv(plant, dUdt_3th_order, input_dim)
Ctrler=C_Ginv(plant, UFunc.Kth_order, input_dim)
#################
## state : x ##
#################
x=np.zeros([max_iter+1,state_dim])
x[0,:]=x_init
##############
## input: u ##
##############
u=np.zeros([max_iter+1,input_dim])
############################################################
## Big U: U:=[u, u', u", u^(3),...,u^(diff_order-1)]^T ##
############################################################
U_init =np.zeros(diff_order*input_dim)
#############
## time: t ##
#############
t=np.zeros(max_iter+1)
t[0]=t0
#################################
## list for graph of calc_time ##
#################################
t_list=[]
calc_time_list=[]
###################################
## variable for timing calc_time ##
###################################
t_start=None
t_end=None
############################
### Start ####
### MPC simulation ####
### by C/Ginv ####
############################
###################
### start loop ####
###################
### loop 0 ####
###################
############################
### MPC computation ####
############################
t_start = time.time()
u[0] = Ctrler.u_init(x[0], x_ref, t[0], T_CGinv, U_init, N, tolerance=tol_CGinv, max_iter=max_iter_GaussNewton, k=k_CGinv)
t_end = time.time()
calc_time_list.append(t_end-t_start)
t_list.append(t[0])
## displaying some results ##
print('t:{:.2g}'.format(t[0]),'[s] | u[',0,'] =',u[0])
print(' F(t,x,U):evaluation_count =',Ctrler.F.eval_count,'times')
print(' calc time ={:.4g}'.format(t_end-t_start),'[s]')
print(' N =',N,', Horizon=',T_CGinv,'[s]')
F=Ctrler.F(t[0],x[0],Ctrler.U)
print(' |F(t,x,U)|=',np.linalg.norm(F))
#####################################
### time evolution of real plant ####
#####################################
x[1] = x[0] + plant(t[0],x[0],u[0]) * dt
t[1] = t[0] + dt
## printing how close we are to the target state ##
print('|x[0]-x_ref| =',np.linalg.norm(x[1]-x_ref))
print()
## resetting count of evaluation of F(t,x,U) ##
Ctrler.F.eval_count = 0
############################
### loops 1 ~ max_iter ####
############################
for i in range(1,max_iter):
############################
### MPC computation ####
############################
t_start = time.time()
u[i] = Ctrler.u(x[i],x_ref,t[i],T_CGinv,Ctrler.U,N,dt,zeta_CGinv)
t_end = time.time()
calc_time_list.append(t_end-t_start)
t_list.append(t[i])
## displaying some results ##
print('t:{:.5g}'.format(t[i]),'[s] | u[',i,'] =',u[i])
print(' F(t,x,U):evaluation_count =',Ctrler.F.eval_count,'times')
print(' calc time ={:.4g}'.format(t_end-t_start),'[s]')
print(' N =',N,', Horizon=',T_CGinv,'[s]')
F=Ctrler.F(t[i],x[i],Ctrler.U)
print(' |F(t,x,U)|=',np.linalg.norm(F))
print(' |x[',i,']-x_ref|=',np.linalg.norm(x[i]-x_ref))
print()
#####################################
### time evolution of real plant ####
#####################################
x[i+1]=x[i]+plant(t[i],x[i], u[i])*dt
t[i+1]=t[i]+dt
## resetting count of evaluation of F(t,x,U) ##
Ctrler.F.eval_count=0
## displaying calculation time results ##
calc_time_CGinv=np.array(calc_time_list)
max_index_CGinv=np.argmax(calc_time_CGinv)
min_index_CGinv=np.argmin(calc_time_CGinv)
avg_calc_time_CGinv= | np.mean(calc_time_CGinv) | numpy.mean |
#copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import time
import tensorflow as tf
from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
import glob
import os
import sys
from npu_bridge.estimator import npu_ops
from dllogger.logger import LOGGER
import dllogger.logger as dllg
#input_shape = [512, 512, 1] # (height, width, channel)
# 用户自定义模型路径、输入、输出
model_path='./unet-industrial_tf.pb'
input_tensor_name='input:0'
output_tensor_name='output:0'
class Classifier(object):
def __init__(self):
config = tf.ConfigProto()
custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
custom_op.name = "NpuOptimizer"
custom_op.parameter_map["use_off_line"].b = True
custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("force_fp16")
config.graph_options.rewrite_options.remapping = RewriterConfig.OFF
custom_op.parameter_map["graph_run_mode"].i = 0
self.graph = self.__load_model(model_path)
self.input_tensor = self.graph.get_tensor_by_name(input_tensor_name)
self.output_tensor = self.graph.get_tensor_by_name(output_tensor_name)
# create session
self.sess = tf.Session(config=config, graph=self.graph)
def __load_model(self, model_file):
with tf.gfile.GFile(model_file, "rb") as gf:
graph_def = tf.GraphDef()
graph_def.ParseFromString(gf.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name="")
return graph
def do_infer(self, batch_data):
out = self.sess.run(self.output_tensor, feed_dict={self.input_tensor: batch_data})
return out
def DAGM2007_Dataset(data_dir, class_id=1, batch_size=1):
data_dir = os.path.join(data_dir, "raw_images/private/Class%d" % class_id)
csv_file = os.path.join(data_dir, "test_list.csv")
image_dir = os.path.join(data_dir, "Test")
mask_image_dir = os.path.join(data_dir, "Test/Label")
input_shape = mask_shape = [512, 512, 1]
shuffle_buffer_size = 10000
def decode_csv(line):
input_image_name, image_mask_name, label = tf.decode_csv(
line, record_defaults=[[""], [""], [0]], field_delim=','
)
def decode_image(filepath, resize_shape, normalize_data_method):
image_content = tf.read_file(filepath)
image = tf.image.decode_png(contents=image_content, channels=resize_shape[-1], dtype=tf.uint8)
image = tf.image.resize_images(
image,
size=resize_shape[:2],
method=tf.image.ResizeMethod.BILINEAR, # [BILINEAR, NEAREST_NEIGHBOR, BICUBIC, AREA]
align_corners=False,
preserve_aspect_ratio=True
)
image.set_shape(resize_shape)
image = tf.cast(image, tf.float32)
if normalize_data_method == "zero_centered":
image = tf.divide(image, 127.5) - 1
elif normalize_data_method == "zero_one":
image = tf.divide(image, 255.0)
return image
input_image = decode_image(
filepath=tf.strings.join([image_dir, input_image_name], separator='/'),
resize_shape=input_shape,
normalize_data_method="zero_centered",
)
mask_image = tf.cond(
tf.equal(image_mask_name, ""),
true_fn=lambda: tf.zeros(mask_shape, dtype=tf.float32),
false_fn=lambda: decode_image(
filepath=tf.strings.join([mask_image_dir, image_mask_name], separator='/'),
resize_shape=mask_shape,
normalize_data_method="zero_one",
),
)
label = tf.cast(label, tf.int32)
return (input_image, mask_image), label
dataset = tf.data.TextLineDataset(csv_file)
dataset = dataset.skip(1) # Skip CSV Header
dataset = dataset.cache()
dataset = dataset.apply(
tf.data.experimental.map_and_batch(
map_func=decode_csv,
num_parallel_calls=64,
batch_size=batch_size,
drop_remainder=True,
)
)
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
return dataset
def iou_score_fn(y_pred, y_true, threshold, eps=1e-5):
y_true = y_true > threshold
y_pred = y_pred > threshold
y_true = y_true.astype(np.float32)
y_pred = y_pred.astype(np.float32)
intersection = y_true * y_pred
intersection = tf.reduce_sum(intersection, axis=(1, 2, 3))
numerator = 2.0 * intersection + eps
divisor = tf.reduce_sum(y_true, axis=(1, 2, 3)) + tf.reduce_sum(y_pred, axis=(1, 2, 3)) + eps
return tf.reduce_mean(numerator / divisor)
def main():
filepath = sys.argv[1]
classifier = Classifier()
ds = DAGM2007_Dataset(data_dir=filepath, class_id=1, batch_size=2)
iter = ds.make_initializable_iterator()
ds_sess = tf.Session()
ds_sess.run(iter.initializer)
next_element = iter.get_next()
eval_metrics = dict()
IOU_THS = [[],[],[],[],[],[],[],[]]
i = 1
while True:
try:
# features
input = ds_sess.run(next_element)
batch_data = input[0]
batch_labels = input[1]
# input_image, mask_image, labels
input_image = batch_data[0]
mask_image = batch_data[1]
labels = batch_labels
y_pred = classifier.do_infer(input_image)
labels = tf.cast(labels, tf.float32)
labels_preds = tf.reduce_max(y_pred, axis=(1, 2, 3))
j = 0
for threshold in [0.05, 0.125, 0.25, 0.5, 0.75, 0.85, 0.95, 0.99]:
tf.reset_default_graph()
with tf.Session() as eval_sess:
iou_score = iou_score_fn(y_pred=y_pred, y_true=mask_image, threshold=threshold)
eval_results = eval_sess.run(iou_score)
eval_metrics["IoU_THS_%s" % threshold] = tf.metrics.mean(iou_score)
IOU_THS[j].append(eval_results)
j += 1
i += 1
print("======batch %s finished ======" % str(i))
except tf.errors.OutOfRangeError as e:
print("### Total IoU_THS_0.05: ", np.mean(IOU_THS[0]))
print("### Total IoU_THS_0.125: ", np.mean(IOU_THS[1]))
print("### Total IoU_THS_0.25: ", np.mean(IOU_THS[2]))
print("### Total IoU_THS_0.5: ", np.mean(IOU_THS[3]))
print("### Total IoU_THS_0.75: ", | np.mean(IOU_THS[4]) | numpy.mean |
'''
Copyright 2020 Xilinx Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
'''
Evaluation of frozen/quantized graph
Author: <NAME>
'''
import os
import sys
import argparse
import shutil
import numpy as np
import cv2
from progressbar import ProgressBar
# Silence TensorFlow messages
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# workaround for TF1.15 bug "Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR"
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import tensorflow as tf
import tensorflow.contrib.decent_q
from tensorflow.python.platform import gfile
from preprocess import preprocess
DIVIDER = '-----------------------------------------'
def graph_eval(input_graph_def, input_node, output_node, dataset, batchsize):
images = []
ground_truth = []
for root, dirs, files in os.walk(os.path.join(dataset, 'test')):
for filename in files:
class_id,_ = filename.split('.', 1)
images.append(preprocess(os.path.join(root,filename)))
ground_truth.append(class_id)
print('Found',len(images),'images and',len(ground_truth),'ground_truth')
tf.import_graph_def(input_graph_def,name = '')
# Get input placeholders & tensors
input_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name(input_node+':0')
# get output tensors
predict = tf.compat.v1.get_default_graph().get_tensor_by_name(output_node+':0')
# Create the Computational graph
with tf.compat.v1.Session() as sess:
predictions = []
progress = ProgressBar()
sess.run(tf.compat.v1.initializers.global_variables())
for i in progress(range(len(images)//batchsize)):
# make batches of images
img_batch = images[i*batchsize:i*batchsize+batchsize]
# run session to get a batch of predictions
feed_dict={input_tensor: img_batch}
pred = sess.run([predict], feed_dict)
for i in range(len(pred[0])):
if | np.argmax(pred[0][i]) | numpy.argmax |
# Hint install pytest in the google environment,
# otherwise it will watch for the google modules
# outside of the environment.
# Workaround:
# python -m pytest test_process_lake.py
# https://pypi.org/project/pytest-mock/
# pip install pytest
# pip install pytest-mock
# pip install pytest-cov
import numpy as np
import os
import pytest
import process_lake as pl
import databases as db
def test_get_measurement_foders():
"""Still clumsy check"""
lake = os.path.expanduser("~/DataLakeTest")
ret = pl.get_measurement_folders(lake)
exp = [
"results_0_unpack",
"results_1_unpack",
"results_2_unpack",
"results_4_unpack",
"results_5_unpack", # uses collectd
]
assert ret == exp
def test_get_relevant_measurement_folders_real():
exp = [
"results_1_unpack",
"results_2_unpack",
"results_4_unpack",
"results_5_unpack",
]
lake = os.path.expanduser("~/DataLakeTest")
valid = "results_1_unpack"
ret, valid = pl.get_relevant_measurement_folders(lake, valid)
assert ret == exp
assert valid == 4
def test_get_relevant_measurement_folders_mocked(mocker):
exp = ["results_1_unpack", "results_2_unpack", "results_4_unpack"]
lake = os.path.expanduser("~/DataLakeTest")
valid = "results_1_unpack"
mock = mocker.patch("process_lake.get_measurement_folders")
mock.return_value = [
"results_0_unpack",
"results_1_unpack",
"results_2_unpack",
"results_4_unpack",
]
ret, valid = pl.get_relevant_measurement_folders(lake, valid)
assert ret == exp
assert valid == 3
def test_get_relevant_measurement_folders_mocked_5(mocker):
exp = [
"results_1_unpack",
"results_2_unpack",
"results_4_unpack",
"results_5_unpack",
]
lake = os.path.expanduser("~/DataLakeTest")
valid = "results_1_unpack"
mock = mocker.patch("process_lake.get_measurement_folders")
mock.return_value = [
"results_0_unpack",
"results_1_unpack",
"results_2_unpack",
"results_4_unpack",
"results_5_unpack",
]
ret, valid = pl.get_relevant_measurement_folders(lake, valid)
assert ret == exp
assert valid == 4
def test_get_relevant_measurement_folders_mocked_1(mocker):
exp = ["results_1_unpack"]
lake = os.path.expanduser("~/DataLakeTest")
valid = "results_1_unpack"
mock = mocker.patch("process_lake.get_measurement_folders")
mock.return_value = ["results_1_unpack"]
ret, valid = pl.get_relevant_measurement_folders(lake, valid)
assert ret == exp
assert valid == 1
def test_get_relevant_measurement_folders_mocked_0(mocker):
lake = os.path.expanduser("~/DataLakeTest")
valid = "results_1_unpack"
mock = mocker.patch("process_lake.get_measurement_folders")
mock.return_value = ["results_0_unpack"]
with pytest.raises(SystemError):
pl.get_relevant_measurement_folders(lake, valid)
def test_generate(mocker):
"""Integrtion test for generate"""
lake = os.path.expanduser("~/DataLakeTest")
show = False
style = "none"
testdata = True
foldermock = mocker.patch(
"process_lake.get_relevant_measurement_folders", return_value=(3, 1)
)
earliest = "results_107_unpack"
cputables = 4
memtables = 1
stacktables = 1
metatables = 1
cpumock = mocker.MagicMock(name="cpuobject")
mocker.patch("databases.CpuHistory", return_value=cpumock)
memmock = mocker.MagicMock(name="memobject")
mocker.patch("databases.MemoryHistory", return_value=memmock)
stackmock = mocker.MagicMock(name="memobject")
mocker.patch("databases.CpuHistoryStacked", return_value=stackmock)
metamock = mocker.MagicMock(name="memobject")
mocker.patch("databases.MeasurementMetadata", return_value=metamock)
pl.generate(style, show, lake, testdata, earliest)
foldermock.assert_called_with(lake, earliest)
cpumock.update_table.assert_called_with()
assert cpumock.update_table.call_count == cputables
memmock.update_table.assert_called_with()
assert memmock.update_table.call_count == memtables
stackmock.update_table.assert_called_with()
assert stackmock.update_table.call_count == stacktables
metamock.update_table.assert_called_with()
assert metamock.update_table.call_count == metatables
# we seem to not be able to use ANY here, so assert at least the
# call count
assert cpumock.postprocess.call_count == cputables
assert memmock.postprocess.call_count == memtables
assert stackmock.postprocess.call_count == stacktables
assert metamock.postprocess.call_count == metatables
def test_postprocess_vals_cpu():
"""This is an integration test!
Tighten current functionality for now
Probably too much for a simple test
"""
lake = os.path.expanduser("~/DataLakeTest")
relevant_measurement_folders = [
"results_1_unpack",
"results_2_unpack",
"results_4_unpack",
]
data_length = 10
client = None
testmode = True
cpu_array = db.CpuHistory(
lake,
"name",
len(relevant_measurement_folders),
data_length,
client,
testmode,
)
cpu_array.postprocess(
relevant_measurement_folders,
"publish_sawmill_record_statistics",
"stat_mapper_stdout",
"tedge_mapper",
)
# programmatically reproduce the data set
data = []
for i in range(len(relevant_measurement_folders) * data_length):
if i < 20:
k = (i + 10) // 10
else:
k = 4
if i < 18 or i >= 20:
ut = i + 1
st = i + 2
else:
ut = 0 # hint: missing data here
st = 0
data.append([i, k, i % 10, ut, st, 0, 0])
exp = np.array(data, dtype=np.int32)
extensive_check = True
if extensive_check:
print("\nExpect")
print(len(exp))
print(exp)
print("There")
print(cpu_array.size)
print(cpu_array.array)
for i in range(len(data)):
print("Line", i, | np.array_equal(exp[i], cpu_array.array[i]) | numpy.array_equal |
import json
import os
import time
from abc import ABC
import numpy as np
import ray
import torch
from agent0.common.utils import LinearSchedule, set_random_seed
from agent0.deepq.actor import Actor
from agent0.deepq.agent import Agent
from agent0.deepq.config import Config
from ray import tune
from ray.tune.trial import ExportFormat
class Trainer(tune.Trainable, ABC):
def __init__(self, config=None, logger_creator=None):
self.Rs, self.Qs, self.TRs, self.Ls, self.ITRs, self.velocity = [], [], [], [], [], []
self.cfg = None
self.agent = None
self.epsilon = None
self.epsilon_schedule = None
self.actors = None
self.frame_count = None
self.Rs, self.Qs, self.TRs, self.Ls, self.ITRs = [], [], [], [], []
self.best = float('-inf')
self.sample_ops = None
super(Trainer, self).__init__(config, logger_creator)
def setup(self, config):
self.cfg = Config(**config)
self.cfg.update_atoms()
set_random_seed(self.cfg.random_seed)
print("input args:\n", json.dumps(vars(self.cfg), indent=4, separators=(",", ":")))
self.agent = Agent(**config)
self.epsilon_schedule = LinearSchedule(1.0, self.cfg.min_eps, self.cfg.exploration_steps)
self.actors = [ray.remote(Actor).options(num_gpus=0.1 * self.cfg.gpu_mult).remote(rank=rank, **config)
for rank in range(self.cfg.num_actors)]
self.frame_count = 0
self.best = float('-inf')
self.epsilon = 1.0
self.sample_ops = [a.sample.remote(self.cfg.actor_steps, 1.0, self.agent.model.state_dict()) for a in
self.actors]
def step(self):
fraction_loss = None
ce_loss = None
tic = time.time()
done_id, self.sample_ops = ray.wait(self.sample_ops)
data = ray.get(done_id)
transitions, rs, qs, rank, fps, best_ep = data[0]
# Actors
if len(transitions) > 0:
self.agent.replay.extend(transitions)
if len(best_ep) > 0:
self.agent.replay.extend_ep_best(best_ep)
self.epsilon = self.epsilon_schedule(self.cfg.actor_steps * self.cfg.num_envs)
self.frame_count += self.cfg.actor_steps * self.cfg.num_envs
self.sample_ops.append(
self.actors[rank].sample.remote(self.cfg.actor_steps, self.epsilon, self.agent.model.state_dict()))
self.Rs += rs
self.Qs += qs
# Start training at
if len(self.agent.replay) > self.cfg.start_training_step:
data = [self.agent.train_step() for _ in range(self.cfg.agent_train_steps)]
if self.cfg.algo in ['fqf']:
fraction_loss = torch.stack([x['fraction_loss'] for x in data]).mean().item()
if self.cfg.best_ep:
ce_loss = torch.stack([x['ce_loss'] for x in data]).mean().item()
loss = [x['loss'] for x in data]
loss = torch.stack(loss)
self.Ls += loss.tolist()
toc = time.time()
self.velocity.append(self.cfg.actor_steps * self.cfg.num_envs / (toc - tic))
result = dict(
game=self.cfg.game,
time_past=self._time_total,
epsilon=self.epsilon,
adam_lr=self.cfg.adam_lr,
frames=self.frame_count,
fraction_loss=fraction_loss if fraction_loss is not None else 0,
ce_loss=ce_loss if ce_loss is not None else 0,
velocity=np.mean(self.velocity[-20:]) if len(self.velocity) > 0 else 0,
speed=self.frame_count / (self._time_total + 1),
time_remain=(self.cfg.total_steps - self.frame_count) / ((self.frame_count + 1) / (self._time_total + 1)),
loss=np.mean(self.Ls[-20:]) if len(self.Ls) > 0 else 0,
ep_reward_test=np.mean(self.ITRs) if len(self.ITRs) > 0 else 0,
ep_reward_train=np.mean(self.Rs[-20:]) if len(self.Rs) > 0 else 0,
ep_reward_train_max=np.max(self.Rs) if len(self.Rs) > 0 else 0,
ep_reward_test_max=np.max(self.TRs) if len(self.TRs) > 0 else 0,
qmax=np.mean(self.Qs[-100:]) if len(self.Qs) > 0 else 0
)
return result
def save_checkpoint(self, checkpoint_dir):
print(f"Iteration {self.training_iteration} testing started")
output = ray.get([a.sample.remote(self.cfg.actor_steps,
self.cfg.test_eps,
self.agent.model.state_dict(),
testing=True,
test_episodes=self.cfg.test_episode_per_actor) for a in self.actors])
ckpt_rs = []
for _, rs, qs, rank, fps, _ in output:
ckpt_rs += rs
self.ITRs = ckpt_rs
self.TRs += ckpt_rs
print(f"Iteration {self.training_iteration} test Result(mean|std|max|min|len):"
f" {np.mean(ckpt_rs)}\t{ | np.std(ckpt_rs) | numpy.std |
"""
@brief test log(time=120s)
"""
import unittest
import warnings
import sys
from logging import getLogger
from contextlib import redirect_stdout
from io import StringIO
import numpy
import onnx
from scipy.sparse import coo_matrix, csr_matrix, SparseEfficiencyWarning
from scipy.special import ( # pylint: disable=E0611
expit as logistic_sigmoid, erf)
from scipy.spatial.distance import cdist
from onnx import TensorProto, __version__ as onnx_version
from onnx.helper import make_sparse_tensor, make_tensor
from onnx.defs import onnx_opset_version
from onnx.numpy_helper import from_array
from pyquickhelper.pycode import ExtTestCase
from pyquickhelper.texthelper import compare_module_version
from sklearn.utils.extmath import softmax
try:
from sklearn.utils._testing import ignore_warnings
except ImportError:
from sklearn.utils.testing import ignore_warnings
from skl2onnx.algebra.onnx_ops import ( # pylint: disable=E0611
OnnxAbs, OnnxAdd, OnnxAnd,
OnnxArgMax_11, OnnxArgMax,
OnnxArgMin_11, OnnxArgMin,
OnnxBatchNormalization,
OnnxAcos, OnnxAcosh, OnnxAsin, OnnxAsinh, OnnxAtan, OnnxAtanh,
OnnxAveragePool,
OnnxCast, OnnxCeil, OnnxClip,
OnnxCompress,
OnnxConcat, OnnxConv, OnnxConvTranspose,
OnnxConstant, OnnxConstant_9, OnnxConstant_11,
OnnxConstant_12, OnnxConstant_13,
OnnxConstantOfShape,
OnnxCos, OnnxCosh,
OnnxCumSum,
OnnxDequantizeLinear,
OnnxDet, OnnxDiv,
OnnxDropout, OnnxDropout_7,
OnnxEinsum, OnnxEqual, OnnxErf, OnnxExp, OnnxEyeLike,
OnnxFlatten, OnnxFloor,
OnnxGreater, OnnxGreaterOrEqual, OnnxGemm, OnnxGlobalAveragePool,
OnnxIdentity, OnnxIsNaN,
OnnxLess, OnnxLessOrEqual,
OnnxLog, OnnxLpNormalization,
OnnxMatMul, OnnxMax, OnnxMaxPool, OnnxMean, OnnxMin, OnnxMod, OnnxMul,
OnnxNeg, OnnxNot,
OnnxOr,
OnnxPad, OnnxPow,
OnnxQLinearConv, OnnxQuantizeLinear,
OnnxRange,
OnnxReciprocal,
OnnxReduceL1, OnnxReduceL2,
OnnxReduceLogSumExp, OnnxReduceMax, OnnxReduceMean, OnnxReduceMin,
OnnxReduceProd,
OnnxReduceSum, OnnxReduceSumApi11, OnnxReduceSum_11, OnnxReduceSum_1,
OnnxReduceSumSquare,
OnnxRelu, OnnxReshape,
OnnxRound,
OnnxScatterElements, OnnxShape, OnnxSlice, OnnxSigmoid, OnnxSign,
OnnxSin, OnnxSinh,
OnnxSize, OnnxSoftmax,
OnnxSplit, OnnxSplitApi11,
OnnxSqrt, OnnxSub, OnnxSum,
OnnxSqueeze, OnnxSqueezeApi11,
OnnxTan, OnnxTanh, OnnxTopK, OnnxTranspose,
OnnxUnsqueeze, OnnxUnsqueezeApi11
)
try:
from skl2onnx.algebra.onnx_ops import OnnxCelu
except ImportError:
OnnxCelu = None
try:
from skl2onnx.algebra.onnx_ops import OnnxBatchNormalization_14
except ImportError:
OnnxBatchNormalization_14 = None
from skl2onnx import __version__ as skl2onnx_version, __max_supported_opset__
from mlprodict.onnxrt import OnnxInference
from mlprodict.tools.asv_options_helper import (
get_opset_number_from_onnx, get_ir_version_from_onnx)
from mlprodict.onnxrt.validate.validate_python import validate_python_inference
from mlprodict.onnxrt.ops_cpu.op_batch_normalization import (
_batchnorm_test_mode, _batchnorm_training_mode)
from mlprodict.onnxrt.ops_cpu.op_average_pool import (
_get_output_shape, _pool, _get_pad_shape)
from mlprodict.onnxrt.ops_cpu.op_global_average_pool import _global_average_pool
from mlprodict.onnxrt.ops_cpu._op_onnx_numpy import ( # pylint: disable=E0611,E0401
topk_element_min_double, topk_element_max_double,
topk_element_fetch_double,
topk_element_min_float, topk_element_max_float, topk_element_fetch_float,
topk_element_min_int64, topk_element_max_int64, topk_element_fetch_int64)
from mlprodict.onnxrt.ops_cpu.op_celu import _vcelu1, pycelu
from mlprodict.onnxrt.ops_cpu.op_topk import topk_sorted_implementation
from mlprodict.onnxrt.ops_cpu.op_pad import _pad_impl
from mlprodict.onnxrt.ops_cpu.op_max_pool import (
_pool_get_output_shape, _pool_impl)
from mlprodict.onnxrt.ops_cpu.op_dropout import _dropout
from mlprodict.onnxrt.ops_cpu._op_helper import proto2dtype
from mlprodict.onnx_tools.onnx2py_helper import (
guess_proto_dtype, _elem_type_as_str)
from mlprodict.tools.data_types import (
FloatTensorType, Int64TensorType, DoubleTensorType, StringTensorType,
Int32TensorType, BooleanTensorType, UInt8TensorType,
Int16TensorType, Int8TensorType, UInt16TensorType,
UInt32TensorType, UInt64TensorType, Float16TensorType)
from mlprodict.testing.test_utils.quantized_tensor import (
QuantizedTensor, QuantizedBiasTensor, test_qlinear_conv)
from mlprodict.onnxrt.ops_cpu.op_qlinear_conv_ import ( # pylint: disable=W0611,E0611,E0401
test_qgemm0, test_qgemm1)
from mlprodict.onnxrt.ops_cpu.op_constant import Constant_12, Constant_11, Constant_9
try:
numpy_str = numpy.str_
except ImportError:
numpy_str = str
try:
numpy_bool = numpy.bool_
except ImportError:
numpy_bool = bool
sparse_support = []
sparse_no_numpy = []
python_tested = []
def make_coo_matrix(*args, **kwargs):
coo = coo_matrix(*args, **kwargs)
coo.row = coo.row.astype(numpy.int64)
coo.col = coo.col.astype(numpy.int64)
return coo
def wraplog():
# from datetime import datetime
def wrapper(fct):
def call_f(self):
# no = datetime.now()
# print('BEGIN %s' % fct.__name__)
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", DeprecationWarning)
fct(self)
# print('DONE %s - %r' % (fct.__name__, datetime.now() - no))
return call_f
return wrapper
class TestOnnxrtPythonRuntime(ExtTestCase): # pylint: disable=R0904
@classmethod
def setUpClass(cls):
pass
@classmethod
def tearDownClass(cls):
if __name__ == "__main__":
import pprint
print('-----------')
pprint.pprint(sparse_support)
print('-----------')
pprint.pprint(sparse_no_numpy)
print('-----------')
pprint.pprint(
list(sorted({_.__name__ for _ in python_tested})))
print('-----------')
def setUp(self):
logger = getLogger('skl2onnx')
logger.disabled = True
def test_opset_skl2onnx(self):
opset_mlprodict = get_opset_number_from_onnx()
opset_skl2onnx = __max_supported_opset__
self.assertGreater(opset_skl2onnx, opset_mlprodict)
def common_expected_shapes_types(self, oinf, inputs, got, onnx_cl, model_def,
raise_shape=False):
expected_types = oinf.infer_types()
self.assertEqual(set(got) & set(expected_types), set(got))
for k, v in got.items():
if expected_types[k] in (str, numpy.str_):
# Type mismatch: dtype('<U32') != <class 'str'>
continue
if v.dtype != expected_types[k]:
raise AssertionError(
"Type mismatch: %r != %r\nexpected_types=%r\ngot=%r"
"\n----\n%r" % (
v.dtype, expected_types[k], expected_types, got,
model_def))
try:
expected_shapes = oinf.infer_shapes()
self.assertEqual(set(got) & set(expected_shapes), set(got))
except RuntimeError as e:
if raise_shape:
raise e
warnings.warn("infer_shapes fails for operator %r." % onnx_cl)
res = oinf.infer_sizes(inputs)
self.assertIsInstance(res, dict)
@ignore_warnings(category=(RuntimeWarning, DeprecationWarning,
SparseEfficiencyWarning, PendingDeprecationWarning))
def common_test_onnxt_runtime_unary(self, onnx_cl, np_fct,
op_version=None,
outputs=None, debug=False,
do_sparse=True, raise_shape=False):
if op_version is None:
op_version = get_opset_number_from_onnx()
try:
onx = onnx_cl('X', output_names=['Y'], op_version=op_version)
except RuntimeError as e:
raise RuntimeError('onnx.opset={} op_version={}'.format(
get_opset_number_from_onnx(), op_version)) from e
X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float64)
model_def = onx.to_onnx(
{'X': X.astype(numpy.float32)}, target_opset=op_version,
outputs=outputs)
if debug:
print(model_def)
python_tested.append(onnx_cl)
# python code
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': X.astype(numpy.float32)})
# no inplace
oinf = OnnxInference(model_def, inplace=False)
all_names = "\n".join(
"%s>=v%d" % (op.ops_.__class__.__name__,
op.ops_._schema.since_version) # pylint: disable=W0212
for op in oinf.sequence_)
if debug:
got = oinf.run({'X': X.astype(numpy.float32)},
verbose=1, fLOG=print)
else:
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.common_expected_shapes_types(
oinf, {'X': X.astype(numpy.float32)}, got, onnx_cl,
model_def, raise_shape=raise_shape)
try:
self.assertEqualArray(np_fct(X), got['Y'], decimal=5)
except AssertionError as e:
raise AssertionError(
'onnx.opset={} op_version={}\n--ONNX--\n{}\n--NAMES--\n{}'.format(
get_opset_number_from_onnx(), op_version, model_def,
all_names)) from e
# inplace
oinf = OnnxInference(model_def, input_inplace=False, inplace=True)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(np_fct(X), got['Y'], decimal=5)
# inplace2
onx2 = OnnxIdentity(
onnx_cl('X', op_version=op_version),
output_names=['Y'], op_version=op_version)
model_def2 = onx2.to_onnx(
{'X': X.astype(numpy.float32)}, target_opset=op_version,
outputs=outputs)
oinf = OnnxInference(model_def2, input_inplace=False, inplace=True)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(np_fct(X), got['Y'], decimal=5)
# input inplace
expe = np_fct(X)
oinf = OnnxInference(model_def, input_inplace=True, inplace=True)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(expe, got['Y'], decimal=5)
# sparse
if do_sparse:
row = numpy.array([0, 0, 1, 3, 1])
col = numpy.array([0, 2, 1, 3, 1])
data = numpy.array([1, 1, 1, 1, 1])
X = make_coo_matrix((data, (row.astype(numpy.int64),
col.astype(numpy.int64))),
shape=(4, 4), dtype=numpy.float32)
try:
exp = np_fct(X)
except (TypeError, NotImplementedError, ValueError) as e:
# Function np_fct does not work on sparse data.
sparse_no_numpy.append((onnx_cl.__name__, op_version, e))
return
model_def_sparse = onx.to_onnx(
{'X': X.astype(numpy.float32)}, target_opset=op_version)
oinf = OnnxInference(
model_def_sparse, input_inplace=False, inplace=True)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualSparseArray(exp, got['Y'], decimal=5)
sparse_support.append(('UnOp', op_version, onnx_cl.__name__))
@ignore_warnings(category=(RuntimeWarning, DeprecationWarning,
SparseEfficiencyWarning, PendingDeprecationWarning))
def common_test_onnxt_runtime_binary(self, onnx_cl, np_fct,
dtype=numpy.float32,
op_version=None, debug=False,
raise_shape=False):
if op_version is None:
op_version = get_opset_number_from_onnx()
idi = numpy.identity(2, dtype=dtype)
onx = onnx_cl('X', idi, output_names=['Y'], op_version=op_version)
X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float64)
model_def = onx.to_onnx({'X': X.astype(dtype)},
target_opset=op_version)
oinf = OnnxInference(model_def)
if debug:
got = oinf.run({'X': X.astype(dtype)}, verbose=1, fLOG=print)
else:
got = oinf.run({'X': X.astype(dtype)})
self.assertEqual(list(sorted(got)), ['Y'])
self.common_expected_shapes_types(
oinf, {'X': X.astype(dtype)}, got, onnx_cl, model_def,
raise_shape=raise_shape)
exp = np_fct(X, idi)
self.assertEqualArray(exp, got['Y'], decimal=5)
# python code
python_tested.append(onnx_cl)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': X.astype(dtype)})
# sparse
idi = make_coo_matrix(numpy.identity(2)).astype(numpy.float32)
X = make_coo_matrix(numpy.array(
[[0, 2], [3, -4]], dtype=numpy.float32))
try:
exp = np_fct(X, idi)
except (TypeError, NotImplementedError, ValueError) as e:
# Function np_fct does not work on sparse data.
sparse_no_numpy.append((onnx_cl.__name__, op_version, e))
return
onx = onnx_cl('X', idi, output_names=['Y'], op_version=op_version)
model_def_sparse = onx.to_onnx({'X': X}, target_opset=op_version)
try:
oinf = OnnxInference(
model_def_sparse, input_inplace=False, inplace=True)
except RuntimeError as e:
raise RuntimeError(
"Unable to load sparse model\n{}".format(
model_def_sparse)) from e
if debug:
got = oinf.run({'X': X}, verbose=1, fLOG=print)
else:
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
if isinstance(exp, (coo_matrix, csr_matrix)):
self.assertEqualSparseArray(exp, got['Y'], decimal=5)
elif isinstance(exp, numpy.ndarray):
self.assertEqualArray(exp, got['Y'], decimal=5)
else:
self.assertEqual(exp, got['Y'])
sparse_support.append(('BinOp', op_version, onnx_cl.__name__))
@wraplog()
def test_onnxt_runtime_abs(self):
self.common_test_onnxt_runtime_unary(OnnxAbs, numpy.abs)
@wraplog()
def test_onnxt_runtime_abs_debug(self):
f = StringIO()
with redirect_stdout(f):
self.common_test_onnxt_runtime_unary(
OnnxAbs, numpy.abs, debug=True)
@wraplog()
def test_onnxt_runtime_acos(self):
self.common_test_onnxt_runtime_unary(OnnxAcos, numpy.arccos)
@wraplog()
def test_onnxt_runtime_acosh(self):
self.common_test_onnxt_runtime_unary(OnnxAcosh, numpy.arccosh)
@wraplog()
def test_onnxt_runtime_add(self):
self.common_test_onnxt_runtime_binary(OnnxAdd, numpy.add)
@wraplog()
def test_onnxt_runtime_and(self):
self.common_test_onnxt_runtime_binary(
OnnxAnd, numpy.logical_and, dtype=numpy.bool_)
@wraplog()
def test_onnxt_runtime_argmax(self):
opsets = list(range(11, get_opset_number_from_onnx() + 1))
opsets = ['11only'] + opsets
for opset in opsets:
with self.subTest(opset=opset):
X = numpy.array([[2, 1], [0, 1]], dtype=float)
if opset == '11only':
clarg = OnnxArgMax_11
opset = 11
br = True
else:
clarg = OnnxArgMax
br = False
onx = clarg('X', output_names=['Y'], keepdims=0,
op_version=opset)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.argmax(
X, axis=0), got['Y'], decimal=5)
self.common_expected_shapes_types(
oinf, {'X': X}, got, clarg, model_def)
if br:
continue
oinfpy = OnnxInference(
model_def, runtime="python", inplace=True)
validate_python_inference(
oinfpy, {'X': X.astype(numpy.float32)})
onx = OnnxArgMax('X', output_names=['Y'], axis=1, keepdims=0,
op_version=opset)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.argmax(X, axis=1).ravel(),
got['Y'].ravel())
onx = OnnxArgMax('X', output_names=['Y'], axis=1, keepdims=1,
op_version=opset)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.argmax(X, axis=1).ravel(),
got['Y'].ravel())
# sparse
X = make_coo_matrix(X, dtype=numpy.float32)
try:
exp = numpy.argmax(X, axis=1)
except (TypeError, NotImplementedError, ValueError) as e:
# Function np_fct does not work on sparse data.
sparse_no_numpy.append((OnnxArgMax.__name__, None, e))
return
model_def_sparse = onx.to_onnx({'X': X},
target_opset=opset)
oinf = OnnxInference(model_def_sparse, input_inplace=False)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(exp, got['Y'], decimal=5)
X = numpy.array([[2, 1], [0, 1]], dtype=float)
sparse_support.append(('UnOp', None, OnnxArgMax.__name__))
python_tested.append(OnnxArgMax)
@unittest.skipIf(onnx_opset_version() < 12, reason="needs onnx 1.7.0")
@wraplog()
def test_onnxt_runtime_argmax_12(self):
self.assertGreater(onnx_opset_version(), 12)
from skl2onnx.algebra.onnx_ops import OnnxArgMax_12 # pylint: disable=E0611
X = numpy.array([[2, 2, 1], [0, 1, 1]], dtype=float)
onx = OnnxArgMax_12('X', output_names=['Y'], keepdims=0, axis=1,
select_last_index=1, op_version=12)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.array([1, 2], dtype=numpy.int64),
got['Y'], decimal=5)
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxArgMax_12, model_def)
@wraplog()
def test_onnxt_runtime_argmin(self):
opsets = list(range(11, get_opset_number_from_onnx() + 1))
opsets = ['11only'] + opsets
for opset in opsets:
with self.subTest(opset=opset):
if opset == '11only':
clarg = OnnxArgMin_11
opset = 11
br = True
else:
clarg = OnnxArgMin
br = False
X = numpy.array([[2, 1], [0, 1]], dtype=float)
onx = clarg('X', output_names=['Y'], keepdims=0,
op_version=opset)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.argmin(
X, axis=0), got['Y'], decimal=5)
if br:
continue
oinfpy = OnnxInference(
model_def, runtime="python", inplace=True)
validate_python_inference(
oinfpy, {'X': X.astype(numpy.float32)})
self.common_expected_shapes_types(
oinfpy, {'X': X.astype(numpy.float32)},
got, clarg, model_def)
onx = OnnxArgMin('X', output_names=['Y'], axis=1, keepdims=0,
op_version=opset)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.argmin(X, axis=1).ravel(),
got['Y'].ravel())
onx = OnnxArgMin('X', output_names=['Y'], axis=1, keepdims=1,
op_version=opset)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.argmin(X, axis=1).ravel(),
got['Y'].ravel())
# sparse
X = make_coo_matrix(X, dtype=numpy.float32)
try:
exp = numpy.argmin(X, axis=1)
except (TypeError, NotImplementedError, ValueError) as e:
# Function np_fct does not work on sparse data.
sparse_no_numpy.append((OnnxArgMin.__name__, None, e))
return
model_def_sparse = onx.to_onnx({'X': X}, target_opset=opset)
oinf = OnnxInference(model_def_sparse, input_inplace=False)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(exp, got['Y'], decimal=5)
sparse_support.append(('UnOp', None, OnnxArgMin.__name__))
python_tested.append(OnnxArgMin)
@unittest.skipIf(onnx_opset_version() < 12, reason="needs onnx 1.7.0")
@wraplog()
def test_onnxt_runtime_argmin_12(self):
self.assertGreater(onnx_opset_version(), 12)
from skl2onnx.algebra.onnx_ops import OnnxArgMin_12 # pylint: disable=E0611
X = numpy.array([[2, 1, 1], [0, 0, 1]], dtype=float)
onx = OnnxArgMin_12('X', output_names=['Y'], keepdims=0, axis=1,
select_last_index=1, op_version=12)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.array([2, 1], dtype=numpy.int64),
got['Y'], decimal=5)
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxArgMin_12, model_def)
@wraplog()
def test_onnxt_runtime_asin(self):
self.common_test_onnxt_runtime_unary(OnnxAsin, numpy.arcsin)
@wraplog()
def test_onnxt_runtime_asinh(self):
self.common_test_onnxt_runtime_unary(OnnxAsinh, numpy.arcsinh)
@wraplog()
def test_onnxt_runtime_atan(self):
self.common_test_onnxt_runtime_unary(OnnxAtan, numpy.arctan)
@wraplog()
def test_onnxt_runtime_atanh(self):
self.common_test_onnxt_runtime_unary(OnnxAtanh, numpy.arctanh)
@wraplog()
def test_onnxt_runtime_atan2(self):
test_pairs = [[y, x]
for x in [3., -4., 0., -1., 1.]
for y in [5., -6., 0., -1., 1.]]
y_val = numpy.array([y for y, x in test_pairs], dtype=numpy.float32)
x_val = numpy.array([x for y, x in test_pairs], dtype=numpy.float32)
def atan2(y, x):
# size: 100000
# timeit arctan: 0.00205
# timeit arctan2: 0.00361
# timeit atan2: 0.00599
sx = numpy.sign(x)
sy = numpy.sign(y)
pi_part = (sy + sx * (sy ** 2 - 1)) * (sx - 1) * (-numpy.pi / 2)
atan_part = numpy.arctan(y / (x + (1 - sx ** 2))) * sx ** 2
return atan_part + pi_part
self.assertEqualArray(
numpy.arctan2(y_val, x_val), atan2(y_val, x_val), decimal=5)
def _expect_average_pool(self, node, inputs, outputs, opset=None):
if opset is None:
opset = get_opset_number_from_onnx()
ginputs = [
onnx.helper.make_tensor_value_info(
node.input[0], TensorProto.FLOAT, []), # pylint: disable=E1101,
]
goutputs = [
onnx.helper.make_tensor_value_info(
node.output[0], TensorProto.FLOAT, []), # pylint: disable=E1101,
]
model_def = onnx.helper.make_model(
opset_imports=[onnx.helper.make_operatorsetid('', opset)],
graph=onnx.helper.make_graph(
name='test_average_pool', inputs=ginputs, outputs=goutputs,
nodes=[node]))
oinf = OnnxInference(model_def)
got = oinf.run({n: v for n, v in zip(node.input, inputs)})
self.assertEqual(len(got), 1)
self.assertEqualArray(outputs[0], got['y'])
@wraplog()
def test_onnxt_runtime_average_pool(self):
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[2, 2], auto_pad='SAME_UPPER')
x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = _get_output_shape(
'SAME_UPPER', x_shape[2:], kernel_shape, strides)
pad_shape = _get_pad_shape(
'SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = numpy.pad(
x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
mode='constant', constant_values=numpy.nan)
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[3, 3], pads=[2, 2, 2, 2],
count_include_pad=1)
x = numpy.random.randn(1, 3, 28, 28).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = _get_output_shape(
'VALID', numpy.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = numpy.pad(
x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
mode='constant', constant_values=0)
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape,
pad_shape, 'AVG', count_include_pad=1)
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[2, 2], auto_pad='SAME_LOWER')
x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = _get_output_shape(
'SAME_LOWER', x_shape[2:], kernel_shape, strides)
pad_shape = _get_pad_shape(
'SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = numpy.pad(
x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
mode='constant', constant_values=numpy.nan)
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[3, 3], pads=[2, 2, 2, 2])
x = numpy.random.randn(1, 3, 28, 28).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = _get_output_shape(
'VALID', numpy.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = numpy.pad(
x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)),
mode='constant', constant_values=numpy.nan)
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[2])
x = numpy.random.randn(1, 3, 32).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = [2]
strides = [1]
out_shape = _get_output_shape(
'VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = _pool(padded, x_shape, kernel_shape,
strides, out_shape, [0], 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[2, 2])
x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = _get_output_shape(
'VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[5, 5], strides=[3, 3])
x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape = _get_output_shape(
'VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[2, 2, 2])
x = numpy.random.randn(1, 3, 32, 32, 32).astype(numpy.float32)
x_shape = numpy.shape(x)
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape = _get_output_shape(
'VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = _pool(
padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'AVG')
self._expect_average_pool(node, inputs=[x], outputs=[y])
python_tested.append(OnnxAveragePool)
@wraplog()
@unittest.skipIf(True, "not implemented yet")
def test_onnxt_runtime_average_pool_ceil(self):
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True)
x = numpy.array([[[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]]]]).astype(numpy.float32)
y = numpy.array([[[
[6, 7.5], [12, 13.5]]]]).astype(numpy.float32)
self._expect_average_pool(node, inputs=[x], outputs=[y])
@wraplog()
def test_onnxt_runtime_average_pool_big(self):
with self.subTest(name='test_averagepool_2d_precomputed_pads'):
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[5, 5], pads=[2, 2, 2, 2])
x = numpy.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]]]]).astype(numpy.float32)
y = numpy.array([[[[7, 7.5, 8, 8.5, 9],
[9.5, 10, 10.5, 11, 11.5],
[12, 12.5, 13, 13.5, 14],
[14.5, 15, 15.5, 16, 16.5],
[17, 17.5, 18, 18.5, 19]]]]).astype(numpy.float32)
self._expect_average_pool(node, inputs=[x], outputs=[y])
with self.subTest(name='test_averagepool_2d_precomputed_pads_count_include_pad'):
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[5, 5], pads=[2, 2, 2, 2], count_include_pad=1)
x = numpy.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]]]]).astype(numpy.float32)
y = numpy.array([[[[2.5200, 3.6000, 4.8000, 4.0800, 3.2400],
[4.5600, 6.4000, 8.4000, 7.0400, 5.5200],
[7.2000, 10.0000, 13.0000, 10.8000, 8.4000],
[6.9600, 9.6000, 12.4000, 10.2400, 7.9200],
[6.1200, 8.4000, 10.8000, 8.8800, 6.8400]]]]).astype(numpy.float32)
self._expect_average_pool(node, inputs=[x], outputs=[y])
with self.subTest(name='test_averagepool_2d_precomputed_same_upper'):
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[3, 3], strides=[2, 2], auto_pad='SAME_UPPER')
x = numpy.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]]]]).astype(numpy.float32)
y = numpy.array([[[[4, 5.5, 7],
[11.5, 13, 14.5],
[19, 20.5, 22]]]]).astype(numpy.float32)
self._expect_average_pool(node, inputs=[x], outputs=[y])
with self.subTest(name='test_averagepool_2d_precomputed_strides'):
node = onnx.helper.make_node(
'AveragePool', inputs=['x'], outputs=['y'],
kernel_shape=[2, 2], strides=[2, 2])
x = numpy.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]]]]).astype(numpy.float32)
y = numpy.array([[[[4, 6],
[14, 16]]]]).astype(numpy.float32)
self._expect_average_pool(node, inputs=[x], outputs=[y])
@wraplog()
def test_onnxt_runtime_batch_normalization(self):
# input size: (1, 2, 1, 3)
x = numpy.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(numpy.float32)
s = numpy.array([1.0, 1.5]).astype(numpy.float32)
bias = numpy.array([0, 1]).astype(numpy.float32)
mean = numpy.array([0, 3]).astype(numpy.float32)
var = numpy.array([1, 1.5]).astype(numpy.float32)
y = _batchnorm_test_mode(x, s, bias, mean, var).astype(numpy.float32)
onx = OnnxBatchNormalization(
'X', s, bias, mean, var, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x}, got, OnnxBatchNormalization, model_def)
# input size: (2, 3, 4, 5)
x = numpy.random.randn(2, 3, 4, 5).astype(numpy.float32)
s = numpy.random.randn(3).astype(numpy.float32)
bias = numpy.random.randn(3).astype(numpy.float32)
mean = numpy.random.randn(3).astype(numpy.float32)
var = numpy.random.rand(3).astype(numpy.float32)
epsilon = 1e-2
y = _batchnorm_test_mode(
x, s, bias, mean, var, epsilon).astype(numpy.float32)
onx = OnnxBatchNormalization(
'X', s, bias, mean, var,
output_names=['Y'], epsilon=epsilon,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y, got['Y'])
python_tested.append(OnnxBatchNormalization)
@wraplog()
def test_onnxt_runtime_batch_normalization_training_fct(self):
x = numpy.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(numpy.float32)
s = numpy.array([1.0, 1.5]).astype(numpy.float32)
bias = numpy.array([0, 1]).astype(numpy.float32)
mean = numpy.array([0, 3]).astype(numpy.float32)
var = numpy.array([1, 1.5]).astype(numpy.float32)
y, scale, bias, mean, var = (
_batchnorm_training_mode(x, s, bias, mean, var))
self.assertEqualArray(
numpy.array([[[[-1.2247356, 0., 1.2247356]],
[[-0.8371035, 1., 2.8371034]]]],
dtype=numpy.float32), y)
self.assertEqualArray(
numpy.array([0., 3.], dtype=numpy.float32), scale)
self.assertEqualArray(
numpy.array([0.6666667, 0.6666667], dtype=numpy.float32), bias)
self.assertEqualArray(
numpy.array([0., 2.9999998], dtype=numpy.float32), mean)
self.assertEqualArray(
numpy.array([0.96666664, 1.4166666], dtype=numpy.float32), var)
@wraplog()
@unittest.skipIf(OnnxBatchNormalization_14 is None,
reason="onnx too old")
def test_onnxt_runtime_batch_normalization_training(self):
# input size: (1, 2, 1, 3)
x = numpy.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(numpy.float32)
s = numpy.array([1.0, 1.5]).astype(numpy.float32)
bias = numpy.array([0, 1]).astype(numpy.float32)
mean = numpy.array([0, 3]).astype(numpy.float32)
var = numpy.array([1, 1.5]).astype(numpy.float32)
y, scale, bias, mean, var = (
_batchnorm_training_mode(x, s, bias, mean, var))
onx = OnnxBatchNormalization_14(
'X', s, bias, mean, var,
output_names=['Y', 'scale', 'bias', 'mean', 'var'],
training_mode=1, op_version=14)
try:
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=14)
except RuntimeError as e:
if "Shape inference fails" in str(e):
warnings.warn(str(e))
return
raise e
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(
list(sorted(got)), ['Y', 'bias', 'mean', 'scale', 'var'])
self.assertEqualArray(scale, got['scale'])
self.assertEqualArray(bias, got['bias'])
self.assertEqualArray(mean, got['mean'])
# self.assertEqualArray(var, got['var'])
# self.assertEqualArray(y, got['Y'])
self.assertNotEmpty(y)
self.assertNotEmpty(var)
@wraplog()
def test_onnxt_runtime_cast_out(self):
x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(
numpy.float32) # pylint: disable=E1101
dest = [(TensorProto.FLOAT, numpy.float32, FloatTensorType), # pylint: disable=E1101
(TensorProto.DOUBLE, numpy.float64, # pylint: disable=E1101
DoubleTensorType), # pylint: disable=E1101
(TensorProto.INT32, numpy.int32, # pylint: disable=E1101
Int32TensorType), # pylint: disable=E1101
(TensorProto.INT64, numpy.int64, # pylint: disable=E1101
Int64TensorType), # pylint: disable=E1101
(TensorProto.INT8, numpy.int8, # pylint: disable=E1101
Int8TensorType), # pylint: disable=E1101
(TensorProto.INT16, numpy.int16, # pylint: disable=E1101
Int16TensorType), # pylint: disable=E1101
(TensorProto.UINT8, numpy.uint8, # pylint: disable=E1101
UInt8TensorType), # pylint: disable=E1101
(TensorProto.UINT32, numpy.uint32, # pylint: disable=E1101
UInt32TensorType), # pylint: disable=E1101
(TensorProto.UINT16, numpy.uint16, # pylint: disable=E1101
UInt16TensorType), # pylint: disable=E1101
(TensorProto.UINT64, numpy.uint64, # pylint: disable=E1101
UInt64TensorType), # pylint: disable=E1101
(TensorProto.FLOAT16, numpy.float16, # pylint: disable=E1101
Float16TensorType), # pylint: disable=E1101
(TensorProto.BOOL, numpy.bool_, # pylint: disable=E1101
BooleanTensorType), # pylint: disable=E1101
(TensorProto.STRING, numpy.str_, StringTensorType), ] # pylint: disable=E1101
for opset in range(9, get_opset_number_from_onnx() + 1):
for to, nptp, outp in dest:
if nptp == numpy.bool_:
self.assertIn(proto2dtype(to), (nptp, bool))
elif nptp == numpy.str_:
self.assertIn(proto2dtype(to), (nptp, str))
else:
self.assertEqual(proto2dtype(to), nptp)
self.assertEqual(to, guess_proto_dtype(nptp))
self.assertNotEmpty(_elem_type_as_str(to))
with self.subTest(opset=opset, to=to):
onx = OnnxCast('X', to=to, output_names=['Y'],
op_version=opset)
model_def = onx.to_onnx(
{'X': x}, outputs=[('Y', outp())],
target_opset=opset)
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
if nptp == numpy.str_:
self.assertEqual(
x.astype(nptp).tolist(), got['Y'].tolist())
else:
self.assertEqualArray(x.astype(nptp), got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x}, got, OnnxCast, model_def)
python_tested.append(OnnxCast)
@wraplog()
def test_onnxt_runtime_cast_in(self):
x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(
numpy.float32) # pylint: disable=E1101
dest = [(TensorProto.FLOAT, numpy.float32, FloatTensorType), # pylint: disable=E1101
(TensorProto.DOUBLE, numpy.float64, # pylint: disable=E1101
DoubleTensorType), # pylint: disable=E1101
(TensorProto.INT32, numpy.int32, # pylint: disable=E1101
Int32TensorType), # pylint: disable=E1101
(TensorProto.INT64, numpy.int64, # pylint: disable=E1101
Int64TensorType), # pylint: disable=E1101
(TensorProto.INT8, numpy.int8, # pylint: disable=E1101
Int8TensorType), # pylint: disable=E1101
(TensorProto.INT16, numpy.int16, # pylint: disable=E1101
Int16TensorType), # pylint: disable=E1101
(TensorProto.UINT8, numpy.uint8, # pylint: disable=E1101
UInt8TensorType), # pylint: disable=E1101
(TensorProto.UINT32, numpy.uint32, # pylint: disable=E1101
UInt32TensorType), # pylint: disable=E1101
(TensorProto.UINT16, numpy.uint16, # pylint: disable=E1101
UInt16TensorType), # pylint: disable=E1101
(TensorProto.UINT64, numpy.uint64, # pylint: disable=E1101
UInt64TensorType), # pylint: disable=E1101
(TensorProto.FLOAT16, numpy.float16, # pylint: disable=E1101
Float16TensorType), # pylint: disable=E1101
(TensorProto.BOOL, numpy.bool_, # pylint: disable=E1101
BooleanTensorType), # pylint: disable=E1101
(TensorProto.STRING, numpy.str_, StringTensorType), ] # pylint: disable=E1101
for opset in range(9, get_opset_number_from_onnx() + 1):
for to, nptp, _ in dest:
if nptp == numpy.bool_:
self.assertIn(proto2dtype(to), (nptp, bool))
elif nptp == numpy.str_:
self.assertIn(proto2dtype(to), (nptp, str))
else:
self.assertEqual(proto2dtype(to), nptp)
self.assertEqual(to, guess_proto_dtype(nptp))
self.assertNotEmpty(_elem_type_as_str(to))
with self.subTest(opset=opset, to=to):
xi = x.astype(nptp)
onx = OnnxCast('X', to=TensorProto.STRING, # pylint: disable=E1101
output_names=['Y'],
op_version=opset)
model_def = onx.to_onnx(
{'X': xi}, outputs=[('Y', StringTensorType())],
target_opset=opset)
got = OnnxInference(model_def).run({'X': xi})
self.assertEqual(
xi.astype(str).tolist(), got['Y'].tolist())
python_tested.append(OnnxCast)
@wraplog()
def test_onnxt_runtime_ceil(self):
self.common_test_onnxt_runtime_unary(OnnxCeil, numpy.ceil)
@unittest.skipIf(OnnxCelu is None, reason="onnx too recent")
@wraplog()
def test_onnxt_runtime_celu1(self):
self.common_test_onnxt_runtime_unary(
OnnxCelu, _vcelu1, op_version=12,
outputs=[('Y', FloatTensorType([None, 2]))])
@unittest.skipIf(OnnxCelu is None, reason="onnx too recent")
@wraplog()
def test_onnxt_runtime_celu2(self):
_vcelu2 = numpy.vectorize(
lambda x: pycelu(x, 1.), otypes=[numpy.float])
self.common_test_onnxt_runtime_unary(
OnnxCelu, _vcelu2, op_version=12,
outputs=[('Y', FloatTensorType([None, 2]))])
@unittest.skipIf(onnx_opset_version() < 11,
reason="Explicitely tests Clip >= 11")
@wraplog()
def test_onnxt_runtime_clip(self):
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=None: OnnxClip(
x, numpy.array([0], dtype=numpy.float32),
output_names=output_names, op_version=op_version),
lambda x: numpy.clip(x, 0, 1e5))
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=None: OnnxClip(
x, numpy.array([-1000], dtype=numpy.float32),
numpy.array([0], dtype=numpy.float32),
op_version=op_version,
output_names=output_names),
lambda x: numpy.clip(x, -1e5, 0))
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=None: OnnxClip(
x,
numpy.array([0.1], dtype=numpy.float32),
numpy.array([2.1], dtype=numpy.float32),
output_names=output_names,
op_version=op_version),
lambda x: numpy.clip(x, 0.1, 2.1))
python_tested.append(OnnxClip)
@wraplog()
def test_onnxt_runtime_compress(self):
# axis is None
x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(numpy.float32)
x = x.reshape((-1, 2))
cond = numpy.array([False, True, False])
onx = OnnxCompress('X', 'cond', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'cond': cond},
outputs=[('Y', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
exp = numpy.compress(cond, x)
oinf = OnnxInference(model_def)
got = oinf.run({'X': x, 'cond': cond})
self.assertEqualArray(exp, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x, 'cond': cond}, got, OnnxCompress, model_def)
python_tested.append(OnnxCompress)
@wraplog()
def test_onnxt_runtime_clip_10(self):
from skl2onnx.algebra.onnx_ops import OnnxClip_6 # pylint: disable=E0611
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=10: OnnxClip_6(
x, min=1e-5, max=1e5, output_names=output_names,
op_version=10),
lambda x: numpy.clip(x, 1e-5, 1e5),
op_version=10)
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=10: OnnxClip(
x, min=1e-5, max=1e5, output_names=output_names,
op_version=10),
lambda x: numpy.clip(x, 1e-5, 1e5),
op_version=10)
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=10: OnnxClip(
x, max=1e-5, output_names=output_names,
op_version=10),
lambda x: numpy.clip(x, -1e5, 1e-5),
op_version=10)
self.common_test_onnxt_runtime_unary(
lambda x, output_names=None, op_version=10: OnnxClip(
x, min=0.1, max=2.1,
output_names=output_names,
op_version=10),
lambda x: numpy.clip(x, 0.1, 2.1),
op_version=10)
@wraplog()
def test_onnxt_runtime_concat(self):
cst = numpy.array([[1, 2]], dtype=numpy.float32)
onx = OnnxConcat('X', 'Y', cst, output_names=['Z'],
op_version=get_opset_number_from_onnx())
X = numpy.array([[1, 2], [3, 4]], dtype=numpy.float64)
Y = numpy.array([[8, 9], [10, 11], [12, 13]], dtype=numpy.float64)
model_def = onx.to_onnx({'X': X.astype(numpy.float32),
'Y': Y.astype(numpy.float32)},
outputs=[('Z', FloatTensorType([2]))],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X.astype(numpy.float32),
'Y': Y.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Z'])
self.assertEqual(got['Z'].shape, (6, 2))
exp = numpy.vstack([X, Y, cst])
self.assertEqualArray(exp, got['Z'])
self.common_expected_shapes_types(
oinf, {'X': X.astype(numpy.float32),
'Y': Y.astype(numpy.float32)},
got, OnnxConcat, model_def)
python_tested.append(OnnxConstantOfShape)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(
oinfpy, {'X': X.astype(numpy.float32),
'Y': Y.astype(numpy.float32)})
python_tested.append(OnnxConcat)
@wraplog()
def test_onnxt_runtime_constant_of_shape(self):
x = numpy.array([2, 2], dtype=numpy.int64)
y = numpy.zeros((2, 2), dtype=numpy.float32)
onx = OnnxConstantOfShape('X', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.int64)},
outputs=[('Y', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x.astype(numpy.int64)})
self.assertEqualArray(y, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x.astype(numpy.int64)}, got,
OnnxConstantOfShape, model_def)
python_tested.append(OnnxConstantOfShape)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': x})
@wraplog()
def test_onnxt_runtime_conv0(self):
x = numpy.array([[[[0., 1., 2., 3., 4.], # (1, 1, 5, 5) input tensor
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]]]]).astype(numpy.float32)
W = numpy.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights
[1., 1., 1.],
[1., 1., 1.]]]]).astype(numpy.float32)
# test 1
y_with_padding = numpy.array([[[[12., 21., 27., 33., 24.], # (1, 1, 5, 5) output tensor
[33., 54., 63., 72., 51.],
[63., 99., 108., 117., 81.],
[93., 144., 153., 162., 111.],
[72., 111., 117., 123., 84.]]]]).astype(numpy.float32)
onx = OnnxConv(
'X', W, output_names=['Y'],
kernel_shape=[3, 3], pads=[1, 1, 1, 1],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
for rt in ['python', 'onnxruntime1']:
with self.subTest(runtime=rt):
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
# test 2
y_without_padding = numpy.array([[[[54., 63., 72.], # (1, 1, 3, 3) output tensor
[99., 108., 117.],
[144., 153., 162.]]]]).astype(numpy.float32)
onx = OnnxConv(
'X', W, output_names=['Y'],
kernel_shape=[3, 3], pads=[0, 0, 0, 0],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
for rt in ['python', 'onnxruntime1']:
with self.subTest(runtime=rt):
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_without_padding, got['Y'])
if rt == 'python':
self.common_expected_shapes_types(
oinf, {'X': x}, got, OnnxConv, model_def)
else:
self.assertRaise(
lambda: self.common_expected_shapes_types(
oinf, {'X': x}, got, OnnxConv, model_def),
RuntimeError)
# test 3
y = numpy.array([[[[12., 27., 24.],
[63., 108., 81.],
[72., 117., 84.]]]]).astype(numpy.float32)
onx = OnnxConv(
'X', W, output_names=['Y'],
kernel_shape=[3, 3],
auto_pad='SAME_LOWER', strides=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
for rt in ['python', 'onnxruntime1']:
with self.subTest(runtime=rt):
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y, got['Y'])
python_tested.append(OnnxConv)
@wraplog()
def test_onnxt_runtime_conv1(self):
x = numpy.array([[[[0., 1., 2., 3., 4.],
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34.]]]]).astype(numpy.float32)
W = numpy.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights
[1., 1., 1.],
[1., 1., 1.]]]]).astype(numpy.float32)
# test 1
y_with_padding = numpy.array([[[[12., 27., 24.], # (1, 1, 4, 3) output tensor
[63., 108., 81.],
[123., 198., 141.],
[112., 177., 124.]]]]).astype(numpy.float32)
onx = OnnxConv(
'X', W, output_names=['Y'],
kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
for rt in ['python', 'onnxruntime1']:
with self.subTest(runtime=rt):
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
# test 2
y_without_padding = numpy.array([[[[54., 72.], # (1, 1, 3, 2) output tensor
[144., 162.],
[234., 252.]]]]).astype(numpy.float32)
onx = OnnxConv(
'X', W, output_names=['Y'],
kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
for rt in ['python', 'onnxruntime1']:
with self.subTest(runtime=rt):
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_without_padding, got['Y'])
# test 3
y_with_asymmetric_padding = numpy.array([[[[21., 33.], # (1, 1, 4, 2) output tensor
[99., 117.],
[189., 207.],
[171., 183.]]]]).astype(numpy.float32)
onx = OnnxConv(
'X', W, output_names=['Y'],
kernel_shape=[3, 3], pads=[1, 0, 1, 0], strides=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
for rt in ['python', 'onnxruntime1']:
with self.subTest(runtime=rt):
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_asymmetric_padding, got['Y'])
@wraplog()
def test_onnxt_runtime_conv2_B(self):
x = numpy.random.rand(1, 3, 5, 4).astype(numpy.float32)
W = numpy.random.rand(4, 3, 3, 3).astype(numpy.float32)
B = numpy.array([100, 700, 1000, 7000], dtype=numpy.float32)
onx = OnnxConv(
'X', 'W', 'B', output_names=['Y'],
kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'W': W, 'B': B},
target_opset=get_opset_number_from_onnx())
ys = []
for rt in ['python', 'onnxruntime1']:
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x, 'W': W, 'B': B})
ys.append(got['Y'])
self.assertEqualArray(ys[0], ys[1], decimal=4)
@wraplog()
def test_onnxt_runtime_conv_transpose(self):
x = numpy.array([[[[0., 1., 2.], # (1, 1, 3, 3)
[3., 4., 5.],
[6., 7., 8.]]]]).astype(numpy.float32)
W = numpy.array([[[[1., 1., 1.], # (1, 2, 3, 3)
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]]]).astype(numpy.float32)
y_with_padding = numpy.array([[[[0., 1., 3., 3., 2.], # (1, 2, 5, 5)
[3., 8., 15., 12., 7.],
[9., 21., 36., 27., 15.],
[9., 20., 33., 24., 13.],
[6., 13., 21., 15., 8.]],
[[0., 1., 3., 3., 2.],
[3., 8., 15., 12., 7.],
[9., 21., 36., 27., 15.],
[9., 20., 33., 24., 13.],
[6., 13., 21., 15., 8.]]]]).astype(numpy.float32)
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
python_tested.append(OnnxConv)
@wraplog()
def test_onnxt_runtime_conv_transpose_B(self):
x = numpy.random.rand(1, 3, 5, 4).astype(numpy.float32)
W = numpy.random.rand(3, 4, 3, 3).astype(numpy.float32)
B = numpy.array([100, 700, 1000, 7000], dtype=numpy.float32)
onx = OnnxConvTranspose(
'X', 'W', 'B', output_names=['Y'],
kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'W': W, 'B': B},
target_opset=get_opset_number_from_onnx())
ys = []
for rt in ['python', 'onnxruntime1']:
oinf = OnnxInference(model_def, runtime=rt)
got = oinf.run({'X': x, 'W': W, 'B': B})
ys.append(got['Y'])
self.assertEqual(len(ys), 2)
# self.assertEqualArray(ys[0], ys[1])
@wraplog()
def test_onnxt_runtime_conv_transpose_1d(self):
x = numpy.array([[[0., 1., 2.]]]).astype(numpy.float32)
W = numpy.array([[[1., 1., 1.], # (1, 2, 3)
[1., 1., 1.]]]).astype(numpy.float32)
y_with_padding = numpy.array(
[[[0., 1., 3., 3., 2.], # (1, 2, 5)
[0., 1., 3., 3., 2.]]]).astype(numpy.float32)
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def, runtime="onnxruntime1")
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
python_tested.append(OnnxConvTranspose)
@wraplog()
def test_onnxt_runtime_conv_transpose_3d(self):
x = numpy.arange(60).reshape((1, 1, 3, 4, 5)).astype(numpy.float32)
W = numpy.ones((1, 2, 3, 3, 3)).astype(numpy.float32)
y_with_padding = numpy.array(
[[[[[0., 1., 3., 6., 9., 7., 4.], # (1, 2, 5, 6, 7)
[5., 12., 21., 27., 33., 24., 13.],
[15., 33., 54., 63., 72., 51., 27.],
[30., 63., 99., 108., 117., 81., 42.],
[25., 52., 81., 87., 93., 64., 33.],
[15., 31., 48., 51., 54., 37., 19.]],
[[20., 42., 66., 72., 78., 54., 28.],
[50., 104., 162., 174., 186., 128., 66.],
[90., 186., 288., 306., 324., 222., 114.],
[120., 246., 378., 396., 414., 282., 144.],
[90., 184., 282., 294., 306., 208., 106.],
[50., 102., 156., 162., 168., 114., 58.]],
[[60., 123., 189., 198., 207., 141., 72.],
[135., 276., 423., 441., 459., 312., 159.],
[225., 459., 702., 729., 756., 513., 261.],
[270., 549., 837., 864., 891., 603., 306.],
[195., 396., 603., 621., 639., 432., 219.],
[105., 213., 324., 333., 342., 231., 117.]],
[[60., 122., 186., 192., 198., 134., 68.],
[130., 264., 402., 414., 426., 288., 146.],
[210., 426., 648., 666., 684., 462., 234.],
[240., 486., 738., 756., 774., 522., 264.],
[170., 344., 522., 534., 546., 368., 186.],
[90., 182., 276., 282., 288., 194., 98.]],
[[40., 81., 123., 126., 129., 87., 44.],
[85., 172., 261., 267., 273., 184., 93.],
[135., 273., 414., 423., 432., 291., 147.],
[150., 303., 459., 468., 477., 321., 162.],
[105., 212., 321., 327., 333., 224., 113.],
[55., 111., 168., 171., 174., 117., 59.]]],
[[[0., 1., 3., 6., 9., 7., 4.],
[5., 12., 21., 27., 33., 24., 13.],
[15., 33., 54., 63., 72., 51., 27.],
[30., 63., 99., 108., 117., 81., 42.],
[25., 52., 81., 87., 93., 64., 33.],
[15., 31., 48., 51., 54., 37., 19.]],
[[20., 42., 66., 72., 78., 54., 28.],
[50., 104., 162., 174., 186., 128., 66.],
[90., 186., 288., 306., 324., 222., 114.],
[120., 246., 378., 396., 414., 282., 144.],
[90., 184., 282., 294., 306., 208., 106.],
[50., 102., 156., 162., 168., 114., 58.]],
[[60., 123., 189., 198., 207., 141., 72.],
[135., 276., 423., 441., 459., 312., 159.],
[225., 459., 702., 729., 756., 513., 261.],
[270., 549., 837., 864., 891., 603., 306.],
[195., 396., 603., 621., 639., 432., 219.],
[105., 213., 324., 333., 342., 231., 117.]],
[[60., 122., 186., 192., 198., 134., 68.],
[130., 264., 402., 414., 426., 288., 146.],
[210., 426., 648., 666., 684., 462., 234.],
[240., 486., 738., 756., 774., 522., 264.],
[170., 344., 522., 534., 546., 368., 186.],
[90., 182., 276., 282., 288., 194., 98.]],
[[40., 81., 123., 126., 129., 87., 44.],
[85., 172., 261., 267., 273., 184., 93.],
[135., 273., 414., 423., 432., 291., 147.],
[150., 303., 459., 468., 477., 321., 162.],
[105., 212., 321., 327., 333., 224., 113.],
[55., 111., 168., 171., 174., 117., 59.]]]]]).astype(numpy.float32)
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
@unittest.skipIf(True, reason="fails with output_shape")
@wraplog()
def test_onnxt_runtime_conv_transpose_output_shape(self):
x = numpy.arange(9).reshape((1, 1, 3, 3)).astype(numpy.float32)
W = numpy.ones((1, 2, 3, 3)).astype(numpy.float32)
y_with_padding = numpy.array(
[[[[0., 0., 1., 1., 3., 2., 2., 0.], # (1, 2, 10, 8)
[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]]]]).astype(numpy.float32)
with self.subTest(part="output_shape"):
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
strides=[3, 2], output_shape=[10, 8],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def, runtime="onnxruntime1")
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
@wraplog()
def test_onnxt_runtime_conv_transpose_attributes(self):
x = numpy.arange(9).reshape((1, 1, 3, 3)).astype(numpy.float32)
W = numpy.ones((1, 2, 3, 3)).astype(numpy.float32)
y_with_padding = numpy.array(
[[[[0., 0., 1., 1., 3., 2., 2., 0.], # (1, 2, 10, 8)
[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]]]]).astype(numpy.float32)
with self.subTest(part="output_padding"):
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
strides=[3, 2], output_padding=[1, 1],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
with self.subTest(part="kernel_shape"):
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
strides=[3, 2], output_shape=[10, 8],
kernel_shape=[3, 3], output_padding=[1, 1],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
@wraplog()
def test_onnxt_runtime_conv_transpose_dilation(self):
x = numpy.array([[[[3., 8., 1.], # (1, 1, 3, 3)
[9., 5., 7.],
[3., 2., 6.]]]]).astype(numpy.float32)
W = numpy.array([[[[7., 2.], # (1, 1, 2, 2)
[1., 9.]]]]).astype(numpy.float32)
y_with_padding = numpy.array(
[[[[21., 56., 13., 16., 2.], # [1, 1, 5, 5]
[63., 35., 67., 10., 14.],
[24., 22., 76., 76., 21.],
[9., 5., 88., 45., 63.],
[3., 2., 33., 18., 54.]]]]).astype(numpy.float32)
onx = OnnxConvTranspose(
'X', W, output_names=['Y'], dilations=[2, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
@wraplog()
def test_onnxt_runtime_conv_transpose_pads(self):
x = numpy.arange(9).reshape((1, 1, 3, 3)).astype(numpy.float32)
W = numpy.ones((1, 2, 3, 3)).astype(numpy.float32)
y_with_padding = numpy.array(
[[[[1., 1., 3.], # (1, 2, 7, 3)
[1., 1., 3.],
[7., 4., 9.],
[7., 4., 9.],
[7., 4., 9.],
[13., 7., 15.],
[13., 7., 15.]],
[[1., 1., 3.],
[1., 1., 3.],
[7., 4., 9.],
[7., 4., 9.],
[7., 4., 9.],
[13., 7., 15.],
[13., 7., 15.]]]]).astype(numpy.float32)
onx = OnnxConvTranspose(
'X', W, output_names=['Y'],
strides=[3, 2], pads=[1, 2, 1, 2],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y_with_padding, got['Y'])
@wraplog()
def test_onnxt_runtime_cos(self):
self.common_test_onnxt_runtime_unary(OnnxCos, numpy.cos)
@wraplog()
def test_onnxt_runtime_cosh(self):
self.common_test_onnxt_runtime_unary(OnnxCosh, numpy.cosh)
@wraplog()
def test_onnxt_runtime_cum_sum(self):
x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64)
axis = numpy.array([0]).astype(numpy.int32)
exp = numpy.array([1., 3., 6., 10., 15.]).astype(numpy.float64)
onx = OnnxCumSum('X', 'axis', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'axis': axis},
outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x.astype(numpy.float64),
'axis': axis})
self.assertEqualArray(exp, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x.astype(numpy.float64),
'axis': axis},
got, OnnxCumSum, model_def)
python_tested.append(OnnxCumSum)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': x, 'axis': axis})
# reverse = 1
x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64)
axis = numpy.array([0]).astype(numpy.int32)
exp = numpy.array([15., 14., 12., 9., 5.]).astype(numpy.float64)
onx = OnnxCumSum('X', 'axis', output_names=['Y'], reverse=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'axis': axis},
outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
try:
got = OnnxInference(model_def).run({'X': x, 'axis': axis})
self.assertEqualArray(exp, got['Y'])
except NotImplementedError:
pass
# exclusive = 1
x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64)
axis = numpy.array([0]).astype(numpy.int32)
exp = numpy.array([0., 1., 3., 6., 10.]).astype(numpy.float64)
onx = OnnxCumSum('X', 'axis', output_names=['Y'], exclusive=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'axis': axis},
outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
try:
got = OnnxInference(model_def).run({'X': x, 'axis': axis})
self.assertEqualArray(exp, got['Y'])
except NotImplementedError:
pass
# 2d axis = 0
x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(
numpy.float64).reshape((2, 3))
axis = numpy.array([0]).astype(numpy.int32)
exp = numpy.array([1., 2., 3., 5., 7., 9.]).astype(
numpy.float64).reshape((2, 3))
onx = OnnxCumSum('X', 'axis', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'axis': axis},
outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x, 'axis': axis})
self.assertEqualArray(exp, got['Y'])
# 2d axis = 1
x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(
numpy.float64).reshape((2, 3))
axis = numpy.array([-1]).astype(numpy.int32)
exp = numpy.array([1., 3., 6., 4., 9., 15.]).astype(
numpy.float64).reshape((2, 3))
onx = OnnxCumSum('X', 'axis', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'axis': axis},
outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x, 'axis': axis})
self.assertEqualArray(exp, got['Y'])
# 2d axis = 1, reverse
x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(
numpy.float64).reshape((2, 3))
axis = numpy.array([-1]).astype(numpy.int32)
exp = numpy.array([1., 3., 6., 4., 9., 15.]).astype(
numpy.float64).reshape((2, 3))
onx = OnnxCumSum('X', 'axis', output_names=['Y'], reverse=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x, 'axis': axis},
outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
try:
got = OnnxInference(model_def).run({'X': x, 'axis': axis})
self.assertEqualArray(exp, got['Y'])
except NotImplementedError:
pass
# no axis
x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64)
axis = numpy.array([0]).astype(numpy.int32)
exp = numpy.array([1., 3., 6., 10., 15.]).astype(numpy.float64)
try:
onx = OnnxCumSum('X', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx(
{'X': x}, outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(exp, got['Y'])
except RuntimeError:
pass
# reverse = 1
x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64)
axis = numpy.array([0]).astype(numpy.int32)
exp = numpy.array([15., 14., 12., 9., 5.]).astype(numpy.float64)
try:
onx = OnnxCumSum('X', output_names=['Y'], reverse=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx(
{'X': x}, outputs=[('Y', DoubleTensorType())],
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(exp, got['Y'])
except RuntimeError:
pass
@wraplog()
def test_onnxt_runtime_det(self):
self.common_test_onnxt_runtime_unary(
OnnxDet, lambda x: numpy.array([numpy.linalg.det(x)]),
do_sparse=False)
@wraplog()
def test_onnxt_runtime_dequantize_linear(self):
X = numpy.array([[[[3, 89], [34, 200], [74, 59]],
[[5, 24], [24, 87], [32, 13]],
[[245, 99], [4, 142], [121, 102]], ], ],
dtype=numpy.uint8)
x_scale = numpy.array([2, 4, 5], dtype=numpy.float32)
x_zero_point = numpy.array([84, 24, 196], dtype=numpy.uint8)
exp = ((X.astype(numpy.float32) - x_zero_point.reshape(
(1, 3, 1, 1)).astype(numpy.float32)) *
x_scale.reshape((1, 3, 1, 1)))
onx = OnnxDequantizeLinear(
'X', x_scale, x_zero_point, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqualArray(exp, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxDequantizeLinear, model_def)
X = numpy.array([0, 3, 128, 255]).astype(numpy.uint8)
x_scale = numpy.array([2], dtype=numpy.float32)
x_zero_point = numpy.array([128], dtype=numpy.uint8)
exp = numpy.array([-256, -250, 0, 254], dtype=numpy.float32)
onx = OnnxDequantizeLinear(
'X', x_scale, x_zero_point, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqualArray(exp, got['Y'])
python_tested.append(OnnxDequantizeLinear)
@wraplog()
def test_onnxt_runtime_div(self):
self.common_test_onnxt_runtime_binary(OnnxDiv, lambda x, y: x / y)
@wraplog()
def test_onnxt_runtime_dropout_10(self):
seed = numpy.int64(0)
X = numpy.random.randn(3, 4, 5).astype(numpy.float32)
onx = OnnxDropout_7('X', output_names=['Y'], op_version=10)
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
outputs=[('Y', FloatTensorType())],
target_opset=10)
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqual(got['Y'].shape, X.shape)
self.assertEqualArray(got['Y'], _dropout(X, seed=seed)[0])
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxDropout_7, model_def)
python_tested.append(OnnxDropout)
@wraplog()
def test_onnxt_runtime_dropout(self):
seed = numpy.int64(0)
X = numpy.random.randn(3, 4, 5).astype(numpy.float32)
onx = OnnxDropout('X', output_names=['Y'], seed=seed,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
outputs=[('Y', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqual(got['Y'].shape, X.shape)
self.assertEqualArray(got['Y'], _dropout(X, seed=seed)[0])
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxDropout, model_def)
onx = OnnxDropout('X', output_names=['Y', 'Z'], seed=seed,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32)},
outputs=[('Y', FloatTensorType()),
('Z', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y', 'Z'])
self.assertEqual(got['Y'].shape, X.shape)
res = _dropout(X, seed=seed, return_mask=True)
self.assertEqualArray(got['Y'], res[0])
self.assertEqualArray(got['Z'], res[1])
R = numpy.array([0.1], dtype=numpy.float32)
onx = OnnxDropout('X', 'R', output_names=['Y'], seed=seed,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32),
'R': R.astype(numpy.float32)},
outputs=[('Y', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X, 'R': R})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqual(got['Y'].shape, X.shape)
self.assertEqualArray(
got['Y'], _dropout(X, seed=seed, drop_probability=0.1)[0])
R = numpy.array([0.75], dtype=numpy.float32)
B = numpy.array([True])
onx = OnnxDropout('X', 'R', 'B', output_names=['Y'], seed=seed,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32),
'R': R, 'B': B},
outputs=[('Y', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X, 'R': R, 'B': B})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqual(got['Y'].shape, X.shape)
self.assertEqualArray(
got['Y'], _dropout(X, seed=seed, drop_probability=0.75,
training_mode=True)[0])
python_tested.append(OnnxDropout)
@wraplog()
def test_onnxt_runtime_einsum(self):
X = numpy.random.randn(5, 2, 3).astype(numpy.float32)
Y = numpy.random.randn(5, 3, 4).astype(numpy.float32)
equation = 'bij,bjk->bik'
onx = OnnxEinsum(
'X', 'Y', equation=equation, output_names=['Z'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': X.astype(numpy.float32),
'Y': Y.astype(numpy.float32)},
outputs=[('Z', FloatTensorType([2]))],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X, 'Y': Y})
exp = numpy.einsum(equation, X, Y)
self.assertEqualArray(exp, got['Z'])
self.common_expected_shapes_types(
oinf, {'X': X, 'Y': Y}, got, OnnxEinsum, model_def)
python_tested.append(OnnxEinsum)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': X.astype(numpy.float32),
'Y': Y.astype(numpy.float32)})
@wraplog()
def test_onnxt_runtime_eyelike(self):
onx = OnnxEyeLike('X', k=0, output_names=['Y'])
X = numpy.array([2, 2], dtype=numpy.int64)
model_def = onx.to_onnx({'X': X.astype(numpy.int64)},
target_opset=get_opset_number_from_onnx(),
outputs=[('Y', FloatTensorType())])
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
self.assertEqual(list(sorted(got)), ['Y'])
exp = numpy.eye(*X, k=0)
self.assertEqualArray(exp, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxEyeLike, model_def)
oinfpy = OnnxInference(model_def, runtime="python")
validate_python_inference(oinfpy, {'X': X.astype(numpy.int64)})
python_tested.append(OnnxEyeLike)
@wraplog()
def test_onnxt_runtime_equal(self):
self.common_test_onnxt_runtime_binary(OnnxEqual, numpy.equal)
@wraplog()
def test_onnxt_runtime_erf(self):
self.common_test_onnxt_runtime_unary(OnnxErf, erf)
@wraplog()
def test_onnxt_runtime_exp(self):
self.common_test_onnxt_runtime_unary(OnnxExp, numpy.exp)
@wraplog()
def test_onnxt_runtime_flatten(self):
shape = (2, 3, 4, 5)
x = numpy.random.random_sample(shape).astype( # pylint: disable=E1101
numpy.float32) # pylint: disable=E1101
for i in range(len(shape)):
node = OnnxFlatten('X', axis=i, output_names='Y',
op_version=get_opset_number_from_onnx())
model_def = node.to_onnx(
{'X': x}, outputs=[('Y', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
new_shape = ((1, -1) if i == 0
else (numpy.prod(shape[0:i]).astype(int), -1))
exp = numpy.reshape(x, new_shape)
self.assertEqualArray(exp, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x}, got, OnnxFlatten, model_def)
python_tested.append(OnnxFlatten)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': x})
@wraplog()
def test_onnxt_runtime_floor(self):
self.common_test_onnxt_runtime_unary(OnnxFloor, numpy.floor)
@wraplog()
def test_onnxt_runtime_gather_elements0(self):
from skl2onnx.algebra.onnx_ops import OnnxGatherElements # pylint: disable=E0611
# ex 1
data = numpy.array([[1, 2],
[3, 4]], dtype=numpy.float32)
indices = numpy.array([], dtype=numpy.int64)
onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': data, 'Y': indices},
outputs=[('Z', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': data, 'Y': indices})
self.assertEqual(got['Z'].size, 0)
self.common_expected_shapes_types(
oinf, {'X': data, 'Y': indices}, got,
OnnxGatherElements, model_def)
@wraplog()
def test_onnxt_runtime_gather_elements0_fortran(self):
from skl2onnx.algebra.onnx_ops import OnnxGatherElements # pylint: disable=E0611
# ex 1
data = numpy.array([[1, 2],
[3, 4]], dtype=numpy.float32, order='F')
indices = numpy.array([], dtype=numpy.int64, order='F')
onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': data, 'Y': indices},
outputs=[('Z', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': data, 'Y': indices})
self.assertEqual(got['Z'].size, 0)
@wraplog()
def test_onnxt_runtime_gather_elements(self):
from skl2onnx.algebra.onnx_ops import OnnxGatherElements # pylint: disable=E0611
# ex 1
data = numpy.array([[1, 2],
[3, 4]], dtype=numpy.float32)
indices = numpy.array([[0, 0],
[1, 0]], dtype=numpy.int64)
onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=1,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': data, 'Y': indices},
outputs=[('Z', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': data, 'Y': indices})
exp = numpy.array([[1, 1],
[4, 3]], dtype=numpy.float32)
self.assertEqual(exp, got['Z'])
python_tested.append(OnnxGatherElements)
oinfpy = OnnxInference(model_def, runtime="python", inplace=True)
validate_python_inference(oinfpy, {'X': data, 'Y': indices})
# ex 2
data = numpy.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=numpy.float32)
indices = numpy.array([[1, 2, 0],
[2, 0, 0]], dtype=numpy.int32)
onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=0,
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': data, 'Y': indices},
outputs=[('Z', FloatTensorType())],
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': data, 'Y': indices})
exp = numpy.array([[4, 8, 3],
[7, 2, 3]], dtype=numpy.float32)
self.assertEqual(exp, got['Z'])
@wraplog()
def test_onnxt_runtime_gemm_python(self):
self.do_test_onnxt_runtime_gemm("python")
python_tested.append(OnnxGemm)
@wraplog()
def test_onnxt_runtime_gemm_onnxruntime(self):
self.do_test_onnxt_runtime_gemm("onnxruntime1")
def do_test_onnxt_runtime_gemm(self, runtime):
idi = numpy.array([[1, 0], [1, 1]], dtype=numpy.float32)
cst = numpy.array([4, 5], dtype=numpy.float32)
X = numpy.array([[1, 2], [3, 4]], dtype=numpy.float32)
onx = OnnxGemm('X', idi, cst, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': idi.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
if 'onnxruntime' in runtime:
model_def.ir_version = get_ir_version_from_onnx()
try:
oinf = OnnxInference(model_def, runtime=runtime)
except RuntimeError as e:
raise RuntimeError(
"Unable to instantiate (runtime='{}')\n{}".format(
runtime, model_def)) from e
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.dot(X, idi) + cst, got['Y'], decimal=5)
onx = OnnxGemm('X', idi, cst, transA=1, transB=1, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': idi.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
if 'onnxruntime' in runtime:
model_def.ir_version = get_ir_version_from_onnx()
try:
oinf = OnnxInference(model_def, runtime=runtime)
except RuntimeError as e:
raise RuntimeError(
"Unable to instantiate (runtime='{}')\n{}".format(
runtime, model_def)) from e
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.dot(X.T, idi.T) + cst, got['Y'], decimal=5)
onx = OnnxGemm('X', idi, cst, transA=1, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': idi.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
model_def.ir_version = get_ir_version_from_onnx()
oinf = OnnxInference(model_def, runtime=runtime)
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.dot(X.T, idi) + cst, got['Y'], decimal=5)
onx = OnnxGemm('X', idi, cst, transB=1, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': idi.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
if 'onnxruntime' in runtime:
model_def.ir_version = get_ir_version_from_onnx()
oinf = OnnxInference(model_def, runtime=runtime)
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.dot(X, idi.T) + cst, got['Y'], decimal=5)
onx = OnnxGemm('X', idi, cst, transB=1, output_names=['Y'],
alpha=numpy.float32(1.),
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': idi.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
if 'onnxruntime' in runtime:
model_def.ir_version = get_ir_version_from_onnx()
oinf = OnnxInference(model_def, runtime=runtime)
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.dot(X, idi.T) + cst, got['Y'], decimal=5)
if runtime != 'onnxruntime1':
onx = OnnxGemm('X', idi, cst, transB=1, output_names=['Y'],
alpha=numpy.float32(1.),
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': idi.astype(numpy.float64)},
target_opset=get_opset_number_from_onnx())
if 'onnxruntime' in runtime:
model_def.ir_version = get_ir_version_from_onnx()
oinf = OnnxInference(model_def, runtime=runtime)
got = oinf.run({'X': X.astype(numpy.float32)})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(numpy.dot(X, idi.T) +
cst, got['Y'], decimal=5)
@wraplog()
def test_onnxt_runtime_global_average_pool(self):
x = x = numpy.random.randn(1, 3, 5, 5).astype(numpy.float32)
y = _global_average_pool(x).astype(numpy.float32)
onx = OnnxGlobalAveragePool(
'X', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y, got['Y'])
self.common_expected_shapes_types(
oinf, {'X': x}, got, OnnxGlobalAveragePool, model_def)
x = numpy.array([[[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]]]).astype(numpy.float32)
y = numpy.array([[[[5]]]]).astype(numpy.float32)
onx = OnnxGlobalAveragePool(
'X', output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': x})
self.assertEqual(list(sorted(got)), ['Y'])
self.assertEqualArray(y, got['Y'])
python_tested.append(OnnxGlobalAveragePool)
def test_onnxt_runtime_greater(self):
self.common_test_onnxt_runtime_binary(OnnxGreater, numpy.greater)
@wraplog()
def test_onnxt_runtime_greater_or_equal(self):
self.common_test_onnxt_runtime_binary(
OnnxGreaterOrEqual, numpy.greater_equal)
@wraplog()
def test_onnxt_runtime_identity(self):
self.common_test_onnxt_runtime_unary(OnnxIdentity, lambda x: x)
@wraplog()
def test_onnxt_runtime_isnan(self):
self.common_test_onnxt_runtime_unary(OnnxIsNaN, numpy.isnan)
@wraplog()
def test_onnxt_runtime_less(self):
self.common_test_onnxt_runtime_binary(OnnxLess, numpy.less)
@wraplog()
def test_onnxt_runtime_less_or_equal(self):
self.common_test_onnxt_runtime_binary(
OnnxLessOrEqual, numpy.less_equal)
@wraplog()
def test_onnxt_runtime_log(self):
self.common_test_onnxt_runtime_unary(OnnxLog, numpy.log)
@wraplog()
def test_onnxt_runtime_lp_normalization(self):
onx = OnnxLpNormalization('X', output_names=['Y'], p=2, axis=1,
op_version=get_opset_number_from_onnx())
X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float32)
model_def = onx.to_onnx({'X': X},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
exp = numpy.array([[0.4472136, 0.8944272],
[0.6, -0.8]], dtype=numpy.float32)
self.assertEqualArray(got['Y'], exp)
self.common_expected_shapes_types(
oinf, {'X': X}, got, OnnxLpNormalization, model_def)
onx = OnnxLpNormalization('X', output_names=['Y'], p=2, axis=0,
op_version=get_opset_number_from_onnx())
X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float32)
model_def = onx.to_onnx({'X': X},
target_opset=get_opset_number_from_onnx())
oinf = OnnxInference(model_def)
got = oinf.run({'X': X})
exp = numpy.array([[0.3162278, 0.4472136],
[0.9486833, -0.8944272]], dtype=numpy.float32)
self.assertEqualArray(got['Y'], exp)
python_tested.append(OnnxLpNormalization)
@wraplog()
def test_onnxt_runtime_matmul(self):
self.common_test_onnxt_runtime_binary(OnnxMatMul, lambda x, y: x @ y)
@wraplog()
def test_onnxt_runtime_max(self):
self.common_test_onnxt_runtime_binary(
OnnxMax, lambda x, y: numpy.maximum(x, y))
@wraplog()
def test_onnxt_runtime_max_pool_1d_default(self):
X = | numpy.random.randn(1, 3, 32) | numpy.random.randn |
import numpy as np
def make_input(file_list):
atom_fea_list = []
bond_fea_list = []
glob_fea_list = []
bond_idx_atom1_list = []
bond_idx_atom2_list = []
atom_idx_list = []
bond_idx_list = []
E_list = []
Ga_idx_list = []
As_idx_list = []
num_lattice = 9
stacked_atom_len = 0
for f in range(0, len(file_list)):
infile2 = open(file_list[f][:-1],'r')
data_list = infile2.readlines()
infile2.close()
##### define the basic information of structure #####
cell = data_list[4:7]
atoms = data_list[num_lattice:]
cell_list = []
for i in range(len(cell)):
cell_list.append(cell[i].split()[0:3])
cell_matrix = np.asfarray(cell_list)
atom_list = []
for i in range(len(atoms)):
atom_list.append(atoms[i].split()[1:4])
atom_matrix = np.asfarray(atom_list)
##### define the feature and index of bonds #####
if f == 0:
for i in range(len(atoms)):
for j in range(len(atoms)):
d_min = sum((atom_matrix[i,:] - atom_matrix[j,:])**2)**(1/2)
for l1 in [-1,0,1]:
for l2 in [-1,0,1]:
for l3 in [-1,0,1]:
d = sum((atom_matrix[i,:] - atom_matrix[j,:] + l1*cell_matrix[0,:] + l2*cell_matrix[1,:] + l3*cell_matrix[2,:])**2)**(1/2)
d_min = min([d_min, d])
if d_min <= 3.0 and i != j:
bond_fea_list.append([1.0/d_min])
bond_idx_atom1_list.append(i+len(atom_idx_list))
bond_idx_atom2_list.append(j+len(atom_idx_list))
bond_idx_list.append(f)
num_edge = len(bond_idx_list)
else:
for i in range(num_edge):
d_min = sum((atom_matrix[bond_idx_atom1_list[i],:] - atom_matrix[bond_idx_atom2_list[i],:])**2)**(1/2)
for l1 in [-1,0,1]:
for l2 in [-1,0,1]:
for l3 in [-1,0,1]:
d = sum((atom_matrix[bond_idx_atom1_list[i],:] - atom_matrix[bond_idx_atom2_list[i],:] + l1*cell_matrix[0,:] + l2*cell_matrix[1,:] + l3*cell_matrix[2,:])**2)**(1/2)
d_min = min([d_min, d])
bond_fea_list.append([1.0/d_min])
bond_idx_atom1_list.append(bond_idx_atom1_list[i]+len(atom_idx_list))
bond_idx_atom2_list.append(bond_idx_atom2_list[i]+len(atom_idx_list))
bond_idx_list.append(f)
##### define the feature and index of atoms #####
for i in range(len(atoms)):
atom_idx_list.append(f)
if 'Ga' in atoms[i].split():
atom_fea_list.append([0.,0.,1.,0.,0.,0.,0.,0.])
Ga_idx_list.append(stacked_atom_len + i)
elif 'As' in atoms[i].split():
atom_fea_list.append([0.,0.,0.,0.,1.,0.,0.,0.])
As_idx_list.append(stacked_atom_len + i)
####### define the global feature and E #######
glob_fea_list.append(np.empty([0]))
E_list.append([float(data_list[0].split()[4])])
stacked_atom_len = stacked_atom_len + len(atoms)
Ga_grp_list = list(np.array(atom_idx_list)[Ga_idx_list])
As_grp_list = list(np.array(atom_idx_list)[As_idx_list])
return [atom_fea_list, bond_fea_list, glob_fea_list, bond_idx_atom1_list, bond_idx_atom2_list, atom_idx_list, bond_idx_list, Ga_idx_list, As_idx_list, Ga_grp_list, As_grp_list], E_list
def standarization(E_list):
data_E_matrix = np.asfarray(E_list)
num_data = data_E_matrix.shape[0] # num of data
data_E_mean = data_E_matrix.mean()
data_E_std = 0
for i in range(num_data):
data_E_std += (data_E_matrix[i]-data_E_mean)**2
data_E_std = (data_E_std/(num_data-1))**0.5
data_stE_matrix = (data_E_matrix-data_E_mean)/data_E_std # standarized target E
return list(data_stE_matrix), data_E_mean, data_E_std
def concat_bulk_surf(bulk_inputs, bulk_E, surf_inputs, surf_E, batch_size, E_mean, E_std):
surf_inputs[3] = list(np.array(surf_inputs[3]) + len(bulk_inputs[5]))
surf_inputs[4] = list(np.array(surf_inputs[4]) + len(bulk_inputs[5]))
surf_inputs[5] = list(np.array(surf_inputs[5]) + batch_size)
surf_inputs[6] = list(np.array(surf_inputs[6]) + batch_size)
surf_inputs[7] = list(np.array(surf_inputs[7]) + len(bulk_inputs[5]))
surf_inputs[8] = list(np.array(surf_inputs[8]) + len(bulk_inputs[5]))
surf_inputs[9] = list(np.array(surf_inputs[9]) + batch_size)
surf_inputs[10] = list(np.array(surf_inputs[10]) + batch_size)
atom_fea = np.asfarray(bulk_inputs[0] + surf_inputs[0])
atom_fea = np.expand_dims(atom_fea, axis=0)
bond_fea = np.asfarray(bulk_inputs[1] + surf_inputs[1])
bond_fea = np.expand_dims(bond_fea, axis=0)
glob_fea = np.asfarray(bulk_inputs[2] + surf_inputs[2])
glob_fea = np.expand_dims(glob_fea, axis=0)
bond_idx_atom1 = np.asarray(bulk_inputs[3] + surf_inputs[3])
bond_idx_atom1 = np.expand_dims(bond_idx_atom1, axis=0)
bond_idx_atom2 = | np.asarray(bulk_inputs[4] + surf_inputs[4]) | numpy.asarray |
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from scipy import stats
import pandas as pd
###############################################################################################################
###############################################################################################################
def reg_corr_plot():
class LinearRegression:
def __init__(self, beta1, beta2, error_scale, data_size):
self.beta1 = beta1
self.beta2 = beta2
self.error_scale = error_scale
self.x = np.random.randint(1, data_size, data_size)
self.y = self.beta1 + self.beta2*self.x + self.error_scale*np.random.randn(data_size)
def x_y_cor(self):
return np.corrcoef(self.x, self.y)[0, 1]
fig, ax = plt.subplots(nrows = 2, ncols = 4,figsize=(24, 12))
beta1, beta2, error_scale,data_size = 2, .05, 1, 100
lrg1 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[0, 0].scatter(lrg1.x, lrg1.y)
ax[0, 0].plot(lrg1.x, beta1 + beta2*lrg1.x, color = '#FA954D', alpha = .7)
ax[0, 0].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[0, 0].annotate(r'$\rho={:.4}$'.format(lrg1.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, -.6, 1, 100
lrg2 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[0, 1].scatter(lrg2.x, lrg2.y)
ax[0, 1].plot(lrg2.x, 2 - .6*lrg2.x, color = '#FA954D', alpha = .7)
ax[0, 1].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[0, 1].annotate(r'$\rho={:.4}$'.format(lrg2.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, 1, 1, 100
lrg3 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[0, 2].scatter(lrg3.x, lrg3.y)
ax[0, 2].plot(lrg3.x, beta1 + beta2 * lrg3.x, color = '#FA954D', alpha = .7)
ax[0, 2].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[0, 2].annotate(r'$\rho={:.4}$'.format(lrg3.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, 3, 1, 100
lrg4 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[0, 3].scatter(lrg4.x, lrg4.y)
ax[0, 3].plot(lrg4.x, beta1 + beta2 * lrg4.x, color = '#FA954D', alpha = .7)
ax[0, 3].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[0, 3].annotate(r'$\rho={:.4}$'.format(lrg4.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, 3, 3, 100
lrg5 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[1, 0].scatter(lrg5.x, lrg5.y)
ax[1, 0].plot(lrg5.x, beta1 + beta2 * lrg5.x, color = '#FA954D', alpha = .7)
ax[1, 0].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[1, 0].annotate(r'$\rho={:.4}$'.format(lrg5.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, 3, 10, 100
lrg6 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[1, 1].scatter(lrg6.x, lrg6.y)
ax[1, 1].plot(lrg6.x, beta1 + beta2 * lrg6.x, color = '#FA954D', alpha = .7)
ax[1, 1].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[1, 1].annotate(r'$\rho={:.4}$'.format(lrg6.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, 3, 20, 100
lrg7 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[1, 2].scatter(lrg7.x, lrg7.y)
ax[1, 2].plot(lrg7.x, beta1 + beta2 * lrg7.x, color = '#FA954D', alpha = .7)
ax[1, 2].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[1, 2].annotate(r'$\rho={:.4}$'.format(lrg7.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
beta1, beta2, error_scale,data_size = 2, 3, 50, 100
lrg8 = LinearRegression(beta1, beta2, error_scale, data_size)
ax[1, 3].scatter(lrg8.x, lrg8.y)
ax[1, 3].plot(lrg3.x, beta1 + beta2 * lrg3.x, color = '#FA954D', alpha = .7)
ax[1, 3].set_title(r'$Y={}+{}X+{}u$'.format(beta1, beta2, error_scale))
ax[1, 3].annotate(r'$\rho={:.4}$'.format(lrg8.x_y_cor()), xy=(0.1, 0.9), xycoords='axes fraction')
###############################################################################################################
###############################################################################################################
def central_limit_theorem_plot():
fig, ax = plt.subplots(4, 3, figsize = (20, 20))
########################################################################################
x = np.linspace(2, 8, 100)
a = 2 # range of uniform distribution
b = 8
unif_pdf = np.ones(len(x)) * 1/(b-a)
ax[0, 0].plot(x, unif_pdf, lw = 3, color = 'r')
ax[0, 0].plot([x[0],x[0]],[0, 1/(b-a)], lw = 3, color = 'r', alpha = .9) # vertical line
ax[0, 0].plot([x[-1],x[-1]],[0, 1/(b-a)], lw = 3, color = 'r', alpha = .9)
ax[0, 0].fill_between(x, 1/(b-a), 0, alpha = .5, color = 'r')
ax[0, 0].set_xlim([1, 9])
ax[0, 0].set_ylim([0, .4])
ax[0, 0].set_title('Uniform Distribution', size = 18)
ax[0, 0].set_ylabel('Population Distribution', size = 12)
########################################################################################
ss = 2 #sample size
unif_sample_mean = np.zeros(1000)
for i in range(1000):
unif_sample = np.random.rand(ss)
unif_sample_mean[i] = np.mean(unif_sample)
ax[1, 0].hist(unif_sample_mean, bins = 20, color = 'r', alpha = .5)
ax[1, 0].set_ylabel('Sample Distribution, $n = 2$', size = 12)
########################################################################################
ss = 10 #sample size
unif_sample_mean = np.zeros(1000)
for i in range(1000):
unif_sample = np.random.rand(ss)
unif_sample_mean[i] = np.mean(unif_sample)
ax[2, 0].hist(unif_sample_mean, bins = 30, color = 'r', alpha = .5)
ax[2, 0].set_ylabel('Sample Distribution, $n = 10$', size = 12)
########################################################################################
ss = 1000 #sample size
unif_sample_mean = np.zeros(1000)
for i in range(1000):
unif_sample = np.random.rand(ss)
unif_sample_mean[i] = np.mean(unif_sample)
ax[3, 0].hist(unif_sample_mean, bins = 40, color = 'r', alpha = .5)
ax[3, 0].set_ylabel('Sample Distribution, $n = 1000$', size = 12)
########################################################################################
a = 6
b = 2
x = np.linspace(0, 1, 100)
beta_pdf = sp.stats.beta.pdf(x, a, b)
ax[0, 1].plot(x, beta_pdf, lw = 3, color = 'g')
ax[0, 1].set_ylim([0, 6])
ax[0, 1].fill_between(x, beta_pdf, 0, alpha = .5, color = 'g')
ax[0, 1].set_title('Beta Distribution', size = 18)
########################################################################################
ss = 2 #sample size
beta_sample_mean = np.zeros(1000)
for i in range(1000):
beta_sample = sp.stats.beta.rvs(a, b, size = ss)
beta_sample_mean[i] = np.mean(beta_sample)
ax[1, 1].hist(beta_sample_mean, color = 'g', alpha = .5)
########################################################################################
ss = 10 #sample size
beta_sample_mean = np.zeros(1000)
for i in range(1000):
beta_sample = sp.stats.beta.rvs(a, b, size = ss)
beta_sample_mean[i] = np.mean(beta_sample)
ax[2, 1].hist(beta_sample_mean, color = 'g', bins = 20, alpha = .5)
########################################################################################
ss = 100000 #sample size
beta_sample_mean = np.zeros(1000)
for i in range(1000):
beta_sample = sp.stats.beta.rvs(a, b, size = ss)
beta_sample_mean[i] = np.mean(beta_sample)
ax[3, 1].hist(beta_sample_mean, color = 'g', bins = 30, alpha = .5)
########################################################################################
a = 6
x = np.linspace(0, 25, 100)
gamma_pdf = sp.stats.gamma.pdf(x, a)
ax[0, 2].plot(x, gamma_pdf, lw = 3, color = 'b')
ax[0, 2].set_ylim([0, 0.34])
ax[0, 2].fill_between(x, gamma_pdf, 0, alpha = .5, color = 'b')
ax[0, 2].set_title('Gamma Distribution', size = 18)
########################################################################################
ss = 2 #sample size
gamma_sample_mean = np.zeros(1000)
for i in range(1000):
gamma_sample = sp.stats.gamma.rvs(a, size = ss)
gamma_sample_mean[i] = np.mean(gamma_sample)
ax[1, 2].hist(gamma_sample_mean, color = 'b', alpha = .5)
########################################################################################
ss = 10 #sample size
gamma_sample_mean = np.zeros(1000)
for i in range(1000):
gamma_sample = sp.stats.gamma.rvs(a, size = ss)
gamma_sample_mean[i] = np.mean(gamma_sample)
ax[2, 2].hist(gamma_sample_mean, bins = 20, color = 'b', alpha = .5)
########################################################################################
ss = 1000 #sample size
gamma_sample_mean = np.zeros(1000)
for i in range(1000):
gamma_sample = sp.stats.gamma.rvs(a, size = ss)
gamma_sample_mean[i] = np.mean(gamma_sample)
ax[3, 2].hist(gamma_sample_mean, bins = 30, color = 'b', alpha = .5)
########################################################################################
plt.show()
##########################################################################################################
##########################################################################################################
def type12_error():
x = np.linspace(-6, 9, 200)
null_loc, alter_loc = 0, 3
y_null = sp.stats.norm.pdf(x, loc = null_loc)
y_alter = sp.stats.norm.pdf(x, loc = alter_loc)
fig, ax = plt.subplots(figsize = (18, 6))
ax.plot(x, y_null, x, y_alter)
ax.annotate('Null', (null_loc-.2, max(y_null)/2), size = 15)
ax.annotate('Alternative', (alter_loc-.6, max(y_alter)/2), size = 15)
ax.annotate('Type I Error', (2, max(y_alter)/30), size = 15)
ax.annotate('Type II Error', (0, max(y_alter)/30), size = 15)
ax.fill_between(x[-98:], y_null[-98:])
ax.fill_between(x[:103], y_alter[:103])
ax.set_ylim([0, .5])
plt.show()
##########################################################################################################
##########################################################################################################
# def reject_region():
# data = pd.read_csv('500_Person_Gender_Height_Weight_Index.csv')
# male_mean = data[data['Gender']=='Male']['Height'].mean()
# male_std = data[data['Gender']=='Male']['Height'].std(ddof=1)
# male_std_error = male_std/np.sqrt(len(data[data['Gender']=='Male']))
# male_null = 172
# df = len(data[data['Gender']=='Male'])-1
# t_975 = sp.stats.t.ppf(.975, df=df)
# t_025 = sp.stats.t.ppf(.025, df=df)
# x = np.linspace(male_null-5, male_null+5, 200)
# df = len(data[data['Gender']=='Male'])-1
# y_t = sp.stats.t.pdf(x, df = df, loc = male_null)
# fig, ax = plt.subplots(2, 1, figsize = (18,8))
# ax[0].plot(x, y_t, color = 'tomato', lw = 3)
# rejection_lower = male_null - t_975*male_std_error
# x_rej_lower = np.linspace(rejection_lower-3, rejection_lower, 30)
# y_rej_lower = sp.stats.t.pdf(x_rej_lower, df = df, loc = male_null)
# ax[0].fill_between(x_rej_lower, y_rej_lower, color = 'tomato', alpha = .7)
# rejection_upper = male_null + t_975*male_std_error
# x_rej_upper = np.linspace(rejection_upper, rejection_upper+3, 30)
# y_rej_upper = sp.stats.t.pdf(x_rej_upper, df = df, loc = male_null)
# ax[0].fill_between(x_rej_upper, y_rej_upper, color = 'tomato', alpha = .7)
# ax[0].set_ylim([0, .45])
# x = np.linspace(-5, 5, 200)
# y_t = sp.stats.t.pdf(x, df = df, loc = 0)
# ax[1].plot(x, y_t, color = 'tomato', lw = 3)
# x_rej_lower = np.linspace(t_025-3, t_025, 30)
# y_rej_lower = sp.stats.t.pdf(x_rej_lower, df = df)
# ax[1].fill_between(x_rej_lower, y_rej_lower, color = 'tomato', alpha = .7)
# x_rej_lower = np.linspace(t_975+3, t_975, 30)
# y_rej_lower = sp.stats.t.pdf(x_rej_lower, df = df)
# ax[1].fill_between(x_rej_lower, y_rej_lower, color = 'tomato', alpha = .7)
# ax[1].set_ylim([0, .45])
# plt.show()
##########################################################################################################
# ##########################################################################################################
# def draw_something():
# x = np.linspace(0, 10, 100)
# y = np.sin(x)
# plt.plot(x, y)
##########################################################################################################
##########################################################################################################
def anova_plot():
def gen_3samples(loc1, loc2, loc3, scale1, scale2, scale3, size1, size2, size3):
F_statistic, p_value = [], []
for i in range(1000):
a = sp.stats.norm.rvs(loc1, scale1, size1)
b = sp.stats.norm.rvs(loc2, scale2, size3)
c = sp.stats.norm.rvs(loc3, scale3, size3)
F, p = sp.stats.f_oneway(a,b,c)
F_statistic.append(F)
p_value.append(p)
return F_statistic, p_value
fig, ax = plt.subplots(nrows = 6, ncols = 3, figsize = (17, 34))
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 6, 9, 6, 6, 6, 10, 20, 30]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[0,0].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[0,0].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[0,0].set_title('Simulation 1')
ax[0,0].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[1,0].hist(p_value,bins = 50)
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 3.1, 2.9, 6, 6, 6, 10, 20, 30]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[0,1].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[0,1].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[0,1].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[1,1].hist(p_value,bins = 50)
ax[0,1].set_title('Simulation 2')
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 3.1, 2.9, 6, 12, 18, 10, 20, 30]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[0,2].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[0,2].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[0,2].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[1,2].hist(p_value,bins = 50)
ax[0,2].set_title('Simulation 3')
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 6, 9, 10, 10, 10, 10, 20, 30]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[2,0].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[2,0].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[2,0].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[3,0].hist(p_value,bins = 50)
ax[2,0].set_title('Simulation 4')
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 5, 6, 10, 10, 10, 10, 10, 10]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[2,1].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[2,1].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[2,1].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[3,1].hist(p_value,bins = 50)
ax[2,1].set_title('Simulation 5')
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 5, 6, 10, 10, 10, 5000, 5000, 5000]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[2,2].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[2,2].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[2,2].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[3,2].hist(p_value,bins = 50)
ax[2,2].set_title('Simulation 6')
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 3, 3, 100, 100, 100, 10, 10, 10]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[4,0].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[4,0].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[4,0].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[5,0].hist(p_value,bins = 50)
ax[4,0].set_title('Simulation 7')
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 3, 3, 1, 1, 2, 10, 20, 30]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[4,1].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[4,1].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[4,1].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[5,1].hist(p_value,bins = 50)
ax[4,1].set_title('Simulation 8')
params = [3, 3.1, 2.9, .01, .01, .01, 10, 20, 30]
mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3 = [3, 3, 3, 1, 1, 2, 10, 20, 30]
params = [mu1, mu2, mu3, sig1, sig2, sig3, size1, size2, size3]
F_statistic, p_value = gen_3samples(*params)
n, bins, patches = ax[4,2].hist(F_statistic, bins = 50)
F_critical = sp.stats.f.ppf(.95, 2, size1+size2+size3-3)
textstr = '\n'.join((
'$\mu_1, \mu_2, \mu_3 = {}, {}, {}$'.format(mu1, mu2, mu3),
'$\sigma_1, \sigma_2, \sigma_3 = {}, {}, {}$'.format(sig1, sig2, sig3),
'$n_1, n_2, n_3 = {}, {}, {}$'.format(size1, size2, size3),
r'$F_c = {:.4f}$'.format(F_critical)))
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax[4,2].text(max(bins)/2, max(n)/2, textstr, fontsize=10,
verticalalignment='top', bbox=props)
ax[4,2].vlines(F_critical, 0, max(n)*1.1, color = 'r')
ax[5,2].hist(p_value,bins = 50)
ax[4,2].set_title('Simulation 9')
#######################||Rectangle||##########################
##############################################################
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.10, 0.633), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.3755, 0.633), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.650, 0.633), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.10, 0.37), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.3755, 0.37), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.650, 0.37), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.650, 0.108), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.3755, 0.108), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
rect = plt.Rectangle(
# (lower-left corner), width, height
(0.1, 0.108), 0.2645, 0.258, fill=False, color="k", lw=2,
zorder=1000, transform=fig.transFigure, figure=fig
)
fig.patches.extend([rect])
####################################################################
plt.show()
###############################################################################################
###############################################################################################
def two_tail_rej_region_demo():
data = pd.read_csv('500_Person_Gender_Height_Weight_Index.csv')
df = len(data[data['Gender']=='Male'])-1
t_975 = sp.stats.t.ppf(.975, df=df)
t_025 = sp.stats.t.ppf(.025, df=df)
male_mean = data[data['Gender']=='Male']['Height'].mean()
male_std = data[data['Gender']=='Male']['Height'].std(ddof=1)
male_std_error = male_std/np.sqrt(len(data[data['Gender']=='Male']))
male_null = 172
x = np.linspace(male_null-5, male_null+5, 200)
y_t = sp.stats.t.pdf(x, df = df, loc = male_null)
fig, ax = plt.subplots(2, 1, figsize = (18,8))
ax[0].plot(x, y_t, color = 'tomato', lw = 3)
rejection_lower = male_null - t_975*male_std_error
x_rej_lower = np.linspace(rejection_lower-3, rejection_lower, 30)
y_rej_lower = sp.stats.t.pdf(x_rej_lower, df = df, loc = male_null)
ax[0].fill_between(x_rej_lower, y_rej_lower, color = 'tomato', alpha = .7)
rejection_upper = male_null + t_975*male_std_error
x_rej_upper = | np.linspace(rejection_upper, rejection_upper+3, 30) | numpy.linspace |
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import numpy as np
from nolitsa import lyapunov
from numpy.testing import assert_allclose, run_module_suite
def test_mle():
# Test lyapunov.mle()
# Particle moving uniformly in 7d: y(t) = a + b*t
a = np.random.random(7)
b = np.random.random(7)
n = 250
window = 15
t = np.arange(n)
y = a + b * t[:, np.newaxis]
for metric in ('chebyshev', 'cityblock', 'euclidean'):
if metric == 'chebyshev':
modb = np.max( | np.abs(b) | numpy.abs |
import pytest
from numba import carray, njit
from pytest import approx
from numerous.engine.model.lowering.llvm_builder import LLVMBuilder
import numpy as np
import os
initial_values = np.arange(1, 10)
filename = 'llvm_IR_code.txt'
@pytest.fixture(autouse=True)
def run_around_tests():
yield
if os.path.exists(filename):
os.remove(filename)
eval_llvm_signature = 'void(float64, float64, CPointer(float64), CPointer(float64))'
def eval_llvm(s_x1, s_x2, s_x2_dot, s_x3_dot):
carray(s_x2_dot, (1,))[0] = -100 if s_x1 > s_x2 else 50
carray(s_x3_dot, (1,))[0] = -carray(s_x2_dot, (1,))[0]
eval_llvm_mix_signature = 'void(float64, CPointer(float64),float64, CPointer(float64))'
def eval_llvm_mix(s_x1, s_x2_dot, s_x2, s_x3_dot):
carray(s_x2_dot, (1,))[0] = -100 if s_x1 > s_x2 else 50
carray(s_x3_dot, (1,))[0] = -carray(s_x2_dot, (1,))[0]
eval_llvm2_signature = 'void(float64, float64, CPointer(float64), CPointer(float64))'
def eval_llvm2(s_x1, s_x2, s_x2_dot, s_x3_dot):
carray(s_x2_dot, (1,))[0] = nested(-100) if s_x1 > s_x2 else 50
carray(s_x3_dot, (1,))[0] = -carray(s_x2_dot, (1,))[0]
@njit
def nested(s_x):
return s_x + 1
number_of_derivatives = 3
number_of_states = 3
variable_names = {
"oscillator1.mechanics.x": 0,
"oscillator1.mechanics.y": 1,
"oscillator1.mechanics.z": 2,
"oscillator1.mechanics.a": 3,
"oscillator1.mechanics.b": 4,
"oscillator1.mechanics.c": 5,
"oscillator1.mechanics.x_dot": 6,
"oscillator1.mechanics.y_dot": 7,
"oscillator1.mechanics.z_dot": 8,
}
variable_distributed = {
"oscillator1.mechanics.a": 0,
"oscillator1.mechanics.x_dot": 1,
"oscillator1.mechanics.y_dot": 2,
"oscillator1.mechanics.z_dot": 3,
"oscillator1.mechanics.x": 4,
"oscillator1.mechanics.b": 5,
"oscillator1.mechanics.c": 6,
"oscillator1.mechanics.y": 7,
"oscillator1.mechanics.z": 8,
}
DERIVATIVES = ["oscillator1.mechanics.x_dot", "oscillator1.mechanics.y_dot", "oscillator1.mechanics.z_dot"]
STATES = ["oscillator1.mechanics.x", "oscillator1.mechanics.y", "oscillator1.mechanics.z"]
def test_llvm_1_to_1_mapping_state():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_program.add_mapping(["oscillator1.mechanics.x"], ["oscillator1.mechanics.x_dot"])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff(np.array([2.1, 2.2, 2.3]))) == np.array([2.1, 8, 9.])
def test_llvm_1_to_1_mapping_parameter():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_program.add_mapping(["oscillator1.mechanics.b"], ["oscillator1.mechanics.x_dot"])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff(np.array([2.1, 2.2, 2.3]))) == np.array([5, 8, 9.])
def test_llvm_n_to_1_sum_mapping():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_program.add_mapping(["oscillator1.mechanics.x", "oscillator1.mechanics.y", "oscillator1.mechanics.b"],
["oscillator1.mechanics.x_dot"])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff(np.array([2.1, 2.2, 2.3]))) == np.array([9.3, 8, 9.])
def test_llvm_1_to_n_mapping():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_program.add_mapping(["oscillator1.mechanics.x"],
["oscillator1.mechanics.x_dot", "oscillator1.mechanics.y_dot"])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff(np.array([2.1, 2.2, 2.3]))) == np.array([2.1, 2.1, 9.])
def test_llvm_1_function():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_names = llvm_program.add_external_function(eval_llvm, eval_llvm_signature, number_of_args=4, target_ids=[2, 3])
llvm_program.add_call(llvm_names[eval_llvm.__qualname__],
["oscillator1.mechanics.x", "oscillator1.mechanics.y", "oscillator1.mechanics.x_dot",
"oscillator1.mechanics.y_dot"],
target_ids=[2, 3])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff(np.array([2.1, 2.2, 2.3]))) == np.array([50, -50, 9.])
assert approx(diff(np.array([2.3, 2.2, 2.1]))) == np.array([-100, 100, 9.])
def test_llvm_nested_function_and_mapping():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_names = llvm_program.add_external_function(eval_llvm2, eval_llvm2_signature, number_of_args=4, target_ids=[2, 3])
llvm_program.add_call(llvm_names[eval_llvm2.__qualname__],
["oscillator1.mechanics.x", "oscillator1.mechanics.y",
"oscillator1.mechanics.a", "oscillator1.mechanics.y_dot"], target_ids=[2, 3])
llvm_program.add_mapping(args=["oscillator1.mechanics.a"],
targets=["oscillator1.mechanics.x_dot"])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff(np.array([2.1, 2.2, 2.3]))) == np.array([50, -50, 9.])
assert approx(diff(np.array([2.3, 2.2, 2.1]))) == np.array([-99, 99, 9.])
def test_llvm_1_function_and_mapping():
llvm_program = LLVMBuilder(initial_values, variable_names, STATES, DERIVATIVES)
llvm_names = llvm_program.add_external_function(eval_llvm, eval_llvm_signature, number_of_args=4, target_ids=[2, 3])
llvm_program.add_call(llvm_names[eval_llvm.__qualname__],
["oscillator1.mechanics.x", "oscillator1.mechanics.y",
"oscillator1.mechanics.a", "oscillator1.mechanics.y_dot"], target_ids=[2, 3])
llvm_program.add_mapping(args=["oscillator1.mechanics.a"],
targets=["oscillator1.mechanics.x_dot"])
diff, var_func, _ = llvm_program.generate(filename)
assert approx(diff( | np.array([2.1, 2.2, 2.3]) | numpy.array |
"""
test_gaussian.py: Test suite for the Gaussian estimator class :class:`GaussEst`
"""
from __future__ import print_function
import unittest
import numpy as np
# Add the path to the vampyre package and import it
import env
env.add_vp_path()
import vampyre as vp
def lin_test(zshape=(500,10),Ashape=(1000,500),verbose=False,tol=0.1):
"""
Unit test for the linear estimator class
The test is performed by generating random data
:math:`y=Az+w, z \\sim {\\mathcal N}(r, \\tau_r I),
w \\sim {\\mathcal N}(0, \\tau_w I)`
Then the method estimates :math:`z` from :math:`y`
and compares the expected and measured errors.
:param zshape: shape of :math:`z`
:param Ashape: shape of :A:`z`. This must be consistent with
:code:`zshape`.
:param Boolenan verbose: print results
:param tol: error tolerance above which test is considered
to fail.
"""
# Generate random parameters
rvar = 10**(np.random.uniform(-1,1,1))[0]
wvar = 10**(np.random.uniform(-1,1,1))[0]
# Generate random matrix
A = np.random.normal(0,1,Ashape)/np.sqrt(Ashape[1])
Aop = vp.trans.MatrixLT(A, zshape)
yshape = Aop.shape1
# Add noise on input and output
r = np.random.normal(0,1,zshape)
z = r + np.random.normal(0,np.sqrt(rvar),zshape)
y = A.dot(z) + np.random.normal(0, | np.sqrt(wvar) | numpy.sqrt |
from copy import copy
from itertools import cycle, islice
import numpy as np
import pandas as pd
import pytest
from napari._tests.utils import check_layer_world_data_extent
from napari.layers import Shapes
from napari.layers.utils._text_constants import TextMode
from napari.utils.colormaps.standardize_color import transform_color
def _make_cycled_properties(values, length):
"""Helper function to make property values
Parameters
----------
values
The values to be cycled.
length : int
The length of the resulting property array
Returns
-------
cycled_properties : np.ndarray
The property array comprising the cycled values.
"""
cycled_properties = np.array(list(islice(cycle(values), 0, length)))
return cycled_properties
def test_empty_shapes():
shp = Shapes()
assert shp.ndim == 2
properties_array = {'shape_type': _make_cycled_properties(['A', 'B'], 10)}
properties_list = {'shape_type': list(_make_cycled_properties(['A', 'B'], 10))}
@pytest.mark.parametrize("properties", [properties_array, properties_list])
def test_properties(properties):
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, properties=copy(properties))
np.testing.assert_equal(layer.properties, properties)
current_prop = {'shape_type': np.array(['B'])}
assert layer.current_properties == current_prop
# test removing shapes
layer.selected_data = {0, 1}
layer.remove_selected()
remove_properties = properties['shape_type'][2::]
assert len(layer.properties['shape_type']) == (shape[0] - 2)
assert np.all(layer.properties['shape_type'] == remove_properties)
# test selection of properties
layer.selected_data = {0}
selected_annotation = layer.current_properties['shape_type']
assert len(selected_annotation) == 1
assert selected_annotation[0] == 'A'
# test adding shapes with properties
new_data = np.random.random((1, 4, 2))
new_shape_type = ['rectangle']
layer.add(new_data, shape_type=new_shape_type)
add_properties = np.concatenate((remove_properties, ['A']), axis=0)
assert np.all(layer.properties['shape_type'] == add_properties)
# test copy/paste
layer.selected_data = {0, 1}
layer._copy_data()
assert np.all(layer._clipboard['properties']['shape_type'] == ['A', 'B'])
layer._paste_data()
paste_properties = np.concatenate((add_properties, ['A', 'B']), axis=0)
assert np.all(layer.properties['shape_type'] == paste_properties)
# test updating a property
layer.mode = 'select'
layer.selected_data = {0}
new_property = {'shape_type': np.array(['B'])}
layer.current_properties = new_property
updated_properties = layer.properties
assert updated_properties['shape_type'][0] == 'B'
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_adding_properties(attribute):
"""Test adding properties to an existing layer"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
# add properties
properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])}
layer.properties = properties
np.testing.assert_equal(layer.properties, properties)
# add properties as a dataframe
properties_df = pd.DataFrame(properties)
layer.properties = properties_df
np.testing.assert_equal(layer.properties, properties)
# add properties as a dictionary with list values
properties_list = {
'shape_type': list(_make_cycled_properties(['A', 'B'], shape[0]))
}
layer.properties = properties_list
assert isinstance(layer.properties['shape_type'], np.ndarray)
# removing a property that was the _*_color_property should give a warning
setattr(layer, f'_{attribute}_color_property', 'shape_type')
properties_2 = {
'not_shape_type': _make_cycled_properties(['A', 'B'], shape[0])
}
with pytest.warns(RuntimeWarning):
layer.properties = properties_2
def test_data_setter_with_properties():
"""Test layer data on a layer with properties via the data setter"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])}
layer = Shapes(data, properties=properties)
# test setting to data with fewer shapes
n_new_shapes = 4
new_data = 20 * np.random.random((n_new_shapes, 4, 2))
layer.data = new_data
assert len(layer.properties['shape_type']) == n_new_shapes
# test setting to data with more shapes
n_new_shapes_2 = 6
new_data_2 = 20 * np.random.random((n_new_shapes_2, 4, 2))
layer.data = new_data_2
assert len(layer.properties['shape_type']) == n_new_shapes_2
# test setting to data with same shapes
new_data_3 = 20 * np.random.random((n_new_shapes_2, 4, 2))
layer.data = new_data_3
assert len(layer.properties['shape_type']) == n_new_shapes_2
def test_properties_dataframe():
"""Test if properties can be provided as a DataFrame"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])}
properties_df = pd.DataFrame(properties)
properties_df = properties_df.astype(properties['shape_type'].dtype)
layer = Shapes(data, properties=properties_df)
np.testing.assert_equal(layer.properties, properties)
def test_empty_layer_with_text_properties():
"""Test initializing an empty layer with text defined"""
default_properties = {'shape_type': np.array([1.5], dtype=float)}
text_kwargs = {'text': 'shape_type', 'color': 'red'}
layer = Shapes(
properties=default_properties,
text=text_kwargs,
)
assert layer.text._mode == TextMode.PROPERTY
assert layer.text.values.size == 0
np.testing.assert_allclose(layer.text.color, [1, 0, 0, 1])
# add a shape and check that the appropriate text value was added
layer.add(np.random.random((1, 4, 2)))
np.testing.assert_equal(layer.text.values, ['1.5'])
np.testing.assert_allclose(layer.text.color, [1, 0, 0, 1])
def test_empty_layer_with_text_formatted():
"""Test initializing an empty layer with text defined"""
default_properties = {'shape_type': np.array([1.5], dtype=float)}
layer = Shapes(
properties=default_properties,
text='shape_type: {shape_type:.2f}',
)
assert layer.text._mode == TextMode.FORMATTED
assert layer.text.values.size == 0
# add a shape and check that the appropriate text value was added
layer.add(np.random.random((1, 4, 2)))
np.testing.assert_equal(layer.text.values, ['shape_type: 1.50'])
@pytest.mark.parametrize("properties", [properties_array, properties_list])
def test_text_from_property_value(properties):
"""Test setting text from a property value"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, properties=copy(properties), text='shape_type')
np.testing.assert_equal(layer.text.values, properties['shape_type'])
@pytest.mark.parametrize("properties", [properties_array, properties_list])
def test_text_from_property_fstring(properties):
"""Test setting text with an f-string from the property value"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(
data, properties=copy(properties), text='type: {shape_type}'
)
expected_text = ['type: ' + v for v in properties['shape_type']]
np.testing.assert_equal(layer.text.values, expected_text)
# test updating the text
layer.text = 'type-ish: {shape_type}'
expected_text_2 = ['type-ish: ' + v for v in properties['shape_type']]
np.testing.assert_equal(layer.text.values, expected_text_2)
# copy/paste
layer.selected_data = {0}
layer._copy_data()
layer._paste_data()
expected_text_3 = expected_text_2 + ['type-ish: A']
np.testing.assert_equal(layer.text.values, expected_text_3)
# add shape
layer.selected_data = {0}
new_shape = np.random.random((1, 4, 2))
layer.add(new_shape)
expected_text_4 = expected_text_3 + ['type-ish: A']
np.testing.assert_equal(layer.text.values, expected_text_4)
@pytest.mark.parametrize("properties", [properties_array, properties_list])
def test_set_text_with_kwarg_dict(properties):
text_kwargs = {
'text': 'type: {shape_type}',
'color': [0, 0, 0, 1],
'rotation': 10,
'translation': [5, 5],
'anchor': 'upper_left',
'size': 10,
'visible': True,
}
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, properties=copy(properties), text=text_kwargs)
expected_text = ['type: ' + v for v in properties['shape_type']]
np.testing.assert_equal(layer.text.values, expected_text)
for property, value in text_kwargs.items():
if property == 'text':
continue
layer_value = getattr(layer._text, property)
np.testing.assert_equal(layer_value, value)
@pytest.mark.parametrize("properties", [properties_array, properties_list])
def test_text_error(properties):
"""creating a layer with text as the wrong type should raise an error"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
# try adding text as the wrong type
with pytest.raises(TypeError):
Shapes(data, properties=copy(properties), text=123)
def test_refresh_text():
"""Test refreshing the text after setting new properties"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': ['A'] * shape[0]}
layer = Shapes(data, properties=copy(properties), text='shape_type')
new_properties = {'shape_type': ['B'] * shape[0]}
layer.properties = new_properties
np.testing.assert_equal(layer.text.values, new_properties['shape_type'])
def test_nd_text():
"""Test slicing of text coords with nD shapes"""
shapes_data = [
[[0, 10, 10, 10], [0, 10, 20, 20], [0, 10, 10, 20], [0, 10, 20, 10]],
[[1, 20, 30, 30], [1, 20, 50, 50], [1, 20, 50, 30], [1, 20, 30, 50]],
]
properties = {'shape_type': ['A', 'B']}
text_kwargs = {'text': 'shape_type', 'anchor': 'center'}
layer = Shapes(shapes_data, properties=properties, text=text_kwargs)
assert layer.ndim == 4
layer._slice_dims(point=[0, 10, 0, 0], ndisplay=2)
np.testing.assert_equal(layer._indices_view, [0])
np.testing.assert_equal(layer._view_text_coords[0], [[15, 15]])
layer._slice_dims(point=[1, 0, 0, 0], ndisplay=3)
np.testing.assert_equal(layer._indices_view, [1])
np.testing.assert_equal(layer._view_text_coords[0], [[20, 40, 40]])
@pytest.mark.parametrize("properties", [properties_array, properties_list])
def test_data_setter_with_text(properties):
"""Test layer data on a layer with text via the data setter"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, properties=copy(properties), text='shape_type')
# test setting to data with fewer shapes
n_new_shapes = 4
new_data = 20 * np.random.random((n_new_shapes, 4, 2))
layer.data = new_data
assert len(layer.text.values) == n_new_shapes
# test setting to data with more shapes
n_new_shapes_2 = 6
new_data_2 = 20 * np.random.random((n_new_shapes_2, 4, 2))
layer.data = new_data_2
assert len(layer.text.values) == n_new_shapes_2
# test setting to data with same shapes
new_data_3 = 20 * np.random.random((n_new_shapes_2, 4, 2))
layer.data = new_data_3
assert len(layer.text.values) == n_new_shapes_2
def test_rectangles():
"""Test instantiating Shapes layer with a random 2D rectangles."""
# Test a single four corner rectangle
shape = (1, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
# Test multiple four corner rectangles
shape = (10, 4, 2)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
# Test a single two corner rectangle, which gets converted into four
# corner rectangle
shape = (1, 2, 2)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.nshapes == 1
assert len(layer.data[0]) == 4
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
# Test multiple two corner rectangles
shape = (10, 2, 2)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([len(ld) == 4 for ld in layer.data])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
def test_rectangles_with_shape_type():
"""Test instantiating rectangles with shape_type in data"""
# Test (rectangle, shape_type) tuple
shape = (1, 4, 2)
np.random.seed(0)
vertices = 20 * np.random.random(shape)
data = (vertices, "rectangle")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
# Test (list of rectangles, shape_type) tuple
shape = (10, 4, 2)
vertices = 20 * np.random.random(shape)
data = (vertices, "rectangle")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
# Test list of (rectangle, shape_type) tuples
data = [(vertices[i], "rectangle") for i in range(shape[0])]
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
def test_rectangles_roundtrip():
"""Test a full roundtrip with rectangles data."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
new_layer = Shapes(layer.data)
assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)])
def test_integer_rectangle():
"""Test instantiating rectangles with integer data."""
shape = (10, 2, 2)
np.random.seed(1)
data = np.random.randint(20, size=shape)
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([len(ld) == 4 for ld in layer.data])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
def test_negative_rectangle():
"""Test instantiating rectangles with negative data."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape) - 10
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
def test_empty_rectangle():
"""Test instantiating rectangles with empty data."""
shape = (0, 0, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == shape[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
def test_3D_rectangles():
"""Test instantiating Shapes layer with 3D planar rectangles."""
# Test a single four corner rectangle
np.random.seed(0)
planes = np.tile(np.arange(10).reshape((10, 1, 1)), (1, 4, 1))
corners = np.random.uniform(0, 10, size=(10, 4, 2))
data = np.concatenate((planes, corners), axis=2)
layer = Shapes(data)
assert layer.nshapes == len(data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == 3
assert np.all([s == 'rectangle' for s in layer.shape_type])
def test_ellipses():
"""Test instantiating Shapes layer with a random 2D ellipses."""
# Test a single four corner ellipses
shape = (1, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='ellipse')
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test multiple four corner ellipses
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='ellipse')
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test a single ellipse center radii, which gets converted into four
# corner ellipse
shape = (1, 2, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='ellipse')
assert layer.nshapes == 1
assert len(layer.data[0]) == 4
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test multiple center radii ellipses
shape = (10, 2, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='ellipse')
assert layer.nshapes == shape[0]
assert np.all([len(ld) == 4 for ld in layer.data])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
def test_ellipses_with_shape_type():
"""Test instantiating ellipses with shape_type in data"""
# Test single four corner (vertices, shape_type) tuple
shape = (1, 4, 2)
np.random.seed(0)
vertices = 20 * np.random.random(shape)
data = (vertices, "ellipse")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test multiple four corner (list of vertices, shape_type) tuple
shape = (10, 4, 2)
np.random.seed(0)
vertices = 20 * np.random.random(shape)
data = (vertices, "ellipse")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test list of four corner (vertices, shape_type) tuples
shape = (10, 4, 2)
np.random.seed(0)
vertices = 20 * np.random.random(shape)
data = [(vertices[i], "ellipse") for i in range(shape[0])]
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test single (center-radii, shape_type) ellipse
shape = (1, 2, 2)
np.random.seed(0)
data = (20 * np.random.random(shape), "ellipse")
layer = Shapes(data)
assert layer.nshapes == 1
assert len(layer.data[0]) == 4
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test (list of center-radii, shape_type) tuple
shape = (10, 2, 2)
np.random.seed(0)
center_radii = 20 * np.random.random(shape)
data = (center_radii, "ellipse")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([len(ld) == 4 for ld in layer.data])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# Test list of (center-radii, shape_type) tuples
shape = (10, 2, 2)
np.random.seed(0)
center_radii = 20 * np.random.random(shape)
data = [(center_radii[i], "ellipse") for i in range(shape[0])]
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([len(ld) == 4 for ld in layer.data])
assert layer.ndim == shape[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
def test_4D_ellispse():
"""Test instantiating Shapes layer with 4D planar ellipse."""
# Test a single 4D ellipse
np.random.seed(0)
data = [
[
[3, 5, 108, 108],
[3, 5, 108, 148],
[3, 5, 148, 148],
[3, 5, 148, 108],
]
]
layer = Shapes(data, shape_type='ellipse')
assert layer.nshapes == len(data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == 4
assert np.all([s == 'ellipse' for s in layer.shape_type])
def test_ellipses_roundtrip():
"""Test a full roundtrip with ellipss data."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='ellipse')
new_layer = Shapes(layer.data, shape_type='ellipse')
assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)])
def test_lines():
"""Test instantiating Shapes layer with a random 2D lines."""
# Test a single two end point line
shape = (1, 2, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='line')
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'line' for s in layer.shape_type])
# Test multiple lines
shape = (10, 2, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='line')
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == shape[2]
assert np.all([s == 'line' for s in layer.shape_type])
def test_lines_with_shape_type():
"""Test instantiating lines with shape_type"""
# Test (single line, shape_type) tuple
shape = (1, 2, 2)
np.random.seed(0)
end_points = 20 * np.random.random(shape)
data = (end_points, 'line')
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == end_points[0])
assert layer.ndim == shape[2]
assert np.all([s == 'line' for s in layer.shape_type])
# Test (multiple lines, shape_type) tuple
shape = (10, 2, 2)
np.random.seed(0)
end_points = 20 * np.random.random(shape)
data = (end_points, "line")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, end_points)])
assert layer.ndim == shape[2]
assert np.all([s == 'line' for s in layer.shape_type])
# Test list of (line, shape_type) tuples
shape = (10, 2, 2)
np.random.seed(0)
end_points = 20 * np.random.random(shape)
data = [(end_points[i], "line") for i in range(shape[0])]
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, end_points)])
assert layer.ndim == shape[2]
assert np.all([s == 'line' for s in layer.shape_type])
def test_lines_roundtrip():
"""Test a full roundtrip with line data."""
shape = (10, 2, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='line')
new_layer = Shapes(layer.data, shape_type='line')
assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)])
def test_paths():
"""Test instantiating Shapes layer with a random 2D paths."""
# Test a single path with 6 points
shape = (1, 6, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='path')
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'path' for s in layer.shape_type])
# Test multiple paths with different numbers of points
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10)
]
layer = Shapes(data, shape_type='path')
assert layer.nshapes == len(data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == 2
assert np.all([s == 'path' for s in layer.shape_type])
def test_paths_with_shape_type():
"""Test instantiating paths with shape_type in data"""
# Test (single path, shape_type) tuple
shape = (1, 6, 2)
np.random.seed(0)
path_points = 20 * np.random.random(shape)
data = (path_points, "path")
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == path_points[0])
assert layer.ndim == shape[2]
assert np.all([s == 'path' for s in layer.shape_type])
# Test (list of paths, shape_type) tuple
path_points = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10)
]
data = (path_points, "path")
layer = Shapes(data)
assert layer.nshapes == len(path_points)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, path_points)])
assert layer.ndim == 2
assert np.all([s == 'path' for s in layer.shape_type])
# Test list of (path, shape_type) tuples
data = [(path_points[i], "path") for i in range(len(path_points))]
layer = Shapes(data)
assert layer.nshapes == len(data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, path_points)])
assert layer.ndim == 2
assert np.all([s == 'path' for s in layer.shape_type])
def test_paths_roundtrip():
"""Test a full roundtrip with path data."""
np.random.seed(0)
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10)
]
layer = Shapes(data, shape_type='path')
new_layer = Shapes(layer.data, shape_type='path')
assert np.all(
[np.all(nd == d) for nd, d in zip(new_layer.data, layer.data)]
)
def test_polygons():
"""Test instantiating Shapes layer with a random 2D polygons."""
# Test a single polygon with 6 points
shape = (1, 6, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data, shape_type='polygon')
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == data[0])
assert layer.ndim == shape[2]
assert np.all([s == 'polygon' for s in layer.shape_type])
# Test multiple polygons with different numbers of points
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10)
]
layer = Shapes(data, shape_type='polygon')
assert layer.nshapes == len(data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == 2
assert np.all([s == 'polygon' for s in layer.shape_type])
def test_polygons_with_shape_type():
"""Test 2D polygons with shape_type in data"""
# Test single (polygon, shape_type) tuple
shape = (1, 6, 2)
np.random.seed(0)
vertices = 20 * np.random.random(shape)
data = (vertices, 'polygon')
layer = Shapes(data)
assert layer.nshapes == shape[0]
assert np.all(layer.data[0] == vertices[0])
assert layer.ndim == shape[2]
assert np.all([s == 'polygon' for s in layer.shape_type])
# Test (list of polygons, shape_type) tuple
polygons = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10)
]
data = (polygons, 'polygon')
layer = Shapes(data)
assert layer.nshapes == len(polygons)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, polygons)])
assert layer.ndim == 2
assert np.all([s == 'polygon' for s in layer.shape_type])
# Test list of (polygon, shape_type) tuples
data = [(polygons[i], 'polygon') for i in range(len(polygons))]
layer = Shapes(data)
assert layer.nshapes == len(polygons)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, polygons)])
assert layer.ndim == 2
assert np.all([s == 'polygon' for s in layer.shape_type])
def test_polygon_roundtrip():
"""Test a full roundtrip with polygon data."""
np.random.seed(0)
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10)
]
layer = Shapes(data, shape_type='polygon')
new_layer = Shapes(layer.data, shape_type='polygon')
assert np.all(
[np.all(nd == d) for nd, d in zip(new_layer.data, layer.data)]
)
def test_mixed_shapes():
"""Test instantiating Shapes layer with a mix of random 2D shapes."""
# Test multiple polygons with different numbers of points
np.random.seed(0)
shape_vertices = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5)
] + list(np.random.random((5, 4, 2)))
shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2
layer = Shapes(shape_vertices, shape_type=shape_type)
assert layer.nshapes == len(shape_vertices)
assert np.all(
[np.all(ld == d) for ld, d in zip(layer.data, shape_vertices)]
)
assert layer.ndim == 2
assert np.all([s == so for s, so in zip(layer.shape_type, shape_type)])
# Test roundtrip with mixed data
new_layer = Shapes(layer.data, shape_type=layer.shape_type)
assert np.all(
[np.all(nd == d) for nd, d in zip(new_layer.data, layer.data)]
)
assert np.all(
[ns == s for ns, s in zip(new_layer.shape_type, layer.shape_type)]
)
def test_mixed_shapes_with_shape_type():
"""Test adding mixed shapes with shape_type in data"""
np.random.seed(0)
shape_vertices = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5)
] + list(np.random.random((5, 4, 2)))
shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2
# Test multiple (shape, shape_type) tuples
data = list(zip(shape_vertices, shape_type))
layer = Shapes(data)
assert layer.nshapes == len(shape_vertices)
assert np.all(
[np.all(ld == d) for ld, d in zip(layer.data, shape_vertices)]
)
assert layer.ndim == 2
assert np.all([s == so for s, so in zip(layer.shape_type, shape_type)])
def test_data_shape_type_overwrites_meta():
"""Test shape type passed through data property overwrites metadata shape type"""
shape = (10, 4, 2)
np.random.seed(0)
vertices = 20 * np.random.random(shape)
data = (vertices, "ellipse")
layer = Shapes(data, shape_type='rectangle')
assert np.all([s == 'ellipse' for s in layer.shape_type])
data = [(vertices[i], "ellipse") for i in range(shape[0])]
layer = Shapes(data, shape_type='rectangle')
assert np.all([s == 'ellipse' for s in layer.shape_type])
def test_changing_shapes():
"""Test changing Shapes data."""
shape_a = (10, 4, 2)
shape_b = (20, 4, 2)
np.random.seed(0)
vertices_a = 20 * np.random.random(shape_a)
vertices_b = 20 * np.random.random(shape_b)
layer = Shapes(vertices_a)
assert layer.nshapes == shape_a[0]
layer.data = vertices_b
assert layer.nshapes == shape_b[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices_b)])
assert layer.ndim == shape_b[2]
assert np.all([s == 'rectangle' for s in layer.shape_type])
# setting data with shape type
data_a = (vertices_a, "ellipse")
layer.data = data_a
assert layer.nshapes == shape_a[0]
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices_a)])
assert layer.ndim == shape_a[2]
assert np.all([s == 'ellipse' for s in layer.shape_type])
# setting data with fewer shapes
smaller_data = vertices_a[:5]
current_edge_color = layer._data_view.edge_color
current_edge_width = layer._data_view.edge_widths
current_face_color = layer._data_view.face_color
current_z = layer._data_view.z_indices
layer.data = smaller_data
assert layer.nshapes == smaller_data.shape[0]
assert np.allclose(layer._data_view.edge_color, current_edge_color[:5])
assert np.allclose(layer._data_view.face_color, current_face_color[:5])
assert np.allclose(layer._data_view.edge_widths, current_edge_width[:5])
assert np.allclose(layer._data_view.z_indices, current_z[:5])
# setting data with added shapes
current_edge_color = layer._data_view.edge_color
current_edge_width = layer._data_view.edge_widths
current_face_color = layer._data_view.face_color
current_z = layer._data_view.z_indices
bigger_data = vertices_b
layer.data = bigger_data
assert layer.nshapes == bigger_data.shape[0]
assert np.allclose(layer._data_view.edge_color[:5], current_edge_color)
assert np.allclose(layer._data_view.face_color[:5], current_face_color)
assert np.allclose(layer._data_view.edge_widths[:5], current_edge_width)
assert np.allclose(layer._data_view.z_indices[:5], current_z)
def test_changing_shape_type():
"""Test changing shape type"""
np.random.seed(0)
rectangles = 20 * np.random.random((10, 4, 2))
layer = Shapes(rectangles, shape_type='rectangle')
layer.shape_type = "ellipse"
assert np.all([s == 'ellipse' for s in layer.shape_type])
def test_adding_shapes():
"""Test adding shapes."""
# Start with polygons with different numbers of points
np.random.seed(0)
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5)
]
# shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2
layer = Shapes(data, shape_type='polygon')
new_data = np.random.random((5, 4, 2))
new_shape_type = ['rectangle'] * 3 + ['ellipse'] * 2
layer.add(new_data, shape_type=new_shape_type)
all_data = data + list(new_data)
all_shape_type = ['polygon'] * 5 + new_shape_type
assert layer.nshapes == len(all_data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, all_data)])
assert layer.ndim == 2
assert np.all([s == so for s, so in zip(layer.shape_type, all_shape_type)])
# test adding data with shape_type
new_vertices = np.random.random((5, 4, 2))
new_shape_type2 = ['ellipse'] * 3 + ['rectangle'] * 2
new_data2 = list(zip(new_vertices, new_shape_type2))
layer.add(new_data2)
all_vertices = all_data + list(new_vertices)
all_shape_type = all_shape_type + new_shape_type2
assert layer.nshapes == len(all_vertices)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, all_vertices)])
assert layer.ndim == 2
assert np.all([s == so for s, so in zip(layer.shape_type, all_shape_type)])
def test_adding_shapes_to_empty():
"""Test adding shapes to empty."""
data = np.empty((0, 0, 2))
np.random.seed(0)
layer = Shapes(np.empty((0, 0, 2)))
assert len(layer.data) == 0
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5)
] + list(np.random.random((5, 4, 2)))
shape_type = ['path'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2
layer.add(data, shape_type=shape_type)
assert layer.nshapes == len(data)
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)])
assert layer.ndim == 2
assert np.all([s == so for s, so in zip(layer.shape_type, shape_type)])
def test_selecting_shapes():
"""Test selecting shapes."""
data = 20 * np.random.random((10, 4, 2))
np.random.seed(0)
layer = Shapes(data)
layer.selected_data = {0, 1}
assert layer.selected_data == {0, 1}
layer.selected_data = {9}
assert layer.selected_data == {9}
layer.selected_data = set()
assert layer.selected_data == set()
def test_removing_all_shapes_empty_list():
"""Test removing all shapes with an empty list."""
data = 20 * np.random.random((10, 4, 2))
np.random.seed(0)
layer = Shapes(data)
assert layer.nshapes == 10
layer.data = []
assert layer.nshapes == 0
def test_removing_all_shapes_empty_array():
"""Test removing all shapes with an empty list."""
data = 20 * np.random.random((10, 4, 2))
np.random.seed(0)
layer = Shapes(data)
assert layer.nshapes == 10
layer.data = np.empty((0, 2))
assert layer.nshapes == 0
def test_removing_selected_shapes():
"""Test removing selected shapes."""
np.random.seed(0)
data = [
20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5)
] + list(np.random.random((5, 4, 2)))
shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2
layer = Shapes(data, shape_type=shape_type)
# With nothing selected no points should be removed
layer.remove_selected()
assert len(layer.data) == len(data)
# Select three shapes and remove them
layer.selected_data = {1, 7, 8}
layer.remove_selected()
keep = [0] + list(range(2, 7)) + [9]
data_keep = [data[i] for i in keep]
shape_type_keep = [shape_type[i] for i in keep]
assert len(layer.data) == len(data_keep)
assert len(layer.selected_data) == 0
assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data_keep)])
assert layer.ndim == 2
assert np.all(
[s == so for s, so in zip(layer.shape_type, shape_type_keep)]
)
def test_changing_modes():
"""Test changing modes."""
np.random.seed(0)
data = 20 * np.random.random((10, 4, 2))
layer = Shapes(data)
assert layer.mode == 'pan_zoom'
assert layer.interactive is True
layer.mode = 'select'
assert layer.mode == 'select'
assert layer.interactive is False
layer.mode = 'direct'
assert layer.mode == 'direct'
assert layer.interactive is False
layer.mode = 'vertex_insert'
assert layer.mode == 'vertex_insert'
assert layer.interactive is False
layer.mode = 'vertex_remove'
assert layer.mode == 'vertex_remove'
assert layer.interactive is False
layer.mode = 'add_rectangle'
assert layer.mode == 'add_rectangle'
assert layer.interactive is False
layer.mode = 'add_ellipse'
assert layer.mode == 'add_ellipse'
assert layer.interactive is False
layer.mode = 'add_line'
assert layer.mode == 'add_line'
assert layer.interactive is False
layer.mode = 'add_path'
assert layer.mode == 'add_path'
assert layer.interactive is False
layer.mode = 'add_polygon'
assert layer.mode == 'add_polygon'
assert layer.interactive is False
layer.mode = 'pan_zoom'
assert layer.mode == 'pan_zoom'
assert layer.interactive is True
def test_name():
"""Test setting layer name."""
np.random.seed(0)
data = 20 * np.random.random((10, 4, 2))
layer = Shapes(data)
assert layer.name == 'Shapes'
layer = Shapes(data, name='random')
assert layer.name == 'random'
layer.name = 'shps'
assert layer.name == 'shps'
def test_visiblity():
"""Test setting layer visibility."""
np.random.seed(0)
data = 20 * np.random.random((10, 4, 2))
layer = Shapes(data)
assert layer.visible is True
layer.visible = False
assert layer.visible is False
layer = Shapes(data, visible=False)
assert layer.visible is False
layer.visible = True
assert layer.visible is True
def test_opacity():
"""Test setting opacity."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
# Check default opacity value of 0.7
assert layer.opacity == 0.7
# Select data and change opacity of selection
layer.selected_data = {0, 1}
assert layer.opacity == 0.7
layer.opacity = 0.5
assert layer.opacity == 0.5
# Add new shape and test its width
new_shape = np.random.random((1, 4, 2))
layer.selected_data = set()
layer.add(new_shape)
assert layer.opacity == 0.5
# Instantiate with custom opacity
layer2 = Shapes(data, opacity=0.2)
assert layer2.opacity == 0.2
# Check removing data shouldn't change opacity
layer2.selected_data = {0, 2}
layer2.remove_selected()
assert len(layer2.data) == shape[0] - 2
assert layer2.opacity == 0.2
def test_blending():
"""Test setting layer blending."""
np.random.seed(0)
data = 20 * np.random.random((10, 4, 2))
layer = Shapes(data)
assert layer.blending == 'translucent'
layer.blending = 'additive'
assert layer.blending == 'additive'
layer = Shapes(data, blending='additive')
assert layer.blending == 'additive'
layer.blending = 'opaque'
assert layer.blending == 'opaque'
@pytest.mark.filterwarnings("ignore:elementwise comparison fail:FutureWarning")
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_switch_color_mode(attribute):
"""Test switching between color modes"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
# create a continuous property with a known value in the last element
continuous_prop = np.random.random((shape[0],))
continuous_prop[-1] = 1
properties = {
'shape_truthiness': continuous_prop,
'shape_type': _make_cycled_properties(['A', 'B'], shape[0]),
}
initial_color = [1, 0, 0, 1]
color_cycle = ['red', 'blue']
color_kwarg = f'{attribute}_color'
colormap_kwarg = f'{attribute}_colormap'
color_cycle_kwarg = f'{attribute}_color_cycle'
args = {
color_kwarg: initial_color,
colormap_kwarg: 'gray',
color_cycle_kwarg: color_cycle,
}
layer = Shapes(data, properties=properties, **args)
layer_color_mode = getattr(layer, f'{attribute}_color_mode')
layer_color = getattr(layer, f'{attribute}_color')
assert layer_color_mode == 'direct'
np.testing.assert_allclose(
layer_color, np.repeat([initial_color], shape[0], axis=0)
)
# there should not be an edge_color_property
color_property = getattr(layer, f'_{attribute}_color_property')
assert color_property == ''
# transitioning to colormap should raise a warning
# because there isn't an edge color property yet and
# the first property in shapes.properties is being automatically selected
with pytest.warns(UserWarning):
setattr(layer, f'{attribute}_color_mode', 'colormap')
color_property = getattr(layer, f'_{attribute}_color_property')
assert color_property == next(iter(properties))
layer_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(layer_color[-1], [1, 1, 1, 1])
# switch to color cycle
setattr(layer, f'{attribute}_color_mode', 'cycle')
setattr(layer, f'{attribute}_color', 'shape_type')
color = getattr(layer, f'{attribute}_color')
layer_color = transform_color(color_cycle * int(shape[0] / 2))
np.testing.assert_allclose(color, layer_color)
# switch back to direct, edge_colors shouldn't change
setattr(layer, f'{attribute}_color_mode', 'direct')
new_edge_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(new_edge_color, color)
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_color_direct(attribute: str):
"""Test setting face/edge color directly."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer_kwargs = {f'{attribute}_color': 'black'}
layer = Shapes(data, **layer_kwargs)
color_array = transform_color(['black'] * shape[0])
current_color = getattr(layer, f'current_{attribute}_color')
layer_color = getattr(layer, f'{attribute}_color')
assert current_color == 'black'
assert len(layer.edge_color) == shape[0]
np.testing.assert_allclose(color_array, layer_color)
# With no data selected changing color has no effect
setattr(layer, f'current_{attribute}_color', 'blue')
current_color = getattr(layer, f'current_{attribute}_color')
assert current_color == 'blue'
np.testing.assert_allclose(color_array, layer_color)
# Select data and change edge color of selection
selected_data = {0, 1}
layer.selected_data = {0, 1}
current_color = getattr(layer, f'current_{attribute}_color')
assert current_color == 'black'
setattr(layer, f'current_{attribute}_color', 'green')
colorarray_green = transform_color(['green'] * len(layer.selected_data))
color_array[list(selected_data)] = colorarray_green
layer_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(color_array, layer_color)
# Add new shape and test its color
new_shape = np.random.random((1, 4, 2))
layer.selected_data = set()
setattr(layer, f'current_{attribute}_color', 'blue')
layer.add(new_shape)
color_array = np.vstack([color_array, transform_color('blue')])
layer_color = getattr(layer, f'{attribute}_color')
assert len(layer_color) == shape[0] + 1
np.testing.assert_allclose(color_array, layer_color)
# Check removing data adjusts colors correctly
layer.selected_data = {0, 2}
layer.remove_selected()
assert len(layer.data) == shape[0] - 1
layer_color = getattr(layer, f'{attribute}_color')
assert len(layer_color) == shape[0] - 1
np.testing.assert_allclose(
layer_color,
np.vstack((color_array[1], color_array[3:])),
)
# set the color directly
setattr(layer, f'{attribute}_color', 'black')
color_array = np.tile([[0, 0, 0, 1]], (len(layer.data), 1))
layer_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(color_array, layer_color)
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_single_shape_properties(attribute):
"""Test creating single shape with properties"""
shape = (4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer_kwargs = {f'{attribute}_color': 'red'}
layer = Shapes(data, **layer_kwargs)
layer_color = getattr(layer, f'{attribute}_color')
assert len(layer_color) == 1
np.testing.assert_allclose([1, 0, 0, 1], layer_color[0])
color_cycle_str = ['red', 'blue']
color_cycle_rgb = [[1, 0, 0], [0, 0, 1]]
color_cycle_rgba = [[1, 0, 0, 1], [0, 0, 1, 1]]
@pytest.mark.parametrize("attribute", ['edge', 'face'])
@pytest.mark.parametrize(
"color_cycle",
[color_cycle_str, color_cycle_rgb, color_cycle_rgba],
)
def test_color_cycle(attribute, color_cycle):
"""Test setting edge/face color with a color cycle list"""
# create Shapes using list color cycle
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])}
shapes_kwargs = {
'properties': properties,
f'{attribute}_color': 'shape_type',
f'{attribute}_color_cycle': color_cycle,
}
layer = Shapes(data, **shapes_kwargs)
assert layer.properties == properties
color_array = transform_color(
list(islice(cycle(color_cycle), 0, shape[0]))
)
layer_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(layer_color, color_array)
# Add new shape and test its color
new_shape = np.random.random((1, 4, 2))
layer.selected_data = {0}
layer.add(new_shape)
layer_color = getattr(layer, f'{attribute}_color')
assert len(layer_color) == shape[0] + 1
np.testing.assert_allclose(
layer_color,
np.vstack((color_array, transform_color('red'))),
)
# Check removing data adjusts colors correctly
layer.selected_data = {0, 2}
layer.remove_selected()
assert len(layer.data) == shape[0] - 1
layer_color = getattr(layer, f'{attribute}_color')
assert len(layer_color) == shape[0] - 1
np.testing.assert_allclose(
layer_color,
np.vstack((color_array[1], color_array[3:], transform_color('red'))),
)
# refresh colors
layer.refresh_colors(update_color_mapping=True)
# test adding a shape with a new property value
layer.selected_data = {}
current_properties = layer.current_properties
current_properties['shape_type'] = np.array(['new'])
layer.current_properties = current_properties
new_shape_2 = np.random.random((1, 4, 2))
layer.add(new_shape_2)
color_cycle_map = getattr(layer, f'{attribute}_color_cycle_map')
assert 'new' in color_cycle_map
np.testing.assert_allclose(
color_cycle_map['new'], np.squeeze(transform_color(color_cycle[0]))
)
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_add_color_cycle_to_empty_layer(attribute):
"""Test adding a shape to an empty layer when edge/face color is a color cycle
See: https://github.com/napari/napari/pull/1069
"""
default_properties = {'shape_type': np.array(['A'])}
color_cycle = ['red', 'blue']
shapes_kwargs = {
'properties': default_properties,
f'{attribute}_color': 'shape_type',
f'{attribute}_color_cycle': color_cycle,
}
layer = Shapes(**shapes_kwargs)
# verify the current_edge_color is correct
expected_color = transform_color(color_cycle[0])
current_color = getattr(layer, f'_current_{attribute}_color')
np.testing.assert_allclose(current_color, expected_color)
# add a shape
np.random.seed(0)
new_shape = 20 * np.random.random((1, 4, 2))
layer.add(new_shape)
props = {'shape_type': np.array(['A'])}
expected_color = np.array([[1, 0, 0, 1]])
np.testing.assert_equal(layer.properties, props)
attribute_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(attribute_color, expected_color)
# add a shape with a new property
layer.selected_data = []
layer.current_properties = {'shape_type': np.array(['B'])}
new_shape_2 = 20 * np.random.random((1, 4, 2))
layer.add(new_shape_2)
new_color = np.array([0, 0, 1, 1])
expected_color = np.vstack((expected_color, new_color))
new_properties = {'shape_type': np.array(['A', 'B'])}
attribute_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(attribute_color, expected_color)
np.testing.assert_equal(layer.properties, new_properties)
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_adding_value_color_cycle(attribute):
"""Test that adding values to properties used to set a color cycle
and then calling Shapes.refresh_colors() performs the update and adds the
new value to the face/edge_color_cycle_map.
"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])}
color_cycle = ['red', 'blue']
shapes_kwargs = {
'properties': properties,
f'{attribute}_color': 'shape_type',
f'{attribute}_color_cycle': color_cycle,
}
layer = Shapes(data, **shapes_kwargs)
# make shape 0 shape_type C
shape_types = layer.properties['shape_type']
shape_types[0] = 'C'
layer.properties['shape_type'] = shape_types
layer.refresh_colors(update_color_mapping=False)
color_cycle_map = getattr(layer, f'{attribute}_color_cycle_map')
color_map_keys = [*color_cycle_map]
assert 'C' in color_map_keys
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_color_colormap(attribute):
"""Test setting edge/face color with a colormap"""
# create Shapes using with a colormap
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': _make_cycled_properties([0, 1.5], shape[0])}
shapes_kwargs = {
'properties': properties,
f'{attribute}_color': 'shape_type',
f'{attribute}_colormap': 'gray',
}
layer = Shapes(data, **shapes_kwargs)
assert layer.properties == properties
color_mode = getattr(layer, f'{attribute}_color_mode')
assert color_mode == 'colormap'
color_array = transform_color(['black', 'white'] * int(shape[0] / 2))
attribute_color = getattr(layer, f'{attribute}_color')
assert np.all(attribute_color == color_array)
# change the color cycle - face_color should not change
setattr(layer, f'{attribute}_color_cycle', ['red', 'blue'])
attribute_color = getattr(layer, f'{attribute}_color')
assert np.all(attribute_color == color_array)
# Add new shape and test its color
new_shape = np.random.random((1, 4, 2))
layer.selected_data = {0}
layer.add(new_shape)
attribute_color = getattr(layer, f'{attribute}_color')
assert len(attribute_color) == shape[0] + 1
np.testing.assert_allclose(
attribute_color,
np.vstack((color_array, transform_color('black'))),
)
# Check removing data adjusts colors correctly
layer.selected_data = {0, 2}
layer.remove_selected()
assert len(layer.data) == shape[0] - 1
attribute_color = getattr(layer, f'{attribute}_color')
assert len(attribute_color) == shape[0] - 1
np.testing.assert_allclose(
attribute_color,
np.vstack(
(
color_array[1],
color_array[3:],
transform_color('black'),
)
),
)
# adjust the clims
setattr(layer, f'{attribute}_contrast_limits', (0, 3))
layer.refresh_colors(update_color_mapping=False)
attribute_color = getattr(layer, f'{attribute}_color')
np.testing.assert_allclose(attribute_color[-2], [0.5, 0.5, 0.5, 1])
# change the colormap
new_colormap = 'viridis'
setattr(layer, f'{attribute}_colormap', new_colormap)
attribute_colormap = getattr(layer, f'{attribute}_colormap')
assert attribute_colormap.name == new_colormap
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_colormap_without_properties(attribute):
"""Setting the colormode to colormap should raise an exception"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
with pytest.raises(ValueError):
setattr(layer, f'{attribute}_color_mode', 'colormap')
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_colormap_with_categorical_properties(attribute):
"""Setting the colormode to colormap should raise an exception"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])}
layer = Shapes(data, properties=properties)
with pytest.raises(TypeError):
with pytest.warns(UserWarning):
setattr(layer, f'{attribute}_color_mode', 'colormap')
@pytest.mark.parametrize("attribute", ['edge', 'face'])
def test_add_colormap(attribute):
"""Test directly adding a vispy Colormap object"""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
annotations = {'shape_type': _make_cycled_properties([0, 1.5], shape[0])}
color_kwarg = f'{attribute}_color'
colormap_kwarg = f'{attribute}_colormap'
args = {color_kwarg: 'shape_type', colormap_kwarg: 'viridis'}
layer = Shapes(data, properties=annotations, **args)
setattr(layer, f'{attribute}_colormap', 'gray')
layer_colormap = getattr(layer, f'{attribute}_colormap')
assert layer_colormap.name == 'gray'
def test_edge_width():
"""Test setting edge width."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.current_edge_width == 1
assert len(layer.edge_width) == shape[0]
assert layer.edge_width == [1] * shape[0]
# With no data selected changing edge width has no effect
layer.current_edge_width = 2
assert layer.current_edge_width == 2
assert layer.edge_width == [1] * shape[0]
# Select data and change edge color of selection
layer.selected_data = {0, 1}
assert layer.current_edge_width == 1
layer.current_edge_width = 3
assert layer.edge_width == [3] * 2 + [1] * (shape[0] - 2)
# Add new shape and test its width
new_shape = np.random.random((1, 4, 2))
layer.selected_data = set()
layer.current_edge_width = 4
layer.add(new_shape)
assert layer.edge_width == [3] * 2 + [1] * (shape[0] - 2) + [4]
# Instantiate with custom edge width
layer = Shapes(data, edge_width=5)
assert layer.current_edge_width == 5
# Instantiate with custom edge width list
width_list = [2, 3] * 5
layer = Shapes(data, edge_width=width_list)
assert layer.current_edge_width == 1
assert layer.edge_width == width_list
# Add new shape and test its color
layer.current_edge_width = 4
layer.add(new_shape)
assert len(layer.edge_width) == shape[0] + 1
assert layer.edge_width == width_list + [4]
# Check removing data adjusts colors correctly
layer.selected_data = {0, 2}
layer.remove_selected()
assert len(layer.data) == shape[0] - 1
assert len(layer.edge_width) == shape[0] - 1
assert layer.edge_width == [width_list[1]] + width_list[3:] + [4]
# Test setting edge width with number
layer.edge_width = 4
assert all([width == 4 for width in layer.edge_width])
# Test setting edge width with list
new_widths = [2] * 5 + [3] * 4
layer.edge_width = new_widths
assert layer.edge_width == new_widths
# Test setting with incorrect size list throws error
new_widths = [2, 3]
with pytest.raises(ValueError):
layer.edge_width = new_widths
def test_z_index():
"""Test setting z-index during instantiation."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
layer = Shapes(data)
assert layer.z_index == [0] * shape[0]
# Instantiate with custom z-index
layer = Shapes(data, z_index=4)
assert layer.z_index == [4] * shape[0]
# Instantiate with custom z-index list
z_index_list = [2, 3] * 5
layer = Shapes(data, z_index=z_index_list)
assert layer.z_index == z_index_list
# Add new shape and its z-index
new_shape = np.random.random((1, 4, 2))
layer.add(new_shape)
assert len(layer.z_index) == shape[0] + 1
assert layer.z_index == z_index_list + [4]
# Check removing data adjusts colors correctly
layer.selected_data = {0, 2}
layer.remove_selected()
assert len(layer.data) == shape[0] - 1
assert len(layer.z_index) == shape[0] - 1
assert layer.z_index == [z_index_list[1]] + z_index_list[3:] + [4]
# Test setting index with number
layer.z_index = 4
assert all([idx == 4 for idx in layer.z_index])
# Test setting index with list
new_z_indices = [2] * 5 + [3] * 4
layer.z_index = new_z_indices
assert layer.z_index == new_z_indices
# Test setting with incorrect size list throws error
new_z_indices = [2, 3]
with pytest.raises(ValueError):
layer.z_index = new_z_indices
def test_move_to_front():
"""Test moving shapes to front."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * np.random.random(shape)
z_index_list = [2, 3] * 5
layer = Shapes(data, z_index=z_index_list)
assert layer.z_index == z_index_list
# Move selected shapes to front
layer.selected_data = {0, 2}
layer.move_to_front()
assert layer.z_index == [4] + [z_index_list[1]] + [4] + z_index_list[3:]
def test_move_to_back():
"""Test moving shapes to back."""
shape = (10, 4, 2)
np.random.seed(0)
data = 20 * | np.random.random(shape) | numpy.random.random |
#https://github.com/tommyfms2/pix2pix-keras-byt
#http://toxweblog.toxbe.com/2017/12/24/keras-%e3%81%a7-pix2pix-%e3%82%92%e5%ae%9f%e8%a3%85/
#tommyfms2/pix2pix-keras-byt より
import os
import argparse
import numpy as np
import h5py
import time
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pylab as plt
from keras.preprocessing.image import load_img, img_to_array
import keras.backend as K
from keras.utils import generic_utils
from keras.optimizers import Adam, SGD
import models
def my_normalization(X):
return X / 127.5 - 1
def my_inverse_normalization(X):
return (X + 1.) / 2.
def to3d(X):
if X.shape[-1]==3: return X
b = X.transpose(3,1,2,0)
c = np.array([b[0],b[0],b[0]])
return c.transpose(3,1,2,0)
def plot_generated_batch(X_proc, X_raw, generator_model, batch_size, suffix):
X_gen = generator_model.predict(X_raw)
X_raw = my_inverse_normalization(X_raw)
X_proc = my_inverse_normalization(X_proc) #超えた絵合わせのため、解画像
X_gen = my_inverse_normalization(X_gen)
Xs = to3d(X_raw[:10])
Xg = to3d(X_gen[:10])
Xr = to3d(X_proc[:10])
Xs = np.concatenate(Xs, axis=1)
Xg = np.concatenate(Xg, axis=1)
Xr = | np.concatenate(Xr, axis=1) | numpy.concatenate |
'''
Map from the ACA catalogue to the IRAM catalogue from Corbelli+2017
We'll also determine which clouds have 13CO detected and
their evolutionary phase
'''
from astropy.table import Table
from astropy.io import fits
import os
import astropy.units as u
from astropy.coordinates import SkyCoord
from spectral_cube import SpectralCube
import numpy as np
# data_path = os.path.expanduser("~/storage/M33/")
data_path = os.path.expanduser("~/bigdata/ekoch/M33/")
aca_path = f"{data_path}/ALMA/ACA_Band6/"
corbelli_table = Table.read(f"{data_path}/Corbelli_17_catalogues/J_A+A_601_A146_table5.dat.fits")
aca_table = Table.read(f"{aca_path}/cprops_12CO21/M33_ACA_12CO21_0p7kms_fullmosaic_roundbeam.image_K_M33_co21_m33_props.fits")
# The beam is ~12 arcsec. We're going to require matched clouds be within
# 1.5 beams
max_sep = 12 * u.arcsec * 1.5
iram_cloud_coords = SkyCoord(corbelli_table['RAdeg'],
corbelli_table['DEdeg'],
frame='icrs')
dist_matrix = np.zeros((len(aca_table), len(corbelli_table))) * u.deg
for idx in range(len(aca_table)):
cloud_coord = SkyCoord(aca_table['XCTR_DEG'][idx] * u.deg,
aca_table['YCTR_DEG'][idx] * u.deg,
frame='icrs')
dist_matrix[idx] = cloud_coord.separation(iram_cloud_coords)
# Match the clouds. Assume that each ACA cloud is associated with 0 or 1
# IRAM clouds
mapping_dict = {}
iram_cloud_index = np.arange(len(corbelli_table))
for idx in range(len(aca_table)):
mapping_dict[idx] = []
matches = | np.where(dist_matrix[idx] < max_sep) | numpy.where |
import unittest
import matplotlib.pyplot as plt
import numpy as np
from vaws.model.curve import vulnerability_weibull, vulnerability_weibull_pdf
def single_exponential_given_V(beta_, alpha_, x_arr):
"""
compute
Args:
beta_: parameter for vulnerability curve
alpha_: parameter for vulnerability curve
x_arr: 3sec gust wind speed at 10m height
Returns: damage index
"""
exponent_ = -1.0 * np.power(x_arr / np.exp(beta_), 1.0 / alpha_)
return 1 - | np.exp(exponent_) | numpy.exp |
import os
import cv2
import random
import numpy as np
from Augmenter import utils
class BaseAugmenter(object):
"""
Parent class for all object types in the image that can be augmented
"""
def __init__(self, image, label, class_id, placement_id=None, horizon_line=None,
max_height=None, max_iou=0.4, padding=10, min_px=10, sigma=0):
"""
Constructor
image: image to be augmented
label: semantic label to be modified
class_id: BGR value of object to be copied into the image
placement_id: possible locations for the object to be placed
horizon_line: location of the horizon for scaling accurately
max_height: size of the object if it were copied in an area closest to the camera
max_iou: maximum overlap allowed between objects of same class
padding: padding applied around roi for optimal blurring
min_px: number of pixels tall the scaled object should be to consider it a valid copy paste
sigma: increase/decrease the value to decrease/increase the scaling ratio
"""
self.called = 0
self.counter = 0
self.limits = None
self.sigma = sigma
self.max_iou = max_iou
self.padding = padding
self.min_px = min_px
self.rows, self.cols, _ = image.shape
self.image = image.copy()
self.label = label.copy()
self.class_id = class_id
self.fake_class_id = [i if i == 255 else i + 1 for i in class_id]
self.placement_id = placement_id
self.horizon_line = horizon_line
self.max_height = max_height
if self.max_height is None:
self.max_height = self.rows * 0.8
if placement_id is not None:
self.row_value, self.col_value = utils.threshold(image, label, placement_id)
else:
self.row_value, self.col_value = np.mgrid[0:len(range(self.rows)), 0:len(range(self.cols))]
self.row_value, self.col_value = self.row_value.ravel(), self.col_value()
if self.horizon_line is not None:
self.col_value = self.col_value[self.row_value - self.horizon_line > 0]
self.row_value = self.row_value[self.row_value - self.horizon_line > 0]
# Initialize scaling triangle
# pt1
# .
# pt2 . . pt3
# pt1 = main_triangle_side = (horizon_line, cols / 2)
# pt2 = (rows, 0)
self.main_triangle_side = np.sqrt(np.power(self.horizon_line - self.rows, 2) + np.power(self.cols / 2, 2))
self.slope = float(self.horizon_line - self.rows) / (self.cols / 2)
self.y_intercept = self.rows
self.copy_row_value = self.row_value
self.copy_col_value = self.col_value
self.class_placement = utils.get_class_pos(self.label, self.class_id)
def set_limit(self, limit):
"""
Filters the placement array to constrain the number of
augmented pixels per image.
limit = (lower_percent, higher_percent)
percentage of the total image height requested
"""
assert self.horizon_line is not None, "Can't call set_limit without setting a horizon line!"
self.limits = limit
self.col_value = self.copy_col_value
self.row_value = self.copy_row_value
min_scaled_class_height, max_scaled_class_height = np.array(limit) * self.rows
min_ratio = float(min_scaled_class_height) / self.max_height
max_ratio = float(max_scaled_class_height) / self.max_height
min_cur_triangle_side = min_ratio * (self.main_triangle_side + self.sigma)
max_cur_triangle_side = max_ratio * (self.main_triangle_side + self.sigma)
y_min = (min_cur_triangle_side * (self.rows - self.horizon_line) /
self.main_triangle_side + self.horizon_line)
y_max = (max_cur_triangle_side * (self.rows - self.horizon_line) /
self.main_triangle_side + self.horizon_line)
self.col_value = self.col_value[np.logical_and(self.row_value > y_min, self.row_value < y_max)]
self.row_value = self.row_value[ | np.logical_and(self.row_value > y_min, self.row_value < y_max) | numpy.logical_and |
from dataapi import SGS
from bloomberg import BBG
import numpy as np
import pandas as pd
from sklearn import preprocessing
getdata = SGS()
bbg = BBG()
start_date = pd.to_datetime("01-01-2001")
end_date = pd.to_datetime("07-01-2019")
#fetching Brazil FGV Consumer Confidence Index SA Sep 2005=100 Original Date: '30-sep-2005'
df = bbg.fetch_series(securities=['BZFGCCSA Index'],
fields=['PX_LAST'],
startdate=start_date,
enddate=end_date)
consbr = pd.DataFrame(data=df)
consbr = consbr.droplevel(0)
consbr = consbr.reset_index()
consbr = consbr.set_index('TRADE_DATE')
consbr = consbr.resample('Q').mean()
# Normalized series Consumer Confidence
x = np.array(consbr['BZFGCCSA Index'])
x = x.reshape(-1,1)
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
confnorm = consbr
confnorm['BZFGCCSA Normalized'] = ''
confnorm['BZFGCCSA Normalized'] = x_scaled
confnorm = confnorm.drop('BZFGCCSA Index', axis=1)
#fetching GDP Growth in R$
df_gr = pd.DataFrame(getdata.fetch("1207",start_date, end_date)) #for GDP in dollars, change the string to 7324
df_gr = df_gr['1207'].resample('Q').mean()
df_gr = df_gr.pct_change(4)
df_gr = df_gr.dropna()
#normalizing GDP
x = df_gr.values
x = x.reshape(-1,1)
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_gr_norm = pd.DataFrame(x_scaled, index=df_gr.index, columns=['GDP Growth Normalized'])
#fetching real earnings
df_realear = getdata.fetch("10790",start_date, end_date)
df_realear = df_realear['10790'].resample("Q").mean()
df_realear = df_realear.pct_change(4)
df_realear = df_realear.dropna()
#normalizing real earnings
a = df_realear.values
a = a.reshape(-1,1)
a_scaled = min_max_scaler.fit_transform(a)
df_realear_norm = pd.DataFrame(a_scaled, index=df_realear.index, columns=['Real Earnings Normalized'])
#Merging Real Growth DataFrames#
df_realgr = pd.merge(df_gr_norm,df_realear_norm, on='Date', how='outer')
df_realgr = pd.merge(df_realgr,confnorm, on='Date', how='outer')
#adding a column with average
df_realgr["Real Growth"] = df_realgr.mean(numeric_only = True, axis=1)
# VOLATILITY SERIES
start_date = pd.to_datetime('01-jan-2010')
end_date = pd.to_datetime('today')
df = bbg.fetch_series(securities=['IBOV Index', 'GEBR10Y Index'],
fields=['VOLATILITY_90D', 'Volatil 90D'],
startdate=start_date,
enddate=end_date)
volIBOV_90 = pd.DataFrame(data=df['IBOV Index'])
volIBOV_90 = volIBOV_90.droplevel('FIELD')
volIBOV_90 = volIBOV_90.resample('Q').last()
voltitul_90 = pd.DataFrame(data=df['GEBR10Y Index'])
voltitul_90 = voltitul_90.droplevel('FIELD')
voltitul_90 = voltitul_90.resample('Q').last()
# Normalized series IBOV and BR Bonds (titulos)
x = np.array(volIBOV_90['IBOV Index'])
x = x.reshape(-1,1)
ibovnorm = min_max_scaler.fit_transform (x)
y = np.array(voltitul_90['GEBR10Y Index'])
y = y.reshape(-1,1)
titulnorm = min_max_scaler.fit_transform(y)
volBR = volIBOV_90
volBR['IBOV Index Normalized'] = ''
volBR['IBOV Index Normalized'] = ibovnorm
volBR['Titulos Vol. Normalized'] = ''
volBR['Titulos Vol. Normalized'] = titulnorm
volBR = volBR.drop('IBOV Index', axis=1)
# Average Volatility
AvgVolBR = volBR
AvgVolBR['Avg Vol Br'] = ''
AvgVolBR['Avg Vol BR'] = volBR.mean(numeric_only = True, axis=1)
AvgVolBR = AvgVolBR.drop('Titulos Vol. Normalized', axis=1)
#fetching IPCA
df_cpi = pd.DataFrame(getdata.fetch("433", start_date, end_date))
df_cpi = pd.DataFrame(df_cpi["433"].resample('Q').mean())
#normalizing IPCA
b = df_cpi.values
b = b.reshape(-1, 1)
min_max_scaler = preprocessing.MinMaxScaler()
b_scaled = min_max_scaler.fit_transform(b)
df_cpi_norm = pd.DataFrame(b_scaled, index=df_cpi.index, columns=['CPI Normalized'])
#IPCA growth
df_cpigr = df_cpi.pct_change(4)
df_cpigr = df_cpigr.dropna()
df_cpigr = df_cpigr['433'].resample('Q').mean()
#normalizing IPCA growth
c = df_cpigr.values
c = c.reshape(-1, 1)
c_scaled = min_max_scaler.fit_transform(c)
df_cpigr_norm = pd.DataFrame(c_scaled, index=df_cpigr.index, columns=['CPI Growth Normalized'])
#fetching GDP deflator
df_gdpdef = pd.DataFrame(getdata.fetch("1211"))
df_gdpdef = df_gdpdef.dropna()
#normalizing GDP deflator
d = df_gdpdef.values
d = d.reshape(-1, 1)
d_scaled = min_max_scaler.fit_transform(d)
df_gdpdef_norm = pd.DataFrame(d_scaled, index=df_gdpdef.index, columns=['GDP Deflator Normalized'])
#Merging DataFrames#
df_inf = pd.merge(df_cpi_norm,df_cpigr_norm, on='Date', how='outer')
df_inf = pd.merge(df_inf,df_gdpdef_norm, on='Date', how='outer')
#calculating average inflation
df_inf["inflation"] = df_inf.mean(numeric_only=True, axis=1)
# MERGING GROWTH, VOLATILITY AND INFLATION DATAFRAMES
df_growth = df_realgr["Real Growth"]
df_vol = AvgVolBR['Avg Vol BR']
df_series = df_inf["inflation"]
df_series = pd.merge(df_series, df_growth, on="Date", how="outer")
df_series = pd.merge(df_series, df_vol, on="Date", how="outer")
df_series = df_series.apply(zscore)
print(df_series)
# Data Classification
clas_df = df_series
clas_df['Inflation Cycle'] = np.where(clas_df['inflation']>0, "Inflationary", "Disinflationary")
clas_df['Growth Cycle'] = np.where(clas_df['Real Growth']>0, "Boom", "Stagnation")
clas_df['Cycle']= clas_df['Inflation Cycle'] + ' ' + clas_df['Growth Cycle']
clas_df['infcy'] = np.where(clas_df['inflation']>0, 1, 0)
clas_df['cy'] = | np.where(clas_df['Real Growth']>0, 2, 0) | numpy.where |
# -*- coding: utf-8 -*-
'''
-------------------------------------------------------------------------------------------------
This code accompanies the paper titled "Human injury-based safety decision of automated vehicles"
Author: <NAME>, <NAME>, <NAME>, <NAME>
Corresponding author: <NAME> (<EMAIL>)
-------------------------------------------------------------------------------------------------
'''
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
def resize_rotate(image, angle, l_, w_):
''' resize and rotate the figure. '''
image = cv2.resize(image, (image.shape[1], int(image.shape[0] / (3370 / 8651) * (w_ / l_))))
# grab the dimensions of the image and then determine the center.
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
# grab the rotation matrix and the sine and cosine.
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = | np.abs(M[0, 0]) | numpy.abs |
"""
Authors: <NAME> (<EMAIL>),
<NAME> (<EMAIL>)
Copyright © 2021, United States Government, as represented by the Administrator
of the National Aeronautics and Space Administration. All rights reserved.
The HybridQ: A Hybrid Simulator for Quantum Circuits platform is licensed under
the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
"""
from __future__ import annotations
import numpy as np
def is_dm(rho: np.ndarray, atol=1e-6) -> bool:
"""
check if the given input a valid density matrix.
"""
rho = np.asarray(rho)
d = int(np.sqrt(np.prod(rho.shape)))
rho_full = np.reshape(rho, (d, d))
hc = np.allclose(rho_full, rho_full.T.conj(), atol=atol)
tp = np.isclose(np.trace(rho_full), 1, atol=atol)
apprx_gtr = lambda y, x: np.real(y) >= x or np.isclose(y, x, atol=atol)
ev = np.linalg.eigvals(rho_full)
psd = np.all([apprx_gtr(e, 0) for e in ev])
return (hc and tp and psd)
def ptrace(state: np.ndarray,
keep: {int, list[int]},
dims: {int, list[int]} = None) -> np.ndarray:
"""
compute the partial trace of a pure state (vector) or density matrix.
state: np.array
One dimensional for pure state e.g. np.array([1,0,0,0])
or two dimensional for density matrix e.g. np.array([[1,0],[0,0]])
keep: list of int
the qubits we want to keep (all others traced out).
Can also specify a single int if only keeping one qubit.
dims: list of int, optional
List of qudit dimensions respecting the ordering of `state`.
Number of qubits is `len(dims)`, and full Hilbert space
dimension is `product(dims)`.
If unspecified, assumes 2 for all.
Returns the density matrix of the remaining qubits.
"""
state = np.asarray(state)
if len(state.shape) not in (1, 2):
raise ValueError('should be pure state (one dimensional) '
'or density matrix (two dimensional). '
f'Received dimension {len(state.shape)}')
# pure state or not
pure = len(state.shape) == 1
if not pure and state.shape[0] != state.shape[1]:
raise ValueError('invalid state input.')
full_dim = np.prod(state.shape[0])
if dims is not None and full_dim != np.prod(dims):
raise ValueError('specified dimensions inconsistent with state')
n_qubits = np.log2(full_dim) if dims is None else len(dims)
if np.isclose(n_qubits, round(n_qubits)):
n_qubits = int(round(n_qubits))
else:
raise ValueError('invalid state size')
keep = [keep] if isinstance(keep, int) else list(keep)
if not np.all([q in range(n_qubits)
for q in keep]) or len(keep) >= n_qubits:
raise ValueError('invalid axes')
if dims is None:
dims = [2] * n_qubits
# dimensions of qubits we keep
final_dims = [dims[i] for i in keep]
final_dim = np.prod(final_dims)
# dimensions to trace out
drop_dim = int(round(full_dim / final_dim))
if pure:
state = state.reshape(dims)
perm = keep + [q for q in range(n_qubits) if q not in keep]
state = np.transpose(state, perm).reshape(final_dim, drop_dim)
return np.einsum('ij,kj->ik', state, state.conj())
else:
# now we have to redefine things in case of a density matrix
# basically we double the sizes
density_dims = dims + dims
keep += [q + n_qubits for q in keep]
perm = keep + [q for q in range(2 * n_qubits) if q not in keep]
state = state.reshape(density_dims)
state = np.transpose(state, perm)
state = state.reshape((final_dim, final_dim, drop_dim, drop_dim))
return np.einsum('ijkk->ij', state)
def is_channel(channel: SuperGate,
atol=1e-8,
order: tuple[any, ...] = None,
**kwargs) -> bool:
"""
Checks using the Choi matrix whether or not `channel` defines
a valid quantum channel.
That is, we check it is a valid CPTP map.
Parameters
----------
channel: MatrixSuperGate or KrausSuperGate
Must have the method 'map()'.
atol: float, optional
absolute tolerance to use for determining channel is CPTP.
order: tuple[any, ...], optional
If provided, Kraus' map is ordered accordingly to `order`.
See `MatrixChannel.map()`
kwargs: kwargs for `MatrixChannel.map()`
"""
C = choi_matrix(channel, order, **kwargs)
dim = _channel_dim(channel)
# trace preserving
tp = np.isclose(C.trace(), dim, atol=atol)
# hermiticity preserving
hp = np.allclose(C, C.conj().T, atol=atol)
# completely positive
apprx_gtr = lambda e, x: np.real(e) >= x or np.isclose(e, x, atol=atol)
cp = np.all([
apprx_gtr(e, 0) and np.isclose(np.imag(e), 0, atol=atol)
for e in np.linalg.eigvals(C)
])
return tp and hp and cp
def choi_matrix(channel: SuperGate,
order: tuple[any, ...] = None,
**kwargs) -> np.ndarray:
"""
return the Choi matrix for channel, of shape (d**2, d**2)
for a d-dimensional Hilbert space.
The channel can be applied as:
Lambda(rho) = Tr_0[ (I \otimes rho^T) C]
where C is the Choi matrix.
Parameters
----------
channel: MatrixSuperGate or KrausSuperGate
Must have the method 'map()'.
order: tuple[any, ...], optional
If provided, Kraus' map is ordered accordingly to `order`.
See `MatrixChannel.map()`
kwargs: kwargs for `MatrixChannel.map()`
"""
if not hasattr(channel, 'map'):
raise ValueError("'channel' must have method 'map()'")
op = channel.map(order, **kwargs)
d = _channel_dim(channel)
C = np.zeros((d**2, d**2), dtype=complex)
for ij in range(d**2):
Eij = | np.zeros(d**2) | numpy.zeros |
"""
Trainer code for 2D and 3D Noise2Void (https://arxiv.org/abs/1811.10980)
Adapted from https://github.com/juglab/pn2v/blob/master/pn2v/training.py,
ported from NumPy to PyTorch and generalized to support 3D.
"""
from typing import Callable
import torch
from torch import nn
import numpy as np
import itertools
from scipy.ndimage.filters import gaussian_filter
from tqdm import tqdm
from elektronn3.training.trainer import Trainer, NaNException
from elektronn3.modules.loss import MaskedMSELoss
import logging
logger = logging.getLogger('elektronn3log')
@torch.no_grad()
def get_stratified_coords(ratio, shape):
"""
Produce a list of approx. ``num_pix`` random coordinates, sampled from
``shape`` using startified sampling. Supports n-dimensional shapes.
"""
# total_num = torch.prod(shape).to(torch.float32)
# sample_num = total_num * ratio
ratio = torch.as_tensor(ratio)
ndim = len(shape)
shape = torch.as_tensor(shape, dtype=torch.int32)
box_size = int(torch.round(torch.sqrt(1. / ratio)))
coords = []
box_counts = torch.ceil(shape.float() / box_size).int()
for steps in itertools.product(*[range(bc) for bc in box_counts]):
steps = torch.as_tensor(steps, dtype=torch.int32)
co = torch.randint(0, box_size, (ndim,)) + box_size * steps
if torch.all(co < shape):
coords.append(co)
if not coords:
raise ValueError(f'ratio {ratio:.1e} is too close to zero. Choose a higher value.')
coords = torch.stack(coords)
return coords
# TODO: Is the hardcoded small ROI size sufficient?
@torch.no_grad()
def prepare_sample(img, ratio=1e-3, channels=None):
"""Prepare binary mask and target image for Noise2Void from a given image"""
ndim = img.ndim - 2 # Subtract (N, C) dims
if channels is None:
channels = range(img.shape[1])
inp = img.clone()
target = img
mask = torch.zeros_like(img)
for n, c in itertools.product(range(img.shape[0]), channels):
hotcoords = get_stratified_coords(ratio, img[n, c].shape)
maxsh = np.array(img[n, c].shape) - 1
for hc in hotcoords:
roimin = | np.clip(hc - 2, 0, None) | numpy.clip |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
''' Description
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__author__ = "<NAME>"
__copyright__ = "Copyright (C) 2019, HANDBOOK"
__credits__ = ["CONG-MINH NGUYEN"]
__license__ = "GPL"
__version__ = "1.0.1"
__date__ = "5/10/2019"
__maintainer__ = "<NAME>"
__email__ = "<EMAIL>"
__status__ = "Development" # ["Prototype", "Development", or "Production"]
# Project Style: https://dev.to/codemouse92/dead-simple-python-project-structure-and-imports-38c6
# Code Style: http://web.archive.org/web/20111010053227/http://jaynes.colorado.edu/PythonGuidelines.html#module_formatting
#==============================================================================
# Imported Modules
#==============================================================================
import argparse
from pathlib import Path
import os.path
import sys
import time
import copy
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "" # The GPU id to use, usually either "0" or "1"
import json
import numpy as np
import cv2
import requests
from Camera.OrbbecAstraS.camera import Camera, rgbd_to_pointcloud
from GeneralUtils import List, Tuple, Dict, Union, Generic, TypeVar
from GeneralUtils import sample_arrays, stack_list_horizontal
from PointCloudUtils import visualize_pc, points_to_pc, coords_labels_to_pc, load_ply_as_pc, load_ply_as_points
from PointCloudUtils import adjust_pc_coords, global_icp
from PointCloudUtils import radian2degree, degree2radian, m2mm, mm2m, create_rotx_matrix, create_roty_matrix, create_rotz_matrix, create_tranl_matrix
from Segmentation.PointNet.learner import PointNetLearner
#==============================================================================
# Constant Definitions
#==============================================================================
#==============================================================================
# Function Definitions
#==============================================================================
def mpose2mmpose(pose: np.ndarray):
tarr = np.ones(len(pose))
tarr[:3] *= 1000
return pose * tarr
def mmpose2mpose(pose: np.ndarray):
tarr = np.ones(len(pose))
tarr[:3] *= 0.001
return pose * tarr
def load_object_models(model_path='./obj_models/modelMay10/'):
"""
Description:
:param model_path: str, path to the reference models of known objects
:return: pc_models, List[2L ndarrays], list of points of target surface
:return: centroid_models, List[Vector(3 floats)], the list of centroids of model
:return: pose_models, List[List[Vector(6 floats)]], the list of pose list of each model(each model has a list of poses)
"""
pc_models = []
centroid_models = []
pose_models = []
files = os.listdir(path=os.path.join(model_path, 'pc/'))
for _, file in enumerate(files):
filename, _ = os.path.splitext(file)
pc_model = load_ply_as_points(file_path=os.path.join(model_path, 'pc/', file))
centroid, grasping_pose = np.load(os.path.join(model_path, 'info/', filename + '.npy'), allow_pickle=True)
grasping_pose = np.array(grasping_pose).astype(float)
grasping_pose[:, :3] = mm2m(grasping_pose[:, :3])
pc_models.append(pc_model)
centroid_models.append(centroid)
pose_models.append(grasping_pose)
return pc_models, centroid_models, pose_models
def measure_xtran_params(neutral_point, transformation):
"""
Description: Assume that the transformation from robot coord to camera coord is: RotX -> RotY -> RotZ -> Tranl
In this case: RotX = 180, RotY = 0; RotZ = -90; Tranl: unknown
But we know coords of a determined neutral point in 2 coord systems,
hence we can measure Transl from robot centroid to camera centroid.(Step 2)
:param neutral_point : Dict, list of 2 coords of neutral_point in 2 coord systems
:param transformation : Dict, list of 3 rotating transformations
:return: r2c_xtran : Matrix 4x4 floats, transformation from robot coord to camera coord
:return: c2r_xtran : Matrix 4x4 floats, transformation from camera coord to robot coord
# :return: tranl : Matrix 4x4 floats, translation from robot coord to camera coord
"""
# 1: Load coords of the neutral point
neutral_robot = mm2m(coords=np.array(neutral_point['robot_coord'])) # neutral point coord in robot coord system
neutral_camera = mm2m(coords=np.array(neutral_point['camera_coord'])) # neutral point coord in camera coord system
rotx = create_rotx_matrix(theta=-transformation['rotx']) # load transformation matrix of rotation around x
roty = create_roty_matrix(theta=-transformation['roty']) # load transformation matrix of rotation around y
rotz = create_rotz_matrix(theta=-transformation['rotz']) # load transformation matrix of rotation around z
# 2: Find transformation between robot coord centroid and camera coord centroid
rotxyz = np.dot(np.dot(rotz, roty), rotx) # determine transformation matrix after rotate sequently around x, y, z
neutral_robot3 = np.dot(rotxyz, np.append(neutral_robot, 1))[:3] # find coord of neutral point after RotXYZ
Oc_in_3 = neutral_robot3 - neutral_camera # find coord of robot centroid in camera coord system
tranl = create_tranl_matrix(vector=-Oc_in_3)
# 3: Find transformation matrix from robot to camera
# r2c_xtran = np.dot(np.dot(np.dot(tranl, rotz), roty), rotx)
# c2r_xtran = np.linalg.inv(r2c_xtran)
return rotx, roty, rotz, tranl
def input_cli():
user_input = input("Enter CLI commands such as (--NAME VALUE ...): ")
custom_parser = argparse.ArgumentParser()
custom_parser.add_argument('-vb', '--verbose', type=bool, help='show detail results')
custom_parser.add_argument('-vs', '--voxel_size', type=float, help='adjust voxel size')
custom_parser.add_argument('-ft', '--fitness_threshold', type=float, help='adjust voxel size')
custom_parser.add_argument('-pi', '--selected_pose_id', type=int, help='select pose id that will execute grasp')
custom_args = custom_parser.parse_args(user_input.split())
return custom_args
def normalize_pc(points: np.ndarray):
new_points = copy.deepcopy(points)
new_points[:, 2] -= 0.677
new_points[:, 3:6] /= 255.
return new_points
def segment_obj_in_scene(scene_points, n_points: int=16384, n_channels: int=6, url='http://127.0.0.1:5000/api/'):
"""
Description: segment the point clouds of wrench and pipe out of scene
:param learner : Object, a PointNet Learner that's able to do predict point-wise classification
:param scene_points : 2L ndarray(shape=(n_points, n_channels)), list of points
:param n_points : int > 0, number input points of PointNet Learner
:param n_channels : int > 0, number channels of input points of PointNet Learner
:return: wrench_points : 2L ndarray, points of wrench
:return: pipe_points : 2L ndarray, points of pipe
"""
# Shuffle points to distribute the points equally in arrays(useful for next step, cut scene into parts to segment)
n_scene_points = len(scene_points)
scene_points = sample_arrays(arrs=scene_points, n_samples=n_scene_points)
# Do segment(cut scene into 2 parts, segment each part then unify results of 2 parts to get overall picture)
wrench_points = []
pipe_points = []
for i in range(2):
# sample the points to fit the network
cur_scene_points = scene_points[i * n_scene_points // 2:(i + 1) * n_scene_points // 2]
cur_scene_points = sample_arrays(arrs=cur_scene_points, n_samples=n_points)
# predict segment labels(send data to remote server through RESTful API)
# pred_labels = learner.predict(x=normalize_pc(points=cur_scene_points[:, :n_channels]))
data = {'points': normalize_pc(points=cur_scene_points[:, :n_channels]).tolist()}
j_data = json.dumps(data)
headers = {'content-type': 'application/json', 'Accept-Charset': 'UTF-8'}
res = requests.post(url=url, data=j_data, headers=headers)
pred_labels = np.asarray(json.loads(res.text))
# extract the points in the scene of each object by labels
wrench_points.append(cur_scene_points[pred_labels == 2])
pipe_points.append(cur_scene_points[pred_labels == 3])
wrench_points = np.vstack(wrench_points) # get entire points of wrench
pipe_points = np.vstack(pipe_points) # get entire points of pipe
# visualize_pc(coords_labels_to_pc(coords=cur_scene_points[:, :3], labels=pred_labels))
return wrench_points, pipe_points
def match_object_surface(surface: np.ndarray, model: np.ndarray, model_centroid: Tuple[float, float, float],
voxel_size: float, n_channel: int=6, verbose: bool=False):
"""
Description:
:param surface : 2L ndarray(shape=(n_points, n_channels)), list of points of target surface
:param model : 2L ndarray(shape=(n_points, n_channels)), list of points of target surface
:param model_centroid : Vector(3 floats), the centroid of `model`
:param voxel_size : float, default=0.6, downsampling size of point cloud in `global_icp` algorithm
:param n_channel : int > 0, number channels of input points of PointNet Learner
:param verbose : bool, show detail results and notification or not
:return: TYPE, MEAN
"""
point_cloud_model = adjust_pc_coords(point_cloud=points_to_pc(model[:, :n_channel]), coord=model_centroid)
point_cloud_target = adjust_pc_coords(point_cloud=points_to_pc(surface[:, :n_channel]), coord=model_centroid)
xtran = global_icp(source=points_to_pc(point_cloud_model), target=points_to_pc(point_cloud_target),
voxel_size=voxel_size, verbose=verbose)
print(xtran)
return xtran
def interpolate_pose(ref_pose, surf_xtran, rotx, roty, rotz, tranl, pc_centroid):
"""
Description: match reference_pose of (x, y, z) (rx, ry, rz) and (mode, aperture) from reference source to target point cloud
:param ref_pose : Vector(8 floats), the pose of the reference model
:param surf_xtran : Matrix(4x4 floats), the transformation matrix from source model to target point cloud
:param rotx : Matrix(4x4 floats), the transformation matrix of rotation around x axis of robot coord
:param roty : Matrix(4x4 floats), the transformation matrix of rotation around y axis of robot coord
:param rotz : Matrix(4x4 floats), the transformation matrix of rotation around z axis of robot coord
:param tranl : Matrix(4x4 floats), the transformation matrix of translation from robot origin to the camera origin
:param pc_centroid : Matrix(4x4 floats), the centroid of considered point cloud
:return: Vector(6 floats), the pose in robot system
"""
# transformation matrix of robot origin to point cloud center, xyz elements
tranl2 = create_tranl_matrix(vector=-np.array(pc_centroid))
r2pc_xyz_xtran = np.dot(np.dot(np.dot(np.dot(tranl2, tranl), rotz), roty), rotx)
pc2r_xyz_xtran = np.linalg.inv(r2pc_xyz_xtran)
# measure xyz
new_xyz = np.append(arr=ref_pose[:3], values=1, axis=None)
new_xyz = np.dot(r2pc_xyz_xtran, new_xyz)
new_xyz = np.dot(surf_xtran, new_xyz)
new_xyz = np.dot(pc2r_xyz_xtran, new_xyz)
# measure roll-pitch-yaw
# new_rpy = ref_pose[3:6] + radian2degree(rotation_matrix_to_euler_angles(surf_xtran[:3, :3]))
new_yaw = ref_pose[5] + radian2degree(rotation_matrix_to_euler_angles(surf_xtran[:3, :3]))[2] # restrict rx, ry because of real robot problem
new_pose = copy.deepcopy(ref_pose)
new_pose[:3] = new_xyz[:3]
# new_pose[3:6] = new_rpy[:3]
new_pose[5] = new_yaw
return new_pose
def rgbd_to_pointcloud1(rgb, depth, scale=0.001, focal_length_x=520, focal_length_y=513, label=False, offset=0, **kwargs):
"""
Convert single RGBD image to point cloud
:param rgb: 3L ndarray of int, RGB image
:param depth: 1L ndarray of any, depth image
:param scale: a float value, scale=0.001->scale into Meter unit, scale=1->scale into miliMeter unit
:param focal_length_x: a float value, focal_length of x axis
:param focal_length_y: a float value, focal_length of y axis
:param label: a bool value, enable or disable labeling data
:param **kwargs: a list of 3L ndarray of int, list of label tables
this arguments are only used when 'label' is set True
size(h, w) of each label table must equal size of rgb image
:return: a list of points as [X, Y, Z, label(optional)]
"""
center_y, center_x = (rgb.shape[0] - 1) / 2, (rgb.shape[1] - 1) / 2
points = []
for row in range(rgb.shape[0]):
for col in range(rgb.shape[1]):
R, G, B = rgb[row, col]
# obtain z value and ignore the un-obtained point(z=0)
Z = depth[row, col]
if Z == 0: continue
# measure world coordinates in Meter(scale=0.001) or miliMeter(scale=1)
Z = Z * scale
X = (col - center_x) * Z / focal_length_x
Y = (row - center_y) * Z / focal_length_y
# label the point if input the label table(in kwargs)
if label:
label_point = offset
for i, (mask_name, label_table) in enumerate(list(kwargs.items())):
if label_table[row, col] > 0:
label_point += i+1
points.append([X, Y, Z, R, G, B, row, col, label_point])
else:
points.append([X, Y, Z, R, G, B, row, col])
return np.asarray(points)
import math
# Checks if a matrix is a valid rotation matrix.
def is_rotation_matrix(R: np.array) -> bool:
"""
Check???
:param R: a matrix of 4x4
:return: a boolean, ???
"""
Rt = np.transpose(R)
shouldBeIdentity = | np.dot(Rt, R) | numpy.dot |
import numpy as np
from NeuralNetwork.utils import Activation, cost, regularization, optimizers, Normalizer
from NeuralNetwork.utils.defaults import TanH, SoftMax, default_settings
import json
class NeuralNetwork(optimizers.optimizers):
def __init__(self, input_neurons=0, network_shape=None, learning_rate=0.1, beta=0.9, gamma=0.999, epsilon=1e-8,
activation=TanH, settings=None, activation_param=None,
do_regularization=False, do_normalization=True):
super().__init__()
if network_shape is None:
network_shape = []
self.ActivationList = {}
self.RegularizationList = {}
self.CostList = {}
self.OptimizerList = {}
self.NormList = {}
self.Activations = []
self.param = activation_param
self.make_dict()
self.shape = [input_neurons]
self.activation = []
self.derivative = []
self.make(network_shape, activation)
self.learning_rate = learning_rate
self.weights_shape = []
self.weights = []
self.biases = []
self.cost_key = default_settings["cost"]
self.cost = None
self.d_cost = None
self.regularization_key = None
self.regularization = None
self.lam = None
self.do_regularization = do_regularization
self.optimizer_key = default_settings["optimizer"]
self.optimizer = self.OptimizerList[self.optimizer_key]
self.do_norm = do_normalization
self.norm_key = default_settings["normalizer"]
self.normalizer = self.NormList[self.norm_key]
self.beta = beta
self.gamma = gamma
self.epsilon = epsilon
if settings is None:
self.settings = default_settings
else:
self.settings = settings
self.set_settings()
for i in range(len(self.shape) - 1):
self.weights_shape.append([self.shape[i + 1], self.shape[i]])
self.weights.append(
np.random.standard_normal(self.weights_shape[i]) / (self.weights_shape[i][1] ** 0.5))
self.biases.append(np.random.standard_normal([self.shape[i + 1], 1]))
def copy(self):
model = NeuralNetwork()
model.shape = [i for i in self.shape]
model.weights_shape = [[i for i in j] for j in self.weights_shape]
model.learning_rate = self.learning_rate
model.Activations = [i for i in self.Activations]
model.param = self.param
model.optimizer_key = self.optimizer_key
model.cost_key = self.cost_key
model.beta = self.beta
model.gamma = self.gamma
model.epsilon = self.epsilon
model.do_regularization = self.do_regularization
model.regularization_key = self.regularization_key
model.regularization = self.regularization
model.do_norm = self.do_norm
model.norm_key = self.norm_key
model.weights = [i.copy() for i in self.weights]
model.biases = [i.copy() for i in self.biases]
model.activation = [model.ActivationList[i].fn for i in model.Activations]
model.derivative = [model.ActivationList[i].d for i in model.Activations]
model.optimizer = model.OptimizerList[model.optimizer_key]
model.cost = model.CostList[model.cost_key].cost
model.d_cost = model.CostList[model.cost_key].d_cost
model.normalizer = model.NormList[model.norm_key]
return model
def mutate(self, mutation_rate, mutation_ratio):
def internal(x, mr, mro, element):
temp1 = np.random.uniform(0, 1)
if temp1 < mr:
temp2 = np.random.uniform()
if temp2 < mro:
return np.random.standard_normal()/(self.weights_shape[element][1]**0.5)
else:
return x+np.random.uniform(-x/100, x/100)
else:
return x
randomize = np.vectorize(internal)
for i in range(len(self.weights)):
self.weights[i] = randomize(self.weights[i], mutation_rate, mutation_ratio, i)
self.biases[i] = randomize(self.biases[i], mutation_rate, mutation_ratio, i)
def crossover(self, parent2):
child = self.copy()
for i in range(len(self.weights)):
r = np.random.uniform(0, 1)
if r < 0.5:
pass
else:
child.weights[i] = np.copy(parent2.weights[i])
child.biases[i] = | np.copy(parent2.biases[i]) | numpy.copy |
#!/usr/bin/env python2
"""
Subroutine for applying FRI-type compression to the
Near-Uniform distribution.
"""
import numpy
import compress_utils
import near_uniform
import fci_c_utils
def cmp_hier_strat(sol_vec, n_sample, p_doub, occ_orb,
orb_symm, symm_lookup, hf_num, rngen_ptrs):
"""Perform FRI-type compression on the Near-Uniform distribution,
column-by-column, preserving colummns exactly as determined by
number of samples vs. number of nonzero elements.
Parameters
----------
sol_vec : (SparseVector object)
the current solution vector
n_sample : (unsigned int)
the desired number of nonzero matrix elements in each column after
compression
p_doub : (double)
the probability of choosing a double excitation vs a single excitation
occ_orb : (numpy.ndarray, uint8)
The numbers in each row correspond to the indices of occupied
orbitals in each determinant, calculated from fci_c_utils.gen_orb_lists
orb_symm : (numpy.ndarray, uint8)
irreducible representation of each spatial orbital
symm_lookup : (numpy.ndarray, uint8)
Table of orbitals with each type of symmetry, as generated
by fci_utils.gen_byte_table()
Returns
-------
(numpy.ndarray, uint8) :
chosen occupied (0th and 1st columns) and unoccupied (2nd and 3rd
columns) orbitals for double excitations
(numpy.ndarray, float64) :
probability of selecting each chosen double excitation (weight
divided by compressed weight)
(numpy.ndarray, uint32) :
index of the origin determinant of each chosen double excitation
in the dets array
(numpy.ndarray, uint8) :
chosen occupied (0th column) and unoccupied (1st column)
orbitals for single excitations
(numpy.ndarray, float64) :
probability of selecting each chosen single excitation
(numpy.ndarray, uint32) :
index of the origin determinant of each chosen single excitation
in the dets array
"""
vec_weights = numpy.abs(sol_vec.values)
one_norm = vec_weights.sum()
kept_sing_orb = numpy.empty([0, 2], dtype=numpy.uint8)
kept_doub_orb = numpy.empty([0, 4], dtype=numpy.uint8)
kept_sing_idx = numpy.empty(0, dtype=numpy.uint32)
kept_doub_idx = numpy.empty(0, dtype=numpy.uint32)
num_nonz = vec_weights.shape[0]
max_idx = 0
target_n_col = (n_sample - num_nonz) * vec_weights[max_idx] / one_norm
# target_n_col = n_sample * vec_weights[max_idx] / one_norm
all_col_doub, det_idx = fci_c_utils.all_doub_ex(sol_vec.indices[0:1], occ_orb[0:1], orb_symm)
all_col_sing = numpy.empty([0, 2], dtype=numpy.uint8)
n_col = hf_num
while target_n_col + 1 > n_col and one_norm > 1e-10:
kept_sing_orb = numpy.append(kept_sing_orb, all_col_sing, axis=0)
kept_doub_orb = numpy.append(kept_doub_orb, all_col_doub, axis=0)
kept_sing_idx = numpy.append(kept_sing_idx, numpy.full(all_col_sing.shape[0], max_idx, dtype=numpy.uint32))
kept_doub_idx = numpy.append(kept_doub_idx, numpy.full(all_col_doub.shape[0], max_idx, dtype=numpy.uint32))
one_norm -= vec_weights[max_idx]
n_sample -= n_col
vec_weights[max_idx] = 0
num_nonz -= 1
max_idx = numpy.argmax(vec_weights)
target_n_col = (n_sample - num_nonz) * vec_weights[max_idx] / one_norm
# target_n_col = n_sample * vec_weights[max_idx] / one_norm
curr_det = sol_vec.indices[max_idx:(max_idx + 1)]
curr_occ = occ_orb[max_idx:(max_idx + 1)]
all_col_doub, det_idx = fci_c_utils.all_doub_ex(curr_det, curr_occ, orb_symm)
n_col = det_idx.shape[0]
all_col_sing, det_idx = fci_c_utils.all_sing_ex(curr_det, curr_occ, orb_symm)
n_col += det_idx.shape[0]
print('number preserved exactly', vec_weights.shape[0] - num_nonz)
doub_probs = numpy.ones(kept_doub_orb.shape[0])
sing_probs = numpy.ones(kept_sing_orb.shape[0])
one_norm = vec_weights.sum()
if one_norm > 1e-10:
n_col, = compress_utils.sys_resample(vec_weights / one_norm, n_sample - num_nonz, ret_counts=True)
n_col[vec_weights != 0] += 1
# n_col, = compress_utils.sys_resample(vec_weights / one_norm, n_sample, ret_counts=True)
else:
return kept_doub_orb, doub_probs, kept_doub_idx, kept_sing_orb, sing_probs, kept_sing_idx
single_col = n_col == 1
single_counts = numpy.zeros_like(sol_vec.indices, dtype=numpy.uint32)
single_counts[single_col] = 1
n_col[single_col] = 0
# single_counts = n_col
single_doub, single_sing = near_uniform.bin_n_sing_doub(single_counts, p_doub)
one_doub_orb, one_doub_prob, one_doub_idx = near_uniform.doub_multin(
sol_vec.indices, occ_orb, orb_symm, symm_lookup, single_doub, rngen_ptrs)
one_doub_prob *= p_doub # * single_counts[one_doub_idx]
one_sing_orb, one_sing_prob, one_sing_idx = near_uniform.sing_multin(
sol_vec.indices, occ_orb, orb_symm, symm_lookup, single_sing, rngen_ptrs)
one_sing_prob *= (1 - p_doub) # * single_counts[one_sing_idx]
doub_orb = numpy.append(kept_doub_orb, one_doub_orb, axis=0)
doub_probs = numpy.append(doub_probs, one_doub_prob)
doub_idx = numpy.append(kept_doub_idx, one_doub_idx)
sing_orb = numpy.append(kept_sing_orb, one_sing_orb, axis=0)
sing_probs = numpy.append(sing_probs, one_sing_prob)
sing_idx = numpy.append(kept_sing_idx, one_sing_idx)
fri_doub_orb, fri_doub_probs, fri_doub_idx, fri_sing_orb, fri_sing_probs, fri_sing_idx = near_uniform.fri_parallel(sol_vec.indices,
occ_orb, orb_symm,
symm_lookup, n_col,
rngen_ptrs, p_doub)
doub_orb = numpy.append(doub_orb, fri_doub_orb, axis=0)
doub_probs = numpy.append(doub_probs, fri_doub_probs)
doub_idx = numpy.append(doub_idx, fri_doub_idx)
sing_orb = numpy.append(sing_orb, fri_sing_orb, axis=0)
sing_probs = numpy.append(sing_probs, fri_sing_probs)
sing_idx = numpy.append(sing_idx, fri_sing_idx)
return doub_orb, doub_probs, doub_idx, sing_orb, sing_probs, sing_idx
def cmp_hier(sol_vec, n_sample, p_doub, occ_orb,
orb_symm, symm_lookup):
"""Perform FRI-type compression on the Near-Uniform distribution,
exploiting its hierarchical structure for efficiency.
Parameters
----------
sol_vec : (SparseVector object)
the current solution vector
n_sample : (unsigned int)
the desired number of nonzero matrix elements after the compression
p_doub : (double)
the probability of choosing a double excitation vs a single excitation
occ_orb : (numpy.ndarray, uint8)
The numbers in each row correspond to the indices of occupied
orbitals in each determinant, calculated from fci_c_utils.gen_orb_lists
orb_symm : (numpy.ndarray, uint8)
irreducible representation of each spatial orbital
symm_lookup : (numpy.ndarray, uint8)
Table of orbitals with each type of symmetry, as generated
by fci_utils.gen_byte_table()
Returns
-------
(numpy.ndarray, uint8) :
chosen occupied (0th and 1st columns) and unoccupied (2nd and 3rd
columns) orbitals for double excitations
(numpy.ndarray, float64) :
probability of selecting each chosen double excitation
(numpy.ndarray, uint32) :
index of the origin determinant of each chosen double excitation
in the dets array
(numpy.ndarray, uint8) :
chosen occupied (0th column) and unoccupied (1st column)
orbitals for single excitations
(numpy.ndarray, float64) :
probability of selecting each chosen single excitation
(numpy.ndarray, uint32) :
index of the origin determinant of each chosen single excitation
in the dets array
"""
seq_idx = numpy.arange(n_sample, dtype=numpy.int32)
symm_virt = near_uniform.virt_symm(occ_orb, orb_symm, symm_lookup)
occ_allow, virt_allow = near_uniform.sing_allow(symm_virt, occ_orb,
orb_symm)
# First layer of compression: singles vs. doubles
sing_doub = numpy.array([[1 - p_doub], [p_doub]])
num_dets = sol_vec.values.shape[0]
vec_reweights = numpy.abs(sol_vec.values)
new_weights = sing_doub * vec_reweights
new_weights.shape = -1 # singles first, then doubles
fri_idx, fri_vals = compress_utils.fri_1D(new_weights, n_sample)
n_fried = fri_idx.shape[0]
det_idx = fri_idx % num_dets # index of determinant
det_idx = det_idx.astype(numpy.uint32)
n_sing = numpy.searchsorted(fri_idx, num_dets)
n_doub = n_fried - n_sing
# Second layer of compression: occupied orbitals, or occupied pairs, for each choice
counts = occ_allow[det_idx[:n_sing], 0].astype(numpy.uint32)
disallowed_ex = counts == 0
fri_vals[:n_sing][disallowed_ex] = 0
counts[disallowed_ex] = 1 # to avoid 0/0 errors
n_elec = occ_orb.shape[1]
n_occ_pair = n_elec * (n_elec - 1) / 2
counts = numpy.append(counts, n_occ_pair * numpy.ones(n_doub, numpy.uint32))
fri_idx, fri_vals = compress_utils.fri_subd(fri_vals, counts, numpy.empty([0, 0]), n_sample)
sampl_idx = fri_idx[:, 0]
# Group nonzero elements in FRI vector by single/double excitations
sing_idx = sampl_idx < n_sing
doub_idx = numpy.logical_not(sing_idx)
new_det_idx = det_idx[sampl_idx[sing_idx]]
n_sing = new_det_idx.shape[0]
occ_idx = occ_allow[new_det_idx, fri_idx[sing_idx, 1] + 1]
new_det_idx = numpy.append(new_det_idx, det_idx[sampl_idx[doub_idx]])
det_idx = new_det_idx
occ_idx = numpy.append(occ_idx, fri_idx[doub_idx, 1]) # index of occupied orbital or occ pair
fri_vals = numpy.append(fri_vals[sing_idx], fri_vals[doub_idx])
# Third layer of compression: allowed virtual orbitals for singles, symmetry pairs for doubles
doub_wts, doub_nvirt, doub_occ = near_uniform.symm_pair_wt(symm_virt, occ_orb, orb_symm,
det_idx[n_sing:], occ_idx[n_sing:])
null_doub = numpy.logical_and(doub_occ[:, 0] == 0, doub_occ[:, 1] == 0)
null_idx = numpy.nonzero(null_doub)[0]
fri_vals[null_idx + n_sing] = 0
fri_idx, fri_vals = compress_utils.fri_subd(fri_vals, virt_allow[det_idx[:n_sing], occ_idx[:n_sing]],
doub_wts, n_sample)
all_arrs, sing_arrs, doub_arrs, n_sing = compress_utils.proc_fri_sd_choices(
fri_idx[:, 0], n_sing, [det_idx, occ_idx], [], [doub_occ, doub_wts, doub_nvirt])
det_idx, occ_idx = all_arrs
doub_occ, doub_wts, doub_nvirt = doub_arrs
n_doub = doub_occ.shape[0]
virt_idx = fri_idx[:, 1]
doub_wts = doub_wts[seq_idx[:n_doub], virt_idx[n_sing:]]
doub_nvirt = doub_nvirt[seq_idx[:n_doub], virt_idx[n_sing:]]
orb_counts = numpy.append(numpy.ones(n_sing), doub_nvirt)
weights = numpy.empty((0, 2))
# Fourth layer of compression: virtual orbital pair for doubles
fri_idx, fri_vals = compress_utils.fri_subd(fri_vals, orb_counts, weights, n_sample)
sampl_idx = fri_idx[:, 0]
# Group nonzero elements in FRI vector by single/double excitations
sing_idx = sampl_idx < n_sing
doub_idx = | numpy.logical_not(sing_idx) | numpy.logical_not |
__author__ = 'lynevdv'
from lenstronomy.LensModel.Profiles.multipole import Multipole
import numpy as np
import pytest
import numpy.testing as npt
class TestMultipole(object):
"""
tests the Gaussian methods
"""
def setup(self):
self.Multipole = Multipole()
def test_function(self):
x = 1
y = 2
m = 4
a_m = 0.05
phi_m = 25*np.pi/180.
values = self.Multipole.function(x, y, m, a_m, phi_m)
npt.assert_almost_equal(values, 0.006684307, decimal=6)
x = np.array([0])
y = np.array([0])
values = self.Multipole.function(x, y, m, a_m, phi_m)
assert values[0] == 0
x = np.array([2, 3, 4])
y = np.array([1, 1, 1])
values = self.Multipole.function(x, y, m, a_m, phi_m)
npt.assert_almost_equal(values[0], -0.007409114, decimal=6)
npt.assert_almost_equal(values[1], -0.009453038, decimal=6)
npt.assert_almost_equal(values[2], -0.009910505, decimal=6)
def test_derivatives(self):
x = 1
y = 2
m = 4
a_m = 0.05
phi_m = 25 * np.pi / 180.
f_x, f_y = self.Multipole.derivatives(x, y, m, a_m, phi_m)
npt.assert_almost_equal(f_x, -0.003939644, decimal=6)
npt.assert_almost_equal(f_y, 0.005311976, decimal=6)
x = np.array([1])
y = np.array([2])
f_x, f_y = self.Multipole.derivatives(x, y, m, a_m, phi_m)
npt.assert_almost_equal(f_x[0], -0.003939644, decimal=6)
npt.assert_almost_equal(f_y[0], 0.005311976, decimal=6)
x = np.array([2, 3, 1])
y = np.array([1, 1, 4])
f_x, f_y = self.Multipole.derivatives(x, y, m, a_m, phi_m)
npt.assert_almost_equal(f_x[0], -0.003613858, decimal=6)
npt.assert_almost_equal(f_x[1], -0.000970385, decimal=6)
npt.assert_almost_equal(f_x[2], 0.005970704, decimal=6)
npt.assert_almost_equal(f_y[0], -0.000181398, decimal=6)
npt.assert_almost_equal(f_y[1], -0.006541883, decimal=6)
npt.assert_almost_equal(f_y[2], 0.001649720, decimal=6)
def test_hessian(self):
x = 1
y = 2
m = 4
a_m = 0.05
phi_m = 25 * np.pi / 180.
f_xx, f_xy, f_yx, f_yy = self.Multipole.hessian(x, y, m, a_m, phi_m)
npt.assert_almost_equal(f_xx, -0.016042338, decimal=6)
npt.assert_almost_equal(f_yy, -0.004010584, decimal=6)
npt.assert_almost_equal(f_xy, 0.008021169, decimal=6)
npt.assert_almost_equal(f_xy, f_yx, decimal=8)
x = np.array([1])
y = np.array([2])
f_xx, f_xy, f_yx, f_yy = self.Multipole.hessian(x, y, m, a_m, phi_m)
npt.assert_almost_equal(f_xx[0], -0.016042338, decimal=6)
npt.assert_almost_equal(f_yy[0], -0.004010584, decimal=6)
npt.assert_almost_equal(f_xy[0], 0.008021169, decimal=6)
x = np.array([1,3,4])
y = np.array([2,1,1])
values = self.Multipole.hessian(x, y, m, a_m, phi_m)
npt.assert_almost_equal(values[0][0], -0.016042338, decimal=6)
npt.assert_almost_equal(values[3][0], -0.004010584, decimal=6)
| npt.assert_almost_equal(values[1][0], 0.008021169, decimal=6) | numpy.testing.assert_almost_equal |
import argparse
import os
import scipy.io as sio
import numpy as np
import nibabel as nib
import time
import tensorflow as tf
from BrainStructureAwareNetwork_arch import BrainStructureAwareNetwork
from SpatialConnectionAwareNetwork_arch import SpatialConnectionAwareNetwork
from getimgtest import getimgtest
import math
batch_size = 1
# to recover the origin distribution
Intensity_max = 255
Intensity_mean = 0.1616
Intensity_std = 0.2197
parser = argparse.ArgumentParser(description='Tensorflow DeepVolume Test')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--datafile', default='../datafile/', type=str, help='path to datafile folder')
parser.add_argument('--savepath', default='../output/', type=str, help='path to output folder')
parser.add_argument('--modelpath', default='../models/', type=str, help='path to model save folder')
parser.add_argument('-s', '--stage', type=int, default=1, help='load the network one by one...')
args = parser.parse_args()
def test_BrainStructureNetwork():
filespath = args.datafile
axialThickpath = filespath + 'axialThick-test.txt'
sagittalThickpath = filespath + 'sagittalThick-test.txt'
savepath = args.savepath + 'test'
modelpath = args.modelpath + 'BrainStructureAwareNetwork/Model100.ckpt'
val_axialfile = open(axialThickpath)
val_axialread = val_axialfile.read().splitlines()
ntest = len(val_axialread)
testsavepath = savepath + str(1)
if (os.path.isdir(testsavepath) == False) :
for k in range(0, ntest):
os.mkdir(savepath + str(k + 1))
print("Folder created")
with tf.name_scope('input'):
LR = tf.placeholder(tf.float32, shape=[batch_size, 200, 200, 200, 2])
keep_prob = tf.placeholder(tf.float32, name='dropout_ratio')
probs, logits = BrainStructureAwareNetwork(LR, keep_prob)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(args.gpu)
sess = tf.Session(config=config)
saver = tf.train.Saver()
saver.restore(sess, modelpath)
print("Model loaded")
def feed_dict(xstart, ystart, zstart, LRimg):
xs = np.zeros((1, 200, 200, 200, 2))
xs[:, :, :, :, :] = LRimg[:,xstart:xstart + 200, ystart:ystart + 200, zstart:zstart + 200, :]
return {LR: xs, keep_prob: 1}
# sample patches with tumor
for kv in range(0, ntest):
time_start = time.time()
print('Loading from test case ' + str(kv + 1) + ' for test for stage 1')
LRimg = getimgtest(axialThickpath, sagittalThickpath, kv)
x_range = LRimg.shape[1]
y_range = LRimg.shape[2]
z_range = LRimg.shape[3]
if z_range < 200:
LRimgpad = np.zeros((1, x_range, y_range, 200, 2))
LRimgpad[:,:,:,0:z_range,:] = LRimg
LRimg = LRimgpad
# The receptive field of 3D U-net is 68
# We should retrive the center 40^3 pixel of 200^3 to reconstruct
if z_range < 200:
hp = np.zeros((x_range, y_range, 200, 1))
else:
hp = np.zeros((x_range, y_range, z_range, 1))
x_sample = np.floor((x_range -160) / 40) + 1
x_sample = x_sample.astype(np.int16)
y_sample = np.floor((y_range -160) / 40) + 1
y_sample = y_sample.astype(np.int16)
z_sample = np.maximum(np.floor((z_range -160) / 40) + 1, 1)
z_sample = z_sample.astype(np.int16)
for jx in range(0, x_sample):
for jy in range(0, y_sample):
for jz in range(0, z_sample):
# deal with the boundaries
if jx < x_sample - 1: # not the last
xstart = jx * 40
else:
xstart = x_range - 200
if jy < y_sample - 1: # not the last
ystart = jy * 40
else:
ystart = y_range - 200
if jz < z_sample - 1: # not the last
zstart = jz * 40
else:
zstart = LRimg.shape[3] - 200
ht = sess.run(probs, feed_dict=feed_dict(xstart, ystart, zstart, LRimg))
# setting the middle content
hp[xstart + 80:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:120, 80:120, 80:120, :]
# care about the boundies! the patch near the boundies should have half-full padding
if jx == 0:
hp[xstart:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 0:120, 80:120, 80:120, :]
if jx == x_sample - 1:
hp[xstart + 80:xstart + 200, ystart + 80:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:200, 80:120, 80:120, :]
if jy == 0:
hp[xstart + 80:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:120, 0:120, 80:120, :]
if jy == y_sample - 1:
hp[xstart + 80:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 120, :] = ht[0, 80:120, 80:200, 80:120, :]
if jz == 0:
hp[xstart + 80:xstart + 120, ystart + 80:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:120, 80:120, 0:120, :]
if jz == z_sample - 1:
hp[xstart + 80:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:120, 80:120, 80:200, :]
# then the 4 corner...xy
if jx == 0 and jy == 0:
hp[xstart:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 0:120, 0:120, 80:120, :]
if jx == 0 and jy == y_sample - 1:
hp[xstart:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 120, :] = ht[0, 0:120, 80:200, 80:120, :]
if jx == x_sample - 1 and jy == 0:
hp[xstart + 80:xstart + 200, ystart:ystart + 120, zstart + 80:zstart + 120, :] = ht[0, 80:200, 0:120, 80:120, :]
if jx == x_sample - 1 and jy == y_sample - 1:
hp[xstart + 80:xstart + 200, ystart + 80:ystart + 200, zstart + 80:zstart + 120, :] = ht[0, 80:200, 80:200, 80:120, :]
# then the 4 corner...xz
if jx == 0 and jz == 0:
hp[xstart:xstart + 120, ystart+80:ystart + 120, zstart:zstart + 120, :] = ht[0, 0:120, 80:120, 0:120, :]
if jx == 0 and jz == z_sample - 1:
hp[xstart:xstart + 120, ystart + 80:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 0:120, 80:120, 80:200, :]
if jx == x_sample - 1 and jz == 0:
hp[xstart + 80:xstart + 200, ystart+80:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:200, 80:120, 0:120, :]
if jx == x_sample - 1 and jz == z_sample - 1:
hp[xstart + 80:xstart + 200, ystart + 80:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:200, 80:120, 80:200, :]
# then the 4 corner...yz
if jy == 0 and jz == 0:
hp[xstart+80:xstart + 120, ystart:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:120, 0:120, 0:120, :]
if jy == 0 and jz == z_sample - 1:
hp[xstart+80:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:120, 0:120, 80:200, :]
if jy == y_sample - 1 and jz == 0:
hp[xstart + 80:xstart + 120, ystart+80:ystart + 200, zstart:zstart + 120, :] = ht[0, 80:120, 80:200, 0:120, :]
if jy == y_sample - 1 and jz == z_sample - 1:
hp[xstart + 80:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 200, :] = ht[0, 80:120, 80:200, 80:200, :]
# the last 8 small corners..
if jx == 0 and jy == 0 and jz == 0:
hp[xstart:xstart + 120, ystart:ystart + 120, zstart:zstart + 120, :] = ht[0, 0:120, 0:120, 0:120, :]
if jx == 0 and jy == 0 and jz == z_sample - 1:
hp[xstart:xstart + 120, ystart:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 0:120, 0:120, 80:200, :]
if jx == 0 and jy == y_sample - 1 and jz == 0:
hp[xstart:xstart + 120, ystart + 80:ystart + 200, zstart:zstart + 120, :] = ht[0, 0:120, 80:200, 0:120, :]
if jx == 0 and jy == y_sample - 1 and jz == z_sample - 1:
hp[xstart:xstart + 120, ystart + 80:ystart + 200, zstart + 80:zstart + 200, :] = ht[0, 0:120, 80:200, 80:200, :]
if jx == x_sample - 1 and jy == 0 and jz == 0:
hp[xstart + 80:xstart + 200, ystart:ystart + 120, zstart:zstart + 120, :] = ht[0, 80:200, 0:120, 0:120, :]
if jx == x_sample - 1 and jy == 0 and jz == z_sample - 1:
hp[xstart + 80:xstart + 200, ystart:ystart + 120, zstart + 80:zstart + 200, :] = ht[0, 80:200, 0:120, 80:200, :]
if jx == x_sample - 1 and jy == y_sample - 1 and jz == 0:
hp[xstart + 80:xstart + 200, ystart + 80:ystart + 200, zstart:zstart + 120, :] = ht[0, 80:200, 80:200, 0:120, :]
if jx == x_sample - 1 and jy == y_sample - 1 and jz == z_sample - 1:
hp[xstart + 80:xstart + 200, ystart + 80:ystart + 200, zstart + 80:zstart + 200, :] = ht[0, 80:200, 80:200, 80:200, :]
print('processing Brain Structure Aware Model.. ' + str(jx/x_sample*100) + '%')
if z_range < 200:
hp = hp[:,:,0:z_range]
print('processing Brain Structure Aware Model.. ' + '100%')
time_end = time.time()
print('Time cost of test at case ' + str(kv + 1) + ' for stage 1 has been ' + str(time_end - time_start) + ' s')
savename = '%s%s%s' % (savepath, str(kv + 1), '/Reconstruction_BrainStructureAwareModel.mat')
sio.savemat(savename, {'Reconstruction': hp})
print('################ case ' + str(kv + 1) + ' has been done for Brain Structure Aware Model ################')
sess.close()
def test_SpatialConnectionAwareNetwork():
seq_length = 2
network_template = tf.make_template('network', SpatialConnectionAwareNetwork)
filespath = args.datafile
axialThickpath = filespath + 'axialThick-test.txt'
sagittalThickspath = filespath + 'sagittalThicks-test.txt'
savepath = args.savepath + 'test'
modelpath = args.modelpath + 'SpatialConnectionAwareNetwork/Model40.ckpt'
val_axialfile = open(axialThickpath)
val_axialread = val_axialfile.read().splitlines()
val_sagittalfile = open(sagittalThickspath)
val_sagittalread = val_sagittalfile.read().splitlines()
ntest = len(val_axialread)
axialThinpath = filespath + 'axialThin-test.txt'
val_GTfile = open(axialThinpath)
val_GTread = val_GTfile.read().splitlines()
with tf.name_scope('input'):
LR = tf.placeholder(tf.float32, shape=[batch_size, seq_length, 360, 432, 3], name='Lowresolute_image')
# conv network
hidden = None
x_1, hidden = network_template(LR[:, 0, :, :, :], hidden)
x_2, hidden = network_template(LR[:, 1, :, :, :], hidden)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(args.gpu)
sess = tf.Session(config=config)
saver = tf.train.Saver()
saver.restore(sess, modelpath)
print("Model loaded")
for kv in range(0, ntest):
time_start = time.time()
print('Loading from test case ' + str(kv + 1) + ' for stage 2 for test')
matinput0 = val_axialread[kv]
load_data_input0 = sio.loadmat(matinput0)
datainput0 = load_data_input0['T1_image']
Input_full0cut = datainput0[int(datainput0.shape[0] / 2 - 180):int(datainput0.shape[0] / 2 + 180), int(datainput0.shape[1] / 2 - 216):int(datainput0.shape[1] / 2 + 216), :]
datainput0 = np.transpose(Input_full0cut, [2, 0, 1])
matinput1 = savepath + str(kv + 1) + '/Reconstruction_BrainStructureAwareModel.mat'
load_data_input1 = sio.loadmat(matinput1)
datainput1 = load_data_input1['Reconstruction']
datainput1m = datainput1[:, :, :, 0]
Input_fullrcut = datainput1m[int(datainput1m.shape[0] / 2 - 180):int(datainput1m.shape[0] / 2 + 180), int(datainput1m.shape[1] / 2 - 216):int(datainput1m.shape[1] / 2 + 216), :]
datainput1 = np.transpose(Input_fullrcut, [2, 0, 1])
test_sagittalname = val_sagittalread[kv]
load_data_input2 = sio.loadmat(test_sagittalname)
datainput2m = load_data_input2['T2s2_image']
Input_full2cut = datainput2m[int(datainput1m.shape[0] / 2 - 180):int(datainput1m.shape[0] / 2 + 180), int(datainput1m.shape[1] / 2 - 216):int(datainput1m.shape[1] / 2 + 216), :]
if Input_full2cut.shape[2] < 2 * datainput1m.shape[2]:
Input_full2cut = np.dstack((Input_full2cut, Input_full2cut[:, :, Input_full2cut.shape[2] - 1]))
datainputsag = np.transpose(Input_full2cut, [2, 0, 1])
totalnum = datainput1.shape[0]
def feed_dict(j):
pointer = j
xs = np.zeros((batch_size, seq_length, 360, 432, 3))
xs[:, 0, :, :, 0] = datainput1[pointer, 0:360, 0:432]
xs[:, 0, :, :, 1] = datainput0[pointer, 0:360, 0:432]
xs[:, 0, :, :, 2] = datainputsag[2 * pointer, 0:360, 0:432]
xs[:, 1, :, :, 0] = datainput1[pointer, 0:360, 0:432]
xs[:, 1, :, :, 1] = datainput0[pointer, 0:360, 0:432]
xs[:, 1, :, :, 2] = datainputsag[2 * pointer + 1, 0:360, 0:432]
return {LR: xs}
hp = datainput1m
for j in range(0, np.int16(totalnum)):
ht = sess.run(x_2, feed_dict=feed_dict(j))
hp[int(datainput1m.shape[0] / 2 - 180):int(datainput1m.shape[0] / 2 + 180), int(datainput1m.shape[1] / 2 - 216):int(datainput1m.shape[1] / 2 + 216), j] = ht[0, :, :, 0]
time_end = time.time()
print('Time cost of test at case ' + str(kv + 1) + ' for stage 2 has been ' + str(time_end - time_start) + ' s')
savename = '%s%s%s' % (savepath, str(kv + 1), '//Reconstruction_DeepVolume.mat')
sio.savemat(savename, {'Reconstruction': hp})
# load the brain mask, which was generated based on the axial thin MRI
c1map = val_GTread[kv][0:-4] + 'c1.nii'
c1load = nib.load(c1map)
c1im = c1load.get_fdata()
c2map = val_GTread[kv][0:-4] + 'c2.nii'
c2load = nib.load(c2map)
c2im = c2load.get_fdata()
c3map = val_GTread[kv][0:-4] + 'c3.nii'
c3load = nib.load(c3map)
c3im = c3load.get_fdata()
cim = c1im + c2im + c3im
RecIntensity = np.abs((hp * Intensity_std + Intensity_mean) * Intensity_max)
imgToSave = np.int16(RecIntensity * cim)
npDtype = np.dtype(np.int16)
proxy_origin = nib.load(c1map)
affine_origin = proxy_origin.affine
proxy_origin.uncache()
newImg = nib.Nifti1Image(imgToSave, affine_origin)
newImg.set_data_dtype(npDtype)
nib.save(newImg, savepath + str(kv + 1) + '//pred.nii.gz')
print('################ case ' + str(kv + 1) + ' has been done for Spatial Connection Aware Model ################')
sess.close()
def evaluation():
filespath = args.datafile
savepath = args.savepath + 'test'
axialThinpath = filespath + 'axialThin-test.txt'
val_GTfile = open(axialThinpath)
val_GTread = val_GTfile.read().splitlines()
ntest = len(val_GTread)
PSNRall = []
print('################################ Doing evaluation ################################')
for kv in range(0, ntest):
predmap = savepath + str(kv + 1) + '//pred.nii.gz'
predload = nib.load(predmap)
predim = np.uint8(predload.get_fdata())
matGT = val_GTread[kv]
load_data_input0 = sio.loadmat(matGT)
dataGT = load_data_input0['T3_image']
GTIntensity = (dataGT * Intensity_std + Intensity_mean) * Intensity_max
c1map = val_GTread[kv][0:-4] + 'c1.nii'
c1load = nib.load(c1map)
c1im = c1load.get_fdata()
c2map = val_GTread[kv][0:-4] + 'c2.nii'
c2load = nib.load(c2map)
c2im = c2load.get_fdata()
c3map = val_GTread[kv][0:-4] + 'c3.nii'
c3load = nib.load(c3map)
c3im = c3load.get_fdata()
cim = c1im + c2im + c3im
GTim = np.uint8(GTIntensity * cim)
Resultpsnr = psnr(predim, GTim)
PSNRall.append(Resultpsnr)
print('PSNR of case ' + str(kv+1) + ' is ' + str(Resultpsnr))
print('average PSNR is ' + str(np.mean(PSNRall)))
def psnr(img1, img2):
mse = np.mean((np.double(img1) - | np.double(img2) | numpy.double |
import os
import sys
import numpy as np
import torch
class DETECTION_UTILS:
def __init__(self) -> None:
pass
@staticmethod
def calc_brick_volume(bricks):
'''
bricks: [N, x0, y0, z0, x1, y1, z1]
'''
delta_bricks = bricks[:, 3:] - bricks[:,:3]
# assert np.all(delta_bricks > 0)
delta_bricks.clip(min = 0)
volumes = delta_bricks[:,0] * delta_bricks[:,1] * delta_bricks[:,2]
return volumes
@staticmethod
def calc_brick_iou(bricks1, bricks2):
'''
boxes: [N, x0,y0,z0,x1,y1,z1]
'''
v1 = DETECTION_UTILS.calc_brick_volume(bricks1)
v2 = DETECTION_UTILS.calc_brick_volume(bricks2)
pt_min = np.maximum(bricks1[:, :3], bricks2[:, :3])
pt_max = | np.minimum(bricks1[:, 3:], bricks2[:, 3:]) | numpy.minimum |
'''
## Data Loader ##
# Creates a data generator which loads and preprocesses the demonstrations into pairs of ranked trajectories
@author: <NAME> (<EMAIL>)
'''
import tensorflow as tf
import numpy as np
import os
class DataGenerator:
def __init__(self, data_dir, batch_size, traj_len, n_workers, preprocessing_offline):
self.traj_len = traj_len
if preprocessing_offline:
data_dir += '_preprocessed'
self.np_list = self.list_np_files(data_dir)
data = tf.data.Dataset.from_tensor_slices(self.np_list)
data = data.shuffle(len(self)).repeat()
if preprocessing_offline:
# The demonstrations data has already been preprocessed into trajectory pairs
# Run preprocess function on trajectory pairs (filtering out invalid examples where reward values are equal), and prefetch parsed samples into buffer (must use tf.py_func as we need a python function to load the np files)
data = data.map(lambda np_sample: tf.py_func(self._process_trajectory_pairs, [np_sample], [tf.float32, tf.float32, tf.double, tf.double]),
num_parallel_calls=n_workers).prefetch(buffer_size=5*batch_size)
# Batch samples together
# data = data.batch(batch_size, drop_remainder=True) # if tf version >= 1.10
data = data.apply(tf.contrib.data.batch_and_drop_remainder(batch_size)) # if tf version < 1.10
else:
# The data is still in the form of demonstrations, we need to preprocess and generate the trajectories live
# Batch into pairs of samples
# data = data.batch(2, drop_remainder=True) # if tf version >= 1.10
data = data.apply(tf.contrib.data.batch_and_drop_remainder(2)) # if tf version < 1.10
# Run preprocess function on demonstrations (filtering out invalid examples where reward values are equal) into trajectory samples, and prefetch parsed samples into buffer (must use tf.py_func as we need a python function to load the np files)
data = data.map(lambda np_sample: tf.py_func(self._process_demonstrations, [np_sample], [tf.float32, tf.float32, tf.double, tf.double]),
num_parallel_calls=n_workers).filter(lambda low_traj, high_traj, low_reward, high_reward: tf.not_equal(low_reward, high_reward)).prefetch(buffer_size=5*batch_size)
# Batch samples together
# data = data.batch(batch_size, drop_remainder=True) # if tf version >= 1.10
data = data.apply(tf.contrib.data.batch_and_drop_remainder(batch_size)) # if tf version < 1.10
self.data = data
def __len__(self):
return len(self.np_list)
def _process_trajectory_pairs(self, traj_pair_file):
"""Preprocessing function for already-generated trajectory pairs"""
traj_pair = np.load(traj_pair_file)
low_reward_snippet = traj_pair['low_reward_traj'].copy()
high_reward_snippet = traj_pair['high_reward_traj'].copy()
low_reward = traj_pair['low_reward_value'].copy()
high_reward = traj_pair['high_reward_value'].copy()
# Convert int to float and normalise to [0.0, 1.0] range
low_reward_snippet = low_reward_snippet.astype(np.float32, copy=False)
low_reward_snippet /= 255.0
high_reward_snippet = high_reward_snippet.astype(np.float32, copy=False)
high_reward_snippet /= 255.0
return low_reward_snippet, high_reward_snippet, low_reward, high_reward
def _process_demonstrations(self, demonstrations_files):
"""Preprocessing function for demonstrations - Generates preprocessed trajectory pairs from demonstrations"""
filenames = [demonstrations_files[0].decode('UTF-8'), demonstrations_files[1].decode('UTF-8')]
# Sort filenames into [lower_reward, higher_reward] order
filenames = sorted(filenames, key=lambda x: self.extract_reward(x))
low_reward = self.extract_reward(filenames[0])
high_reward = self.extract_reward(filenames[1])
# Only process samples further if they do not have equal rewards (as samples with equal rewards will be discarded later)
if low_reward != high_reward:
low_reward_traj = | np.load(filenames[0]) | numpy.load |
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 5 14:40:15 2018
This is the module to extract the road users coexisting with a given ego user
@author: cheng
"""
import numpy as np
from sklearn.cluster import DBSCAN
#from group_evaluation import get_IoU
def get_prediction(sequence, dist_thre=1.5, ratio=0.90, max_friends=100):
'''
Extract ego user's using group_detection
'''
Detector = Group_Detection(data=sequence, dist_thre=dist_thre, ratio_thre=ratio)
# Define the largest number of friends an ego user can have (here, include the ego user self)
# This number must be large enough to harvest all possibilities
t_friends = np.zeros([Detector.userList.shape[-1], max_friends])
for count, egoUserId in enumerate(Detector.userList):
userData = Detector.data[Detector.data[:, 1]==egoUserId, :]
if egoUserId != 0:
egoUserFl = np.unique(userData[:, 0])
frameData = Detector.get_frame_data(egoUserFl)
friends = Detector.frame_DBscan(frameData, egoUserId, egoUserFl)
store_fl = np.append([egoUserId], friends)
t_friends[count, 0:store_fl.shape[-1]] = store_fl
return t_friends
class Group_Detection():
'''
This is the class for group detection, which is a time sequence DBSCAN:
DBSCAN_friend: Using DBSCAN to cluster friends into group based on Euclidean distance
'''
def __init__(self, data, dist_thre=3, ratio_thre=0.9):
'''
params:
data_dir: it is the place where trajectory data resident
dist_thre: Euclidean distance threshold for defining a friend
ratio_thre: overlap threshold for defining a friend
'''
# Store paramters
self.data = data
self.dist_thre = dist_thre
self.ratio_thre = ratio_thre
# Get the list for all the unique frames
self.frameList = np.unique(self.data[:, 0])
# print('Frame list: ', self.frameList)
# Get the list for all unique users
self.userList = np.unique(self.data[:, 1])
# print('\nuser list: ', self.userList)
def get_frame_data(self, frameList):
'''
This is the function to get the data within the list of frames
params:
frameList: the list of the frames to be considered
'''
frameData = np.empty(shape=[0, 4])
for frame in frameList:
fData = self.data[self.data[:, 0]==frame, :]
frameData = | np.vstack((frameData, fData)) | numpy.vstack |
import numpy as np
def compute_iou(box, boxes, area, areas):
"""
compute ious of box over boxes
:param box:
:param boxes:
:param area: area of box
:param areas: areas of target boxes
:return: ious
"""
# max of top left and min of bottom down
x1 = np.maximum(box[0], boxes[:, 0])
y1 = np.maximum(box[1], boxes[:, 1])
x2 = | np.minimum(box[2], boxes[:, 2]) | numpy.minimum |
#!/usr/bin/python3
# -*- coding=utf-8 -*-
"""Data process utility functions."""
import numpy as np
import cv2
from PIL import Image, ImageEnhance, ImageFilter
def rand(a=0, b=1):
return np.random.rand()*(b-a) + a
def random_grayscale(image, prob=.2):
"""
Random convert image to grayscale
# Arguments
image: origin image for grayscale convert
numpy image array
prob: probability for grayscale convert,
scalar to control the convert probability.
# Returns
image: adjusted numpy image array.
"""
convert = rand() < prob
if convert:
#convert to grayscale first, and then
#back to 3 channels fake RGB
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
return image
def random_chroma(image, jitter=.5):
"""
Random adjust chroma (color level) for image
# Arguments
image: origin image for grayscale convert
numpy image array
jitter: jitter range for random chroma,
scalar to control the random color level.
# Returns
new_image: adjusted numpy image array.
"""
enh_col = ImageEnhance.Color(Image.fromarray(image.astype(np.uint8)))
color = rand(jitter, 1/jitter)
new_image = enh_col.enhance(color)
return | np.array(new_image) | numpy.array |
import numpy as np
import configparser
from typing import Callable
from math import sqrt, pi, gamma
import os
import numbers
from scipy.spatial.transform.rotation import Rotation
import plotly.graph_objs as go
def create_dir(dirname: str):
"""Creates a dictionary if it does not already exist."""
if not os.path.exists(dirname):
os.makedirs(dirname)
def read_cfg(cfg_name: str) -> dict:
"""Reads a config from text format into a dictionary."""
cfg = configparser.ConfigParser()
if cfg_name[-3:] == 'cfg':
cfg.read(cfg_name)
else:
cfg.read_string(cfg_name)
c = dict()
c['SEED'] = cfg.getint('general', 'SEED')
c['CONV_TOL'] = cfg.getfloat('general', 'CONV_TOL')
c['N'] = cfg.getint('general', 'N')
c['ALPHA'] = cfg.getfloat('general', 'ALPHA', fallback=1.0)
c['BETA'] = cfg.getfloat('general', 'BETA', fallback=0.0)
c['COLLISION_RES'] = cfg.getfloat('general', 'COLLISION_RES', fallback=1.0)
c['EPS'] = cfg.getfloat('general', 'EPS', fallback=1e-2)
c['RHO'] = cfg.getfloat('general', 'RHO', fallback=5e-1)
c['R_MAX'] = cfg.getfloat('general', 'R_MAX', fallback=1e-1)
c['GREEDY'] = cfg.getboolean('general', 'GREEDY', fallback=False)
c['PROJ_STEP_SIZE'] = cfg.getfloat('general', 'PROJ_STEP_SIZE', fallback=1.0)
if not os.path.exists('plots'):
os.makedirs('plots')
print(c)
return c
def check_limits(value,
min_value,
max_value) -> bool:
"""Check if all values are between [min_value, max_value].
Three input types are possible:
- value, min_value, max_value are scalars
- value is an array and min_value, max_value are scalars
- value, min_value, max_value are arrays and an elementwise check is performed
"""
# value, max and min are arrays
if (type(value) is np.ndarray) and type(max_value) is np.ndarray and type(min_value) is np.ndarray:
for i in range(value.size):
if value.item(i) > max_value.item(i) or value.item(i) < min_value.item(i):
return False
return True
# value is array, max and min are floats
if (type(value) is np.ndarray) and type(max_value) is float and type(min_value) is float:
for i in range(value.size):
if value.item(i) > max_value or value.item(i) < min_value:
return False
return True
# value, max, min are floats
if isinstance(value, numbers.Number):
return value <= max_value and value >= min_value
raise TypeError("inputs to limit_value have to be arrays or floats, but is", type(value))
def unit_ball_measure(n: int) -> float:
"""Computes volume of unit ball of dimension n."""
return (sqrt(pi) ** n) / gamma(float(n) / 2.0 + 1.0)
def path_cost(path: list) -> float:
"""Computes length of a path."""
cost = 0.0
if type(path[0]) is list:
for path_i in path:
for i in range(1, len(path_i)):
cost += np.linalg.norm(path_i[i-1] - path_i[i])
else:
for i in range(1, len(path)):
cost += np.linalg.norm(path[i-1] - path[i])
return cost
def is_on_manifold(m: Callable[[np.ndarray], np.ndarray],
q: np.ndarray,
eps=1e-4) -> bool:
"""Checks if a configuration q is on a manifold defined by a level set m(q)."""
return np.linalg.norm(m.y(q)) < eps
def get_volume(low: list,
up: list) -> float:
"""Returns the volume defined of a box defined by lower and upper limits."""
vol = 1.0
for i in range(len(low)):
vol = vol * (up[i] - low[i])
return vol
def plot_box(pd: list,
pos: np.ndarray,
quat: np.ndarray,
size: np.ndarray):
"""Plots a box in plotly at location pos with rotation quat and dimensions size."""
d = -size
p = size
X = np.array([[d[0], d[0], p[0], p[0], d[0], d[0], p[0], p[0]],
[d[1], p[1], p[1], d[1], d[1], p[1], p[1], d[1]],
[d[2], d[2], d[2], d[2], p[2], p[2], p[2], p[2]]])
R = Rotation.from_quat(quat)
X = R.apply(X.T) + pos
pd.append(go.Mesh3d(
x=X[:, 0],
y=X[:, 1],
z=X[:, 2],
flatshading=True,
lighting=dict(facenormalsepsilon=0),
lightposition=dict(x=2000, y=1000),
color='black',
i=[7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2],
j=[3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3],
k=[0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6],
name='y',
showscale=False
)
)
class Projection:
"""This class implements an iterative optimization routine that projects configurations onto a constraint."""
def __init__(self,
f: Callable[[np.ndarray], np.ndarray],
J: Callable[[np.ndarray], np.ndarray],
tol: float = 1e-5,
max_iter: int = 200,
step_size: float = 1.0):
self.f = f
self.J = J
self.tol = tol
self.max_iter = max_iter
self.step_size = step_size
def project(self, q: np.ndarray) -> (bool, np.ndarray):
"""Projects a point onto the constraint and return a boolean indicating success and the projected point."""
y = self.f(q)
y0 = 2.0 * np.linalg.norm(y)
iter = 0
while np.linalg.norm(y) > self.tol and iter < self.max_iter and np.linalg.norm(y) < y0:
J = self.J(q)
q = q - self.step_size * np.linalg.lstsq(J, y, rcond=-1)[0]
y = self.f(q)
iter += 1
result = np.linalg.norm(y) <= self.tol
return result, | np.array(q) | numpy.array |
'''
numpy最终要的特点就是N维数组对象(ndarray),他是一个快速而领会的大数据集容器
可以对数据执行一些数学运算,其语法和标量元素相同.
'''
from numpy.random import randn
import numpy as np
data = randn(2, 3) # 创建随机数2*3维
print(data)
print(data*10)
print(data + data)
'''
output:
data
[[ 0.26474196 0.39938213 0.00644464]
[-0.89070803 1.20568504 0.77317617]]
data * 10
[[ 2.64741962 3.99382133 0.06444643]
[ -8.90708032 12.05685039 7.73176167]]
data + data
[[ 0.52948392 0.79876427 0.01288929]
[-1.78141606 2.41137008 1.54635233]]
'''
'''
需要注意的是ndarray是一个通用的同构数据多维容器, 也就是说**所有元素的类型必须相同**
同时,每个数组都有一个shape(各维大小的元组)属性和一个dtype(用于说明数组数据类型的对象)
'''
arr = [1, '2', 'a', 'c']
d = np.array(arr) # 会把数组中不同类型的元素转换成相同类型
print(d)
'''
output:
['1' '2' 'a' 'c']
'''
print(d.shape, d.dtype)
'''
output:
(4,) <U21
'''
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]] # 创建多维数组
arr2 = np.array(data2) # 转换成多维
print(arr2.ndim, arr2.shape)
'''
output:
2 (2, 4)
'''
np.zeros(10) # 创建一维10个数据都为0的数组
np.zeros((3, 6)) # 创建一个3*6数据都为0的数组
np.empty((2, 3, 2)) # 创建2*3*2的数组
'''
创建数组函数
array 将输入数据转换为ndarray.
asarray 将输入数据转换为ndarray.
arange 类似内置range.返回ndarray
ones, 根据指定的形状和dtype创建一个全1的数组.
ones_like ones_like以另一个数组为参数, 并根据器形状和dtype创建一个全1的数组
zeros
zeros_like 类似上一个
empty
empty_like 同上
eye,
identity 穿件一个N*N单位矩阵(对角线为1, 其余为0)
'''
# ndarray的type可以显示转换
array = np.array([1, 2, 3, 4, 5])
float_arr = array.astype(np.float64) # 整形转换为浮点型
print(float_arr.dtype)
'''
output:
float64
'''
array = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
array = array.astype(np.int32) # 浮点型转换为整型(小数部分被截断)
print(array)
'''
output:
[ 3 -1 -2 0 12 10]
'''
'''
### 数组与标量之间的运算
数组可以不用编写循环就可以对数据进行批量运算(也就是矢量化).
大小相同的数组运算会将运算应用到元素级
'''
arr = np.array([[1., 2., 3.], [4., 5., 6.]])
print(arr)
'''
output:
[[ 1. 2. 3.]
[ 4. 5. 6.]]
'''
print(arr * arr)
'''
output:
[[ 1. 4. 9.]
[ 16. 25. 36.]]
'''
# 同样的,数组与标量间的计算也会传播到元素级(不同大小的数组运算叫广播)
print(1 / arr)
'''
output:
[[ 1. 0.5 0.33333333]
[ 0.25 0.2 0.16666667]]
'''
'''
## 基本的切片与索引
类似于python内置的list和tuple
### 花式索引
花式索引是numpy的术语, 他是利用整数数组进行索引
'''
arr = np.empty((8, 4))
for i in range(8):
arr[i] = i
print(arr)
'''
output:
[[ 0. 0. 0. 0.]
[ 1. 1. 1. 1.]
[ 2. 2. 2. 2.]
[ 3. 3. 3. 3.]
[ 4. 4. 4. 4.]
[ 5. 5. 5. 5.]
[ 6. 6. 6. 6.]
[ 7. 7. 7. 7.]]
'''
print(arr[[4, 3, 0, 6, 5]]) # 选取索引为4, 3, 0, 6, 5的行
'''
output:
[[ 4. 4. 4. 4.]
[ 3. 3. 3. 3.]
[ 0. 0. 0. 0.]
[ 6. 6. 6. 6.]
[ 5. 5. 5. 5.]]
'''
print(arr[[-1, -5]])
'''
output:
[[ 7. 7. 7. 7.]
[ 3. 3. 3. 3.]]
'''
# 一次性传入多个索引会返回一个一维数组
arr = np.empty((8, 4))
for i in range(1, 9):
for j in range(1, 5):
arr[i-1][j-1] = i * j
print(arr)
'''
output:
[[ 1. 2. 3. 4.]
[ 2. 4. 6. 8.]
[ 3. 6. 9. 12.]
[ 4. 8. 12. 16.]
[ 5. 10. 15. 20.]
[ 6. 12. 18. 24.]
[ 7. 14. 21. 28.]
[ 8. 16. 24. 32.]]
'''
print(arr[[1, 5, 7, 2], [0, 3, 1, 2]]) # 返回(1, 0), (5, 3), (7,1), (2, 2)这四个元素
# output: [ 2. 24. 16. 9.]
print(arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]) # 以返回(1, 0), (1, 3), (1, 1), (1, 2)
# (5, 0), ...
# (7, 0), ...
# (2, 0), ...
# 4*4的数组
'''
output:
[[ 2. 8. 4. 6.]
[ 6. 24. 12. 18.]
[ 8. 32. 16. 24.]
[ 3. 12. 6. 9.]]
'''
arr_ix = arr[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]
print(arr_ix)
'''
output:
[[ 2. 8. 4. 6.]
[ 6. 24. 12. 18.]
[ 8. 32. 16. 24.]
[ 3. 12. 6. 9.]]
'''
'''
numpy可以简化数据处理,避免了python写循环,用数组表达式代替循环的做法一般叫矢量化
一般来说,矢量化的运算要比纯Python的循环快上1-2个数量级
在一组树枝上计算(sqrt(x^2 + y^2))
'''
'''
from matplotlib.pyplot import imshow, title
import matplotlib.pyplot as plt
points = np.arange(-5, 5, 0.01)
xs, ys = np.meshgrid(points, points) # np.meshgrid函数接受2个一维5数组,并产生2个二维矩阵(分别对应x和y)
z = np.sqrt(xs ** 2 + ys ** 2)
plt.imshow(z, cmap=plt.cm.gray)
plt.colorbar()
'''
# plt.show()
# 将条件逻辑表述为数组运算
# numpy.where函数是三元表达式x if condition else y的矢量版本
xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, True, False])
# 需要判断cond中的值为True时选取xarr, 为False时选取yarr
result = [(x if c else y) for x, y, c in zip(xarr, yarr, cond)] # python版本
result = np.where(cond, xarr, yarr)
print(result)
'''
output:
[ 1.1 2.2 1.3 1.4 2.5]
'''
# np.where的第二个和第三个参数不一定是数组,它们可以是标量值.
# 在数据分析中,where通常用于根据一个数组产生另一个数组.
# 假设有一个由随机数数据组成的矩阵,希望把所有大于0的值替换为2, 小于0的值替换为-2
arr = | randn(4, 4) | numpy.random.randn |
"""CEC2008 benchmarking functions.
"""
import numpy as np
import opytimark.utils.decorator as d
from opytimark.core import CECBenchmark
# Fixes Numpy's random seed
np.random.seed(0)
class F1(CECBenchmark):
"""F1 class implements the Shifted Sphere's benchmarking function.
.. math:: f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} z_i^2 - 450 \mid z_i = x_i - o_i
Domain:
The function is commonly evaluated using :math:`x_i \in [-100, 100] \mid i = \{1, 2, \ldots, n\}, n \leq 1000`.
Global Minima:
:math:`f(\mathbf{x^*}) = -450 \mid \mathbf{x^*} = \mathbf{o}`.
"""
def __init__(self, name='F1', year='2008', auxiliary_data=('o'), dims=1000,
continuous=True, convex=True, differentiable=True, multimodal=False, separable=True):
"""Initialization method.
Args:
name (str): Name of the function.
year (str): Year of the function.
auxiliary_data (tuple): Auxiliary variables to be externally loaded.
dims (int): Number of allowed dimensions.
continuous (bool): Whether the function is continuous.
convex (bool): Whether the function is convex.
differentiable (bool): Whether the function is differentiable.
multimodal (bool): Whether the function is multimodal.
separable (bool): Whether the function is separable.
"""
super(F1, self).__init__(name, year, auxiliary_data, dims, continuous,
convex, differentiable, multimodal, separable)
@d.check_less_equal_dimension
def __call__(self, x):
"""This method returns the function's output when the class is called.
Args:
x (np.array): An input array for calculating the function's output.
Returns:
The benchmarking function output `f(x)`.
"""
# Re-calculates the input
z = x - self.o[:x.shape[0]]
# Calculating the Shifted Sphere's function
f = z ** 2
return np.sum(f) - 450
class F2(CECBenchmark):
"""F2 class implements the Shifted Schwefel's 2.21 benchmarking function.
.. math:: f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n) = \max_{i=1, \ldots, n}|z_i| - 450 \mid z_i = x_i - o_i
Domain:
The function is commonly evaluated using :math:`x_i \in [-100, 100] \mid i = \{1, 2, \ldots, n\}, n \leq 1000`.
Global Minima:
:math:`f(\mathbf{x^*}) = -450 \mid \mathbf{x^*} = \mathbf{o}`.
"""
def __init__(self, name='F2', year='2008', auxiliary_data=('o'), dims=1000,
continuous=True, convex=True, differentiable=True, multimodal=False, separable=False):
"""Initialization method.
Args:
name (str): Name of the function.
year (str): Year of the function.
auxiliary_data (tuple): Auxiliary variables to be externally loaded.
dims (int): Number of allowed dimensions.
continuous (bool): Whether the function is continuous.
convex (bool): Whether the function is convex.
differentiable (bool): Whether the function is differentiable.
multimodal (bool): Whether the function is multimodal.
separable (bool): Whether the function is separable.
"""
super(F2, self).__init__(name, year, auxiliary_data, dims, continuous,
convex, differentiable, multimodal, separable)
@d.check_less_equal_dimension
def __call__(self, x):
"""This method returns the function's output when the class is called.
Args:
x (np.array): An input array for calculating the function's output.
Returns:
The benchmarking function output `f(x)`.
"""
# Re-calculates the input
z = x - self.o[:x.shape[0]]
# Calculating the Schwefel's 2.21 function
f = np.fabs(z)
return np.amax(f) - 450
class F3(CECBenchmark):
"""F3 class implements the Shifted Rosenbrock's benchmarking function.
.. math:: f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n-1} (100(z_i^2-z_{i+1})^2 + (z_i - 1)^2) + 390 \mid z_i = x_i - o_i
Domain:
The function is commonly evaluated using :math:`x_i \in [-100, 100] \mid i = \{1, 2, \ldots, n\}, n \leq 1000`.
Global Minima:
:math:`f(\mathbf{x^*}) = -390 \mid \mathbf{x^*} = \mathbf{o} + 1`.
"""
def __init__(self, name='F3', year='2008', auxiliary_data=('o'), dims=1000,
continuous=True, convex=True, differentiable=True, multimodal=True, separable=False):
"""Initialization method.
Args:
name (str): Name of the function.
year (str): Year of the function.
auxiliary_data (tuple): Auxiliary variables to be externally loaded.
dims (int): Number of allowed dimensions.
continuous (bool): Whether the function is continuous.
convex (bool): Whether the function is convex.
differentiable (bool): Whether the function is differentiable.
multimodal (bool): Whether the function is multimodal.
separable (bool): Whether the function is separable.
"""
super(F3, self).__init__(name, year, auxiliary_data, dims, continuous,
convex, differentiable, multimodal, separable)
@d.check_less_equal_dimension
def __call__(self, x):
"""This method returns the function's output when the class is called.
Args:
x (np.array): An input array for calculating the function's output.
Returns:
The benchmarking function output `f(x)`.
"""
# Re-calculates the input
z = x - self.o[:x.shape[0]]
# Instantiating function
f = 0
# For every input dimension
for i in range(x.shape[0] - 1):
# Calculating the Shifted Rosenbrock's function
f += (100 * (z[i] ** 2 - z[i+1]) ** 2 + (z[i] - 1) ** 2)
return f + 390
class F4(CECBenchmark):
"""F4 class implements the Shifted Rastrigin's benchmarking function.
.. math:: f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} (z_i^2 - 10cos(2 \\pi z_i) + 10) - 330 \mid z_i = x_i - o_i
Domain:
The function is commonly evaluated using :math:`x_i \in [-5, 5] \mid i = \{1, 2, \ldots, n\}, n \leq 1000`.
Global Minima:
:math:`f(\mathbf{x^*}) = -330 \mid \mathbf{x^*} = \mathbf{o}`.
"""
def __init__(self, name='F4', year='2008', auxiliary_data=('o'), dims=1000,
continuous=True, convex=True, differentiable=True, multimodal=True, separable=True):
"""Initialization method.
Args:
name (str): Name of the function.
year (str): Year of the function.
auxiliary_data (tuple): Auxiliary variables to be externally loaded.
dims (int): Number of allowed dimensions.
continuous (bool): Whether the function is continuous.
convex (bool): Whether the function is convex.
differentiable (bool): Whether the function is differentiable.
multimodal (bool): Whether the function is multimodal.
separable (bool): Whether the function is separable.
"""
super(F4, self).__init__(name, year, auxiliary_data, dims, continuous,
convex, differentiable, multimodal, separable)
@d.check_less_equal_dimension
def __call__(self, x):
"""This method returns the function's output when the class is called.
Args:
x (np.array): An input array for calculating the function's output.
Returns:
The benchmarking function output `f(x)`.
"""
# Re-calculates the input
z = x - self.o[:x.shape[0]]
# Calculating the Shifted Rastrigin's function
f = z ** 2 - 10 * np.cos(2 * np.pi * z) + 10
return np.sum(f) - 330
class F5(CECBenchmark):
"""F5 class implements the Shifted Griewank's benchmarking function.
.. math:: f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n) = 1 + \sum_{i=1}^{n}\\frac{x_i^2}{4000} - \prod cos(\\frac{x_i}{\sqrt{i}}) - 180 \mid z_i = x_i - o_i
Domain:
The function is commonly evaluated using :math:`x_i \in [-600, 600] \mid i = \{1, 2, \ldots, n\}, n \leq 1000`.
Global Minima:
:math:`f(\mathbf{x^*}) = -180 \mid \mathbf{x^*} = \mathbf{o}`.
"""
def __init__(self, name='F5', year='2008', auxiliary_data=('o'), dims=1000,
continuous=True, convex=True, differentiable=True, multimodal=True, separable=False):
"""Initialization method.
Args:
name (str): Name of the function.
year (str): Year of the function.
auxiliary_data (tuple): Auxiliary variables to be externally loaded.
dims (int): Number of allowed dimensions.
continuous (bool): Whether the function is continuous.
convex (bool): Whether the function is convex.
differentiable (bool): Whether the function is differentiable.
multimodal (bool): Whether the function is multimodal.
separable (bool): Whether the function is separable.
"""
super(F5, self).__init__(name, year, auxiliary_data, dims, continuous,
convex, differentiable, multimodal, separable)
@d.check_less_equal_dimension
def __call__(self, x):
"""This method returns the function's output when the class is called.
Args:
x (np.array): An input array for calculating the function's output.
Returns:
The benchmarking function output `f(x)`.
"""
# Re-calculates the input
z = x - self.o[:x.shape[0]]
# Initializing terms
term1, term2 = 0, 1
# For every possible dimension of `x`
for i in range(x.shape[0]):
# Calculating first term
term1 += (z[i] ** 2) / 4000
# Calculating second term
term2 *= np.cos(z[i] / | np.sqrt(i + 1) | numpy.sqrt |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 6 10:37:16 2019
@authors: <NAME>, <NAME>, <NAME>
File Description:
The utility file used to load and preprocess data, format results, and
save results.
"""
# Libraries
from time import time
from os.path import exists, join
from os import mkdir
from numpy import mean, std, sum, min, delete
from pandas import read_csv, concat
# Hyper-Pareameters / CONSTANTS
SRC_NULL = 100 # Original Null Value
DST_NULL = -98 # Changed Null Value
MIN_WAPS = 9 # Minimum number of WAPS per sample.
def load_data(train_fname, val_fname, N, drop_columns=None, dst_null=DST_NULL,
drop_val=False):
'''
Loads both the training and validation data (if drop_val is False),
concatenates the datasets into one dataset. Splits the dataset into data
and labels (X and Y). Replaces Null values and sets all lower null values
to the replaced value. Normalizes data between 0 and 1 where 0 is weak
intensity and 1 is strong intensity.
Parameters: train_fname : (str) file name of training data - *.csv
val_fname : (str) file name of validation data - *.csv
N : (int) number of features
drop_columns : (list) column names to be removed from data
dst_null : (int) the value to change all null values to
drop_val : (boolean) if true then drops validation data
Returns : x_train : (Dataframe) training data
y_train : (Dataframe) training labels
x_test : (Dataframe) test data
y_test : (Dataframe) test labels
'''
tic = time() # Start function performance timer
if drop_val:
data = read_csv("data/" + train_fname)
else:
training_data = read_csv("data/" + train_fname)
validation_data = read_csv("data/" + val_fname)
data = concat((training_data, validation_data), ignore_index=True)
if drop_columns: # Drop useless columns if there are any specified.
data.drop(columns=drop_columns, inplace=True)
data = data[data.PHONEID != 17] # Phone 17s data is clearly corrupted.
# Split data from labels
X = data.iloc[:, :N]
Y = data.iloc[:, N:]
# Change null value to new value and set all lower values to it.
X.replace(SRC_NULL, dst_null, inplace=True)
X[X < dst_null] = dst_null
# Remove samples that have less than MIN_WAPS active WAPs
# Normalize data between 0 and 1 where 1 is strong signal and 0 is null
X /= min(X)
X = 1 - X
toc = time() # Report function performance timer
print("Data Load Timer: %.2f seconds" % (toc-tic))
return X, Y
def filter_out_low_WAPS(data, labels, num_samples=MIN_WAPS):
'''
Removes samples from the data that do not contain at least MIN_WAPS of
non-null intensities.
Parameters: data : (ndarray) 2D array for WAP intensities
labels : (ndarray) 2D array for labels
num_samples : (int) the mim required number of non-null values
Returns: new_data : (ndarray) 2D array for WAP intensities
new_labels : (ndarray) 2D array for labels
'''
drop_rows = list()
for i, x in enumerate(data):
count = | sum(x != DST_NULL) | numpy.sum |
#!/usr/bin/python3
# Copyright (C) 2020 Intel Corporation
from html import escape
from urllib.parse import parse_qs
from flup.server.fcgi import WSGIServer
import threading
import json
import base64
import os
import time
import sys
import wave
import datetime
import numpy as np
import ctypes
import inferservice_python as rt_api
from fcgi_codec import CTCCodec
import cv2
from shapely.geometry import Polygon
import pyclipper
import math
import copy
import logging
import logging.handlers
import socket
syslog = logging.handlers.SysLogHandler(address='/dev/log')
msgfmt = '%(asctime)s {0} %(name)s[%(process)d]: %(message)s'.format(socket.gethostname())
formatter = logging.Formatter(msgfmt, datefmt='%b %d %H:%M:%S')
syslog.setFormatter(formatter)
logger = logging.getLogger(os.path.basename(sys.argv[0]))
logger.addHandler(syslog)
logger.setLevel(logging.DEBUG)
class formula():
def __init__(self, vocab_file):
assert vocab_file.endswith(".json"), "vocab file must be json file"
with open(vocab_file, "r") as file:
dict_vocab = json.load(file)
dict_vocab['id2sign'] = {int(i): j for i, j in dict_vocab['id2sign'].items()}
self.index = dict_vocab["id2sign"]
def get_formula(self, targets):#get latex formula from index
phrase_formula = []
for target in targets:
if target == 2:
break
phrase_formula.append(
self.index.get(target, "?"))
return " ".join(phrase_formula)
def latex_preprocess_image( image_raw, tgt_shape):
img_h, img_w = image_raw.shape[0:2]
target_height, target_width = tgt_shape
new_h = min(target_height, img_h)
new_w = min(target_width, img_w)
image_raw=image_raw[:new_h, :new_w, :]
image = cv2.copyMakeBorder(image_raw, 0, target_height - img_h,
0, target_width - img_w, cv2.BORDER_CONSTANT,
None, (255,255,255))
return image
def latex_recognizer(latex_crop_list, latex_encode_xml, latex_decode_xml, urlinfo,vocab, formula_result_list):
for img in latex_crop_list:
img_decode = formula.latex_preprocess_image(img, (160, 1400))
img_encode = cv2.imencode('.jpg', img_decode)[1]
pic = list(img_encode)
pics = [pic]
other_pin = rt_api.vectorVecFloat()
#prepare out
dec_states_h = rt_api.vectorFloat()
dec_states_c = rt_api.vectorFloat()
output = rt_api.vectorFloat()
row_enc_out = rt_api.vectorFloat()
out = rt_api.vectorVecFloat()
out.append(dec_states_h)
out.append(dec_states_c)
out.append(output)
out.append(row_enc_out)
res = rt_api.infer_image(pics, 3, other_pin, latex_encode_xml, out, urlinfo)
logits = []
if res == 0:
max_formula_len = 128
dec_states_h = out[0]
dec_states_c = out[1]
output = out[2]
row_enc_out = out[3]
tgt = [[[0]]]
for _ in range(max_formula_len):
decode_model = latex_decode_xml
other_pin = rt_api.vectorVecFloat()
other_pin.append(rt_api.vectorFloat(dec_states_c))
other_pin.append(rt_api.vectorFloat(output))
other_pin.append(rt_api.vectorFloat(row_enc_out))
other_pin.append(rt_api.vectorFloat([tgt[0][0][0]]))
decode_out= rt_api.vectorVecFloat()
decode_out1 = rt_api.vectorFloat()
decode_out2 = rt_api.vectorFloat()
decode_out3 = rt_api.vectorFloat()
decode_out4 = rt_api.vectorFloat()
decode_out.append(decode_out1)
decode_out.append(decode_out2)
decode_out.append(decode_out3)
decode_out.append(decode_out4)
input_data = rt_api.vectorVecFloat()
x_pin1 = rt_api.vectorFloat(dec_states_h)
input_data.append(x_pin1)
input_vecs = rt_api.tripleVecFloat()
input_vecs.append(input_data)
res = rt_api.infer_common(input_vecs, other_pin, decode_model, "OPENVINO", decode_out, urlinfo)
dec_states_h = decode_out[0]
dec_states_c = decode_out[1]
output = decode_out[3]
logit = np.array(decode_out[2]).reshape(1,101)
logits.append(logit)
tgt = np.array([[np.argmax(logit, axis=1)]])
tgt = tgt.tolist()
if tgt[0][0][0] == 2:
break
logits = np.array(logits)
logits = logits.squeeze(axis=1)
targets = np.argmax(logits, axis=1)
formula_result = vocab.get_formula(targets)
formula_result_list.append(formula_result)
class chinese_handwritten():
def get_characters(charlist):
'''Get characters'''
with open(charlist, 'r', encoding='utf-8') as f:
return ''.join(line.strip('\n') for line in f)
def handwritten_image_preprocess(image, height, width):
image_ratio = float(image.shape[1]) / float(image.shape[0])
rw = int(height * image_ratio)
if rw <= 2000:
resized_image = cv2.resize(image, (rw, height), interpolation=cv2.INTER_AREA).astype(np.float32)
resized_img = resized_image[None, :, :]
_, rh, rw = resized_img.shape
pad_resized_img = np.pad(resized_img, ((0, 0), (0, height - rh), (0, width - rw)), mode='edge')
else:
image_ratio = width / image.shape[1]
rh = int(image.shape[0] * image_ratio)
resized_img = cv2.resize(image, (width, rh) , interpolation=cv2.INTER_AREA).astype(np.float32)
resized_img = resized_img[None, :, :]
_, rh, rw = resized_img.shape
pad_resized_img = np.pad(resized_img, ((0, 0), (0, height - rh), (0, width - rw)), mode='edge')
return pad_resized_img
def handwritten_recognizer(handwritten_crop_list, model_xml, model_label, urlinfo, handwritten_result_list):
for img in handwritten_crop_list:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = chinese_handwritten.handwritten_image_preprocess(img, 96, 2000)
img = img[0]
image_data = cv2.imencode('.jpg',img)[1]
pic = list(image_data)
pics = [pic]
other_pin = rt_api.vectorVecFloat()
out1 = rt_api.vectorFloat()
out = rt_api.vectorVecFloat() ##with opaque and stl_binding
out.append(out1)
res = rt_api.infer_image(pics, 3, other_pin, model_xml, out, urlinfo)
if res == 0:
char_label = chinese_handwritten.get_characters(model_label)
code_ocr = CTCCodec(char_label, 20)
predict = np.array(out[0])
predict = predict.reshape(186,1,4059)
result = code_ocr.decode(predict)
handwritten_result_list.append(result[0])
class ppocr():
def small_rectangle(contour_img):
rectangle = cv2.minAreaRect(contour_img)
left_top, right_top, right_down, left_down = 0, 1, 2, 3
box_points = sorted(list(cv2.boxPoints(rectangle)), key=lambda x: x[0])
if box_points[3][1] > box_points[2][1]:
right_top = 2
right_down = 3
else:
right_top = 3
right_down = 2
if box_points[1][1] > box_points[0][1]:
left_top = 0
left_down = 1
else:
left_top = 1
left_down = 0
rectangle_points = [box_points[left_top], box_points[right_top], box_points[right_down], box_points[left_down]]
return rectangle_points, min(rectangle[1])
def rectangle_score(bit_img, _rectangle):
rectangle = _rectangle.copy()
h, w = bit_img.shape[:2]
w_min = np.clip(np.floor(rectangle[:, 0].min()).astype(np.int), 0, w - 1)
h_min = np.clip(np.floor(rectangle[:, 1].min()).astype(np.int), 0, h - 1)
w_max = np.clip(np.ceil(rectangle[:, 0].max()).astype(np.int), 0, w - 1)
h_max = np.clip(np.ceil(rectangle[:, 1].max()).astype(np.int), 0, h - 1)
rectangle[:, 0] = rectangle[:, 0] - w_min
rectangle[:, 1] = rectangle[:, 1] - h_min
mask_img = np.zeros((h_max - h_min + 1, w_max - w_min + 1), dtype=np.uint8)
cv2.fillPoly(mask_img, rectangle.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bit_img[h_min:h_max + 1, w_min:w_max + 1], mask_img)[0]
def large_rectangle(rectangle):
enlarge_ratio = 1
pco = pyclipper.PyclipperOffset()
poly = Polygon(rectangle)
length = poly.length
area = poly.area
ratio = area * enlarge_ratio / length
pco.AddPath(rectangle, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded_box = np.array(pco.Execute(ratio))
return expanded_box
def bit_img_boxes(predict, _bit_img, ori_width, ori_height):
max_candidates = 1000
bit_img = _bit_img
height, width = bit_img.shape
contours = cv2.findContours((bit_img * 255).astype(np.uint8), cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
contours_num = len(contours)
if contours_num == 2:
new_contours, _ = contours[0], contours[1]
elif contours_num == 3:
img, new_contours, _ = contours[0], contours[1], contours[2]
contours_num = min(contours_num, max_candidates)
boxes =[]
box_scores =[]
for contour in new_contours:
box, s_height = ppocr.small_rectangle(contour)
min_size = 3
if s_height < min_size:
continue
box = np.array(box)
box_score = ppocr.rectangle_score(predict, box.reshape(-1, 2))
if box_score < 0.5:
continue
large_box = ppocr.large_rectangle(box).reshape(-1, 1, 2)
large_box, s_height = ppocr.small_rectangle(large_box)
if s_height < min_size+2:
continue
large_box = np.array(large_box)
w = np.round(large_box[:, 0] / width * ori_width)
h = np.round(large_box[:, 1] / height * ori_height)
large_box[:, 0] = np.clip(w, 0, ori_width)
large_box[:, 1] = np.clip(h, 0, ori_height)
boxes.append(large_box.astype(np.int16))
box_scores.append(box_score)
boxes = np.array(boxes, dtype=np.int16)
return boxes, box_scores
def get_text_img(ori_img, box):
top_width = np.linalg.norm(box[0] - box[1])
down_width = np.linalg.norm(box[2] - box[3])
crop_img_width = int(max(top_width, down_width))
left_height = np.linalg.norm(box[0] - box[3])
right_height = np.linalg.norm(box[1] - box[2])
crop_img_height = int(max(left_height,right_height))
points_std = np.float32([[0, 0], [crop_img_width, 0],
[crop_img_width, crop_img_height],
[0, crop_img_height]])
box = box.astype(np.float32)
M = cv2.getPerspectiveTransform(box, points_std)
text_img = cv2.warpPerspective(
ori_img,
M, (crop_img_width, crop_img_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
text_img_height, text_img_width = text_img.shape[0:2]
if text_img_height * 1.0 / text_img_width >= 1.5:
text_img = np.rot90(text_img)
return text_img
def boxes_sorted(boxes):
number = boxes.shape[0]
dt_boxes = sorted(boxes, key=lambda x: (x[0][1], x[0][0]))
dt_boxes = list(dt_boxes)
for i in range(number - 1):
if abs(dt_boxes[i + 1][0][1] - dt_boxes[i][0][1]) < 10 and \
(dt_boxes[i][0][0] > dt_boxes[i + 1][0][0]):
tmp_box = dt_boxes[i]
dt_boxes[i] = dt_boxes[i + 1]
dt_boxes[i + 1] = tmp_box
return dt_boxes
def det_postprocess(out, ori_img):
thresh = 0.5
boxes_batch = []
seg_img = np.array(out[0])
seg_img = seg_img.reshape(640,640,1)
predict = seg_img.reshape([1, seg_img.shape[0], seg_img.shape[1]])
seg_matrix = predict > thresh
kernel = np.array([[1, 1], [1, 1]])
for index in range(predict.shape[0]):
src = np.array(seg_matrix[index]).astype(np.uint8)
mask_img = cv2.dilate(src, kernel)
boxes, box_score = ppocr.bit_img_boxes(predict[index], mask_img, ori_img.shape[1], ori_img.shape[0])
sorted_boxes = ppocr.boxes_sorted(boxes)
crop_img_list = []
for index in range(len(sorted_boxes)):
tmp_box = copy.deepcopy(sorted_boxes[index])
crop_img = ppocr.get_text_img(ori_img, tmp_box)
crop_img_list.append(crop_img)
return crop_img_list, sorted_boxes
def text_detection(pics, model_xml, urlinfo):
other_pin = rt_api.vectorVecFloat()
out1 = rt_api.vectorFloat()
out = rt_api.vectorVecFloat()
out.append(out1)
res = rt_api.infer_image(pics, 3, other_pin, model_xml, out, urlinfo)
return res, out
def resize_rec_img(img, max_wh_ratio):
length = round(img.shape[1] / 100) * 100
if length == 0:
length = 100
if length > 1200:
length = 1200
dest_channel, dest_height, dest_width = [3, 32, length]
resized_image = cv2.resize(img, (dest_width, dest_height))
resized_image = resized_image.transpose((2, 0, 1))
pad_img = np.zeros((dest_channel, dest_height, dest_width), dtype=np.float32)
pad_img[:, :, 0:dest_width] = resized_image
return pad_img
def text_decode(preds_index, preds_prob=None, delete_duplicates=False):
label_path = "./models/ppocr/ppocr_keys_v1.txt"
use_space_char = True
number = len(preds_index)
label_str = ""
with open(label_path, "rb") as f:
lines = f.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n")
line = line.strip("\r\n")
label_str += line
if use_space_char:
label_str += " "
dict_label = list(label_str)
dict_label = ['blank'] + dict_label
ignored_characters = [0]#for ctc blank
results = []
for index in range(number):
characters = []
confidences = []
for idx in range(len(preds_index[index])):
if delete_duplicates and idx > 0 and preds_index[index][idx - 1] == preds_index[index][idx]:
continue
if preds_index[index][idx] in ignored_characters:
continue
characters.append(dict_label[int(preds_index[index][idx])])
if preds_prob is not None:
confidences.append(preds_prob[index][idx])
else:
confidences.append(1)
result = ''.join(characters)
results.append((result, | np.mean(confidences) | numpy.mean |
import os
import numpy as np
from bridge_evaluation_utils import read_text_lines, read_file_data, generate_depth_map, get_focal_length_baseline
eigen_test_filename_path = '/home2/Dave/pytorch/athena/utils/filenames/eigen_test_files.txt'
dataset_path = '/home2/Dave/downloads/kitti_raw/'
eigen_test_gt_save_path = '/home2/Dave/pytorch/athena/test_gt/eigen/'
eigen_test_gt_depth_save_path = eigen_test_gt_save_path + 'depths/'
def generate_eigen_depth_gt():
'''
generate eigen split depth ground truth using the projected point cloud.
also save imgage size, focal length and baseline
:return:
'''
if not os.path.exists(eigen_test_gt_save_path):
os.makedirs(eigen_test_gt_save_path)
if not os.path.exists(eigen_test_gt_depth_save_path):
os.makedirs(eigen_test_gt_depth_save_path)
n_samples = 697
eigen_test_files = read_text_lines(eigen_test_filename_path)
gt_velo, gt_calib, im_sizes, im_files, cams = read_file_data(eigen_test_files, dataset_path)
assert n_samples == len(gt_velo)
focal_length = np.zeros((697, 1), dtype=np.float32)
baseline = np.zeros((697, 1), dtype=np.float32)
img_size = np.zeros((697, 2), dtype=np.float32)
for idx in range(n_samples):
camera_id = cams[idx] # 2 is left, 3 is right
depth = generate_depth_map(gt_calib[idx], gt_velo[idx], im_sizes[idx], camera_id, False, True)
np.save(eigen_test_gt_depth_save_path + 'depth_{}.npy'.format(idx), depth)
fl, bl = get_focal_length_baseline(gt_calib[idx], camera_id)
focal_length[idx] = fl
baseline[idx] = bl
img_size[idx] = | np.asarray(im_sizes[idx]) | numpy.asarray |
import numpy as np
import dart_board
import pybse
from dart_board import sf_history
from dart_board import constants as c
# Load data
chains = np.load("../data/J0513_evidence_chain.npy")
derived = | np.load("../data/J0513_evidence_derived.npy") | numpy.load |
import itertools
import math
import sys
import numpy as np
import numpy.linalg
from pychemia import Structure, pcm_log
from pychemia.utils.mathematics import integral_gaussian
from pychemia.utils.periodic import atomic_number, covalent_radius, valence
class StructureAnalysis:
"""
The set of analysis provided by this class uses only structural information of one
single structure. The kind of analysis includes coordination numbers, bonds, distances,
hardness, fingerprints.
Most of those analysis rely on a robust computation of inter-atomic distances.
This class uses lazy evaluation for the distances and bonds to lower cpu and memory footprint.
"""
def __init__(self, structure, supercell=(1, 1, 1), radius=50):
"""
Takes one pychemia Structure object and will create a StructureAnalysis object. This object is computes the
distances between all atoms in the unit cell with replicas extending up to a distance given by 'radius'.
A supercell could be needed in cases where full connectivity of the entire crystal is needed.
:param structure: A pychemia Structure object
:param supercell: A supercell to be created from the Structure (Default=(1,1,1))
:param radius: Maximal distance computed between two atoms
"""
assert (isinstance(structure, Structure))
if supercell != (1, 1, 1):
self.structure = structure.supercell(supercell)
else:
self.structure = structure.copy()
self._distances = None
self._all_distances = None
self._pairs = None
self._supercell = supercell
self._radius = radius
# log.debug('Supercell : ' + str(self._supercell))
# log.debug('Radius : %7.2f' % self._radius)
@property
def radius(self):
return self._radius
@radius.setter
def radius(self, value):
assert (value > 0.0)
if value != self._radius:
self._distances = None
self._pairs = None
self._all_distances = None
self._radius = value
@property
def distances(self):
return self._distances
def close_distances(self):
"""
Computes the closest distances for all the atoms
:return: (tuple) Return a bond's dictionary and distance's list
"""
if self._pairs is None or self._distances is None:
pcm_log.debug('Computing distances from scratch...')
pairs_dict = {}
distances_list = []
index = 0
for i, j in itertools.combinations(range(self.structure.natom), 2):
if index % 100 == 0:
pcm_log.debug('Computing distance between atoms %d and %d' % (i, j))
ret = self.structure.lattice.distance2(self.structure.reduced[i], self.structure.reduced[j],
radius=self.radius)
for k in ret:
if str(i) not in pairs_dict:
pairs_dict[str(i)] = [index]
else:
pairs_dict[str(i)].append(index)
if str(j) not in pairs_dict:
pairs_dict[str(j)] = [index]
else:
pairs_dict[str(j)].append(index)
ret[k]['pair'] = (i, j)
distances_list.append(ret[k])
index += 1
for i in range(self.structure.natom):
ret = self.structure.lattice.distance2(self.structure.reduced[i], self.structure.reduced[i])
for k in ret:
if str(i) not in pairs_dict:
pairs_dict[str(i)] = [index]
else:
pairs_dict[str(i)].append(index)
ret[k]['pair'] = (i, i)
distances_list.append(ret[k])
index += 1
self._pairs = pairs_dict
self._distances = distances_list
return self._pairs, self._distances
def all_distances(self):
if self._all_distances is None:
ret = {}
for i, j in itertools.combinations_with_replacement(range(self.structure.natom), 2):
pair = (i, j)
ret[pair] = self.structure.lattice.distances_in_sphere(self.structure.reduced[i],
self.structure.reduced[j],
radius=self.radius)
self._all_distances = ret
return self._all_distances
def all_distances_by_species(self):
all_distances = self.all_distances()
ret = {}
symbols_indexed = np.array([self.structure.species.index(x) for x in self.structure.symbols])
# print self.structure.symbols
for ipair in all_distances:
key = tuple(sorted(symbols_indexed[np.array(ipair)]))
# print ipair, key
if key in ret:
ret[key] = np.concatenate((ret[key], all_distances[ipair]['distance']))
else:
ret[key] = all_distances[ipair]['distance'].copy()
# Sorting arrays
for key in ret:
ret[key].sort()
return ret
def structure_distances(self, delta=0.01, sigma=0.01, integrated=True):
dist_spec = self.all_distances_by_species()
discrete_rdf = {}
nbins = int((self.radius + 5 * delta) / delta)
discrete_rdf_x = np.arange(0, nbins * delta, delta)
for spec_pair in dist_spec:
discrete_rdf[spec_pair] = np.zeros(nbins)
positive_distances = dist_spec[spec_pair][dist_spec[spec_pair] > 0]
# log.debug('Pair %s' % str(spec_pair))
for Rij in positive_distances:
# Integrating for bin from - 8*sigma to +8*sigma centered on Rij
# Values outside this range are negligible
imin = int(max(0, (Rij - 8 * sigma) / delta))
imax = int(min(len(discrete_rdf_x), (Rij + 8 * sigma) / delta))
# log.debug('Computing for distance %7.3f for indices between %d and %d' % (Rij, imin, imax))
for i in range(imin, imax):
x = discrete_rdf_x[i]
if not integrated:
discrete_rdf[spec_pair][i] += np.exp(-((x - Rij) ** 2) / (2 * sigma * sigma)) / (
4 * math.pi * Rij * Rij)
else:
discrete_rdf[spec_pair][i] += integral_gaussian(x, x + delta, Rij, sigma) / (
4 * math.pi * Rij * Rij)
return discrete_rdf_x, discrete_rdf
def fp_oganov(self, delta=0.01, sigma=0.01):
struc_dist_x, struc_dist = self.structure_distances(delta=delta, sigma=sigma)
fp_oganov = struc_dist.copy()
vol = self.structure.volume
for spec_pair in struc_dist:
for i in range(len(struc_dist[spec_pair])):
specie0=self.structure.species[spec_pair[0]]
specie1=self.structure.species[spec_pair[1]]
number_atoms0 = self.structure.composition[specie0]
number_atoms1 = self.structure.composition[specie1]
fp_oganov[spec_pair][i] *= vol / (delta * number_atoms0 * number_atoms1)
fp_oganov[spec_pair][i] -= 1
return struc_dist_x, fp_oganov
def bonds_coordination(self, initial_cutoff_radius=0.8, use_laplacian=True, jump=0.01, tol=1E-15):
cutoff_radius = initial_cutoff_radius
ad = self.all_distances()
bonds = {}
while True:
laplacian = np.zeros((self.structure.natom, self.structure.natom), dtype=np.int8)
for pair in ad:
atom1 = self.structure.symbols[pair[0]]
atom2 = self.structure.symbols[pair[1]]
sum_covalent_radius = sum(covalent_radius([atom1, atom2]))
condition = np.bitwise_and(ad[pair]['distance'] < cutoff_radius * sum_covalent_radius,
ad[pair]['distance'] > 0)
bonds[pair] = ad[pair]['distance'][condition]
if len(bonds[pair]) > 0:
laplacian[pair[0], pair[1]] = -1
laplacian[pair[1], pair[0]] = -1
for i in range(self.structure.natom):
laplacian[i, i] = 0
laplacian[i, i] = -sum(laplacian[i])
if use_laplacian:
if np.max(np.abs(laplacian)) == 0:
cutoff_radius += jump
ev = numpy.linalg.eigvalsh(laplacian)
if sum(ev < tol) > 1:
cutoff_radius += jump
else:
break
else:
break
coordination = np.zeros(self.structure.natom, dtype=int)
for pair in bonds:
coordination[pair[0]] += len(bonds[pair])
coordination[pair[1]] += len(bonds[pair])
return bonds, coordination, round(cutoff_radius, 3)
def get_bonds_coordination(self, initial_cutoff_radius=0.8, ensure_conectivity=False, use_laplacian=True,
verbose=False, tol=1E-15, jump=0.01, use_jump=True):
"""
Computes simultaneously the bonds for all atoms and the coordination
number using a multiplicative tolerance for the sum of covalent radius
:param use_jump:
:param jump:
:param tol:
:param verbose:
:param use_laplacian:
:param initial_cutoff_radius: (float) Tolerance factor (default is 1.2)
:param ensure_conectivity: (bool) If True the tolerance of each bond is
adjusted to ensure that each atom is connected at least once
:return: tuple
"""
if verbose:
print('Computing all distances...')
bonds_dict, distances_list = self.close_distances()
if verbose:
print('Number of distances computed: ', len(distances_list))
cutoff_radius = initial_cutoff_radius
bonds = None
coordination = None
tolerances = None
while True:
if verbose:
print('Current cutoff radius : ', cutoff_radius)
bonds = []
tolerances = []
for i in range(self.structure.natom):
tole = cutoff_radius
while True:
tmp_bonds = []
min_proportion = sys.float_info.max
for j in bonds_dict[str(i)]:
atom1 = self.structure.symbols[distances_list[j]['pair'][0]]
atom2 = self.structure.symbols[distances_list[j]['pair'][1]]
sum_covalent_radius = sum(covalent_radius([atom1, atom2]))
distance = distances_list[j]['distance']
if distance == 0.0:
continue
proportion = distance / sum_covalent_radius
min_proportion = min(min_proportion, proportion)
if proportion <= tole:
tmp_bonds.append(j)
if len(tmp_bonds) == 0 and ensure_conectivity:
tole = min_proportion
cutoff_radius = tole
else:
bonds.append(tmp_bonds)
tolerances.append(min_proportion)
break
if use_laplacian:
size = (self.structure.natom, self.structure.natom)
laplacian = np.zeros(size, dtype=np.int8)
for listibonds in bonds:
for ibond in listibonds:
data = distances_list[ibond]
i = data['pair'][0]
j = data['pair'][1]
laplacian[i, j] = -1
laplacian[j, i] = -1
# print '%d %d' % (i,j)
for i in range(self.structure.natom):
laplacian[i, i] = 0
laplacian[i, i] = -sum(laplacian[i])
if verbose:
print(laplacian)
if np.max( | np.abs(laplacian) | numpy.abs |
"""
fitmaker.py written by <NAME> : <EMAIL>
Collection of functions to run the fit (gtlike)
the class FitMaker will call the function of the observation class (gtfunction.py) and prepare the fit
by computing the fits file.
it can distinguish between the binned and unbinnned analysis
begun September 2011
"""
#import logging
#logging.basicConfig(level=logging.INFO)
#log = logging.getLogger(__name__)
import numpy as np
import string
try:
import astropy.io.fits as fits
except ImportError:
import pyfits as fits
from UnbinnedAnalysis import UnbinnedAnalysis, UnbinnedObs
from BinnedAnalysis import BinnedAnalysis, BinnedObs, BinnedConfig
from enrico import utils
from enrico import Loggin
from enrico import environ
import pyLikelihood as pyLike
class FitMaker(Loggin.Message):
"""Collection of functions to prepare/run the GTLIKE fit
and compute an upper limit is needed"""
def __init__(self, obs, config):
super(FitMaker,self).__init__()
Loggin.Message.__init__(self)
self.obs = obs
self.config = config
self.task_number = 1
self.log_like = 0
def _log(self, task='', description=''):
print()
print(("\033[34m"+'# ' + '*' * 60))
if task:
task = '%10s --- ' % task
print(("\033[34m"+'# *** %3d %s%s' %
(self.task_number, task, description)))
print(("\033[34m"+'# ' + '*' * 60+"\033[0m"))
self.task_number += 1
def FirstSelection(self,config=None):
"""Make a coarse selection of events from original file"""
self._log('gtselect', 'Select data from library, coarse cut')#run gtselect
if config!=None:
self.obs.Configuration = config
self.obs.LoadConfiguration()
self.obs.FirstCut()
self.obs.Configuration = self.config
self.obs.LoadConfiguration()
else:
self.obs.FirstCut()
def GenerateFits(self):
"""Run the different ST tools and compute the fits files
First it runs the tools that are common to the binned
and unbinned analysis chain then it run the specific
tools following the choise of the user"""
#Run the tools common to binned and unbinned chain
self._log('gtselect', 'Select data from library, fine cut')#run gtselect
self.obs.SelectEvents()
self._log('gtmktime', 'Update the GTI and cut data based on ROI')#run gtmktime
self.obs.MkTime()
if (self.config["analysis"]["ComputeDiffrsp"] == "yes" and self.config["analysis"]["likelihood"] == "unbinned"):
self._log('gtdiffrsp', 'Compute Diffuse response')
self.obs.DiffResps()#run gtdiffresp
self._log('gtbin', 'Create count maps (square fully embed in the ROI circle)')
self.obs.Gtbin()
self._log('gtltcube', 'Make live time cube')#run gtltcube
self.obs.ExpCube()
#Choose between the binned of the unbinned analysis
if self.config['analysis']['likelihood'] == 'binned': #binned analysis chain
self._log('gtbin', 'Make count map CCUBE')#run gtbin
self.obs.GtCcube()
self._log('gtexpcube2', 'Make binned exposure cube')#run gtexpcube2
self.obs.GtBinnedMap()
self._log('gtsrcmap', 'Make a source map')#run gtsrcmap
self.obs.SrcMap()
self.info('Compute the psf')#run gtpsf
self.obs.GtPSF()
self.info('Compute Energy Migration Matrices')#run gtpsf
self.obs.GtDRM()
# the model should be generated for each component after optimizing.
#self._log('gtmodel', 'Make a model map')#run gtmodel
#self.obs.ModelMap(self.config["file"]["xml"])
if self.config['analysis']['likelihood'] == 'unbinned': #unbinned analysis chain
self._log('gtexpmap', 'Make an exposure map')
self.obs.ExpMap()
#the function ends here. It does not run gtlike
def CreateLikeObject(self):
"""Create an UnbinnedAnalysis or a BinnedAnalysis and retrun it."""
#create binnedAnalysis object
if self.config['analysis']['likelihood'] == 'binned':
use_edisp = self.config['analysis']['EnergyDispersion'] == 'yes'
edisp_bins = -2 if use_edisp==True else 0
Obs = BinnedObs(srcMaps=self.obs.srcMap,
expCube=self.obs.Cubename,
binnedExpMap=self.obs.BinnedMapfile,
irfs=self.obs.irfs)
Cfg = BinnedConfig(use_edisp=use_edisp,
edisp_bins=edisp_bins)
Fit = BinnedAnalysis(Obs, self.obs.xmlfile, config=Cfg,
optimizer=self.config['fitting']['optimizer'])
Fit.setEnergyRange(self.obs.Emin,self.obs.Emax)
#print(("Is edisp enabled? {0}".format(str(Fit.logLike.use_edisp()))))
#create a unbinnedAnalysis object
if self.config['analysis']['likelihood'] == 'unbinned':
Obs = UnbinnedObs(self.obs.mktimefile,
self.obs.ft2,
expMap=self.obs.Mapname,
expCube=self.obs.Cubename,
irfs=self.obs.irfs)
Fit = UnbinnedAnalysis(Obs, self.obs.xmlfile,
optimizer=self.config['fitting']['optimizer'])
# Fix this, EBL absorbed models use LogParabola with b=0 instead of PowerLaw,
# we may want to allow fixed shape for that case
if float(self.config['Spectrum']['FrozenSpectralIndex']!=0):
parameters = dict()
parameters['Index'] = -float(self.config['Spectrum']['FrozenSpectralIndex'])
parameters['alpha'] = +float(self.config['Spectrum']['FrozenSpectralIndex'])
parameters['Index1'] = -float(self.config['Spectrum']['FrozenSpectralIndex'])
parameters['beta'] = 0
parameters['Index2'] = 2.
parameters['Cutoff'] = 30000. # set the cutoff to be high
for key in list(parameters.keys()):
IdGamma = utils.getParamIndx(Fit, self.obs.srcname, key)
if (IdGamma == -1):
continue
else:
self.info("Freezing %s = %s" %(str(key),str(parameters[key])))
Fit[IdGamma] = parameters[key] # set the parameter
Fit[IdGamma].setFree(False)#the variable index is frozen to compute the UL
return Fit #return the BinnedAnalysis or UnbinnedAnalysis object.
def GetOptObject(self,Fit,method):
if method == 'MINUIT':
optObject = pyLike.Minuit(Fit.logLike)
elif method == 'NEWMINUIT':
optObject = pyLike.NewMinuit(Fit.logLike)
else:
optFactory = pyLike.OptimizerFactory_instance()
optObject = optFactory.create(str(method), Fit.logLike)
return optObject
def GetStatus(self,Fit,optObject):
status = optObject.getRetCode()
if isinstance(optObject, pyLike.Minuit) == 'MINUIT':
edm = optObject.getDistance()
quality = optObject.getQuality() if status==0 else 2
elif isinstance(optObject, pyLike.NewMinuit):
edm = optObject.getDistance()
check = np.bitwise_and(np.bitwise_not(156), status)
quality = 3 if check==0 else 0
else:
edm = optObject.getDistance()
quality = 3 if status==0 else 0
loglike = optObject.stat().value()
return(edm,quality,loglike)
def _PerformFit(self, Fit, methods=["MINUIT"], covar=False):
"""Perform a fit with the selected methods and extract the edm, quality of fit, etc."""
for method in methods:
try:
optObject = self.GetOptObject(Fit,self.config['fitting']['optimizer'])
self.log_like = Fit.fit(verbosity=0, covar=True, optimizer=method, optObject=optObject)
edm,quality,loglike = self.GetStatus(Fit,optObject)
if self.config['verbose'] == 'yes' :
print(('Fit output with {1}: {0} [quality: {2}]'.format(
self.log_like,self.config['fitting']['optimizer'],quality)))
except Exception as exc:
self.warning('Exception while running {0}, {1}'.format(method,str(exc)))
else:
break
return(Fit)
def PerformFit(self, Fit, writeXml = True):
"""Run gtlile tool. First it run gtlike with the DRNMGB optimizer
and the user optimizer after. A dictionnay is return with all
the releveant results"""
self._log('gtlike', 'Run likelihood analysis')
# TODO fix this part
# Change the fit tolerance to the one given by the user
Fit.ftol = float(self.config['fitting']['ftol'])
# Fit with DRMNGB/DRMNFB (as recommended in gtlike fhelp) optimizer to
# obtain initial parameters close to the minimum. Then switch optimizer.
list_of_methods = ['DRMNFB','DRMNGB']
Fit = self._PerformFit(Fit, list_of_methods, covar=False)
# 2nd precise fit with the user optimizer and ask gtlike to compute the covariance matrix
if self.config['fitting']['optimizer'] in ["MINUIT","NEWMINUIT"]:
list_of_methods = ["NEWMINUIT","MINUIT"]
else:
list_of_methods = [self.config['fitting']['optimizer']]
Fit = self._PerformFit(Fit, list_of_methods, covar=True)
# remove source with TS<min_source_TS (default=1)
# to improve convergence and re-fit
try: self.config['fitting']['min_source_TS']
except KeyError: self.config['fitting']['min_source_TS'] = 1.
Fit = self.RemoveWeakSources(Fit, self.config['fitting']['min_source_TS'])
self._log('Re-optimize', '')
self._PerformFit(Fit, list_of_methods, covar=True)
self.outXml = None
if writeXml :
self.outXml = utils._dump_xml(self.config)
Fit.writeXml(self.outXml)
self.success("Fit with gtlike performed")
def RemoveWeakSources(self,Fit,minTS=1.0):
"""Remove weak sources and re-optimize to get a better minimum."""
self._log('','Remove all the weak (TS<%.2f) sources' %minTS)
SrcTsDict = dict()
for src in Fit.model.srcNames:
SrcTsDict[src] = Fit.Ts(src)
if (SrcTsDict[src]<minTS) and not(src == self.obs.srcname):
for comp in Fit.components:
if comp.logLike.getSource(src).getType() == 'Point':
if self.config['verbose'] == 'yes' :
self.info("deleting source "+src+" with TS = "+\
str(SrcTsDict[src])+" from the model")
comp.deleteSource(src)
for src in Fit.model.srcNames:
if (SrcTsDict[src]>=minTS):
if self.config['verbose'] == 'yes' :
self.info('keeping source {0} with TS={1:.2e}'.format(src,SrcTsDict[src]))
return Fit
def GetAndPrintResults(self, Fit):
"""Get and print some useful results. Also contruct a dictonnary and fill it with results"""
if self.config['verbose'] == 'yes' :
self._log('Results', 'Print results of the fit')
Result = {}
if self.config['verbose'] == 'yes' :
print((Fit.model,"\n"))
self.info("Results for the Fit")
# Print src name, Npred and TS for source with TS > 5
print("Source Name\tNpred\tTS")
#TODO
#for src in Fit.model.srcNames:
#if Fit.Ts(src) > 5:
# print src, "\t%2.3f\t%2.3f" % (Fit.NpredValue(src), Fit.Ts(src))
# fill the dictonnary with some values
Result['Optimizer'] = self.config['fitting']['optimizer']
Result['Npred'] = Fit.NpredValue(self.obs.srcname)
Result['TS'] = Fit.Ts(self.obs.srcname)
if self.config['verbose'] == 'yes' :
print(("Values and (MINOS) errors for " + self.obs.srcname))
print(("TS : ", Fit.Ts(self.obs.srcname)))
# Get the python object 'Spectrum' for the source of interest
spectrum = Fit[self.obs.srcname].funcs['Spectrum']
# Get the names of the parameters for the source of interest
ParName = spectrum.paramNames
#Get the model type and fill the dictonnary
stype = Fit.model.srcs[self.obs.srcname].spectrum().genericName()
Result['ModelType'] = stype
Result['log_like'] = Fit.logLike.value()
#Add the energy information to the result dictionnary
Result['Emin'] = self.obs.Emin
Result['Emax'] = self.obs.Emax
#Add the time information to the result dictionnary
Result['tmin'] = self.config['time']['tmin']
Result['tmax'] = self.config['time']['tmax']
Result['SrcName'] = self.obs.srcname
Result['Flux'] = Fit.flux(self.obs.srcname,self.obs.Emin,self.obs.Emax)
Result['dFlux'] = Fit.fluxError(self.obs.srcname,self.obs.Emin,self.obs.Emax)
Result['EFlux'] = Fit.energyFlux(self.obs.srcname,self.obs.Emin,self.obs.Emax)
Result['dEFlux'] = Fit.energyFluxError(self.obs.srcname,self.obs.Emin,self.obs.Emax)
for par in ParName : #Loop over the parameters and get value, error and scale
ParValue = spectrum.getParam(par).value()
ParError = spectrum.getParam(par).error()
Scale = spectrum.getParam(par).getScale()
Result[par] = ParValue * Scale
Result['d'+par] = ParError * Scale
if ParError>0: # Compute MINOS errors for relevent parameters Fit.Ts(self.obs.srcname) > 5 and
try:
MinosErrors = Fit.minosError(self.obs.srcname, par)
if self.config['verbose'] == 'yes' :
print((par+" : %2.2f +/- %2.2f [ %2.2f, + %2.2f ] %2.0e" %
(ParValue, ParError, MinosErrors[0], MinosErrors[1], Scale)))
Result.update({'d'+par+'-': MinosErrors[0] * Scale})
Result.update({'d'+par+'+': MinosErrors[1] * Scale})
except:
if self.config['verbose'] == 'yes' :
print((par+" : %2.2f +/- %2.2f %2.0e" %
(ParValue, ParError, Scale)))
else:
if self.config['verbose'] == 'yes' :
print((par+" : %2.2f %2.0e" %
(ParValue, Scale)))
try: # get covariance matrix
if self.config['verbose'] == 'yes' :
utils.GetCovar(self.obs.srcname, Fit)
except:
pass #if the covariance matrix has not been computed
if self.config['verbose'] == 'yes' :
utils.GetFluxes(Fit,self.obs.Emin,self.obs.Emax) #print the flux of all the sources
#Compute an UL if the source is too faint
if float(self.config['UpperLimit']['TSlimit']) > Fit.Ts(self.obs.srcname):
if self.config['UpperLimit']['envelope'] == 'yes':
self.EnvelopeUL(Fit)
else:
Ulval = self.ComputeUL(Fit)
Result['Ulvalue'] = Ulval
return Result #Return the dictionnary
def PoissonUL(self,Fit):
""" Compute UL using Feldman-cousin poisson stat"""
self.info('Compute the exposure')#run gtexposure
try :
spfile = fits.open(self.obs.lcfile)
except:
self.obs.GtLCbin(dt = self.config['time']['tmax']-self.config['time']['tmin'])
#spfile = pyfits.open(self.obs.lcfile)
try:
self.obs.Configuration['AppLC']['index'] = self.config['UpperLimit']['SpectralIndex']
except:
try:
self.obs.Configuration['AppLC']['index']
except:
self.info("Cannot find the spectral index")
self.obs.Configuration['AppLC']['index'] = 1.5
self.info("Assuming spectral index of %s" %self.info("Assuming default index of 1.5"))
self.obs.GtExposure()
Exposure = np.sum(spfile[1].data.field("EXPOSURE"))
### Run it in any case (useful for instance for the DL3)
#self.info('Compute the psf')#run gtpsf
#self.obs.GtPSF()
ccube = fits.open(self.obs.ccube)
psfres = fits.open(self.obs.psf)
#read psf and get the 68% containement radius
theta = (psfres[2].data["Theta"])
theta68 = np.zeros(len(psfres[1].data["psf"]))
for i in range(len(psfres[1].data["psf"])):
integral = np.trapz(psfres[1].data["psf"][i],theta)
for j in range(psfres[1].data["psf"][i].size):
if np.trapz(psfres[1].data["psf"][i][:j],theta[:j])/integral>0.68:
theta68[i] = theta[j]
break
#read the CCUBE
x = np.arange(-abs(int(ccube[0].header["CRPIX1"])*ccube[0].header["CDELT1"]),\
abs(ccube[0].header["CRPIX1"]*ccube[0].header["CDELT1"]),abs(ccube[0].header["CDELT1"]))
y = np.arange(-abs(ccube[0].header["CRPIX2"]*ccube[0].header["CDELT2"]),\
abs(int(ccube[0].header["CRPIX2"])*ccube[0].header["CDELT2"]),abs(ccube[0].header["CDELT2"]))
xx, yy = np.meshgrid(x, y)
dist = np.sqrt(xx**2 + yy**2)
Obsevt = 0 #compute the number of events within the PSF radius
for i in range(len(psfres[1].data["psf"])):
maps = ccube[0].data[i]
Obsevt += sum(maps[dist<theta68[i]])/0.68
nbg = max(0,int(Obsevt-Fit.NpredValue(self.obs.srcname)))
Obsevt = int(Fit.NpredValue(self.obs.srcname)+nbg)
if Obsevt> 20:
self.warning("Observed Numbers of event too high (>20)\n abort and return -1")
return -1
cl = str(int(float(self.config['UpperLimit']['cl'])*100))
try :
ullookup = np.genfromtxt(environ.ENRICO_DIR+'/enrico/extern/UL_poisson_'+cl+'.dat',unpack=True)
except:
self.warning("cannot find the file "+environ.ENRICO_DIR+'/enrico/extern/UL_poisson_'+cl+'.dat')
bkglookup = np.array([0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0])
measurement = ullookup[0] #the first row is the measurement
uls = ullookup[2:-1:2] #keep only 1 row over 2 since we don't care about LL
self.info("Found "+str(Obsevt)+" events for "+str(nbg)+" background event ")
# print uls[bkglookup.searchsorted(nbg)][measurement.searchsorted(Obsevt)]," ",Exposure
return uls[bkglookup.searchsorted(nbg)][measurement.searchsorted(Obsevt)]/Exposure
def ComputeUL(self, Fit):
"""Compute an Upper Limit using either the profil or integral method
See the ST cicerone for more information on the 2 method"""
self._log('UpperLimit', 'Compute upper Limit')
#Index given by the user
self.info("Assumed index is "+str(self.config['UpperLimit']['SpectralIndex']))
parameters = dict()
parameters['Index'] = -float(self.config['UpperLimit']['SpectralIndex'])
parameters['alpha'] = +float(self.config['UpperLimit']['SpectralIndex'])
parameters['Index1'] = -float(self.config['UpperLimit']['SpectralIndex'])
parameters['beta'] = 0
parameters['Index2'] = 2.
parameters['Cutoff'] = 30000. # set the cutoff to be high
for key in list(parameters.keys()):
try:
utils.FreezeParams(Fit,self.obs.srcname, key, parameters[key])
except:
continue
import scipy.stats
cl = float(self.config['UpperLimit']['cl'])
delta = 0.5*scipy.stats.chi2.isf(1-2*(cl-0.5), 1)
if self.config['UpperLimit']['Method'] == "Profile": #The method is Profile
if Fit.Ts(self.obs.srcname)<2 :
self.warning("TS of the source is very low, better to use Integral method")
try:
import UpperLimits
ulobject = UpperLimits.UpperLimits(Fit)
ul, _ = ulobject[self.obs.srcname].compute(emin=self.obs.Emin,
emax=self.obs.Emax,delta=delta)
#delta=2.71 / 2)
self.info("Upper limit using Profile method: ")
#print ulobject[self.obs.srcname].results
self.warning("Be sure to have enough photons to validate the gaussian assumption")
except RuntimeError:
self.warning("ST UpperLimits returned RuntimeError, trying Integral")
self.config['UpperLimit']['Method'] = 'Integral'
if self.config['UpperLimit']['Method'] == "Integral": #The method is Integral
import IntegralUpperLimit
try:
ul, _ = IntegralUpperLimit.calc_int(Fit, self.obs.srcname, cl=cl,
verbosity=0,emin=self.obs.Emin,
emax=self.obs.Emax)
except RuntimeError:
self.warning("ST UpperLimits returned RuntimeError, trying Poisson")
self.config['UpperLimit']['Method'] = 'Poisson'
print(("Upper limit using Integral method: ", ul))
self.warning("Be sure to have enough photons to validate the gaussian assumption")
if self.config['UpperLimit']['Method'] == "Poisson": #The method is Poisson
ul = self.PoissonUL(Fit)
print(("Upper limit using Poisson statistic: ", ul))
print("This is an ul on the integral flux in ph/cm2/s")
return ul #Return the result. This is an ul on the integral flux in ph/cm2/s
def EnvelopeUL(self, Fit):
"""Compute the envelope UL. An UL is computed for different index and the maximum is taken at each energy.
This is usefull when the source index is not know or can not be constrain by theoritical argument
The index range form 1.5 to 2.5"""
import IntegralUpperLimit
import UpperLimits
self._log('EnvelopeUL', 'Compute upper limit envelope')
PhIndex = Fit.par_index(self.obs.srcname, 'Index')
Nbp = 20 #Make Nbp computations
Npgraph = 100#The graph has Npgraph points
ener = np.logspace(np.log10(self.obs.Emin),
np.log10(self.obs.Emax), Npgraph)#the array containing the energy
Ulenv = | np.array(Npgraph * [0.]) | numpy.array |
import numpy as np
import math
from scipy.interpolate import RegularGridInterpolator, NearestNDInterpolator, LinearNDInterpolator
class vdf():
def __init__(self, v_max, resolution, coord_sys):
self.grid_cart = None
self.grid_spher = None
self.dvvv = None
self.vdf_interp = np.zeros((resolution,resolution,resolution))
grid_cart, grid_spher,
grid_cyl, dvvv = self.init_grid(v_max, resolution, coord_sys)
self.grid_cart_t = self.grid_cart.copy()
self.grid_spher_t = self.grid_spher.copy()
self.nb_counts = np.zeros((resolution,resolution,resolution))
def interpolate_cart_vdf(self, grid, vdf0, interpolate='near'):
if interpolate == 'near':
method_str = 'nearest'
elif interpolate == 'lin':
method_str = 'linear'
if interpolate in ['near', 'lin']:
if vdf0.ndim==2:
interpFunc = RegularGridInterpolator( (grid[0,:,0], grid[1,0,:]), vdf0,
bounds_error=False, method=method_str,
fill_value=np.nan)
d = interpFunc(self.grid_cart[[0,2],:,:,0].reshape(2,-1).T) ## Ugly AF.
d = d.reshape((self.vdf_interp.shape[0],self.vdf_interp.shape[0]))
self.vdf_interp = d[:,:,None]
elif vdf0.ndim==3:
interpFunc = RegularGridInterpolator( (grid[0,:,0,0], grid[1,0,:,0], grid[2,0,0,:]), vdf0,
bounds_error=False, method=method_str,
fill_value=np.nan)
d = interpFunc(self.grid_cart.reshape(3,-1).T)
self.vdf_interp = d.T.reshape(self.vdf_interp.shape) ## (res,res,res)
# #
# elif interpolate=='cub':
# d = np.zeros_like(gridCart[0]).flatten()
# ip = tricubic.tricubic(list(distribPeriod), [distribPeriod.shape[0],distribPeriod.shape[1],distribPeriod.shape[2]])
# deltaSpeed = (np.log10(pSet.speed[iS,1]/normTh)-np.log10(pSet.speed[iS,0]/normTh))
# ds = pSet.speed[iS,1:]/normTh-pSet.speed[iS,:-1]/normTh
# deltaTheta = pSet.theta[1]-pSet.theta[0]
# deltaPhi = pSet.phi[iS,1]-pSet.phi[iS,0]
# vMinSpeed = np.log10(pSet.speed[iS,0]/normTh)
# vMinTheta = 0.
# vMinPhi = 0.
#
# # gridS[0] = np.log10(gridS[0]) ## gridS here becomes an array of bin index, to which the coordinate belongs.
# # gridS[0] = (gridS[0]-vMinSpeed)/deltaSpeed #+ 1.5
# bin = np.digitize(gridS[0], pSet.speed[iS]/normTh)-1
# gridS[0] = bin + (gridS[0]-pSet.speed[iS,bin]/normTh)/ds[bin]
# gridS[1] = (gridS[1]-vMinTheta)/deltaTheta + .5
# gridS[2] = (gridS[2]-vMinPhi)/deltaPhi + .5
# for i, node in enumerate(gridS.reshape((3,-1)).T):
# d[i] = ip.ip(list(node))
# # itkTmp = (d<0)
# d = d.reshape((resFinal,resFinal,resFinal))
# d[gridS[0]<0] = np.nan ## "fill_value". Should also be done for values larger than, and not only smaller than.
# # d[itkTmp] = 0
# # sys.exit()
#
#_________________
def interpolate_spher_vdf(self, grid, vdf0, interpolate='near', psp=False):
speed = grid[0,:,0,0][::-1].copy()
theta = grid[1,0,:,0].copy()
phi = grid[2,0,0,:].copy()
vdf0 = np.flip(vdf0, axis=(0))
if interpolate == 'near':
interp_method = 'nearest'
elif interpolate == 'lin':
interp_method = 'linear'
# itk = self.grid_spher[2]>np.pi
# self.grid_spher[2,itk] -= 2.*np.pi
if psp:
phi -= 60.*np.pi/180.
phi %= 2.*np.pi
self.grid_spher_t[2] -= 60.*np.pi/180
self.grid_spher_t[2] %= 2.*np.pi
# phiPeriod = np.zeros(18)
# phiPeriod[1:-1] = phi
# phiPeriod[0] = phi[-1]-2*np.pi
# phiPeriod[-1] = phi[0]+2*np.pi
# thetaPeriod = np.zeros(10)
# thetaPeriod[1:-1] = theta
# thetaPeriod[0] = theta[-1]-np.pi
# thetaPeriod[-1] = theta[0]+np.pi
# distribPeriod = np.zeros((32,10,18))
# distribPeriod[:,1:-1,1:-1] = vdf0
# distribPeriod[:,1:-1,0] = vdf0[:,:,-1]
# distribPeriod[:,1:-1,-1] = vdf0[:,:,0]
# distribPeriod[:,0] = np.nanmean(distribPeriod[:,1], axis=1)[:,None]
# distribPeriod[:,9] = np.nanmean(distribPeriod[:,8], axis=1)[:,None]
# itkR = ~np.isnan(speed)
# interpFunc = RegularGridInterpolator( (speed, thetaPeriod, phiPeriod),
# distribPeriod,
# bounds_error=False, method=interp_method,
# fill_value=np.nan)
interpFunc = RegularGridInterpolator( (speed, theta, phi),
vdf0,
bounds_error=False, method=interp_method,
fill_value=np.nan)
d = interpFunc(self.grid_spher_t.reshape(3,-1).T)
d = d.T.reshape(self.vdf_interp.shape) ## (res,res,res)
d[np.isnan(d)] = 0.
self.nb_counts += (~np.isnan(d))
self.vdf_interp += d
def transform_grid(self, R=None, v=None, s=None):
if R is not None:
gc = self.grid_cart.copy()
self.grid_cart_t = np.dot(R, gc.reshape(3,-1)).reshape(self.grid_cart.shape)
if v is not None:
self.grid_cart_t -= v[:,None,None,None]
self.grid_spher_t = self.cart2spher(self.grid_cart_t)
# if interpolate=='near':
# interpFunc = RegularGridInterpolator( (speed, thetaPeriod, phiPeriod),
# (distribPeriod),
# bounds_error=False, method='nearest',
# fill_value=np.nan)
# d = interpFunc(self.grid_spher_t.reshape(3,-1).T)
# d = d.T.reshape(self.vdf_interp.shape) ## (res,res,res)
# d[np.isnan(d)] = 0.
# self.vdf_interp += d
# print(np.nanmin(d), np.nanmax(d))
#
#
#
# elif interpolate=='lin':
# interpFunc = RegularGridInterpolator( (speed, thetaPeriod, phiPeriod),
# (distribPeriod),
# bounds_error=False, method='linear',
# fill_value=np.nan)
# # interpFunc = RegularGridInterpolator( (speed, theta, phi),
# # vdf0,
# # bounds_error=False, method='linear',
# # fill_value=np.nan)
# d = interpFunc(self.grid_spher_t.reshape(3,-1).T)
# d = d.T.reshape(self.vdf_interp.shape) ## (res,res,res)
# d[np.isnan(d)] = 0.
# self.vdf_interp += d
#
# elif interpolate=='cub':
# d = np.zeros_like(gridCart[0]).flatten()
# ip = tricubic.tricubic(list(distribPeriod), [distribPeriod.shape[0],distribPeriod.shape[1],distribPeriod.shape[2]])
# deltaSpeed = (np.log10(pSet.speed[iS,1]/normTh)-np.log10(pSet.speed[iS,0]/normTh))
# ds = pSet.speed[iS,1:]/normTh-pSet.speed[iS,:-1]/normTh
# deltaTheta = pSet.theta[1]-pSet.theta[0]
# deltaPhi = pSet.phi[iS,1]-pSet.phi[iS,0]
# vMinSpeed = np.log10(pSet.speed[iS,0]/normTh)
# vMinTheta = 0.
# vMinPhi = 0.
#
# # gridS[0] = np.log10(gridS[0]) ## gridS here becomes an array of bin index, to which the coordinate belongs.
# # gridS[0] = (gridS[0]-vMinSpeed)/deltaSpeed #+ 1.5
# bin = np.digitize(gridS[0], pSet.speed[iS]/normTh)-1
# gridS[0] = bin + (gridS[0]-pSet.speed[iS,bin]/normTh)/ds[bin]
# gridS[1] = (gridS[1]-vMinTheta)/deltaTheta + .5
# gridS[2] = (gridS[2]-vMinPhi)/deltaPhi + .5
# for i, node in enumerate(gridS.reshape((3,-1)).T):
# d[i] = ip.ip(list(node))
# # itkTmp = (d<0)
# d = d.reshape((resFinal,resFinal,resFinal))
# d[gridS[0]<0] = np.nan ## "fill_value". Should also be done for values larger than, and not only smaller than.
# # d[itkTmp] = 0
# # sys.exit()
# if psp:
# self.grid_spher_t[2] += 60.*np.pi/180
# self.grid_spher_t[2] %= 2.*np.pi
#
#_________________
def init_grid(v_max, resolution, grid_geom):
"""Here we define the bin edges and centers, depending on the chosen
coordinate system."""
if grid_geom == 'cart':
edgesX = np.linspace(-v_max, v_max, resolution + 1,
dtype=np.float32)
centersX = (edgesX[:-1] + edgesX[1:]) * .5
# 3 x res x res_phi x res/2
grid_cart = np.mgrid[-v_max:v_max:resolution*1j,
-v_max:v_max:resolution*1j,
-v_max:v_max:resolution*1j]
grid_cart = grid_cart.astype(np.float32)
grid_spher = cart2spher(grid_cart)
grid_cyl = cart2cyl(grid_cart)
dv = centersX[1]-centersX[0]
dvvv = np.ones((resolution, resolution, resolution)) * dv ** 3
elif grid_geom == 'spher':
edges_rho = np.linspace(0, v_max, resolution + 1, dtype=np.float32)
edges_theta = np.linspace(0, np.pi, resolution + 1,
dtype=np.float32)
edges_phi = np.linspace(0, 2*np.pi, resolution + 1,
dtype=np.float32)
centers_rho = (edges_rho[:-1] + edges_rho[1:]) * .5
centers_theta = (edges_theta[:-1] + edges_theta[1:]) * .5
centers_phi = (edges_phi[:-1] + edges_phi[1:]) * .5
grid_spher = np.mgrid[centers_rho[0]:centers_rho[-1]:centers_rho.size*1j,
centers_theta[0]:centers_theta[-1]:centers_theta.size*1j,
centers_phi[0]:centers_phi[-1]:centers_phi.size*1j]
grid_spher = grid_spher.astype(np.float32)
grid_cart = spher2cart(grid_spher)
grid_cyl = cart2cyl(grid_cart)
d_rho = centers_rho[1]-centers_rho[0]
d_theta = centers_theta[1]-centers_theta[0]
d_phi = centers_phi[1]-centers_phi[0]
dv = centers_rho[1]-centers_rho[0]
dvvv = np.ones((resolution, resolution, resolution)) \
* centers_rho[:, None, None] * d_rho * d_theta * d_phi
elif grid_geom == 'cyl':
edges_rho = np.linspace(0, v_max, resolution+1, dtype=np.float32)
edges_phi = np.linspace(0, 2*np.pi, resolution+1, dtype=np.float32)
edges_z = np.linspace(-v_max, v_max, resolution+1, dtype=np.float32)
centers_rho = (edges_rho[:-1]+edges_rho[1:])*.5
centers_phi = (edges_phi[:-1]+edges_phi[1:])*.5
centers_z = (edges_z[:-1]+edges_z[1:])*.5
grid_cyl = np.mgrid[centers_rho[0]:centers_rho[-1]:centers_rho.size*1j,
centers_phi[0]:centers_phi[-1]:centers_phi.size*1j,
centers_z[0]:centers_z[-1]:centers_z.size*1j]
grid_cyl = grid_cyl.astype(np.float32)
grid_cart = cyl2cart(grid_cyl)
grid_spher = cart2spher(grid_cart)
dRho = centers_rho[1]-centers_rho[0]
dPhi = centers_phi[1]-centers_phi[0]
dZ = centers_z[1]-centers_z[0]
dvvv = np.ones((resolution, resolution, resolution)) \
* centers_rho[:, None, None]*dRho*dPhi*dZ
return grid_cart, grid_spher, grid_cyl, dvvv
def spher2cart(v_spher):
"""Coordinate system conversion
"""
v_cart = np.zeros_like(v_spher)
v_cart[0] = v_spher[0] * | np.sin(v_spher[1]) | numpy.sin |
from itertools import product
import os
import numpy as np
from openfermion.third_party.representability.constraints.spin_orbital_2pos_constraints import ( # pylint: disable=line-too-long
tpdm_antisymmetry_constraint, tpdm_trace_constraint, _coord_generator,
tpdm_to_opdm_mapping, opdm_to_ohdm_mapping, sz_constraint, na_constraint,
nb_constraint, tpdm_to_thdm_mapping, tpdm_to_phdm_mapping,
spin_orbital_linear_constraints)
from openfermion.third_party.representability._dualbasis import \
DualBasisElement, DualBasis
from openfermion.third_party.representability._namedtensor import Tensor
from openfermion.third_party.representability._multitensor import MultiTensor
from openfermion.config import DATA_DIRECTORY
from openfermion.chem import MolecularData
from openfermion.utils import map_two_pdm_to_two_hole_dm, \
map_two_pdm_to_particle_hole_dm
def test_trace_constraint():
dbe = tpdm_trace_constraint(4, 10)
assert dbe.primal_tensors_names == ['cckk'] * 4**2
assert dbe.primal_elements == [
(i, j, i, j) for i, j in product(range(4), repeat=2)
]
assert np.isclose(dbe.constant_bias, 0)
assert | np.isclose(dbe.dual_scalar, 10) | numpy.isclose |
import numpy as np
import numpy.linalg as npl
from scipy.stats import t as t_dist
def batch_make_design(img_dict, convolved_dict):
matrix = {}
object_list = ["bottle", "cat", "chair", "face", "house", "scissors", "scrambledpix", "shoe"]
for key, img in img_dict.items():
time_course = img.shape[-1]
matrix[key] = np.ones((time_course,(len(object_list)+3)))
for i in range(matrix[key].shape[-1]-3):
matrix[key][:,i] = convolved_dict[key[7:] +"-"+ object_list[i]]
LD = np.linspace(-1,1,time_course)
LD2 = LD**2
LD2 = LD2 - np.mean(LD2)
matrix[key][:, -3] = LD
matrix[key][:, -2] = LD2
return matrix
def scale_design_mtx(X):
"""utility to scale the design matrix for display
This scales the columns to their own range so we can see the variations
across the column for all the columns, regardless of the scaling of the
column.
"""
mi, ma = X.min(axis=0), X.max(axis=0)
# Vector that is True for columns where values are not
# all almost equal to each other
col_neq = (ma - mi) > 1.e-8
Xs = np.ones_like(X)
# Leave columns with same value throughout with 1s
# Scale other columns to min, max in column
mi = mi[col_neq]
ma = ma[col_neq]
Xs[:,col_neq] = (X[:,col_neq] - mi)/(ma - mi)
return Xs
def batch_scale_matrix(matrix_dict):
result = {}
for key, matrix in matrix_dict.items():
result[key] = scale_design_mtx(matrix)
return result
def batch_convert_2d(img_dict):
result = {}
for key, img in img_dict.items():
result[key] = np.reshape(img, (-1, img.shape[-1]))
return result
def batch_convert_2d_based(img_dict, shape_dict):
result = {}
for key, img in img_dict.items():
result[key] = np.reshape(img, (-1, shape_dict[key][-1]))
return result
def apply_mask(img_dict, mask_dict):
result = {}
for key, img in img_dict.items():
mask = (mask_dict[key] == 1)
result[key] = img[mask]
return result
def t_stat(y, X, c):
""" betas, t statistic and significance test given data, design matrix, contrast
This is OLS estimation; we assume the errors to have independent
and identical normal distributions around zero for each $i$ in
$\e_i$ (i.i.d).
"""
# Make sure y, X, c are all arrays
#y = np.asarray(y)
#X = np.asarray(X)
#c = c.T
c = np.atleast_2d(c).T # As column vector
# Calculate the parameters - b hat
beta = npl.pinv(X).dot(y)
# The fitted values - y hat
fitted = X.dot(beta)
# Residual error
errors = y - fitted
# Residual sum of squares
RSS = (errors**2).sum(axis=0)
# Degrees of freedom is the number of observations n minus the number
# of independent regressors we have used. If all the regressor
# columns in X are independent then the (matrix rank of X) == p
# (where p the number of columns in X). If there is one column that
# can be expressed as a linear sum of the other columns then
# (matrix rank of X) will be p - 1 - and so on.
df = X.shape[0] - | npl.matrix_rank(X) | numpy.linalg.matrix_rank |
from __future__ import absolute_import, division, print_function
from six.moves import range
import os
import h5py
import numpy as np
from xfel.euxfel.read_geom import read_geom
from libtbx.phil import parse
import six
from libtbx.utils import Sorry
import datetime
from xfel.util.jungfrau import pad_stacked_format
phil_scope = parse("""
unassembled_file = None
.type = path
.help = hdf5 file used to read in image data.
geom_file = None
.type = path
.help = geometry file to be read in for detector (.geom).
output_file = None
.type = path
.help = output file path
detector_distance = None
.type = float
.help = Detector distance
wavelength = None
.type = float
.help = If not provided, try to find wavelength in unassembled file.
beam_file = None
.type = path
.help = Overrides wavelength. Reads the pulse IDs in the provided file \
to get a list of wavelengths for the master.
include_spectra = False
.type = bool
.help = If true, 2D spectral data will be included in the master file, \
as read from the beam_file.
energy_offset = None
.type = float
.help = If set, add this offset (in eV) to the energy axis in the \
spectra in the beam file and to the per-shot wavelength.
mask_file = None
.type = str
.help = Path to file with external bad pixel mask.
split_modules_into_asics = True
.type = bool
.help = Whether to split the 4x2 modules into indivdual asics \
accounting for borders and gaps.
trusted_range = None
.type = floats(size=2)
.help = Set the trusted range
raw = False
.type = bool
.help = Whether the data being analyzed is raw data from the JF16M or has \
been corrected and padded.
unassembled_data_key = None
.type = str
.expert_level = 2
.help = Override hdf5 key name in unassembled file
pedestal_file = None
.type = str
.help = path to Jungfrau pedestal file
gain_file = None
.type = str
.help = path to Jungfrau gain file
raw_file = None
.type = str
.help = path to Jungfrau raw file
nexus_details {
instrument_name = SwissFEL ARAMIS BEAMLINE ESB
.type = str
.help = Name of instrument
instrument_short_name = ESB
.type = str
.help = short name for instrument, perhaps the acronym
source_name = SwissFEL ARAMIS
.type = str
.help = Name of the neutron or x-ray storage ring/facility
source_short_name = SwissFEL ARAMIS
.type = str
.help = short name for source, perhaps the acronym
start_time = None
.type = str
.help = ISO 8601 time/date of the first data point collected in UTC, \
using the Z suffix to avoid confusion with local time
end_time = None
.type = str
.help = ISO 8601 time/date of the last data point collected in UTC, \
using the Z suffix to avoid confusion with local time. \
This field should only be filled when the value is accurately \
observed. If the data collection aborts or otherwise prevents \
accurate recording of the end_time, this field should be omitted
end_time_estimated = None
.type = str
.help = ISO 8601 time/date of the last data point collected in UTC, \
using the Z suffix to avoid confusion with local time. \
This field may be filled with a value estimated before an \
observed value is avilable.
sample_name = None
.type = str
.help = Descriptive name of sample
total_flux = None
.type = float
.help = flux incident on beam plane in photons per second
}
""")
'''
This script creates a master nexus file by taking in as input a) an hdf5 file and b) a .geom file
The hd5f file is generated by the JF16M after processing the raw images and doing appropriate gain corrections
The assumed parameters for the detector can be seen in the __init__ function and should be changed
if they are modified at in the future
'''
class jf16m_cxigeom2nexus(object):
def __init__(self, args):
self.params_from_phil(args)
if self.params.detector_distance == None:
self.params.detector_distance = 100.0 # Set detector distance arbitrarily if nothing is provided
self.hierarchy = read_geom(self.params.geom_file)
self.n_quads = 4
self.n_modules = 8
def params_from_phil(self, args):
user_phil = []
for arg in args:
if os.path.isfile(arg):
user_phil.append(parse(file_name=arg))
else:
try:
user_phil.append(parse(arg))
except Exception as e:
raise Sorry("Unrecognized argument: %s"%arg)
self.params = phil_scope.fetch(sources=user_phil).extract()
def _create_scalar(self, handle,path,dtype,value):
dataset = handle.create_dataset(path, (),dtype=dtype)
dataset[()] = value
def create_vector(self,handle, name, value, **attributes):
handle.create_dataset(name, (1,), data = [value], dtype='f')
for key,attribute in six.iteritems(attributes):
handle[name].attrs[key] = attribute
def create_nexus_master_file(self):
'''
Hierarchical structure of master nexus file. Format information available here
http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector_module.html#nxdetector-module
--> entry
--> data
--> definition (leaf)
--> instrument
--> sample
'''
output_file_name = self.params.output_file if self.params.output_file is not None else os.path.splitext(self.params.unassembled_file)[0]+'_master.h5'
f = h5py.File(output_file_name, 'w')
f.attrs['NX_class'] = 'NXroot'
f.attrs['file_name'] = os.path.basename(output_file_name)
f.attrs['file_time'] = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")
f.attrs['HDF5_Version'] = h5py.version.hdf5_version
entry = f.create_group('entry')
entry.attrs['NX_class'] = 'NXentry'
if self.params.nexus_details.start_time: entry['start_time'] = self.params.nexus_details.start_time
if self.params.nexus_details.end_time: entry['end_time'] = self.params.nexus_details.end_time
if self.params.nexus_details.end_time_estimated: entry['end_time_estimated'] = self.params.nexus_details.end_time_estimated
# --> definition
self._create_scalar(entry, 'definition', 'S4', np.string_('NXmx'))
# --> data
data = entry.create_group('data')
data.attrs['NX_class'] = 'NXdata'
data_key = 'data'
if self.params.unassembled_data_key:
unassembled_data_key = self.params.unassembled_data_key
else:
if self.params.raw:
unassembled_data_key = "data/JF07T32V01/data"
else:
unassembled_data_key = "data/data"
data[data_key] = h5py.ExternalLink(self.params.unassembled_file, unassembled_data_key)
if self.params.raw_file is not None:
assert not self.params.raw
with h5py.File(self.params.pedestal_file, "r") as pedh5:
print("Padding raw pedestal data")
mean_pedestal = [pad_stacked_format(raw) for raw in pedh5["gains"]]
print("Padding raw pedestal RMS data")
sigma_pedestal = [pad_stacked_format(raw) for raw in pedh5["gainsRMS"]]
data.create_dataset("pedestal", data=mean_pedestal, dtype=np.float32)
data.create_dataset('pedestalRMS', data=sigma_pedestal, dtype=np.float32)
with h5py.File(self.params.gain_file, "r") as gainh5:
print("Padding gains")
gains = [pad_stacked_format(raw) for raw in gainh5["gains"]]
data.create_dataset("gains", data=gains, dtype=np.float32)
data.attrs['signal'] = 'data'
raw_file_handle = h5py.File(self.params.raw_file, "r")
res_file_handle = h5py.File(self.params.unassembled_file, "r")
raw_dset = raw_file_handle["data/JF07T32V01/data"]
raw_shape = raw_dset.shape
_, raw_slowDim, raw_fastDim = raw_shape
raw_type = raw_dset.dtype
num_imgs = res_file_handle['data/data'].shape[0]
raw_layout = h5py.VirtualLayout(shape=(num_imgs, raw_slowDim, raw_fastDim), dtype=raw_type)
raw_pulses = raw_file_handle['data/JF07T32V01/pulse_id'][()][:, 0]
assert np.all(raw_pulses == np.sort(raw_pulses)) # NOTE; this is quick, however I think this is always the case
res_pulses = h5py.File(self.params.unassembled_file, 'r')['data/pulse_id'][()]
raw_source = h5py.VirtualSource(self.params.raw_file, 'data/JF07T32V01/data', shape=raw_shape)
for res_imgnum, raw_imgnum in enumerate(np.searchsorted(raw_pulses, res_pulses)):
raw_layout[res_imgnum] = raw_source[raw_imgnum]
data.create_virtual_dataset('raw', raw_layout)
if self.params.raw:
if self.params.pedestal_file:
# named gains instead of pedestal in JF data files
data['pedestal'] = h5py.ExternalLink(self.params.pedestal_file, 'gains')
data['pedestalRMS'] = h5py.ExternalLink(self.params.pedestal_file, 'gainsRMS')
if self.params.gain_file:
data['gains'] = h5py.ExternalLink(self.params.gain_file, 'gains')
if self.params.pedestal_file or self.params.gain_file:
data.attrs['signal'] = 'data'
#--> sample
sample = entry.create_group('sample')
sample.attrs['NX_class'] = 'NXsample'
if self.params.nexus_details.sample_name: sample['name'] = self.params.nexus_details.sample_name
sample['depends_on'] = '.' # This script does not support scans/gonios
# --> source
source = entry.create_group('source')
source.attrs['NX_class'] = 'NXsource'
source['name'] = self.params.nexus_details.source_name
source['name'].attrs['short_name'] = self.params.nexus_details.source_short_name
# --> instrument
instrument = entry.create_group('instrument')
instrument.attrs['NX_class'] = 'NXinstrument'
instrument["name"] = self.params.nexus_details.instrument_name
instrument["name"].attrs["short_name"] = self.params.nexus_details.instrument_short_name
beam = instrument.create_group('beam')
beam.attrs['NX_class'] = 'NXbeam'
if self.params.nexus_details.total_flux:
self._create_scalar(beam, 'total_flux', 'f', self.params.nexus_details.total_flux)
beam['total_flux'].attrs['units'] = 'Hz'
if self.params.wavelength is None and self.params.beam_file is None:
wavelengths = h5py.File(self.params.unassembled_file, 'r')['instrument/photon_wavelength_A']
beam.create_dataset('incident_wavelength', (1,), data=np.mean(wavelengths), dtype='f8')
elif self.params.beam_file is not None:
# data file has pulse ids, need to match those to the beam file, which may have more pulses
if self.params.raw:
data_pulse_ids = h5py.File(self.params.unassembled_file, 'r')['data/JF07T32V01/pulse_id'][()]
else:
data_pulse_ids = h5py.File(self.params.unassembled_file, 'r')['data/pulse_id'][()]
beam_h5 = h5py.File(self.params.beam_file, 'r')
beam_pulse_ids = beam_h5['data/SARFE10-PSSS059:SPECTRUM_CENTER/pulse_id'][()]
beam_energies = beam_h5['data/SARFE10-PSSS059:SPECTRUM_CENTER/data'][()]
energies = np.ndarray((len(data_pulse_ids),), dtype='f8')
if self.params.include_spectra:
beam_spectra_x = beam_h5['data/SARFE10-PSSS059:SPECTRUM_X/data'][()]
beam_spectra_y = beam_h5['data/SARFE10-PSSS059:SPECTRUM_Y/data'][()]
spectra_x = np.ndarray((len(data_pulse_ids),beam_spectra_x.shape[1]), dtype='f8')
spectra_y = np.ndarray((len(data_pulse_ids),beam_spectra_y.shape[1]), dtype='f8')
for i, pulse_id in enumerate(data_pulse_ids):
where = | np.where(beam_pulse_ids==pulse_id) | numpy.where |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from collections import Iterable as _Iterable
from collections import Callable as _Callable
from .op import *
from .utils import *
from .utils import _pair
from .thirdparty._switch_norm import SwitchNorm1d, SwitchNorm2d
from .thirdparty import _sn_layers
from .thirdparty._oct_conv import OctaveConv as _OctaveConv
'''
注意写 torch.jit.script 时需要手动添加非 Tensor 参数的注释
'''
Identity = nn.Identity
# 下面已过时
# class Identity(torch.jit.ScriptModule):
# '''
# torch 居然没有 identity 层
# '''
# def __init__(self):
# super().__init__()
#
# @torch.jit.script_method
# def forward(self, x):
# return x
class Upsample(torch.jit.ScriptModule):
__constants__ = ['size', 'scale_factor', 'mode', 'align_corners', 'name']
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None):
super().__init__()
# scale_factor 不允许是整数,有点坑。。
if isinstance(scale_factor, _Iterable):
scale_factor = tuple([float(i) for i in scale_factor])
else:
scale_factor = float(scale_factor)
self.size = size
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
@torch.jit.script_method
def forward(self, x):
return F.interpolate(x, self.size, self.scale_factor, self.mode, self.align_corners)
class UpsamplingConcat(torch.jit.ScriptModule):
__constants__ = ['method', 'align_corners']
def __init__(self, method='bilinear', align_corners=False):
super().__init__()
self.method = method
self.align_corners = align_corners
@torch.jit.script_method
def forward(self, x, shortpoint):
shape = shortpoint.shape
x = F.interpolate(x, (shape[2], shape[3]), mode=self.method, align_corners=self.align_corners)
x = torch.cat((x, shortpoint), 1)
return x
class Dense(torch.jit.ScriptModule):
def __init__(self, in_feat, out_feat, act=None, bias=True, *, norm_layer_kwargs={}):
super().__init__()
layers = []
den = nn.Linear(in_feat, out_feat, bias=bias is True)
layers.append(den)
if isinstance(bias, _Callable):
layers.append(bias(out_feat, **norm_layer_kwargs))
if act:
layers.append(act)
self.layers = nn.Sequential(*layers)
@torch.jit.script_method
def forward(self, inputs):
outputs = self.layers(inputs)
return outputs
class Dense_SN(nn.Module):
def __init__(self, in_feat, out_feat, act=None, bias=True, num_itrs=1, *, norm_layer_kwargs={}):
super().__init__()
layers = []
den = nn.Linear(in_feat, out_feat, bias=bias is True)
den = nn.utils.spectral_norm(den, n_power_iterations=num_itrs)
layers.append(den)
if isinstance(bias, _Callable):
layers.append(bias(out_feat, **norm_layer_kwargs))
if act:
layers.append(act)
self.layers = nn.Sequential(*layers)
def forward(self, inputs):
outputs = self.layers(inputs)
return outputs
class _base_conv_setting(torch.jit.ScriptModule):
# 用于初始化和保存卷积设置
def __init__(self, in_ch, out_ch, ker_sz, stride, pad, act, bias, dila):
super().__init__()
self.in_ch = in_ch
self.out_ch = out_ch
self.ker_sz = ker_sz
self.stride = stride
self.act = act
self.bias = bias
self.dila = dila
self.pad = get_padding_by_name(ker_sz, pad)
class Conv2D_SN(_base_conv_setting):
def __init__(self, in_ch, out_ch, ker_sz=3, stride=1, pad='same', act=None, bias=True, groups=1, dila=1, num_itrs=1, *, use_fixup_init=False, norm_kwargs={}):
super().__init__(in_ch, out_ch, ker_sz, stride, pad, act, bias, dila)
layers = []
conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ker_sz, stride=stride, padding=self.pad,
dilation=dila, groups=groups, bias=bias is True)
conv = nn.utils.spectral_norm(conv, n_power_iterations=num_itrs)
if use_fixup_init:
fixup_init(conv.weight, _pair(ker_sz), out_ch)
if not bias:
with torch.no_grad():
conv.bias.zero_()
layers.append(conv)
if isinstance(bias, _Callable):
layers.append(bias(out_ch, **norm_kwargs))
if act:
layers.append(act)
self.layers = nn.Sequential(*layers)
def forward(self, inputs):
outputs = self.layers(inputs)
return outputs
class Conv2D(_base_conv_setting):
def __init__(self, in_ch, out_ch, ker_sz=3, stride=1, pad='same', act=None, bias=True, groups=1, dila=1, *, use_fixup_init=False, norm_kwargs={}):
super().__init__(in_ch, out_ch, ker_sz, stride, pad, act, bias, dila)
layers = []
conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ker_sz, stride=stride, padding=self.pad,
dilation=dila, groups=groups, bias=bias is True)
if use_fixup_init:
fixup_init(conv.weight, _pair(ker_sz), out_ch)
if bias is True:
with torch.no_grad():
conv.bias.zero_()
layers.append(conv)
if isinstance(bias, _Callable):
layers.append(bias(out_ch, **norm_kwargs))
if act:
layers.append(act)
self.layers = nn.Sequential(*layers)
@torch.jit.script_method
def forward(self, inputs):
outputs = self.layers(inputs)
return outputs
class DeConv2D(_base_conv_setting):
def __init__(self, in_ch, out_ch, ker_sz=3, stride=1, pad='same', act=None, bias=True, groups=1, dila=1, *, use_fixup_init=False, norm_kwargs={}):
super().__init__(in_ch, out_ch, ker_sz, stride, pad, act, bias, dila)
layers = []
conv = nn.ConvTranspose2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ker_sz, stride=stride,
padding=self.pad, output_padding=stride-1, dilation=dila, groups=groups,
bias=bias is True)
if use_fixup_init:
fixup_init(conv.weight, _pair(ker_sz), out_ch)
if bias is True:
with torch.no_grad():
conv.bias.zero_()
layers.append(conv)
if isinstance(bias, _Callable):
layers.append(bias(out_ch, **norm_kwargs))
if act:
layers.append(act)
self.layers = nn.Sequential(*layers)
@torch.jit.script_method
def forward(self, inputs):
outputs = self.layers(inputs)
return outputs
class DwConv2D(_base_conv_setting):
def __init__(self, in_ch, depth_multiplier=1, ker_sz=3, stride=1, pad='same', act=None, bias=True, dila=1, *, use_fixup_init=False, norm_kwargs={}):
out_ch = in_ch * depth_multiplier
super().__init__(in_ch, out_ch, ker_sz, stride, pad, act, bias, dila)
layers = []
conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ker_sz, stride=stride, padding=self.pad,
dilation=dila, groups=in_ch, bias=bias is True)
if use_fixup_init:
fixup_init(conv.weight, _pair(ker_sz), out_ch)
if bias is True:
with torch.no_grad():
conv.bias.zero_()
layers.append(conv)
if isinstance(bias, _Callable):
layers.append(bias(out_ch, **norm_kwargs))
if act:
layers.append(act)
self.layers = nn.Sequential(*layers)
@torch.jit.script_method
def forward(self, inputs):
outputs = self.layers(inputs)
return outputs
class OctConv2D(_base_conv_setting):
def __init__(self, in_ch, out_ch, ker_sz=3, stride=1, pad='same', act=None, bias=True, groups=1, dila=1, alpha=(0.5, 0.5), *, use_fixup_init=False, norm_kwargs={}):
super().__init__(in_ch, out_ch, ker_sz, stride, pad, act, bias, dila)
self.act = act
if act is None:
self.act = Identity()
# 限定输入和输出必定存在高频特征
assert 0. <= | np.min(alpha) | numpy.min |
import os
import numpy as np
import pytest
from jina.flow import Flow
from jina.proto import jina_pb2
from jina.types.ndarray.generic import NdArray
from tests import validate_callback
NUM_DOCS = 100
cur_dir = os.path.dirname(os.path.abspath(__file__))
@pytest.fixture
def multimodal_documents():
docs = []
for idx in range(0, NUM_DOCS):
"""
doc - idx
|
| - chunk - blob [idx, idx] - modality1 -> The dummy encoder will pass the blob to embedding
| - chunk - blob [idx, idx, idx] - modality2 -> The dummy encoder will pass the blob to embedding
Result:
doc - idx - embedding [idx, idx, idx, idx, idx]
"""
doc = jina_pb2.DocumentProto()
doc.text = f'{idx}'
for modality in ['modality1', 'modality2']:
chunk = doc.chunks.add()
chunk.modality = modality
if modality == 'modality1':
NdArray(chunk.blob).value = np.array([idx, idx])
else:
NdArray(chunk.blob).value = np.array([idx, idx, idx])
docs.append(doc)
return docs
# TODO(Deepankar): Gets stuck when `restful: True` - issues with `needs='gateway'`
@pytest.mark.parametrize('restful', [False])
def test_multimodal_embedding_parallel(multimodal_documents, mocker, monkeypatch, restful):
monkeypatch.setenv("RESTFUL", restful)
def validate_response(resp):
assert len(resp.index.docs) == NUM_DOCS
for idx, doc in enumerate(resp.index.docs):
np.testing.assert_almost_equal(NdArray(doc.embedding).value, | np.array([idx, idx, idx, idx, idx]) | numpy.array |
import tables
import numpy as np
np.random.seed(0)
class IODataPoint(tables.IsDescription):
x = tables.Int64Col(3)
y = tables.Int64Col(3)
def generateData(n,current_y,table):
ptr = table.row
input_indexes = np.random.poisson(50, (int(2.1*10**(n-2)),3) )
for i in range(1,input_indexes.shape[0]):
input_indexes[i,:] = input_indexes[i,:]+input_indexes[i-1,:]
j= | np.array([0,0,0]) | numpy.array |
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests dynamic programming code.
"""
from absl.testing import absltest
import numpy as np
from autoregressive_diffusion.utils import dynamic_programming
class DPTest(absltest.TestCase):
"""Tests categorical diffusion class."""
def test_compute_fixed_budget(self):
"""Tests for a specific KL if the program computes cost correctly."""
kl_per_t = | np.array([5., 4., 3., 2.85, 2.80]) | numpy.array |
"""PyCMDS."""
# --- import --------------------------------------------------------------------------------------
import numpy as np
import tidy_headers
from ._data import Data
from .. import kit as wt_kit
# --- define --------------------------------------------------------------------------------------
__all__ = ["from_PyCMDS"]
# --- from function -------------------------------------------------------------------------------
def from_PyCMDS(filepath, name=None, parent=None, verbose=True):
"""Create a data object from a single PyCMDS output file.
Parameters
----------
filepath : str
The file to load. Can accept .data, .fit, or .shots files.
name : str or None (optional)
The name to be applied to the new data object. If None, name is read
from file.
parent : WrightTools.Collection (optional)
Collection to place new data object within. Default is None.
verbose : bool (optional)
Toggle talkback. Default is True.
Returns
-------
data
A Data instance.
"""
# header
headers = tidy_headers.read(filepath)
# name
if name is None: # name not given in method arguments
data_name = headers["data name"]
else:
data_name = name
if data_name == "": # name not given in PyCMDS
data_name = headers["data origin"]
# create data object
kwargs = {
"name": data_name,
"kind": "PyCMDS",
"source": filepath,
"created": headers["file created"],
}
if parent is not None:
data = parent.create_data(**kwargs)
else:
data = Data(**kwargs)
# array
arr = np.genfromtxt(filepath).T
# get axes and scanned variables
axes = []
for name, identity, units in zip(
headers["axis names"], headers["axis identities"], headers["axis units"]
):
# points and centers
points = np.array(headers[name + " points"])
if name + " centers" in headers.keys():
centers = headers[name + " centers"]
else:
centers = None
# create
axis = {
"points": points,
"units": units,
"name": name,
"identity": identity,
"centers": centers,
}
axes.append(axis)
shape = tuple([a["points"].size for a in axes])
for i, ax in enumerate(axes):
sh = [1] * len(shape)
sh[i] = len(ax["points"])
data.create_variable(
name=ax["name"] + "_points", values=np.array(ax["points"]).reshape(sh)
)
if ax["centers"] is not None:
sh = [1] * len(shape)
sh[i - 1] = len(axes[i - 1]["points"])
data.create_variable(
name=ax["name"] + "_centers", values= | np.array(ax["centers"]) | numpy.array |
from tkinter import *
from tkinter import ttk
import tkinter.filedialog as filedialog
from tkinter import messagebox
from PIL import Image,ImageDraw,ImageFont
from PIL import ImageTk,ImageGrab
import cv2
from skimage import filters
#import rasterio
import matplotlib.pyplot as pyplt
#from matplotlib.figure import Figure
import numpy as np
import os
#import time
import csv
import scipy.linalg as la
from functools import partial
#import threading
#import sys
#import kplus
from sklearn.cluster import KMeans
import tkintercorestat
#import tkintercorestat_plot
import tkintercore
import cal_kernelsize
#import histograms
#import createBins
import axistest
#from multiprocessing import Pool
import lm_method
#import batchprocess
import sel_area
class img():
def __init__(self,size,bands):
self.size=size
self.bands=bands
import batchprocess
displayimg={'Origin':None,
'PCs':None,
'Color Deviation':None,
'ColorIndices':None,
'Output':None}
previewimg={'Color Deviation':None,
'ColorIndices':None}
#cluster=['LabOstu','NDI'] #,'Greenness','VEG','CIVE','MExG','NDVI','NGRDI','HEIGHT']
#cluster=['LabOstu','NDI','Greenness','VEG','CIVE','MExG','NDVI','NGRDI','HEIGHT','Band1','Band2','Band3']
cluster=['PAT_R','PAT_G','PAT_B',
'DIF_R','DIF_G','DIF_B',
'ROO_R','ROO_G','ROO_B',
'GLD_R','GLD_G','GLD_B',
'Band1','Band2','Band3']
colorbandtable=np.array([[255,0,0],[255,127,0],[255,255,0],[127,255,0],[0,255,255],[0,127,255],[0,0,255],[127,0,255],[75,0,130],[255,0,255]],'uint8')
#print('colortableshape',colortable.shape)
filenames=[]
Multiimage={}
Multigray={}
Multitype={}
Multiimagebands={}
Multigraybands={}
workbandarray={}
displaybandarray={}
originbandarray={}
colorindicearray={}
clusterdisplay={}
kernersizes={}
multi_results={}
outputimgdict={}
outputimgbands={}
outputsegbands={}
originsegbands={}
oldpcachoice=[]
multiselectitems=[]
coinbox_list=[]
pre_checkbox=[]
originpcabands={}
batch={'PCweight':[],
'PCsel':[],
'Kmeans':[],
'Kmeans_sel':[],
'Area_max':[],
'Area_min':[],
'shape_max':[],
'shape_min':[],
'nonzero':[]}
root=Tk()
root.title('GridFree v.1.1.0 ')
root.geometry("")
root.option_add('*tearoff',False)
emptymenu=Menu(root)
root.config(menu=emptymenu)
screenheight=root.winfo_screenheight()
screenwidth=root.winfo_screenwidth()
print('screenheight',screenheight,'screenwidth',screenwidth)
screenstd=min(screenheight-100,screenwidth-100,850)
coinsize=StringVar()
selarea=StringVar()
refvar=StringVar()
imgtypevar=StringVar()
edge=StringVar()
kmeans=IntVar()
pc_combine_up=DoubleVar()
pc_combine_down=IntVar()
filedropvar=StringVar()
displaybut_var=StringVar()
buttonvar=IntVar()
bandchoice={}
checkboxdict={}
#minipixelareaclass=0
coinbox=None
currentfilename=''
currentlabels=None
displaylabels=None
workingimg=None
displaypclabels=None
boundaryarea=None
outputbutton=None
font=None
reseglabels=None
coindict=None
## Funcitons
refarea=None
originlabels=None
originlabeldict=None
changekmeans=False
convband=None
reflabel=0
minflash=[]
dotflash=[]
labelplotmap={}
mappath=''
elesize=[]
labellist=[]
figdotlist={}
havecolorstrip=True
kmeanschanged=False
pcweightchanged=False
originbinaryimg=None
clusterchanged=False
originselarea=False
zoomoff=False
maxx=0
minx=0
bins=None
loccanvas=None
linelocs=[0,0,0,0]
maxy=0
miny=0
segmentratio=0
zoombox=[]
displayfea_l=0
displayfea_w=0
resizeshape=[]
previewshape=[]
pcbuttons=[]
pcbuttonsgroup=[]
def distance(p1,p2):
return np.sum((p1-p2)**2)
def findratio(originsize,objectsize):
oria=originsize[0]
orib=originsize[1]
obja=objectsize[0]
objb=objectsize[1]
if oria>obja or orib>objb:
ratio=round(max((oria/obja),(orib/objb)))
else:
ratio=round(min((obja/oria),(objb/orib)))
# if oria*orib>850 * 850:
if oria*orib>screenstd * screenstd:
if ratio<2:
ratio=2
return ratio
def getkeys(dict):
return [*dict]
def deletezoom(event,widget):
print('leave widget')
if len(zoombox)>0:
for i in range(len(zoombox)):
#print('delete')
widget.delete(zoombox.pop(0))
widget.update()
def zoom(event,widget,img):
global zoombox
x=event.x
y=event.y
#print(x,y)
if len(zoombox)>1:
widget.delete(zoombox.pop(0))
#print('delete')
crop=img.crop((x-15,y-15,x+15,y+15))
w,h=crop.size
#print(w,h)
crop=crop.resize([w*3,h*3],resample=Image.BILINEAR)
w,h=crop.size
crop=ImageTk.PhotoImage(crop)
zoombox.append(widget.create_image(x+5,y-5,image=crop))
root.update_idletasks()
raise NameError
#time.sleep(0.1)
def changedisplay_pc(frame):
for widget in frame.winfo_children():
widget.pack_forget()
#widget.configure(image=displayimg[text])
#widget.image=displayimg[text]
#widget.pack()
w=displayimg['PCs']['Size'][1]
l=displayimg['PCs']['Size'][0]
widget.config(width=w,height=l)
widget.create_image(0,0,image=displayimg['PCs']['Image'],anchor=NW)
widget.pack()
widget.update()
def pcweightupdate(displayframe):
getPCs()
changedisplay_pc(displayframe)
def buttonpress(val,displayframe,buttonframe):
global buttonvar,pc_combine_up,kmeans
buttonvar.set(val)
kmeans.set(1)
pc_combine_up.set(0.5)
buttonchildren=buttonframe.winfo_children()
for child in buttonchildren:
child.config(highlightbackground='white')
print(buttonchildren[val])
buttonchild=buttonchildren[val]
buttonchild.config(highlightbackground='red')
print('press button ',buttonvar.get())
getPCs()
changedisplay_pc(displayframe)
# if kmeans.get()>1:
changekmeansbar('')
beforecluster('')
# changecluster('')
def PCbuttons(frame,displayframe):
#display pc buttons
# buttonvar=IntVar()
#buttonvar.set(0)
for widget in frame.winfo_children():
widget.pack_forget()
buttonframe=LabelFrame(frame)
buttonframe.pack()
for i in range(len(pcbuttons)):
butimg=pcbuttons[i]
but=Button(buttonframe,text='',image=butimg,compound=TOP,command=partial(buttonpress,i,displayframe,buttonframe))
if i==buttonvar.get():
but.config(highlightbackground='red')
row=int(i/3)
col=i%3
# print(row,col)
but.grid(row=int(i/3),column=col)
print('default button',buttonvar.get())
# change cluster,display
def displaypreview(text):
global figcanvas,resviewframe
for widget in resviewframe.winfo_children():
widget.pack_forget()
# previewframe=Canvas(frame,width=450,height=400,bg='white')
figcanvas.pack()
figcanvas.delete(ALL)
if text=='Color Deviation':
previewtext='ColorIndices'
if text=='ColorIndices':
previewtext='Color Deviation'
previewimage=previewimg[previewtext]['Image']
figcanvas.create_image(0,0,image=previewimage,anchor=NW)
figcanvas.update()
def switchevent(event,widget,img):
global zoomoff,zoomfnid_m,zoomfnid_l,zoombox
zoomoff= not zoomoff
if zoomoff==True:
widget.unbind('<Motion>',zoomfnid_m)
widget.unbind('<Leave>',zoomfnid_l)
if len(zoombox)>0:
for i in range(len(zoombox)):
widget.delete(zoombox.pop(0))
widget.update()
else:
zoomfnid_m=widget.bind('<Motion>',lambda event,arg=widget:zoom(event,arg,img))
zoomfnid_l=widget.bind('<Leave>',lambda event,arg=widget:deletezoom(event,arg))
def changedisplayimg(frame,text):
global displaybut_var,figcanvas,resviewframe,reflabel
displaybut_var.set(disbuttonoption[text])
for widget in frame.winfo_children():
widget.pack_forget()
#widget.configure(image=displayimg[text])
#widget.image=displayimg[text]
#widget.pack()
w=displayimg[text]['Size'][1]
l=displayimg[text]['Size'][0]
widget.config(width=w,height=l)
widget.create_image(0,0,image=displayimg[text]['Image'],anchor=NW)
widget.pack()
widget.update()
global rects,selareapos,app,delapp,delrects,delselarea,originselarea
global zoomfnid_m,zoomfnid_l
app=sel_area.Application(widget)
# delapp=sel_area.Application(widget)
if text=='Output':
try:
image=outputsegbands[currentfilename]['iter0']
displayfig()
except:
return
zoomfnid_m=widget.bind('<Motion>',lambda event,arg=widget:zoom(event,arg,image))
zoomfnid_l=widget.bind('<Leave>',lambda event,arg=widget:deletezoom(event,arg))
delrects=app.start(zoomfnid_m,zoomfnid_l)
widget.bind('<Double-Button-1>',lambda event,arg=widget:switchevent(event,arg,image))
print('delrects',delrects)
else:
reflabel=0
print('reflabel=',reflabel)
try:
delelareadim=app.getinfo(delrects[1])
if delelareadim!=[]:
delselarea=delelareadim
app.end()
except:
pass
if text=='Origin':
try:
image=originsegbands['Origin']
zoomfnid_m=widget.bind('<Motion>',lambda event,arg=widget:zoom(event,arg,image))
zoomfnid_l=widget.bind('<Leave>',lambda event,arg=widget:deletezoom(event,arg))
except:
return
widget.bind('<Double-Button-1>',lambda event,arg=widget:switchevent(event,arg,image))
for widget in resviewframe.winfo_children():
widget.pack_forget()
rects=app.start()
print(rects)
originselarea=True
else:
widget.unbind('<Motion>')
selareadim=app.getinfo(rects[1])
if selareadim!=[]:
selareapos=selareadim
app.end(rects)
if text=='PCs':
selareadim=app.getinfo(rects[1])
if selareadim!=[0,0,1,1] and selareadim!=[] and selareadim!=selareapos:
selareapos=selareadim
if selareapos!=[0,0,1,1] and originselarea==True:
#need to redo PCA
npfilter=np.zeros((displayimg['Origin']['Size'][0],displayimg['Origin']['Size'][1]))
filter=Image.fromarray(npfilter)
draw=ImageDraw.Draw(filter)
draw.ellipse(selareapos,fill='red')
filter=np.array(filter)
filter=np.divide(filter,np.max(filter))
filter=cv2.resize(filter,(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)
partialsingleband(filter)
originselarea=False
pass
PCbuttons(resviewframe,frame)
pass
if text=='Color Deviation':
#displaypreview
displaypreview(text)
pass
if text=='ColorIndices':
#displaypreview
displaypreview(text)
pass
#print('change to '+text)
#time.sleep(1)
def updateresizeshape(shape,content):
shape.append(int(content))
return shape
def generatedisplayimg(filename): # init display images
global resizeshape,previewshape
try:
# firstimg=Multiimagebands[filename]
#height,width=firstimg.size
# height,width,c=displaybandarray[filename]['LabOstu'].shape
bandsize=Multiimagebands[filename].size
if bandsize[0]*bandsize[1]>2000*2000:
ratio=findratio([bandsize[0],bandsize[1]],[2000,2000])
else:
ratio=1
height,width=bandsize[0]/ratio,bandsize[1]/ratio
# ratio=findratio([height,width],[850,850])
ratio=findratio([height,width],[screenstd,screenstd])
print('displayimg ratio',ratio)
resizeshape=[]
# if height*width<850*850:
if height*width<screenstd*screenstd:
#resize=cv2.resize(Multiimage[filename],(int(width*ratio),int(height*ratio)),interpolation=cv2.INTER_LINEAR)
updateresizeshape(resizeshape,width*ratio)
updateresizeshape(resizeshape,height*ratio)
# resizeshape.append(width*ratio)
# resizeshape.append(height*ratio)
if height>screenstd:
resizeshape=[]
ratio=round(height/screenstd)
updateresizeshape(resizeshape,width*ratio)
updateresizeshape(resizeshape,height*ratio)
if width>screenstd:
resizeshape=[]
ratio=round(width/screenstd)
updateresizeshape(resizeshape,width*ratio)
updateresizeshape(resizeshape,height*ratio)
else:
#resize=cv2.resize(Multiimage[filename],(int(width/ratio),int(height/ratio)),interpolation=cv2.INTER_LINEAR)
updateresizeshape(resizeshape,width/ratio)
updateresizeshape(resizeshape,height/ratio)
ratio=findratio([height,width],[400,450])
previewshape=[]
if height*width<450*400:
#resize=cv2.resize(Multiimage[filename],(int(width*ratio),int(height*ratio)),interpolation=cv2.INTER_LINEAR)
updateresizeshape(previewshape,width*ratio)
updateresizeshape(previewshape,height*ratio)
if height>400:
previewshape=[]
ratio=round(height/screenstd)
updateresizeshape(previewshape,width/ratio)
updateresizeshape(previewshape,height/ratio)
if width>450:
previewshape=[]
ratio=round(width/screenstd)
updateresizeshape(previewshape,width/ratio)
updateresizeshape(previewshape,height/ratio)
else:
#resize=cv2.resize(Multiimage[filename],(int(width/ratio),int(height/ratio)),interpolation=cv2.INTER_LINEAR)
updateresizeshape(previewshape,width/ratio)
updateresizeshape(previewshape,height/ratio)
resize=cv2.resize(Multiimage[filename],(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR)
originimg=Image.fromarray(resize.astype('uint8'))
originsegbands.update({'Origin':originimg})
rgbimg=Image.fromarray(resize.astype('uint8'))
draw=ImageDraw.Draw(rgbimg)
suggsize=14
font=ImageFont.truetype('cmb10.ttf',size=suggsize)
content='\n File: '+filename
draw.text((10-1, 10+1), text=content, font=font, fill='white')
draw.text((10+1, 10+1), text=content, font=font, fill='white')
draw.text((10-1, 10-1), text=content, font=font, fill='white')
draw.text((10+1, 10-1), text=content, font=font, fill='white')
#draw.text((10,10),text=content,font=font,fill=(141,2,31,0))
draw.text((10,10),text=content,font=font,fill='black')
rgbimg=ImageTk.PhotoImage(rgbimg)
tempdict={}
tempdict.update({'Size':resize.shape})
tempdict.update({'Image':rgbimg})
except:
tempdict={}
tempimg=np.zeros((screenstd,screenstd))
tempdict.update({'Size':tempimg.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))})
displayimg['Origin']=tempdict
#if height*width<850*850:
# resize=cv2.resize(Multigray[filename],(int(width*ratio),int(height*ratio)),interpolation=cv2.INTER_LINEAR)
#else:
#resize=cv2.resize(Multigray[filename],(int(width/ratio),int(height/ratio)),interpolation=cv2.INTER_LINEAR)
tempimg=np.zeros((screenstd,screenstd))
tempdict={}
try:
tempdict.update({'Size':resize.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(resizeshape[1]),int(resizeshape[0]))).astype('uint8')))})
except:
tempdict.update({'Size':tempimg.shape})
#if height*width<850*850:
# tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(height*ratio),int(width*ratio))).astype('uint8')))})
#else:
# tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(height/ratio),int(width/ratio))).astype('uint8')))})
# tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(resizeshape[1]),int(resizeshape[0]))).astype('uint8')))})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))})
displayimg['Output']=tempdict
tempdict={}
try:
tempdict.update({'Size':resize.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(np.zeros((int(resizeshape[1]),int(resizeshape[0]))).astype('uint8')))})
except:
tempdict.update({'Size':tempimg.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))})
displayimg['PCs']=tempdict
tempdict={}
temppreviewdict={}
temppreviewimg=np.zeros((450,400))
try:
tempband=np.zeros((displaybandarray[filename]['LabOstu'][:,:,0].shape))
# tempband=tempband+displaybandarray[filename]['LabOstu']
# ratio=findratio([tempband.shape[0],tempband.shape[1]],[850,850])
#if tempband.shape[0]*tempband.shape[1]<850*850:
# tempband=cv2.resize(ratio,(int(tempband.shape[1]*ratio),int(tempband.shape[0]*ratio)),interpolation=cv2.INTER_LINEAR)
#else:
# tempband=cv2.resize(ratio,(int(tempband.shape[1]/ratio),int(tempband.shape[0]/ratio)),interpolation=cv2.INTER_LINEAR)
tempband=cv2.resize(tempband,(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR)
tempdict.update({'Size':tempband.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempband[:,:,2].astype('uint8')))})
temppreview=cv2.resize(tempband,(int(previewshape[0]),int(previewshape[1])),interpolation=cv2.INTER_LINEAR)
temppreview=Image.fromarray(temppreview.astype('uint8'))
temppreviewdict.update({'Size':previewshape})
temppreviewdict.update({'Image':ImageTk.PhotoImage(temppreview)})
# print('resizeshape',resizeshape)
#pyplt.imsave('displayimg.png',tempband[:,:,0])
#indimg=cv2.imread('displayimg.png')
except:
tempdict.update({'Size':tempimg.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))})
temppreviewdict.update({'Size':temppreviewimg.shape})
temppreviewdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(temppreviewimg.astype('uint8')))})
displayimg['ColorIndices']=tempdict
previewimg['ColorIndices']=temppreviewdict
#resize=cv2.resize(Multigray[filename],(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR)
#grayimg=ImageTk.PhotoImage(Image.fromarray(resize.astype('uint8')))
#tempdict={}
#tempdict.update({'Size':resize.shape})
#tempdict.update({'Image':grayimg})
tempdict={}
temppreviewdict={}
try:
colordeviate=np.zeros((tempband[:,:,0].shape[0],tempband[:,:,0].shape[1],3),'uint8')
kvar=int(kmeans.get())
for i in range(kvar):
locs=np.where(tempband[:,:,0]==i)
colordeviate[locs]=colorbandtable[i,:]
# pyplt.imsave('colordeviation.png',colordeviate)
# # colordevimg=Image.fromarray(colordeviate.astype('uint8'))
# # colordevimg.save('colordeviation.png',"PNG")
# testcolor=Image.open('colordeviation.png')
print('colordeviation.png')
# colortempdict={}
colordeviate=cv2.resize(colordeviate,(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR)
tempdict.update({'Size':colordeviate.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(colordeviate.astype('uint8')))})
# colortempdict.update({'Size':colordeviate.shape})
# colortempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(colordeviate.astype('uint8')))})
# colortempdict.update({'Image':ImageTk.PhotoImage(testcolor)})
# tempdict={}
temppreview=cv2.resize(colordeviate,(int(previewshape[0]),int(previewshape[1])),interpolation=cv2.INTER_LINEAR)
temppreviewdict.update({'Size':temppreview.shape})
temppreviewdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(temppreview[:,:,0].astype('uint8')))})
except:
tempdict.update({'Size':tempimg.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(tempimg.astype('uint8')))})
temppreviewdict.update({'Size':temppreviewimg.shape})
temppreviewdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(temppreviewimg.astype('uint8')))})
# displayimg['Color Deviation']=colortempdict
displayimg['Color Deviation']=tempdict
previewimg['Color Deviation']=temppreviewdict
def Open_File(filename): #add to multi-image,multi-gray #call band calculation
global Multiimage,Multigray,Multitype,Multiimagebands,Multigraybands,filenames
try:
Filersc=cv2.imread(filename,flags=cv2.IMREAD_ANYCOLOR)
ndim=np.ndim(Filersc)
if ndim==2:
height,width=np.shape(Filersc)
channel=1
Filersc.reshape((height,width,channel))
else:
height,width,channel=np.shape(Filersc)
Filesize=(height,width)
print('filesize:',height,width)
RGBfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2RGB)
Multiimage.update({filename:RGBfile})
if ndim==2:
Grayfile=np.copy(Filersc)
else:
Grayfile=cv2.cvtColor(Filersc,cv2.COLOR_BGR2Lab)
Grayfile=cv2.cvtColor(Grayfile,cv2.COLOR_BGR2GRAY)
#Grayfile=cv2.GaussianBlur(Grayfile,(3,3),cv2.BORDER_DEFAULT)
#ostu=filters.threshold_otsu(Grayfile)
#Grayfile=Grayfile.astype('float32')
#Grayfile=Grayfile/ostu
Grayimg=img(Filesize,Grayfile)
RGBbands=np.zeros((channel,height,width))
for j in range(channel):
band=RGBfile[:,:,j]
band=np.where(band==0,1e-6,band)
nans=np.isnan(band)
band[nans]=1e-6
#ostu=filters.threshold_otsu(band)
#band=band/ostu
RGBbands[j,:,:]=band
RGBimg=img(Filesize,RGBbands)
tempdict={filename:RGBimg}
Multiimagebands.update(tempdict)
tempdict={filename:Grayfile}
Multigray.update(tempdict)
tempdict={filename:0}
Multitype.update(tempdict)
tempdict={filename:Grayimg}
Multigraybands.update(tempdict)
except:
messagebox.showerror('Invalid Image Format','Cannot open '+filename)
return False
filenames.append(filename)
return True
def Open_Map():
if proc_mode[proc_name].get()=='1':
batchprocess.Open_batchfile()
return
global mappath,elesize,labellist
filepath=filedialog.askopenfilename()
if len(filepath)>0:
if 'csv' in filepath:
mappath=filepath
elesize=[]
labellist=[]
rows=[]
print('open map at: '+mappath)
with open(mappath,mode='r',encoding='utf-8-sig') as f:
csvreader=csv.reader(f)
for row in csvreader:
rows.append(row)
temprow=[]
for ele in row:
if ele is not '':
temprow.append(ele)
elesize.append(len(temprow))
for i in range(len(rows)):
for j in range(len(rows[i])):
if rows[i][j]!='':
labellist.append(rows[i][j])
else:
messagebox.showerror('Invalide File',message='Please open csv formate file as map file.')
corlortable=tkintercorestat.get_colortable(reseglabels)
tup=(reseglabels,[],corlortable,{},currentfilename)
print(elesize)
mapdict,mapimage,smallset=showcounting(tup,True,True,True)
tempimgbands={}
tempimgdict={}
tempsmall={}
tempimgbands.update({'iter0':mapimage})
tempimgdict.update({'iter0':mapdict})
tempsmall.update({'iter0':smallset})
outputimgdict.update({currentfilename:tempimgdict})
outputimgbands.update({currentfilename:tempimgbands})
outputsegbands.update({currentfilename:tempsmall})
changeoutputimg(currentfilename,'1')
def Open_Multifile():
global extractbutton,outputbutton
if proc_mode[proc_name].get()=='1':
batchprocess.Open_batchfolder()
extractbutton.config(state=NORMAL)
outputbutton.config(state=NORMAL)
return
# else:
# extractbutton.config(state=DISABLED)
global Multiimage,Multigray,Multitype,Multiimagebands,changefileframe,imageframe,Multigraybands,filenames
global changefiledrop,filedropvar,originbandarray,displaybandarray,clusterdisplay,currentfilename,resviewframe
global refsubframe,reseglabels,refbutton,figcanvas,loccanvas,originlabels,changekmeans,refarea
global originlabeldict,convband,panelA
global havecolorstrip
global colordicesband,oldpcachoice
global pccombinebar_up
global displaylabels,displaypclabels
global buttonvar
global colorindicearray
global selarea
MULTIFILES=filedialog.askopenfilenames()
root.update()
if len(MULTIFILES)>0:
Multiimage={}
Multigray={}
Multitype={}
Multiimagebands={}
Multigraybands={}
filenames=[]
originbandarray={}
colorindicearray={}
displaybandarray={}
clusterdisplay={}
oldpcachoice=[]
reseglabels=None
originlabels=None
originlabeldict=None
#changekmeans=True
convband=None
refvar.set('0')
kmeans.set('2')
panelA.delete(ALL)
panelA.unbind('<Button-1>')
panelA.unbind('<Shift-Button-1>')
refarea=None
havecolorstrip=False
displaypclabels=None
buttonvar.set(0)
# if 'NDI' in bandchoice:
# bandchoice['NDI'].set('1')
# if 'NDVI' in bandchoice:
# bandchoice['NDVI'].set('1')
refbutton.config(state=DISABLED)
# selareabutton.configure(state=DISABLED)
selarea.set('0')
figcanvas.delete(ALL)
#loccanvas=None
for widget in refsubframe.winfo_children():
widget.config(state=DISABLED)
#for widget in resviewframe.winfo_children():
# widget.config(state=DISABLED)
if outputbutton is not None:
outputbutton.config(state=DISABLED)
for i in range(len(MULTIFILES)):
if Open_File(MULTIFILES[i])==False:
return
generatedisplayimg(filenames[0])
changedisplayimg(imageframe,'Origin')
# imageframe.update()
# raise NameError
# yield
# thread=threading.Thread(target=singleband,args=(MULTIFILES[i],))
singleband(MULTIFILES[i])
# thread.start()
# thread.join()
for widget in changefileframe.winfo_children():
widget.pack_forget()
currentfilename=filenames[0]
# filedropvar.set(filenames[0])
# changefiledrop=OptionMenu(changefileframe,filedropvar,*filenames,command=partial(changeimage,imageframe))
# changefiledrop.pack()
#singleband(filenames[0])
generatedisplayimg(filenames[0])
# changedisplayimg(imageframe,'Origin')
getPCs()
if len(bandchoice)>0:
for i in range(len(cluster)):
bandchoice[cluster[i]].set('')
#changedisplayimg(imageframe,'Origin')
kmeans.set(1)
#reshapemodified_tif=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0]*displaybandarray[currentfilename]['LabOstu'].shape[1],3))
#colordicesband=kmeansclassify(['LabOstu'],reshapemodified_tif)
displaylabels=kmeansclassify()
generateimgplant('')
changedisplayimg(imageframe,'Origin')
# if len(bandchoice)>0:
# bandchoice['LabOstu'].set('1')
global buttondisplay,pcaframe,kmeansbar
for widget in buttondisplay.winfo_children():
widget.config(state=NORMAL)
# for widget in pcaframe.winfo_children():
# for widget in pcselframe.winfo_children():
# widget.config(state=NORMAL)
extractbutton.config(state=NORMAL)
kmeansbar.state(["!disabled"])
pccombinebar_up.state(["!disabled"])
def fillpartialbands(vector,vectorindex,band,filter_vector):
nonzero=np.where(filter_vector!=0)
vector[nonzero,vectorindex]=vector[nonzero,vectorindex]+band
def fillbands(originbands,displaybands,vector,vectorindex,name,band,filter=0):
tempdict={name:band}
if isinstance(filter,int):
if name not in originbands:
originbands.update(tempdict)
image=cv2.resize(band,(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)
displaydict={name:image}
displaybands.update(displaydict)
fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
vector[:,vectorindex]=vector[:,vectorindex]+fea_bands
else:
if name not in originbands:
originbands.update(tempdict)
image=cv2.resize(band,(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)
image=np.multiply(image,filter)
displaydict={name:image}
displaybands.update(displaydict)
fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
vector[:,vectorindex]=vector[:,vectorindex]+fea_bands
return
def plot3d(pcas):
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111,projection='3d')
x=pcas[:,0]
y=pcas[:,1]
z=pcas[:,2]*0+np.min(pcas[:,2])
ax.scatter(x,y,z,color='tab:purple')
x=pcas[:,0]*0+np.min(pcas[:,0])
y=pcas[:,1]
z=pcas[:,2]
ax.scatter(x,y,z,color='tab:pink')
x=pcas[:,0]
y=pcas[:,1]*0+np.max(pcas[:,1])
z=pcas[:,2]
ax.scatter(x,y,z,color='tab:olive')
ax.set_xlabel('Color Indices PC1')
ax.set_ylabel('Color Indices PC2')
ax.set_zlabel('Color Indices PC3')
# plt.show()
plt.savefig('3dplot_PC.png')
def partialoneband(filter):
global displaybandarray,originpcabands
global pcbuttons
global nonzero_vector,partialpca
partialpca=True
bands=Multiimagebands[currentfilename].bands
channel,fea_l,fea_w=bands.shape
nonzero=np.where(filter!=0)
RGB_vector=np.zeros((displayfea_l*displayfea_w,3))
colorindex_vector=np.zeros((displayfea_l*displayfea_w,12))
filter_vector=filter.reshape((displayfea_l*displayfea_w),1)[:,0]
originbands={}
displays={}
Red=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
Green=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
# Red=cv2.adaptiveThreshold(Red,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
# Green=cv2.adaptiveThreshold(Green,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
Blue=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
# Blue=cv2.threshold(Blue,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
fillpartialbands(RGB_vector,0,Red,filter_vector)
fillpartialbands(RGB_vector,1,Green,filter_vector)
fillpartialbands(RGB_vector,2,Blue,filter_vector)
PAT_R=Red
PAT_G=Red
PAT_B=Red
ROO_R=Red
ROO_G=Red
ROO_B=Red
DIF_R=Red
DIF_G=Red
DIF_B=Red
GLD_R=Red
GLD_G=Red
GLD_B=Red
fillpartialbands(colorindex_vector,0,PAT_R,filter_vector)
fillpartialbands(colorindex_vector,1,PAT_G,filter_vector)
fillpartialbands(colorindex_vector,2,PAT_B,filter_vector)
fillpartialbands(colorindex_vector,3,ROO_R,filter_vector)
fillpartialbands(colorindex_vector,4,ROO_G,filter_vector)
fillpartialbands(colorindex_vector,5,ROO_B,filter_vector)
fillpartialbands(colorindex_vector,6,DIF_R,filter_vector)
fillpartialbands(colorindex_vector,7,DIF_G,filter_vector)
fillpartialbands(colorindex_vector,8,DIF_B,filter_vector)
fillpartialbands(colorindex_vector,9,GLD_R,filter_vector)
fillpartialbands(colorindex_vector,10,GLD_G,filter_vector)
fillpartialbands(colorindex_vector,11,GLD_B,filter_vector)
nonzero_vector=np.where(filter_vector!=0)
displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
featurechannel=14
# np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f')
# displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
originpcabands.update({currentfilename:displayfea_vector})
pcabandsdisplay=displayfea_vector[:,:14]
pcabandsdisplay=pcabandsdisplay.reshape(displayfea_l,displayfea_w,featurechannel)
tempdictdisplay={'LabOstu':pcabandsdisplay}
displaybandarray.update({currentfilename:tempdictdisplay})
# originbandarray.update({currentfilename:originbands})
# Red=displays['Band1']
# Green=displays['Band2']
# Blue=displays['Band3']
# convimg=np.zeros((Red.shape[0],Red.shape[1],3))
# convimg[:,:,0]=Red
# convimg[:,:,1]=Green
# convimg[:,:,2]=Blue
# convimg=Image.fromarray(convimg.astype('uint8'))
# convimg.save('convimg.png','PNG')
pcbuttons=[]
need_w=int(450/3)
need_h=int(400/4)
for i in range(2,3):
band=np.copy(pcabandsdisplay[:,:,i])
# imgband=(band-band.min())*255/(band.max()-band.min())
imgband=np.copy(band)
pcimg=Image.fromarray(imgband.astype('uint8'),'L')
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS)
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
# ratio=max(displayfea_l/need_h,displayfea_w/need_w)
# print('origin band range',band.max(),band.min())
# # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)})
# band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR)
# bandrange=band.max()-band.min()
# print('band range',band.max(),band.min())
# band=(band-band.min())/bandrange*255
# print('button img range',band.max(),band.min())
# buttonimg=Image.fromarray(band.astype('uint8'),'L')
pcbuttons.append(ImageTk.PhotoImage(pcimg))
def partialsingleband(filter):
global displaybandarray,originpcabands
global pcbuttons
global nonzero_vector,partialpca
partialpca=True
bands=Multiimagebands[currentfilename].bands
channel,fea_l,fea_w=bands.shape
nonzero=np.where(filter!=0)
RGB_vector=np.zeros((displayfea_l*displayfea_w,3))
colorindex_vector=np.zeros((displayfea_l*displayfea_w,12))
filter_vector=filter.reshape((displayfea_l*displayfea_w),1)[:,0]
originbands={}
displays={}
if channel==1:
# Red=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
# Green=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
# Blue=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
# fillpartialbands(RGB_vector,0,Red,filter_vector)
# fillpartialbands(RGB_vector,1,Green,filter_vector)
# fillpartialbands(RGB_vector,2,Blue,filter_vector)
partialoneband(filter)
return
else:
Red=cv2.resize(bands[0,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
Green=cv2.resize(bands[1,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
Blue=cv2.resize(bands[2,:,:],(displayfea_w,displayfea_l),interpolation=cv2.INTER_LINEAR)[nonzero]
fillpartialbands(RGB_vector,0,Red,filter_vector)
fillpartialbands(RGB_vector,1,Green,filter_vector)
fillpartialbands(RGB_vector,2,Blue,filter_vector)
PAT_R=Red/(Red+Green)
PAT_G=Green/(Green+Blue)
PAT_B=Blue/(Blue+Red)
ROO_R=Red/Green
ROO_G=Green/Blue
ROO_B=Blue/Red
DIF_R=2*Red-Green-Blue
DIF_G=2*Green-Blue-Red
DIF_B=2*Blue-Red-Green
GLD_R=Red/(np.multiply(np.power(Blue,0.618),np.power(Green,0.382)))
GLD_G=Green/(np.multiply(np.power(Blue,0.618),np.power(Red,0.382)))
GLD_B=Blue/(np.multiply(np.power(Green,0.618),np.power(Red,0.382)))
fillpartialbands(colorindex_vector,0,PAT_R,filter_vector)
fillpartialbands(colorindex_vector,1,PAT_G,filter_vector)
fillpartialbands(colorindex_vector,2,PAT_B,filter_vector)
fillpartialbands(colorindex_vector,3,ROO_R,filter_vector)
fillpartialbands(colorindex_vector,4,ROO_G,filter_vector)
fillpartialbands(colorindex_vector,5,ROO_B,filter_vector)
fillpartialbands(colorindex_vector,6,DIF_R,filter_vector)
fillpartialbands(colorindex_vector,7,DIF_G,filter_vector)
fillpartialbands(colorindex_vector,8,DIF_B,filter_vector)
fillpartialbands(colorindex_vector,9,GLD_R,filter_vector)
fillpartialbands(colorindex_vector,10,GLD_G,filter_vector)
fillpartialbands(colorindex_vector,11,GLD_B,filter_vector)
for i in range(12):
perc=np.percentile(colorindex_vector[:,i],1)
print('perc',perc)
colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i])
perc=np.percentile(colorindex_vector[:,i],99)
print('perc',perc)
colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i])
for i in range(3):
perc=np.percentile(RGB_vector[:,i],1)
print('perc',perc)
RGB_vector[:,i]=np.where(RGB_vector[:,i]<perc,perc,RGB_vector[:,i])
perc=np.percentile(RGB_vector[:,i],99)
print('perc',perc)
RGB_vector[:,i]=np.where(RGB_vector[:,i]>perc,perc,RGB_vector[:,i])
nonzero_vector=np.where(filter_vector!=0)
rgb_M=np.mean(RGB_vector[nonzero_vector,:].T,axis=1)
colorindex_M=np.mean(colorindex_vector[nonzero_vector,:].T,axis=1)
print('rgb_M',rgb_M,'colorindex_M',colorindex_M)
rgb_C=RGB_vector[nonzero_vector,:][0]-rgb_M.T
colorindex_C=colorindex_vector[nonzero_vector,:][0]-colorindex_M.T
rgb_V=np.corrcoef(rgb_C.T)
color_V=np.corrcoef(colorindex_C.T)
nans=np.isnan(color_V)
color_V[nans]=1e-6
rgb_std=rgb_C/(np.std(RGB_vector[nonzero_vector,:].T,axis=1)).T
color_std=colorindex_C/(np.std(colorindex_vector[nonzero_vector,:].T,axis=1)).T
nans=np.isnan(color_std)
color_std[nans]=1e-6
rgb_eigval,rgb_eigvec=np.linalg.eig(rgb_V)
color_eigval,color_eigvec=np.linalg.eig(color_V)
print('rgb_eigvec',rgb_eigvec)
print('color_eigvec',color_eigvec)
featurechannel=12
pcabands=np.zeros((colorindex_vector.shape[0],featurechannel))
rgbbands=np.zeros((colorindex_vector.shape[0],3))
for i in range(0,9):
pcn=color_eigvec[:,i]
pcnbands=np.dot(color_std,pcn)
pcvar=np.var(pcnbands)
print('color index pc',i+1,'var=',pcvar)
pcabands[nonzero_vector,i]=pcabands[nonzero_vector,i]+pcnbands
for i in range(9,12):
pcn=rgb_eigvec[:,i-9]
pcnbands=np.dot(rgb_std,pcn)
pcvar=np.var(pcnbands)
print('rgb pc',i-9+1,'var=',pcvar)
pcabands[nonzero_vector,i]=pcabands[nonzero_vector,i]+pcnbands
rgbbands[nonzero_vector,i-9]=rgbbands[nonzero_vector,i-9]+pcnbands
# plot3d(pcabands)
# np.savetxt('rgb.csv',rgbbands,delimiter=',',fmt='%10.5f')
# pcabands[:,1]=np.copy(pcabands[:,1])
# pcabands[:,2]=pcabands[:,2]*0
# indexbands=np.zeros((colorindex_vector.shape[0],3))
# if i<5:
# indexbands[:,i-2]=indexbands[:,i-2]+pcnbands
for i in range(12):
perc=np.percentile(pcabands[:,i],1)
print('perc',perc)
pcabands[:,i]=np.where(pcabands[:,i]<perc,perc,pcabands[:,i])
perc=np.percentile(pcabands[:,i],99)
print('perc',perc)
pcabands[:,i]=np.where(pcabands[:,i]>perc,perc,pcabands[:,i])
'''save to csv'''
# indexbands[:,0]=indexbands[:,0]+pcabands[:,2]
# indexbands[:,1]=indexbands[:,1]+pcabands[:,3]
# indexbands[:,2]=indexbands[:,2]+pcabands[:,4]
# plot3d(indexbands)
# np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%10.5f')
displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
# np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f')
# displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
originpcabands.update({currentfilename:displayfea_vector})
pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel)
tempdictdisplay={'LabOstu':pcabandsdisplay}
displaybandarray.update({currentfilename:tempdictdisplay})
# originbandarray.update({currentfilename:originbands})
# Red=displays['Band1']
# Green=displays['Band2']
# Blue=displays['Band3']
# convimg=np.zeros((Red.shape[0],Red.shape[1],3))
# convimg[:,:,0]=Red
# convimg[:,:,1]=Green
# convimg[:,:,2]=Blue
# convimg=Image.fromarray(convimg.astype('uint8'))
# convimg.save('convimg.png','PNG')
pcbuttons=[]
need_w=int(450/3)
need_h=int(400/4)
for i in range(12):
band=np.copy(pcabandsdisplay[:,:,i])
imgband=(band-band.min())*255/(band.max()-band.min())
pcimg=Image.fromarray(imgband.astype('uint8'),'L')
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS)
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
# ratio=max(displayfea_l/need_h,displayfea_w/need_w)
# print('origin band range',band.max(),band.min())
# # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)})
# band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR)
# bandrange=band.max()-band.min()
# print('band range',band.max(),band.min())
# band=(band-band.min())/bandrange*255
# print('button img range',band.max(),band.min())
# buttonimg=Image.fromarray(band.astype('uint8'),'L')
pcbuttons.append(ImageTk.PhotoImage(pcimg))
def oneband(file):
global displaybandarray,originbandarray,originpcabands,displayfea_l,displayfea_w
global pcbuttons
global partialpca
partialpca=False
try:
bands=Multiimagebands[file].bands
except:
return
pcbuttons=[]
channel,fea_l,fea_w=bands.shape
print('bandsize',fea_l,fea_w)
if fea_l*fea_w>2000*2000:
ratio=findratio([fea_l,fea_w],[2000,2000])
else:
ratio=1
print('ratio',ratio)
originbands={}
displays={}
displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR)
displayfea_l,displayfea_w=displaybands.shape
RGB_vector=np.zeros((displayfea_l*displayfea_w,3))
colorindex_vector=np.zeros((displayfea_l*displayfea_w,12))
Red=bands[0,:,:].astype('uint8')
# _,Red=cv2.threshold(Red,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
Green=bands[0,:,:].astype('uint8')
# _,Green=cv2.threshold(Green,0,255,cv2.THRESH_OTSU)
Blue=bands[0,:,:].astype('uint8')
# _,Blue=cv2.threshold(Blue,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
fillbands(originbands,displays,RGB_vector,0,'Band1',Red)
fillbands(originbands,displays,RGB_vector,1,'Band2',Green)
fillbands(originbands,displays,RGB_vector,2,'Band3',Blue)
PAT_R=bands[0,:,:].astype('uint8')
# PAT_R=cv2.adaptiveThreshold(PAT_R,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
PAT_G=bands[0,:,:]
# PAT_G=cv2.adaptiveThreshold(PAT_G,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
PAT_B=bands[0,:,:]
ROO_R=bands[0,:,:]
ROO_G=bands[0,:,:]
ROO_B=bands[0,:,:]
DIF_R=bands[0,:,:]
DIF_G=bands[0,:,:]
DIF_B=bands[0,:,:]
GLD_R=bands[0,:,:]
GLD_G=bands[0,:,:]
GLD_B=bands[0,:,:]
fillbands(originbands,displays,colorindex_vector,0,'PAT_R',PAT_R)
fillbands(originbands,displays,colorindex_vector,1,'PAT_G',PAT_G)
fillbands(originbands,displays,colorindex_vector,2,'PAT_B',PAT_B)
fillbands(originbands,displays,colorindex_vector,3,'ROO_R',ROO_R)
fillbands(originbands,displays,colorindex_vector,4,'ROO_G',ROO_G)
fillbands(originbands,displays,colorindex_vector,5,'ROO_B',ROO_B)
fillbands(originbands,displays,colorindex_vector,6,'DIF_R',DIF_R)
fillbands(originbands,displays,colorindex_vector,7,'DIF_G',DIF_G)
fillbands(originbands,displays,colorindex_vector,8,'DIF_B',DIF_B)
fillbands(originbands,displays,colorindex_vector,9,'GLD_R',GLD_R)
fillbands(originbands,displays,colorindex_vector,10,'GLD_G',GLD_G)
fillbands(originbands,displays,colorindex_vector,11,'GLD_B',GLD_B)
displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
# np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f')
featurechannel=14
originpcabands.update({file:displayfea_vector})
# pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel)
# pcabandsdisplay=np.concatenate((RGB_vector,colorindex_vector),axis=2)
pcabandsdisplay=displayfea_vector[:,:14]
pcabandsdisplay=pcabandsdisplay.reshape(displayfea_l,displayfea_w,featurechannel)
tempdictdisplay={'LabOstu':pcabandsdisplay}
displaybandarray.update({file:tempdictdisplay})
originbandarray.update({file:originbands})
# Red=displays['Band1']
# Green=displays['Band2']
# Blue=displays['Band3']
# convimg=np.zeros((Red.shape[0],Red.shape[1],3))
# convimg[:,:,0]=Red
# convimg[:,:,1]=Green
# convimg[:,:,2]=Blue
# convimg=Image.fromarray(convimg.astype('uint8'))
# convimg.save('convimg.png','PNG')
need_w=int(450/3)
need_h=int(400/4)
for i in range(2,3):
band=np.copy(pcabandsdisplay[:,:,i])
# band=np.copy(Red)
# imgband=(band-band.min())*255/(band.max()-band.min())
imgband=np.copy(band)
pcimg=Image.fromarray(imgband.astype('uint8'),'L')
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS)
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
# ratio=max(displayfea_l/need_h,displayfea_w/need_w)
# print('origin band range',band.max(),band.min())
# # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)})
# band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR)
# bandrange=band.max()-band.min()
# print('band range',band.max(),band.min())
# band=(band-band.min())/bandrange*255
# print('button img range',band.max(),band.min())
# buttonimg=Image.fromarray(band.astype('uint8'),'L')
pcbuttons.append(ImageTk.PhotoImage(pcimg))
def singleband(file):
global displaybandarray,originbandarray,originpcabands,displayfea_l,displayfea_w
global pcbuttons
global partialpca
partialpca=False
try:
bands=Multiimagebands[file].bands
except:
return
pcbuttons=[]
channel,fea_l,fea_w=bands.shape
print('bandsize',fea_l,fea_w)
if fea_l*fea_w>2000*2000:
ratio=findratio([fea_l,fea_w],[2000,2000])
else:
ratio=1
print('ratio',ratio)
originbands={}
displays={}
displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR)
# displaybands=np.copy(bands[0,:,:])
displayfea_l,displayfea_w=displaybands.shape
# displayfea_l,displayfea_w=fea_l,fea_w
print(displayfea_l,displayfea_w)
RGB_vector=np.zeros((displayfea_l*displayfea_w,3))
colorindex_vector=np.zeros((displayfea_l*displayfea_w,12))
if channel==1:
# Red=bands[0,:,:]
# Green=bands[0,:,:]
# Blue=bands[0,:,:]
oneband(file)
return
else:
Red=bands[0,:,:]
Green=bands[1,:,:]
Blue=bands[2,:,:]
fillbands(originbands,displays,RGB_vector,0,'Band1',Red)
fillbands(originbands,displays,RGB_vector,1,'Band2',Green)
fillbands(originbands,displays,RGB_vector,2,'Band3',Blue)
# import matplotlib.pyplot as plt
# fig,axs=plt.subplots(1,3)
# for i in range(3):
# minpc2=np.min(RGB_vector[:,i])
# maxpc2=np.max(RGB_vector[:,i])
# print(minpc2,maxpc2)
# bins=range(int(minpc2),int(maxpc2),10)
# axs[i].hist(RGB_vector[:,i],bins,range=(minpc2,maxpc2))
# axs[i].set_title('RGBband_'+str(i+1))
# # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2))
# plt.show()
# secondsmallest_R=np.partition(Red,1)[1][0]
# secondsmallest_G=np.partition(Green,1)[1][0]
# secondsmallest_B=np.partition(Blue,1)[1][0]
#
# Red=Red+secondsmallest_R
# Green=Green+secondsmallest_G
# Blue=Blue+secondsmallest_B
# Red=Red/255+1
# Green=Green/255+1
# Blue=Blue/255+1
PAT_R=Red/(Red+Green)
PAT_G=Green/(Green+Blue)
PAT_B=Blue/(Blue+Red)
ROO_R=Red/(Green+1e-6)
ROO_G=Green/(Blue+1e-6)
ROO_B=Blue/(Red+1e-6)
DIF_R=2*Red-Green-Blue
DIF_G=2*Green-Blue-Red
DIF_B=2*Blue-Red-Green
GLD_R=Red/(np.multiply(np.power(Blue,0.618),np.power(Green,0.382))+1e-6)
GLD_G=Green/(np.multiply(np.power(Blue,0.618),np.power(Red,0.382))+1e-6)
GLD_B=Blue/(np.multiply(np.power(Green,0.618),np.power(Red,0.382))+1e-6)
fillbands(originbands,displays,colorindex_vector,0,'PAT_R',PAT_R)
fillbands(originbands,displays,colorindex_vector,1,'PAT_G',PAT_G)
fillbands(originbands,displays,colorindex_vector,2,'PAT_B',PAT_B)
fillbands(originbands,displays,colorindex_vector,3,'ROO_R',ROO_R)
fillbands(originbands,displays,colorindex_vector,4,'ROO_G',ROO_G)
fillbands(originbands,displays,colorindex_vector,5,'ROO_B',ROO_B)
fillbands(originbands,displays,colorindex_vector,6,'DIF_R',DIF_R)
fillbands(originbands,displays,colorindex_vector,7,'DIF_G',DIF_G)
fillbands(originbands,displays,colorindex_vector,8,'DIF_B',DIF_B)
fillbands(originbands,displays,colorindex_vector,9,'GLD_R',GLD_R)
fillbands(originbands,displays,colorindex_vector,10,'GLD_G',GLD_G)
fillbands(originbands,displays,colorindex_vector,11,'GLD_B',GLD_B)
# for i in [5,11]:
# colorindex_vector[:,i]=np.log10(colorindex_vector[:,i])
# perc=np.percentile(colorindex_vector[:,i],99)
# print('perc',perc)
# colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i])
#
# for i in [0,1,3,4,9,10]:
# colorindex_vector[:,i]=np.log10(colorindex_vector[:,i])
# perc=np.percentile(colorindex_vector[:,i],90)
# print('perc',perc)
# colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i])
# for i in [5,11]:
# colorindex_vector[:,i]=np.log10(colorindex_vector[:,i])
# perc=np.percentile(colorindex_vector[:,i],99)
# print('perc',perc)
# colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i])
#
# for i in [3,4,9,10]:
# colorindex_vector[:,i]=np.log10(colorindex_vector[:,i])
# perc=np.percentile(colorindex_vector[:,i],1)
# print('perc',perc)
# colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i])
# perc=np.percentile(colorindex_vector[:,i],99)
# print('perc',perc)
# colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i])
#
# for i in [0,1]:
# colorindex_vector[:,i]=np.log10(colorindex_vector[:,i])
# perc=np.percentile(colorindex_vector[:,i],2)
# print('perc',perc)
# colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i])
# for i in [0,1,3,4,9,10]:
# colorindex_vector[:,i]=np.log10(colorindex_vector[:,i])
for i in range(12):
perc=np.percentile(colorindex_vector[:,i],1)
print('perc',perc)
colorindex_vector[:,i]=np.where(colorindex_vector[:,i]<perc,perc,colorindex_vector[:,i])
perc=np.percentile(colorindex_vector[:,i],99)
print('perc',perc)
colorindex_vector[:,i]=np.where(colorindex_vector[:,i]>perc,perc,colorindex_vector[:,i])
for i in range(3):
perc=np.percentile(RGB_vector[:,i],1)
print('perc',perc)
RGB_vector[:,i]=np.where(RGB_vector[:,i]<perc,perc,RGB_vector[:,i])
perc=np.percentile(RGB_vector[:,i],99)
print('perc',perc)
RGB_vector[:,i]=np.where(RGB_vector[:,i]>perc,perc,RGB_vector[:,i])
# import matplotlib.pyplot as plt
# fig,axs=plt.subplots(4,3)
# for i in range(12):
# minpc2=np.min(colorindex_vector[:,i])
# maxpc2=np.max(colorindex_vector[:,i])
# print(minpc2,maxpc2)
# # bins=range(int(minpc2),int(maxpc2)+1,10)
# axs[int(i/3),i%3].hist(colorindex_vector[:,i],10,range=(minpc2,maxpc2))
# axs[int(i/3),i%3].set_title('Colorindex_'+str(i+1))
# # axs[i].hist(colorindex_vector[:,i],10,range=(minpc2,maxpc2))
# # axs[i].set_title('Colorindex_'+str(i+1))
# # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2))
# plt.show()
rgb_M=np.mean(RGB_vector.T,axis=1)
colorindex_M=np.mean(colorindex_vector.T,axis=1)
print('rgb_M',rgb_M,'colorindex_M',colorindex_M)
rgb_C=RGB_vector-rgb_M
colorindex_C=colorindex_vector-colorindex_M
rgb_V=np.corrcoef(rgb_C.T)
color_V=np.corrcoef(colorindex_C.T)
nans=np.isnan(color_V)
color_V[nans]=1e-6
rgb_std=rgb_C/np.std(RGB_vector.T,axis=1)
color_std=colorindex_C/np.std(colorindex_vector.T,axis=1)
nans=np.isnan(color_std)
color_std[nans]=1e-6
rgb_eigval,rgb_eigvec=np.linalg.eig(rgb_V)
color_eigval,color_eigvec=np.linalg.eig(color_V)
print('rgb_eigvec',rgb_eigvec)
print('color_eigvec',color_eigvec)
featurechannel=12
pcabands=np.zeros((colorindex_vector.shape[0],featurechannel))
rgbbands=np.zeros((colorindex_vector.shape[0],3))
# plot3d(pcabands)
# np.savetxt('rgb.csv',rgbbands,delimiter=',',fmt='%10.5f')
# pcabands[:,1]=np.copy(pcabands[:,1])
# pcabands[:,2]=pcabands[:,2]*0
indexbands=np.zeros((colorindex_vector.shape[0],3))
# for i in range(3,featurechannel):
# csvpcabands=np.zeros((colorindex_vector.shape[0],15))
for i in range(0,9):
pcn=color_eigvec[:,i]
pcnbands=np.dot(color_std,pcn)
pcvar=np.var(pcnbands)
print('color index pc',i+1,'var=',pcvar)
pcabands[:,i]=pcabands[:,i]+pcnbands
# if i<5:
# indexbands[:,i-2]=indexbands[:,i-2]+pcnbands
for i in range(9,12):
pcn=rgb_eigvec[:,i-9]
pcnbands=np.dot(rgb_std,pcn)
pcvar=np.var(pcnbands)
print('rgb pc',i+1,'var=',pcvar)
pcabands[:,i]=pcabands[:,i]+pcnbands
rgbbands[:,i-9]=rgbbands[:,i-9]+pcnbands
# for i in range(0,12):
# pcn=color_eigvec[:,i]
# pcnbands=np.dot(color_std,pcn)
# pcvar=np.var(pcnbands)
# print('csv color index pc',i+1,'var=',pcvar)
# csvpcabands[:,i]=csvpcabands[:,i]+pcnbands
# for i in range(12,15):
# pcn=rgb_eigvec[:,i-12]
# pcnbands=np.dot(rgb_std,pcn)
# csvpcabands[:,i]=csvpcabands[:,i]+pcnbands
#
'''save to csv'''
# indexbands[:,0]=indexbands[:,0]+pcabands[:,2]
# indexbands[:,1]=indexbands[:,1]+pcabands[:,3]
# indexbands[:,2]=indexbands[:,2]+pcabands[:,4]
# plot3d(indexbands)
# np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%10.5f')
# minpc=np.min(pcabands)
#
# meanpc=np.mean(pcabands)
# stdpc=np.std(pcabands)
# print('meanpc',meanpc,'stdpc',stdpc)
# pcabands=pcabands-meanpc/stdpc
# import matplotlib.pyplot as plt
# minpc2=np.min(pcabands[:,13])
# maxpc2=np.max(pcabands[:,13])
# print(minpc2,maxpc2)
# bins=range(int(minpc2),int(maxpc2),10)
# plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2))
# plt.show()
# np.savetxt('pcs.csv',pcabands[:,3],delimiter=',',fmt='%10.5f')
for i in range(12):
perc=np.percentile(pcabands[:,i],1)
print('perc',perc)
pcabands[:,i]=np.where(pcabands[:,i]<perc,perc,pcabands[:,i])
perc=np.percentile(pcabands[:,i],99)
print('perc',perc)
pcabands[:,i]=np.where(pcabands[:,i]>perc,perc,pcabands[:,i])
# import matplotlib.pyplot as plt
# fig,axs=plt.subplots(4,3)
# for i in range(2,14):
# minpc2=np.min(pcabands[:,i])
# maxpc2=np.max(pcabands[:,i])
# print(minpc2,maxpc2)
# # bins=range(int(minpc2),int(maxpc2)+1,10)
# axs[int((i-2)/3),(i-2)%3].hist(pcabands[:,i],10,range=(minpc2,maxpc2))
# axs[int((i-2)/3),(i-2)%3].set_title('PC_'+str(i-2+1))
# # axs[i].hist(colorindex_vector[:,i],10,range=(minpc2,maxpc2))
# # axs[i].set_title('Colorindex_'+str(i+1))
# # plt.hist(pcabands[:,13],bins,range=(minpc2,maxpc2))
# plt.show()
# header=['R','G','B',
# 'PAT_R','PAT_G','PAT_B',
# 'DIF_R','DIF_G','DIF_B',
# 'ROO_R','ROO_G','ROO_B',
# 'GLD_R','GLD_G','GLD_B',]
# displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
# with open('color-index.csv','w') as f:
# writer=csv.writer(f)
# writer.writerow(header)
# for i in range(displayfea_vector.shape[0]):
# writer.writerow(list(displayfea_vector[i,:]))
# np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%10.5f')
displayfea_vector=np.concatenate((RGB_vector,colorindex_vector),axis=1)
originpcabands.update({file:displayfea_vector})
pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel)
tempdictdisplay={'LabOstu':pcabandsdisplay}
displaybandarray.update({file:tempdictdisplay})
originbandarray.update({file:originbands})
# Red=displays['Band1']
# Green=displays['Band2']
# Blue=displays['Band3']
# convimg=np.zeros((Red.shape[0],Red.shape[1],3))
# convimg[:,:,0]=Red
# convimg[:,:,1]=Green
# convimg[:,:,2]=Blue
# convimg=Image.fromarray(convimg.astype('uint8'))
# convimg.save('convimg.png','PNG')
need_w=int(450/3)
need_h=int(400/4)
# pcdisplay=[3,4,5,6,7,8,9,10,11,0,1,2]
# for i in range(2,featurechannel):
for i in range(featurechannel):
band=np.copy(pcabandsdisplay[:,:,i])
imgband=(band-band.min())*255/(band.max()-band.min())
pcimg=Image.fromarray(imgband.astype('uint8'),'L')
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
pcimg.thumbnail((need_w,need_h),Image.ANTIALIAS)
# pcimg.save('pc'+'_'+str(i)+'.png',"PNG")
# ratio=max(displayfea_l/need_h,displayfea_w/need_w)
# print('origin band range',band.max(),band.min())
# # band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)})
# band=cv2.resize(band,(need_w,need_h),interpolation=cv2.INTER_LINEAR)
# bandrange=band.max()-band.min()
# print('band range',band.max(),band.min())
# band=(band-band.min())/bandrange*255
# print('button img range',band.max(),band.min())
# buttonimg=Image.fromarray(band.astype('uint8'),'L')
pcbuttons.append(ImageTk.PhotoImage(pcimg))
def colorindices_cal(file):
global colorindicearray
try:
bands=Multiimagebands[file].bands
except:
return
channel,fea_l,fea_w=bands.shape
print('bandsize',fea_l,fea_w)
if fea_l*fea_w>2000*2000:
ratio=findratio([fea_l,fea_w],[2000,2000])
else:
ratio=1
print('ratio',ratio)
originbands={}
displays={}
# displaybands=cv2.resize(bands[0,:,:],(int(fea_w/ratio),int(fea_l/ratio)),interpolation=cv2.INTER_LINEAR)
# displaybands=np.copy(bands[0,:,:])
# displayfea_l,displayfea_w=displaybands.shape
# displayfea_l,displayfea_w=fea_l,fea_w
print(displayfea_l,displayfea_w)
colorindex_vector=np.zeros((displayfea_l*displayfea_w,7))
if channel==1:
Red=bands[0,:,:]
Green=bands[0,:,:]
Blue=bands[0,:,:]
else:
Red=bands[0,:,:]
Green=bands[1,:,:]
Blue=bands[2,:,:]
secondsmallest_R=np.partition(Red,1)[1][0]
secondsmallest_G=np.partition(Green,1)[1][0]
secondsmallest_B=np.partition(Blue,1)[1][0]
Red=Red+secondsmallest_R
Green=Green+secondsmallest_G
Blue=Blue+secondsmallest_B
NDI=128*((Green-Red)/(Green+Red)+1)
VEG=Green/(np.power(Red,0.667)*np.power(Blue,(1-0.667)))
Greenness=Green/(Green+Red+Blue)
CIVE=0.44*Red+0.811*Green+0.385*Blue+18.7845
MExG=1.262*Green-0.844*Red-0.311*Blue
NDRB=(Red-Blue)/(Red+Blue)
NGRDI=(Green-Red)/(Green+Red)
fillbands(originbands,displays,colorindex_vector,0,'NDI',NDI)
fillbands(originbands,displays,colorindex_vector,1,'VEG',VEG)
fillbands(originbands,displays,colorindex_vector,2,'Greenness',Greenness)
fillbands(originbands,displays,colorindex_vector,3,'CIVE',CIVE)
fillbands(originbands,displays,colorindex_vector,4,'MExG',MExG)
fillbands(originbands,displays,colorindex_vector,5,'NDRB',NDRB)
fillbands(originbands,displays,colorindex_vector,6,'NGRDI',NGRDI)
colorindicearray.update({file:originbands})
def singleband_oldversion(file):
global displaybandarray,originbandarray,originpcabands,displayfea_l,displayfea_w
global pcbuttons
try:
bands=Multigraybands[file].bands
except:
return
pcbuttons=[]
bandsize=Multigraybands[file].size
print('bandsize',bandsize)
try:
channel,height,width=bands.shape
except:
channel=0
if channel>1:
bands=bands[0,:,:]
#bands=cv2.GaussianBlur(bands,(3,3),cv2.BORDER_DEFAULT)
ostu=filters.threshold_otsu(bands)
bands=bands.astype('float32')
bands=bands/ostu
#display purpose
if bandsize[0]*bandsize[1]>2000*2000:
ratio=findratio([bandsize[0],bandsize[1]],[2000,2000])
else:
ratio=1
print('ratio',ratio)
#if bandsize[0]*bandsize[1]>850*850:
# ratio=findratio([bandsize[0],bandsize[1]],[850,850])
#else:
# ratio=1
#ttestbands=np.copy(bands)
#testdisplaybands=cv2.resize(ttestbands,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#testdisplaybands=cv2.resize(testdisplaybands,(int(resizeshape[0]),int(resizeshape[1])),interpolation=cv2.INTER_LINEAR)
#print('testdisplaybands size',testdisplaybands.size)
#if bandsize[0]*bandsize[1]>850*850:
# ratio=findratio([bandsize[0],bandsize[1]],[850,850])
#else:
# ratio=1
originbands={}
displays={}
fea_l,fea_w=bands.shape
# fea_vector=np.zeros((fea_l*fea_w,3))
pyplt.imsave('bands.png',bands)
displaybands=cv2.resize(bands,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
pyplt.imsave('displaybands.png',displaybands)
displayfea_l,displayfea_w=displaybands.shape
fea_vector=np.zeros((displayfea_l*displayfea_w,3))
displayfea_vector=np.zeros((displayfea_l*displayfea_w,7))
colorfea_vector=np.zeros((displayfea_l*displayfea_w,7))
# originfea_vector=np.zeros((bandsize[0],bandsize[1],10))
# saveimg=np.copy(bands).astype('uint8')
# pyplt.imsave('ostuimg.png',saveimg)
if 'LabOstu' not in originbands:
originbands.update({'LabOstu':bands})
fea_bands=bands.reshape(fea_l*fea_w,1)[:,0]
# originfea_vector[:,9]=originfea_vector[:,0]+fea_bands
displayfea_bands=displaybands.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,9]=fea_vector[:,0]+fea_bands
displayfea_vector[:,6]=displayfea_vector[:,6]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,6]=colorfea_vector[:,6]+colorfeabands
#displaybands=displaybands.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
#kernel=np.ones((2,2),np.float32)/4
#displaybands=np.copy(bands)
displays.update({'LabOstu':displaybands})
#displaybandarray.update({'LabOstu':cv2.filter2D(displaybands,-1,kernel)})
bands=Multiimagebands[file].bands
#for i in range(3):
# bands[i,:,:]=cv2.GaussianBlur(bands[i,:,:],(3,3),cv2.BORDER_DEFAULT)
NDI=128*((bands[1,:,:]-bands[0,:,:])/(bands[1,:,:]+bands[0,:,:])+1)
tempdict={'NDI':NDI}
# saveimg=np.copy(NDI).astype('uint8')
# pyplt.imsave('NDIimg.png',saveimg)
if 'NDI' not in originbands:
originbands.update(tempdict)
displaybands=cv2.resize(NDI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
fea_bands=NDI.reshape(fea_l*fea_w,1)[:,0]
# originfea_vector[:,1]=originfea_vector[:,1]+fea_bands
displayfea_bands=displaybands.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,1]=fea_vector[:,1]+fea_bands
displayfea_vector[:,1]=displayfea_vector[:,1]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,1]=colorfea_vector[:,1]+colorfeabands
#displaybands=np.copy(NDI)
#kernel=np.ones((2,2),np.float32)/4
#displaydict={'NDI':cv2.filter2D(displaybands,-1,kernel)}
displaydict={'NDI':displaybands}
#displaydict=displaydict.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
displays.update(displaydict)
Red=bands[0,:,:]
Green=bands[1,:,:]
Blue=bands[2,:,:]
tempdict={'Band1':Red}
# saveimg=np.zeros((bandsize[0],bandsize[1],3),'uint8')
# saveimg[:,:,0]=np.copy(Red).astype('uint8')
# pyplt.imsave('Redimg.png',saveimg)
# saveimg=np.zeros((bandsize[0],bandsize[1],3),'uint8')
# saveimg[:,:,1]=np.copy(Green).astype('uint8')
# pyplt.imsave('Greenimg.png',saveimg)
# saveimg=np.zeros((bandsize[0],bandsize[1],3),'uint8')
# saveimg[:,:,2]=np.copy(Blue).astype('uint8')
# pyplt.imsave('Blueimg.png',saveimg)
if 'Band1' not in originbands:
originbands.update(tempdict)
image=cv2.resize(Red,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
displaydict={'Band1':image}
displays.update(displaydict)
# fea_bands=Red.reshape(fea_l*fea_w,1)[:,0]
fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# originfea_vector[:,2]=originfea_vector[:,2]+fea_bands
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
fea_vector[:,0]=fea_vector[:,0]+fea_bands
# displayfea_vector[:,2]=displayfea_vector[:,2]+displayfea_bands
tempdict={'Band2':Green}
if 'Band2' not in originbands:
originbands.update(tempdict)
image=cv2.resize(Green,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
displaydict={'Band2':image}
displays.update(displaydict)
# fea_bands=Green.reshape(fea_l*fea_w,1)[:,0]
fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# originfea_vector[:,3]=originfea_vector[:,3]+fea_bands
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
fea_vector[:,1]=fea_vector[:,1]+fea_bands
# displayfea_vector[:,3]=displayfea_vector[:,3]+displayfea_bands
tempdict={'Band3':Blue}
if 'Band3' not in originbands:
originbands.update(tempdict)
# originfea_vector[:,4]=originfea_vector[:,4]+Blue
image=cv2.resize(Blue,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
displaydict={'Band3':image}
displays.update(displaydict)
# fea_bands=Blue.reshape(fea_l*fea_w,1)[:,0]
fea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
fea_vector[:,2]=fea_vector[:,2]+fea_bands
# displayfea_vector[:,4]=displayfea_vector[:,4]+displayfea_bands
Greenness = bands[1, :, :] / (bands[0, :, :] + bands[1, :, :] + bands[2, :, :])
tempdict = {'Greenness': Greenness}
if 'Greenness' not in originbands:
originbands.update(tempdict)
# originfea_vector[:,5]=originfea_vector[:,5]+Greenness
image=cv2.resize(Greenness,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
displaydict={'Greenness':image}
#displaybandarray.update(worktempdict)
displays.update(displaydict)
fea_bands=Greenness.reshape(fea_l*fea_w,1)[:,0]
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,5]=fea_vector[:,5]+fea_bands
displayfea_vector[:,2]=displayfea_vector[:,2]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,2]=colorfea_vector[:,2]+colorfeabands
VEG=bands[1,:,:]/(np.power(bands[0,:,:],0.667)*np.power(bands[2,:,:],(1-0.667)))
tempdict={'VEG':VEG}
if 'VEG' not in originbands:
originbands.update(tempdict)
# originfea_vector[:,6]=originfea_vector[:,6]+VEG
image=cv2.resize(VEG,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
kernel=np.ones((4,4),np.float32)/16
#displaybandarray.update({'LabOstu':})
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
worktempdict={'VEG':cv2.filter2D(image,-1,kernel)}
displays.update(worktempdict)
fea_bands=VEG.reshape(fea_l*fea_w,1)[:,0]
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,6]=fea_vector[:,6]+fea_bands
displayfea_vector[:,3]=displayfea_vector[:,3]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,3]=colorfea_vector[:,3]+colorfeabands
CIVE=0.441*bands[0,:,:]-0.811*bands[1,:,:]+0.385*bands[2,:,:]+18.78745
tempdict={'CIVE':CIVE}
if 'CIVE' not in originbands:
originbands.update(tempdict)
# originfea_vector[:,7]=originfea_vector[:,7]+CIVE
image=cv2.resize(CIVE,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
worktempdict={'CIVE':image}
displays.update(worktempdict)
fea_bands=CIVE.reshape(fea_l*fea_w,1)[:,0]
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,7]=fea_vector[:,7]+fea_bands
displayfea_vector[:,4]=displayfea_vector[:,4]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,4]=colorfea_vector[:,4]+colorfeabands
MExG=1.262*bands[1,:,:]-0.884*bands[0,:,:]-0.311*bands[2,:,:]
tempdict={'MExG':MExG}
if 'MExG' not in originbands:
originbands.update(tempdict)
# originfea_vector[:,8]=originfea_vector[:,8]+MExG
image=cv2.resize(MExG,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
worktempdict={'MExG':image}
displays.update(worktempdict)
fea_bands=MExG.reshape(fea_l*fea_w,1)[:,0]
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,8]=fea_vector[:,8]+fea_bands
displayfea_vector[:,5]=displayfea_vector[:,5]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,5]=colorfea_vector[:,5]+colorfeabands
NDVI=(bands[0,:,:]-bands[2,:,:])/(bands[0,:,:]+bands[2,:,:])
tempdict={'NDVI':NDVI}
if 'NDVI' not in originbands:
originbands.update(tempdict)
# originfea_vector[:,0]=originfea_vector[:,9]+NDVI
image=cv2.resize(NDVI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
worktempdict={'NDVI':image}
displays.update(worktempdict)
fea_bands=NDVI.reshape(fea_l*fea_w,1)[:,0]
displayfea_bands=image.reshape((displayfea_l*displayfea_w),1)[:,0]
# fea_vector[:,0]=fea_vector[:,9]+fea_bands
displayfea_vector[:,0]=displayfea_vector[:,0]+displayfea_bands
minv=displayfea_bands.min()
maxv=displayfea_bands.max()
fearange=maxv-minv
colorfeabands=displayfea_bands-minv
colorfeabands=colorfeabands/fearange*255
colorfea_vector[:,0]=colorfea_vector[:,0]+colorfeabands
NGRDI=(bands[1,:,:]-bands[0,:,:])/(bands[1,:,:]+bands[0,:,:])
tempdict={'NGRDI':NGRDI}
if 'NGRDI' not in originbands:
originbands.update(tempdict)
image=cv2.resize(NGRDI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
worktempdict={'NGRDI':image}
displays.update(worktempdict)
if channel>=1:
nirbands=Multigraybands[file].bands
NDVI=(nirbands[0,:,:]-bands[1,:,:])/(nirbands[0,:,:]+bands[1,:,:])
tempdict={'NDVI':NDVI}
#if 'NDVI' not in originbandarray:
originbands.update(tempdict)
image=cv2.resize(NDVI,(int(bandsize[1]/ratio),int(bandsize[0]/ratio)),interpolation=cv2.INTER_LINEAR)
#image=image.reshape((int(bandsize[1]/ratio),int(bandsize[0]/ratio),3))
worktempdict={'NDVI':image}
displays.update(worktempdict)
'''PCA part'''
displayfea_vector=np.concatenate((fea_vector,displayfea_vector),axis=1)
M=np.mean(displayfea_vector.T,axis=1)
OM=np.mean(fea_vector.T,axis=1)
print('M',M,'M shape',M.shape, 'OM',OM,'OM Shape',OM.shape)
C=displayfea_vector-M
OC=fea_vector-OM
#max=np.max(C.T,axis=1)
#print('MAX',max)
#C=C/max
print('C',C,'OC',OC)
#V=np.cov(C.T)
V=np.corrcoef(C.T)
OV=np.corrcoef(OC.T)
std=np.std(displayfea_vector.T,axis=1)
O_std=np.std(fea_vector.T,axis=1)
print(std,O_std)
std_displayfea=C/std
O_stddisplayfea=OC/O_std
print(std_displayfea,O_stddisplayfea)
#eigvalues,eigvectors=np.linalg.eig(V)
#n,m=displayfea_vector.shape
#C=np.dot(displayfea_vector.T,displayfea_vector)/(n-1)
V_var=np.cov(std_displayfea.T)
print('COV',V_var)
print('COR',V)
eigvalues=la.eigvals(V_var)
#eigvalues=np.linalg.eigvals(C)
print('eigvalue',eigvalues)
idx=np.argsort(eigvalues)
print('idx',idx)
eigvalues,eigvectors=np.linalg.eig(V)
print('eigvalue',eigvalues)
print('eigvectors',eigvectors)
eigvalueperc={}
featurechannel=10
# for i in range(len(eigvalues)):
# print('percentage',i,eigvalues[i]/sum(eigvalues))
# eigvalueperc.update({i:eigvalues[i]/sum(eigvalues)})
# #if eigvalues[i]>0:
# featurechannel+=1
# o_eigenvalue,o_eigenvector=np.linalg.eig(OV)
pcabands=np.zeros((displayfea_vector.shape[0],featurechannel))
# o_pcabands=np.zeros((fea_vector.shape[0],featurechannel))
pcavar={}
# #
# # # separate PCs
# # for i in range(3):
# # pcn=o_eigenvector[:,i]
# # pcnbands=np.dot(O_stddisplayfea,pcn)
# # pcvar=np.var(pcnbands)
# # print('pc',i+1,' var=',pcvar)
# # pcabands[:,i]=pcabands[:,i]+pcnbands
# # for i in range(7):
# # pcn=eigvectors[:,i]
# # pcnbands=np.dot(std_displayfea,pcn)
# # pcvar=np.var(pcnbands)
# # print('pc',i+1,' var=',pcvar)
# # temppcavar={i:pcvar}
# # pcavar.update(temppcavar)
# # pcabands[:,i+3]=pcabands[:,i+3]+pcnbands
# #
# #
# combined PCs
for i in range(featurechannel):
pcn=eigvectors[:,i]
# pcnbands=np.dot(std_displayfea,pcn)
pcnbands=np.dot(C,pcn)
pcvar=np.var(pcnbands)
print('pc',i+1,' var=',pcvar)
temppcavar={i:pcvar}
pcavar.update(temppcavar)
pcabands[:,i]=pcabands[:,i]+pcnbands
# ''' NO PCA'''
# colorfea_vector=np.concatenate((fea_vector,colorfea_vector),axis=1)
# displayfea_vector=np.concatenate((fea_vector,displayfea_vector),axis=1)
# M=np.mean(colorfea_vector.T,axis=1)
# print('colorfea_vector M',M)
# pcabands=np.copy(colorfea_vector)
# featurechannel=10
'''Export to CSV'''
# np.savetxt('pcs.csv',pcabands,delimiter=',',fmt='%s')
# np.savetxt('color-index.csv',displayfea_vector,delimiter=',',fmt='%s')
#threedplot(pcabands)
# originpcabands.update({file:o_pcabands})
originpcabands.update({file:displayfea_vector})
pcabandsdisplay=pcabands.reshape(displayfea_l,displayfea_w,featurechannel)
#originbands={'LabOstu':pcabandsdisplay}
tempdictdisplay={'LabOstu':pcabandsdisplay}
#displaybandarray.update({file:displays})
displaybandarray.update({file:tempdictdisplay})
originbandarray.update({file:originbands})
need_w=int(450/4)
need_h=int(400/3)
for i in range(featurechannel):
band=np.copy(pcabandsdisplay[:,:,i])
ratio=max(displayfea_l/need_h,displayfea_w/need_w)
band,cache=tkintercorestat.pool_forward(band,{"f":int(ratio),"stride":int(ratio)})
bandrange=band.max()-band.min()
band=(band-band.min())/bandrange*255
buttonimg=Image.fromarray(band.astype('uint8'),'L')
pcbuttons.append(ImageTk.PhotoImage(buttonimg))
# buttonimg.save('pcbutton_'+str(i)+'.png',"PNG")
# print('saved')
from mpl_toolkits.mplot3d import Axes3D
def threedplot(area):
fig=pyplt.figure()
ax=fig.add_subplot(111,projection='3d')
n=100
xs=np.copy(area[0:n,0])
ys=np.copy(area[0:n,1])
zs=np.copy(area[0:n,3])
colors=("red","green","blue")
groups=("PC1","PC2","PC3")
#for c,l in [('r','o'),('g','^')]:
ax.scatter(xs,ys,np.max(zs),c='r',marker='o')
ax.scatter(xs,np.min(ys),zs,c='b',marker='^')
ax.scatter(np.max(xs),ys,zs,c='g')
ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
ax.set_zlabel('PC3')
pyplt.show()
def changeimage(frame,filename):
global clusterdisplay,currentfilename,resviewframe
clusterdisplay={}
currentfilename=filename
print(filename)
generatedisplayimg(filename)
changedisplayimg(frame,'Origin')
for key in cluster:
tuplist=[]
for i in range(len(cluster)):
tuplist.append('')
tup=tuple(tuplist)
bandchoice[key].set(tup)
#for key in cluster:
# ch=ttk.Checkbutton(contentframe,text=key,variable=bandchoice[key],command=changecluster)#,command=partial(autosetclassnumber,clusternumberentry,bandchoice))
# ch.pack()
if filename in multi_results.keys():
for widget in resviewframe.winfo_children():
widget.pack_forget()
iternum=len(list(multi_results[filename][0].keys()))
itervar=IntVar()
itervar.set(iternum)
resscaler=Scale(resviewframe,from_=1,to=iternum,tickinterval=1,length=220,orient=HORIZONTAL,variable=itervar,command=partial(changeoutputimg,filename))
resscaler.pack()
outputbutton=Button(resviewframe,text='Export Results',command=partial(export_result,itervar))
outputbutton.pack()
def generatecheckbox(frame,classnum):
global checkboxdict,havecolorstrip
changekmeansbar('')
for widget in frame.winfo_children():
widget.pack_forget()
checkboxdict={}
havecolorstrip=False
addcolorstrip()
for i in range(10):
dictkey=str(i+1)
tempdict={dictkey:Variable()}
tempdict[dictkey].set('0')
checkboxdict.update(tempdict)
ch=Checkbutton(checkboxframe,text=dictkey,variable=checkboxdict[dictkey],command=partial(changeclusterbox,''))#,command=partial(changecluster,''))
if i+1>int(kmeans.get()):
ch.config(state=DISABLED)
ch.pack(side=LEFT)
#if i==0:
# ch.invoke()
#for i in range(int(classnum)):
# dictkey='class '+str(i+1)
# tempdict={dictkey:Variable()}
# checkboxdict.update(tempdict)
#ch=ttk.Checkbutton(frame,text=dictkey,command=partial(generateplant,checkboxdict,bandchoice,classnum),variable=checkboxdict[dictkey])
# ch=ttk.Checkbutton(frame,text=dictkey,command=changecluster,variable=checkboxdict[dictkey])
# ch.grid(row=int(i/3),column=int(i%3))
# if i==minipixelareaclass:
# ch.invoke()
def generateimgplant(event):
global currentlabels,changekmeans,colordicesband,originbinaryimg,pre_checkbox
colordicesband=np.copy(displaylabels)
keys=checkboxdict.keys()
plantchoice=[]
pre_checkbox=[]
for key in keys:
plantchoice.append(checkboxdict[key].get())
pre_checkbox.append(checkboxdict[key].get())
origindisplaylabels=np.copy(displaybandarray[currentfilename]['LabOstu'])
h,w,c=origindisplaylabels.shape
# tempdisplayimg=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0],
# displaybandarray[currentfilename]['LabOstu'].shape[1]))
# colordivimg=np.zeros((displaybandarray[currentfilename]['LabOstu'].shape[0],
# displaybandarray[currentfilename]['LabOstu'].shape[1]))
tempdisplayimg=np.zeros((h,w))
colordivimg=np.zeros((h,w))
sel_count=plantchoice.count('1')
if sel_count == int(kmeans.get()):
tempdisplayimg=tempdisplayimg+1
else:
for i in range(int(kmeans.get())):
tup=plantchoice[i]
if '1' in tup:
tempdisplayimg=np.where(displaylabels==i,1,tempdisplayimg)
# uniquecolor=np.unique(tempdisplayimg)
# if len(uniquecolor)==1 and uniquecolor[0]==1:
# tempdisplayimg=np.copy(displaylabels).astype('float32')
currentlabels=np.copy(tempdisplayimg)
originbinaryimg=np.copy(tempdisplayimg)
tempcolorimg=np.copy(displaylabels).astype('float32')
# ratio=findratio([h,w],[850,850])
# if h*w<850*850:
# tempdisplayimg=cv2.resize(tempdisplayimg,(int(w*ratio),int(h*ratio)))
# colordivimg=cv2.resize(tempcolorimg,(int(w*ratio),int(h*ratio)))
# if h>850:
# ratio=round(h/850)
# tempdisplayimg=cv2.resize(tempdisplayimg,(int(w/ratio),int(h/ratio)))
# colordivimg=cv2.resize(tempcolorimg,(int(w/ratio),int(h/ratio)))
# if w>850:
# ratio=round(w/850)
# tempdisplayimg=cv2.resize(tempdisplayimg,(int(w/ratio),int(h/ratio)))
# colordivimg=cv2.resize(tempcolorimg,(int(w/ratio),int(h/ratio)))
# else:
# tempdisplayimg=cv2.resize(tempdisplayimg,(int(w/ratio),int(h/ratio)))
# colordivimg=cv2.resize(tempcolorimg,(int(w/ratio),int(h/ratio)))
# tempdisplayimg=cv2.resize(tempdisplayimg,(int(resizeshape[0]),int(resizeshape[1])))
# colordivimg=cv2.resize(tempcolorimg,(int(resizeshape[0]),int(resizeshape[1])))
colordivimg=np.copy(tempcolorimg)
binaryimg=np.zeros((h,w,3))
kvar=int(kmeans.get())
locs=np.where(tempdisplayimg==1)
binaryimg[locs]=[240,228,66]
colordeimg=np.zeros((h,w,3))
# binarypreview=cv2.resize(binaryimg,(int(previewshape[0]),int(previewshape[1])))
binarypreview=np.copy(binaryimg)
if kvar==1:
if colordivimg.min()<0:
# if abs(colordivimg.min())<colordivimg.max():
colordivimg=colordivimg-colordivimg.min()
colorrange=colordivimg.max()-colordivimg.min()
colordivimg=colordivimg*255/colorrange
grayimg=Image.fromarray(colordivimg.astype('uint8'),'L')
grayimg=grayimg.resize((int(resizeshape[0]),int(resizeshape[1])))
#grayimg.show()
colordivdict={}
colordivdict.update({'Size':[resizeshape[1],resizeshape[0]]})
colordivdict.update({'Image':ImageTk.PhotoImage(grayimg)})
displayimg['Color Deviation']=colordivdict
colordivpreview={}
# colordivpreimg=cv2.resize(colordivimg,(int(previewshape[0]),int(previewshape[1])))
graypreviewimg=Image.fromarray(colordivimg.astype('uint8'),'L')
graypreviewimg=graypreviewimg.resize((int(previewshape[0]),int(previewshape[1])))
colordivpreview.update({'Size':[previewshape[1],previewshape[0]]})
colordivpreview.update({'Image':ImageTk.PhotoImage(graypreviewimg)})
previewimg['Color Deviation']=colordivpreview
binaryimg=np.zeros((resizeshape[1],resizeshape[0],3))
tempdict={}
tempdict.update({'Size':[resizeshape[1],resizeshape[0]]})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(binaryimg.astype('uint8')))})
displayimg['ColorIndices']=tempdict
binarypreview=np.zeros((int(previewshape[1]),int(previewshape[0])))
tempdict={}
tempdict.update({'Size':binarypreview.shape})
tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(binarypreview.astype('uint8')))})
previewimg['ColorIndices']=tempdict
# changedisplayimg(imageframe,'Color Deviation')
else:
for i in range(kvar):
locs=np.where(colordivimg==i)
colordeimg[locs]=colorbandtable[i]
#pyplt.imsave('displayimg.png',tempdisplayimg)
#pyplt.imsave('allcolorindex.png',colordivimg)
#bands=Image.fromarray(tempdisplayimg)
#bands=bands.convert('L')
#bands.save('displayimg.png')
#indimg=cv2.imread('displayimg.png')
colordeimg=Image.fromarray(colordeimg.astype('uint8'))
colordeimg.save('allcolorindex.png',"PNG")
binaryimg=Image.fromarray(binaryimg.astype('uint8'))
binaryimg.save('binaryimg.png',"PNG")
binaryimg=binaryimg.resize((int(resizeshape[0]),int(resizeshape[1])))
tempdict={}
tempdict.update({'Size':[resizeshape[1],resizeshape[0]]})
tempdict.update({'Image':ImageTk.PhotoImage(binaryimg)})
displayimg['ColorIndices']=tempdict
tempdict={}
binaryimg=binaryimg.resize((int(previewshape[0]),int(previewshape[1])))
tempdict.update({'Size':[previewshape[1],previewshape[0]]})
tempdict.update({'Image':ImageTk.PhotoImage(binaryimg)})
previewimg['ColorIndices']=tempdict
#indimg=cv2.imread('allcolorindex.png')
#tempdict.update({'Image':ImageTk.PhotoImage(Image.fromarray(indimg))})
#
# colorimg=cv2.imread('allcolorindex.png')
# Image.fromarray((binaryimg.astype('uint8'))).save('binaryimg.png',"PNG")
colordeimg=colordeimg.resize((resizeshape[0],resizeshape[1]))
colordivdict={}
colordivdict.update({'Size':[resizeshape[1],resizeshape[0]]})
colordivdict.update({'Image':ImageTk.PhotoImage(colordeimg)})
displayimg['Color Deviation']=colordivdict
colordivdict={}
# colordeimgpre=cv2.resize(colordeimg,(int(previewshape[0]),int(previewshape[1])))
colordeimg=colordeimg.resize((previewshape[0],previewshape[1]))
colordivdict.update({'Size':[previewshape[1],previewshape[0]]})
colordivdict.update({'Image':ImageTk.PhotoImage(colordeimg)})
previewimg['Color Deviation']=colordivdict
# changedisplayimg(imageframe,'ColorIndices')
# print('sel count',sel_count)
if kvar>1:
if sel_count==0:
changedisplayimg(imageframe,'Color Deviation')
else:
changedisplayimg(imageframe,'ColorIndices')
# changekmeans=True
#def kmeansclassify(choicelist,reshapedtif):
def kmeansclassify_oldversion():
global clusterdisplay
#,minipixelareaclass
if int(kmeans.get())==0:
return
#for i in range(len(choicelist)):
# tempband=displaybandarray[currentfilename][choicelist[i]]
#tempband=cv2.resize(tempband,(450,450),interpolation=cv2.INTER_LINEAR)
# reshapedtif[:,i]=tempband.reshape(tempband.shape[0]*tempband.shape[1],2)[:,0]
#if len(choicelist)==0:
originpcabands=displaybandarray[currentfilename]['LabOstu']
pcah,pcaw,pcac=originpcabands.shape
pcacount={}
keys=list(pcaboxdict.keys())
for item in keys:
if pcaboxdict[item].get()=='1':
pcacount.update({item:pcaboxdict[item]})
pcakeys=list(pcacount.keys())
tempband=np.zeros((pcah,pcaw,len(pcakeys)))
for i in range(len(pcakeys)):
channel=int(pcakeys[i])-1
tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel]
if int(kmeans.get())==1:
print('kmeans=1')
displaylabels=np.mean(tempband,axis=2)
pyplt.imsave('k=1.png',displaylabels)
else:
#tempband=displaybandarray[currentfilename]['LabOstu']
if int(kmeans.get())>1:
h,w,c=tempband.shape
print('shape',tempband.shape)
reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c)
print('reshape',reshapedtif.shape)
clf=KMeans(n_clusters=int(kmeans.get()),init='k-means++',n_init=10,random_state=0)
tempdisplayimg=clf.fit(reshapedtif)
# print('label=0',np.any(tempdisplayimg==0))
displaylabels=tempdisplayimg.labels_.reshape((displaybandarray[currentfilename]['LabOstu'].shape[0],
displaybandarray[currentfilename]['LabOstu'].shape[1]))
clusterdict={}
displaylabels=displaylabels+10
for i in range(int(kmeans.get())):
locs=np.where(tempdisplayimg.labels_==i)
maxval=reshapedtif[locs].max()
print(maxval)
clusterdict.update({maxval:i+10})
print(clusterdict)
sortcluster=list(sorted(clusterdict))
print(sortcluster)
for i in range(len(sortcluster)):
cluster_num=clusterdict[sortcluster[i]]
displaylabels=np.where(displaylabels==cluster_num,i,displaylabels)
# pixelarea=1.0
# for i in range(int(kmeans.get())):
# pixelloc=np.where(displaylabels==i)
# pixelnum=len(pixelloc[0])
# temparea=float(pixelnum/(displaylabels.shape[0]*displaylabels.shape[1]))
# if temparea<pixelarea:
# #minipixelareaclass=i
# pixelarea=temparea
if kmeans.get() not in clusterdisplay:
tempdict={kmeans.get():displaylabels}
#clusterdisplay.update({''.join(choicelist):tempdict})
clusterdisplay.update(tempdict)
return displaylabels
def kmeansclassify():
global clusterdisplay,displaylabels
if int(kmeans.get())==0:
return
originpcabands=displaybandarray[currentfilename]['LabOstu']
pcah,pcaw,pcac=originpcabands.shape
pcpara=pc_combine_up.get()
print(pcpara,type(pcpara))
tempband=np.zeros((pcah,pcaw,1))
# pcsel=buttonvar.get()+2
pcsel=buttonvar.get()
pcweights=pc_combine_up.get()-0.5
if pcweights==0.0:
tempband[:,:,0]=tempband[:,:,0]+originpcabands[:,:,pcsel]
else:
if pcweights<0.0: #RGBPC1
rgbpc=originpcabands[:,:,9]
else:
rgbpc=originpcabands[:,:,10]
rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min())
firstterm=abs(pcweights)*2*rgbpc
colorpc=originpcabands[:,:,pcsel]
colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min())
secondterm=(1-abs(pcweights)*2)*colorpc
tempband[:,:,0]=tempband[:,:,0]+firstterm+secondterm
if int(kmeans.get())==1:
print('kmeans=1')
displaylabels=np.mean(tempband,axis=2)
pyplt.imsave('k=1.png',displaylabels)
else:
if int(kmeans.get())>1:
h,w,c=tempband.shape
print('shape',tempband.shape)
reshapedtif=tempband.reshape(tempband.shape[0]*tempband.shape[1],c)
if partialpca==True:
partialshape=reshapedtif[nonzero_vector]
print('partial reshape',partialshape.shape)
clf=KMeans(n_clusters=int(kmeans.get()),init='k-means++',n_init=10,random_state=0)
tempdisplayimg=clf.fit(partialshape)
reshapedtif[nonzero_vector,0]=np.add(tempdisplayimg.labels_,1)
print(reshapedtif[nonzero_vector])
displaylabels=reshapedtif.reshape((displaybandarray[currentfilename]['LabOstu'].shape[0],
displaybandarray[currentfilename]['LabOstu'].shape[1]))
# reshapedtif=cv2.resize(reshapedtif,(c,resizeshape[0]*resizeshape[1]),cv2.INTER_LINEAR)
clusterdict={}
displaylabels=displaylabels+10
for i in range(int(kmeans.get())):
locs=np.where(tempdisplayimg.labels_==i)
try:
maxval=partialshape[locs].max()
except:
print('kmeans',i)
messagebox.showerror('Cluster maximum value is ', i)
return displaylabels
print(maxval)
clusterdict.update({maxval:i+11})
print(clusterdict)
sortcluster=list(sorted(clusterdict))
print(sortcluster)
for i in range(len(sortcluster)):
cluster_num=clusterdict[sortcluster[i]]
displaylabels=np.where(displaylabels==cluster_num,i,displaylabels)
return displaylabels
else:
print('reshape',reshapedtif.shape)
clf=KMeans(n_clusters=int(kmeans.get()),init='k-means++',n_init=10,random_state=0)
tempdisplayimg=clf.fit(reshapedtif)
# print('label=0',np.any(tempdisplayimg==0))
displaylabels=tempdisplayimg.labels_.reshape((displaybandarray[currentfilename]['LabOstu'].shape[0],
displaybandarray[currentfilename]['LabOstu'].shape[1]))
# displaylabels=tempdisplayimg.labels_.reshape((resizeshape[1],resizeshape[0]))
clusterdict={}
displaylabels=displaylabels+10
for i in range(int(kmeans.get())):
locs=np.where(tempdisplayimg.labels_==i)
maxval=reshapedtif[locs].max()
print(maxval)
clusterdict.update({maxval:i+10})
print(clusterdict)
sortcluster=list(sorted(clusterdict))
print(sortcluster)
for i in range(len(sortcluster)):
cluster_num=clusterdict[sortcluster[i]]
displaylabels=np.where(displaylabels==cluster_num,i,displaylabels)
# if kmeans.get() not in clusterdisplay:
# tempdict={kmeans.get():displaylabels}
# #clusterdisplay.update({''.join(choicelist):tempdict})
# clusterdisplay.update(tempdict)
return displaylabels
def addcolorstrip():
global kmeanscanvasframe,havecolorstrip
if havecolorstrip is False:
colornum=int(kmeans.get())
for widget in kmeanscanvasframe.winfo_children():
widget.pack_forget()
widget.delete(ALL)
widget.config(width=350,height=10)
widget.create_image(3,0,image=colorstripdict['colorstrip'+str(colornum)],anchor=NW)
widget.pack()
havecolorstrip=True
def getPCs():
global displayimg,displaypclabels
originpcabands=displaybandarray[currentfilename]['LabOstu']
pcah,pcaw,pcac=originpcabands.shape
pcweights=pc_combine_up.get()-0.5
tempband=np.zeros((pcah,pcaw))
# pcsel=buttonvar.get()+2
pcsel=buttonvar.get()
if pcweights==0.0:
tempband=tempband+originpcabands[:,:,pcsel]
else:
if pcweights<0.0: #RGBPC1
rgbpc=originpcabands[:,:,9]
else:
rgbpc=originpcabands[:,:,10]
rgbpc=(rgbpc-rgbpc.min())*255/(rgbpc.max()-rgbpc.min())
firstterm=abs(pcweights)*2*rgbpc
colorpc=originpcabands[:,:,pcsel]
colorpc=(colorpc-colorpc.min())*255/(colorpc.max()-colorpc.min())
secondterm=(1-abs(pcweights)*2)*colorpc
tempband=tempband+firstterm+secondterm
displaypclabels=np.copy(tempband)
displaylabels=np.copy(tempband)
pyplt.imsave('k=1.png',displaylabels)
colordivimg=np.copy(displaylabels)
print('origin pc range',colordivimg.max(),colordivimg.min())
# colordivimg=cv2.resize(tempcolorimg,(int(resizeshape[0]),int(resizeshape[1])))
print('pc range',colordivimg.max(),colordivimg.min())
if colordivimg.min()<0:
colordivimg=colordivimg-colordivimg.min()
colorrange=colordivimg.max()-colordivimg.min()
colordivimg=(colordivimg)*255/colorrange
colordivimg=Image.fromarray(colordivimg.astype('uint8'),'L')
colordivimg=colordivimg.resize((int(resizeshape[0]),int(resizeshape[1])),Image.ANTIALIAS)
displayimg['PCs']['Image']=ImageTk.PhotoImage(colordivimg)
# displayimg['Color Deviation']['Image']=ImageTk.PhotoImage(colordivimg)
def getPCs_olcversion():
global displayimg
originpcabands=displaybandarray[currentfilename]['LabOstu']
pcah,pcaw,pcac=originpcabands.shape
pcacount={}
keys=list(pcaboxdict.keys())
for item in keys:
if pcaboxdict[item].get()=='1':
pcacount.update({item:pcaboxdict[item]})
pcakeys=list(pcacount.keys())
tempband=np.zeros((pcah,pcaw,len(pcakeys)))
for i in range(len(pcakeys)):
channel=int(pcakeys[i])-1
tempband[:,:,i]=tempband[:,:,i]+originpcabands[:,:,channel]
# if int(kmeans.get())==1:
print('kmeans=1')
displaylabels=np.mean(tempband,axis=2)
pyplt.imsave('k=1.png',displaylabels)
ratio=findratio([originpcabands.shape[0],originpcabands.shape[1]],[screenstd,screenstd])
tempcolorimg= | np.copy(displaylabels) | numpy.copy |
"""
.. _multi-taper-coh:
================================
Multi-taper coherence estimation
================================
Coherence estimation can be done using windowed-spectra. This is the method
used in the example :ref:`resting-state`. In addition, multi-taper spectral
estimation can be used in order to calculate coherence and also confidence
intervals for the coherence values that result (see :ref:`multi-taper-psd`)
The data analyzed here is an fMRI data-set contributed by <NAME>. The
data is taken from a single subject in a"resting-state" scan, in which subjects
are fixating on a cross and maintaining alert wakefulness, but not performing
any other behavioral task.
We start by importing modules/functions we will use in this example and define
variables which will be used as the sampling interval of the TimeSeries
objects and as upper and lower bounds on the frequency range analyzed:
"""
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import csv2rec
import scipy.stats.distributions as dist
from scipy import fftpack
import nitime
from nitime.timeseries import TimeSeries
from nitime import utils
import nitime.algorithms as alg
import nitime.viz
from nitime.viz import drawmatrix_channels
from nitime.analysis import CoherenceAnalyzer, MTCoherenceAnalyzer
TR = 1.89
f_ub = 0.15
f_lb = 0.02
"""
We read in the data into a recarray from a csv file:
"""
data_path = os.path.join(nitime.__path__[0], 'data')
data_rec = csv2rec(os.path.join(data_path, 'fmri_timeseries.csv'))
"""
The first line in the file contains the names of the different brain regions
(or ROI = regions of interest) from which the time-series were derived. We
extract the data into a regular array, while keeping the names to be used later:
"""
roi_names = | np.array(data_rec.dtype.names) | numpy.array |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = | N.array([1,0,1]) | numpy.array |
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import inspect
import unicodedata
import warnings
import pandas as pd
import numpy as np
import holidays as hdays_part1
import fbprophet.hdays as hdays_part2
from fbprophet.make_holidays import make_holidays_df
def utf8_to_ascii(text):
"""Holidays often have utf-8 characters. These are not allowed in R
package data (they generate a NOTE).
TODO: revisit whether we want to do this lossy conversion.
"""
ascii_text = (
unicodedata.normalize('NFD', text)
.encode('ascii', 'ignore')
.decode('ascii')
.strip()
)
# Check if anything converted
if sum(1 for x in ascii_text if x not in [' ', '(', ')', ',']) == 0:
return 'FAILED_TO_PARSE'
else:
return ascii_text
def generate_holidays_file():
"""Generate csv file of all possible holiday names, ds,
and countries, year combination
"""
year_list = | np.arange(1995, 2045, 1) | numpy.arange |
import numpy as np
def affine_forward(x, w, b):
"""
Computes the forward pass for an affine (fully-connected) layer.
The input x has shape (N, d_1, ..., d_k) where x[i] is the ith input.
We multiply this against a weight matrix of shape (D, M) where
D = \prod_i d_i
Inputs:
x - Input data, of shape (N, d_1, ..., d_k)
w - Weights, of shape (D, M)
b - Biases, of shape (M,)
Returns a tuple of:
- out: output, of shape (N, M)
- cache: (x, w, b)
"""
out = None
#############################################################################
# TODO: Implement the affine forward pass. Store the result in out. You #
# will need to reshape the input into rows. #
#############################################################################
x_vec = np.reshape(x, (x.shape[0], np.prod(x.shape[1:len(x.shape)])))
out = | np.matmul(x_vec, w) | numpy.matmul |
import os
import argparse
import warnings
warnings.filterwarnings('ignore')
import time
from datetime import datetime
import random
import numpy as np
np.set_printoptions(precision=4, edgeitems=6, linewidth=100, suppress=True)
from utils.misc.hyper_params import default_hps
from utils.misc.data_handler import DataHandler
from utils.misc.data_handler import load_raw_data_list, encode_batch, next_batch
from models.missVAE import missVAE
def model_est_series(hps, model, N_batches, obs_dataset, action_dataset, reward_dataset, domain_dataset, save_p):
logmix_dataset = []
mu_dataset = []
logvar_dataset = []
domain_dataset2 = []
dataset_range = np.arange(N_batches * hps.batch_size)
start_time = time.time()
for i in range(N_batches):
batch_obs, batch_action, batch_reward, batch_domain = next_batch(hps,
obs_dataset, action_dataset, reward_dataset,
domain_dataset,
i, dataset_range)
action_init = np.zeros((hps.batch_size, 1, hps.action_size))
batch_action_prev = np.concatenate((action_init, batch_action[:, :-1, :]), axis=1)
reward_init = np.zeros((hps.batch_size, 1, hps.reward_size))
batch_reward_prev = np.concatenate((reward_init, batch_reward[:, :-1, :]), axis=1)
batch_logmix, batch_mu, batch_logvar = \
encode_batch(hps, model, batch_obs, batch_action_prev, batch_reward_prev, batch_domain, hps.max_seq_len)
logmix_dataset.append(batch_logmix.astype(np.float16))
mu_dataset.append(batch_mu.astype(np.float16))
logvar_dataset.append(batch_logvar.astype(np.float16))
domain_dataset2.append(batch_domain.astype(np.int32)) # N_batches x batch_size
logmix_dataset = np.reshape(np.array(logmix_dataset), (-1, hps.max_seq_len, hps.z_size, hps.num_mixture))
mu_dataset = np.reshape(np.array(mu_dataset), (-1, hps.max_seq_len, hps.z_size, hps.num_mixture))
logvar_dataset = np.reshape(np.array(logvar_dataset), (-1, hps.max_seq_len, hps.z_size, hps.num_mixture))
domain_dataset2 = np.reshape(np.array(domain_dataset2), (-1)) # (N_batches x batch_size)
# extend it
domain_dataset3 = []
for i in range(N_batches * hps.batch_size):
d0 = np.stack([domain_dataset2[i]] * (hps.max_seq_len - 1))
domain_dataset3.append(d0)
domain_dataset3 = np.reshape(domain_dataset3, [-1])
at = np.reshape(action_dataset[:, :-1, :], (-1, hps.action_size))
st_logmix = np.reshape(logmix_dataset[:, :-1, :, :], (-1, hps.z_size, hps.num_mixture))
st_mu = np.reshape(mu_dataset[:, :-1, :, :], (-1, hps.z_size, hps.num_mixture))
st_logvar = np.reshape(logvar_dataset[:, :-1, :, :], (-1, hps.z_size, hps.num_mixture))
st1_logmix = np.reshape(logmix_dataset[:, 1:, :, :], (-1, hps.z_size, hps.num_mixture))
st1_mu = np.reshape(mu_dataset[:, 1:, :, :], (-1, hps.z_size, hps.num_mixture))
st1_logvar = np.reshape(logvar_dataset[:, 1:, :, :], (-1, hps.z_size, hps.num_mixture))
np.savez_compressed(os.path.join(save_p, 'series.npz'),
action=at,
domain=domain_dataset3,
st_logmix=st_logmix, st_mu=st_mu, st_logvar=st_logvar,
st1_logmix=st1_logmix, st1_mu=st1_mu, st1_logvar=st1_logvar)
time_taken = time.time() - start_time
print("time taken on series: %.4f" % time_taken)
parser = argparse.ArgumentParser()
parser.add_argument('-name', type=str, required=True, help='data path')
parser.add_argument('-source', type=str, required=True, help='data path')
parser.add_argument('-dest', type=str, required=True, help='data path')
parser.add_argument('-domain', type=str, nargs='+', required=True, help='full domain index')
args = parser.parse_args()
game = args.name
source_p = args.source
dest_p = args.dest
src_domain_index = args.domain
# Parameters for training
NUM_EPOCH = 1000
date_format = '%A_%d_%B_%Y_%Hh_%Mm_%Ss'
time_now = datetime.now().strftime(date_format)
data_indicator = args.source.split('/', 2)[-1]
if not os.path.exists(dest_p):
os.makedirs(dest_p)
# there 4 steps for model estimation,
# i.e. estimate the VAE components, the series components, the dynamic components, and all components together
N_datas = [10000 * 5, None, 10000 * 5, 10000 * 5]
model_est_steps = ['vae', 'series', 'dynamic', 'all']
for m_step in range(4):
model_save_path = './results/' + data_indicator + '/' + model_est_steps[m_step] + '/' + time_now
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
if m_step != 1:
model_save_epochs_path = './results/' + data_indicator + '/' + model_est_steps[
m_step] + '/' + time_now + '/epochs'
if not os.path.exists(model_save_epochs_path):
os.makedirs(model_save_epochs_path)
if m_step == 0:
structure_save_steps_path = './results/' + data_indicator + '/' + model_est_steps[m_step] + '/' + time_now + \
'/structure_steps'
if not os.path.exists(structure_save_steps_path):
os.makedirs(structure_save_steps_path)
hps = default_hps(game, m_step)
N_data = N_datas[m_step]
if N_data == None:
filelist = os.listdir(dest_p)
random.shuffle(filelist)
filelist.sort()
obs_dataset, action_dataset, reward_dataset, domain_dataset = load_raw_data_list(dest_p, filelist)
N_data = len(obs_dataset)
N_batches = int(np.floor(N_data / hps.batch_size))
mvae = missVAE(hps, m_step, model_est_steps[m_step])
if m_step == 3:
vae_p = './results/' + data_indicator + '/' + model_est_steps[0] + '/' + time_now + '/vae.json'
mvae.load_json(os.path.join(vae_p))
dyn_p = './results/' + data_indicator + '/' + model_est_steps[2] + '/' + time_now + '/dynamic.json'
mvae.load_json(os.path.join(dyn_p), is_dyn=True)
if m_step == 1:
vae_p = './results/' + data_indicator + '/' + model_est_steps[0] + '/' + time_now + '/vae.json'
mvae.load_json(os.path.join(vae_p))
model_est_series(hps, mvae, N_batches, obs_dataset, action_dataset, reward_dataset, domain_dataset,
model_save_path)
else:
print('sodifjsadfa')
if m_step == 2:
dest_p = './results/' + data_indicator + '/' + model_est_steps[1] + '/' + time_now
dh = DataHandler(hps, m_step, source_p, dest_p, src_domain_index, N_data)
curr_learning_rate = 1
sign = 1 # 0: not adding random noise to gradient; 1: add
##################################### Training #####################################
for epoch in range(NUM_EPOCH):
for idx in range(N_batches):
step = mvae.sess.run(mvae.global_step)
curr_learning_rate = \
(hps.learning_rate - hps.min_learning_rate) * hps.decay_rate ** step + hps.min_learning_rate
if m_step == 0 or m_step == 3:
# note that we also should get domain index
batch_obs, batch_action, batch_reward, batch_domain_index = dh.next_batch()
action_init = | np.zeros((hps.batch_size, 1, hps.action_size)) | numpy.zeros |
"""
@Author: <NAME>
@Filename: dataset.py
@Contact: <EMAIL>
@Time: 2021/12/28 9:24
@Discription: dataset
"""
import torch
import numpy as np
from os.path import join
from random import randint, normalvariate
from torch.utils.data import Dataset, DataLoader
import AFLink.config as cfg
SEQ = {
'train': [
'MOT17-02-FRCNN',
'MOT17-04-FRCNN',
'MOT17-05-FRCNN',
'MOT17-09-FRCNN',
'MOT17-10-FRCNN',
'MOT17-11-FRCNN',
'MOT17-13-FRCNN'
],
'test': [
'MOT17-01-FRCNN',
'MOT17-03-FRCNN',
'MOT17-06-FRCNN',
'MOT17-07-FRCNN',
'MOT17-08-FRCNN',
'MOT17-12-FRCNN',
'MOT17-14-FRCNN'
]
}
class LinkData(Dataset):
def __init__(self, root, mode='train', minLen=cfg.model_minLen, inputLen=cfg.model_inputLen):
"""
:param minLen: 仅考虑长度超过该阈值的GT轨迹
:param inputLen: 网络输入轨迹长度
"""
self.minLen = minLen
self.inputLen = inputLen
if root:
assert mode in ('train', 'val')
self.root = root
self.mode = mode
self.id2info = self.initialize()
self.ids = list(self.id2info.keys())
def initialize(self):
id2info = dict()
for seqid, seq in enumerate(SEQ['train'], start=1):
path_gt = join(self.root, '{}/gt/gt_{}_half.txt'.format(seq, self.mode))
gts = | np.loadtxt(path_gt, delimiter=',') | numpy.loadtxt |
#!/usr/bin/env python
# Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import plotting as plg
import os
from multiprocessing import Pool, Lock
import pickle
import warnings
import numpy as np
import pandas as pd
from batchgenerators.transforms.abstract_transforms import AbstractTransform
from scipy.ndimage.measurements import label as lb
from torch.utils.data import Dataset as torchDataset
from batchgenerators.dataloading.data_loader import SlimDataLoaderBase
import utils.exp_utils as utils
import data_manager as dmanager
for msg in ["This figure includes Axes that are not compatible with tight_layout",
"Data has no positive values, and therefore cannot be log-scaled."]:
warnings.filterwarnings("ignore", msg)
class AttributeDict(dict):
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
##################################
# data loading, organisation #
##################################
class fold_generator:
"""
generates splits of indices for a given length of a dataset to perform n-fold cross-validation.
splits each fold into 3 subsets for training, validation and testing.
This form of cross validation uses an inner loop test set, which is useful if test scores shall be reported on a
statistically reliable amount of patients, despite limited size of a dataset.
If hold out test set is provided and hence no inner loop test set needed, just add test_idxs to the training data in the dataloader.
This creates straight-forward train-val splits.
:returns names list: list of len n_splits. each element is a list of len 3 for train_ix, val_ix, test_ix.
"""
def __init__(self, seed, n_splits, len_data):
"""
:param seed: Random seed for splits.
:param n_splits: number of splits, e.g. 5 splits for 5-fold cross-validation
:param len_data: number of elements in the dataset.
"""
self.tr_ix = []
self.val_ix = []
self.te_ix = []
self.slicer = None
self.missing = 0
self.fold = 0
self.len_data = len_data
self.n_splits = n_splits
self.myseed = seed
self.boost_val = 0
def init_indices(self):
t = list(np.arange(self.l))
# round up to next splittable data amount.
split_length = int(np.ceil(len(t) / float(self.n_splits)))
self.slicer = split_length
self.mod = len(t) % self.n_splits
if self.mod > 0:
# missing is the number of folds, in which the new splits are reduced to account for missing data.
self.missing = self.n_splits - self.mod
self.te_ix = t[:self.slicer]
self.tr_ix = t[self.slicer:]
self.val_ix = self.tr_ix[:self.slicer]
self.tr_ix = self.tr_ix[self.slicer:]
def new_fold(self):
slicer = self.slicer
if self.fold < self.missing :
slicer = self.slicer - 1
temp = self.te_ix
# catch exception mod == 1: test set collects 1+ data since walk through both roudned up splits.
# account for by reducing last fold split by 1.
if self.fold == self.n_splits-2 and self.mod ==1:
temp += self.val_ix[-1:]
self.val_ix = self.val_ix[:-1]
self.te_ix = self.val_ix
self.val_ix = self.tr_ix[:slicer]
self.tr_ix = self.tr_ix[slicer:] + temp
def get_fold_names(self):
names_list = []
rgen = np.random.RandomState(self.myseed)
cv_names = np.arange(self.len_data)
rgen.shuffle(cv_names)
self.l = len(cv_names)
self.init_indices()
for split in range(self.n_splits):
train_names, val_names, test_names = cv_names[self.tr_ix], cv_names[self.val_ix], cv_names[self.te_ix]
names_list.append([train_names, val_names, test_names, self.fold])
self.new_fold()
self.fold += 1
return names_list
class FoldGenerator():
r"""takes a set of elements (identifiers) and randomly splits them into the specified amt of subsets.
"""
def __init__(self, identifiers, seed, n_splits=5):
self.ids = np.array(identifiers)
self.n_splits = n_splits
self.seed = seed
def generate_splits(self, n_splits=None):
if n_splits is None:
n_splits = self.n_splits
rgen = np.random.RandomState(self.seed)
rgen.shuffle(self.ids)
self.splits = list(np.array_split(self.ids, n_splits, axis=0)) # already returns list, but to be sure
return self.splits
class Dataset(torchDataset):
r"""Parent Class for actual Dataset classes to inherit from!
"""
def __init__(self, cf, data_sourcedir=None):
super(Dataset, self).__init__()
self.cf = cf
self.data_sourcedir = cf.data_sourcedir if data_sourcedir is None else data_sourcedir
self.data_dir = cf.data_dir if hasattr(cf, 'data_dir') else self.data_sourcedir
self.data_dest = cf.data_dest if hasattr(cf, "data_dest") else self.data_sourcedir
self.data = {}
self.set_ids = []
def copy_data(self, cf, file_subset, keep_packed=False, del_after_unpack=False):
if os.path.normpath(self.data_sourcedir) != os.path.normpath(self.data_dest):
self.data_sourcedir = os.path.join(self.data_sourcedir, '')
args = AttributeDict({
"source" : self.data_sourcedir,
"destination" : self.data_dest,
"recursive" : True,
"cp_only_npz" : False,
"keep_packed" : keep_packed,
"del_after_unpack" : del_after_unpack,
"threads" : 16 if self.cf.server_env else os.cpu_count()
})
dmanager.copy(args, file_subset=file_subset)
self.data_dir = self.data_dest
def __len__(self):
return len(self.data)
def __getitem__(self, id):
"""Return a sample of the dataset, i.e.,the dict of the id
"""
return self.data[id]
def __iter__(self):
return self.data.__iter__()
def init_FoldGenerator(self, seed, n_splits):
self.fg = FoldGenerator(self.set_ids, seed=seed, n_splits=n_splits)
def generate_splits(self, check_file):
if not os.path.exists(check_file):
self.fg.generate_splits()
with open(check_file, 'wb') as handle:
pickle.dump(self.fg.splits, handle)
else:
with open(check_file, 'rb') as handle:
self.fg.splits = pickle.load(handle)
def calc_statistics(self, subsets=None, plot_dir=None, overall_stats=True):
if self.df is None:
self.df = pd.DataFrame()
balance_t = self.cf.balance_target if hasattr(self.cf, "balance_target") else "class_targets"
self.df._metadata.append(balance_t)
if balance_t=="class_targets":
mapper = lambda cl_id: self.cf.class_id2label[cl_id]
labels = self.cf.class_id2label.values()
elif balance_t=="rg_bin_targets":
mapper = lambda rg_bin: self.cf.bin_id2label[rg_bin]
labels = self.cf.bin_id2label.values()
# elif balance_t=="regression_targets":
# # todo this wont work
# mapper = lambda rg_val: AttributeDict({"name":rg_val}) #self.cf.bin_id2label[self.cf.rg_val_to_bin_id(rg_val)]
# labels = self.cf.bin_id2label.values()
elif balance_t=="lesion_gleasons":
mapper = lambda gs: self.cf.gs2label[gs]
labels = self.cf.gs2label.values()
else:
mapper = lambda x: AttributeDict({"name":x})
labels = None
for pid, subj_data in self.data.items():
unique_ts, counts = np.unique(subj_data[balance_t], return_counts=True)
self.df = self.df.append(pd.DataFrame({"pid": [pid],
**{mapper(unique_ts[i]).name: [counts[i]] for i in
range(len(unique_ts))}}), ignore_index=True, sort=True)
self.df = self.df.fillna(0)
if overall_stats:
df = self.df.drop("pid", axis=1)
df = df.reindex(sorted(df.columns), axis=1).astype('uint32')
print("Overall dataset roi counts per target kind:"); print(df.sum())
if subsets is not None:
self.df["subset"] = np.nan
self.df["display_order"] = np.nan
for ix, (subset, pids) in enumerate(subsets.items()):
self.df.loc[self.df.pid.isin(pids), "subset"] = subset
self.df.loc[self.df.pid.isin(pids), "display_order"] = ix
df = self.df.groupby("subset").agg("sum").drop("pid", axis=1, errors='ignore').astype('int64')
df = df.sort_values(by=['display_order']).drop('display_order', axis=1)
df = df.reindex(sorted(df.columns), axis=1)
print("Fold {} dataset roi counts per target kind:".format(self.cf.fold)); print(df)
if plot_dir is not None:
os.makedirs(plot_dir, exist_ok=True)
if subsets is not None:
plg.plot_fold_stats(self.cf, df, labels, os.path.join(plot_dir, "data_stats_fold_" + str(self.cf.fold))+".pdf")
if overall_stats:
plg.plot_data_stats(self.cf, df, labels, os.path.join(plot_dir, 'data_stats_overall.pdf'))
return df, labels
def get_class_balanced_patients(all_pids, class_targets, batch_size, num_classes, random_ratio=0):
'''
samples towards equilibrium of classes (on basis of total RoI counts). for highly imbalanced dataset, this might be a too strong requirement.
:param class_targets: dic holding {patient_specifier : ROI class targets}, list position of ROI target corresponds to respective seg label - 1
:param batch_size:
:param num_classes:
:return:
'''
# assert len(all_pids)>=batch_size, "not enough eligible pids {} to form a single batch of size {}".format(len(all_pids), batch_size)
class_counts = {k: 0 for k in range(1,num_classes+1)}
not_picked = np.array(all_pids)
batch_patients = np.empty((batch_size,), dtype=not_picked.dtype)
rarest_class = np.random.randint(1,num_classes+1)
for ix in range(batch_size):
if len(not_picked) == 0:
warnings.warn("Dataset too small to generate batch with unique samples; => recycling.")
not_picked = np.array(all_pids)
np.random.shuffle(not_picked) #this could actually go outside(above) the loop.
pick = not_picked[0]
for cand in not_picked:
if np.count_nonzero(class_targets[cand] == rarest_class) > 0:
pick = cand
cand_rarest_class = np.argmin([np.count_nonzero(class_targets[cand] == cl) for cl in
range(1,num_classes+1)])+1
# if current batch already bigger than the batch random ratio, then
# check that weakest class in this patient is not the weakest in current batch (since needs to be boosted)
# also that at least one roi of this patient belongs to weakest class. If True, keep patient, else keep looking.
if (cand_rarest_class != rarest_class and np.count_nonzero(class_targets[cand] == rarest_class) > 0) \
or ix < int(batch_size * random_ratio):
break
for c in range(1,num_classes+1):
class_counts[c] += np.count_nonzero(class_targets[pick] == c)
if not ix < int(batch_size * random_ratio) and class_counts[rarest_class] == 0: # means searched thru whole set without finding rarest class
print("Class {} not represented in current dataset.".format(rarest_class))
rarest_class = np.argmin(([class_counts[c] for c in range(1,num_classes+1)]))+1
batch_patients[ix] = pick
not_picked = not_picked[not_picked != pick] # removes pick
return batch_patients
class BatchGenerator(SlimDataLoaderBase):
"""
create the training/validation batch generator. Randomly sample batch_size patients
from the data set, (draw a random slice if 2D), pad-crop them to equal sizes and merge to an array.
:param data: data dictionary as provided by 'load_dataset'
:param img_modalities: list of strings ['adc', 'b1500'] from config
:param batch_size: number of patients to sample for the batch
:param pre_crop_size: equal size for merging the patients to a single array (before the final random-crop in data aug.)
:return dictionary containing the batch data / seg / pids as lists; the augmenter will later concatenate them into an array.
"""
def __init__(self, cf, data, sample_pids_w_replace=True, max_batches=None, raise_stop_iteration=False, n_threads=None, seed=0):
if n_threads is None:
n_threads = cf.n_workers
super(BatchGenerator, self).__init__(data, cf.batch_size, number_of_threads_in_multithreaded=n_threads)
self.cf = cf
self.random_count = int(cf.batch_random_ratio * cf.batch_size)
self.plot_dir = os.path.join(self.cf.plot_dir, 'train_generator')
os.makedirs(self.plot_dir, exist_ok=True)
self.max_batches = max_batches
self.raise_stop = raise_stop_iteration
self.thread_id = 0
self.batches_produced = 0
self.dataset_length = len(self._data)
self.dataset_pids = list(self._data.keys())
self.rgen = np.random.RandomState(seed=seed)
self.eligible_pids = self.rgen.permutation(self.dataset_pids.copy())
self.eligible_pids = | np.array_split(self.eligible_pids, self.number_of_threads_in_multithreaded) | numpy.array_split |
# %% [markdown]
# # Harris corner detector
# [](https://colab.research.google.com/github/YoniChechik/AI_is_Math/blob/master/c_08_features/harris.ipynb)
# %%
# to run in google colab
import sys
if 'google.colab' in sys.modules:
import subprocess
subprocess.call('apt-get install subversion'.split())
subprocess.call('svn export https://github.com/YoniChechik/AI_is_Math/trunk/c_08_features/chess.jpg'.split())
# %%
import cv2
import numpy as np
import matplotlib.pyplot as plt
# %%
imgBGR = cv2.imread("chess.jpg")
imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)
img = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2GRAY).astype(float)/255
plt.figure(figsize=(10, 10))
plt.imshow(imgRGB)
plt.show()
# %% [markdown]
# ## harris- step by step
# %%
#derivatives in x and y dirs
kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
Ix = cv2.filter2D(img, -1, kernel_x)
kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
Iy = cv2.filter2D(img, -1, kernel_y)
window_size = 3
offset = int(np.floor(window_size/2))
l_max = np.zeros(img.shape)
l_min = | np.zeros(img.shape) | numpy.zeros |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 4 10:09:21 2019
@author: nmei
"""
from autoreject import (AutoReject,get_rejection_threshold)
import mne
from glob import glob
import re
import os
import numpy as np
import pandas as pd
import pickle
#import faster # https://gist.github.com/wmvanvliet/d883c3fe1402c7ced6fc
from sklearn.metrics import roc_auc_score,roc_curve
from sklearn.metrics import (
classification_report,
matthews_corrcoef,
confusion_matrix,
f1_score,
log_loss,
r2_score
)
from sklearn.preprocessing import (MinMaxScaler,
OneHotEncoder,
FunctionTransformer,
StandardScaler)
from sklearn.pipeline import make_pipeline
from sklearn.ensemble.forest import _generate_unsampled_indices
from sklearn.utils import shuffle
from sklearn.svm import SVC,LinearSVC
from sklearn.calibration import CalibratedClassifierCV
from sklearn.decomposition import PCA
from sklearn.dummy import DummyClassifier
from sklearn.feature_selection import (SelectFromModel,
SelectPercentile,
VarianceThreshold,
mutual_info_classif,
f_classif,
chi2,
f_regression,
GenericUnivariateSelect)
from sklearn.model_selection import (StratifiedShuffleSplit,
cross_val_score)
from sklearn.ensemble import RandomForestClassifier,BaggingClassifier,VotingClassifier
from sklearn.neural_network import MLPClassifier
from xgboost import XGBClassifier
from itertools import product,combinations
from sklearn.base import clone
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from collections import OrderedDict
from scipy import stats
from collections import Counter
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import pyplot as plt
from matplotlib.pyplot import cm
from nilearn.plotting.img_plotting import (_load_anat,
_utils,
_plot_img_with_bg,
_get_colorbar_and_data_ranges,
_safe_get_data)
import matplotlib.patches as patches
try:
#from mvpa2.datasets.base import Dataset
from mvpa2.mappers.fx import mean_group_sample
#from mvpa2.measures import rsa
#from mvpa2.measures.searchlight import sphere_searchlight
#from mvpa2.base.learner import ChainLearner
#from mvpa2.mappers.shape import TransposeMapper
#from mvpa2.generators.partition import NFoldPartitioner
except:
pass#print('pymvpa is not installed')
try:
# from tqdm import tqdm_notebook as tqdm
from tqdm.auto import tqdm
except:
print('why is tqdm not installed?')
def preprocessing_conscious(raw,
events,
session,
tmin = -0,
tmax = 1,
notch_filter = 50,
event_id = {'living':1,'nonliving':2},
baseline = (None,None),
perform_ICA = False,
lowpass = None,
interpolate_bad_channels = True,):
"""
0. re-reference - explicitly
"""
raw_ref ,_ = mne.set_eeg_reference(raw,
ref_channels = 'average',
projection = True,)
raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway
# everytime before filtering, explicitly pick the type of channels you want
# to perform the filters
picks = mne.pick_types(raw_ref.info,
meg = False, # No MEG
eeg = True, # YES EEG
eog = perform_ICA, # depends on ICA
)
# regardless the bandpass filtering later, we should always filter
# for wire artifacts and their oscillations
raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter),
picks = picks)
if lowpass is not None:
raw_ref.filter(None,lowpass,)
epochs = mne.Epochs(raw_ref,
events, # numpy array
event_id, # dictionary
tmin = tmin,
tmax = tmax,
baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel
picks = picks,
detrend = 1, # detrend
preload = True # must be true if we want to do further processing
)
"""
1. if necessary, perform ICA
"""
if perform_ICA:
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
if interpolate_bad_channels:
interpolation_list = faster_bad_channels(epochs,picks=picks)
for ch_name in interpolation_list:
epochs.info['bads'].append(ch_name)
epochs = epochs.interpolate_bads()
# ar = AutoReject(
# picks = picks,
# random_state = 12345,
# )
# ar.fit(epochs)
# _,reject_log = ar.transform(epochs,return_log=True)
# calculate the noise covariance of the epochs
noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs],
tmin = baseline[0],
tmax = baseline[1],
method = 'empirical',
rank = None,)
# define an ica function
ica = mne.preprocessing.ICA(n_components = .99,
n_pca_components = .99,
max_pca_components = None,
method = 'infomax',
max_iter = int(3e3),
noise_cov = noise_cov,
random_state = 12345,)
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
ica.fit(epochs,#[~reject_log.bad_epochs],
picks = picks,
start = tmin,
stop = tmax,
decim = 3,
tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw.
)
# search for artificial ICAs automatically
# most of these hyperparameters were used in a unrelated published study
ica.detect_artifacts(epochs,#[~reject_log.bad_epochs],
eog_ch = ['FT9','FT10','TP9','TP10'],
eog_criterion = 0.4, # arbitary choice
skew_criterion = 1, # arbitary choice
kurt_criterion = 1, # arbitary choice
var_criterion = 1, # arbitary choice
)
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs],
exclude = ica.exclude,
)
epochs = epochs_ica.copy()
else:
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
if interpolate_bad_channels:
interpolation_list = faster_bad_channels(epochs,picks=picks)
for ch_name in interpolation_list:
epochs.info['bads'].append(ch_name)
epochs = epochs.interpolate_bads()
# pick the EEG channels for later use
clean_epochs = epochs.pick_types(eeg = True, eog = False)
return clean_epochs
def preprocessing_unconscious(raw,
events,
session,
tmin = -0,
tmax = 1,
notch_filter = 50,
event_id = {'living':1,'nonliving':2},
baseline = (None,None),
perform_ICA = False,
eog_chs = [],
ecg_chs = [],):
# everytime before filtering, explicitly pick the type of channels you want
# to perform the filters
picks = mne.pick_types(raw.info,
meg = True, # No MEG
eeg = False, # NO EEG
eog = True, # YES EOG
ecg = True, # YES ECG
)
# regardless the bandpass filtering later, we should always filter
# for wire artifacts and their oscillations
if type(notch_filter) is list:
for item in notch_filter:
raw.notch_filter(np.arange(item,301,item),
picks = picks)
else:
raw.notch_filter(np.arange(notch_filter,301,notch_filter),
picks = picks)
# filter EOG and ECG channels
picks = mne.pick_types(raw.info,
meg = False,
eeg = False,
eog = True,
ecg = True,)
raw.filter(1,12,picks = picks,)
# epoch the data
picks = mne.pick_types(raw.info,
meg = True,
eog = True,
ecg = True,
)
epochs = mne.Epochs(raw,
events, # numpy array
event_id, # dictionary
tmin = tmin,
tmax = tmax,
baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel
picks = picks,
detrend = 1, # detrend
preload = True # must be true if we want to do further processing
)
"""
1. if necessary, perform ICA
"""
if perform_ICA:
picks = mne.pick_types(epochs.info,
meg = True, # YES MEG
eeg = False, # NO EEG
eog = False, # NO EOG
ecg = False, # NO ECG
)
# ar = AutoReject(
# picks = picks,
# random_state = 12345,
# )
# ar.fit(epochs)
# _,reject_log = ar.transform(epochs,return_log=True)
# calculate the noise covariance of the epochs
noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs],
tmin = tmin,
tmax = 0,
method = 'empirical',
rank = None,)
# define an ica function
ica = mne.preprocessing.ICA(n_components = .99,
n_pca_components = .99,
max_pca_components = None,
method = 'extended-infomax',
max_iter = int(3e3),
noise_cov = noise_cov,
random_state = 12345,)
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
ica.fit(epochs,#[~reject_log.bad_epochs],
picks = picks,
start = tmin,
stop = tmax,
decim = 3,
tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw.
)
# search for artificial ICAs automatically
# most of these hyperparameters were used in a unrelated published study
ica.detect_artifacts(epochs,#[~reject_log.bad_epochs],
eog_ch = eog_chs,
ecg_ch = ecg_chs[0],
eog_criterion = 0.4, # arbitary choice
ecg_criterion = 0.1, # arbitary choice
skew_criterion = 1, # arbitary choice
kurt_criterion = 1, # arbitary choice
var_criterion = 1, # arbitary choice
)
epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs],
exclude = ica.exclude,
)
epochs = epochs_ica.copy()
# pick the EEG channels for later use
clean_epochs = epochs.pick_types(meg = True, eeg = True, eog = False)
return clean_epochs
def _preprocessing_conscious(
raw,events,session,
n_interpolates = np.arange(1,32,4),
consensus_pers = np.linspace(0,1.0,11),
event_id = {'living':1,'nonliving':2},
tmin = -0.15,
tmax = 0.15 * 6,
high_pass = 0.001,
low_pass = 30,
notch_filter = 50,
fix = False,
ICA = False,
logging = None,
filtering = False,):
"""
Preprocessing pipeline for conscious trials
Inputs
-------------------
raw: MNE Raw object, contineous EEG raw data
events: Numpy array with 3 columns, where the first column indicates time and the last column indicates event code
n_interpolates: list of values 1 <= N <= max number of channels
consensus_pers: ?? autoreject hyperparameter search grid
event_id: MNE argument, to control for epochs
tmin: first time stamp of the epoch
tmax: last time stamp of the epoch
high_pass: low cutoff of the bandpass filter
low_pass: high cutoff of the bandpass filter
notch_filter: frequency of the notch filter, 60 in US and 50 in Europe
fix : when "True", apply autoReject algorithm to remove artifacts that was not identifed in the ICA procedure
Output
ICA : when "True", apply ICA artifact correction in ICA space
logging: when not "None", output some log files for us to track the process
-------------------
Epochs: MNE Epochs object, segmented and cleaned EEG data (n_trials x n_channels x n_times)
"""
"""
0. re-reference - explicitly
"""
raw_ref ,_ = mne.set_eeg_reference(raw,
ref_channels = 'average',
projection = True,)
raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway
"""
1. highpass filter
by a 4th order zero-phase Butterworth filter
"""
# everytime before filtering, explicitly pick the type of channels you want
# to perform the filters
picks = mne.pick_types(raw_ref.info,
meg = False, # No MEG
eeg = True, # YES EEG
eog = True, # YES EOG
)
# regardless the bandpass filtering later, we should always filter
# for wire artifacts and their oscillations
raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter),
picks = picks)
# high pass filtering
picks = mne.pick_types(raw_ref.info,
meg = False, # No MEG
eeg = True, # YES EEG
eog = False, # No EOG
)
if filtering:
raw_ref.filter(high_pass,
None,
picks = picks,
filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”)
l_trans_bandwidth= high_pass,
method = 'fir', # overlap-add FIR filtering
phase = 'zero', # the delay of this filter is compensated for
fir_window = 'hamming', # The window to use in FIR design
fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2”
)
"""
2. epoch the data
"""
picks = mne.pick_types(raw_ref.info,
eeg = True, # YES EEG
eog = True, # YES EOG
)
epochs = mne.Epochs(raw_ref,
events, # numpy array
event_id, # dictionary
tmin = tmin,
tmax = tmax,
baseline = (tmin,- (1 / 60 * 20)), # range of time for computing the mean references for each channel and subtract these values from all the time points per channel
picks = picks,
detrend = 1, # linear detrend
preload = True # must be true if we want to do further processing
)
"""
4. ica on epoch data
"""
if ICA:
"""
3. apply autoreject
"""
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
ar = AutoReject(
# n_interpolate = n_interpolates,
# consensus = consensus_pers,
# thresh_method = 'bayesian_optimization',
picks = picks,
random_state = 12345,
# n_jobs = 1,
# verbose = 'progressbar',
)
ar.fit(epochs)
_,reject_log = ar.transform(epochs,return_log=True)
if logging is not None:
fig = plot_EEG_autoreject_log(ar)
fig.savefig(logging,bbox_inches = 'tight')
for key in epochs.event_id.keys():
evoked = epochs[key].average()
fig_ = evoked.plot_joint(title = key)
fig_.savefig(logging.replace('.png',f'_{key}_pre.png'),
bbox_inches = 'tight')
plt.close('all')
# calculate the noise covariance of the epochs
noise_cov = mne.compute_covariance(epochs[~reject_log.bad_epochs],
tmin = tmin,
tmax = tmax,
method = 'empirical',
rank = None,)
# define an ica function
ica = mne.preprocessing.ICA(n_components = .99,
n_pca_components = .99,
max_pca_components = None,
method = 'extended-infomax',
max_iter = int(3e3),
noise_cov = noise_cov,
random_state = 12345,)
# # search for a global rejection threshold globally
# reject = get_rejection_threshold(epochs[~reject_log.bad_epochs],
# decim = 1,
# random_state = 12345)
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
ica.fit(epochs[~reject_log.bad_epochs],
picks = picks,
start = tmin,
stop = tmax,
# reject = reject, # if some data in a window has values that exceed the rejection threshold, this window will be ignored when computing the ICA
decim = 3,
tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw.
)
# search for artificial ICAs automatically
# most of these hyperparameters were used in a unrelated published study
ica.detect_artifacts(epochs[~reject_log.bad_epochs],
eog_ch = ['FT9','FT10','TP9','TP10'],
eog_criterion = 0.4, # arbitary choice
skew_criterion = 2, # arbitary choice
kurt_criterion = 2, # arbitary choice
var_criterion = 2, # arbitary choice
)
# # explicitly search for eog ICAs
# eog_idx,scores = ica.find_bads_eog(raw_ref,
# start = tmin,
# stop = tmax,
# l_freq = 2,
# h_freq = 10,
# )
# ica.exclude += eog_idx
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs],
exclude = ica.exclude,
)
else:
picks = mne.pick_types(epochs.info,
eeg = True,
eog = False,)
# epochs.filter(None,
# low_pass,
# picks = picks,
# filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”)
# method = 'fir', # overlap-add FIR filtering
# phase = 'zero', # the delay of this filter is compensated for
# fir_window = 'hamming', # The window to use in FIR design
# fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2”
# )
if logging is not None:
for key in epochs.event_id.keys():
evoked = epochs[key].average()
fig_ = evoked.plot_joint(title = key)
fig_.savefig(logging.replace('.png',f'_{key}_post.png'),
bbox_inches = 'tight')
plt.close('all')
return epochs
if fix:
"""
"""
ar = AutoReject(
# n_interpolate = n_interpolates,
# consensus = consensus_pers,
# thresh_method = 'bayesian_optimization',
picks = picks,
random_state = 12345,
# n_jobs = 1,
# verbose = 'progressbar',
)
epochs_clean = ar.fit_transform(epochs_ica,
)
return epochs_clean.pick_types(eeg=True,eog=False)
else:
clean_epochs = epochs_ica.pick_types(eeg = True,
eog = False)
picks = mne.pick_types(clean_epochs.info,
eeg = True,
eog = False,)
# clean_epochs.filter(None,
# low_pass,
# picks = picks,
# filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”)
# method = 'fir', # overlap-add FIR filtering
# phase = 'zero', # the delay of this filter is compensated for
# fir_window = 'hamming', # The window to use in FIR design
# fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2”
# )
if logging is not None:
for key in clean_epochs.event_id.keys():
evoked = epochs[key].average()
fig_ = evoked.plot_joint(title = key)
fig_.savefig(logging.replace('.png',f'_{key}_post.png'),
bbox_inches = 'tight')
plt.close('all')
return clean_epochs
def plot_temporal_decoding(times,
scores,
frames,
ii,
conscious_state,
plscores,
n_splits,
ylim = (0.2,0.8)):
scores_mean = scores.mean(0)
scores_se = scores.std(0) / np.sqrt(n_splits)
fig,ax = plt.subplots(figsize = (16,8))
ax.plot(times,scores_mean,
color = 'k',
alpha = .9,
label = f'Average across {n_splits} folds',
)
ax.fill_between(times,
scores_mean + scores_se,
scores_mean - scores_se,
color = 'red',
alpha = 0.4,
label = 'Standard Error',)
ax.axhline(0.5,
linestyle = '--',
color = 'k',
alpha = 0.7,
label = 'Chance level')
ax.axvline(0,
linestyle = '--',
color = 'blue',
alpha = 0.7,
label = 'Probe onset',)
if ii is not None:
ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'blue',
alpha = 0.3,
label = 'probe offset ave +/- std',)
ax.set(xlim = (times.min(),
times.max()),
ylim = ylim,#(0.4,0.6),
title = f'Temporal decoding of {conscious_state} = {plscores.mean():.3f}+/-{plscores.std():.3f}',
)
ax.legend()
return fig,ax
def plot_temporal_generalization(scores_gen_,
times,
ii,
conscious_state,
frames,
vmin = 0.4,
vmax = 0.6):
fig, ax = plt.subplots(figsize = (10,10))
if len(scores_gen_.shape) > 2:
scores_gen_ = scores_gen_.mean(0)
im = ax.imshow(
scores_gen_,
interpolation = 'hamming',
origin = 'lower',
cmap = 'RdBu_r',
extent = times[[0, -1, 0, -1]],
vmin = vmin,
vmax = vmax,
)
ax.set_xlabel('Testing Time (s)')
ax.set_ylabel('Training Time (s)')
ax.set_title(f'Temporal generalization of {conscious_state}')
ax.axhline(0.,
linestyle = '--',
color = 'black',
alpha = 0.7,
label = 'Probe onset',)
ax.axvline(0.,
linestyle = '--',
color = 'black',
alpha = 0.7,
)
if ii is not None:
ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'black',
alpha = 0.2,
label = 'probe offset ave +/- std',)
ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'black',
alpha = 0.2,
)
plt.colorbar(im, ax = ax)
ax.legend()
return fig,ax
def plot_t_stats(T_obs,
clusters,
cluster_p_values,
times,
ii,
conscious_state,
frames,):
# since the p values of each cluster is corrected for multiple comparison,
# we could directly use 0.05 as the threshold to filter clusters
T_obs_plot = 0 * np.ones_like(T_obs)
k = np.array([np.sum(c) for c in clusters])
if np.max(k) > 1000:
c_thresh = 1000
elif 1000 > np.max(k) > 500:
c_thresh = 500
elif 500 > np.max(k) > 100:
c_thresh = 100
elif 100 > np.max(k) > 10:
c_thresh = 10
else:
c_thresh = 0
for c, p_val in zip(clusters, cluster_p_values):
if (p_val <= 0.01) and (np.sum(c) >= c_thresh):# and (distance.cdist(np.where(c == True)[0].reshape(1,-1),np.where(c == True)[1].reshape(1,-1))[0][0] < 200):# and (np.sum(c) >= c_thresh):
T_obs_plot[c] = T_obs[c]
# defind the range of the colorbar
vmax = np.max(np.abs(T_obs))
vmin = -vmax# - 2 * t_threshold
plt.close('all')
fig,ax = plt.subplots(figsize=(10,10))
im = ax.imshow(T_obs_plot,
origin = 'lower',
cmap = plt.cm.RdBu_r,# to emphasize the clusters
extent = times[[0, -1, 0, -1]],
vmin = vmin,
vmax = vmax,
interpolation = 'lanczos',
)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right",
size = "5%",
pad = 0.2)
cb = plt.colorbar(im,
cax = cax,
ticks = np.linspace(vmin,vmax,3))
cb.ax.set(title = 'T Statistics')
ax.plot([times[0],times[-1]],[times[0],times[-1]],
linestyle = '--',
color = 'black',
alpha = 0.7,
)
ax.axhline(0.,
linestyle = '--',
color = 'black',
alpha = 0.7,
label = 'Probe onset',)
ax.axvline(0.,
linestyle = '--',
color = 'black',
alpha = 0.7,
)
if ii is not None:
ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'black',
alpha = 0.2,
label = 'probe offset ave +/- std',)
ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'black',
alpha = 0.2,
)
ax.set(xlabel = 'Test time',
ylabel = 'Train time',
title = f'nonparametric t test of {conscious_state}')
ax.legend()
return fig,ax
def plot_p_values(times,
clusters,
cluster_p_values,
ii,
conscious_state,
frames):
width = len(times)
p_clust = np.ones((width, width))# * np.nan
k = np.array([np.sum(c) for c in clusters])
if np.max(k) > 1000:
c_thresh = 1000
elif 1000 > np.max(k) > 500:
c_thresh = 500
elif 500 > np.max(k) > 100:
c_thresh = 100
elif 100 > np.max(k) > 10:
c_thresh = 10
else:
c_thresh = 0
for c, p_val in zip(clusters, cluster_p_values):
if (np.sum(c) >= c_thresh):
p_val_ = p_val.copy()
if p_val_ > 0.05:
p_val_ = 1.
p_clust[c] = p_val_
# defind the range of the colorbar
vmax = 1.
vmin = 0.
plt.close('all')
fig,ax = plt.subplots(figsize = (10,10))
im = ax.imshow(p_clust,
origin = 'lower',
cmap = plt.cm.RdBu_r,# to emphasize the clusters
extent = times[[0, -1, 0, -1]],
vmin = vmin,
vmax = vmax,
interpolation = 'hanning',
)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right",
size = "5%",
pad = 0.2)
cb = plt.colorbar(im,
cax = cax,
ticks = [0,0.05,1])
cb.ax.set(title = 'P values')
ax.plot([times[0],times[-1]],[times[0],times[-1]],
linestyle = '--',
color = 'black',
alpha = 0.7,
)
ax.axhline(0.,
linestyle = '--',
color = 'black',
alpha = 0.7,
label = 'Probe onset',)
ax.axvline(0.,
linestyle = '--',
color = 'black',
alpha = 0.7,
)
if ii is not None:
ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'black',
alpha = 0.2,
label = 'probe offset ave +/- std',)
ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100),
frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100),
color = 'black',
alpha = 0.2,
)
ax.set(xlabel = 'Test time',
ylabel = 'Train time',
title = f'p value map of {conscious_state}')
ax.legend()
return fig,ax
def plot_EEG_autoreject_log(autoreject_object,):
ar = autoreject_object
loss = ar.loss_['eeg'].mean(axis=-1) # losses are stored by channel type.
fig,ax = plt.subplots(figsize=(10,6))
im = ax.matshow(loss.T * 1e6, cmap=plt.get_cmap('viridis'))
ax.set(xticks = range(len(ar.consensus)),
xticklabels = ar.consensus.round(2),
yticks = range(len(ar.n_interpolate)),
yticklabels = ar.n_interpolate)
# Draw rectangle at location of best parameters
idx, jdx = np.unravel_index(loss.argmin(), loss.shape)
rect = patches.Rectangle((idx - 0.5, jdx - 0.5), 1, 1, linewidth=2,
edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.xaxis.set_ticks_position('bottom')
ax.set(xlabel = r'Consensus percentage $\kappa$',
ylabel = r'Max sensors interpolated $\rho$',
title = 'Mean cross validation error (x 1e6)')
plt.colorbar(im)
return fig
def str2int(x):
if type(x) is str:
return float(re.findall(r'\d+',x)[0])
else:
return x
def simple_load(f,idx):
df = pd.read_csv(f)
df['run'] = idx
return df
def get_frames(directory,new = True,EEG = True):
if EEG:
files = glob(os.path.join(directory,'*trials.csv'))
# elif EEG == 'fMRI':
# files = glob(os.path.join(directory,'*trials.csv'))
else:
files = glob(os.path.join(directory,'*','*.csv'))
empty_temp = ''
for ii,f in enumerate(files):
df = pd.read_csv(f).dropna()
for vis,df_sub in df.groupby(['visible.keys_raw']):
try:
print(f'session {ii+1}, vis = {vis}, n_trials = {df_sub.shape[0]}')
empty_temp += f'session {ii+1}, vis = {vis}, n_trials = {df_sub.shape[0]}'
empty_temp += '\n'
except:
print('session {}, vis = {}, n_trials = {}'.format(ii+1,
vis,df_sub.shape[0]))
df = pd.concat([simple_load(f,ii).dropna() for ii,f in enumerate(files)])
try:
for col in ['probeFrames_raw',
'response.keys_raw',
'visible.keys_raw']:
# print(df[col])
df[col] = df[col].apply(str2int)
except:
for col in ['probe_Frames_raw',
'response.keys_raw',
'visible.keys_raw']:
# print(df[col])
df[col] = df[col].apply(str2int)
df["probeFrames_raw"] = df["probe_Frames_raw"]
df = df[df['probeFrames_raw'] != 999]
df = df.sort_values(['run','order'])
for vis,df_sub in df.groupby(['visible.keys_raw']):
df_press1 = df_sub[df_sub['response.keys_raw'] == 1]
df_press2 = df_sub[df_sub['response.keys_raw'] == 2]
prob1 = df_press1.shape[0] / df_sub.shape[0]
prob2 = df_press2.shape[0] / df_sub.shape[0]
try:
print(f"\nvis = {vis},mean frames = {np.median(df_sub['probeFrames_raw']):.5f}")
print(f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}")
empty_temp += f"\nvis = {vis},mean frames = {np.median(df_sub['probeFrames_raw']):.5f}\n"
empty_temp += f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}\n"
except:
print("\nvis = {},mean frames = {:.5f}".format(
vis,np.median(df_sub['probeFrames_raw'])))
print(f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}")
if new:
df = []
for f in files:
temp = pd.read_csv(f).dropna()
try:
temp[['probeFrames_raw','visible.keys_raw']]
except:
temp['probeFrames_raw'] = temp['probe_Frames_raw']
probeFrame = []
for ii,row in temp.iterrows():
if int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 1:
probeFrame.append(row['probeFrames_raw'])
elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 2:
probeFrame.append(row['probeFrames_raw'])
elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 3:
probeFrame.append(row['probeFrames_raw'])
elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 4:
probeFrame.append(row['probeFrames_raw'])
temp['probeFrames'] = probeFrame
df.append(temp)
df = pd.concat(df)
else:
df = []
for f in files:
temp = pd.read_csv(f).dropna()
temp[['probeFrames_raw','visible.keys_raw']]
probeFrame = []
for ii,row in temp.iterrows():
if int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 1:
probeFrame.append(row['probeFrames_raw'] - 2)
elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 2:
probeFrame.append(row['probeFrames_raw'] - 1)
elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 3:
probeFrame.append(row['probeFrames_raw'] + 1)
elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 4:
probeFrame.append(row['probeFrames_raw'] + 2)
temp['probeFrames'] = probeFrame
df.append(temp)
df = pd.concat(df)
df['probeFrames'] = df['probeFrames'].apply(str2int)
df = df[df['probeFrames'] != 999]
results = []
for vis,df_sub in df.groupby(['visible.keys_raw']):
corrects = df_sub['response.corr_raw'].sum() / df_sub.shape[0]
try:
print(f"vis = {vis},N = {df_sub.shape[0]},mean frames = {np.mean(df_sub['probeFrames']):.2f} +/- {np.std(df_sub['probeFrames']):.2f}\np(correct) = {corrects:.4f}")
empty_temp += f"vis = {vis},N = {df_sub.shape[0]},mean frames = {np.mean(df_sub['probeFrames']):.2f} +/- {np.std(df_sub['probeFrames']):.2f}\np(correct) = {corrects:.4f}\n"
empty_temp += f"RT = {np.mean(df_sub['visible.rt_raw']):.3f} +/- {np.std(df_sub['visible.rt_raw']):.3f}\n"
except:
print("vis = {},mean frames = {:.2f} +/- {:.2f}".format(
vis,np.mean(df_sub['probeFrames']),np.std(df_sub['probeFrames'])))
results.append([vis,np.mean(df_sub['probeFrames']),np.std(df_sub['probeFrames'])])
return results,empty_temp
def preprocess_behavioral_file(f):
df = read_behavorial_file(f)
for col in ['probeFrames_raw',
'response.keys_raw',
'visible.keys_raw']:
df[col] = df[col].apply(str2int)
df = df.sort_values(['order'])
return df
def read_behavorial_file(f):
temp = pd.read_csv(f).iloc[:-12,:]
return temp
def preload(f):
temp = pd.read_csv(f).iloc[-12:,:2]
return temp
def extract(x):
try:
return int(re.findall(r'\d',x)[0])
except:
return int(99)
#def extract_session_run_from_MRI(x):
# temp = re.findall(r'\d+',x)
# session = temp[1]
# if int(session) == 7:
# session = '1'
# run = temp[-1]
# return session,run
#def check_behaviral_data_session_block(x):
# temp = preload(x)
# temp.index = temp['category']
# temp = temp.T
# session = int(temp['session'].values[-1])
# block = int(temp['block'].values[-1])
# return session,block
#def compare_match(behavorial_file_name,session,block):
# behav_session,behav_block = check_behaviral_data_session_block(behavorial_file_name)
# if np.logical_and(behav_session == session, behav_block == block):
# return True
# else:
# return False
def add_track(df_sub):
n_rows = df_sub.shape[0]
if len(df_sub.index.values) > 1:
temp = '+'.join(str(item + 10) for item in df_sub.index.values)
else:
temp = str(df_sub.index.values[0])
df_sub = df_sub.iloc[0,:].to_frame().T # why did I use 1 instead of 0?
df_sub['n_volume'] = n_rows
df_sub['time_indices'] = temp
return df_sub
def groupby_average(fmri,df,groupby = ['trials']):
BOLD_average = np.array([np.mean(fmri[df_sub.index],0) for _,df_sub in df.groupby(groupby)])
df_average = pd.concat([add_track(df_sub) for ii,df_sub in df.groupby(groupby)])
return BOLD_average,df_average
def get_brightness_threshold(thresh):
return [0.75 * val for val in thresh]
def get_brightness_threshold_double(thresh):
return [2 * 0.75 * val for val in thresh]
def cartesian_product(fwhms, in_files, usans, btthresh):
from nipype.utils.filemanip import ensure_list
# ensure all inputs are lists
in_files = ensure_list(in_files)
fwhms = [fwhms] if isinstance(fwhms, (int, float)) else fwhms
# create cartesian product lists (s_<name> = single element of list)
cart_in_file = [
s_in_file for s_in_file in in_files for s_fwhm in fwhms
]
cart_fwhm = [
s_fwhm for s_in_file in in_files for s_fwhm in fwhms
]
cart_usans = [
s_usans for s_usans in usans for s_fwhm in fwhms
]
cart_btthresh = [
s_btthresh for s_btthresh in btthresh for s_fwhm in fwhms
]
return cart_in_file, cart_fwhm, cart_usans, cart_btthresh
def getusans(x):
return [[tuple([val[0], 0.5 * val[1]])] for val in x]
def create_fsl_FEAT_workflow_func(whichrun = 0,
whichvol = 'middle',
workflow_name = 'nipype_mimic_FEAT',
first_run = True,
func_data_file = 'temp',
fwhm = 3):
"""
Works with fsl-5.0.9 and fsl-5.0.11, but not fsl-6.0.0
"""
from nipype.workflows.fmri.fsl import preprocess
from nipype.interfaces import fsl
from nipype.interfaces import utility as util
from nipype.pipeline import engine as pe
"""
Setup some functions and hyperparameters
"""
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
pickrun = preprocess.pickrun
pickvol = preprocess.pickvol
getthreshop = preprocess.getthreshop
getmeanscale = preprocess.getmeanscale
# chooseindex = preprocess.chooseindex
"""
Start constructing the workflow graph
"""
preproc = pe.Workflow(name = workflow_name)
"""
Initialize the input and output spaces
"""
inputnode = pe.Node(
interface = util.IdentityInterface(fields = ['func',
'fwhm',
'anat']),
name = 'inputspec')
outputnode = pe.Node(
interface = util.IdentityInterface(fields = ['reference',
'motion_parameters',
'realigned_files',
'motion_plots',
'mask',
'smoothed_files',
'mean']),
name = 'outputspec')
"""
first step: convert Images to float values
"""
img2float = pe.MapNode(
interface = fsl.ImageMaths(
out_data_type = 'float',
op_string = '',
suffix = '_dtype'),
iterfield = ['in_file'],
name = 'img2float')
preproc.connect(inputnode,'func',
img2float,'in_file')
"""
delete first 10 volumes
"""
develVolume = pe.MapNode(
interface = fsl.ExtractROI(t_min = 10,
t_size = 508),
iterfield = ['in_file'],
name = 'remove_volumes')
preproc.connect(img2float, 'out_file',
develVolume, 'in_file')
if first_run == True:
"""
extract example fMRI volume: middle one
"""
extract_ref = pe.MapNode(
interface = fsl.ExtractROI(t_size = 1,),
iterfield = ['in_file'],
name = 'extractref')
# connect to the deleteVolume node to get the data
preproc.connect(develVolume,'roi_file',
extract_ref,'in_file')
# connect to the deleteVolume node again to perform the extraction
preproc.connect(develVolume,('roi_file',pickvol,0,whichvol),
extract_ref,'t_min')
# connect to the output node to save the reference volume
preproc.connect(extract_ref,'roi_file',
outputnode, 'reference')
if first_run == True:
"""
Realign the functional runs to the reference (`whichvol` volume of first run)
"""
motion_correct = pe.MapNode(
interface = fsl.MCFLIRT(save_mats = True,
save_plots = True,
save_rms = True,
stats_imgs = True,
interpolation = 'spline'),
iterfield = ['in_file','ref_file'],
name = 'MCFlirt',
)
# connect to the develVolume node to get the input data
preproc.connect(develVolume, 'roi_file',
motion_correct, 'in_file',)
######################################################################################
################# the part where we replace the actual reference image if exists ####
######################################################################################
# connect to the develVolume node to get the reference
preproc.connect(extract_ref, 'roi_file',
motion_correct, 'ref_file')
######################################################################################
# connect to the output node to save the motion correction parameters
preproc.connect(motion_correct, 'par_file',
outputnode, 'motion_parameters')
# connect to the output node to save the other files
preproc.connect(motion_correct, 'out_file',
outputnode, 'realigned_files')
else:
"""
Realign the functional runs to the reference (`whichvol` volume of first run)
"""
motion_correct = pe.MapNode(
interface = fsl.MCFLIRT(ref_file = first_run,
save_mats = True,
save_plots = True,
save_rms = True,
stats_imgs = True,
interpolation = 'spline'),
iterfield = ['in_file','ref_file'],
name = 'MCFlirt',
)
# connect to the develVolume node to get the input data
preproc.connect(develVolume, 'roi_file',
motion_correct, 'in_file',)
# connect to the output node to save the motion correction parameters
preproc.connect(motion_correct, 'par_file',
outputnode, 'motion_parameters')
# connect to the output node to save the other files
preproc.connect(motion_correct, 'out_file',
outputnode, 'realigned_files')
"""
plot the estimated motion parameters
"""
plot_motion = pe.MapNode(
interface = fsl.PlotMotionParams(in_source = 'fsl'),
iterfield = ['in_file'],
name = 'plot_motion',
)
plot_motion.iterables = ('plot_type',['rotations',
'translations',
'displacement'])
preproc.connect(motion_correct, 'par_file',
plot_motion, 'in_file')
preproc.connect(plot_motion, 'out_file',
outputnode, 'motion_plots')
"""
extract the mean volume of the first functional run
"""
meanfunc = pe.Node(
interface = fsl.ImageMaths(op_string = '-Tmean',
suffix = '_mean',),
name = 'meanfunc')
preproc.connect(motion_correct, ('out_file',pickrun,whichrun),
meanfunc, 'in_file')
"""
strip the skull from the mean functional to generate a mask
"""
meanfuncmask = pe.Node(
interface = fsl.BET(mask = True,
no_output = True,
frac = 0.3,
surfaces = True,),
name = 'bet2_mean_func')
preproc.connect(meanfunc, 'out_file',
meanfuncmask, 'in_file')
"""
Mask the motion corrected functional data with the mask to create the masked (bet) motion corrected functional data
"""
maskfunc = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_bet',
op_string = '-mas'),
iterfield = ['in_file'],
name = 'maskfunc')
preproc.connect(motion_correct, 'out_file',
maskfunc, 'in_file')
preproc.connect(meanfuncmask, 'mask_file',
maskfunc, 'in_file2')
"""
determine the 2nd and 98th percentiles of each functional run
"""
getthreshold = pe.MapNode(
interface = fsl.ImageStats(op_string = '-p 2 -p 98'),
iterfield = ['in_file'],
name = 'getthreshold')
preproc.connect(maskfunc, 'out_file',
getthreshold, 'in_file')
"""
threshold the functional data at 10% of the 98th percentile
"""
threshold = pe.MapNode(
interface = fsl.ImageMaths(out_data_type = 'char',
suffix = '_thresh',
op_string = '-Tmin -bin'),
iterfield = ['in_file','op_string'],
name = 'tresholding')
preproc.connect(maskfunc, 'out_file',
threshold,'in_file')
"""
define a function to get 10% of the intensity
"""
preproc.connect(getthreshold,('out_stat',getthreshop),
threshold, 'op_string')
"""
Determine the median value of the functional runs using the mask
"""
medianval = pe.MapNode(
interface = fsl.ImageStats(op_string = '-k %s -p 50'),
iterfield = ['in_file','mask_file'],
name = 'cal_intensity_scale_factor')
preproc.connect(motion_correct, 'out_file',
medianval, 'in_file')
preproc.connect(threshold, 'out_file',
medianval, 'mask_file')
"""
dilate the mask
"""
dilatemask = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_dil',
op_string = '-dilF'),
iterfield = ['in_file'],
name = 'dilatemask')
preproc.connect(threshold, 'out_file',
dilatemask, 'in_file')
preproc.connect(dilatemask, 'out_file',
outputnode, 'mask')
"""
mask the motion corrected functional runs with the dilated mask
"""
dilateMask_MCed = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_mask',
op_string = '-mas'),
iterfield = ['in_file','in_file2'],
name = 'dilateMask_MCed')
preproc.connect(motion_correct, 'out_file',
dilateMask_MCed, 'in_file',)
preproc.connect(dilatemask, 'out_file',
dilateMask_MCed, 'in_file2')
"""
We now take this functional data that is motion corrected, high pass filtered, and
create a "mean_func" image that is the mean across time (Tmean)
"""
meanfunc2 = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_mean',
op_string = '-Tmean',),
iterfield = ['in_file'],
name = 'meanfunc2')
preproc.connect(dilateMask_MCed, 'out_file',
meanfunc2, 'in_file')
"""
smooth each run using SUSAN with the brightness threshold set to
75% of the median value for each run and a mask constituing the
mean functional
"""
merge = pe.Node(
interface = util.Merge(2, axis = 'hstack'),
name = 'merge')
preproc.connect(meanfunc2, 'out_file',
merge, 'in1')
preproc.connect(medianval,('out_stat',get_brightness_threshold_double),
merge, 'in2')
smooth = pe.MapNode(
interface = fsl.SUSAN(dimension = 3,
use_median = True),
iterfield = ['in_file',
'brightness_threshold',
'fwhm',
'usans'],
name = 'susan_smooth')
preproc.connect(dilateMask_MCed, 'out_file',
smooth, 'in_file')
preproc.connect(medianval, ('out_stat',get_brightness_threshold),
smooth, 'brightness_threshold')
preproc.connect(inputnode, 'fwhm',
smooth, 'fwhm')
preproc.connect(merge, ('out',getusans),
smooth, 'usans')
"""
mask the smoothed data with the dilated mask
"""
maskfunc3 = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_mask',
op_string = '-mas'),
iterfield = ['in_file','in_file2'],
name = 'dilateMask_smoothed')
# connect the output of the susam smooth component to the maskfunc3 node
preproc.connect(smooth, 'smoothed_file',
maskfunc3, 'in_file')
# connect the output of the dilated mask to the maskfunc3 node
preproc.connect(dilatemask, 'out_file',
maskfunc3, 'in_file2')
"""
scale the median value of the run is set to 10000
"""
meanscale = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_intnorm'),
iterfield = ['in_file','op_string'],
name = 'meanscale')
preproc.connect(maskfunc3, 'out_file',
meanscale, 'in_file')
preproc.connect(meanscale, 'out_file',
outputnode,'smoothed_files')
"""
define a function to get the scaling factor for intensity normalization
"""
preproc.connect(medianval,('out_stat',getmeanscale),
meanscale,'op_string')
"""
generate a mean functional image from the first run
should this be the 'mean.nii.gz' we will use in the future?
"""
meanfunc3 = pe.MapNode(
interface = fsl.ImageMaths(suffix = '_mean',
op_string = '-Tmean',),
iterfield = ['in_file'],
name = 'gen_mean_func_img')
preproc.connect(meanscale, 'out_file',
meanfunc3, 'in_file')
preproc.connect(meanfunc3, 'out_file',
outputnode,'mean')
# initialize some of the input files
preproc.inputs.inputspec.func = os.path.abspath(func_data_file)
preproc.inputs.inputspec.fwhm = 3
preproc.base_dir = os.path.abspath('/'.join(
func_data_file.split('/')[:-1]))
output_dir = os.path.abspath(os.path.join(
preproc.base_dir,
'outputs',
'func'))
MC_dir = os.path.join(output_dir,'MC')
for directories in [output_dir,MC_dir]:
if not os.path.exists(directories):
os.makedirs(directories)
# initialize all the output files
if first_run == True:
preproc.inputs.extractref.roi_file = os.path.abspath(os.path.join(
output_dir,'example_func.nii.gz'))
preproc.inputs.dilatemask.out_file = os.path.abspath(os.path.join(
output_dir,'mask.nii.gz'))
preproc.inputs.meanscale.out_file = os.path.abspath(os.path.join(
output_dir,'prefiltered_func.nii.gz'))
preproc.inputs.gen_mean_func_img.out_file = os.path.abspath(os.path.join(
output_dir,'mean_func.nii.gz'))
return preproc,MC_dir,output_dir
def create_registration_workflow(
anat_brain,
anat_head,
example_func,
standard_brain,
standard_head,
standard_mask,
workflow_name = 'registration',
output_dir = 'temp'):
from nipype.interfaces import fsl
from nipype.interfaces import utility as util
from nipype.pipeline import engine as pe
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
registration = pe.Workflow(name = 'registration')
inputnode = pe.Node(
interface = util.IdentityInterface(
fields = [
'highres', # anat_brain
'highres_head', # anat_head
'example_func',
'standard', # standard_brain
'standard_head',
'standard_mask'
]),
name = 'inputspec')
outputnode = pe.Node(
interface = util.IdentityInterface(
fields = ['example_func2highres_nii_gz',
'example_func2highres_mat',
'linear_example_func2highres_log',
'highres2example_func_mat',
'highres2standard_linear_nii_gz',
'highres2standard_mat',
'linear_highres2standard_log',
'highres2standard_nii_gz',
'highres2standard_warp_nii_gz',
'highres2standard_head_nii_gz',
# 'highres2standard_apply_warp_nii_gz',
'highres2highres_jac_nii_gz',
'nonlinear_highres2standard_log',
'highres2standard_nii_gz',
'standard2highres_mat',
'example_func2standard_mat',
'example_func2standard_warp_nii_gz',
'example_func2standard_nii_gz',
'standard2example_func_mat',
]),
name = 'outputspec')
"""
fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres
fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres_head
fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain standard
fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm standard_head
fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil standard_mask
"""
# skip
"""
/opt/fsl/fsl-5.0.10/fsl/bin/flirt
-in example_func
-ref highres
-out example_func2highres
-omat example_func2highres.mat
-cost corratio
-dof 7
-searchrx -180 180
-searchry -180 180
-searchrz -180 180
-interp trilinear
"""
linear_example_func2highres = pe.MapNode(
interface = fsl.FLIRT(cost = 'corratio',
interp = 'trilinear',
dof = 7,
save_log = True,
searchr_x = [-180, 180],
searchr_y = [-180, 180],
searchr_z = [-180, 180],),
iterfield = ['in_file','reference'],
name = 'linear_example_func2highres')
registration.connect(inputnode, 'example_func',
linear_example_func2highres, 'in_file')
registration.connect(inputnode, 'highres',
linear_example_func2highres, 'reference')
registration.connect(linear_example_func2highres, 'out_file',
outputnode, 'example_func2highres_nii_gz')
registration.connect(linear_example_func2highres, 'out_matrix_file',
outputnode, 'example_func2highres_mat')
registration.connect(linear_example_func2highres, 'out_log',
outputnode, 'linear_example_func2highres_log')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-inverse -omat highres2example_func.mat example_func2highres.mat
"""
get_highres2example_func = pe.MapNode(
interface = fsl.ConvertXFM(invert_xfm = True),
iterfield = ['in_file'],
name = 'get_highres2example_func')
registration.connect(linear_example_func2highres,'out_matrix_file',
get_highres2example_func,'in_file')
registration.connect(get_highres2example_func,'out_file',
outputnode,'highres2example_func_mat')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/flirt
-in highres
-ref standard
-out highres2standard
-omat highres2standard.mat
-cost corratio
-dof 12
-searchrx -180 180
-searchry -180 180
-searchrz -180 180
-interp trilinear
"""
linear_highres2standard = pe.MapNode(
interface = fsl.FLIRT(cost = 'corratio',
interp = 'trilinear',
dof = 12,
save_log = True,
searchr_x = [-180, 180],
searchr_y = [-180, 180],
searchr_z = [-180, 180],),
iterfield = ['in_file','reference'],
name = 'linear_highres2standard')
registration.connect(inputnode,'highres',
linear_highres2standard,'in_file')
registration.connect(inputnode,'standard',
linear_highres2standard,'reference',)
registration.connect(linear_highres2standard,'out_file',
outputnode,'highres2standard_linear_nii_gz')
registration.connect(linear_highres2standard,'out_matrix_file',
outputnode,'highres2standard_mat')
registration.connect(linear_highres2standard,'out_log',
outputnode,'linear_highres2standard_log')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/fnirt
--iout=highres2standard_head
--in=highres_head
--aff=highres2standard.mat
--cout=highres2standard_warp
--iout=highres2standard
--jout=highres2highres_jac
--config=T1_2_MNI152_2mm
--ref=standard_head
--refmask=standard_mask
--warpres=10,10,10
"""
nonlinear_highres2standard = pe.MapNode(
interface = fsl.FNIRT(warp_resolution = (10,10,10),
config_file = "T1_2_MNI152_2mm"),
iterfield = ['in_file','ref_file','affine_file','refmask_file'],
name = 'nonlinear_highres2standard')
# -- iout
registration.connect(nonlinear_highres2standard,'warped_file',
outputnode,'highres2standard_head_nii_gz')
# --in
registration.connect(inputnode,'highres',
nonlinear_highres2standard,'in_file')
# --aff
registration.connect(linear_highres2standard,'out_matrix_file',
nonlinear_highres2standard,'affine_file')
# --cout
registration.connect(nonlinear_highres2standard,'fieldcoeff_file',
outputnode,'highres2standard_warp_nii_gz')
# --jout
registration.connect(nonlinear_highres2standard,'jacobian_file',
outputnode,'highres2highres_jac_nii_gz')
# --ref
registration.connect(inputnode,'standard_head',
nonlinear_highres2standard,'ref_file',)
# --refmask
registration.connect(inputnode,'standard_mask',
nonlinear_highres2standard,'refmask_file')
# log
registration.connect(nonlinear_highres2standard,'log_file',
outputnode,'nonlinear_highres2standard_log')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/applywarp
-i highres
-r standard
-o highres2standard
-w highres2standard_warp
"""
warp_highres2standard = pe.MapNode(
interface = fsl.ApplyWarp(),
iterfield = ['in_file','ref_file','field_file'],
name = 'warp_highres2standard')
registration.connect(inputnode,'highres',
warp_highres2standard,'in_file')
registration.connect(inputnode,'standard',
warp_highres2standard,'ref_file')
registration.connect(warp_highres2standard,'out_file',
outputnode,'highres2standard_nii_gz')
registration.connect(nonlinear_highres2standard,'fieldcoeff_file',
warp_highres2standard,'field_file')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-inverse -omat standard2highres.mat highres2standard.mat
"""
get_standard2highres = pe.MapNode(
interface = fsl.ConvertXFM(invert_xfm = True),
iterfield = ['in_file'],
name = 'get_standard2highres')
registration.connect(linear_highres2standard,'out_matrix_file',
get_standard2highres,'in_file')
registration.connect(get_standard2highres,'out_file',
outputnode,'standard2highres_mat')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-omat example_func2standard.mat -concat highres2standard.mat example_func2highres.mat
"""
get_exmaple_func2standard = pe.MapNode(
interface = fsl.ConvertXFM(concat_xfm = True),
iterfield = ['in_file','in_file2'],
name = 'get_exmaple_func2standard')
registration.connect(linear_example_func2highres, 'out_matrix_file',
get_exmaple_func2standard,'in_file')
registration.connect(linear_highres2standard,'out_matrix_file',
get_exmaple_func2standard,'in_file2')
registration.connect(get_exmaple_func2standard,'out_file',
outputnode,'example_func2standard_mat')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convertwarp
--ref=standard
--premat=example_func2highres.mat
--warp1=highres2standard_warp
--out=example_func2standard_warp
"""
convertwarp_example2standard = pe.MapNode(
interface = fsl.ConvertWarp(),
iterfield = ['reference','premat','warp1'],
name = 'convertwarp_example2standard')
registration.connect(inputnode,'standard',
convertwarp_example2standard,'reference')
registration.connect(linear_example_func2highres,'out_matrix_file',
convertwarp_example2standard,'premat')
registration.connect(nonlinear_highres2standard,'fieldcoeff_file',
convertwarp_example2standard,'warp1')
registration.connect(convertwarp_example2standard,'out_file',
outputnode,'example_func2standard_warp_nii_gz')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/applywarp
--ref=standard
--in=example_func
--out=example_func2standard
--warp=example_func2standard_warp
"""
warp_example2stand = pe.MapNode(
interface = fsl.ApplyWarp(),
iterfield = ['ref_file','in_file','field_file'],
name = 'warp_example2stand')
registration.connect(inputnode,'standard',
warp_example2stand,'ref_file')
registration.connect(inputnode,'example_func',
warp_example2stand,'in_file')
registration.connect(warp_example2stand,'out_file',
outputnode,'example_func2standard_nii_gz')
registration.connect(convertwarp_example2standard,'out_file',
warp_example2stand,'field_file')
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-inverse -omat standard2example_func.mat example_func2standard.mat
"""
get_standard2example_func = pe.MapNode(
interface = fsl.ConvertXFM(invert_xfm = True),
iterfield = ['in_file'],
name = 'get_standard2example_func')
registration.connect(get_exmaple_func2standard,'out_file',
get_standard2example_func,'in_file')
registration.connect(get_standard2example_func,'out_file',
outputnode,'standard2example_func_mat')
registration.base_dir = output_dir
registration.inputs.inputspec.highres = anat_brain
registration.inputs.inputspec.highres_head= anat_head
registration.inputs.inputspec.example_func = example_func
registration.inputs.inputspec.standard = standard_brain
registration.inputs.inputspec.standard_head = standard_head
registration.inputs.inputspec.standard_mask = standard_mask
# define all the oupput file names with the directory
registration.inputs.linear_example_func2highres.out_file = os.path.abspath(os.path.join(output_dir,
'example_func2highres.nii.gz'))
registration.inputs.linear_example_func2highres.out_matrix_file = os.path.abspath(os.path.join(output_dir,
'example_func2highres.mat'))
registration.inputs.linear_example_func2highres.out_log = os.path.abspath(os.path.join(output_dir,
'linear_example_func2highres.log'))
registration.inputs.get_highres2example_func.out_file = os.path.abspath(os.path.join(output_dir,
'highres2example_func.mat'))
registration.inputs.linear_highres2standard.out_file = os.path.abspath(os.path.join(output_dir,
'highres2standard_linear.nii.gz'))
registration.inputs.linear_highres2standard.out_matrix_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.mat'))
registration.inputs.linear_highres2standard.out_log = os.path.abspath(os.path.join(output_dir,
'linear_highres2standard.log'))
# --iout
registration.inputs.nonlinear_highres2standard.warped_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.nii.gz'))
# --cout
registration.inputs.nonlinear_highres2standard.fieldcoeff_file = os.path.abspath(os.path.join(output_dir,
'highres2standard_warp.nii.gz'))
# --jout
registration.inputs.nonlinear_highres2standard.jacobian_file = os.path.abspath(os.path.join(output_dir,
'highres2highres_jac.nii.gz'))
registration.inputs.nonlinear_highres2standard.log_file = os.path.abspath(os.path.join(output_dir,
'nonlinear_highres2standard.log'))
registration.inputs.warp_highres2standard.out_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.nii.gz'))
registration.inputs.get_standard2highres.out_file = os.path.abspath(os.path.join(output_dir,
'standard2highres.mat'))
registration.inputs.get_exmaple_func2standard.out_file = os.path.abspath(os.path.join(output_dir,
'example_func2standard.mat'))
registration.inputs.convertwarp_example2standard.out_file = os.path.abspath(os.path.join(output_dir,
'example_func2standard_warp.nii.gz'))
registration.inputs.warp_example2stand.out_file = os.path.abspath(os.path.join(output_dir,
'example_func2standard.nii.gz'))
registration.inputs.get_standard2example_func.out_file = os.path.abspath(os.path.join(output_dir,
'standard2example_func.mat'))
return registration
def _create_registration_workflow(anat_brain,
anat_head,
func_ref,
standard_brain,
standard_head,
standard_mask,
output_dir = 'temp'):
from nipype.interfaces import fsl
"""
fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres
fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres_head
fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain standard
fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm standard_head
fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil standard_mask
"""
fslmaths = fsl.ImageMaths()
fslmaths.inputs.in_file = anat_brain
fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres.nii.gz'))
fslmaths.cmdline
fslmaths.run()
fslmaths = fsl.ImageMaths()
fslmaths.inputs.in_file = anat_head
fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres_head.nii.gz'))
fslmaths.cmdline
fslmaths.run()
fslmaths = fsl.ImageMaths()
fslmaths.inputs.in_file = standard_brain
fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard.nii.gz'))
fslmaths.cmdline
fslmaths.run()
fslmaths = fsl.ImageMaths()
fslmaths.inputs.in_file = standard_head
fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard_head.nii.gz'))
fslmaths.cmdline
fslmaths.run()
fslmaths = fsl.ImageMaths()
fslmaths.inputs.in_file = standard_mask
fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard_mask.nii.gz'))
fslmaths.cmdline
fslmaths.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/flirt
-in example_func
-ref highres
-out example_func2highres
-omat example_func2highres.mat
-cost corratio
-dof 7
-searchrx -180 180
-searchry -180 180
-searchrz -180 180
-interp trilinear
"""
flt = fsl.FLIRT()
flt.inputs.in_file = func_ref
flt.inputs.reference = anat_brain
flt.inputs.out_file = os.path.abspath(os.path.join(output_dir,'example_func2highres.nii.gz'))
flt.inputs.out_matrix_file = os.path.abspath(os.path.join(output_dir,'example_func2highres.mat'))
flt.inputs.out_log = os.path.abspath(os.path.join(output_dir,'example_func2highres.log'))
flt.inputs.cost = 'corratio'
flt.inputs.interp = 'trilinear'
flt.inputs.searchr_x = [-180, 180]
flt.inputs.searchr_y = [-180, 180]
flt.inputs.searchr_z = [-180, 180]
flt.inputs.dof = 7
flt.inputs.save_log = True
flt.cmdline
flt.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-inverse -omat highres2example_func.mat example_func2highres.mat
"""
inverse_transformer = fsl.ConvertXFM()
inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,"example_func2highres.mat"))
inverse_transformer.inputs.invert_xfm = True
inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres2example_func.mat'))
inverse_transformer.cmdline
inverse_transformer.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/flirt
-in highres
-ref standard
-out highres2standard
-omat highres2standard.mat
-cost corratio
-dof 12
-searchrx -180 180
-searchry -180 180
-searchrz -180 180
-interp trilinear
"""
flt = fsl.FLIRT()
flt.inputs.in_file = anat_brain
flt.inputs.reference = standard_brain
flt.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres2standard_linear.nii.gz'))
flt.inputs.out_matrix_file = os.path.abspath(os.path.join(output_dir,'highres2standard.mat'))
flt.inputs.out_log = os.path.abspath(os.path.join(output_dir,'highres2standard.log'))
flt.inputs.cost = 'corratio'
flt.inputs.interp = 'trilinear'
flt.inputs.searchr_x = [-180, 180]
flt.inputs.searchr_y = [-180, 180]
flt.inputs.searchr_z = [-180, 180]
flt.inputs.dof = 12
flt.inputs.save_log = True
flt.cmdline
flt.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/fnirt
--iout=highres2standard_head
--in=highres_head
--aff=highres2standard.mat
--cout=highres2standard_warp
--iout=highres2standard
--jout=highres2highres_jac
--config=T1_2_MNI152_2mm
--ref=standard_head
--refmask=standard_mask
--warpres=10,10,10
"""
fnirt_mprage = fsl.FNIRT()
fnirt_mprage.inputs.warp_resolution = (10, 10, 10)
# --iout name of output image
fnirt_mprage.inputs.warped_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.nii.gz'))
# --in input image
fnirt_mprage.inputs.in_file = anat_head
# --aff affine transform
fnirt_mprage.inputs.affine_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.mat'))
# --cout output file with field coefficients
fnirt_mprage.inputs.fieldcoeff_file = os.path.abspath(os.path.join(output_dir,
'highres2standard_warp.nii.gz'))
# --jout
fnirt_mprage.inputs.jacobian_file = os.path.abspath(os.path.join(output_dir,
'highres2highres_jac.nii.gz'))
# --config
fnirt_mprage.inputs.config_file = 'T1_2_MNI152_2mm'
# --ref
fnirt_mprage.inputs.ref_file = os.path.abspath(standard_head)
# --refmask
fnirt_mprage.inputs.refmask_file = os.path.abspath(standard_mask)
# --warpres
fnirt_mprage.inputs.log_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.log'))
fnirt_mprage.cmdline
fnirt_mprage.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/applywarp
-i highres
-r standard
-o highres2standard
-w highres2standard_warp
"""
aw = fsl.ApplyWarp()
aw.inputs.in_file = anat_brain
aw.inputs.ref_file = os.path.abspath(standard_brain)
aw.inputs.out_file = os.path.abspath(os.path.join(output_dir,
'highres2standard.nii.gz'))
aw.inputs.field_file = os.path.abspath(os.path.join(output_dir,
'highres2standard_warp.nii.gz'))
aw.cmdline
aw.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-inverse -omat standard2highres.mat highres2standard.mat
"""
inverse_transformer = fsl.ConvertXFM()
inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,"highres2standard.mat"))
inverse_transformer.inputs.invert_xfm = True
inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard2highres.mat'))
inverse_transformer.cmdline
inverse_transformer.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-omat example_func2standard.mat -concat highres2standard.mat example_func2highres.mat
"""
inverse_transformer = fsl.ConvertXFM()
inverse_transformer.inputs.in_file2 = os.path.abspath(os.path.join(output_dir,"highres2standard.mat"))
inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,
"example_func2highres.mat"))
inverse_transformer.inputs.concat_xfm = True
inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'example_func2standard.mat'))
inverse_transformer.cmdline
inverse_transformer.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convertwarp
--ref=standard
--premat=example_func2highres.mat
--warp1=highres2standard_warp
--out=example_func2standard_warp
"""
warputils = fsl.ConvertWarp()
warputils.inputs.reference = os.path.abspath(standard_brain)
warputils.inputs.premat = os.path.abspath(os.path.join(output_dir,
"example_func2highres.mat"))
warputils.inputs.warp1 = os.path.abspath(os.path.join(output_dir,
"highres2standard_warp.nii.gz"))
warputils.inputs.out_file = os.path.abspath(os.path.join(output_dir,
"example_func2standard_warp.nii.gz"))
warputils.cmdline
warputils.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/applywarp
--ref=standard
--in=example_func
--out=example_func2standard
--warp=example_func2standard_warp
"""
aw = fsl.ApplyWarp()
aw.inputs.ref_file = os.path.abspath(standard_brain)
aw.inputs.in_file = os.path.abspath(func_ref)
aw.inputs.out_file = os.path.abspath(os.path.join(output_dir,
"example_func2standard.nii.gz"))
aw.inputs.field_file = os.path.abspath(os.path.join(output_dir,
"example_func2standard_warp.nii.gz"))
aw.run()
"""
/opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm
-inverse -omat standard2example_func.mat example_func2standard.mat
"""
inverse_transformer = fsl.ConvertXFM()
inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,
"example_func2standard.mat"))
inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,
"standard2example_func.mat"))
inverse_transformer.inputs.invert_xfm = True
inverse_transformer.cmdline
inverse_transformer.run()
######################
###### plotting ######
example_func2highres = os.path.abspath(os.path.join(output_dir,
'example_func2highres'))
example_func2standard = os.path.abspath(os.path.join(output_dir,
"example_func2standard"))
highres2standard = os.path.abspath(os.path.join(output_dir,
'highres2standard'))
highres = os.path.abspath(anat_brain)
standard = os.path.abspath(standard_brain)
plot_example_func2highres = f"""
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2highres} {highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}1.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres} {example_func2highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}2.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2highres}1.png - {example_func2highres}2.png {example_func2highres}.png;
/bin/rm -f sl?.png {example_func2highres}2.png
/bin/rm {example_func2highres}1.png
""".replace("\n"," ")
plot_highres2standard = f"""
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}1.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {highres2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}2.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend {highres2standard}1.png - {highres2standard}2.png {highres2standard}.png;
/bin/rm -f sl?.png {highres2standard}2.png
/bin/rm {highres2standard}1.png
""".replace("\n"," ")
plot_example_func2standard = f"""
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}1.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {example_func2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}2.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2standard}1.png - {example_func2standard}2.png {example_func2standard}.png;
/bin/rm -f sl?.png {example_func2standard}2.png
""".replace("\n"," ")
for cmdline in [plot_example_func2highres,plot_example_func2standard,plot_highres2standard]:
os.system(cmdline)
def create_simple_struc2BOLD(roi,
roi_name,
preprocessed_functional_dir,
output_dir):
from nipype.interfaces import fsl
from nipype.pipeline import engine as pe
from nipype.interfaces import utility as util
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
simple_workflow = pe.Workflow(name = 'struc2BOLD')
inputnode = pe.Node(interface = util.IdentityInterface(
fields = ['flt_in_file',
'flt_in_matrix',
'flt_reference',
'mask']),
name = 'inputspec')
outputnode = pe.Node(interface = util.IdentityInterface(
fields = ['BODL_mask']),
name = 'outputspec')
"""
flirt
-in /export/home/dsoto/dsoto/fmri/$s/sess2/label/$i
-ref /export/home/dsoto/dsoto/fmri/$s/sess2/run1_prepro1.feat/example_func.nii.gz
-applyxfm
-init /export/home/dsoto/dsoto/fmri/$s/sess2/run1_prepro1.feat/reg/highres2example_func.mat
-out /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i}
"""
flirt_convert = pe.MapNode(
interface = fsl.FLIRT(apply_xfm = True),
iterfield = ['in_file',
'reference',
'in_matrix_file'],
name = 'flirt_convert')
simple_workflow.connect(inputnode, 'flt_in_file',
flirt_convert, 'in_file')
simple_workflow.connect(inputnode, 'flt_reference',
flirt_convert, 'reference')
simple_workflow.connect(inputnode, 'flt_in_matrix',
flirt_convert, 'in_matrix_file')
"""
fslmaths /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} -mul 2
-thr `fslstats /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} -p 99.6`
-bin /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i}
"""
def getthreshop(thresh):
return ['-mul 2 -thr %.10f -bin' % (val) for val in thresh]
getthreshold = pe.MapNode(
interface = fsl.ImageStats(op_string='-p 99.6'),
iterfield = ['in_file','mask_file'],
name = 'getthreshold')
simple_workflow.connect(flirt_convert, 'out_file',
getthreshold, 'in_file')
simple_workflow.connect(inputnode, 'mask',
getthreshold, 'mask_file')
threshold = pe.MapNode(
interface = fsl.ImageMaths(
suffix = '_thresh',
op_string = '-mul 2 -bin'),
iterfield = ['in_file','op_string'],
name = 'thresholding')
simple_workflow.connect(flirt_convert, 'out_file',
threshold, 'in_file')
simple_workflow.connect(getthreshold, ('out_stat',getthreshop),
threshold, 'op_string')
# simple_workflow.connect(threshold,'out_file',outputnode,'BOLD_mask')
bound_by_mask = pe.MapNode(
interface = fsl.ImageMaths(
suffix = '_mask',
op_string = '-mas'),
iterfield = ['in_file','in_file2'],
name = 'bound_by_mask')
simple_workflow.connect(threshold, 'out_file',
bound_by_mask, 'in_file')
simple_workflow.connect(inputnode, 'mask',
bound_by_mask, 'in_file2')
simple_workflow.connect(bound_by_mask, 'out_file',
outputnode, 'BOLD_mask')
# setup inputspecs
simple_workflow.inputs.inputspec.flt_in_file = roi
simple_workflow.inputs.inputspec.flt_in_matrix = os.path.abspath(os.path.join(preprocessed_functional_dir,
'reg',
'highres2example_func.mat'))
simple_workflow.inputs.inputspec.flt_reference = os.path.abspath(os.path.join(preprocessed_functional_dir,
'func',
'example_func.nii.gz'))
simple_workflow.inputs.inputspec.mask = os.path.abspath(os.path.join(preprocessed_functional_dir,
'func',
'mask.nii.gz'))
simple_workflow.inputs.bound_by_mask.out_file = os.path.abspath(os.path.join(output_dir,
roi_name.replace('_fsl.nii.gz',
'_BOLD.nii.gz')))
return simple_workflow
def registration_plotting(output_dir,
anat_brain,
standard_brain):
######################
###### plotting ######
try:
example_func2highres = os.path.abspath(os.path.join(output_dir,
'example_func2highres'))
example_func2standard = os.path.abspath(os.path.join(output_dir,
'example_func2standard_warp'))
highres2standard = os.path.abspath(os.path.join(output_dir,
'highres2standard'))
highres = os.path.abspath(anat_brain)
standard = os.path.abspath(standard_brain)
plot_example_func2highres = f"""
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2highres} {highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}1.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres} {example_func2highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}2.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2highres}1.png - {example_func2highres}2.png {example_func2highres}.png;
/bin/rm -f sl?.png {example_func2highres}2.png
/bin/rm {example_func2highres}1.png
""".replace("\n"," ")
plot_highres2standard = f"""
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}1.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {highres2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}2.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend {highres2standard}1.png - {highres2standard}2.png {highres2standard}.png;
/bin/rm -f sl?.png {highres2standard}2.png
/bin/rm {highres2standard}1.png
""".replace("\n"," ")
plot_example_func2standard = f"""
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}1.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {example_func2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}2.png ;
/opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2standard}1.png - {example_func2standard}2.png {example_func2standard}.png;
/bin/rm -f sl?.png {example_func2standard}2.png
""".replace("\n"," ")
for cmdline in [plot_example_func2highres,
plot_example_func2standard,
plot_highres2standard]:
os.system(cmdline)
except:
print('you should not use python 2.7, update your python!!')
def create_highpass_filter_workflow(workflow_name = 'highpassfiler',
HP_freq = 60,
TR = 0.85):
from nipype.workflows.fmri.fsl import preprocess
from nipype.interfaces import fsl
from nipype.pipeline import engine as pe
from nipype.interfaces import utility as util
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
getthreshop = preprocess.getthreshop
getmeanscale = preprocess.getmeanscale
highpass_workflow = pe.Workflow(name = workflow_name)
inputnode = pe.Node(interface = util.IdentityInterface(
fields = ['ICAed_file',]),
name = 'inputspec')
outputnode = pe.Node(interface = util.IdentityInterface(
fields = ['filtered_file']),
name = 'outputspec')
img2float = pe.MapNode(interface = fsl.ImageMaths(out_data_type = 'float',
op_string = '',
suffix = '_dtype'),
iterfield = ['in_file'],
name = 'img2float')
highpass_workflow.connect(inputnode,'ICAed_file',
img2float,'in_file')
getthreshold = pe.MapNode(interface = fsl.ImageStats(op_string = '-p 2 -p 98'),
iterfield = ['in_file'],
name = 'getthreshold')
highpass_workflow.connect(img2float, 'out_file',
getthreshold, 'in_file')
thresholding = pe.MapNode(interface = fsl.ImageMaths(out_data_type = 'char',
suffix = '_thresh',
op_string = '-Tmin -bin'),
iterfield = ['in_file','op_string'],
name = 'thresholding')
highpass_workflow.connect(img2float, 'out_file',
thresholding, 'in_file')
highpass_workflow.connect(getthreshold,('out_stat',getthreshop),
thresholding,'op_string')
dilatemask = pe.MapNode(interface = fsl.ImageMaths(suffix = '_dil',
op_string = '-dilF'),
iterfield = ['in_file'],
name = 'dilatemask')
highpass_workflow.connect(thresholding,'out_file',
dilatemask,'in_file')
maskfunc = pe.MapNode(interface = fsl.ImageMaths(suffix = '_mask',
op_string = '-mas'),
iterfield = ['in_file','in_file2'],
name = 'apply_dilatemask')
highpass_workflow.connect(img2float, 'out_file',
maskfunc, 'in_file')
highpass_workflow.connect(dilatemask, 'out_file',
maskfunc, 'in_file2')
medianval = pe.MapNode(interface = fsl.ImageStats(op_string = '-k %s -p 50'),
iterfield = ['in_file','mask_file'],
name = 'cal_intensity_scale_factor')
highpass_workflow.connect(img2float, 'out_file',
medianval, 'in_file')
highpass_workflow.connect(thresholding, 'out_file',
medianval, 'mask_file')
meanscale = pe.MapNode(interface = fsl.ImageMaths(suffix = '_intnorm'),
iterfield = ['in_file','op_string'],
name = 'meanscale')
highpass_workflow.connect(maskfunc, 'out_file',
meanscale, 'in_file')
highpass_workflow.connect(medianval, ('out_stat',getmeanscale),
meanscale, 'op_string')
meanfunc = pe.MapNode(interface = fsl.ImageMaths(suffix = '_mean',
op_string = '-Tmean'),
iterfield = ['in_file'],
name = 'meanfunc')
highpass_workflow.connect(meanscale, 'out_file',
meanfunc, 'in_file')
hpf = pe.MapNode(interface = fsl.ImageMaths(suffix = '_tempfilt',
op_string = '-bptf %.10f -1' % (HP_freq/2/TR)),
iterfield = ['in_file'],
name = 'highpass_filering')
highpass_workflow.connect(meanscale,'out_file',
hpf, 'in_file',)
addMean = pe.MapNode(interface = fsl.BinaryMaths(operation = 'add'),
iterfield = ['in_file','operand_file'],
name = 'addmean')
highpass_workflow.connect(hpf, 'out_file',
addMean, 'in_file')
highpass_workflow.connect(meanfunc, 'out_file',
addMean, 'operand_file')
highpass_workflow.connect(addMean, 'out_file',
outputnode,'filtered_file')
return highpass_workflow
def load_csv(f,print_ = False):
temp = re.findall(r'\d+',f)
n_session = int(temp[-2])
n_run = int(temp[-1])
if print_:
print(n_session,n_run)
df = pd.read_csv(f)
df['session'] = n_session
df['run'] = n_run
df['id'] = df['session'] * 1000 + df['run'] * 100 + df['trials']
return df
def build_model_dictionary(print_train = False,
class_weight = 'balanced',
remove_invariant = True,
n_jobs = 1):
np.random.seed(12345)
svm = LinearSVC(penalty = 'l2', # default
dual = True, # default
tol = 1e-3, # not default
random_state = 12345, # not default
max_iter = int(1e3), # default
class_weight = class_weight, # not default
)
svm = CalibratedClassifierCV(base_estimator = svm,
method = 'sigmoid',
cv = 8)
xgb = XGBClassifier(
learning_rate = 1e-3, # not default
max_depth = 10, # not default
n_estimators = 100, # not default
objective = 'binary:logistic', # default
booster = 'gbtree', # default
subsample = 0.9, # not default
colsample_bytree = 0.9, # not default
reg_alpha = 0, # default
reg_lambda = 1, # default
random_state = 12345, # not default
importance_type = 'gain', # default
n_jobs = n_jobs,# default to be 1
)
bagging = BaggingClassifier(base_estimator = svm,
n_estimators = 30, # not default
max_features = 0.9, # not default
max_samples = 0.9, # not default
bootstrap = True, # default
bootstrap_features = True, # default
random_state = 12345, # not default
)
RF = SelectFromModel(xgb,
prefit = False,
threshold = 'median' # induce sparsity
)
uni = SelectPercentile(mutual_info_classif,50) # so annoying that I cannot control the random state
knn = KNeighborsClassifier()
tree = DecisionTreeClassifier(random_state = 12345,
class_weight = class_weight)
dummy = DummyClassifier(strategy = 'uniform',random_state = 12345,)
if remove_invariant:
RI = VarianceThreshold()
models = OrderedDict([
['None + Dummy', make_pipeline(RI,MinMaxScaler(),
dummy,)],
['None + Linear-SVM', make_pipeline(RI,MinMaxScaler(),
svm,)],
['None + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(),
bagging,)],
['None + KNN', make_pipeline(RI,MinMaxScaler(),
knn,)],
['None + Tree', make_pipeline(RI,MinMaxScaler(),
tree,)],
['PCA + Dummy', make_pipeline(RI,MinMaxScaler(),
PCA(),
dummy,)],
['PCA + Linear-SVM', make_pipeline(RI,MinMaxScaler(),
PCA(),
svm,)],
['PCA + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(),
PCA(),
bagging,)],
['PCA + KNN', make_pipeline(RI,MinMaxScaler(),
PCA(),
knn,)],
['PCA + Tree', make_pipeline(RI,MinMaxScaler(),
PCA(),
tree,)],
['Mutual + Dummy', make_pipeline(RI,MinMaxScaler(),
uni,
dummy,)],
['Mutual + Linear-SVM', make_pipeline(RI,MinMaxScaler(),
uni,
svm,)],
['Mutual + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(),
uni,
bagging,)],
['Mutual + KNN', make_pipeline(RI,MinMaxScaler(),
uni,
knn,)],
['Mutual + Tree', make_pipeline(RI,MinMaxScaler(),
uni,
tree,)],
['RandomForest + Dummy', make_pipeline(RI,MinMaxScaler(),
RF,
dummy,)],
['RandomForest + Linear-SVM', make_pipeline(RI,MinMaxScaler(),
RF,
svm,)],
['RandomForest + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(),
RF,
bagging,)],
['RandomForest + KNN', make_pipeline(RI,MinMaxScaler(),
RF,
knn,)],
['RandomForest + Tree', make_pipeline(RI,MinMaxScaler(),
RF,
tree,)],]
)
else:
models = OrderedDict([
['None + Dummy', make_pipeline(MinMaxScaler(),
dummy,)],
['None + Linear-SVM', make_pipeline(MinMaxScaler(),
svm,)],
['None + Ensemble-SVMs', make_pipeline(MinMaxScaler(),
bagging,)],
['None + KNN', make_pipeline(MinMaxScaler(),
knn,)],
['None + Tree', make_pipeline(MinMaxScaler(),
tree,)],
['PCA + Dummy', make_pipeline(MinMaxScaler(),
PCA(),
dummy,)],
['PCA + Linear-SVM', make_pipeline(MinMaxScaler(),
PCA(),
svm,)],
['PCA + Ensemble-SVMs', make_pipeline(MinMaxScaler(),
PCA(),
bagging,)],
['PCA + KNN', make_pipeline(MinMaxScaler(),
PCA(),
knn,)],
['PCA + Tree', make_pipeline(MinMaxScaler(),
PCA(),
tree,)],
['Mutual + Dummy', make_pipeline(MinMaxScaler(),
uni,
dummy,)],
['Mutual + Linear-SVM', make_pipeline(MinMaxScaler(),
uni,
svm,)],
['Mutual + Ensemble-SVMs', make_pipeline(MinMaxScaler(),
uni,
bagging,)],
['Mutual + KNN', make_pipeline(MinMaxScaler(),
uni,
knn,)],
['Mutual + Tree', make_pipeline(MinMaxScaler(),
uni,
tree,)],
['RandomForest + Dummy', make_pipeline(MinMaxScaler(),
RF,
dummy,)],
['RandomForest + Linear-SVM', make_pipeline(MinMaxScaler(),
RF,
svm,)],
['RandomForest + Ensemble-SVMs', make_pipeline(MinMaxScaler(),
RF,
bagging,)],
['RandomForest + KNN', make_pipeline(MinMaxScaler(),
RF,
knn,)],
['RandomForest + Tree', make_pipeline(MinMaxScaler(),
RF,
tree,)],]
)
return models
def get_blocks(df__,label_map,):
ids = df__['id'].values
chunks = df__['session'].values
words = df__['labels'].values
labels = np.array([label_map[item] for item in df__['targets'].values])[:,-1]
sample_indecies = np.arange(len(labels))
blocks = [np.array([ids[ids == target],
chunks[ids == target],
words[ids == target],
labels[ids == target],
sample_indecies[ids == target]
]) for target in np.unique(ids)
]
block_labels = np.array([np.unique(ll[-2]) for ll in blocks]).ravel()
return blocks,block_labels
def make_unique_class_target(df_data):
make_class = {name:[] for name in pd.unique(df_data['targets'])}
for ii,df_sub in df_data.groupby(['labels']):
target = pd.unique(df_sub['targets'])
label = pd.unique(df_sub['labels'])
make_class[target[0]].append(label[0])
return make_class
def Find_Optimal_Cutoff(target, predicted):
""" Find the optimal probability cutoff point for a classification model related to event rate
Parameters
----------
target : Matrix with dependent or target data, where rows are observations
predicted : Matrix with predicted data, where rows are observations
Returns
-------
list type, with optimal cutoff value
"""
fpr, tpr, threshold = roc_curve(target, predicted)
i = np.arange(len(tpr))
roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=i), 'threshold' : pd.Series(threshold, index=i)})
roc_t = roc.iloc[(roc.tf-0).abs().argsort()[:1]]
return list(roc_t['threshold'])
def customized_partition(df_data,groupby_column = ['id','labels'],n_splits = 100,):
"""
modified for unaveraged volumes
"""
idx_object = dict(ids = [],idx = [],labels = [])
for label,df_sub in df_data.groupby(groupby_column):
idx_object['ids'].append(label[0])
idx_object['idx'].append(df_sub.index.tolist())
idx_object['labels'].append(label[-1])
df_object = pd.DataFrame(idx_object)
idxs_test = []
for counter in range(int(1e4)):
idx_test = [np.random.choice(item['idx'].values) for ii,item in df_object.groupby(groupby_column[-1])]
if counter >= n_splits:
return [np.concatenate(item) for item in idxs_test]
break
if counter > 0:
temp = []
for used in idxs_test:
used_temp = [','.join(str(ii) for ii in item) for item in used]
idx_test_temp = [','.join(str(ii) for ii in item) for item in idx_test]
a = set(used_temp)
b = set(idx_test_temp)
temp.append(len(a.intersection(b)) != len(idx_test))
if all(temp) == True:
idxs_test.append(idx_test)
else:
idxs_test.append(idx_test)
def check_train_test_splits(idxs_test):
"""
check if we get repeated test sets
"""
temp = []
for ii,item1 in enumerate(idxs_test):
for jj,item2 in enumerate(idxs_test):
if not ii == jj:
if len(item1) == len(item2):
sample1 = np.sort(item1)
sample2 = np.sort(item2)
temp.append(len(set(sample1).intersection(set(sample2))) == len(sample1))
temp = np.array(temp)
return any(temp)
def check_train_balance(df,idx_train,keys):
"""
check the balance of the training set.
if only one of the classes has more 2 instances than the other
we will randomly take out those 'extra instances' from the major
class
"""
Counts = dict(Counter(df.iloc[idx_train]['targets'].values))
if np.abs(Counts[keys[0]] - Counts[keys[1]]) > 2:
if Counts[keys[0]] > Counts[keys[1]]:
key_major = keys[0]
key_minor = keys[1]
else:
key_major = keys[1]
key_minor = keys[0]
ids_major = df.iloc[idx_train]['id'][df.iloc[idx_train]['targets'] == key_major]
idx_train_new = idx_train.copy()
for n in range(len(idx_train_new)):
random_pick = np.random.choice(np.unique(ids_major),size = 1)[0]
# print(random_pick,np.unique(ids_major))
idx_train_new = np.array([item for item,id_temp in zip(idx_train_new,df.iloc[idx_train_new]['id']) if (id_temp != random_pick)])
ids_major = np.array([item for item in ids_major if (item != random_pick)])
new_counts = dict(Counter(df.iloc[idx_train_new]['targets']))
if np.abs(new_counts[keys[0]] - new_counts[keys[1]]) > 3:
if new_counts[keys[0]] > new_counts[keys[1]]:
key_major = keys[0]
key_minor = keys[1]
else:
key_major = keys[1]
key_minor = keys[0]
ids_major = df.iloc[idx_train_new]['id'][df.iloc[idx_train_new]['targets'] == key_major]
elif np.abs(new_counts[keys[0]] - new_counts[keys[1]]) < 3:
break
return idx_train_new
else:
return idx_train
def LOO_partition(df_data,target_column = 'labels'):
temp = {'targets':[],target_column:[]}
for (targets,labels),df_sub in df_data.groupby(['targets',target_column]):
temp['targets'].append(targets)
temp[target_column].append(labels)
temp = pd.DataFrame(temp)
temp = temp.sort_values(['targets',target_column])
living = temp[temp['targets'] == 'Living_Things'][target_column].values
nonliving = temp[temp['targets'] == 'Nonliving_Things'][target_column].values
test_pairs = [[a,b] for a in living for b in nonliving]
idxs_train,idxs_test = [],[]
for test_pair in test_pairs:
idx_test = np.logical_or(df_data[target_column] == test_pair[0],
df_data[target_column] == test_pair[1])
idx_train = np.invert(idx_test)
idxs_train.append(np.where(idx_train == True)[0])
idxs_test.append(np.where(idx_test == True)[0])
return idxs_train,idxs_test
def resample_ttest(x,
baseline = 0.5,
n_ps = 100,
n_permutation = 10000,
one_tail = False,
n_jobs = 12,
verbose = 0,
full_size = True
):
"""
http://www.stat.ucla.edu/~rgould/110as02/bshypothesis.pdf
https://www.tau.ac.il/~saharon/StatisticsSeminar_files/Hypothesis.pdf
Inputs:
----------
x: numpy array vector, the data that is to be compared
baseline: the single point that we compare the data with
n_ps: number of p values we want to estimate
one_tail: whether to perform one-tailed comparison
"""
import numpy as np
import gc
from joblib import Parallel,delayed
# statistics with the original data distribution
t_experiment = np.mean(x)
null = x - np.mean(x) + baseline # shift the mean to the baseline but keep the distribution
if null.shape[0] > int(1e4): # catch for big data
full_size = False
if not full_size:
size = int(1e3)
else:
size = null.shape[0]
gc.collect()
def t_statistics(null,size,):
"""
null: shifted data distribution
size: tuple of 2 integers (n_for_averaging,n_permutation)
"""
null_dist = np.random.choice(null,size = size,replace = True)
t_null = np.mean(null_dist,0)
if one_tail:
return ((np.sum(t_null >= t_experiment)) + 1) / (size[1] + 1)
else:
return ((np.sum(np.abs(t_null) >= np.abs(t_experiment))) + 1) / (size[1] + 1) /2
ps = Parallel(n_jobs = n_jobs,verbose = verbose)(delayed(t_statistics)(**{
'null':null,
'size':(size,int(n_permutation)),}) for i in range(n_ps))
return np.array(ps)
def resample_ttest_2sample(a,b,
n_ps = 100,
n_permutation = 10000,
one_tail = False,
match_sample_size = True,
n_jobs = 6,
verbose = 0):
from joblib import Parallel,delayed
import gc
# when the samples are dependent just simply test the pairwise difference against 0
# which is a one sample comparison problem
if match_sample_size:
difference = a - b
ps = resample_ttest(difference,
baseline = 0,
n_ps = n_ps,
n_permutation = n_permutation,
one_tail = one_tail,
n_jobs = n_jobs,
verbose = verbose,)
return ps
else: # when the samples are independent
t_experiment = np.mean(a) - np.mean(b)
if not one_tail:
t_experiment = np.abs(t_experiment)
def t_statistics(a,b):
group = np.concatenate([a,b])
np.random.shuffle(group)
new_a = group[:a.shape[0]]
new_b = group[a.shape[0]:]
t_null = np.mean(new_a) - np.mean(new_b)
if not one_tail:
t_null = np.abs(t_null)
return t_null
gc.collect()
ps = np.zeros(n_ps)
for ii in range(n_ps):
t_null_null = Parallel(n_jobs = n_jobs,verbose = verbose)(delayed(t_statistics)(**{
'a':a,
'b':b}) for i in range(n_permutation))
if one_tail:
ps[ii] = ((np.sum(t_null_null >= t_experiment)) + 1) / (n_permutation + 1)
else:
ps[ii] = ((np.sum(np.abs(t_null_null) >= np.abs(t_experiment))) + 1) / (n_permutation + 1) / 2
return ps
class MCPConverter(object):
import statsmodels as sms
"""
https://gist.github.com/naturale0/3915e2def589553e91dce99e69d138cc
https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
input: array of p-values.
* convert p-value into adjusted p-value (or q-value)
"""
def __init__(self, pvals, zscores = None):
self.pvals = pvals
self.zscores = zscores
self.len = len(pvals)
if zscores is not None:
srted = np.array(sorted(zip(pvals.copy(), zscores.copy())))
self.sorted_pvals = srted[:, 0]
self.sorted_zscores = srted[:, 1]
else:
self.sorted_pvals = np.array(sorted(pvals.copy()))
self.order = sorted(range(len(pvals)), key=lambda x: pvals[x])
def adjust(self, method = "holm"):
import statsmodels as sms
"""
methods = ["bonferroni", "holm", "bh", "lfdr"]
(local FDR method needs 'statsmodels' package)
"""
if method == "bonferroni":
return [np.min([1, i]) for i in self.sorted_pvals * self.len]
elif method == "holm":
return [np.min([1, i]) for i in (self.sorted_pvals * (self.len - np.arange(1, self.len+1) + 1))]
elif method == "bh":
p_times_m_i = self.sorted_pvals * self.len / np.arange(1, self.len+1)
return [np.min([p, p_times_m_i[i+1]]) if i < self.len-1 else p for i, p in enumerate(p_times_m_i)]
elif method == "lfdr":
if self.zscores is None:
raise ValueError("Z-scores were not provided.")
return sms.stats.multitest.local_fdr(abs(self.sorted_zscores))
else:
raise ValueError("invalid method entered: '{}'".format(method))
def adjust_many(self, methods = ["bonferroni", "holm", "bh", "lfdr"]):
if self.zscores is not None:
df = pd.DataFrame(np.c_[self.sorted_pvals, self.sorted_zscores], columns=["p_values", "z_scores"])
for method in methods:
df[method] = self.adjust(method)
else:
df = pd.DataFrame(self.sorted_pvals, columns=["p_values"])
for method in methods:
if method != "lfdr":
df[method] = self.adjust(method)
return df
def define_roi_category():
roi_dict = {'fusiform':'Visual',
'parahippocampal':'Visual',
'pericalcarine':'Visual',
'precuneus':'Visual',
'superiorparietal':'Working Memory',
'inferiortemporal':'Visual',
'lateraloccipital':'Visual',
'lingual':'Visual',
'rostralmiddlefrontal':'Working Memory',
'superiorfrontal':'Working Memory',
'ventrolateralPFC':'Working Memory',
'inferiorparietal':'Visual',
}
return roi_dict
def stars(x):
if x < 0.001:
return '***'
elif x < 0.01:
return '**'
elif x < 0.05:
return '*'
else:
return 'n.s.'
def get_fs(x):
return x.split(' + ')[0]
def get_clf(x):
return x.split(' + ')[1]
def rename_roi(x):
return x.split('-')[-1] + '-' + x.split('-')[1]
def strip_interaction_names(df_corrected):
results = []
for ii,row in df_corrected.iterrows():
row['window'] = row['level1'].split('_')[0]
try:
row['attribute1']= row['level1'].split('_')[1]
row['attribute2']= row['level2'].split('_')[1]
except:
row['attr1']= row['level1'].split('_')[1]
row['attr2']= row['level2'].split('_')[1]
results.append(row.to_frame().T)
results = pd.concat(results)
return results
def compute_xy(df_sub,position_map,hue_map):
df_add = []
for ii,row in df_sub.iterrows():
xtick = int(row['window']) - 1
attribute1_x = xtick + position_map[hue_map[row['attribute1']]]
attribute2_x = xtick + position_map[hue_map[row['attribute2']]]
row['x1'] = attribute1_x
row['x2'] = attribute2_x
df_add.append(row.to_frame().T)
df_add = pd.concat(df_add)
return df_add
def split_probe_path(x,idx):
temp = x.split('/')
return temp[idx]
def standard_MNI_coordinate_for_plot():
return {
'lh-fusiform':(-47,-52,-12),
'rh-fusiform':(47,-51,-14),
'lh-inferiorparietal':(-46,-60,33),
'rh-inferiorparietal':(46,-59,31),
'lh-inferiortemporal':(-47,-14,-34),
'rh-inferiortemporal':(48,-17,-31),
'lh-lateraloccipital':(-46,-58,-8),
'rh-lateraloccipital':(40,-78,12),
'lh-lingual':(-11,-81,7),
'rh-lingual':(11,-78,9),
'lh-rostralmiddlefrontal':(-30,50,24),
'rh-rostralmiddlefrontal':(4,58,30),
'lh-parahippocampal':(-25,-22,-22),
'rh-parahippocampal':(27,-19,-25),
'lh-pericalcarine':(-24,-66,8),
'rh-pericalcarine':(26,-68,12),
'lh-precuneus':None,
'rh-precuneus':None,
'lh-superiorfrontal':(-23,24,44),
'rh-superiorfrontal':(22,26,45),
'lh-superiorparietal':(-18,-61,55),
'rh-superiorparietal':(27,-60,45),
'lh-ventrolateralPFC':(-32,54,-4),
'rh-ventrolateralPFC':(42,46,0)}
def bootstrap_behavioral_estimation(df_sub,n_bootstrap = int(1e2)):
scores,chance = [],[]
responses = df_sub['response.keys_raw'].values - 1
answers = df_sub['correctAns_raw'].values - 1
np.random.seed(12345)
for n_ in tqdm(range(n_bootstrap)):
idx = np.random.choice(np.arange(responses.shape[0]),
size = responses.shape[0],
replace = True)
response_ = responses[idx]
answer_ = answers[idx]
score_ = roc_auc_score(answer_,response_)
scores.append(score_)
scores = np.array(scores)
# chance
# by keeping the answers in order but shuffle the response,
# we can estimate the chance
# level accuracy
idx = np.random.choice(np.arange(responses.shape[0]),
size = responses.shape[0],
replace = True)
response_ = responses[idx]
answer_ = answers[idx]
chance = np.array([roc_auc_score(answer_,shuffle(response_))\
for _ in tqdm(range(n_bootstrap))])
pvals = resample_ttest_2sample(scores,chance,one_tail = True,
match_sample_size = True)
return pvals,scores,chance
def get_label_category_mapping():
return {'Chest-of-drawers': 'Nonliving_Things',
'armadillo': 'Living_Things',
'armchair': 'Nonliving_Things',
'axe': 'Nonliving_Things',
'barn-owl': 'Living_Things',
'bed': 'Nonliving_Things',
'bedside-table': 'Nonliving_Things',
'boat': 'Nonliving_Things',
'bookcase': 'Nonliving_Things',
'bus': 'Nonliving_Things',
'butterfly': 'Living_Things',
'car': 'Nonliving_Things',
'castle': 'Nonliving_Things',
'cat': 'Living_Things',
'cathedral': 'Nonliving_Things',
'chair': 'Nonliving_Things',
'cheetah': 'Living_Things',
'church': 'Nonliving_Things',
'coking-pot': 'Nonliving_Things',
'couch': 'Nonliving_Things',
'cow': 'Living_Things',
'crab': 'Living_Things',
'cup': 'Nonliving_Things',
'dolphin': 'Living_Things',
'dragonfly': 'Living_Things',
'drum': 'Nonliving_Things',
'duck': 'Living_Things',
'elephant': 'Living_Things',
'factory': 'Nonliving_Things',
'filling-cabinet': 'Nonliving_Things',
'fondue': 'Nonliving_Things',
'frying-pan': 'Nonliving_Things',
'giraffe': 'Living_Things',
'goldfinch': 'Living_Things',
'goose': 'Living_Things',
'granary': 'Nonliving_Things',
'guitar': 'Nonliving_Things',
'hammer': 'Nonliving_Things',
'hen': 'Living_Things',
'hippopotamus': 'Living_Things',
'horse': 'Living_Things',
'house': 'Nonliving_Things',
'hummingbird': 'Living_Things',
'killer-whale': 'Living_Things',
'kiwi': 'Living_Things',
'ladybird': 'Living_Things',
'lamp': 'Nonliving_Things',
'lectern': 'Nonliving_Things',
'lioness': 'Living_Things',
'lobster': 'Living_Things',
'lynx': 'Living_Things',
'magpie': 'Living_Things',
'manatee': 'Living_Things',
'mill': 'Nonliving_Things',
'motorbike': 'Nonliving_Things',
'narwhal': 'Living_Things',
'ostrich': 'Living_Things',
'owl': 'Living_Things',
'palace': 'Nonliving_Things',
'partridge': 'Living_Things',
'pelican': 'Living_Things',
'penguin': 'Living_Things',
'piano': 'Nonliving_Things',
'pigeon': 'Living_Things',
'plane': 'Nonliving_Things',
'pomfret': 'Living_Things',
'pot': 'Nonliving_Things',
'raven': 'Living_Things',
'rhino': 'Living_Things',
'rocking-chair': 'Nonliving_Things',
'rooster': 'Living_Things',
'saucepan': 'Nonliving_Things',
'saxophone': 'Nonliving_Things',
'scorpion': 'Living_Things',
'seagull': 'Living_Things',
'shark': 'Living_Things',
'ship': 'Nonliving_Things',
'small-saucepan': 'Nonliving_Things',
'sofa': 'Nonliving_Things',
'sparrow': 'Living_Things',
'sperm-whale': 'Living_Things',
'table': 'Nonliving_Things',
'tapir': 'Living_Things',
'teapot': 'Nonliving_Things',
'tiger': 'Living_Things',
'toucan': 'Living_Things',
'tractor': 'Nonliving_Things',
'train': 'Nonliving_Things',
'trumpet': 'Nonliving_Things',
'tuba': 'Nonliving_Things',
'turtle': 'Living_Things',
'van': 'Nonliving_Things',
'violin': 'Nonliving_Things',
'wardrobe': 'Nonliving_Things',
'whale': 'Living_Things',
'zebra': 'Living_Things'}
def get_label_subcategory_mapping():
return {'Chest-of-drawers': 'Furniture',
'armadillo': 'Animals',
'armchair': 'Furniture',
'axe': 'Tools',
'barn-owl': 'Birds',
'bed': 'Furniture',
'bedside-table': 'Furniture',
'boat': 'Vehicles',
'bookcase': 'Furniture',
'bus': 'Vehicles',
'butterfly': 'Insects',
'car': 'Vehicles',
'castle': 'Buildings',
'cat': 'Animals',
'cathedral': 'Buildings',
'chair': 'Furniture',
'cheetah': 'Animals',
'church': 'Buildings',
'coking-pot': 'Kitchen_Uten',
'couch': 'Furniture',
'cow': 'Animals',
'crab': 'Marine_creatures',
'cup': 'Kitchen_Uten',
'dolphin': 'Marine_creatures',
'dragonfly': 'Insects',
'drum': 'Musical_Inst',
'duck': 'Birds',
'elephant': 'Animals',
'factory': 'Buildings',
'filling-cabinet': 'Furniture',
'fondue': 'Kitchen_Uten',
'frying-pan': 'Kitchen_Uten',
'giraffe': 'Animals',
'goldfinch': 'Birds',
'goose': 'Birds',
'granary': 'Buildings',
'guitar': 'Musical_Inst',
'hammer': 'Tools',
'hen': 'Birds',
'hippopotamus': 'Animals',
'horse': 'Animals',
'house': 'Buildings',
'hummingbird': 'Birds',
'killer-whale': 'Marine_creatures',
'kiwi': 'Birds',
'ladybird': 'Insects',
'lamp': 'Furniture',
'lectern': 'Furniture',
'lioness': 'Animals',
'lobster': 'Marine_creatures',
'lynx': 'Animals',
'magpie': 'Birds',
'manatee': 'Marine_creatures',
'mill': 'Buildings',
'motorbike': 'Vehicles',
'narwhal': 'Marine_creatures',
'ostrich': 'Birds',
'owl': 'Birds',
'palace': 'Buildings',
'partridge': 'Birds',
'pelican': 'Birds',
'penguin': 'Birds',
'piano': 'Musical_Inst',
'pigeon': 'Birds',
'plane': 'Vehicles',
'pomfret': 'Marine_creatures',
'pot': 'Kitchen_Uten',
'raven': 'Birds',
'rhino': 'Animals',
'rocking-chair': 'Furniture',
'rooster': 'Birds',
'saucepan': 'Kitchen_Uten',
'saxophone': 'Musical_Inst',
'scorpion': 'Insects',
'seagull': 'Birds',
'shark': 'Marine_creatures',
'ship': 'Vehicles',
'small-saucepan': 'Kitchen_Uten',
'sofa': 'Furniture',
'sparrow': 'Birds',
'sperm-whale': 'Marine_creatures',
'table': 'Furniture',
'tapir': 'Animals',
'teapot': 'Kitchen_Uten',
'tiger': 'Animals',
'toucan': 'Birds',
'tractor': 'Vehicles',
'train': 'Vehicles',
'trumpet': 'Musical_Inst',
'tuba': 'Musical_Inst',
'turtle': 'Animals',
'van': 'Vehicles',
'violin': 'Musical_Inst',
'wardrobe': 'Furniture',
'whale': 'Marine_creatures',
'zebra': 'Animals'}
def make_df_axis(df_data):
label_category_map = get_label_category_mapping()
label_subcategory_map = get_label_subcategory_mapping()
df_axis = pd.DataFrame({'labels':pd.unique(df_data['labels'])})
df_axis['category'] = df_axis['labels'].map(label_category_map)
df_axis['subcategory'] = df_axis['labels'].map(label_subcategory_map)
df_axis = df_axis.sort_values(['category','subcategory','labels'])
return df_axis
def load_same_same(sub,target_folder = 'decoding',target_file = '*None*csv'):
working_dir = '../../../../results/MRI/nilearn/{}/{}'.format(sub,target_folder)
working_data = glob(os.path.join(working_dir,target_file))
df = pd.concat([pd.read_csv(f) for f in working_data])
if 'model_name' not in df.columns:
df['model_name'] = df['model']
df['feature_selector'] = df['model_name'].apply(get_fs)
df['estimator'] = df['model_name'].apply(get_clf)
if 'score' in df.columns:
df['roc_auc'] = df['score']
temp = np.array([item.split('-') for item in df['roi'].values])
df['roi_name'] = temp[:,1]
df['side'] = temp[:,0]
return df
def plot_stat_map(stat_map_img,
bg_img = '',
cut_coords = None,
output_file = None,
display_mode = 'ortho',
colorbar = True,
figure = None,
axes = None,
title = None,
threshold = 1e-6,
annotate = True,
draw_cross = True,
black_bg = 'auto',
cmap = cm.coolwarm,
symmetric_cbar = "auto",
dim = 'auto', vmin_ = None,vmax=None,
resampling_interpolation = 'continuous',
**kwargs):
bg_img, black_bg, bg_vmin, bg_vmax = _load_anat(
bg_img,
dim = dim,
black_bg = black_bg)
stat_map_img = _utils.check_niimg_3d(
stat_map_img,
dtype = 'auto')
cbar_vmin, cbar_vmax, vmin, vmax = _get_colorbar_and_data_ranges(
_safe_get_data(
stat_map_img,
ensure_finite = True),
vmax,
symmetric_cbar,
kwargs)
display = _plot_img_with_bg(
img = stat_map_img,
bg_img = bg_img,
cut_coords = cut_coords,
output_file = output_file,
display_mode = display_mode,
figure = figure,
axes = axes,
title = title,
annotate = annotate,
draw_cross = draw_cross,
black_bg = black_bg,
threshold = threshold,
bg_vmin = bg_vmin,
bg_vmax = bg_vmax,
cmap = cmap,
vmin = vmin_,
vmax = vmax,
colorbar = colorbar,
cbar_vmin = vmin_,
cbar_vmax = cbar_vmax,
resampling_interpolation = resampling_interpolation,
**kwargs)
return display
def cross_validation(feature_dir,
encoding_model,
custom_scorer,
BOLD_sc_source,
idxs_train_source,
idxs_test_source,
image_source,
image_target,):
"""
Encoding pipeline
"""
from sklearn import linear_model
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV,cross_validate
from sklearn.pipeline import make_pipeline
features_source = np.array([np.load(os.path.join(feature_dir,
encoding_model,
item)) for item in image_source])
features_target = np.array([np.load(os.path.join(feature_dir,
encoding_model,
item)) for item in image_target])
pca = PCA(n_components = .99,random_state = 12345)
reg = linear_model.Ridge(normalize = True,
alpha = 1,
random_state = 12345)
reg = GridSearchCV(make_pipeline(pca,reg),
dict(ridge__alpha = np.logspace(1,12,12),
),
scoring = custom_scorer,
n_jobs = 1,
cv = 5,
# iid = False,
)
res = cross_validate(reg,
features_source,
BOLD_sc_source,
scoring = 'r2',
cv = zip(idxs_train_source,idxs_test_source),
return_estimator = True,
n_jobs = -1,
verbose = 1,)
return res,features_target,features_source
def fill_results(scores,
results,
n_splits,
conscious_source,
conscious_target,
roi_name,
BOLD_sc_source,
features_source,
corr,):
mean_variance = scores.copy()
mean_variance = np.array([item[item > 0].mean() for item in mean_variance])
positive_voxels = np.array([np.sum(temp > 0) for temp in scores])
positive_voxel_indices = [','.join(str(item) for item in np.where(row > 0.)[0]) for row in scores]
scores_to_save = mean_variance.copy()
scores_to_save = np.nan_to_num(scores_to_save,)
results['mean_variance'] = scores.mean(1)#scores_to_save
results['fold'] = np.arange(n_splits) + 1
results['conscious_source'] = [conscious_source] * n_splits
results['conscious_target'] = [conscious_target] * n_splits
results['roi_name'] = [roi_name] * n_splits
results['positive voxels' ]= positive_voxels
results['n_parameters'] = [BOLD_sc_source.shape[1] * features_source.shape[1]] * n_splits
results['corr'] = corr
results['positive_voxel_indices'] = positive_voxel_indices
return scores.mean(1),results
###################################################################################
###################################################################################
import numpy as np
import scipy.signal
from scipy.stats import kurtosis
from mne.preprocessing import find_outliers
from numpy import nanmean
from mne.utils import logger
#from mne.preprocessing.eog import _get_eog_channel_index
def hurst(x):
"""Estimate Hurst exponent on a timeseries.
The estimation is based on the second order discrete derivative.
Parameters
----------
x : 1D numpy array
The timeseries to estimate the Hurst exponent for.
Returns
-------
h : float
The estimation of the Hurst exponent for the given timeseries.
"""
y = np.cumsum(np.diff(x, axis=1), axis=1)
b1 = [1, -2, 1]
b2 = [1, 0, -2, 0, 1]
# second order derivative
y1 = scipy.signal.lfilter(b1, 1, y, axis=1)
y1 = y1[:, len(b1) - 1:-1] # first values contain filter artifacts
# wider second order derivative
y2 = scipy.signal.lfilter(b2, 1, y, axis=1)
y2 = y2[:, len(b2) - 1:-1] # first values contain filter artifacts
s1 = np.mean(y1 ** 2, axis=1)
s2 = np.mean(y2 ** 2, axis=1)
return 0.5 * | np.log2(s2 / s1) | numpy.log2 |
import sys
sys.path.append('../')
import numpy as np
import cv2
import math
import os
from ObstacleDetectionObjectives import numpy_iou
class Obstacle(object):
def __init__(self, x, y, w, h, depth_seg=None, obs_stats=None, conf_score=None, iou=None):
self.x = int(x) #top
self.y = int(y) #left
self.w = int(w)
self.h = int(h)
self.valid_points = -1 #obstacle area
self.max_iou = None
self.multiple_detection_flag = False
if depth_seg is not None:
self.segmentation = depth_seg[1]
self.depth_mean, self.depth_variance, self.valid_points = self.compute_depth_stats(depth_seg[0])
elif obs_stats is not None:
self.segmentation = None
self.depth_mean = obs_stats[0]
self.depth_variance = obs_stats[1]
if conf_score is not None:
self.confidence = conf_score
def compute_depth_stats(self, depth):
if len(depth.shape) == 4:
roi_depth = depth[0, self.y:self.y+self.h, self.x:self.x+self.w, 0]
else:
roi_depth = depth[self.y:self.y+self.h, self.x:self.x+self.w]
mean_depth = 0
squared_sum = 0
valid_points = 0
for y in range(0, self.h):
for x in range(0, self.w):
if roi_depth[y,x] < 20 and roi_depth[y,x] > 0.0:
mean_depth += roi_depth.item(y, x)
squared_sum += roi_depth.item(y, x)**2
valid_points += 1
if valid_points > 0:
mean_depth /= valid_points
var_depth = (squared_sum / valid_points) - (mean_depth**2)
else:
mean_depth = -1
var_depth = -1
return mean_depth, var_depth, valid_points
def evaluate_estimation(self, estimated_depth):
estimated_mean, estimated_var, valid_points = self.compute_depth_stats(estimated_depth)
mean_rmse = (self.depth_mean - estimated_mean)**2
mean_variance = (self.depth_variance - estimated_var)**2
return | np.sqrt(mean_rmse + 1e-6) | numpy.sqrt |
# __author__ = '<NAME> in Academia Sinica IIS'
import os, sys
import os.path as osp
import json
import pickle
import numpy as np
import matplotlib
import xml.etree.ElementTree as ET
import argparse
import platform
import itertools
import time
import threading
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from pathlib import Path
from tkinter import *
from tkinter import ttk, filedialog
from PIL import Image, ImageTk
from libs.utils import apk, fig2img
from libs.models import ResNet50 as model
# from libs.models import ResNet18 as model
matplotlib.use("Agg")
means = [0.485, 0.456, 0.406] # imagenet
stds = [0.229, 0.224, 0.225] # imagenet
if platform.system() == 'Windows':
splitter = '\\'
elif platform.system() == 'Linux':
splitter = '/'
# ==========================================================
parser = argparse.ArgumentParser(description="DetVisGUI")
# dataset information
parser.add_argument('--dataset', default='cub200', help='cars196 / cub200')
parser.add_argument('--input_size', default=(224, 224), help='input image size')
parser.add_argument('--ckpt', default='', help='model checkpoint path')
parser.add_argument('--map', default='no_use', help='compute map and highlight list, no_use / compute / map path')
parser.add_argument('--k_vals', nargs='+', default=[1,2,4,8], type=int, help='Recall @ Values.')
parser.add_argument('--device', default='cuda', help='cpu / cuda')
args = parser.parse_args()
# ==========================================================
class dataset:
def __init__(self):
self.dataset = args.dataset
# self.img_root = Path('Datasets/{}/images'.format(args.dataset))
self.img_root = Path(osp.join('Datasets', args.dataset, 'images'))
# self.features = np.load('features/feats_{}.npy'.format(args.dataset))
self.features = np.load(osp.join('features', 'feats_{}.npy'.format(args.dataset)))
self.features = torch.Tensor(self.features).to(args.device)
self.val_img_list = []
# val_img_list = np.load('features/names_{}.npy'.format(args.dataset))
val_img_list = np.load(osp.join('features', 'names_{}.npy'.format(args.dataset)))
for x in val_img_list:
x = str(Path(x))
splits = x.split(splitter)
self.val_img_list.append(splits[3] + splitter + splits[4])
# get query image
self.query_img_list = []
for x in sorted(os.listdir('query_images')):
self.query_img_list.append(x)
self.img_list = self.val_img_list
self.query_root = 'query_images'
def get_img_by_name(self, name):
if self.is_query(name):
img = Image.open(osp.join(self.query_root, Path(name))).convert('RGB')
else:
img = Image.open(osp.join(self.img_root, Path(name))).convert('RGB')
return img
def get_img_by_index(self, idx):
return self.get_img_by_name(self.img_list[idx])
def get_feat_by_name(self, name):
idx = np.where(np.asarray(self.img_list) == name)[0]
return self.features[idx]
def get_feat_by_idx(self, idx):
return self.features[idx]
def is_query(self, name):
return False if name in self.val_img_list else True
def switch_img_list(self):
if self.img_list == self.val_img_list:
self.img_list = self.query_img_list
elif self.img_list == self.query_img_list:
self.img_list = self.val_img_list
return self.img_list
def get_img_by_names_mt(self, top_idx, img_dict):
t_list = []
self.img_dict = img_dict
names = np.asarray(self.val_img_list)[top_idx]
def get_img(idx, name, img_dict):
img = Image.open(osp.join(self.img_root, name)).convert('RGB')
img_dict[idx] = img
for i in range(len(names)):
t_list.append(threading.Thread(target=get_img, args=(top_idx[i], names[i], img_dict)))
t_list[i].start()
for i in t_list:
i.join()
def is_CARS196(self):
return True if self.dataset == 'cars196' else False
# main GUI
class vis_tool:
def __init__(self):
self.data_info = dataset()
self.window = Tk()
self.menubar = Menu(self.window)
self.listBox1 = Listbox(self.window, width=50, height=37 if self.data_info.is_CARS196() else 28, font=('Times New Roman', 10))
self.scrollbar1 = Scrollbar(self.window, width=15, orient="vertical")
self.listBox1_info = StringVar()
self.listBox1_label = Label(self.window, font=('Arial', 11), bg='yellow', width=4, height=1, textvariable=self.listBox1_info)
self.frame1 = ttk.Notebook(self.window)
self.tab_pred = Frame(self.frame1)
self.tab_ans = Frame(self.frame1)
self.tab_rank = Frame(self.frame1)
self.frame1.add(self.tab_pred, text="Top 20", compound=TOP)
self.frame1.add(self.tab_ans, text="Answer", compound=TOP)
self.frame1.add(self.tab_rank, text="RankingMap", compound=TOP)
self.eval_label = Label(self.tab_pred, font=('Arial', 11), bg='yellow', width=120)
self.title_label_ans = Button(self.tab_ans, cursor="hand1", font=('Arial', 11), bg='yellow', width=120)
# load image and show it on the window
self.img = self.data_info.get_img_by_index(0)
self.label_img1 = Label(self.window, height=300, width=300, highlightthickness=4, highlightbackground='#1f77b4') # query image
self.label_img2 = Label(self.window) # ranking bar
self.label_img3 = Label(self.tab_rank) # rank image
self.title_label_ranking1 = Label(self.tab_rank, font=('Arial', 11), bg='yellow', width=120)
self.title_label_ranking2 = Label(self.tab_rank, font=('Arial', 11), bg='#D9D9D9', width=120)
self.panel = Frame(self.tab_rank)
self.label_img4 = Label(self.panel, height=300, width=300) # select image
self.label_img5 = Label(self.panel) # feature vectors
self.model = model()
if osp.exists(args.ckpt):
print('Loading checkpoints from {} ...'.format(args.ckpt))
state_dict = torch.load(args.ckpt)['state_dict']
self.model.load_state_dict(state_dict)
print('Done')
elif args.ckpt != '':
print('Not found checkpoint in {}!'.format(args.ckpt))
sys.exit()
self.model = self.model.to(args.device)
self.model.eval()
# ---------------------------------------------
self.box_num = 20
self.label_img_list = [Label(self.tab_pred) for _ in range(self.box_num)]
self.photo_list = [ImageTk.PhotoImage(self.img) for _ in range(self.box_num)]
self.label_list = [Label(self.tab_pred, font=('Arial', 11), bg='yellow', width=10, height=1) for _ in range(self.box_num)]
self.label_cls_list = [Label(self.tab_pred, font=('Arial', 8), bg='#fdfd96', width=10, height=1) for _ in range(self.box_num)]
self.ans_label_img_list = [Label(self.tab_ans) for _ in range(self.box_num)]
self.ans_photo_list = [ImageTk.PhotoImage(self.img) for _ in range(self.box_num)]
self.ans_label_list = [Label(self.tab_ans, font=('Arial', 11), bg='yellow', width=10, height=1) for _ in range(self.box_num)]
# ---------------------------------------------
self.find_name = ""
self.find_label = Label(self.window, font=('Arial', 11), bg='yellow', width=10, height=1, text="find")
self.find_entry = Entry(self.window, font=('Arial', 11), textvariable=StringVar(self.window, value=str(self.find_name)), width=10)
self.find_button = Button(self.window, text='Enter', height=1, command=self.findname)
self.listBox1_idx = 0 # image listBox
# ====== ohter attribute ======
self.img_name = ''
self.keep_aspect_ratio = False
self.img_list = self.data_info.img_list
self.transform = transforms.Compose([transforms.Resize(size=args.input_size),
transforms.ToTensor(),
transforms.Normalize(means, stds)])
def findname(self, event=None):
self.find_name = self.find_entry.get()
new_list = []
if self.find_name == '':
new_list = self.data_info.img_list
else:
for img_name in self.data_info.img_list:
if self.find_name[0] == "!":
if self.find_name[1:] not in img_name:
new_list.append(img_name)
else:
if self.find_name in img_name:
new_list.append(img_name)
if len(new_list) != 0:
self.img_list = new_list
self.clear_add_listBox1()
else:
self.window.title("Can't find any image about '{}'".format(self.find_name))
def clear_add_listBox1(self):
self.listBox1.delete(0, 'end') # delete listBox1 0 ~ end items
# add image name to listBox1
for item in self.img_list:
self.listBox1.insert('end', item)
self.listBox1.select_set(0)
self.listBox1.focus()
self.change_img()
def extract_feature(self, name):
if self.data_info.is_query(name):
path = osp.join(self.data_info.query_root, name)
else:
path = osp.join(self.data_info.img_root, name)
# open image
img = Image.open(path).convert('RGB')
img = self.transform(img).unsqueeze(0)
with torch.no_grad():
img = img.to(args.device)
feature = self.model(img).view(1, -1)
return feature
def compute_map(self):
# compute similarity
simmat = torch.mm(self.data_info.features, self.data_info.features.T).squeeze()
simmat_rank = simmat.argsort(1, descending=True).cpu().numpy()
if args.map == 'no_use':
pass
elif os.path.exists(args.map):
aps = np.load(args.map)
elif args.map == 'compute':
print('Compute mAP ... (need a little time)')
t1 = time.time()
# compute map, cub200: 57s, cars196: 130s
aps = []
for idx, name in enumerate(self.data_info.val_img_list):
ans = []
# find answer names
for img_name in self.data_info.val_img_list:
if name.split(splitter)[0] in img_name:
ans.append(img_name)
# compute similarity
pred = np.asarray(self.data_info.val_img_list)[simmat_rank[idx]]
ap = apk(ans, pred[1:], len(pred))
aps.append(ap)
np.save('{}_aps.npy'.format(args.dataset), aps)
print('mAP spend time: {:.2} s'.format(time.time() - t1))
if 'aps' in locals():
print('map : {:7.4}%'.format(np.mean(aps) * 100))
for i in range(self.listBox1.size()):
get_color = lambda r,g,b: '#%02x%02x%02x' % (r, g, b)
if aps[i] <= 0.5:
color = (np.asarray([255,0,0]) * (1-2*aps[i])).astype(np.uint8)
else:
color = (np.asarray([0,0,255]) * 2*(aps[i]-0.5)).astype(np.uint8)
color = get_color(*color)
self.listBox1.itemconfig(i, fg=color)
def change_img(self, event=None):
self.title_label_ranking2['bg'] = '#D9D9D9'
self.title_label_ranking2['text'] = ''
self.label_img4.config(image='')
self.label_img4.config(highlightthickness=0)
self.label_img5.config(image='')
if len(self.listBox1.curselection()) != 0:
self.listBox1_idx = self.listBox1.curselection()[0]
self.listBox1_info.set("Image {:6} / {:6}".format(self.listBox1_idx + 1, self.listBox1.size()))
self.img_name = name = self.listBox1.get(self.listBox1_idx)
self.window.title("DATASET : " + self.data_info.dataset + ' ' + name)
self.photo = ImageTk.PhotoImage(self.scale_img(self.data_info.get_img_by_name(name), keep_aspect_ratio=self.keep_aspect_ratio))
self.label_img1.config(image=self.photo)
# ---------------------------------------------
self.feat = self.extract_feature(name)
# compute similarity
simmat = torch.mm(self.feat, self.data_info.features.T).squeeze()
simmat_rank = torch.argsort(simmat, descending=True) # ranking
self.simmat_rank = simmat_rank = simmat_rank.cpu().numpy()
self.simmat = simmat = simmat.cpu().numpy()
offset = 0 if self.data_info.is_query(name) else 1 # not self matching
top_rank_idx = simmat_rank[offset:self.box_num+offset]
top_score = simmat[top_rank_idx]
ans = []
ans_score = []
# find answer names
if not self.data_info.is_query(name):
for idx in range(len(self.data_info.features)):
img_name = self.data_info.val_img_list[idx]
if name.split(splitter)[0] in img_name:
ans.append(img_name)
ans_score.append(simmat[idx])
# show top-20 matching images
if self.frame1.index(self.frame1.select()) == 0:
# open images by multithreading
img_dict = dict()
self.data_info.get_img_by_names_mt(top_rank_idx, img_dict)
for i in range(self.box_num):
if len(ans) == 0:
self.label_list[i].config(bg='#fdfd96') # Pastel yellow
self.frame1.tab(1, state="disabled")
elif self.data_info.val_img_list[top_rank_idx[i]] in ans:
self.label_list[i].config(bg='#00ff00')
self.frame1.tab(1, state="normal")
else:
self.label_list[i].config(bg='#fd9696') # very soft red
self.frame1.tab(1, state="normal")
self.label_list[i]['text'] = '{:2} ({:5.4})'.format(i+1, top_score[i])
self.label_cls_list[i]['text'] = '{}'.format(self.data_info.val_img_list[top_rank_idx[i]].split(splitter)[0])
# img = self.data_info.get_img_by_name(self.data_info.val_img_list[top_rank_idx[i]])
img = img_dict[top_rank_idx[i]]
img = self.scale_img(img, fix_size=160, keep_aspect_ratio=self.keep_aspect_ratio)
self.photo_list[i] = ImageTk.PhotoImage(img)
self.label_img_list[i].config(image=self.photo_list[i])
# show answer images and scores
if self.frame1.index(self.frame1.select()) == 1:
idx = np.argsort(ans_score)[::-1]
ans = np.asarray(ans)[idx]
ans_score = np.asarray(ans_score)[idx]
self.ans, self.ans_score = ans, ans_score
ans_idx = [int(np.where(np.asarray(self.data_info.val_img_list) == a)[0]) for a in ans[:self.box_num]]
# open images by multithreading
img_dict = dict()
self.data_info.get_img_by_names_mt(ans_idx, img_dict)
for i in range(self.box_num):
if i >= len(ans):
self.ans_label_img_list[i].config(image='')
self.ans_label_list[i]['bg'] = '#D9D9D9'
self.ans_label_list[i]['text'] = ''
else:
idx = ans_idx[i]
# img = self.data_info.get_img_by_name(self.data_info.val_img_list[idx])
img = img_dict[ans_idx[i]]
img = self.scale_img(img, fix_size=160, keep_aspect_ratio=self.keep_aspect_ratio)
self.ans_photo_list[i] = ImageTk.PhotoImage(img)
self.ans_label_img_list[i].config(image=self.ans_photo_list[i])
self.ans_label_list[i]['bg'] = 'yellow'
self.ans_label_list[i]['text'] = str(np.round(simmat[idx], 3))
self.title_label_ans['text'] = '{} ~ {} / {}'.format(0, min(self.box_num, len(ans)), len(ans))
self.cur_ans_idx = 0 if self.box_num + 1 >= len(self.ans) else self.box_num
top_pred = [x for x in np.asarray(self.data_info.val_img_list)[top_rank_idx]]
# plot rank bar
band = 5
bar_len = 1250
pred = np.asarray(self.data_info.val_img_list)[simmat_rank]
self.bar_img = np.ones((band, bar_len, 3)) * [253, 150, 150]
self.bar_img = self.bar_img.astype(np.uint8)
for a in ans:
idx = int(np.where(pred == a)[0]) - offset
if band*(idx + 1) <= bar_len and idx >=0 :
self.bar_img[:, band*idx:band*(idx+1)] = [0, 255, 0]
self.photo2 = ImageTk.PhotoImage(Image.fromarray(self.bar_img))
self.label_img2.config(image=self.photo2)
ap = apk(ans, pred[1:], len(pred))
recall_all_k = []
for k in args.k_vals:
recall_at_k = 1 if bool(set(pred[1:k+1]) & set(ans)) else 0
recall_all_k.append(recall_at_k)
self.title_label_ranking1['text'] = 'AP : {:6.4} | Recall@{}: {} | Recall@{}: {} | Recall@{}: {} | Recall@{}: {}'.format(ap, args.k_vals[0], recall_all_k[0], args.k_vals[1], recall_all_k[1], args.k_vals[2], recall_all_k[2], args.k_vals[3], recall_all_k[3])
self.eval_label['text'] = '{:^4} / {:^4} in top 20 (AP : {:6.4})'.format(len(set(top_pred) & set(ans)), len(ans), ap)
# plot rank image
if self.frame1.index(self.frame1.select()) == 2:
band = 5
bar_len = 600
max_row_num = 68
doc_len = len(self.data_info.val_img_list)
col_num = int(bar_len / band) # 600 / 5 = 120
row_num = min(int(np.ceil(doc_len / col_num)), max_row_num)
img_height = row_num * band + (row_num+1) * 2
img_width = bar_len + (col_num+1) * 2
self.rank_img = np.ones((img_height, img_width, 3)) * [253, 150, 150]
self.rank_img = self.rank_img.astype(np.uint8)
bg_color = [200, 200, 200]
if row_num == int(np.ceil(doc_len / col_num)):
# tail region
last_col_idx = (doc_len % col_num) - offset
self.rank_img[img_height-band-2:img_height, band*last_col_idx+last_col_idx*2:] = bg_color
# row grid
for i in range(0, img_height, band+2):
self.rank_img[i:i+2, :] = bg_color
# column grid
for i in range(0, img_width, band+2):
self.rank_img[:, i:i+2] = bg_color
# answer block
for a in ans:
idx = int( | np.where(pred == a) | numpy.where |
# encoding=utf8
"""
Functions for performing classical hypothesis testing.
Hypothesis Testing
------------------
.. autosummary::
:toctree: generated/
BinomialTest
ChiSquareTest
tTest
References
----------
<NAME>., & <NAME>. (2012). Methods of multivariate analysis (3rd Edition).
<NAME>. (1956). Nonparametric statistics: For the behavioral sciences.
McGraw-Hill. ISBN 07-057348-4
Student's t-test. (2017, June 20). In Wikipedia, The Free Encyclopedia.
From https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=786562367
<NAME>. "Chi-Squared Test." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Chi-SquaredTest.html
Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval.
In Wikipedia, The Free Encyclopedia. Retrieved 15:03, August 10, 2018,
from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725
Wikipedia contributors. (2018, July 5). Chi-squared test. In Wikipedia, The Free Encyclopedia. Retrieved 13:56,
August 19, 2018, from https://en.wikipedia.org/w/index.php?title=Chi-squared_test&oldid=848986171
Wikipedia contributors. (2018, April 12). Pearson's chi-squared test. In Wikipedia, The Free Encyclopedia.
Retrieved 12:55, August 23, 2018,
from https://en.wikipedia.org/w/index.php?title=Pearson%27s_chi-squared_test&oldid=836064929
"""
import numpy as np
import numpy_indexed as npi
from scipy.stats import beta, norm, t
from scipy.special import comb
class BinomialTest(object):
r"""
Performs a one-sample binomial test.
Parameters
----------
x : int
Number of successes out of :math:`n` trials.
n : int
Number of trials
p : float, optional
Expected probability of success
alternative: str, {'two-sided', 'greater', 'lesser'}, optional
Specifies the alternative hypothesis :math:`H_1`. Must be one of 'two-sided' (default), 'greater',
or 'less'.
alpha : float, optional
Significance level
continuity: bool, optional
If True, the continuity corrected version of the Wilson score interval is used.
Attributes
----------
x : int
Number of successes out of :math:`n` trials.
n : int
Number of trials
p : float
Expected probability of success
q : float
Defined as :math:`1 - p`
alternative : str
Specifies the alternative hypothesis :math:`H_1`. Must be one of 'two-sided' (default), 'greater',
or 'less'.
alpha : float
Significance level
continuity : bool
If True, the continuity corrected version of the Wilson score interval is used.
p_value : float
Computed p-value
z : float
z-score used in computation of intervals
clopper_pearson_interval : dict
Dictionary of the Clopper-Pearson lower and upper intervals and probability of success.
wilson_score_interval : dict
Dictionary of the Wilson Score lower and upper intervals and probability of success.
agresti_coull_interval : dict
Dictionary of the Agresti-Coull lower and upper intervals and probability of success.
arcsine_transform_interval : dict
Dictionary of the arcsine transformation lower and upper intervals and probability of success.
test_summary : dict
Dictionary containing test summary statistics.
Raises
------
ValueError
If number of successes :math:`x` is greater than the number of trials :math:`n`.
ValueError
If expected probability :math:`p` is greater than 1.
ValueError
If parameter :code:`alternative` is not one of {'two-sided', 'greater', 'lesser'}
Notes
-----
The Binomial test is a one-sample test applicable in the case of populations consisting of two classes or groups,
such as male/female, cat/dog, etc. The proportion of the first group is denoted :math:`p`, while the second group
is often denoted :math:`q`, which we know to be :math:`1 - p`. The null hypothesis of the test is that the
proportion of the population is indeed :math:`p` and gives the researcher more information to determine if the
random sample that was drawn could have come from a population having a proportion of :math:`p`.
As the name of the test implies, the binomial distribution is the sampling distribution the of the proportions
that could be observed when drawing random samples from a population. Therefore, the probability of obtaining
:math:`x` objects in one category and :math:`n - x` in the other category out of a total :math:`n` trials is
given by the binomial distribution probability mass function:
.. math::
p(x) = \binom{n}{x} P^x (1 - P)^{n - x}
:math:`(1 - P)` may be substituted for :math:`Q`. The binomial coefficient :math:`\binom{n}{x}` is defined as:
.. math::
\binom{n}{x} = \frac{n!}{k!(n - k)!}
The p-value of the test is calculated by the binomial distribution's cumulative distribution function, defined as:
.. math::
Pr(X \leq x) = \sum^{[k]}_{i=0} \binom{n}{i} P^i (1 - P)^{n - i}
There are several confidence intervals that can be computed when performing a binomial test. The most common is
known as the Clopper-Pearson interval, which is an exact interval as it is based on the binomial distribution. The
Clopper-Pearson interval can be defined several ways, one of which uses the relationship between the binomial
distribution nad the beta distribution.
.. math::
B\left(\frac{\alpha}{2};x,n-x+1\right) < \theta < B\left(1 - \frac{\alpha}{2};x + 1, n - x \right)
The Agresti-Coull interval utilizes the standard normal distribution. :math:`z` is given as
:math:`1 - \frac{\alpha}{2}`. The interval calculation proceeds as:
With :math:`x` successes out of a total :math:`n` trials, we define :math:`\tilde{n}` as:
.. math::
`\tilde{n} = n + z^2
and,
.. math::
\tilde{p} = \frac{1}{\tilde{n}} \left(x + \frac{z^2}{2} \right)
The confidence interval for the probability of success, :math:`p`, is then given as:
.. math::
\tilde{p} \pm z \sqrt{\frac{\tilde{p}}{\tilde{n}} (1 - \tilde{p})}
The arcsine transformation confidence interval is defined as:
.. math::
sin^2 \left(\arcsin{\sqrt{p}} - \frac{z}{2\sqrt{n}} \right) < \theta < sin^2 \left(arcsin{\sqrt{p}} +
\frac{z}{2\sqrt{n}} \right)
Where :math:`z` is the quantile :math:`1 - \frac{\alpha}{2}}` of the standard normal distribution, as before.
Lastly, the Wilson score interval can be computed with or without continuity correction. Without correction, the
Wilson score interval success proability :math:`p` is defined as:
.. math::
\frac{\hat{p} + \frac{z^2}{2n}}{1 + \frac{z^2}{n} \pm \frac{z}{1 + \frac{z^2}{n}}
\sqrt{\frac{\hat{p} (1 - \hat{p}}{n}}{1 + \frac{z^2}{n}}}
The Wilson score interval with continuity correction is defined as:
.. math::
w^- = max \Bigg\{0, \frac{2n\hat{P} + z^2 -
\Big[z \sqrt{z^2 - \frac{1}{n} + 4n\hat{p}(1 - \hat{p}) + (4\hat{p} - 2) + 1}\Big]}{2(n + z^2)}\Bigg\}
w^+ = min \Bigg\{1, \frac{2n\hat{P} + z^2 +
\Big[z \sqrt{z^2 - \frac{1}{n} + 4n\hat{p}(1 - \hat{p}) - (4\hat{p} - 2) + 1}\Big]}{2(n + z^2)}\Bigg\}
Where :math:`w^-` and :math:`w^+` are the lower and upper bounds of the Wilson score interval corrected for
contiunity.
Examples
--------
>>> x = 682
>>> n = 925
>>> bt = BinomialTest(n, x)
>>> bt.test_summary
{'Number of Successes': 682,
'Number of Trials': 925,
'alpha': 0.05,
'intervals': {'Agresti-Coull': {'conf level': 0.95,
'interval': (0.7079790581519885, 0.7646527304391209),
'probability of success': 0.7363158942955547},
'Arcsine Transform': {'conf level': 0.95,
'interval': (0.708462749220724, 0.7651467076803447),
'probability of success': 0.7372972972972973,
'probability variance': 0.00020939458669772768},
'Clopper-Pearson': {'conf level': 0.95,
'interval': (0.7076682640790369, 0.7654065582415227),
'probability of success': 0.7372972972972973},
'Wilson Score': {'conf level': 0.95,
'interval': (0.46782780413153596, 0.5321721958684641),
'probability of success': 0.5}},
'p-value': 2.4913404672588513e-13}
>>> bt.p_value
2.4913404672588513e-13
>>> bt.clopper_pearson_interval
{'conf level': 0.95,
'interval': (0.7076682640790369, 0.7654065582415227),
'probability of success': 0.7372972972972973}
>>> bt2 = BinomialTest(n, x, alternative='greater')
>>> bt2.p_value
1.2569330927920093e-49
>>> bt2.clopper_pearson_interval
{'conf level': 0.95,
'interval': (0.7124129244365457, 1.0),
'probability of success': 0.7372972972972973}
References
----------
<NAME>. (1956). Nonparametric statistics: For the behavioral sciences.
McGraw-Hill. ISBN 07-057348-4
Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval.
In Wikipedia, The Free Encyclopedia. Retrieved 15:03, August 10, 2018,
from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725
"""
def __init__(self, n, x, p=0.5, alternative='two-sided', alpha=0.05, continuity=True):
if x > n:
raise ValueError('number of successes cannot be greater than number of trials.')
if p > 1.0:
raise ValueError('expected probability of success cannot be greater than 1.')
if alternative not in ('two-sided', 'greater', 'less'):
raise ValueError("'alternative must be one of 'two-sided' (default), 'greater', or 'less'.")
self.n = n
self.x = x
self.p = p
self.q = 1.0 - self.p
self.alpha = alpha
self.alternative = alternative
self.continuity = continuity
self.p_value = self._p_value()
if self.alternative == 'greater':
self.z = norm.ppf(self.alpha)
elif self.alternative == 'less':
self.z = norm.ppf(1 - self.alpha)
else:
self.z = norm.ppf(1 - self.alpha / 2)
self.clopper_pearson_interval = self._clopper_pearson_interval()
self.wilson_score_interval = self._wilson_score_interval()
self.agresti_coull_interval = self._agresti_coull_interval()
self.arcsine_transform_interval = self._arcsine_transform_interval()
self.test_summary = {
'Number of Successes': self.x,
'Number of Trials': self.n,
'p-value': self.p_value,
'alpha': self.alpha,
'intervals': {
'Clopper-Pearson': self.clopper_pearson_interval,
'Wilson Score': self.wilson_score_interval,
'Agresti-Coull': self.agresti_coull_interval,
'Arcsine Transform': self.arcsine_transform_interval
}
}
def _p_value(self):
r"""
Calculates the p-value of the binomial test.
Returns
-------
pval : float
The computed p-value.
"""
successes = np.arange(self.x + 1)
pval = np.sum(comb(self.n, successes) * self.p ** successes * self.q ** (self.n - successes))
if self.alternative in ('two-sided', 'greater'):
other_tail = np.arange(self.x, self.n + 1)
y = comb(self.n, self.x) * (self.p ** self.x) * self.q ** (self.n - self.x)
p_othertail = comb(self.n, other_tail) * self.p ** other_tail * self.q ** (self.n - other_tail)
p_othertail = np.sum(p_othertail[p_othertail <= y])
if self.alternative == 'two-sided':
pval = p_othertail * 2
#pval = 1 - pval
elif self.alternative == 'greater':
pval = p_othertail
return pval
def _clopper_pearson_interval(self):
r"""
Computes the Clopper-Pearson 'exact' confidence interval.
References
----------
Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval.
In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018,
from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725
"""
p = self.x / self.n
if self.alternative == 'less':
lower_bound = 0.0
upper_bound = beta.ppf(1 - self.alpha, self.x + 1, self.n - self.x)
elif self.alternative == 'greater':
upper_bound = 1.0
lower_bound = beta.ppf(self.alpha, self.x, self.n - self.x + 1)
else:
lower_bound = beta.ppf(self.alpha / 2, self.x, self.n - self.x + 1)
upper_bound = beta.ppf(1 - self.alpha / 2, self.x + 1, self.n - self.x)
clopper_pearson_interval = {
'probability of success': p,
'conf level': 1 - self.alpha,
'interval': (lower_bound, upper_bound)
}
return clopper_pearson_interval
def _wilson_score_interval(self):
r"""
Computes the Wilson score confidence interval.
References
----------
Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval.
In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018,
from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725
"""
p = (self.p + (self.z ** 2 / (2. * self.n))) / (1. + (self.z ** 2. / self.n))
if self.continuity:
if self.alternative == 'less':
lower = 0.0
else:
lower = (2. * self.n * self.p + self.z ** 2. - (self.z * np.sqrt(
self.z ** 2. - (1. / self.n) + 4. * self.n * self.p * self.q + (4. * self.p - 2.) + 1.))) / \
(2. * (self.n + self.z ** 2.))
if self.alternative == 'greater':
upper = 1.0
else:
upper = (2. * self.n * self.p + self.z ** 2. + (self.z * np.sqrt(
self.z ** 2. - (1. / self.n) + 4. * self.n * self.p * self.q + (4. * self.p - 2.) + 1))) / (2. * (
self.n + self.z ** 2.))
upper_bound, lower_bound = np.minimum(1.0, upper), | np.maximum(0.0, lower) | numpy.maximum |
"""
<NAME> (<EMAIL>)
Class to define the Dataset object.
"""
from PIL import Image
import os
import numpy as np
import scipy.io
import pandas as pd
class Dataset:
def __init__(self, train_df, test_df, val_df, database_root, number_of_slices, store_memory=True):
"""Initialize the Dataset object
Args:
train_df (dataframe): Training dataframe from TrainTestSplit.split
test_df (dataframe): Testing dataframe from TrainTestSplit.splt
val_df (dataframe): Validation dataframe from TrainTestSplit.split
database_root (str): db root from config
number_of_slices (int): Number of slices per group
store_memory (bool, optional): Memory management argument. Defaults to True.
"""
# for idx, row in train_df.iterrows():
# print(type(row))
# print(row)
# #print("Images volumes, {}".format(row.iloc[i*3]))
# # #scipy 1.2.3
self.images_train = []
self.images_train_path = []
self.labels_train = []
self.labels_train_path = []
self.labels_liver_train = []
self.labels_liver_train_path = []
if train_df is not None:
train_df = pd.read_csv(train_df, delim_whitespace = True) if isinstance(train_df, str) else train_df
for idx, row in train_df.iterrows():
if (len(row) > 3):
if store_memory:
aux_images_train = []
aux_labels_train = []
aux_labels_liver_train = []
for i in range(number_of_slices):
mat_file = os.path.join(database_root, str(row.iloc[i * 3]))
aux_images_train.append(np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32))
self.images_train.append(np.array(aux_images_train))
for i in range(number_of_slices):
mat_file = os.path.join(database_root, str(row.iloc[i * 3 + 1]))
aux_labels_train.append(np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32))
self.labels_train.append(np.array(aux_labels_train))
for i in range(number_of_slices):
mat_file = os.path.join(database_root, str(row.iloc[i * 3 + 2]))
aux_labels_liver_train.append(np.array(scipy.io.loadmat(mat_file)['section'], dtype=np.float32))
self.labels_liver_train.append(np.array(aux_labels_liver_train))
if (idx + 1) % 1000 == 0:
print('Loaded ' + str(idx) + ' train images')
aux_images_train_path = []
aux_labels_train_path = []
aux_labels_liver_train_path = []
for i in range(number_of_slices):
aux_images_train_path.append(os.path.join(database_root, str(row.iloc[i * 3])))
self.images_train_path.append(np.array(aux_images_train_path))
for i in range(number_of_slices):
aux_labels_train_path.append(os.path.join(database_root, str(row.iloc[i * 3 + 1])))
self.labels_train_path.append(np.array(aux_labels_train_path))
for i in range(number_of_slices):
aux_labels_liver_train_path.append(os.path.join(database_root, str(row.iloc[i * 3 + 2])))
self.labels_liver_train_path.append(np.array(aux_labels_liver_train_path))
self.images_train_path = np.array(self.images_train_path)
self.labels_train_path = np.array(self.labels_train_path)
self.labels_liver_train_path = np.array(self.labels_liver_train_path)
# Load testing images (path) and labels
self.images_test = []
self.images_test_path = []
if test_df is not None:
test_df = pd.read_csv(test_df, delim_whitespace = True) if isinstance(test_df, str) else test_df
for idx, row in test_df.iterrows():
if (len(row) > 1):
if store_memory:
aux_images_test = []
for i in range(number_of_slices):
mat_file = os.path.join(database_root, str(row.iloc[i * 3])) # os.path.join(database_root, str(line.split()[i * 3]))
aux_images_test.append(
np.array(scipy.io.loadmat(mat_file)['section'],
dtype=np.float32))
self.images_test.append(np.array(aux_images_test))
if (idx + 1) % 1000 == 0:
print('Loaded ' + str(idx) + ' test images')
aux_images_test_path = []
for i in range(number_of_slices):
mat_file = os.path.join(database_root, str(row.iloc[i * 3]))
aux_images_test_path.append(mat_file)
self.images_test_path.append( | np.array(aux_images_test_path) | numpy.array |
# -*- coding: utf-8 -*-
"""
These the test the public routines exposed in types/common.py
related to inference and not otherwise tested in types/test_common.py
"""
from warnings import catch_warnings, simplefilter
import collections
import re
from datetime import datetime, date, timedelta, time
from decimal import Decimal
from numbers import Number
from fractions import Fraction
import numpy as np
import pytz
import pytest
import pandas as pd
from pandas._libs import lib, iNaT, missing as libmissing
from pandas import (Series, Index, DataFrame, Timedelta,
DatetimeIndex, TimedeltaIndex, Timestamp,
Panel, Period, Categorical, isna, Interval,
DateOffset)
from pandas import compat
from pandas.compat import u, PY2, StringIO, lrange
from pandas.core.dtypes import inference
from pandas.core.dtypes.common import (
is_timedelta64_dtype,
is_timedelta64_ns_dtype,
is_datetime64_dtype,
is_datetime64_ns_dtype,
is_datetime64_any_dtype,
is_datetime64tz_dtype,
is_number,
is_integer,
is_float,
is_bool,
is_scalar,
is_scipy_sparse,
ensure_int32,
ensure_categorical)
from pandas.util import testing as tm
import pandas.util._test_decorators as td
@pytest.fixture(params=[True, False], ids=str)
def coerce(request):
return request.param
# collect all objects to be tested for list-like-ness; use tuples of objects,
# whether they are list-like or not (special casing for sets), and their ID
ll_params = [
([1], True, 'list'), # noqa: E241
([], True, 'list-empty'), # noqa: E241
((1, ), True, 'tuple'), # noqa: E241
(tuple(), True, 'tuple-empty'), # noqa: E241
({'a': 1}, True, 'dict'), # noqa: E241
(dict(), True, 'dict-empty'), # noqa: E241
({'a', 1}, 'set', 'set'), # noqa: E241
(set(), 'set', 'set-empty'), # noqa: E241
(frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241
(frozenset(), 'set', 'frozenset-empty'), # noqa: E241
(iter([1, 2]), True, 'iterator'), # noqa: E241
(iter([]), True, 'iterator-empty'), # noqa: E241
((x for x in [1, 2]), True, 'generator'), # noqa: E241
((x for x in []), True, 'generator-empty'), # noqa: E241
(Series([1]), True, 'Series'), # noqa: E241
(Series([]), True, 'Series-empty'), # noqa: E241
(Series(['a']).str, True, 'StringMethods'), # noqa: E241
(Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241
(Index([1]), True, 'Index'), # noqa: E241
(Index([]), True, 'Index-empty'), # noqa: E241
(DataFrame([[1]]), True, 'DataFrame'), # noqa: E241
(DataFrame(), True, 'DataFrame-empty'), # noqa: E241
(np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241
(np.array([]), True, 'ndarray-1d-empty'), # noqa: E241
(np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241
(np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241
(np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241
(np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241
(np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241
(np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241
(np.array(2), False, 'ndarray-0d'), # noqa: E241
(1, False, 'int'), # noqa: E241
(b'123', False, 'bytes'), # noqa: E241
(b'', False, 'bytes-empty'), # noqa: E241
('123', False, 'string'), # noqa: E241
('', False, 'string-empty'), # noqa: E241
(str, False, 'string-type'), # noqa: E241
(object(), False, 'object'), # noqa: E241
(np.nan, False, 'NaN'), # noqa: E241
(None, False, 'None') # noqa: E241
]
objs, expected, ids = zip(*ll_params)
@pytest.fixture(params=zip(objs, expected), ids=ids)
def maybe_list_like(request):
return request.param
def test_is_list_like(maybe_list_like):
obj, expected = maybe_list_like
expected = True if expected == 'set' else expected
assert inference.is_list_like(obj) == expected
def test_is_list_like_disallow_sets(maybe_list_like):
obj, expected = maybe_list_like
expected = False if expected == 'set' else expected
assert inference.is_list_like(obj, allow_sets=False) == expected
def test_is_sequence():
is_seq = inference.is_sequence
assert (is_seq((1, 2)))
assert (is_seq([1, 2]))
assert (not is_seq("abcd"))
assert (not is_seq(u("abcd")))
assert (not is_seq(np.int64))
class A(object):
def __getitem__(self):
return 1
assert (not is_seq(A()))
def test_is_array_like():
assert inference.is_array_like(Series([]))
assert inference.is_array_like(Series([1, 2]))
assert inference.is_array_like(np.array(["a", "b"]))
assert inference.is_array_like(Index(["2016-01-01"]))
class DtypeList(list):
dtype = "special"
assert inference.is_array_like(DtypeList())
assert not inference.is_array_like([1, 2, 3])
assert not inference.is_array_like(tuple())
assert not inference.is_array_like("foo")
assert not inference.is_array_like(123)
@pytest.mark.parametrize('inner', [
[], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]),
Series([]), Series(['a']).str, (x for x in range(5))
])
@pytest.mark.parametrize('outer', [
list, Series, np.array, tuple
])
def test_is_nested_list_like_passes(inner, outer):
result = outer([inner for _ in range(5)])
assert inference.is_list_like(result)
@pytest.mark.parametrize('obj', [
'abc', [], [1], (1,), ['a'], 'a', {'a'},
[1, 2, 3], Series([1]), DataFrame({"A": [1]}),
([1, 2] for _ in range(5)),
])
def test_is_nested_list_like_fails(obj):
assert not inference.is_nested_list_like(obj)
@pytest.mark.parametrize(
"ll", [{}, {'A': 1}, Series([1])])
def test_is_dict_like_passes(ll):
assert inference.is_dict_like(ll)
@pytest.mark.parametrize(
"ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])])
def test_is_dict_like_fails(ll):
assert not inference.is_dict_like(ll)
@pytest.mark.parametrize("has_keys", [True, False])
@pytest.mark.parametrize("has_getitem", [True, False])
@pytest.mark.parametrize("has_contains", [True, False])
def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains):
class DictLike(object):
def __init__(self, d):
self.d = d
if has_keys:
def keys(self):
return self.d.keys()
if has_getitem:
def __getitem__(self, key):
return self.d.__getitem__(key)
if has_contains:
def __contains__(self, key):
return self.d.__contains__(key)
d = DictLike({1: 2})
result = inference.is_dict_like(d)
expected = has_keys and has_getitem and has_contains
assert result is expected
def test_is_file_like(mock):
class MockFile(object):
pass
is_file = inference.is_file_like
data = StringIO("data")
assert is_file(data)
# No read / write attributes
# No iterator attributes
m = MockFile()
assert not is_file(m)
MockFile.write = lambda self: 0
# Write attribute but not an iterator
m = MockFile()
assert not is_file(m)
# gh-16530: Valid iterator just means we have the
# __iter__ attribute for our purposes.
MockFile.__iter__ = lambda self: self
# Valid write-only file
m = MockFile()
assert is_file(m)
del MockFile.write
MockFile.read = lambda self: 0
# Valid read-only file
m = MockFile()
assert is_file(m)
# Iterator but no read / write attributes
data = [1, 2, 3]
assert not is_file(data)
assert not is_file(mock.Mock())
@pytest.mark.parametrize(
"ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)])
def test_is_names_tuple_passes(ll):
assert inference.is_named_tuple(ll)
@pytest.mark.parametrize(
"ll", [(1, 2, 3), 'a', Series({'pi': 3.14})])
def test_is_names_tuple_fails(ll):
assert not inference.is_named_tuple(ll)
def test_is_hashable():
# all new-style classes are hashable by default
class HashableClass(object):
pass
class UnhashableClass1(object):
__hash__ = None
class UnhashableClass2(object):
def __hash__(self):
raise TypeError("Not hashable")
hashable = (1,
3.14,
np.float64(3.14),
'a',
tuple(),
(1, ),
HashableClass(), )
not_hashable = ([], UnhashableClass1(), )
abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), )
for i in hashable:
assert inference.is_hashable(i)
for i in not_hashable:
assert not inference.is_hashable(i)
for i in abc_hashable_not_really_hashable:
assert not inference.is_hashable(i)
# numpy.array is no longer collections.Hashable as of
# https://github.com/numpy/numpy/pull/5326, just test
# is_hashable()
assert not inference.is_hashable(np.array([]))
# old-style classes in Python 2 don't appear hashable to
# collections.Hashable but also seem to support hash() by default
if PY2:
class OldStyleClass():
pass
c = OldStyleClass()
assert not isinstance(c, compat.Hashable)
assert inference.is_hashable(c)
hash(c) # this will not raise
@pytest.mark.parametrize(
"ll", [re.compile('ad')])
def test_is_re_passes(ll):
assert inference.is_re(ll)
@pytest.mark.parametrize(
"ll", ['x', 2, 3, object()])
def test_is_re_fails(ll):
assert not inference.is_re(ll)
@pytest.mark.parametrize(
"ll", [r'a', u('x'),
r'asdf',
re.compile('adsf'),
u(r'\u2233\s*'),
re.compile(r'')])
def test_is_recompilable_passes(ll):
assert inference.is_re_compilable(ll)
@pytest.mark.parametrize(
"ll", [1, [], object()])
def test_is_recompilable_fails(ll):
assert not inference.is_re_compilable(ll)
class TestInference(object):
def test_infer_dtype_bytes(self):
compare = 'string' if PY2 else 'bytes'
# string array of bytes
arr = np.array(list('abc'), dtype='S1')
assert lib.infer_dtype(arr) == compare
# object array of bytes
arr = arr.astype(object)
assert lib.infer_dtype(arr) == compare
# object array of bytes with missing values
assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare
def test_isinf_scalar(self):
# GH 11352
assert libmissing.isposinf_scalar(float('inf'))
assert libmissing.isposinf_scalar(np.inf)
assert not libmissing.isposinf_scalar(-np.inf)
assert not libmissing.isposinf_scalar(1)
assert not libmissing.isposinf_scalar('a')
assert libmissing.isneginf_scalar(float('-inf'))
assert libmissing.isneginf_scalar(-np.inf)
assert not libmissing.isneginf_scalar(np.inf)
assert not libmissing.isneginf_scalar(1)
assert not libmissing.isneginf_scalar('a')
def test_maybe_convert_numeric_infinities(self):
# see gh-13274
infinities = ['inf', 'inF', 'iNf', 'Inf',
'iNF', 'InF', 'INf', 'INF']
na_values = {'', 'NULL', 'nan'}
pos = np.array(['inf'], dtype=np.float64)
neg = np.array(['-inf'], dtype=np.float64)
msg = "Unable to parse string"
for infinity in infinities:
for maybe_int in (True, False):
out = lib.maybe_convert_numeric(
np.array([infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
out = lib.maybe_convert_numeric(
np.array(['-' + infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, neg)
out = lib.maybe_convert_numeric(
np.array([u(infinity)], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
out = lib.maybe_convert_numeric(
np.array(['+' + infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
# too many characters
with pytest.raises(ValueError, match=msg):
lib.maybe_convert_numeric(
np.array(['foo_' + infinity], dtype=object),
na_values, maybe_int)
def test_maybe_convert_numeric_post_floatify_nan(self, coerce):
# see gh-13314
data = np.array(['1.200', '-999.000', '4.500'], dtype=object)
expected = np.array([1.2, np.nan, 4.5], dtype=np.float64)
nan_values = {-999, -999.0}
out = lib.maybe_convert_numeric(data, nan_values, coerce)
tm.assert_numpy_array_equal(out, expected)
def test_convert_infs(self):
arr = np.array(['inf', 'inf', 'inf'], dtype='O')
result = lib.maybe_convert_numeric(arr, set(), False)
assert result.dtype == np.float64
arr = np.array(['-inf', '-inf', '-inf'], dtype='O')
result = lib.maybe_convert_numeric(arr, set(), False)
assert result.dtype == np.float64
def test_scientific_no_exponent(self):
# See PR 12215
arr = np.array(['42E', '2E', '99e', '6e'], dtype='O')
result = lib.maybe_convert_numeric(arr, set(), False, True)
assert np.all(np.isnan(result))
def test_convert_non_hashable(self):
# GH13324
# make sure that we are handing non-hashables
arr = np.array([[10.0, 2], 1.0, 'apple'])
result = lib.maybe_convert_numeric(arr, set(), False, True)
tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan]))
def test_convert_numeric_uint64(self):
arr = np.array([2**63], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp)
arr = np.array([str(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp)
arr = np.array([np.uint64(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp)
@pytest.mark.parametrize("arr", [
np.array([2**63, np.nan], dtype=object),
np.array([str(2**63), np.nan], dtype=object),
np.array([np.nan, 2**63], dtype=object),
np.array([np.nan, str(2**63)], dtype=object)])
def test_convert_numeric_uint64_nan(self, coerce, arr):
expected = arr.astype(float) if coerce else arr.copy()
result = lib.maybe_convert_numeric(arr, set(),
coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
def test_convert_numeric_uint64_nan_values(self, coerce):
arr = np.array([2**63, 2**63 + 1], dtype=object)
na_values = {2**63}
expected = (np.array([np.nan, 2**63 + 1], dtype=float)
if coerce else arr.copy())
result = lib.maybe_convert_numeric(arr, na_values,
coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize("case", [
np.array([2**63, -1], dtype=object),
np.array([str(2**63), -1], dtype=object),
np.array([str(2**63), str(-1)], dtype=object),
np.array([-1, 2**63], dtype=object),
np.array([-1, str(2**63)], dtype=object),
np.array([str(-1), str(2**63)], dtype=object)])
def test_convert_numeric_int64_uint64(self, case, coerce):
expected = case.astype(float) if coerce else case.copy()
result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize("value", [-2**63 - 1, 2**64])
def test_convert_int_overflow(self, value):
# see gh-18584
arr = np.array([value], dtype=object)
result = lib.maybe_convert_objects(arr)
tm.assert_numpy_array_equal(arr, result)
def test_maybe_convert_objects_uint64(self):
# see gh-4471
arr = np.array([2**63], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
# NumPy bug: can't compare uint64 to int64, as that
# results in both casting to float64, so we should
# make sure that this function is robust against it
arr = np.array([np.uint64(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
arr = np.array([2, -1], dtype=object)
exp = np.array([2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
arr = np.array([2**63, -1], dtype=object)
exp = np.array([2**63, -1], dtype=object)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
def test_mixed_dtypes_remain_object_array(self):
# GH14956
array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1],
dtype=object)
result = lib.maybe_convert_objects(array, convert_datetime=1)
tm.assert_numpy_array_equal(result, array)
class TestTypeInference(object):
# Dummy class used for testing with Python objects
class Dummy():
pass
def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype):
# see pandas/conftest.py
inferred_dtype, values = any_skipna_inferred_dtype
# make sure the inferred dtype of the fixture is as requested
assert inferred_dtype == lib.infer_dtype(values, skipna=True)
def test_length_zero(self):
result = lib.infer_dtype(np.array([], dtype='i4'))
assert result == 'integer'
result = lib.infer_dtype([])
assert result == 'empty'
# GH 18004
arr = np.array([np.array([], dtype=object),
np.array([], dtype=object)])
result = lib.infer_dtype(arr)
assert result == 'empty'
def test_integers(self):
arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'integer'
arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'mixed-integer'
arr = np.array([1, 2, 3, 4, 5], dtype='i4')
result = lib.infer_dtype(arr)
assert result == 'integer'
def test_bools(self):
arr = np.array([True, False, True, True, True], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'boolean'
arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'boolean'
arr = np.array([True, False, True, 'foo'], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'mixed'
arr = np.array([True, False, True], dtype=bool)
result = lib.infer_dtype(arr)
assert result == 'boolean'
arr = np.array([True, np.nan, False], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
def test_floats(self):
arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'floating'
arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'],
dtype='O')
result = lib.infer_dtype(arr)
assert result == 'mixed-integer'
arr = np.array([1, 2, 3, 4, 5], dtype='f4')
result = lib.infer_dtype(arr)
assert result == 'floating'
arr = np.array([1, 2, 3, 4, 5], dtype='f8')
result = lib.infer_dtype(arr)
assert result == 'floating'
def test_decimals(self):
# GH15690
arr = np.array([Decimal(1), Decimal(2), Decimal(3)])
result = lib.infer_dtype(arr)
assert result == 'decimal'
arr = np.array([1.0, 2.0, Decimal(3)])
result = lib.infer_dtype(arr)
assert result == 'mixed'
arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)])
result = lib.infer_dtype(arr)
assert result == 'decimal'
arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'decimal'
def test_string(self):
pass
def test_unicode(self):
arr = [u'a', np.nan, u'c']
result = lib.infer_dtype(arr)
assert result == 'mixed'
arr = [u'a', np.nan, u'c']
result = lib.infer_dtype(arr, skipna=True)
expected = 'unicode' if PY2 else 'string'
assert result == expected
@pytest.mark.parametrize('dtype, missing, skipna, expected', [
(float, np.nan, False, 'floating'),
(float, np.nan, True, 'floating'),
(object, np.nan, False, 'floating'),
(object, np.nan, True, 'empty'),
(object, None, False, 'mixed'),
(object, None, True, 'empty')
])
@pytest.mark.parametrize('box', [pd.Series, np.array])
def test_object_empty(self, box, missing, dtype, skipna, expected):
# GH 23421
arr = box([missing, missing], dtype=dtype)
result = lib.infer_dtype(arr, skipna=skipna)
assert result == expected
def test_datetime(self):
dates = [datetime(2012, 1, x) for x in range(1, 20)]
index = Index(dates)
assert index.inferred_type == 'datetime64'
def test_infer_dtype_datetime(self):
arr = np.array([Timestamp('2011-01-01'),
Timestamp('2011-01-02')])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([np.datetime64('2011-01-01'),
np.datetime64('2011-01-01')], dtype=object)
assert lib.infer_dtype(arr) == 'datetime64'
arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)])
assert lib.infer_dtype(arr) == 'datetime'
# starts with nan
for n in [pd.NaT, np.nan]:
arr = np.array([n, pd.Timestamp('2011-01-02')])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([n, np.datetime64('2011-01-02')])
assert lib.infer_dtype(arr) == 'datetime64'
arr = np.array([n, datetime(2011, 1, 1)])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([n, pd.Timestamp('2011-01-02'), n])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([n, np.datetime64('2011-01-02'), n])
assert lib.infer_dtype(arr) == 'datetime64'
arr = np.array([n, datetime(2011, 1, 1), n])
assert lib.infer_dtype(arr) == 'datetime'
# different type of nat
arr = np.array([np.timedelta64('nat'),
np.datetime64('2011-01-02')], dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([np.datetime64('2011-01-02'),
np.timedelta64('nat')], dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
# mixed datetime
arr = np.array([datetime(2011, 1, 1),
pd.Timestamp('2011-01-02')])
assert lib.infer_dtype(arr) == 'datetime'
# should be datetime?
arr = np.array([np.datetime64('2011-01-01'),
pd.Timestamp('2011-01-02')])
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([pd.Timestamp('2011-01-02'),
np.datetime64('2011-01-01')])
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1])
assert lib.infer_dtype(arr) == 'mixed-integer'
arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1])
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')])
assert lib.infer_dtype(arr) == 'mixed'
def test_infer_dtype_timedelta(self):
arr = np.array([pd.Timedelta('1 days'),
pd.Timedelta('2 days')])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([np.timedelta64(1, 'D'),
np.timedelta64(2, 'D')], dtype=object)
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([timedelta(1), timedelta(2)])
assert lib.infer_dtype(arr) == 'timedelta'
# starts with nan
for n in [pd.NaT, np.nan]:
arr = np.array([n, Timedelta('1 days')])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([n, np.timedelta64(1, 'D')])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([n, timedelta(1)])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([n, pd.Timedelta('1 days'), n])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([n, np.timedelta64(1, 'D'), n])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([n, timedelta(1), n])
assert lib.infer_dtype(arr) == 'timedelta'
# different type of nat
arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')],
dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')],
dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
def test_infer_dtype_period(self):
# GH 13664
arr = np.array([pd.Period('2011-01', freq='D'),
pd.Period('2011-02', freq='D')])
assert lib.infer_dtype(arr) == 'period'
arr = np.array([pd.Period('2011-01', freq='D'),
pd.Period('2011-02', freq='M')])
assert lib.infer_dtype(arr) == 'period'
# starts with nan
for n in [pd.NaT, np.nan]:
arr = np.array([n, pd.Period('2011-01', freq='D')])
assert lib.infer_dtype(arr) == 'period'
arr = np.array([n, pd.Period('2011-01', freq='D'), n])
assert lib.infer_dtype(arr) == 'period'
# different type of nat
arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')],
dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')],
dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
@pytest.mark.parametrize(
"data",
[
[datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)],
[Timestamp("20170612"), Timestamp("20170311")],
[Timestamp("20170612", tz='US/Eastern'),
Timestamp("20170311", tz='US/Eastern')],
[date(2017, 6, 12),
Timestamp("20170311", tz='US/Eastern')],
[np.datetime64("2017-06-12"), np.datetime64("2017-03-11")],
[np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)]
]
)
def test_infer_datetimelike_array_datetime(self, data):
assert lib.infer_datetimelike_array(data) == "datetime"
@pytest.mark.parametrize(
"data",
[
[timedelta(2017, 6, 12), timedelta(2017, 3, 11)],
[timedelta(2017, 6, 12), date(2017, 3, 11)],
[np.timedelta64(2017, "D"), np.timedelta64(6, "s")],
[np.timedelta64(2017, "D"), timedelta(2017, 3, 11)]
]
)
def test_infer_datetimelike_array_timedelta(self, data):
assert lib.infer_datetimelike_array(data) == "timedelta"
def test_infer_datetimelike_array_date(self):
arr = [date(2017, 6, 12), date(2017, 3, 11)]
assert lib.infer_datetimelike_array(arr) == "date"
@pytest.mark.parametrize(
"data",
[
["2017-06-12", "2017-03-11"],
[20170612, 20170311],
[20170612.5, 20170311.8],
[Dummy(), Dummy()],
[Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')],
[Timestamp("20170612"), 20170311],
[timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')]
]
)
def test_infer_datetimelike_array_mixed(self, data):
assert lib.infer_datetimelike_array(data) == "mixed"
@pytest.mark.parametrize(
"first, expected",
[
[[None], "mixed"],
[[np.nan], "mixed"],
[[pd.NaT], "nat"],
[[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"],
[[np.datetime64("2017-06-12"), pd.NaT], "datetime"],
[[date(2017, 6, 12), pd.NaT], "date"],
[[timedelta(2017, 6, 12), pd.NaT], "timedelta"],
[[np.timedelta64(2017, "D"), pd.NaT], "timedelta"]
]
)
@pytest.mark.parametrize("second", [None, np.nan])
def test_infer_datetimelike_array_nan_nat_like(self, first, second,
expected):
first.append(second)
assert lib.infer_datetimelike_array(first) == expected
def test_infer_dtype_all_nan_nat_like(self):
arr = np.array([np.nan, np.nan])
assert lib.infer_dtype(arr) == 'floating'
# nan and None mix are result in mixed
arr = np.array([np.nan, np.nan, None])
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([None, np.nan, np.nan])
assert lib.infer_dtype(arr) == 'mixed'
# pd.NaT
arr = np.array([pd.NaT])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([pd.NaT, np.nan])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([np.nan, pd.NaT])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([np.nan, pd.NaT, np.nan])
assert lib.infer_dtype(arr) == 'datetime'
arr = np.array([None, pd.NaT, None])
assert lib.infer_dtype(arr) == 'datetime'
# np.datetime64(nat)
arr = np.array([np.datetime64('nat')])
assert lib.infer_dtype(arr) == 'datetime64'
for n in [np.nan, pd.NaT, None]:
arr = np.array([n, np.datetime64('nat'), n])
assert lib.infer_dtype(arr) == 'datetime64'
arr = np.array([pd.NaT, n, np.datetime64('nat'), n])
assert lib.infer_dtype(arr) == 'datetime64'
arr = np.array([np.timedelta64('nat')], dtype=object)
assert lib.infer_dtype(arr) == 'timedelta'
for n in [np.nan, pd.NaT, None]:
arr = np.array([n, np.timedelta64('nat'), n])
assert lib.infer_dtype(arr) == 'timedelta'
arr = np.array([pd.NaT, n, np.timedelta64('nat'), n])
assert lib.infer_dtype(arr) == 'timedelta'
# datetime / timedelta mixed
arr = np.array([pd.NaT, np.datetime64('nat'),
np.timedelta64('nat'), np.nan])
assert lib.infer_dtype(arr) == 'mixed'
arr = np.array([np.timedelta64('nat'), np.datetime64('nat')],
dtype=object)
assert lib.infer_dtype(arr) == 'mixed'
def test_is_datetimelike_array_all_nan_nat_like(self):
arr = np.array([np.nan, pd.NaT, np.datetime64('nat')])
assert lib.is_datetime_array(arr)
assert lib.is_datetime64_array(arr)
assert not lib.is_timedelta_or_timedelta64_array(arr)
arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')])
assert not lib.is_datetime_array(arr)
assert not lib.is_datetime64_array(arr)
assert lib.is_timedelta_or_timedelta64_array(arr)
arr = np.array([np.nan, pd.NaT, np.datetime64('nat'),
| np.timedelta64('nat') | numpy.timedelta64 |
import re
import numpy as np
import scipy.misc
import os
from scipy.misc import imresize
from PIL import Image, ImageDraw, ImageFont
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
def drawCaption(img, caption, max_len):
img_txt = Image.fromarray(img)
# get a font
fnt = ImageFont.truetype('/eai/project/.fonts/FreeMono.ttf', 30)
# get a drawing context
d = ImageDraw.Draw(img_txt)
d.text((10, 256), 'Stage-I', font=fnt, fill=(0, 0, 0, 255))
d.text((10, 512), 'Stage-II', font=fnt, fill=(0, 0, 0, 255))
d.text((10, 768), 'Stage-III', font=fnt, fill=(0, 0, 0, 255))
caption = caption.split(' ')
cap1 = ' '.join(caption[:max_len])
cap2 = ' '.join(caption[max_len + 1:])
d.text((256, 10), cap1, font=fnt, fill=(0, 0, 0, 255))
d.text((256, 60), cap2, font=fnt, fill=(127, 127, 127, 255))
return img_txt
def save_images_with_text(
lr_sample_batchs, hr_sample_batchs, sr_sample_batchs,
reals_batch, texts_batch, batch_size, max_len,
startID, save_dir=None):
if save_dir and not os.path.isdir(save_dir):
print('Make a new folder: ', save_dir)
mkdir_p(save_dir)
# Save up to 16 samples for each text embedding/sentence
img_shape = sr_sample_batchs[0][0].shape
super_images = []
for i in range(batch_size):
if not re.search('[a-zA-Z]+', texts_batch[i]):
continue
padding = 255 + np.zeros(img_shape)
row1 = [padding]
row2 = [padding]
row3 = [padding]
for j in range(lr_sample_batchs[0].shape[0]):
lr_img = lr_sample_batchs[i][j]
hr_img = hr_sample_batchs[i][j]
sr_img = sr_sample_batchs[i][j]
if j == 0:
row1.append(imresize(reals_batch[0][i], sr_img.shape[:2]))
row2.append(imresize(reals_batch[1][i], sr_img.shape[:2]))
row3.append(imresize(reals_batch[2][i], sr_img.shape[:2]))
lr_re_sample = imresize(lr_img, sr_img.shape[:2])
hr_re_sample = imresize(hr_img, sr_img.shape[:2])
row1.append(lr_re_sample)
row2.append(hr_re_sample)
row3.append(sr_img)
row1 = np.concatenate(row1, axis=1)
row2 = np.concatenate(row2, axis=1)
row3 = np.concatenate(row3, axis=1)
superimage = np.concatenate([row1, row2, row3], axis=0)
top_padding = 255 + np.zeros((128, superimage.shape[1], 3))
superimage = | np.concatenate([top_padding, superimage], axis=0) | numpy.concatenate |
import os
import time
import random
import threading
import numpy as np
from keras import backend as K
from keras.preprocessing.image import img_to_array, load_img
from keras.preprocessing.image import ImageDataGenerator
from keras.applications import vgg16
from pycocotools.coco import COCO
EPS = np.finfo(float).eps
split_name_dict = {'valid': 'val', 'train': 'train', 'test': 'test'}
data_source_dir = "/media/Borg_LS/DATA"
class CocoGenerator(object):
def __init__(self,
image_data_generator=ImageDataGenerator(),
subset_name='2017',
split_name='train',
source_dir=data_source_dir,
store_labels=False,
batch_size=1,
group_method='none', # one of 'none', 'random', 'ratio'
shuffle=True,
seed=None,
standardize_method='zmuv',
llb=None,
lub=None,
):
"""Initialization"""
self.set_name = split_name_dict[split_name] + subset_name
self.image_data_generator = image_data_generator
self.source_dir = os.path.join(source_dir, 'coco')
self._coco = COCO(os.path.join(self.source_dir, 'annotations', 'instances_' + self.set_name + '.json'))
self.image_ids = self._coco.getImgIds()
if llb is not None or lub is not None:
self.remove_outliers = True
else:
self.remove_outliers = False
self.label_lower_bound = llb
self.label_upper_bound = lub
self._num_samples = None
self._num_classes = None
self._steps = None
self._good_indices = None
self._images = None
self._labels = None
self._label_names = None
self.class_ids = None
self.class_id_to_name = {}
self.class_id_to_index = {}
self.names = None
self.name_to_class_id = {}
self.name_to_index = {}
self.load_metadata()
self.batch_size = int(batch_size)
self.group_method = group_method
self.shuffle_groups = shuffle
# self.store_labels = store_labels
self.stored_labels = | np.zeros((self.num_samples, self.num_classes)) | numpy.zeros |
# -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import
import numpy as np
from numba import autojit, jit, double, void, uint32, npy_intp, typeof
def uint_int_div_ary(elts, normdist, seed):
for i in xrange(elts.shape[0]):
# Problem with using sext instead of zext for uint32
elt = (seed[i] // uint32(normdist.shape[0]))
elts[i] = elt
def test_uint_int_div_ary():
NPATHS = 10
normdist = np.empty(1000) #np.random.normal(0., 1., 1000)
seed = | np.arange(0x80000000, 0x80000000 + NPATHS, dtype=np.uint32) | numpy.arange |
"""Tests the functions contained within utilities.py"""
import numpy as np
import pytest
import quantum_heom.utilities as util
# -------------------------------------------------------------------
# MATH-BASED FUNCTIONS
# -------------------------------------------------------------------
@pytest.mark.parametrize(
'mat, ans',
[(np.array([[0.5, 0.5], [0.5, 0.5]]), 1.0),
(np.array([[2**(-1/2), 0], [0, 2**(-1/2)]]), 1.0)])
def test_trace_matrix_squared_pure(mat, ans):
"""
Tests that the correct value of 1 is returned for the
trace of matrix squared for matrices that mimic a pure
density matrix (i.e. tr(rho^2) = 1).
"""
assert np.isclose(util.trace_matrix_squared(mat), ans)
@pytest.mark.parametrize(
'mat, ans',
[(np.array([[0.5, 0], [0, 0.5]]), 0.5)])
def test_trace_matrix_squared_not_pure(mat, ans):
"""
Tests that the correct value of 1 is returned for the
trace of matrix squared for matrices that mimic an
impure density matrix (i.e. tr(rho^2) < 1).
"""
assert np.isclose(util.trace_matrix_squared(mat), ans)
@pytest.mark.parametrize(
'mat_a, mat_b, ans',
[(np.array([[0, 0], [0, 0]]),
np.array([[0, 0], [0, 0]]),
np.array([[0, 0], [0, 0]])),
(np.array([[1, 0.3], [0.3, 1]]),
np.array([[1, 0.3], [0.3, 1]]),
np.array([[0, 0], [0, 0]]))])
def test_commutator_zero(mat_a, mat_b, ans):
"""
Tests that the correct commutator of A and B is returned.
"""
assert np.all(util.commutator(mat_a, mat_b) == ans)
@pytest.mark.parametrize(
'mat_a, mat_b, ans',
[(np.array([[0, 0], [0, 0]]),
np.array([[0, 0], [0, 0]]),
np.array([[0, 0], [0, 0]])),
(np.array([[1, 0], [0, 1]]),
np.array([[1, 0], [0, 1]]),
np.array([[2, 0], [0, 2]]))])
def test_anti_commutator(mat_a, mat_b, ans):
"""
Tests that the correct anti-commutator of A and B is returned.
"""
assert np.all(util.commutator(mat_a, mat_b, anti=True) == ans)
@pytest.mark.parametrize(
'scaling, dims',
[(3, 2),
(7, 4),
(1, 6),
(0, 4)])
def test_basis_change_identity(scaling, dims):
"""
Tests that the function maintains the expected behaviour that
the identity matrix (and multiples of) is invariant under
basis transformation.
"""
liouville = [True, False]
for liou in liouville:
if liou:
assert np.all(util.basis_change(scaling * np.eye(dims**2),
np.eye(dims),
liou)
== scaling * np.eye(dims**2))
else:
assert np.all(util.basis_change(scaling * np.eye(dims),
np.eye(dims),
liou)
== scaling * np.eye(dims))
# @pytest.mark.parametrize(
# 'matrix, states, output',
# [(np.array([[1, 0], [0, 0]]), np.array)])
def test_basis_change():
"""
Tests that the correct matrix is returned when performing a
basis change.
"""
@pytest.mark.parametrize(
'matrix',
[np.array([[1, 2], [3, 4]]),
np.array([[100, -300], [2, 44]]),
np.eye(6)])
def test_renormalise_matrix(matrix):
"""
Asserts that the function correctly renormalises an input
matrix to have trace 1.
"""
assert np.isclose(np.trace(util.renormalise_matrix(matrix)), 1.)
@pytest.mark.parametrize(
'matrix',
[np.array([[1, 2], [3, -1]]),
| np.array([[100, -300], [2, -100]]) | numpy.array |
Subsets and Splits