prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np import matplotlib.pyplot as plt import inspect # Used for storing the input from .element import Element from .equation import HeadEquation, PotentialEquation from .besselaesnumba import besselaesnumba besselaesnumba.initialize() try: from .src import besselaesnew besselaesnew.besselaesnew.initialize() #print('succes on f2py') except: pass from .controlpoints import controlpoints, strengthinf_controlpoints __all__ = ['LineSinkBase', 'HeadLineSinkZero', 'HeadLineSink', 'LineSinkDitch', 'HeadLineSinkString', 'LineSinkDitchString'] class LineSinkChangeTrace: def changetrace(self, xyzt1, xyzt2, aq, layer, ltype, modellayer, direction, hstepmax, verbose=False): changed = False terminate = False xyztnew = 0 if (ltype == 'a'): if True: # if (layer == self.layers).any(): # in layer where line-sink is screened # not needed anymore, I thin this is all taken care of with checking Qn1 and Qn2 if verbose: print('hello changetrace') print('xyz1:', xyzt1[:-1]) print('xyz2:', xyzt2[:-1]) x1, y1, z1, t1 = xyzt1 x2, y2, z2, t2 = xyzt2 eps = 1e-8 za = x1 + y1 * 1j zb = x2 + y2 * 1j Za = (2 * za - (self.z1 + self.z2)) / (self.z2 - self.z1) Zb = (2 * zb - (self.z1 + self.z2)) / (self.z2 - self.z1) if Za.imag * Zb.imag < 0: Xa, Ya = Za.real, Za.imag Xb, Yb = Zb.real, Zb.imag X = Xa - Ya * (Xb - Xa) / (Yb - Ya) if verbose: print('X', X) if abs(X) <= 1: # crosses line-sink if verbose: print('crosses line-sink') Znew1 = X - eps * np.sign(Yb) * 1j # steps to side of Ya Znew2 = X + eps * np.sign(Yb) * 1j # steps to side of Yb znew1 = 0.5 * ((self.z2 - self.z1) * Znew1 + self.z1 + self.z2) znew2 = 0.5 * ((self.z2 - self.z1) * Znew2 + self.z1 + self.z2) xnew1, ynew1 = znew1.real, znew1.imag xnew2, ynew2 = znew2.real, znew2.imag if Ya < 0: theta = self.theta_norm_out else: theta = self.theta_norm_out + np.pi Qx1, Qy1 = self.model.disvec(xnew1, ynew1)[:, layer] * direction Qn1 = Qx1 * np.cos(theta) + Qy1 * np.sin(theta) Qx2, Qy2 = self.model.disvec(xnew2, ynew2)[:, layer] * direction Qn2 = Qx2 * np.cos(theta) + Qy2 * np.sin(theta) if verbose: print('xnew1, ynew1:', xnew1, ynew1) print('xnew2, ynew2:', xnew2, ynew2) print('Qn1, Qn2', Qn1, Qn2) print('Qn2 > Qn1:', Qn2 > Qn1) if Qn1 < 0: # trying to cross line-sink that infiltrates, stay on bottom, don't terminate if verbose: print('change 1') xnew = xnew1 ynew = ynew1 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) tnew = t1 + dnew / dold * (t2 - t1) changed = True xyztnew = [np.array([xnew, ynew, znew, tnew])] elif Qn2 < 0: # all water is taken out, terminate if verbose: print('change 2') xnew = xnew2 ynew = ynew2 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) tnew = t1 + dnew / dold * (t2 - t1) changed = True terminate = True xyztnew = [np.array([xnew, ynew, znew, tnew])] elif Qn2 > Qn1: # line-sink infiltrates if verbose: print('change 3') xnew = xnew2 ynew = ynew2 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) # elevation just before jump tnew = t1 + dnew / dold * (t2 - t1) Qbelow = (znew - aq.z[modellayer + 1]) / aq.Haq[layer] * Qn1 znew2 = aq.z[modellayer + 1] + Qbelow / Qn2 * aq.Haq[layer] changed = True xyztnew = [np.array([xnew, ynew, znew, tnew]), np.array([xnew, ynew, znew2, tnew])] else: # line-sink takes part of water out if verbose: print('change 4') xnew = xnew2 ynew = ynew2 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) # elevation just before jump tnew = t1 + dnew / dold * (t2 - t1) Qbelow = (znew - aq.z[modellayer + 1]) / aq.Haq[layer] * Qn1 if Qbelow > Qn2: # taken out terminate = True xyztnew = [np.array([xnew, ynew, znew, tnew])] else: znew2 = aq.z[modellayer + 1] + Qbelow / Qn2 * aq.Haq[layer] xyztnew = [np.array([xnew, ynew, znew, tnew]), np.array([xnew, ynew, znew2, tnew])] changed = True return changed, terminate, xyztnew class LineSinkBase(LineSinkChangeTrace, Element): def __init__(self, model, x1=-1, y1=0, x2=1, y2=0, Qls=100.0, \ res=0, wh=1, layers=0, name='LineSinkBase', label=None, \ addtomodel=True): Element.__init__(self, model, nparam=1, nunknowns=0, layers=layers, \ name=name, label=label) self.nparam = len(self.layers) self.x1 = float(x1) self.y1 = float(y1) self.x2 = float(x2) self.y2 = float(y2) self.Qls = np.atleast_1d(Qls) self.res = float(res) self.wh = wh self.addtomodel = addtomodel if self.addtomodel: self.model.add_element(self) # self.xa,self.ya,self.xb,self.yb,self.np = np.zeros(1),np.zeros(1),np.zeros(1),np.zeros(1),np.zeros(1,'i') # needed to call bessel.circle_line_intersection if self.model.f2py: self.bessel = besselaesnew.besselaesnew else: self.bessel = besselaesnumba def __repr__(self): return self.name + ' from ' + str((self.x1, self.y1)) + ' to ' + str( (self.x2, self.y2)) def initialize(self): self.xc = np.array([0.5 * (self.x1 + self.x2)]) self.yc = np.array([0.5 * (self.y1 + self.y2)]) self.ncp = 1 self.z1 = self.x1 + 1j * self.y1 self.z2 = self.x2 + 1j * self.y2 self.L = np.abs(self.z1 - self.z2) self.theta_norm_out = np.arctan2(self.y2 - self.y1, self.x2 - self.x1) + np.pi / 2 self.order = 0 # This is for uniform strength only self.aq = self.model.aq.find_aquifer_data(self.xc, self.yc) if self.addtomodel: self.aq.add_element(self) self.parameters = np.empty((self.nparam, 1)) self.parameters[:, 0] = self.Qls / self.L if self.wh == 'H': self.wh = self.aq.Haq[self.layers] elif self.wh == '2H': self.wh = 2.0 * self.aq.Haq[self.layers] elif np.isscalar(self.wh): self.wh = self.wh * np.ones(self.nlayers) self.resfac = self.aq.T[self.layers] * self.res / self.wh def potinf(self, x, y, aq=None): '''Can be called with only one x,y value''' if aq is None: aq = self.model.aq.find_aquifer_data(x, y) rv = np.zeros((self.nparam, aq.naq)) if aq == self.aq: pot = np.zeros(aq.naq) pot[:] = self.bessel.potbeslsho(float(x), float(y), self.z1, self.z2, aq.lab, 0, aq.ilap, aq.naq) rv[:] = self.aq.coef[self.layers] * pot return rv def disvecinf(self, x, y, aq=None): '''Can be called with only one x,y value''' if aq is None: aq = self.model.aq.find_aquifer_data(x, y) rv = np.zeros((2, self.nparam, aq.naq)) if aq == self.aq: qxqy = np.zeros((2, aq.naq)) qxqy[:, :] = self.bessel.disbeslsho(float(x), float(y), self.z1, self.z2, aq.lab, 0, aq.ilap, aq.naq) rv[0] = self.aq.coef[self.layers] * qxqy[0] rv[1] = self.aq.coef[self.layers] * qxqy[1] return rv def discharge(self): # returns the discharge in each layer Q = np.zeros(self.aq.naq) Q[self.layers] = self.parameters[:, 0] * self.L return Q def plot(self): plt.plot([self.x1, self.x2], [self.y1, self.y2], 'k') class HeadLineSinkZero(LineSinkBase, HeadEquation): def __init__(self, model, x1=-1, y1=0, x2=1, y2=0, hls=1.0, \ res=0, wh=1, layers=0, label=None, addtomodel=True): self.storeinput(inspect.currentframe()) LineSinkBase.__init__(self, model, x1, y1, x2, y2, Qls=0, \ res=res, wh=wh, layers=layers, name='HeadLineSink', label=label, \ addtomodel=addtomodel) self.hc = np.atleast_1d(float(hls)) self.nunknowns = self.nparam def initialize(self): LineSinkBase.initialize(self) self.pc = self.hc * self.aq.T[self.layers] # Needed in solving def setparams(self, sol): self.parameters[:, 0] = sol class LineSinkHoBase(LineSinkChangeTrace, Element): def __init__(self, model, x1=-1, y1=0, x2=1, y2=0, \ Qls=0.0, layers=0, order=0, name='LineSinkHoBase', \ label=None, addtomodel=True, aq=None, zcinout=None): Element.__init__(self, model, nparam=1, nunknowns=0, layers=layers, \ name=name, label=label) self.x1 = float(x1) self.y1 = float(y1) self.x2 = float(x2) self.y2 = float(y2) self.Qls = np.atleast_1d(Qls) self.order = order self.nparam = self.nlayers * (self.order + 1) self.addtomodel = addtomodel if addtomodel: self.model.add_element(self) self.aq = aq self.zcinout = zcinout if self.model.f2py: self.bessel = besselaesnew.besselaesnew else: self.bessel = besselaesnumba def __repr__(self): return self.name + ' from ' + str((self.x1, self.y1)) + ' to ' + str( (self.x2, self.y2)) def initialize(self): self.ncp = self.order + 1 self.z1 = self.x1 + 1j * self.y1 self.z2 = self.x2 + 1j * self.y2 self.L = np.abs(self.z1 - self.z2) self.theta_norm_out = np.arctan2(self.y2 - self.y1, self.x2 - self.x1) + np.pi / 2.0 # changed minus to plus self.cosnorm = np.cos(self.theta_norm_out) * np.ones(self.ncp) self.sinnorm = np.sin(self.theta_norm_out) * np.ones(self.ncp) self.strengthinf = strengthinf_controlpoints(self.ncp, self.nlayers) # array of ncp by nlayers * (order + 1) # self.xc, self.yc = controlpoints(self.ncp, self.z1, self.z2, eps=0) if self.zcinout is not None: self.xcin, self.ycin = controlpoints(self.ncp, self.zcinout[0], self.zcinout[1], eps=0) self.xcout, self.ycout = controlpoints(self.ncp, self.zcinout[2], self.zcinout[3], eps=0) else: self.xcin, self.ycin = controlpoints(self.ncp, self.z1, self.z2, eps=1e-6) self.xcout, self.ycout = controlpoints(self.ncp, self.z1, self.z2, eps=-1e-6) if self.aq is None: self.aq = self.model.aq.find_aquifer_data(self.xc[0], self.yc[0]) if self.addtomodel: self.aq.add_element(self) self.parameters = np.empty((self.nparam, 1)) # Not sure if that needs to be here self.parameters[:, 0] = self.Qls / self.L def potinf(self, x, y, aq=None): '''Can be called with only one x,y value Returns array(nparam, self.aq.naq) with order order 0, layer[0] order 0, layer[1] ... order 1, layer[0] order 1, layer[1] etc ''' if aq is None: aq = self.model.aq.find_aquifer_data(x, y) rv = np.zeros((self.nparam, aq.naq)) if aq == self.aq: # clever way of using a reshaped rv here potrv = rv.reshape((self.order + 1, self.nlayers, aq.naq)) pot = np.zeros((self.order + 1, aq.naq)) pot[:, :] = self.bessel.potbeslsv(float(x), float(y), self.z1, self.z2, aq.lab, self.order, aq.ilap, aq.naq) potrv[:] = self.aq.coef[self.layers] * pot[:, np.newaxis, :] return rv def disvecinf(self, x, y, aq=None): '''Can be called with only one x,y value Returns array(nparam, self.aq.naq) with order order 0, layer[0] order 0, layer[1] ... order 1, layer[0] order 1, layer[1] etc ''' if aq is None: aq = self.model.aq.find_aquifer_data(x, y) rv = np.zeros((2, self.nparam, aq.naq)) if aq == self.aq: qxqyrv = rv.reshape((2, self.order + 1, self.nlayers, aq.naq)) qxqy = np.zeros((2 * (self.order + 1), aq.naq)) qxqy[:, :] = self.bessel.disbeslsv(float(x), float(y), self.z1, self.z2, aq.lab, self.order, aq.ilap, aq.naq) qxqyrv[0, :] = self.aq.coef[self.layers] * qxqy[:self.order + 1, np.newaxis, :] qxqyrv[1, :] = self.aq.coef[self.layers] * qxqy[self.order + 1:, np.newaxis, :] return rv def plot(self): plt.plot([self.x1, self.x2], [self.y1, self.y2], 'k') def dischargeinf(self): # returns the unit contribution to the discharge in each layer # array of length nunknowns Qdisinf =
np.zeros((self.order + 1, self.nlayers))
numpy.zeros
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 """ Sparse Regression ================= We demonstrate how to do (fully Bayesian) sparse linear regression using the approach described in [1]. This approach is particularly suitable for situations with many feature dimensions (large P) but not too many datapoints (small N). In particular we consider a quadratic regressor of the form: .. math:: f(X) = \\text{constant} + \\sum_i \\theta_i X_i + \\sum_{i<j} \\theta_{ij} X_i X_j + \\text{observation noise} **References:** 1. <NAME>, <NAME>, <NAME>, <NAME> (2019), "The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions", (https://arxiv.org/abs/1905.06501) """ import argparse import itertools import os import time import numpy as np import jax from jax import vmap import jax.numpy as jnp import jax.random as random from jax.scipy.linalg import cho_factor, cho_solve, solve_triangular import numpyro import numpyro.distributions as dist from numpyro.infer import MCMC, NUTS def dot(X, Z): return jnp.dot(X, Z[..., None])[..., 0] # The kernel that corresponds to our quadratic regressor. def kernel(X, Z, eta1, eta2, c, jitter=1.0e-4): eta1sq = jnp.square(eta1) eta2sq = jnp.square(eta2) k1 = 0.5 * eta2sq * jnp.square(1.0 + dot(X, Z)) k2 = -0.5 * eta2sq * dot(jnp.square(X), jnp.square(Z)) k3 = (eta1sq - eta2sq) * dot(X, Z) k4 = jnp.square(c) - 0.5 * eta2sq if X.shape == Z.shape: k4 += jitter * jnp.eye(X.shape[0]) return k1 + k2 + k3 + k4 # Most of the model code is concerned with constructing the sparsity inducing prior. def model(X, Y, hypers): S, P, N = hypers['expected_sparsity'], X.shape[1], X.shape[0] sigma = numpyro.sample("sigma", dist.HalfNormal(hypers['alpha3'])) phi = sigma * (S / jnp.sqrt(N)) / (P - S) eta1 = numpyro.sample("eta1", dist.HalfCauchy(phi)) msq = numpyro.sample("msq", dist.InverseGamma(hypers['alpha1'], hypers['beta1'])) xisq = numpyro.sample("xisq", dist.InverseGamma(hypers['alpha2'], hypers['beta2'])) eta2 = jnp.square(eta1) * jnp.sqrt(xisq) / msq lam = numpyro.sample("lambda", dist.HalfCauchy(jnp.ones(P))) kappa = jnp.sqrt(msq) * lam / jnp.sqrt(msq + jnp.square(eta1 * lam)) # compute kernel kX = kappa * X k = kernel(kX, kX, eta1, eta2, hypers['c']) + sigma ** 2 * jnp.eye(N) assert k.shape == (N, N) # sample Y according to the standard gaussian process formula numpyro.sample("Y", dist.MultivariateNormal(loc=jnp.zeros(X.shape[0]), covariance_matrix=k), obs=Y) # Compute the mean and variance of coefficient theta_i (where i = dimension) for a # MCMC sample of the kernel hyperparameters (eta1, xisq, ...). # Compare to theorem 5.1 in reference [1]. def compute_singleton_mean_variance(X, Y, dimension, msq, lam, eta1, xisq, c, sigma): P, N = X.shape[1], X.shape[0] probe = jnp.zeros((2, P)) probe = jax.ops.index_update(probe, jax.ops.index[:, dimension], jnp.array([1.0, -1.0])) eta2 = jnp.square(eta1) * jnp.sqrt(xisq) / msq kappa = jnp.sqrt(msq) * lam / jnp.sqrt(msq + jnp.square(eta1 * lam)) kX = kappa * X kprobe = kappa * probe k_xx = kernel(kX, kX, eta1, eta2, c) + sigma ** 2 * jnp.eye(N) k_xx_inv = jnp.linalg.inv(k_xx) k_probeX = kernel(kprobe, kX, eta1, eta2, c) k_prbprb = kernel(kprobe, kprobe, eta1, eta2, c) vec = jnp.array([0.50, -0.50]) mu = jnp.matmul(k_probeX, jnp.matmul(k_xx_inv, Y)) mu = jnp.dot(mu, vec) var = k_prbprb - jnp.matmul(k_probeX, jnp.matmul(k_xx_inv, jnp.transpose(k_probeX))) var = jnp.matmul(var, vec) var = jnp.dot(var, vec) return mu, var # Compute the mean and variance of coefficient theta_ij for a MCMC sample of the # kernel hyperparameters (eta1, xisq, ...). Compare to theorem 5.1 in reference [1]. def compute_pairwise_mean_variance(X, Y, dim1, dim2, msq, lam, eta1, xisq, c, sigma): P, N = X.shape[1], X.shape[0] probe = jnp.zeros((4, P)) probe = jax.ops.index_update(probe, jax.ops.index[:, dim1], jnp.array([1.0, 1.0, -1.0, -1.0])) probe = jax.ops.index_update(probe, jax.ops.index[:, dim2], jnp.array([1.0, -1.0, 1.0, -1.0])) eta2 = jnp.square(eta1) * jnp.sqrt(xisq) / msq kappa = jnp.sqrt(msq) * lam / jnp.sqrt(msq + jnp.square(eta1 * lam)) kX = kappa * X kprobe = kappa * probe k_xx = kernel(kX, kX, eta1, eta2, c) + sigma ** 2 * jnp.eye(N) k_xx_inv = jnp.linalg.inv(k_xx) k_probeX = kernel(kprobe, kX, eta1, eta2, c) k_prbprb = kernel(kprobe, kprobe, eta1, eta2, c) vec = jnp.array([0.25, -0.25, -0.25, 0.25]) mu = jnp.matmul(k_probeX, jnp.matmul(k_xx_inv, Y)) mu = jnp.dot(mu, vec) var = k_prbprb - jnp.matmul(k_probeX, jnp.matmul(k_xx_inv, jnp.transpose(k_probeX))) var = jnp.matmul(var, vec) var = jnp.dot(var, vec) return mu, var # Sample coefficients theta from the posterior for a given MCMC sample. # The first P returned values are {theta_1, theta_2, ...., theta_P}, while # the remaining values are {theta_ij} for i,j in the list `active_dims`, # sorted so that i < j. def sample_theta_space(X, Y, active_dims, msq, lam, eta1, xisq, c, sigma): P, N, M = X.shape[1], X.shape[0], len(active_dims) # the total number of coefficients we return num_coefficients = P + M * (M - 1) // 2 probe = jnp.zeros((2 * P + 2 * M * (M - 1), P)) vec = jnp.zeros((num_coefficients, 2 * P + 2 * M * (M - 1))) start1 = 0 start2 = 0 for dim in range(P): probe = jax.ops.index_update(probe, jax.ops.index[start1:start1 + 2, dim], jnp.array([1.0, -1.0])) vec = jax.ops.index_update(vec, jax.ops.index[start2, start1:start1 + 2], jnp.array([0.5, -0.5])) start1 += 2 start2 += 1 for dim1 in active_dims: for dim2 in active_dims: if dim1 >= dim2: continue probe = jax.ops.index_update(probe, jax.ops.index[start1:start1 + 4, dim1], jnp.array([1.0, 1.0, -1.0, -1.0])) probe = jax.ops.index_update(probe, jax.ops.index[start1:start1 + 4, dim2], jnp.array([1.0, -1.0, 1.0, -1.0])) vec = jax.ops.index_update(vec, jax.ops.index[start2, start1:start1 + 4], jnp.array([0.25, -0.25, -0.25, 0.25])) start1 += 4 start2 += 1 eta2 = jnp.square(eta1) * jnp.sqrt(xisq) / msq kappa = jnp.sqrt(msq) * lam / jnp.sqrt(msq + jnp.square(eta1 * lam)) kX = kappa * X kprobe = kappa * probe k_xx = kernel(kX, kX, eta1, eta2, c) + sigma ** 2 * jnp.eye(N) L = cho_factor(k_xx, lower=True)[0] k_probeX = kernel(kprobe, kX, eta1, eta2, c) k_prbprb = kernel(kprobe, kprobe, eta1, eta2, c) mu = jnp.matmul(k_probeX, cho_solve((L, True), Y)) mu = jnp.sum(mu * vec, axis=-1) Linv_k_probeX = solve_triangular(L, jnp.transpose(k_probeX), lower=True) covar = k_prbprb - jnp.matmul(jnp.transpose(Linv_k_probeX), Linv_k_probeX) covar = jnp.matmul(vec, jnp.matmul(covar, jnp.transpose(vec))) # sample from N(mu, covar) L = jnp.linalg.cholesky(covar) sample = mu + jnp.matmul(L, np.random.randn(num_coefficients)) return sample # Helper function for doing HMC inference def run_inference(model, args, rng_key, X, Y, hypers): start = time.time() kernel = NUTS(model) mcmc = MCMC(kernel, args.num_warmup, args.num_samples, num_chains=args.num_chains, progress_bar=False if "NUMPYRO_SPHINXBUILD" in os.environ else True) mcmc.run(rng_key, X, Y, hypers) mcmc.print_summary() print('\nMCMC elapsed time:', time.time() - start) return mcmc.get_samples() # Get the mean and variance of a gaussian mixture def gaussian_mixture_stats(mus, variances): mean_mu = jnp.mean(mus) mean_var = jnp.mean(variances) + jnp.mean(jnp.square(mus)) - jnp.square(mean_mu) return mean_mu, mean_var # Create artificial regression dataset where only S out of P feature # dimensions contain signal and where there is a single pairwise interaction # between the first and second dimensions. def get_data(N=20, S=2, P=10, sigma_obs=0.05): assert S < P and P > 1 and S > 0 np.random.seed(0) X =
np.random.randn(N, P)
numpy.random.randn
import numpy as np import joblib from .base import Model from pathlib import Path BANDNAMES = ["B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B11", "B12"] def cosine(X, Y): """ Cosine distance between `X` and `Y` calculated over axis=2. """ nX = 1 / np.sqrt(np.sum(np.square(X), axis=2)) nY = 1 / np.sqrt(np.sum(np.square(Y), axis=2)) XX = np.einsum("ij,ijk->ijk", nX, X) YY = np.einsum("ij,ijk->ijk", nY, Y) return 1.0 -
np.einsum("ijk,ijk->ij", XX, YY)
numpy.einsum
import numpy as np from core_parallel.communicators import Communicators from mpi4py import MPI import scipy as sc class LinearHelpers(Communicators): def __init__(self): Communicators.__init__(self) def __next_alpha__(self, idx): if idx + 1 < len(self.alphas) and self.time_intervals > 1: idx += 1 return idx def __get_v__(self, t_start): v = np.zeros((self.rows_loc, self.cols_loc), dtype=complex) shift = self.rank_row * self.cols_loc # if we have spatial parallelization if self.frac > 1: for j in range(self.cols_loc): for k in range(self.time_points): v[:, j] += self.dt * self.Q[self.rank_subcol_alternating, k] * self.bpar(t_start + self.t[k] + (shift + j) * self.dt) # case without spatial parallelization else: for i in range(self.Frac): for j in range(self.cols_loc): for k in range(self.time_points): v[i * self.global_size_A:(i+1)*self.global_size_A, j] += self.dt * self.Q[i + self.Frac * self.rank_col, k] * self.bpar(t_start + self.t[k] + (shift + j) * self.dt) return v def __get_r__(self, v_loc): r = 0 temp = 0 for j in range(self.cols_loc): if self.rank_row == 0: # with spatial parallelization if self.frac is not 0: temp = np.linalg.norm(v_loc[:, j] + self.u0_loc, np.infty) # without spatial parallelization else: for i in range(self.Frac): temp = max(temp, np.linalg.norm(v_loc[i * self.global_size_A:(i+1) * self.global_size_A, j] + self.u0_loc, np.infty)) else: temp = np.linalg.norm(v_loc[:, j], np.infty) r = max(r, temp) if self.size > 1: time_beg = MPI.Wtime() temp = self.comm.allreduce(r, op=MPI.MAX) self.communication_time += MPI.Wtime() - time_beg return temp else: return r # fft def __get_fft__(self, w_loc, a): if self.time_intervals == 1: return w_loc, ['0'] g_loc = a ** (self.rank_row / self.time_intervals) / self.time_intervals * w_loc # scale n = int(np.log2(self.time_intervals)) P = format(self.rank_row, 'b').zfill(n) # binary of the rank in string R = P[::-1] # reversed binary in string, index that the proc will have after ifft we = np.exp(-2 * np.pi * 1j / self.time_intervals) # stages of butterfly for k in range(n): p = self.time_intervals // 2 ** (k + 1) r = int(R, 2) % 2 ** (k + 1) - 2 ** k scalar = we ** (r * p) factor = 1 if P[k] == '1': factor = -1 if scalar != 1: # multiply if the factor is != 1 g_loc *= scalar # make a new string and an int from it, a proc to communicate with comm_with = list(P) if comm_with[k] == '1': comm_with[k] = '0' else: comm_with[k] = '1' comm_with = int(''.join(comm_with), 2) # now communicate time_beg = MPI.Wtime() req = self.comm_row.isend(g_loc, dest=comm_with, tag=k) gr = self.comm_row.recv(source=comm_with, tag=k) req.Wait() self.communication_time += MPI.Wtime() - time_beg # glue the info g_loc = gr + factor * g_loc return g_loc, [R] def __get_w__(self, a, v_loc, v1=None): w_loc = v_loc.copy() if v1 is not None: # with spatial parallelization if self.frac > 1: w_loc[:, 0] = v1 + self.u0_loc - a * self.u_last_loc # without spatial parallelization else: for i in range(self.Frac): w_loc[i * self.global_size_A:(i+1) * self.global_size_A, 0] = self.u0_loc - a * self.u_last_loc w_loc[:, 0] += v1 return w_loc def __step1__(self, Zinv, g_loc): h_loc =
np.empty_like(g_loc, dtype=complex)
numpy.empty_like
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from nilearn.input_data import NiftiMasker import nibabel import pytest from fmralign.tests.utils import random_niimg from fmralign._utils import _make_parcellation, voxelwise_correlation def test_make_parcellation(): # make_parcellation is built on Nilearn which already has several test for its Parcellation class # here we test just the call of the API is right on a simple example img, mask_img = random_niimg((7, 6, 8, 5)) masker = NiftiMasker(mask_img=mask_img).fit() n_pieces = 2 # create a predefined parcellation labels_img = nibabel.Nifti1Image( np.hstack([np.ones((7, 3, 8)), 2 *
np.ones((7, 3, 8))
numpy.ones
import matplotlib.pyplot as plt import numpy as np from math import sqrt, pi, pow, fabs #======== how to use ========== # wnn = WNN() # wnn.load_first_function() # wnn.train() class WNN(object): def __init__(self, eta_wnn=0.008, epoch_max=20000, Ni_wnn=1, Nh_wnn=40, Ns=1, plot_flag=False): self.Ni_wnn = Ni_wnn self.eta_wnn = eta_wnn self.Nh_wnn = Nh_wnn self.Aini = 0.01 self.epoch_max = epoch_max self.Ns = Ns self.plot_flag = plot_flag def load_first_function(self, X, Y): self.N = X.shape[0] xmax = fabs(np.max(X)) # self.ymax = fabs(np.max(Y)) self.X_train = X / xmax self.d = Y #/ ymax def sig_dev2(self, theta): return 2 * (1 / (1 + np.exp(-theta)))**3 - 3 * (1 / (1 + np.exp(-theta)))**2 + (1 / (1 + np.exp(-theta))) def sig_dev3(self, theta): return -6 * (1 / (1 + np.exp(-theta)))**4 + 12 * (1 / (1 + np.exp(-theta)))**3 - 7 * (1 / (1 + np.exp(-theta)))**2 + (1 / (1 + np.exp(-theta))) def train(self): # Initializing the weights self.A = np.random.rand(self.Ns, self.Nh_wnn) * self.Aini # Initializing the centers self.t = np.zeros((1, self.Nh_wnn)) idx = np.random.permutation(self.Nh_wnn) for j in range(self.Nh_wnn): self.t[0,j] = self.d[idx[j]] # Initializing widths self.R = abs(
np.max(self.t)
numpy.max
__author__ = 'ikibardin' import os import multiprocessing from typing import List, Dict import numpy as np import pandas as pd import cv2 import skimage.io import torch from torch.utils.data import Dataset import albumentations as A from albumentations.pytorch import ToTensor from power_fist.common_utils import SegmentationDataInterface, saver, transforms IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]) IMAGENET_STD = np.array([0.229, 0.224, 0.225]) def post_transform() -> A.Compose: return A.Compose([ A.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD), ToTensor(num_classes=1, sigmoid=False), ]) def hard_transform(crop_size: int, pad_height: int, pad_width: int) -> A.Compose: return A.Compose( [ A.ShiftScaleRotate( shift_limit=0.01, scale_limit=(-0.2, 0.2), rotate_limit=15, p=0.5, border_mode=cv2.BORDER_REPLICATE, ), A.RandomCrop(crop_size, crop_size), A.Cutout(p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), post_transform(), ] ) def hsv_transform(crop_size: int, pad_height: int, pad_width: int) -> A.Compose: return A.Compose( [ A.ShiftScaleRotate( shift_limit=0.01, scale_limit=(-0.2, 0.2), rotate_limit=15, p=0.5, border_mode=cv2.BORDER_REPLICATE, ), A.RandomCrop(crop_size, crop_size), A.HueSaturationValue(p=0.5), A.Cutout(p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), post_transform(), ] ) def hsv_no_cutout_transform(crop_size: int, pad_height: int, pad_width: int) -> A.Compose: return A.Compose( [ A.ShiftScaleRotate( shift_limit=0.01, scale_limit=(-0.2, 0.2), rotate_limit=15, p=0.5, border_mode=cv2.BORDER_REPLICATE, ), A.RandomCrop(crop_size, crop_size), A.HueSaturationValue(p=0.5), # A.Cutout(p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), post_transform(), ] ) def hsv_no_cutout_harder_transform(crop_size: int, pad_height: int, pad_width: int) -> A.Compose: return A.Compose( [ A.ShiftScaleRotate( shift_limit=0.01, scale_limit=(-0.2, 0.2), rotate_limit=35, p=0.75, border_mode=cv2.BORDER_REPLICATE, ), A.RandomCrop(crop_size, crop_size), A.HueSaturationValue(p=0.5), # A.Cutout(p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), post_transform(), ] ) def light_transform(crop_size: int, pad_height: int, pad_width: int) -> A.Compose: return A.Compose( [ A.Cutout(p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), A.PadIfNeeded( min_height=pad_height, min_width=pad_width, always_apply=True, p=1., border_mode=cv2.BORDER_REPLICATE, ), post_transform(), ] ) def valid_transform(crop_size: int, pad_height: int, pad_width: int) -> A.Compose: return A.Compose( [ A.PadIfNeeded( min_height=pad_height, min_width=pad_width, always_apply=True, p=1., border_mode=cv2.BORDER_REPLICATE, ), post_transform(), ] ) def test_transform(**kwargs) -> A.Compose: return valid_transform(**kwargs) def test_tta_d4(**kwargs) -> transforms._TTAFullD4Base: return transforms._TTAFullD4Base(final_transform=valid_transform(**kwargs)) AUGMENTATIONS = { 'heavy': { 'train': hard_transform, 'valid': valid_transform, 'test': test_transform, }, 'hsv': { 'train': hsv_transform, 'valid': valid_transform, 'test': test_transform, }, 'hsv_no_cutout': { 'train': hsv_no_cutout_transform, 'valid': valid_transform, 'test': test_transform, }, 'hsv_no_cutout_harder': { 'train': hsv_no_cutout_harder_transform, 'valid': valid_transform, 'test': test_tta_d4, }, 'light': { 'train': light_transform, 'valid': valid_transform, 'test': test_transform, }, } MEDIAN_SPEED_IN_BINS = [5, 15, 25, 35, 45, 55, 65] class ImageReader: def __init__(self, mode: str, paths_config: Dict[str, Dict[str, str]], activation: str): self._mode = mode assert mode in ('train', 'valid', 'test'), mode self._paths = paths_config assert activation in ('sigmoid', 'softmax'), activation self._activation = activation def load_image(self, image_id: str) -> np.ndarray: path = self._get_path(image_id, is_mask=False) img = cv2.imread(path) assert img is not None, path return img def load_mask(self, image_id: str) -> np.ndarray: mask_path = self._get_path(image_id, is_mask=True) mask = skimage.io.imread(mask_path) assert mask is not None, mask_path if self._activation == 'sigmoid': mask = mask[:, :, -1] # print('Mask max: ', mask.max()) assert len(mask.shape) == 2, mask.shape return mask elif self._activation == 'softmax': h, w, _ = mask.shape probability_mask = np.zeros(shape=(len(MEDIAN_SPEED_IN_BINS), h, w), dtype=np.float32) for bin_index in range(len(MEDIAN_SPEED_IN_BINS)): bin_mask = mask[:, :, bin_index] > 127 probability_mask[bin_index][bin_mask] = 0.6 if bin_index > 0: probability_mask[bin_index - 1][bin_mask] = 0.2 else: probability_mask[bin_index][bin_mask] += 0.2 if bin_index < len(MEDIAN_SPEED_IN_BINS) - 1: probability_mask[bin_index + 1][bin_mask] = 0.2 else: probability_mask[bin_index][bin_mask] += 0.2 probability_mask[0][probability_mask.sum(axis=0) == 0.0] = 1.0 # print(probability_mask[:, probability_mask.sum(axis=0) == 2.0]) assert np.allclose(probability_mask.sum(axis=0), 1.0), \ (probability_mask.sum(axis=0).min(), probability_mask.sum(axis=0).max()) return probability_mask else: raise ValueError(f'Unknown activation: {self._activation}') def _get_path(self, image_id: str, is_mask: bool = False) -> str: dataset_paths = self._paths['dataset'] if self._mode == 'test': assert not is_mask path = os.path.join(dataset_paths['test_dir'], f'{image_id}.tif') if not os.path.exists(path): train_path = os.path.join(dataset_paths['path'], dataset_paths['images_dir'], f'{image_id}.tif') if os.path.exists(train_path): path = train_path else: raise FileNotFoundError( f'Image not found neither in test dir `{path}` nor in train dir `{train_path}`') elif is_mask: path = os.path.join(dataset_paths['path'], dataset_paths['masks_dir'], f'{image_id}.tif') else: path = os.path.join(dataset_paths['path'], dataset_paths['images_dir'], f'{image_id}.tif') assert os.path.exists(path), path return path class SpacenetDataset(Dataset): def __init__(self, paths_config: dict, data_params: dict, df: pd.DataFrame, transform: A.Compose, mode: str): assert mode in ('train', 'valid', 'test'), mode self._paths = paths_config self._data_params = data_params self._df = df self._transform = transform self._mode = mode self.data_params = data_params self._image_reader = ImageReader(mode=mode, paths_config=paths_config, activation=data_params['activation']) self._activation = data_params['activation'] def get_mode(self) -> str: return self._mode def __len__(self) -> int: return self._df.shape[0] def __getitem__(self, item: int) -> dict: image_id = self._get_image_id(item) result = {'id': image_id} image = self._image_reader.load_image(image_id) if self._mode == 'test': if self._transform is not None: image = self._transform(image=image)['image'] result['image'] = image return result mask = self._image_reader.load_mask(image_id) if self._transform is not None: if self._activation == 'sigmoid': assert image.shape[:2] == mask.shape, (image.shape, mask.shape) tr = self._transform(image=image, mask=mask) image, mask = tr['image'], tr['mask'] elif self._activation == 'softmax': assert image.shape[:2] == mask.shape[-2:], (image.shape, mask.shape) # print('BEFORE ALBU: ', mask.min(), mask.max(), mask.mean()) tr = self._transform(image=image, masks=[mask[c] for c in range(mask.shape[0])]) image, masks_list = tr['image'], tr['masks'] mask = torch.stack(tuple(map(torch.FloatTensor, masks_list))) # print('AFTER ALBU: ', mask.min(), mask.max(), mask.mean()) else: raise ValueError(f'Unknown activation: {self._activation}') # print('>>>>>> ', mask.max()) result['image'] = image result['target'] = mask return result def _get_image_id(self, item: int) -> str: if isinstance(item, torch.Tensor): item = item.item() return self._df.loc[item, 'id'] SAVER_POOL = None class SpacenetPredictionsSaver(saver.PredictionSaverInterface): def __init__(self, destination: str, paths_config: Dict[str, Dict[str, str]], crop_height: int, crop_width: int, activation: str): super().__init__() self._image_reader = ImageReader(mode='test', paths_config=paths_config, activation=activation) self._dir = destination assert activation in ('sigmoid', 'softmax'), activation self._activation = activation os.makedirs(self._dir, exist_ok=True) self._crop = A.CenterCrop(height=crop_height, width=crop_width, always_apply=True, p=1.) self._tta_size = 8 global SAVER_POOL SAVER_POOL = multiprocessing.Pool(multiprocessing.cpu_count()) def add(self, image_ids: List[str], predictions: torch.Tensor): predictions = self._prepare_predictions(predictions) results = [] for id_, pred in zip(image_ids, predictions): results.append(SAVER_POOL.apply_async(self._add_single, (id_, pred))) for res in results: res.get() def _add_single(self, image_id: str, predictions: np.ndarray): # print('IN') if self._activation == 'sigmoid': mask = np.transpose((predictions * 255.0).astype(np.uint8)) mask = self._crop(image=mask)['image'] h, w, _ = self._image_reader.load_image(image_id=image_id).shape assert mask.shape == (h, w), mask.shape cv2.imwrite( os.path.join(self._dir, f'{image_id}.png'), mask, ) elif self._activation == 'softmax': # mask = (predictions * 255.0).astype(np.uint8) mask = self._crop(image=predictions)['image'] mask = np.transpose(mask, (2, 0, 1)) h, w, _ = self._image_reader.load_image(image_id=image_id).shape assert mask.shape == (7, h, w), mask.shape speed_mask = self._get_speed_mask(mask) speed_mask = (speed_mask / 65.0 * 255.0).astype(np.uint8) cv2.imwrite( os.path.join(self._dir, f'{image_id}.png'), speed_mask, ) else: raise ValueError(f'Unknown activation: {self._activation}') def save(self): pass def _prepare_predictions(self, predictions: torch.Tensor) -> np.ndarray: if self._activation == 'sigmoid': predictions = torch.sigmoid(predictions) _, c, h, w = predictions.size() predictions = predictions.data.view(-1, self._tta_size, c, h, w).cpu().numpy() predictions = predictions.transpose((0, 1, 3, 4, 2)).squeeze(-1) masks = [] for index in range(predictions.shape[0]): # FIXME: slow ? mask = self._average_tta_pack(predictions[index]) # mask = cv2.flip(mask, flipCode=1) # mask = cv2.flip(mask, flipCode=0) mask = mask.T masks.append(mask) return np.array(masks) elif self._activation == 'softmax': predictions = torch.softmax(predictions, dim=1) _, c, h, w = predictions.size() predictions = predictions.data.view(-1, self._tta_size, c, h, w).cpu().numpy() predictions = predictions.transpose((0, 1, 3, 4, 2)) masks = [] for index in range(predictions.shape[0]): # FIXME: slow ? mask = self._average_tta_pack(predictions[index]) # mask = cv2.flip(mask, flipCode=1) # mask = cv2.flip(mask, flipCode=0) masks.append(mask) return np.array(masks) else: raise ValueError(f'Unknown activation: {self._activation}') def _average_tta_pack(self, d4_pack: np.ndarray) -> np.ndarray: # print('d4 pack ', d4_pack.shape) norm_orient = [ d4_pack[0], self._get_rotated(d4_pack[1], 270), self._get_rotated(d4_pack[2], 180), self._get_rotated(d4_pack[3], 90), cv2.flip(d4_pack[4], 1), cv2.flip(self._get_rotated(d4_pack[5], 270), 1), cv2.flip(self._get_rotated(d4_pack[6], 180), 1), cv2.flip(self._get_rotated(d4_pack[7], 90), 1), ] return np.mean(
np.array(norm_orient)
numpy.array
import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from scripts import config if not config.DEBUG: # from woodev.apis import init_detector, inference_detector import pycocotools.mask as maskUtils import mmcv from PIL import Image import cv2 import numpy as np # 这个函数是从 mmdet.apis 的interface 代码中复制过来的,这里修改使其返回图片,而不是保存 # TODO: merge this method with the one in BaseDetector def new_show_result(img, result, class_names, score_thr=0.3, out_file=None): """Visualize the detection results on the image. Args: img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. class_names (list[str] or tuple[str]): A list of class names. score_thr (float): The threshold to visualize the bboxes and masks. out_file (str, optional): If specified, the visualization result will be written to the out file instead of shown in a window. """ assert isinstance(class_names, (tuple, list)) img = mmcv.imread(img) if isinstance(result, tuple): bbox_result, segm_result = result else: bbox_result, segm_result = result, None bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) # print(labels) # draw segmentation masks bbox_color = (0, 255, 0) pixels_output = [] if segm_result is not None: segms = mmcv.concat_list(segm_result) inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: label = labels[i] if label > 1: continue color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) mask = maskUtils.decode(segms[i]).astype(np.bool) img[mask] = img[mask] * 0.5 + color_mask * 0.5 bbox_int = bboxes[i].astype(np.int32) left_top = (bbox_int[0], bbox_int[1]) right_bottom = (bbox_int[2], bbox_int[3]) cv2.rectangle( img, left_top, right_bottom, bbox_color, thickness=1) #print('label_names:', class_names) label_loc = (bbox_int[0]//2 + bbox_int[2]//2 - 30, bbox_int[1]//2 + bbox_int[3]//2 - 8) label_pixels = (bbox_int[0]//2 + bbox_int[2]//2 - 20, bbox_int[1]//2 + bbox_int[3]//2 + 8) label_text = class_names[ label] if class_names is not None else 'cls {} {}'.format(label, i) label_text = label_text + ' ' + str(i + 1) cv2.putText(img, label_text, label_loc, cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 0, 0), 1) pixels = len(mask[mask == True]) pixels_text = label_text + ':{}'.format(pixels) #cv2.putText(img, pixels_txt, label_pixels, #cv2.FONT_HERSHEY_COMPLEX, 0.4, (255, 0, 0)) #label_text = 'num|{:d}'.format(len(inds)) #cv2.putText(img, label_text, (20, 20), # cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 0, 0)) pixels_output.append(pixels_text) img = Image.fromarray(np.uint8(img)) if out_file==None: #img.show() return img, inds, pixels_output else: img.save(out_file) cv2.waitKey(0) dir(img) #通过文件路径得到原始深度图的数据 #这里文件的深度名字格式固定可以从原始图的名字中解析出来 def get_depth_data(file_path): f = open(file_path,'rb') raw_data = f.read() f.close() depth_data = [] for i in range(int(len(raw_data)/2)): depth_data.append(int.from_bytes(raw_data[i*2:i*2+2],byteorder='little')) depth_data = np.array(depth_data) depth_data = np.resize(depth_data, (360,640)) depth_data = depth_data.transpose([1,0]) return depth_data # 得到每个对应的椭圆参数 # input:一个分割掩码的二值图 # return:list [椭圆对象,短轴线段,长轴线段] def get_ellipse(mask): pass mask = np.array(mask,dtype=np.uint8) #找到边界点来拟合 contous,_ = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) cnts = contous[0] #根据边界点来拟合椭圆 ellipse_res = cv2.fitEllipse(cnts) #得到椭圆的长轴和短轴 center_p = ellipse_res[0] center_x = center_p[0] center_y = center_p[1] axisa = ellipse_res[1][0] axisb = ellipse_res[1][1] r_angel = ellipse_res[2] theta = r_angel * 3.14/180 a_p1_x = int(center_x + axisa*np.cos(theta)/2) a_p1_y = int(center_y + axisa*np.sin(theta)/2) a_p2_x = int(center_x - axisa*np.cos(theta)/2) a_p2_y = int(center_y - axisa*np.sin(theta)/2) b_p1_x = int(center_x + axisb*np.cos(theta+3.14/2)/2) b_p1_y = int(center_y + axisb*np.sin(theta+3.14/2)/2) b_p2_x = int(center_x - axisb*np.cos(theta+3.14/2)/2) b_p2_y = int(center_y - axisb*np.sin(theta+3.14/2)/2) line_a = [a_p1_x,a_p1_y,a_p2_x,a_p2_y] line_b = [b_p1_x,b_p1_y,b_p2_x,b_p2_y] return [ellipse_res,line_a,line_b] #从检测的结果中保存为csv_格式 #input:detect_result 检测结果的列表 # :save_img_path 保存的原始图片的路径,其他文件名称路径从这个文件中解析 #列表的检测结果为: #[org_img det_img mask_final box_result calcul_result ellipse_result,mask_index_range] #原图 检测图 掩码图 检测框 计算长短轴 椭圆拟合结果 mask_index 索引的范围 #return:保存csv格式 以及对应的原图,检测图片,掩码图 def save_result(detect_result,save_img_path): org_img,det_img,mask_final_org,mask_final,box_result,calcul_result,ellipse_result,mask_index_range = detect_result det_out_file = save_img_path[:-4] + '_det.png' mask_out_org_file = save_img_path[:-4] + '_orgmask.png' mask_out_file = save_img_path[:-4] + '_mask.png' csv_out_file = save_img_path[:-4]+'.csv' cv2.imwrite(save_img_path, org_img) cv2.imwrite(det_out_file, det_img) cv2.imwrite(mask_out_file, mask_final) cv2.imwrite(mask_out_org_file, mask_final_org) f = open(csv_out_file,'w+') for i in range(len(box_result)): id = mask_index_range[0]+i; current_box = box_result[i]; ellipse_res, line_a, line_b = ellipse_result[i] current_cal = calcul_result[i] # print(current_cal) #log info log_info = ("{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}\n").format(id, current_box[0],current_box[1],current_box[2],current_box[3], current_cal[0],current_cal[1], line_a[0], line_a[1],line_a[2], line_a[3], line_b[0], line_b[1], line_b[2], line_b[3], ) # print(log_info) f.write(log_info) f.close() def new_show_result_2(img, img_name, result, class_names, score_thr=0.3, mask_index = 5): """Visualize the detection results on the image. Args: img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. class_names (list[str] or tuple[str]): A list of class names. score_thr (float): The threshold to visualize the bboxes and masks. out_file (str, optional): If specified, the visualization result will be written to the out file instead of shown in a window. """ assert isinstance(class_names, (tuple, list)) img = mmcv.imread(img) org_img = img.copy() if isinstance(result, tuple): bbox_result, segm_result = result else: bbox_result, segm_result = result, None bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) # print(labels) # draw segmentation masks bbox_color = (255, 128, 128) #读取深度图 # 得到深度图的路径 # depth_data_path = img[:-4] + '.raw' # depth_data = get_depth_data('./demo/5_Depth.raw') # current_depth_data = depth_data[310:330,170:190] #current_mean_dis = np.mean(current_depth_data) depth_data_path = img_name.split('/')[-1][:-4] + '.tif' # depth_data = None # if depth_data_path != 'none' and os.path.exists(depth_data_path): # depth_data = cv2.imread(depth_data_path, -1) current_mean_dis = 2000 if depth_data_path != 'none' and os.path.exists(depth_data_path): depth_data = cv2.imread(depth_data_path, -1) w, h = depth_data.shape current_depth_data = depth_data[w // 2 - 10:w // 2 + 10, h // 2 - 10:h // 2 + 10] current_mean_dis = np.mean(current_depth_data) #包含检测框和椭圆的结果 detect_result = [] box_result = [] mask_result = [] ellipse_result = [] calcul_result = [] num_result = [] up_left_point_list = [] mask_index_range = [] if segm_result is not None: segms = mmcv.concat_list(segm_result) inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) mask = maskUtils.decode(segms[i]).astype(np.bool) ellipse_res,line_a,line_b = get_ellipse(mask) line_a_len = np.sqrt(np.square(line_a[2] - line_a[0]) + np.square(line_a[3] - line_a[1])) line_b_len = np.sqrt(np.square(line_b[2] - line_b[0]) + np.square(line_b[3] - line_b[1])) # # print('pic length is :%.2f,current dis is %.2f' %(line_a_len, current_mean_dis)) # print('cal real length is :%.2f' %(cal_result)) # # print('pic length is :%.2f,current dis is %.2f' % (line_b_len, current_mean_dis)) # print('cal real length is :%.2f' % (cal_result)) # cv2.ellipse(img,ellipse_res,(255,0,0),2) # cv2.line(img, (line_a[0],line_a[1]),(line_a[2],line_a[3]), (255, 0, 0), 2) # cv2.line(img, (line_b[0],line_b[1]),(line_b[2],line_b[3]), (255, 0, 0), 2) # img[mask] = img[mask] * 0.5 + color_mask * 0.5 bbox_int = bboxes[i].astype(np.int32) left_top = (bbox_int[0]+10, bbox_int[1]+10) right_bottom = (bbox_int[2]-10, bbox_int[3]-10) # cv2.rectangle(img, left_top, right_bottom, bbox_color, thickness=1) # current_mean_dis = 2000 # if depth_data_path != 'none' and os.path.exists(depth_data_path): # w, h = depth_data.shape # current_depth_data = depth_data[bbox_int[0]:bbox_int[2], bbox_int[1]:bbox_int[3]] # current_mean_dis = np.mean(current_depth_data) cal_result_a = line_a_len * current_mean_dis / (75 * 5) cal_result_b = line_b_len * current_mean_dis / (75 * 5) box_result.append([bbox_int[0],bbox_int[1],bbox_int[2],bbox_int[3]]) up_left_point_list.append([bbox_int[1],bbox_int[0]]) mask_result.append(mask) calcul_result.append([cal_result_b,cal_result_a]) ellipse_result.append([ellipse_res,line_a,line_b]) label = labels[i] # label_text = class_names[ # label] if class_names is not None else 'cls {}'.format(label) #label_text = '' # print(label_text) #cv2.putText(img, label_text, (int((bbox_int[0]+bbox_int[2])/2-5), int((bbox_int[1]+bbox_int[3])/2-1)), #cv2.FONT_HERSHEY_COMPLEX, 0.25, (128, 0, 0)) # label_text = 'num|{:d}'.format(len(inds)) # cv2.putText(img, label_text, (20, 20), # cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 0, 0)) num_result.append(len(inds)) #对坐标卡框进行排序先上后下,先左后右 sort_index = sorted(range(len(up_left_point_list)),key=lambda x:(up_left_point_list[x][0],up_left_point_list[x][1])) #print(sort_index) # print(type(sort_index)) #sort_index = np.array(sort_index,dtype=np.int) # sort_index=up_left_point_list.argsort(key=lambda x:(x[0],x[1])) box_result = [box_result[i] for i in sort_index] mask_result = [mask_result[i] for i in sort_index] calcul_result = [calcul_result[i] for i in sort_index] ellipse_result = [ellipse_result[i] for i in sort_index] mask_final = np.zeros((img.shape[0], img.shape[1],3)) mask_final_org = np.zeros((img.shape[0], img.shape[1], 3)) mask_index_val = int(mask_index) mask_index_range.append(mask_index_val) for i in range(len(box_result)): bbox_int = box_result[i] left_top = (bbox_int[0], bbox_int[1]) right_bottom = (bbox_int[2], bbox_int[3]) cv2.rectangle(img, left_top, right_bottom, bbox_color, thickness=1) mask = mask_result[i] color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) img[mask] = img[mask] * 0.5 + color_mask * 0.5 result_n = [] if(mask_index==5): result_n.append(mask_index_val) result_n.append(0) result_n.append(0) else: result_n.append(0) result_n.append(mask_index_val) result_n.append(0) # tmp = int(mask_index_val) # while(tmp!=0): # n = tmp % 25 # result_n.append(n) # tmp = int(tmp/25) # for i in range(len(result_n),3): # result_n.append(0) # print(result_n) current_code_mask = np.stack([mask*result_n[j] for j in range(3)],axis=2) # print(current_code_mask.shape) mask_final_org = mask_final_org + current_code_mask if(bbox_int[2]-bbox_int[0]>50): iter_num = 6 else: iter_num = 4 kernel = np.ones(5, dtype=np.uint8) mask_er = cv2.erode(np.array(mask,dtype=np.uint8), kernel, iterations=iter_num) current_code_mask = np.stack([mask_er * result_n[j] for j in range(3)], axis=2) mask_final = mask_final + current_code_mask mask_index_val = mask_index_val + 2 ellipse_res, line_a, line_b = ellipse_result[i] cv2.ellipse(img, ellipse_res, (255, 0, 0), 2) cv2.line(img, (line_a[0], line_a[1]), (line_a[2], line_a[3]), (255, 0, 0), 2) cv2.line(img, (line_b[0], line_b[1]), (line_b[2], line_b[3]), (255, 0, 0), 2) #cv2.imshow('img', img) #cv2.waitKey() return img, inds, calcul_result def new_show_result_21(img, result, class_names, score_thr=0.3, mask_index = 5): """Visualize the detection results on the image. Args: img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. class_names (list[str] or tuple[str]): A list of class names. score_thr (float): The threshold to visualize the bboxes and masks. out_file (str, optional): If specified, the visualization result will be written to the out file instead of shown in a window. """ assert isinstance(class_names, (tuple, list)) img = mmcv.imread(img) org_img = img.copy() if isinstance(result, tuple): bbox_result, segm_result = result else: bbox_result, segm_result = result, None bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) # print(labels) # draw segmentation masks bbox_color = (255, 128, 128) #读取深度图 # 得到深度图的路径 # depth_data_path = img[:-4] + '.raw' # depth_data = get_depth_data('./demo/5_Depth.raw') # current_depth_data = depth_data[310:330,170:190] #current_mean_dis = np.mean(current_depth_data) # depth_data_path = img.split('/')[-1][:-4] + '.tif' current_mean_dis = 2500 # if depth_data_path != 'none' and os.path.exists(depth_data_path): # depth_data = cv2.imread(depth_data_path, -1) # w, h = depth_data.shape # current_depth_data = depth_data[w // 2 - 10:w // 2 + 10, h // 2 - 10:h // 2 + 10] # current_mean_dis = np.mean(current_depth_data) #包含检测框和椭圆的结果 detect_result = [] box_result = [] mask_result = [] ellipse_result = [] calcul_result = [] num_result = [] up_left_point_list = [] mask_index_range = [] if segm_result is not None: segms = mmcv.concat_list(segm_result) inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) mask = maskUtils.decode(segms[i]).astype(np.bool) ellipse_res,line_a,line_b = get_ellipse(mask) line_a_len = np.sqrt(np.square(line_a[2] - line_a[0]) + np.square(line_a[3] - line_a[1])) line_b_len = np.sqrt(np.square(line_b[2] - line_b[0]) + np.square(line_b[3] - line_b[1])) cal_result_a = line_a_len * current_mean_dis / (75 * 5) cal_result_b = line_b_len * current_mean_dis / (75 * 5) # # print('pic length is :%.2f,current dis is %.2f' %(line_a_len, current_mean_dis)) # print('cal real length is :%.2f' %(cal_result)) # # print('pic length is :%.2f,current dis is %.2f' % (line_b_len, current_mean_dis)) # print('cal real length is :%.2f' % (cal_result)) # cv2.ellipse(img,ellipse_res,(255,0,0),2) # cv2.line(img, (line_a[0],line_a[1]),(line_a[2],line_a[3]), (255, 0, 0), 2) # cv2.line(img, (line_b[0],line_b[1]),(line_b[2],line_b[3]), (255, 0, 0), 2) # img[mask] = img[mask] * 0.5 + color_mask * 0.5 bbox_int = bboxes[i].astype(np.int32) left_top = (bbox_int[0]+10, bbox_int[1]+10) right_bottom = (bbox_int[2]-10, bbox_int[3]-10) # cv2.rectangle(img, left_top, right_bottom, bbox_color, thickness=1) box_result.append([bbox_int[0],bbox_int[1],bbox_int[2],bbox_int[3]]) up_left_point_list.append([bbox_int[1],bbox_int[0]]) mask_result.append(mask) calcul_result.append([cal_result_b,cal_result_a]) ellipse_result.append([ellipse_res,line_a,line_b]) label = labels[i] # label_text = class_names[ # label] if class_names is not None else 'cls {}'.format(label) #label_text = '' # print(label_text) #cv2.putText(img, label_text, (int((bbox_int[0]+bbox_int[2])/2-5), int((bbox_int[1]+bbox_int[3])/2-1)), #cv2.FONT_HERSHEY_COMPLEX, 0.25, (128, 0, 0)) # label_text = 'num|{:d}'.format(len(inds)) # cv2.putText(img, label_text, (20, 20), # cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 0, 0)) num_result.append(len(inds)) #对坐标卡框进行排序先上后下,先左后右 sort_index = sorted(range(len(up_left_point_list)),key=lambda x:(up_left_point_list[x][0],up_left_point_list[x][1])) #print(sort_index) # print(type(sort_index)) #sort_index = np.array(sort_index,dtype=np.int) # sort_index=up_left_point_list.argsort(key=lambda x:(x[0],x[1])) box_result = [box_result[i] for i in sort_index] mask_result = [mask_result[i] for i in sort_index] calcul_result = [calcul_result[i] for i in sort_index] ellipse_result = [ellipse_result[i] for i in sort_index] mask_final = np.zeros((img.shape[0], img.shape[1],3)) mask_final_org = np.zeros((img.shape[0], img.shape[1], 3)) mask_index_val = int(mask_index) mask_index_range.append(mask_index_val) for i in range(len(box_result)): bbox_int = box_result[i] left_top = (bbox_int[0], bbox_int[1]) right_bottom = (bbox_int[2], bbox_int[3]) cv2.rectangle(img, left_top, right_bottom, bbox_color, thickness=1) mask = mask_result[i] color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) img[mask] = img[mask] * 0.5 + color_mask * 0.5 result_n = [] if(mask_index==5): result_n.append(mask_index_val) result_n.append(0) result_n.append(0) else: result_n.append(0) result_n.append(mask_index_val) result_n.append(0) # tmp = int(mask_index_val) # while(tmp!=0): # n = tmp % 25 # result_n.append(n) # tmp = int(tmp/25) # for i in range(len(result_n),3): # result_n.append(0) # print(result_n) current_code_mask = np.stack([mask*result_n[j] for j in range(3)],axis=2) # print(current_code_mask.shape) mask_final_org = mask_final_org + current_code_mask if(bbox_int[2]-bbox_int[0]>50): iter_num = 6 else: iter_num = 4 kernel = np.ones(5, dtype=np.uint8) mask_er = cv2.erode(np.array(mask,dtype=np.uint8), kernel, iterations=iter_num) current_code_mask = np.stack([mask_er * result_n[j] for j in range(3)], axis=2) mask_final = mask_final + current_code_mask mask_index_val = mask_index_val + 2 ellipse_res, line_a, line_b = ellipse_result[i] cv2.ellipse(img, ellipse_res, (255, 0, 0), 2) cv2.line(img, (line_a[0], line_a[1]), (line_a[2], line_a[3]), (255, 0, 0), 2) cv2.line(img, (line_b[0], line_b[1]), (line_b[2], line_b[3]), (255, 0, 0), 2) #cv2.imshow('img', img) #cv2.waitKey() return img, inds, calcul_result # TODO: merge this method with the one in BaseDetector def show_result(img, result, class_names, score_thr=0.3, out_file=None,mask_index=1): """Visualize the detection results on the image. Args: img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. class_names (list[str] or tuple[str]): A list of class names. score_thr (float): The threshold to visualize the bboxes and masks. out_file (str, optional): If specified, the visualization result will be written to the out file instead of shown in a window. """ assert isinstance(class_names, (tuple, list)) img = mmcv.imread(img) org_img = img.copy() if isinstance(result, tuple): bbox_result, segm_result = result else: bbox_result, segm_result = result, None bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) # print(labels) # draw segmentation masks bbox_color = (255, 128, 128) #读取深度图 # 得到深度图的路径 # depth_data_path = img[:-4] + '.raw' # depth_data = get_depth_data('./demo/5_Depth.raw') # current_depth_data = depth_data[310:330,170:190] #current_mean_dis = np.mean(current_depth_data) current_mean_dis = 0 #包含检测框和椭圆的结果 detect_result = [] box_result = [] mask_result = [] ellipse_result = [] calcul_result = [] num_result = [] up_left_point_list = [] mask_index_range = [] if segm_result is not None: segms = mmcv.concat_list(segm_result) inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) mask = maskUtils.decode(segms[i]).astype(np.bool) ellipse_res,line_a,line_b = get_ellipse(mask) line_a_len = np.sqrt(np.square(line_a[2] - line_a[0]) +
np.square(line_a[3] - line_a[1])
numpy.square
#coding=utf-8 #!/usr/bin/env python import numpy as np from numpy.random import choice import os import pandas as pd import sys import nltk import tensorflow as tf HOME = '.' sys.path.insert(0, HOME) from alo import dataset from alo import word_embed from alo import nn from alo import utils FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('batch_size', 64, 'batch size') tf.app.flags.DEFINE_string('corpus', 'rt.txt', 'input corpus') tf.app.flags.DEFINE_integer('num_filter', 100, 'number of feature maps') tf.app.flags.DEFINE_float('keep_prob', 0.5, 'dropout keep rate') tf.app.flags.DEFINE_float('lr', 0.1, 'learning rate') tf.app.flags.DEFINE_integer('max_len', 124, 'max sentence length') tf.app.flags.DEFINE_integer('epoches', 32, 'number of epoches') tf.app.flags.DEFINE_string('embed_fn', 'text8-vector.bin', 'embeddings file') tf.app.flags.DEFINE_integer('embed_dim', 200, 'word embedding dimentionality') tf.app.flags.DEFINE_integer('n_tasks', 3, 'number of tasks') tf.app.flags.DEFINE_integer('task_idx', 3, 'index of the task, 1 for toxicity, 2 for aggression 3 for attack') tf.app.flags.DEFINE_string('output', 'Output_sep_task_all_b64_x20.txt', 'output_file') tf.app.flags.DEFINE_integer('xfold', 10, 'number of folds') tf.app.flags.DEFINE_string('save_to', 'saved_models', 'folder for saved models') def main(_): #wiki = dataset.WikiTalk() #data = wiki.data2matrix() data = np.load(os.path.join(HOME, 'data.npy')) output_file=open(FLAGS.output,"w") if FLAGS.n_tasks == 1: X_data, Y_data = data[:, :-3], data[:, -FLAGS.task_idx] else: X_data, Y_data = data[:, :-3], data[:, -3:] print(X_data.shape) print(Y_data.shape) embed_path = os.path.join(HOME, 'resource', FLAGS.embed_fn) embeddings = word_embed.Word2Vec(embed_path) word_embeddings = np.array(list(embeddings.word2embed.values())) dir_saved_models = os.path.join(HOME, FLAGS.save_to) if not os.path.exists(dir_saved_models): os.makedirs(dir_saved_models) fold_size = X_data.shape[0] // FLAGS.xfold with tf.Graph().as_default(), tf.Session() as sess: for i in range(FLAGS.xfold): print('{}\nValidating fold {}, validate_idx = [{}:{}]\n{}'.format( '-'*79, i+1, i*fold_size, (i+1)*fold_size, '-'*79), file=output_file, flush=True) X_train = np.vstack((X_data[:i*fold_size], X_data[(i+1)*fold_size:])) if FLAGS.n_tasks == 1: Y_train = np.hstack((Y_data[:i*fold_size], Y_data[(i+1)*fold_size:])) else: Y_train = np.vstack((Y_data[:i*fold_size], Y_data[(i+1)*fold_size:])) X_test = X_data[i*fold_size:(i+1)*fold_size] Y_test = Y_data[i*fold_size:(i+1)*fold_size] if FLAGS.n_tasks == 1: tccnn = nn.STCNN( filter_heights=[3, 4, 5], word_embeddings=word_embeddings, sent_len=FLAGS.max_len, batch_size=FLAGS.batch_size, num_filter=FLAGS.num_filter, keep_prob=FLAGS.keep_prob, lr=FLAGS.lr, embed_dim=FLAGS.embed_dim) best_accuracy = np.array([-1.]) else: tccnn = nn.MTCNN( filter_heights=[3, 4, 5], word_embeddings=word_embeddings, sent_len=FLAGS.max_len, batch_size=FLAGS.batch_size, num_filter=FLAGS.num_filter, keep_prob=FLAGS.keep_prob, lr=FLAGS.lr, embed_dim=FLAGS.embed_dim, n_tasks=FLAGS.n_tasks) best_accuracy = np.array([-1., -1., -1.]) saver = tf.train.Saver() fold_idx = i for epoch in range(FLAGS.epoches): train_loss, train_acc = .0, np.array([0.] * FLAGS.n_tasks) num_batches = X_train.shape[0] // FLAGS.batch_size shuffled_batches = choice(range(num_batches), num_batches, replace=False) for _n, idx in enumerate(shuffled_batches): X_train_batch = X_train[idx*FLAGS.batch_size:(idx+1)*FLAGS.batch_size] Y_train_batch = Y_train[idx*FLAGS.batch_size:(idx+1)*FLAGS.batch_size] feed_dict = {tccnn.X: X_train_batch, tccnn.Y: Y_train_batch} sess.run(tccnn.step, feed_dict=feed_dict) train_loss += sess.run(tccnn.loss, feed_dict=feed_dict) _train_acc = sess.run(tccnn.accuracy, feed_dict=feed_dict) if FLAGS.n_tasks == 1: _train_acc = np.array([_train_acc]) for i in range(FLAGS.n_tasks): train_acc[i] += _train_acc[i] # train_acc += _train_acc # print('Training epoch {:2d}, batch {:4d}/{:4d}, loss = {:.8f}'.format( # epoch+1, _n, num_batches, train_loss/(_n+1)), end='\r', flush=True) #if (epoch+1) % 4 != 0: # continue test_acc = np.array([0.] * FLAGS.n_tasks) test_p = np.array([0.] * FLAGS.n_tasks) test_r = np.array([0.] * FLAGS.n_tasks) test_fscore = np.array([0.] * FLAGS.n_tasks) test_auc = np.array([0.] * FLAGS.n_tasks) num_batches_test = X_test.shape[0] // FLAGS.batch_size for _n, idx in enumerate(range(num_batches_test)): X_test_batch = X_test[idx*FLAGS.batch_size:(idx+1)*FLAGS.batch_size] Y_test_batch = Y_test[idx*FLAGS.batch_size:(idx+1)*FLAGS.batch_size] # print (Y_pred,flush=False) # print (Y_test_batch,flush=False) feed_dict = {tccnn.X: X_test_batch, tccnn.Y: Y_test_batch} _test_acc = sess.run(tccnn.accuracy, feed_dict=feed_dict) _test_p=sess.run(tccnn.p, feed_dict=feed_dict) _test_r=sess.run(tccnn.r, feed_dict=feed_dict) _test_f1=sess.run(tccnn.f1, feed_dict=feed_dict) for i in tccnn.auc_op: sess.run(i, feed_dict=feed_dict) _test_auc = sess.run(tccnn.auc, feed_dict=feed_dict) # print (_test_acc,flush=False) # print (_test_f1,flush=False) if FLAGS.n_tasks == 1: _test_acc = np.array([_test_acc]) _test_f1 = np.array([_test_f1]) _test_auc = np.array([_test_auc]) if FLAGS.n_tasks == 3: _test_acc = np.array([_test_acc])[0] _test_p =
np.array([_test_p])
numpy.array
import numpy as np from context import gpytoolbox # Build a polyline; for example, a square V = np.array([ [-1.0, -1.0], [-1.0, 1.0], [1.0, 1.0], [1.0, -1.0] ]) # Camera position and direction cam_pos = np.array([-0.5,-1.5]) cam_dir = np.array([0.0,1.0]) # Looking upwards: intersection should be [-0.5,-1.0], normal downwards x, n, ind = gpytoolbox.ray_polyline_intersect(cam_pos,cam_dir,V) assert((np.isclose(x,np.array([-0.5,-1.0]))).all()) assert((np.isclose(n,np.array([0.0,-1.0]))).all()) # Oblique direction, inside cam_pos = np.array([0.2,0.0]) cam_dir = np.array([0.3,0.4]) # Intersection should be [0.95,1.0], normal should be upwards x, n, ind = gpytoolbox.ray_polyline_intersect(cam_pos,cam_dir,V) assert((np.isclose(x,np.array([0.95,1.0]))).all()) assert((np.isclose(n,np.array([0.0,1.0]))).all()) # Degeneracies: Parallel without a hit cam_pos = np.array([1.1,1.1]) cam_dir = np.array([0.0,-1.0]) # There should be no intersection x, n, ind = gpytoolbox.ray_polyline_intersect(cam_pos,cam_dir,V) # if no intersection, x is infinity and n is zero assert((np.isclose(x,np.array([np.Inf,np.Inf]))).all()) assert((np.isclose(n,np.array([0.0, 0.0]))).all()) # Index is -1 assert(ind==-1) # Degeneracy: Coincident cam_pos =
np.array([-1.0,-2.0])
numpy.array
import json import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import csv import time import copy import os from datetime import datetime import error_metrics global gld_num gld_num = '1' os.chdir('/home/ankit/PFO-ADC-DER-Testbed/ADC-DER-Testbed/testbed/post_process') # discard_time = 3600*4 ## loading cosim_manager data lp = open('./cosim_data.json').read() cosim_data = json.loads(lp) ## Appending all cosim data with one more entry for key, value in cosim_data.items(): for k, v in value.items(): if k == 'Timestamp': # v.append(v[-1]+v[-1]-v[-2]) # adding one more timestamp v.append(v[-1] + v[0]) else: v.append(v[-1]) # repeating the last value again cosim_data[key][k] = v cosim_time = cosim_data[list(cosim_data)[0]]['Timestamp'] cosim_data['time'] = np.array([int(i) for i in cosim_time]) # create mapping of each node to its ADC adc_nodes_map=[] adc_file = "./../../../GLD/initial_scenario/ADC_Location/ADC_Placement_by_Voltage_Drop.csv" with open(adc_file, mode='r') as csv_file: for i in range(1): next(csv_file) csv_reader = csv.reader(csv_file) for row in csv_reader: adc_nodes_map.append([row[0], row[-1]]) adc_nodes_map = np.array(adc_nodes_map) #function to return adc name of the input node def find_adc(node, adc_nodes_map=adc_nodes_map): ind = np.where(adc_nodes_map[:,0]==node)[0][0] adc_name = 'M' + gld_num + '_ADC' + adc_nodes_map[ind,1] return adc_name # Loading gld_data.json lp = open('GLD_' + gld_num + '_data.json').read() gld_data = json.loads(lp) # creating a dict to map each adc to the indexes of devices in gld_data for each der type # adc['der']['adc name']=[indexes in the gld data] # t=time.time() # adc_ind = {} # der_type=[['battInv', 'power'], ['solarInv','power'], ['hvac','power'], ['wh','power']] # for der in der_type: # adc_ind[der[0]] = {} # obj = gld_data[der[0]][der[1]]['object_name'] # for a in obj: # b = a.split('_')[-2][1:] # # if 'l102_tm' in a: # if find_adc(b) not in adc_ind[der[0]]: # adc_ind[der[0]][find_adc(b)] = [] # adc_ind[der[0]][find_adc(b)].append(obj.index(a)) # print('elapsed time is ',time.time()-t) # creating a dict to map each adc to the indexes of devices in gld_data for each der type # adc_ind['adc name']['der']=[indexes in the gld data] t=time.time() adc_ind = {} der_type=[['battInv', 'power'], ['solarInv','power'], ['hvac','power'], ['wh','power']] for der in der_type: obj = gld_data[der[0]][der[1]]['object_name'] for a in obj: b = a.split('_')[-2][1:] # if 'l102_tm' in a: if find_adc(b) == 'M1_ADCNONE': continue if find_adc(b) not in adc_ind: adc_ind[find_adc(b)] = {} if der[0] not in adc_ind[find_adc(b)]: adc_ind[find_adc(b)][der[0]]=[] adc_ind[find_adc(b)][der[0]].append(obj.index(a)) # print('elapsed time is ',time.time()-t) #Voltages voltages = np.array(gld_data['hvac']['voltages']['values']).astype(np.cfloat) # Actuation Signals #hrs = gld_data['battInv']['P_Out']['time'] battInv_Pout = np.array(gld_data['battInv']['P_Out']['values']).astype(np.float) battInv_Qout = np.array(gld_data['battInv']['Q_Out']['values']).astype(np.float) solarInv_Pout = np.array(gld_data['solarInv']['P_Out']['values']).astype(np.float) solarInv_Qout = np.array(gld_data['solarInv']['Q_Out']['values']).astype(np.float) hvac_seth = np.array(gld_data['hvac']['heating_setpoint']['values']).astype(np.float) hvac_setc = np.array(gld_data['hvac']['cooling_setpoint']['values']).astype(np.float) hvac_cooling_demand = (np.array(gld_data['hvac']['cooling_demand']['values'])).astype(np.float) hvac_fan_power = (np.array(gld_data['hvac']['fan_design_power']['values'])).astype(np.float)/1000 hvac_rating = hvac_cooling_demand+hvac_fan_power hvac_c_thermal_capacity = (np.array(gld_data['hvac']['design_cooling_capacity']['values'])).astype(np.float) hvac_c_cop = (np.array(gld_data['hvac']['cooling_COP']['values'])).astype(np.float) hvac_rating1 = hvac_c_thermal_capacity/12000/hvac_c_cop*3.5168 wh_tanks = np.array(gld_data['wh']['tank_setpoint']['values']).astype(np.float) hvac_c_status = np.array(gld_data['hvac']['cooling_status']['values']).astype(np.float) wh_rating = np.array(gld_data['wh']['heating_element_capacity']['values']).astype(np.float) battInv_rated = (np.array(gld_data['battInv']['rated_power']['values'])).astype(np.float) batt_rated = (np.array(gld_data['batt']['rated_power']['values'])).astype(np.float) solar_rated = (np.array(gld_data['solar']['rated_power']['values'])).astype(np.float) # Device Power Outputs battInv_power = (np.array(gld_data['battInv']['power']['values'])).astype(np.cfloat) solarInv_power = (np.array(gld_data['solarInv']['power']['values'])).astype(np.cfloat) hvac_power = (np.array(gld_data['hvac']['power']['values'])).astype(np.cfloat) wh_power = (np.array(gld_data['wh']['power']['values'])).astype(np.cfloat) solar_VA = (np.array(gld_data['solar']['VA']['values'])).astype(np.cfloat) #aggregating device outputs per adc in adc_agg dict # adc_agg['adc name']['der type']=sum of all devices of der type t=time.time() adc_agg = copy.deepcopy(adc_ind) adc_Prating = {} num_der = {} total_num_der = 0 for adc_num in adc_ind: adc_Prating[adc_num] = {} if "battInv" in adc_agg[adc_num]: adc_agg[adc_num]["battInv"] = np.sum(battInv_power[:, adc_ind[adc_num]['battInv']], 1)/1000 adc_agg[adc_num]["batt_Pout"] = np.sum(battInv_Pout[:, adc_ind[adc_num]['battInv']], 1) / 1000 adc_agg[adc_num]["batt_Qout"] = np.sum(battInv_Qout[:, adc_ind[adc_num]['battInv']], 1) / 1000 adc_agg[adc_num]["total"] = adc_agg[adc_num]["battInv"] adc_Prating[adc_num]["battInv"] = np.sum(battInv_rated[0, adc_ind[adc_num]['battInv']])/1000 adc_Prating[adc_num]["total"] = adc_Prating[adc_num]["battInv"] if "solarInv" in adc_agg[adc_num]: adc_agg[adc_num]["solarInv"] = np.sum(solarInv_power[:, adc_ind[adc_num]['solarInv']], 1) / 1000 adc_agg[adc_num]["solar_Pout"] = np.sum(solarInv_Pout[:, adc_ind[adc_num]['solarInv']], 1) / 1000 adc_agg[adc_num]["solar_Qout"] = np.sum(solarInv_Qout[:, adc_ind[adc_num]['solarInv']], 1) / 1000 adc_agg[adc_num]["total"] = adc_agg[adc_num]["total"] + adc_agg[adc_num]["solarInv"] adc_Prating[adc_num]["solarInv"] = np.sum(solar_rated[0, adc_ind[adc_num]['solarInv']]) / 1000 adc_Prating[adc_num]["solarVA"] = np.sum(solar_VA[:, adc_ind[adc_num]['solarInv']], 1) / 1000 adc_Prating[adc_num]["total"] = adc_Prating[adc_num]["total"] + adc_Prating[adc_num]["solarInv"] if "hvac" in adc_agg[adc_num]: adc_agg[adc_num]["hvac"] = np.sum(hvac_power[:, adc_ind[adc_num]['hvac']], 1) adc_agg[adc_num]["total"] = adc_agg[adc_num]["total"] + adc_agg[adc_num]["hvac"] adc_Prating[adc_num]["hvac"] = np.sum(hvac_rating[0, adc_ind[adc_num]['hvac']]) adc_Prating[adc_num]["total"] = adc_Prating[adc_num]["total"] + adc_Prating[adc_num]["hvac"] if "wh" in adc_agg[adc_num]: adc_agg[adc_num]["wh"] = np.sum(wh_power[:, adc_ind[adc_num]['wh']], 1) adc_agg[adc_num]["total"] = adc_agg[adc_num]["total"] + adc_agg[adc_num]["wh"] adc_Prating[adc_num]["wh"] = np.sum(wh_rating[0, adc_ind[adc_num]['wh']]) adc_Prating[adc_num]["total"] = adc_Prating[adc_num]["total"] + adc_Prating[adc_num]["wh"] error_metrics.calculate(adc_agg, adc_Prating, cosim_data) #Plot aggregate devices output at given adc for each der type time_format = '%H:%M:%S' time_stamp = [t.split(' ')[1] for t in gld_data['wh']['power']['time']] time_h = [datetime.strptime(t, '%H:%M:%S') for t in time_stamp] hrs = [int((i-time_h[0]).total_seconds()) for i in time_h] # start_time = 3600*4 adc_num = 'M1_ADC18' # total_rating = sum(wh_rating[0, adc_ind[adc_num]['wh']]) + sum(hvac_rating[0, adc_ind[adc_num]['hvac']]) + sum( # battInv_rated[0, adc_ind[adc_num]['battInv']]) / 1000 + sum(solar_rated[0, adc_ind[adc_num]['solarInv']]) / 1000 fig1, ax1 = plt.subplots(2, 2, sharex='col') # ax1[0,0].plot(hrs, np.real(adc_agg[adc_num]['batt_Pout']), label='Battery', color='C0') # ax1[0,0].plot(hrs, np.real(adc_agg[adc_num]['solar_Pout']), label='Solar', color='C1') ax1[0,0].plot(hrs, np.real(adc_agg[adc_num]['batt_Pout'] + adc_agg[adc_num]['solar_Pout']), label='Solar+Battery', color='C2') ax1[0,0].plot(hrs, np.real(adc_agg[adc_num]['wh']), label='WH', color='C3') ax1[0,0].plot(hrs, np.real(adc_agg[adc_num]['hvac']), label='HVAC', color='C4') # # ax1[0,0].step((cosim_data['time']),np.array(cosim_data[adc_num]['Popt_BATT'])/1,'k', linestyle='--', color='C0', where='post', label='battery set point') # ax1[0,0].step((cosim_data['time']),np.array(cosim_data[adc_num]['Popt_PV'])/1,'k', linestyle='--', color='C1', where='post', label='pv set point') ax1[0,0].step((cosim_data['time']),np.array(cosim_data[adc_num]['Popt_PV']) + np.array(cosim_data[adc_num]['Popt_BATT']),'k', linestyle='--', color='C2', where='post', label='PV+Batt set point') ax1[0,0].step((cosim_data['time']),np.array(cosim_data[adc_num]['Popt_WH'])/1,'k', linestyle='--', color='C3', where='post', label='WH set point') ax1[0,0].step((cosim_data['time']),np.array(cosim_data[adc_num]['Popt_HVAC'])/1,'k', linestyle='--', color='C4', where='post', label='AC set point') ax1[0,0].set_ylabel("kW") ax1[0,0].set_title("Aggregated kW at ADC "+adc_num+" by DER") ax1[0,0].legend(loc='best') # plt.xlim(left=start_time) # ax1[0,1].plot(hrs, np.real(adc_agg[adc_num]['batt_Qout']), label='Battery') # ax1[0,1].plot(hrs, np.real(adc_agg[adc_num]['solar_Qout']), label='Solar') ax1[0,1].plot(hrs, np.real(adc_agg[adc_num]['batt_Qout'] + adc_agg[adc_num]['solar_Qout']), label='Solar+Battery', color='C2') ax1[0,1].plot(hrs, np.imag(adc_agg[adc_num]['wh']), label='WH', color='C3') ax1[0,1].plot(hrs, np.imag(adc_agg[adc_num]['hvac']), label='HVAC', color='C4') # ax1[0,1].step((cosim_data['time']),np.array(cosim_data[adc_num]['Qopt_BATT'])/1,'k', linestyle='--', color='C0', where='post', label='battery set point') # ax1[0,1].step((cosim_data['time']),np.array(cosim_data[adc_num]['Qopt_PV'])/1,'k', linestyle='--', color='C1', where='post', label='pv set point') ax1[0,1].step((cosim_data['time']),np.array(cosim_data[adc_num]['Qopt_PV']) + np.array(cosim_data[adc_num]['Qopt_BATT']),'k', linestyle='--', color='C2', where='post', label='PV+Batt set point') ax1[0,1].step((cosim_data['time']),np.array(cosim_data[adc_num]['Qopt_WH'])/1,'k', linestyle='--', color='C3', where='post', label='WH set point') ax1[0,1].step((cosim_data['time']),
np.array(cosim_data[adc_num]['Qopt_HVAC'])
numpy.array
#!/usr/bin/python # # test_transform.py - Unit tests for transform module # # Author: <NAME> (<EMAIL>) # Date: 7/1/2015 # # Requires: # * FlowCal.io # * FlowCal.transform # * numpy # import FlowCal.io import FlowCal.transform import numpy as np import unittest import os class TestRFIArray(unittest.TestCase): def setUp(self): self.d = np.array([ [1, 7, 2], [2, 8, 3], [3, 9, 4], [4, 10, 5], [5, 1, 6], [6, 2, 7], [7, 3, 8], [8, 4, 9], [9, 5, 10], [10, 6, 1], ]) def test_rfi_original_integrity(self): db = self.d.copy() dt = FlowCal.transform.to_rfi(self.d, channels=[0,1], amplification_type=[(0,0), (0,0)], amplifier_gain=[1.0, 1.0], resolution=[1024, 1024],) np.testing.assert_array_equal(self.d, db) def test_rfi_arg_error_amplification_type_absent(self): with self.assertRaises(ValueError): FlowCal.transform.to_rfi(self.d, channels=[0,1]) def test_rfi_arg_error_amplification_type_length(self): with self.assertRaises(ValueError): FlowCal.transform.to_rfi(self.d, channels=[0,1], amplification_type=[(4,1), (4,1), (4,1)]) def test_rfi_arg_error_resolution_absent(self): with self.assertRaises(ValueError): FlowCal.transform.to_rfi(self.d, channels=[0,1], amplification_type=[(4,1), (4,1)]) def test_rfi_arg_error_resolution_length(self): with self.assertRaises(ValueError): FlowCal.transform.to_rfi(self.d, channels=[0,1], amplification_type=[(4,1), (4,1)], resolution=[1024]) def test_rfi_arg_error_amplifier_gain_length(self): with self.assertRaises(ValueError): FlowCal.transform.to_rfi(self.d, channels=[0,1], amplification_type=[(0,0), (0,0)], amplifier_gain=[3,4,4]) def test_rfi_1d_log_1(self): dt = FlowCal.transform.to_rfi(self.d, channels=1, amplification_type=(4, 1), resolution=1024) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], 10**(self.d[:,1]/256.0)) np.testing.assert_array_equal(dt[:,2], self.d[:,2]) def test_rfi_1d_log_2(self): dt = FlowCal.transform.to_rfi(self.d, channels=2, amplification_type=(2, 0.01), amplifier_gain=5.0, resolution=256) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], self.d[:,1]) np.testing.assert_array_equal(dt[:,2], 0.01*10**(self.d[:,2]/128.0)) def test_rfi_1d_linear_1(self): dt = FlowCal.transform.to_rfi(self.d, channels=2, amplification_type=(0, 0), amplifier_gain=None, resolution=256) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], self.d[:,1]) np.testing.assert_array_equal(dt[:,2], self.d[:,2]) def test_rfi_1d_linear_2(self): dt = FlowCal.transform.to_rfi(self.d, channels=1, amplification_type=(0, 0), amplifier_gain=5.0, resolution=256) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], self.d[:,1]/5.0) np.testing.assert_array_equal(dt[:,2], self.d[:,2]) def test_rfi_2d_log_1(self): dt = FlowCal.transform.to_rfi(self.d, channels=[1,2], amplification_type=[(4, 1), (2, 0.01)], resolution=[1024, 256]) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], 10**(self.d[:,1]/256.0)) np.testing.assert_array_equal(dt[:,2], 0.01*10**(self.d[:,2]/128.0)) def test_rfi_2d_mixed_1(self): dt = FlowCal.transform.to_rfi(self.d, channels=[1,2], amplification_type=[(4, 1), (0, 0)], amplifier_gain=[4., None], resolution=[1024, 1024]) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], 10**(self.d[:,1]/256.0)) np.testing.assert_array_equal(dt[:,2], self.d[:,2]) def test_rfi_2d_mixed_2(self): dt = FlowCal.transform.to_rfi(self.d, channels=[1,2], amplification_type=[(4, 1), (0, 0)], amplifier_gain=[4., 10.], resolution=[1024, 1024]) np.testing.assert_array_equal(dt[:,0], self.d[:,0]) np.testing.assert_array_equal(dt[:,1], 10**(self.d[:,1]/256.0)) np.testing.assert_array_equal(dt[:,2], self.d[:,2]/10.) def test_rfi_default_channel_1(self): dt = FlowCal.transform.to_rfi(self.d, amplification_type=[(4,1)]*3, amplifier_gain=[4., 5., 10.], resolution=[1024]*3)
np.testing.assert_array_equal(dt, 10**(self.d/256.0))
numpy.testing.assert_array_equal
import platform import numpy as np from bioptim import OdeSolver from .utils import TestUtils def test_xia_fatigable_muscles(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/static_arm_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/arm26_constant.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=0.9, n_shooting=5, fatigue_type="xia", ode_solver=OdeSolver.COLLOCATION(), torque_level=1, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 19.770521758810368) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (552, 1)) np.testing.assert_almost_equal(g, np.zeros((552, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot, ma, mr, mf = states["q"], states["qdot"], states["muscles_ma"], states["muscles_mr"], states["muscles_mf"] tau, muscles = controls["tau"], controls["muscles"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.07, 1.4))) np.testing.assert_almost_equal(q[:, -1], np.array((1.64470726, 2.25033212))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-2.93853331, 3.00564551))) # fatigue parameters np.testing.assert_almost_equal(ma[:, 0], np.array((0, 0, 0, 0, 0, 0))) np.testing.assert_almost_equal( ma[:, -1], np.array((0.00739128, 0.00563555, 0.00159309, 0.02418655, 0.02418655, 0.00041913)) ) np.testing.assert_almost_equal(mr[:, 0], np.array((1, 1, 1, 1, 1, 1))) np.testing.assert_almost_equal( mr[:, -1], np.array((0.99260018, 0.99281414, 0.99707397, 0.97566527, 0.97566527, 0.99904065)) ) np.testing.assert_almost_equal(mf[:, 0], np.array((0, 0, 0, 0, 0, 0))) np.testing.assert_almost_equal( mf[:, -1], np.array((8.54868154e-06, 1.55030599e-03, 1.33293886e-03, 1.48176210e-04, 1.48176210e-04, 5.40217808e-04)), ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((0.80920008, 1.66855572))) np.testing.assert_almost_equal(tau[:, -2], np.array((0.81847388, -0.85234628))) np.testing.assert_almost_equal( muscles[:, 0], np.array((6.22395441e-08, 4.38966513e-01, 3.80781292e-01, 2.80532297e-07, 2.80532297e-07, 2.26601989e-01)), ) np.testing.assert_almost_equal( muscles[:, -2], np.array((8.86069119e-03, 1.17337666e-08, 1.28715148e-08, 2.02340603e-02, 2.02340603e-02, 2.16517945e-088)), ) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) def test_michaud_fatigable_muscles(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/static_arm_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/arm26_constant.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=0.9, n_shooting=5, fatigue_type="michaud", ode_solver=OdeSolver.COLLOCATION(), torque_level=1, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) if platform.system() == "Linux": np.testing.assert_almost_equal(f[0, 0], 16.32400654587575) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (702, 1)) np.testing.assert_almost_equal(g, np.zeros((702, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot, ma, mr, mf = states["q"], states["qdot"], states["muscles_ma"], states["muscles_mr"], states["muscles_mf"] tau, muscles = controls["tau"], controls["muscles"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.07, 1.4))) np.testing.assert_almost_equal(q[:, -1], np.array((1.64470726, 2.25033212))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(ma[:, 0], np.array((0, 0, 0, 0, 0, 0))) np.testing.assert_almost_equal(mr[:, 0], np.array((1, 1, 1, 1, 1, 1))) np.testing.assert_almost_equal(mf[:, 0], np.array((0, 0, 0, 0, 0, 0))) np.testing.assert_almost_equal( mf[:, -1], np.array((0, 3.59773278e-04, 3.59740895e-04, 0, 0, 0)), ) if platform.system() == "Linux": np.testing.assert_almost_equal(qdot[:, -1], np.array((-3.8913551, 3.68787122))) np.testing.assert_almost_equal( ma[:, -1], np.array((0.03924828, 0.01089071, 0.00208428, 0.05019898, 0.05019898, 0.00058203)) ) np.testing.assert_almost_equal( mr[:, -1], np.array((0.96071394, 0.98795266, 0.99699829, 0.9496845, 0.9496845, 0.99917771)) ) np.testing.assert_almost_equal(tau[:, 0], np.array((0.96697626, 0.7686893))) np.testing.assert_almost_equal(tau[:, -2], np.array((0.59833412, -0.73455049))) np.testing.assert_almost_equal( muscles[:, 0], np.array((1.25202085e-07, 3.21982969e-01, 2.28408549e-01, 3.74330449e-07, 3.74330448e-07, 1.69987512e-01)), ) np.testing.assert_almost_equal( muscles[:, -2], np.array((0.0441982, 0.00474236, 0.0009076, 0.04843388, 0.04843388, 0.00025345)), ) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) def test_effort_fatigable_muscles(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/static_arm_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/arm26_constant.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=0.9, n_shooting=5, fatigue_type="effort", ode_solver=OdeSolver.COLLOCATION(), torque_level=1, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 15.6707872174798) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (252, 1)) np.testing.assert_almost_equal(g, np.zeros((252, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot, mf = states["q"], states["qdot"], states["muscles_mf"] tau, muscles = controls["tau"], controls["muscles"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.07, 1.4))) np.testing.assert_almost_equal(q[:, -1], np.array((1.64470726, 2.25033212))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-3.88775204, 3.6333437))) # fatigue parameters np.testing.assert_almost_equal(mf[:, 0], np.array((0, 0, 0, 0, 0, 0))) np.testing.assert_almost_equal( mf[:, -1], np.array((0, 5.20374400e-06, 3.66692929e-06, 0, 0, 0)), ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((1.00151658, 0.75680837))) np.testing.assert_almost_equal(tau[:, -2], np.array((0.52586746, -0.65113291))) np.testing.assert_almost_equal( muscles[:, 0], np.array((0, 3.22448960e-01, 2.29707272e-01, 2.48558904e-08, 2.48558904e-08, 1.68035094e-01)), ) np.testing.assert_almost_equal( muscles[:, -2], np.array((3.86483801e-02, 1.10050570e-09, 2.74223027e-09, 4.25097689e-02, 4.25097689e-02, 6.56234006e-09)), ) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) def test_fatigable_xia_torque_non_split(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/pendulum_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/pendulum.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=1, n_shooting=10, fatigue_type="xia", split_controls=False, use_sx=False, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) if platform.system() == "Linux": np.testing.assert_almost_equal(f[0, 0], 681.4936347682981) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (160, 1)) np.testing.assert_almost_equal(g, np.zeros((160, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot = states["q"], states["qdot"] ma_minus, mr_minus, mf_minus = states["tau_minus_ma"], states["tau_minus_mr"], states["tau_minus_mf"] ma_plus, mr_plus, mf_plus = states["tau_plus_ma"], states["tau_plus_mr"], states["tau_plus_mf"] tau = controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0))) np.testing.assert_almost_equal(ma_minus[:, 0], np.array((0.0, 0))) np.testing.assert_almost_equal(mr_minus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mf_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(ma_plus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(mr_plus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mf_plus[:, 0], np.array((0, 0))) if platform.system() == "Linux": np.testing.assert_almost_equal(ma_minus[:, -1], np.array((2.05715389e-01, 0))) np.testing.assert_almost_equal(mr_minus[:, -1], np.array((0.71681593, 1))) np.testing.assert_almost_equal(mf_minus[:, -1], np.array((7.74686771e-02, 0))) np.testing.assert_almost_equal(ma_plus[:, -1], np.array((4.54576950e-03, 0))) np.testing.assert_almost_equal(mr_plus[:, -1], np.array((0.91265673, 1))) np.testing.assert_almost_equal(mf_plus[:, -1], np.array((8.27975034e-02, 0))) np.testing.assert_almost_equal(tau[:, 0], np.array((4.65387493, 0))) np.testing.assert_almost_equal(tau[:, -2], np.array((-21.7531631, 0))) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) def test_fatigable_xia_torque_split(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/pendulum_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/pendulum.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=1, n_shooting=30, fatigue_type="xia", split_controls=True, use_sx=False ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 46.97293026598778) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (480, 1)) np.testing.assert_almost_equal(g, np.zeros((480, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot = states["q"], states["qdot"] ma_minus, mr_minus, mf_minus = states["tau_minus_ma"], states["tau_minus_mr"], states["tau_minus_mf"] ma_plus, mr_plus, mf_plus = states["tau_plus_ma"], states["tau_plus_mr"], states["tau_plus_mf"] tau_minus, tau_plus = controls["tau_minus"], controls["tau_plus"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0))) np.testing.assert_almost_equal(ma_minus[:, 0], np.array((0.0, 0))) np.testing.assert_almost_equal(ma_minus[:, -1], np.array((9.74835527e-02, 0))) np.testing.assert_almost_equal(mr_minus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mr_minus[:, -1], np.array((0.88266826, 1))) np.testing.assert_almost_equal(mf_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(mf_minus[:, -1], np.array((1.98481921e-02, 0))) np.testing.assert_almost_equal(ma_plus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(ma_plus[:, -1], np.array((5.69110401e-06, 0))) np.testing.assert_almost_equal(mr_plus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mr_plus[:, -1], np.array((0.9891588, 1))) np.testing.assert_almost_equal(mf_plus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(mf_plus[:, -1], np.array((1.08355110e-02, 0))) np.testing.assert_almost_equal(tau_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(tau_minus[:, -2], np.array((-10.29111867, 0))) np.testing.assert_almost_equal(tau_plus[:, 0], np.array((7.0546191, 0))) np.testing.assert_almost_equal(tau_plus[:, -2], np.array((0, 0))) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol) def test_fatigable_michaud_torque_non_split(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/pendulum_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/pendulum.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=1, n_shooting=10, fatigue_type="michaud", split_controls=False, use_sx=False, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) if platform.system() == "Linux": np.testing.assert_almost_equal(f[0, 0], 752.2660291516361) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (200, 1)) np.testing.assert_almost_equal(g, np.zeros((200, 1)), decimal=6) # Check some of the results states, controls = sol.states, sol.controls q, qdot = states["q"], states["qdot"] ma_minus, mr_minus, mf_minus = states["tau_minus_ma"], states["tau_minus_mr"], states["tau_minus_mf"] ma_plus, mr_plus, mf_plus = states["tau_plus_ma"], states["tau_plus_mr"], states["tau_plus_mf"] tau = controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0))) np.testing.assert_almost_equal(ma_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(mr_minus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mf_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(ma_plus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(mr_plus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mf_plus[:, 0], np.array((0, 0))) if platform.system() == "Linux": np.testing.assert_almost_equal(ma_minus[:, -1], np.array((2.27726849e-01, 0))) np.testing.assert_almost_equal(mr_minus[:, -1], np.array((0.77154438, 1))) np.testing.assert_almost_equal(mf_minus[:, -1], np.array((2.99934839e-04, 0))) np.testing.assert_almost_equal(ma_plus[:, -1], np.array((2.94965705e-03, 0))) np.testing.assert_almost_equal(mr_plus[:, -1], np.array((0.99650902, 1))) np.testing.assert_almost_equal(tau[:, 0], np.array((4.59966318, 0))) np.testing.assert_almost_equal(tau[:, -2], np.array((-22.86838109, 0))) np.testing.assert_almost_equal(mf_plus[:, -1], np.array((9.99805014e-05, 0))) # save and load TestUtils.save_and_load(sol, ocp, True) # simulate TestUtils.simulate(sol, decimal_value=5) def test_fatigable_michaud_torque_split(): bioptim_folder = TestUtils.bioptim_folder() fatigue = TestUtils.load_module(f"{bioptim_folder}/examples/fatigue/pendulum_with_fatigue.py") model_path = f"{bioptim_folder}/examples/fatigue/models/pendulum.bioMod" ocp = fatigue.prepare_ocp( biorbd_model_path=model_path, final_time=1, n_shooting=10, fatigue_type="michaud", split_controls=True, use_sx=False, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 66.4869989782804) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (200, 1)) np.testing.assert_almost_equal(g, np.zeros((200, 1))) # Check some of the results states, controls = sol.states, sol.controls q, qdot = states["q"], states["qdot"] ma_minus, mr_minus, mf_minus = states["tau_minus_ma"], states["tau_minus_mr"], states["tau_minus_mf"] ma_plus, mr_plus, mf_plus = states["tau_plus_ma"], states["tau_plus_mr"], states["tau_plus_mf"] tau_minus, tau_plus = controls["tau_minus"], controls["tau_plus"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(q[:, -1], np.array((0, 3.14))) np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((0, 0))) np.testing.assert_almost_equal(ma_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(ma_minus[:, -1], np.array((1.14840287e-01, 0))) np.testing.assert_almost_equal(mr_minus[:, 0], np.array((1, 1))) np.testing.assert_almost_equal(mr_minus[:, -1], np.array((0.88501154, 1))) np.testing.assert_almost_equal(mf_minus[:, 0], np.array((0, 0))) np.testing.assert_almost_equal(mf_minus[:, -1], np.array((0, 0))) np.testing.assert_almost_equal(ma_plus[:, 0],
np.array((0, 0))
numpy.array
import numpy as np def sqrt_gain_db(gain_db): return gain_db / 2 def design_low_shelving_filter(g_db, f, q, fs): k = np.tan((np.pi * f) / fs); v0 = np.power(10.0, g_db / 20.0); root2 = 1.0 / q if v0 < 1: v0 = 1 / v0 if g_db > 0: b0 = (1 + np.sqrt(v0) * root2 * k + v0 * k * k) / (1 + root2 * k + k * k) b1 = (2 * (v0 * k * k - 1)) / (1 + root2 * k + k * k) b2 = (1 - np.sqrt(v0) * root2 * k + v0 * k * k) / (1 + root2 * k + k * k) a0 = 1 a1 = (2 * (k * k - 1)) / (1 + root2 * k + k * k) a2 = (1 - root2 * k + k * k) / (1 + root2 * k + k * k) elif g_db < 0: b0 = (1 + root2 * k + k * k) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) b1 = (2 * (k * k - 1)) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) b2 = (1 - root2 * k + k * k) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) a0 = 1 a1 = (2 * (v0 * k * k - 1)) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) a2 = (1 - root2 *
np.sqrt(v0)
numpy.sqrt
''' This script plots the four test predictions of the predictive expectation and variance of BAR-DenseED seen in Figure 13 of the paper. === Distributed by: <NAME> (MIT Liscense) - Associated publication: url: http://www.sciencedirect.com/science/article/pii/S0021999119307612 doi: https://doi.org/10.1016/j.jcp.2019.109056 github: https://github.com/cics-nd/ar-pde-cnn === ''' import sys sys.path.append("..") # Adds higher directory to python modules path. from args import Parser from nn.denseEDcirc import DenseED from nn.bayesNN import BayesNN from nn.swag import SwagNN from utils.utils import mkdirs from utils.burgerLoader import BurgerLoader import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib import rc import matplotlib.gridspec as gridspec import torch import numpy as np import os import time def testSample(args, swag_nn, test_loader, tstep=100, n_samples=10): ''' Tests the samples of the Bayesian SWAG model Args: args (argparse): object with programs arguements model (PyTorch model): DenseED model to be tested test_loader (dataloader): dataloader with test cases (use createTestingLoader) tstep (int): number of timesteps to predict for n_samples (int): number of model samples to draw Returns: u_out (torch.Tensor): [d x nsamples x tstep x nel] predicted quantities of each sample u_target (torch.Tensor): [d x tstep x nel] respective target values loaded from simulator ''' mb_size = int(len(test_loader.dataset)/len(test_loader)) u_out = torch.zeros(mb_size, n_samples, tstep+1, args.nel) betas = torch.zeros(n_samples) for i in range(n_samples): print('Executing model sample {:d}'.format(i)) model = swag_nn.sample(diagCov=True) model.eval() betas[i] = model.model.log_beta.exp() for batch_idx, (input0, uTarget0) in enumerate(test_loader): input = input0.to(args.device) u_target = uTarget0 u_out[:,i,0,:] = input[:,0] # Auto-regress for t_idx in range(tstep): uPred = model(input[:,-args.nic:,:]) u_out[:,i,t_idx+1,:] = uPred[:,0] input = input[:,-int(args.nic-1):,:].detach() input0 = uPred[:,0,:].unsqueeze(1).detach() input = torch.cat([input, input0], dim=1) # Only do the first mini-batch break return u_out, betas, u_target def plotContourGrid(t, xT, uPred, betas, uTarget): ''' Creates grid of 4 different test cases, plots target, prediction, variance and error for each ''' mpl.rcParams['font.family'] = ['serif'] # default is sans-serif rc('text', usetex=False) fig = plt.figure(figsize=(15, 13), dpi=150) outer = gridspec.GridSpec(2, 2, wspace=0.45, hspace=0.2) # Outer grid for i in range(4): # Inner grid inner = gridspec.GridSpecFromSubplotSpec(4, 1, subplot_spec=outer[i], wspace=0, hspace=0.25) ax = [] for j in range(4): ax0 = plt.Subplot(fig, inner[j]) fig.add_subplot(ax0) ax.append(ax0) # Plot specific test case plotPred(fig, ax, t, xT, uPred[i], betas, uTarget[i]) file_dir = '.' # If directory does not exist create it if not os.path.exists(file_dir): os.makedirs(file_dir) file_name = file_dir+"/burger_BAR_pred" plt.savefig(file_name+".png", bbox_inches='tight') plt.savefig(file_name+".pdf", bbox_inches='tight') plt.show() def plotPred(fig, ax, t, xT, uPred, betas, uTarget): ''' Plots specific test case Args: fig: matplotlib figure ax (list): list of four subplot axis t (np.array): [n] array to time values for x axis xT (np.array): [m] array of spacial coordinates for y axis uPred (np.array): [n x m] model predictions uTarget (np.array): [n x m] target field ''' # Start with the target up top cmap = "inferno" c0 = ax[0].imshow(uTarget.T, interpolation='nearest', cmap=cmap, origin='lower', aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c_max = np.max(uTarget.T) c_min = np.min(uTarget.T) c0.set_clim(vmin=c_min, vmax=c_max) # Plot the mean uPred_mean = np.mean(uPred, axis=0) c0 = ax[1].imshow(uPred_mean.T, interpolation='nearest', cmap=cmap, origin='lower', aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c0.set_clim(vmin=c_min, vmax=c_max) p0 = ax[0].get_position().get_points().flatten() p1 = ax[1].get_position().get_points().flatten() ax_cbar = fig.add_axes([p1[2]+0.015, p1[1], 0.020, p0[3]-p1[1]]) ticks = np.linspace(0, 1, 5) tickLabels = np.linspace(c_min, c_max, 5) tickLabels = ["{:02.2f}".format(t0) for t0 in tickLabels] cbar = mpl.colorbar.ColorbarBase(ax_cbar, cmap=plt.get_cmap(cmap), orientation='vertical', ticks=ticks) cbar.set_ticklabels(tickLabels) # Variance betas = np.expand_dims(betas, axis=1).repeat(uPred.shape[1], axis=1) # Expand noise parameter betas = np.expand_dims(betas, axis=2).repeat(uPred.shape[2], axis=2) # Expand noise parameter uPred_var = np.mean(1./betas + uPred*uPred, axis=0) - uPred_mean*uPred_mean c0 = ax[2].imshow(uPred_var.T, interpolation='nearest', cmap=cmap, origin='lower', aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c_max = np.max(uPred_var) c0.set_clim(vmin=0, vmax=c_max) p0 = ax[2].get_position().get_points().flatten() ax_cbar = fig.add_axes([p0[2]+0.015, p0[1], 0.020, p0[3]-p0[1]]) ticks = np.linspace(0, 1, 5) tickLabels = np.linspace(0, c_max, 5) tickLabels = ["{:02.2f}".format(t0) for t0 in tickLabels] cbar = mpl.colorbar.ColorbarBase(ax_cbar, cmap=plt.get_cmap(cmap), orientation='vertical', ticks=ticks) cbar.set_ticklabels(tickLabels) # Mean Error cmap = "viridis" c0 = ax[3].imshow(np.abs(uPred_mean.T - uTarget.T), interpolation='nearest', cmap=cmap, origin='lower', aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) p0 = ax[3].get_position().get_points().flatten() ax_cbar = fig.add_axes([p0[2]+0.015, p0[1], 0.020, p0[3]-p0[1]]) ticks =
np.linspace(0, 1, 5)
numpy.linspace
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import datetime as dt import re import cupy as cp import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.util.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) import cudf from cudf.core import DataFrame, Series from cudf.core.index import DatetimeIndex from cudf.tests.utils import NUMERIC_TYPES, assert_eq def data1(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def data2(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def timeseries_us_data(): return pd.date_range( "2019-07-16 00:00:00", "2019-07-16 00:00:01", freq="5555us", name="times", ) def timestamp_ms_data(): return pd.Series( [ "2019-07-16 00:00:00.333", "2019-07-16 00:00:00.666", "2019-07-16 00:00:00.888", ] ) def timestamp_us_data(): return pd.Series( [ "2019-07-16 00:00:00.333333", "2019-07-16 00:00:00.666666", "2019-07-16 00:00:00.888888", ] ) def timestamp_ns_data(): return pd.Series( [ "2019-07-16 00:00:00.333333333", "2019-07-16 00:00:00.666666666", "2019-07-16 00:00:00.888888888", ] ) def numerical_data(): return np.arange(1, 10) fields = ["year", "month", "day", "hour", "minute", "second", "weekday"] @pytest.mark.parametrize("data", [data1(), data2()]) def test_series(data): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) assert_eq(pd_data, gdf_data) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_pandas(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) assert_eq(pd_data_1, gdf_data_1.astype("datetime64[ns]")) assert_eq(pd_data_2, gdf_data_2.astype("datetime64[ns]")) assert_eq(pd_data_1 < pd_data_2, gdf_data_1 < gdf_data_2) assert_eq(pd_data_1 > pd_data_2, gdf_data_1 > gdf_data_2) assert_eq(pd_data_1 == pd_data_2, gdf_data_1 == gdf_data_2) assert_eq(pd_data_1 <= pd_data_2, gdf_data_1 <= gdf_data_2) assert_eq(pd_data_1 >= pd_data_2, gdf_data_1 >= gdf_data_2) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_numpy(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) np_data_1 = np.array(pd_data_1).astype(lhs_dtype) np_data_2 = np.array(pd_data_2).astype(rhs_dtype) np.testing.assert_equal(np_data_1, gdf_data_1.to_array()) np.testing.assert_equal(np_data_2, gdf_data_2.to_array()) np.testing.assert_equal( np.less(np_data_1, np_data_2), (gdf_data_1 < gdf_data_2).to_array() ) np.testing.assert_equal( np.greater(np_data_1, np_data_2), (gdf_data_1 > gdf_data_2).to_array() ) np.testing.assert_equal( np.equal(np_data_1, np_data_2), (gdf_data_1 == gdf_data_2).to_array() ) np.testing.assert_equal( np.less_equal(np_data_1, np_data_2), (gdf_data_1 <= gdf_data_2).to_array(), ) np.testing.assert_equal(
np.greater_equal(np_data_1, np_data_2)
numpy.greater_equal
from __future__ import division from openmdao.api import Problem, Group, IndepVarComp, NewtonSolver, DirectSolver, BoundsEnforceLS from openmdao.api import ScipyOptimizeDriver, ExplicitComponent, ImplicitComponent import numpy as np import scipy.sparse as sp import sys, os sys.path.insert(0,os.getcwd()) from openconcept.components.ducts import ImplicitCompressibleDuct from openconcept.utilities.math.integrals import Integrator from openconcept.utilities.math.derivatives import FirstDerivative from openconcept.utilities.math import AddSubtractComp, ElementMultiplyDivideComp, VectorConcatenateComp, VectorSplitComp from openconcept.analysis.atmospherics.compute_atmos_props import ComputeAtmosphericProperties """Analysis routines for simulating thermal management of aircraft components""" class ThermalComponentWithMass(ExplicitComponent): """ Computes thermal residual of a component with heating, cooling, and thermal mass Inputs ------ q_in : float Heat generated by the component (vector, W) q_out : float Heat to waste stream (vector, W) mass : float Thermal mass (scalar, kg) Outputs ------- dTdt : float First derivative of temperature (vector, K/s) Options ------- specific_heat : float Specific heat capacity of the object in J / kg / K (default 921 = aluminum) num_nodes : float The number of analysis points to run """ def initialize(self): self.options.declare('num_nodes', default=1) self.options.declare('specific_heat', default=921, desc='Specific heat in J/kg/K - default 921 for aluminum') def setup(self): nn_tot = self.options['num_nodes'] arange = np.arange(0, nn_tot) self.add_input('q_in', units='W', shape=(nn_tot,)) self.add_input('q_out', units='W', shape=(nn_tot,)) self.add_input('mass', units='kg') self.add_output('dTdt', units='K/s', shape=(nn_tot,)) self.declare_partials(['dTdt'], ['q_in'], rows=arange, cols=arange) self.declare_partials(['dTdt'], ['q_out'], rows=arange, cols=arange) self.declare_partials(['dTdt'], ['mass'], rows=arange, cols=np.zeros((nn_tot,))) def compute(self, inputs, outputs): spec_heat = self.options['specific_heat'] outputs['dTdt'] = (inputs['q_in'] - inputs['q_out']) / inputs['mass'] / spec_heat def compute_partials(self, inputs, J): nn_tot = self.options['num_nodes'] spec_heat = self.options['specific_heat'] J['dTdt','mass'] = - (inputs['q_in'] - inputs['q_out']) / inputs['mass']**2 / spec_heat J['dTdt','q_in'] = 1 / inputs['mass'] / spec_heat J['dTdt','q_out'] = - 1 / inputs['mass'] / spec_heat class CoolantReservoirRate(ExplicitComponent): """ Computes dT/dt of a coolant reservoir based on inflow and current temps and flow rate Inputs ------ T_in : float Coolant stream in (vector, K) T_out : float Temperature of the reservoir (vector, K) mass : float Total quantity of coolant (scalar, kg) mdot_coolant : float Mass flow rate of the coolant (vector, kg/s) Outputs ------- dTdt : float First derivative of temperature (vector, K/s) Options ------- num_nodes : float The number of analysis points to run """ def initialize(self): self.options.declare('num_nodes', default=1) def setup(self): nn_tot = self.options['num_nodes'] arange = np.arange(0, nn_tot) self.add_input('T_in', units='K', shape=(nn_tot,)) self.add_input('T_out', units='K', shape=(nn_tot,)) self.add_input('mdot_coolant', units='kg/s', shape=(nn_tot,)) self.add_input('mass', units='kg') self.add_output('dTdt', units='K/s', shape=(nn_tot,)) self.declare_partials(['dTdt'], ['T_in','T_out','mdot_coolant'], rows=arange, cols=arange) self.declare_partials(['dTdt'], ['mass'], rows=arange, cols=np.zeros((nn_tot,))) def compute(self, inputs, outputs): outputs['dTdt'] = inputs['mdot_coolant'] / inputs['mass'] * (inputs['T_in'] - inputs['T_out']) def compute_partials(self, inputs, J): J['dTdt','mass'] = - inputs['mdot_coolant'] / inputs['mass']**2 * (inputs['T_in'] - inputs['T_out']) J['dTdt','mdot_coolant'] = 1 / inputs['mass'] * (inputs['T_in'] - inputs['T_out']) J['dTdt','T_in'] = inputs['mdot_coolant'] / inputs['mass'] J['dTdt','T_out'] = - inputs['mdot_coolant'] / inputs['mass'] class ThermalComponentMassless(ImplicitComponent): """ Computes thermal residual of a component with heating, cooling, and thermal mass Inputs ------ q_in : float Heat generated by the component (vector, W) q_out : float Heat to waste stream (vector, W) Outputs ------- T_object : float Object temperature (vector, K/s) Options ------- num_nodes : float The number of analysis points to run """ def initialize(self): self.options.declare('num_nodes',default=1) def setup(self): nn_tot = self.options['num_nodes'] arange = np.arange(0, nn_tot) self.add_input('q_in', units='W', shape=(nn_tot,)) self.add_input('q_out', units='W', shape=(nn_tot,)) self.add_output('T_object', units='K', shape=(nn_tot,)) self.declare_partials(['T_object'], ['q_in'], rows=arange, cols=arange, val=np.ones((nn_tot,))) self.declare_partials(['T_object'], ['q_out'], rows=arange, cols=arange, val=-np.ones((nn_tot,))) def apply_nonlinear(self, inputs, outputs, residuals): residuals['T_object'] = inputs['q_in'] - inputs['q_out'] class ConstantSurfaceTemperatureColdPlate_NTU(ExplicitComponent): """ Computes heat rejection to fluid stream of a microchannel cold plate with uniform temperature Inputs ------ T_in : float Coolant inlet temperature (vector, K) T_surface : float Temperature of the cold plate (vector, K) mdot_coolant : float Mass flow rate of the coolant (vector, kg/s) channel_length : float Length of each microchannel (scalar, m) channel_width : float Width of each microchannel (scalar, m) channel_height : float Height of each microchannel (scalar, m) n_parallel : float Number of fluid channels (scalar, dimensionless) Outputs ------- q : float Heat transfer rate from the plate to the fluid (vector, W) T_out : float Outlet fluid temperature (vector, K) Options ------- num_nodes : float The number of analysis points to run fluid_rho : float Coolant density in kg/m**3 (default 0.997, water) fluid_k : float Thermal conductivity of the fluid (W/m/K) (default 0.405, glycol/water) nusselt : float Hydraulic diameter Nusselt number of the coolant in the channels (default 7.54 for constant temperature infinite parallel plate) specific_heat : float Specific heat of the coolant (J/kg/K) (default 3801, glycol/water) """ def initialize(self): self.options.declare('num_nodes', default=1, desc='Number of analysis points') self.options.declare('fluid_rho', default=997.0, desc='Fluid density in kg/m3') self.options.declare('fluid_k', default=0.405, desc='Thermal conductivity of the fluid in W / mK') self.options.declare('nusselt', default=7.54, desc='Hydraulic diameter Nusselt number') self.options.declare('specific_heat', default=3801, desc='Specific heat in J/kg/K') def setup(self): nn_tot = self.options['num_nodes'] arange = np.arange(0, nn_tot) self.add_input('T_in', units='K', shape=(nn_tot,)) self.add_input('T_surface', units='K', shape=(nn_tot,)) self.add_input('channel_width', units='m') self.add_input('channel_height', units='m') self.add_input('channel_length', units='m') self.add_input('n_parallel') self.add_input('mdot_coolant', units='kg/s', shape=(nn_tot,)) self.add_output('q', units='W', shape=(nn_tot,)) self.add_output('T_out', units='K', shape=(nn_tot,)) self.declare_partials(['q','T_out'], ['T_in','T_surface','mdot_coolant'], method='cs') self.declare_partials(['q','T_out'], ['channel_width','channel_height','channel_length','n_parallel'], method='cs') def compute(self, inputs, outputs): Ts = inputs['T_surface'] Ti = inputs['T_in'] Cmin = inputs['mdot_coolant'] * self.options['specific_heat'] #cross_section_area = inputs['channel_width'] * inputs['channel_height'] * inputs['n_parallel'] #flow_rate = inputs['mdot_coolant'] / self.options['rho'] / cross_section_area # m/s surface_area = 2 * (inputs['channel_width']*inputs['channel_length'] + inputs['channel_height'] * inputs['channel_length']) * inputs['n_parallel'] d_h = 2 * inputs['channel_width'] * inputs['channel_height'] / (inputs['channel_width'] + inputs['channel_height']) h = self.options['nusselt'] * self.options['fluid_k'] / d_h ntu = surface_area * h / Cmin effectiveness = 1 - np.exp(-ntu) outputs['q'] = effectiveness * Cmin * (Ts - Ti) outputs['T_out'] = inputs['T_in'] + outputs['q'] / inputs['mdot_coolant'] / self.options['specific_heat'] class LiquidCooledComp(Group): """A component (heat producing) with thermal mass cooled by a cold plate. Inputs ------ q_in : float Heat produced by the operating component (vector, W) mdot_coolant : float Coolant mass flow rate (vector, kg/s) T_in : float Instantaneous coolant inflow temperature (vector, K) mass : float Object mass (only required in thermal mass mode) (scalar, kg) T_initial : float Initial temperature of the cold plate (only required in thermal mass mode) / object (scalar, K) duration : float Duration of mission segment, only required in unsteady mode channel_width : float Width of coolant channels (scalar, m) channel_height : float Height of coolant channels (scalar, m) channel_length : float Length of coolant channels (scalar, m) n_parallel : float Number of identical coolant channels (scalar, dimensionless) Outputs ------- T_out : float Instantaneous coolant outlet temperature (vector, K) T: float Object temperature (vector, K) Options ------- specific_heat_object : float Specific heat capacity of the object in J / kg / K (default 921 = aluminum) specific_heat_coolant : float Specific heat capacity of the coolant in J / kg / K (default 3801, glycol/water) num_nodes : int Number of analysis points to run quasi_steady : bool Whether or not to treat the component as having thermal mass """ def initialize(self): self.options.declare('specific_heat_object', default=921.0, desc='Specific heat in J/kg/K') self.options.declare('specific_heat_coolant', default=3801, desc='Specific heat in J/kg/K') self.options.declare('quasi_steady', default=False, desc='Treat the component as quasi-steady or with thermal mass') self.options.declare('num_nodes', default=1, desc='Number of quasi-steady points to runs') def setup(self): nn = self.options['num_nodes'] quasi_steady = self.options['quasi_steady'] if not quasi_steady: self.add_subsystem('base', ThermalComponentWithMass(specific_heat=self.options['specific_heat_object'], num_nodes=nn), promotes_inputs=['q_in', 'mass']) self.add_subsystem('integratetemp', Integrator(num_intervals=int((nn-1)/2), quantity_units='K', diff_units='s', method='simpson', time_setup='duration'), promotes_inputs=['duration',('q_initial','T_initial')], promotes_outputs=[('q','T'),('q_final','T_final')]) self.connect('base.dTdt','integratetemp.dqdt') else: self.add_subsystem('base', ThermalComponentMassless(num_nodes=nn), promotes_inputs=['q_in'], promotes_outputs=['T']) self.add_subsystem('hex', ConstantSurfaceTemperatureColdPlate_NTU(num_nodes=nn, specific_heat=self.options['specific_heat_coolant']), promotes_inputs=['T_in', ('T_surface','T'),'n_parallel','channel*','mdot_coolant'], promotes_outputs=['T_out']) self.connect('hex.q','base.q_out') class CoolantReservoir(Group): """A reservoir of coolant capable of buffering temperature Inputs ------ mdot_coolant : float Coolant mass flow rate (vector, kg/s) T_in : float Coolant inflow temperature (vector, K) mass : float Object mass (only required in thermal mass mode) (scalar, kg) T_initial : float Initial temperature of the coolant reservoir(only required in thermal mass mode) / object (scalar, K) duration : float Time step of each mission segment (one for each segment) (scalar, s) If a single segment is provided (by default) this variable will be called just 'dt' only required in thermal mass mode Outputs ------- T_out : float Coolant outlet temperature (vector, K) Options ------- num_nodes : int Number of analysis points to run """ def initialize(self): self.options.declare('num_nodes',default=5) def setup(self): nn = self.options['num_nodes'] self.add_subsystem('rate', CoolantReservoirRate(num_nodes=nn), promotes_inputs=['T_in', 'T_out', 'mass', 'mdot_coolant']) self.add_subsystem('integratetemp', Integrator(num_intervals=int((nn-1)/2), quantity_units='K', diff_units='s', method='simpson', time_setup='duration'), promotes_inputs=['duration',('q_initial','T_initial')], promotes_outputs=[('q','T_out'),('q_final','T_final')]) self.connect('rate.dTdt','integratetemp.dqdt') class LiquidCoolantTestGroup(Group): """A component (heat producing) with thermal mass cooled by a cold plate. """ def initialize(self): self.options.declare('num_nodes',default=11) self.options.declare('quasi_steady', default=False, desc='Treat the component as quasi-steady or with thermal mass') def setup(self): quasi_steady = self.options['quasi_steady'] nn = self.options['num_nodes'] iv = self.add_subsystem('iv',IndepVarComp(), promotes_outputs=['*']) #iv.add_output('q_in', val=10*np.concatenate([np.ones((nn,)),0.5*np.ones((nn,)),0.2*np.ones((nn,))]), units='kW') throttle_profile = np.ones((nn,)) iv.add_output('q_in',val=10*throttle_profile, units='kW') #iv.add_output('T_in', val=40*np.ones((nn_tot,)), units='degC') iv.add_output('mdot_coolant', val=0.1*np.ones((nn,)), units='kg/s') iv.add_output('rho_coolant', val=997*np.ones((nn,)),units='kg/m**3') iv.add_output('motor_mass', val=50., units='kg') iv.add_output('coolant_mass', val=10., units='kg') iv.add_output('T_motor_initial', val=15, units='degC') iv.add_output('T_res_initial', val=15.1, units='degC') iv.add_output('duration', val=800, units='s') iv.add_output('channel_width', val=1, units='mm') iv.add_output('channel_height', val=20, units='mm') iv.add_output('channel_length', val=0.2, units='m') iv.add_output('n_parallel', val=20) Ueas = np.ones((nn))*150 h = np.concatenate([np.linspace(0,25000,nn)]) iv.add_output('fltcond|Ueas', val=Ueas, units='kn' ) iv.add_output('fltcond|h', val=h, units='ft') self.add_subsystem('atmos', ComputeAtmosphericProperties(num_nodes=nn), promotes_inputs=["fltcond|h", "fltcond|Ueas"]) if not quasi_steady: lc_promotes = ['q_in',('mass','motor_mass'),'duration','channel_*','n_parallel'] else: lc_promotes = ['q_in','channel_*','n_parallel'] self.add_subsystem('component', LiquidCooledComp(num_nodes=nn, quasi_steady=quasi_steady), promotes_inputs=lc_promotes) self.add_subsystem('duct', ImplicitCompressibleDuct(num_nodes=nn)) self.connect('atmos.fltcond|p','duct.p_inf') self.connect('atmos.fltcond|T','duct.T_inf') self.connect('atmos.fltcond|Utrue','duct.Utrue') self.connect('component.T_out','duct.T_in_hot') self.connect('rho_coolant','duct.rho_hot') if quasi_steady: self.connect('duct.T_out_hot','component.T_in') self.connect('mdot_coolant',['component.mdot_coolant','duct.mdot_hot']) else: self.add_subsystem('reservoir', CoolantReservoir(num_nodes=nn), promotes_inputs=['duration',('mass','coolant_mass')]) self.connect('duct.T_out_hot','reservoir.T_in') self.connect('reservoir.T_out','component.T_in') self.connect('mdot_coolant',['component.mdot_coolant','duct.mdot_hot','reservoir.mdot_coolant']) self.connect('T_motor_initial','component.T_initial') self.connect('T_res_initial','reservoir.T_initial') if __name__ == '__main__': # run this script from the root openconcept directory like so: # python .\openconcept\components\ducts.py quasi_steady = False nn = 11 prob = Problem(LiquidCoolantTestGroup(quasi_steady=quasi_steady, num_nodes=nn)) prob.model.options['assembled_jac_type'] = 'csc' prob.model.nonlinear_solver=NewtonSolver(iprint=2) prob.model.linear_solver = DirectSolver(assemble_jac=True) prob.model.nonlinear_solver.options['solve_subsystems'] = True prob.model.nonlinear_solver.options['maxiter'] = 20 prob.model.nonlinear_solver.options['atol'] = 1e-8 prob.model.nonlinear_solver.options['rtol'] = 1e-8 prob.model.nonlinear_solver.linesearch = BoundsEnforceLS(bound_enforcement='scalar',print_bound_enforce=True) prob.setup(check=True,force_alloc_complex=True) prob.run_model() #print(prob['duct.inlet.M']) print(np.max(prob['component.T']-273.15)) print(
np.max(-prob['duct.force.F_net'])
numpy.max
# -*- coding: utf-8 -*- """ Created on Fri Feb 12 16:51:05 2016 @author: <NAME> """ import numpy as np from scipy import optimize from scipy.stats import norm # from ...finutils.FinMath import N, nprime from ...finutils.FinDate import FinDate from ...finutils.FinMath import nprime from ...finutils.FinGlobalVariables import gDaysInYear from ...finutils.FinError import FinError from ...products.equity.FinEquityOption import FinEquityOption from ...products.equity.FinEquityOption import FinEquityOptionTypes from ...products.equity.FinEquityModelTypes import FinEquityModel from ...products.equity.FinEquityModelTypes import FinEquityModelBlackScholes N = norm.cdf ############################################################################### def f(volatility, *args): self = args[0] valueDate = args[1] stockPrice = args[2] discountCurve = args[3] dividendYield = args[4] price = args[5] model = FinEquityModelBlackScholes(volatility) objFn = self.value(valueDate, stockPrice, discountCurve, dividendYield, model) - price # print(volatility, price, objFn) return objFn ############################################################################### def fvega(volatility, *args): self = args[0] valueDate = args[1] stockPrice = args[2] discountCurve = args[3] dividendYield = args[4] model = FinEquityModelBlackScholes(volatility) fprime = self.vega( valueDate, stockPrice, discountCurve, dividendYield, model) return fprime ############################################################################### class FinEquityVanillaOption(FinEquityOption): def __init__(self, expiryDate, strikePrice, optionType): if optionType != FinEquityOptionTypes.EUROPEAN_CALL and \ optionType != FinEquityOptionTypes.EUROPEAN_PUT: raise FinError("Unknown Option Type", optionType) self._expiryDate = expiryDate self._strikePrice = strikePrice self._optionType = optionType ############################################################################### def value(self, valueDate, stockPrice, discountCurve, dividendYield, model): if type(valueDate) == FinDate: t = (self._expiryDate - valueDate) / gDaysInYear else: t = valueDate if np.any(stockPrice <= 0.0): raise FinError("Stock price must be greater than zero.") if model._parentType != FinEquityModel: raise FinError("Model is not inherited off type FinEquityModel.") if np.any(t < 0.0): raise FinError("Time to expiry must be positive.") t = np.maximum(t, 1e-10) df = discountCurve.df(t) interestRate = -np.log(df)/t if type(model) == FinEquityModelBlackScholes: volatility = model._volatility if np.any(volatility) < 0.0: raise FinError("Volatility should not be negative.") volatility = np.maximum(volatility, 1e-10) lnS0k = np.log(stockPrice / self._strikePrice) sqrtT = np.sqrt(t) den = volatility * sqrtT mu = interestRate - dividendYield v2 = volatility * volatility d1 = (lnS0k + (mu + v2 / 2.0) * t) / den d2 = (lnS0k + (mu - v2 / 2.0) * t) / den if self._optionType == FinEquityOptionTypes.EUROPEAN_CALL: v = stockPrice * np.exp(-dividendYield * t) * N(d1) v = v - self._strikePrice * np.exp(-interestRate * t) * N(d2) elif self._optionType == FinEquityOptionTypes.EUROPEAN_PUT: v = self._strikePrice * np.exp(-interestRate * t) * N(-d2) v = v - stockPrice * np.exp(-dividendYield * t) * N(-d1) else: raise FinError("Unknown option type") else: raise FinError("Unknown Model Type") return v ############################################################################### def xdelta(self, valueDate, stockPrice, discountCurve, dividendYield, model): if type(valueDate) == FinDate: t = (self._expiryDate - valueDate) / gDaysInYear else: t = valueDate if np.any(stockPrice <= 0.0): raise FinError("Stock price must be greater than zero.") if model._parentType != FinEquityModel: raise FinError("Model is not inherited off type FinEquityModel.") if np.any(t < 0.0): raise FinError("Time to expiry must be positive.") t = np.maximum(t, 1e-10) df = discountCurve.df(t) interestRate = -np.log(df)/t if type(model) == FinEquityModelBlackScholes: volatility = model._volatility if np.any(volatility < 0.0): raise FinError("Volatility should not be negative.") volatility = np.maximum(volatility, 1e-10) lnS0k = np.log(stockPrice / self._strikePrice) sqrtT = np.sqrt(t) den = volatility * sqrtT mu = interestRate - dividendYield v2 = volatility * volatility d1 = (lnS0k + (mu + v2 / 2.0) * t) / den if self._optionType == FinEquityOptionTypes.EUROPEAN_CALL: delta = np.exp(-dividendYield * t) * N(d1) elif self._optionType == FinEquityOptionTypes.EUROPEAN_PUT: delta = -np.exp(-dividendYield * t) * N(-d1) else: raise FinError("Unknown option type") return delta ############################################################################### def xgamma(self, valueDate, stockPrice, discountCurve, dividendYield, model): if type(valueDate) == FinDate: t = (self._expiryDate - valueDate) / gDaysInYear else: t = valueDate if np.any(stockPrice <= 0.0): raise FinError("Stock price must be greater than zero.") if model._parentType != FinEquityModel: raise FinError("Model is not inherited off type FinEquityModel.") if np.any(t < 0.0): raise FinError("Time to expiry must be positive.") t = np.maximum(t, 1e-10) df = discountCurve.df(t) interestRate = -np.log(df)/t if type(model) == FinEquityModelBlackScholes: volatility = model._volatility if np.any(volatility) < 0.0: raise FinError("Volatility should not be negative.") volatility = np.maximum(volatility, 1e-10) lnS0k = np.log(stockPrice / self._strikePrice) sqrtT = np.sqrt(t) den = volatility * sqrtT mu = interestRate - dividendYield v2 = volatility * volatility d1 = (lnS0k + (mu + v2 / 2.0) * t) / den gamma = np.exp(-dividendYield * t) * nprime(d1) / stockPrice / den else: raise FinError("Unknown Model Type") return gamma ############################################################################### def xvega(self, valueDate, stockPrice, discountCurve, dividendYield, model): if type(valueDate) == FinDate: t = (self._expiryDate - valueDate) / gDaysInYear else: t = valueDate if np.any(stockPrice <= 0.0): raise FinError("Stock price must be greater than zero.") if model._parentType != FinEquityModel: raise FinError("Model is not inherited off type FinEquityModel.") if np.any(t < 0.0): raise FinError("Time to expiry must be positive.") t = np.maximum(t, 1e-10) df = discountCurve.df(t) interestRate = -np.log(df)/t if type(model) == FinEquityModelBlackScholes: volatility = model._volatility if np.any(volatility) < 0.0: raise FinError("Volatility should not be negative.") volatility = np.maximum(volatility, 1e-10) lnS0k = np.log(stockPrice / self._strikePrice) sqrtT = np.sqrt(t) den = volatility * sqrtT mu = interestRate - dividendYield v2 = volatility * volatility d1 = (lnS0k + (mu + v2 / 2.0) * t) / den vega = stockPrice * sqrtT * np.exp(-dividendYield * t) * nprime(d1) else: raise FinError("Unknown Model type") return vega ############################################################################### def xtheta(self, valueDate, stockPrice, discountCurve, dividendYield, model): if type(valueDate) == FinDate: t = (self._expiryDate - valueDate) / gDaysInYear else: t = valueDate if np.any(stockPrice <= 0.0): raise FinError("Stock price must be greater than zero.") if model._parentType != FinEquityModel: raise FinError("Model is not inherited off type FinEquityModel.") if np.any(t < 0.0): raise FinError("Time to expiry must be positive.") t = np.maximum(t, 1e-10) df = discountCurve.df(t) interestRate = -np.log(df)/t if type(model) == FinEquityModelBlackScholes: volatility = model._volatility if np.any(volatility) < 0.0: raise FinError("Volatility should not be negative.") volatility = np.maximum(volatility, 1e-10) lnS0k = np.log(stockPrice / self._strikePrice) sqrtT = np.sqrt(t) den = volatility * sqrtT mu = interestRate - dividendYield v2 = volatility * volatility d1 = (lnS0k + (mu + v2 / 2.0) * t) / den d2 = (lnS0k + (mu - v2 / 2.0) * t) / den if self._optionType == FinEquityOptionTypes.EUROPEAN_CALL: v = - stockPrice * np.exp(-dividendYield * t) * \ nprime(d1) * volatility / 2.0 / sqrtT v = v - interestRate * self._strikePrice * \ np.exp(-interestRate * t) * N(d2) v = v + dividendYield * stockPrice * \ np.exp(-dividendYield * t) * N(d1) elif self._optionType == FinEquityOptionTypes.EUROPEAN_PUT: v = - stockPrice * np.exp(-dividendYield * t) * \ nprime(d1) * volatility / 2.0 / sqrtT v = v + interestRate * self._strikePrice * \ np.exp(-interestRate * t) * N(-d2) v = v - dividendYield * stockPrice * \ np.exp(-dividendYield * t) * N(-d1) else: raise FinError("Unknown option type") else: raise FinError("Unknown Model Type") return v ############################################################################### def impliedVolatility(self, valueDate, stockPrice, discountCurve, dividendYield, price): argtuple = (self, valueDate, stockPrice, discountCurve, dividendYield, price) sigma = optimize.newton(f, x0=0.2, fprime=fvega, args=argtuple, tol=1e-5, maxiter=50, fprime2=None) return sigma ############################################################################### def valueMC(self, valueDate, stockPrice, discountCurve, dividendYield, model, numPaths=10000, seed=4242): if model._parentType == FinEquityModel: volatility = model._volatility else: raise FinError("Model Type invalid") np.random.seed(seed) t = (self._expiryDate - valueDate) / gDaysInYear df = discountCurve.df(self._expiryDate) r = -np.log(df)/t mu = r - dividendYield v2 = volatility**2 K = self._strikePrice sqrtdt = np.sqrt(t) # Use Antithetic variables g = np.random.normal(0.0, 1.0, size=(1, numPaths)) s = stockPrice * np.exp((mu - v2 / 2.0) * t) m = np.exp(g * sqrtdt * volatility) s_1 = s * m s_2 = s / m if self._optionType == FinEquityOptionTypes.EUROPEAN_CALL: payoff_a_1 = np.maximum(s_1 - K, 0) payoff_a_2 = np.maximum(s_2 - K, 0) elif self._optionType == FinEquityOptionTypes.EUROPEAN_PUT: payoff_a_1 = np.maximum(K - s_1, 0) payoff_a_2 = np.maximum(K - s_2, 0) else: raise FinError("Unknown option type.") payoff =
np.mean(payoff_a_1)
numpy.mean
import numpy as np from matplotlib import pyplot as plt import sys def findConvexHull(points): points = np.array(points, dtype=np.float32) if points.shape[0] < 3: print ("Minimum 3 points required") sys.exit(1) rotated_points = np.rot90(points) points = points[
np.lexsort(rotated_points)
numpy.lexsort
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2020, <NAME>, <NAME>, <NAME>, <NAME>" __credits__ = ["<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "1.0" __status__ = "Development" """ Contains the functionalities to identify individuals and cut them out. """ import sys MASK_RCNN_LIBRARY = '' sys.path.append(MASK_RCNN_LIBRARY) import configuration as cf import os, shutil from mrcnn.config import Config from mrcnn.model import MaskRCNN, mold_image, load_image_gt from mrcnn.utils import Dataset import numpy as np from datetime import datetime import cv2 ### mrcnn class class Prediction_Config(Config): NAME = " " NUM_CLASSES = 2 GPU_COUNT = 1 IMAGES_PER_GPU = 1 DETECTION_MAX_INSTANCES = 1 DETECTION_MIN_CONFIDENCE = cf.DETECTION_MIN_CONFIDENCE def _setClassVariables(self, name, names_labels): self.NAME = name self.NUM_CLASSES = 1 + len(names_labels) self.DETECTION_MAX_INSTANCES = len(names_labels) class Prediction_Dataset(Dataset): # load the dataset definitions def load_dataset(self, night_images_path, names): n = 0 for name in names: # define one class self.add_class("dataset", n + 1, name) n += 1 # find all images for interval_num in sorted(os.listdir(night_images_path)): for filename in sorted(os.listdir(night_images_path + interval_num)): if not filename.endswith('.jpg'): continue # extract image id image_id = filename[:-4] img_path = night_images_path + interval_num + '/' + filename # add to dataset self.add_image('dataset', image_id=image_id, path=img_path) # load an image reference def image_reference(self, image_id): info = self.image_info[image_id] return info['path'] def load_mask(self, image_id): mask = np.empty([0, 0, 0]) class_ids = np.empty([0], np.int32) return mask, class_ids def _get_enclosurecode(species, zoo, enclosure): return species+'_'+zoo+'_'+str(enclosure) def _check_configuration(species, zoo, enclosure, base_input): ret = True enclosure_code = _get_enclosurecode(species, zoo, enclosure) net, label = _get_network_and_label(species, zoo, enclosure) if not os.path.exists(base_input+enclosure_code): print("Error: Input folder for object detection not found:", base_input, enclosure_code) return False if not net: print("Error: No object detection network was found:", enclosure_code) return False if not label: print("Error: No labels were found:", enclosure_code) return False return ret def _get_network_and_label(species, zoo, enclosure_num, basenets = cf.BASE_OD_NETWORK, zoonets = cf.ZOO_OD_NETWORK, enclosurenets = cf.ENCLOSURE_OD_NETWORK, labels = cf.OD_NETWORK_LABELS): enclosure_code = species+'_'+zoo+'_'+str(enclosure_num) zoo_code = species+'_'+zoo net = False label = False if enclosure_code in enclosurenets.keys(): net = enclosurenets[enclosure_code] elif zoo_code in zoonets.keys(): net = zoonets[zoo_code] elif species in basenets.keys(): net = basenets[species] if enclosure_code in labels.keys(): label = labels[enclosure_code] elif zoo_code in labels.keys(): label = labels[zoo_code] elif species in labels.keys(): label = labels[species] return net, label def postprocess_boxes(yhat): def non_max_suppression(boxes, scores, threshold): def compute_iou(box, boxes, box_area, boxes_area): assert boxes.shape[0] == boxes_area.shape[0] ys1 = np.maximum(box[0], boxes[:, 0]) xs1 = np.maximum(box[1], boxes[:, 1]) ys2 = np.minimum(box[2], boxes[:, 2]) xs2 = np.minimum(box[3], boxes[:, 3]) intersections = np.maximum(ys2 - ys1, 0) * np.maximum(xs2 - xs1, 0) unions = box_area + boxes_area - intersections ious = intersections / unions return ious assert boxes.shape[0] == scores.shape[0] # bottom-left origin ys1 = boxes[:, 0] xs1 = boxes[:, 1] # top-right target ys2 = boxes[:, 2] xs2 = boxes[:, 3] # box coordinate ranges are inclusive-inclusive areas = (ys2 - ys1) * (xs2 - xs1) scores_indexes = scores.argsort().tolist() boxes_keep_index = [] while len(scores_indexes): index = scores_indexes.pop() boxes_keep_index.append(index) if not len(scores_indexes): break ious = compute_iou(boxes[index], boxes[scores_indexes], areas[index], areas[scores_indexes]) filtered_indexes = set((ious > threshold).nonzero()[0]) # if there are no more scores_index # then we should pop it scores_indexes = [ v for (i, v) in enumerate(scores_indexes) if i not in filtered_indexes ] return np.array(boxes_keep_index) def remove_clones(boxes, class_ids, scores): # -! works only on two individuals so far if class_ids[0] == class_ids[1]: x = np.argmax(scores) # number 0 or 1 if class_ids[x] == 1: correct_label = 1 false_label = 2 else: correct_label = 2 false_label = 1 class_ids[x] = correct_label class_ids[1 - x] = false_label return boxes, class_ids def remove_double_boxes(boxes, class_ids, scores): # how to set iou-threshold ? iou_threshold = 0.8 keep_indices = non_max_suppression(boxes, scores, iou_threshold) boxes_ret = [boxes[i] for i in keep_indices] class_ids_ret = [class_ids[i] for i in keep_indices] scores_ret = [scores[i] for i in keep_indices] return boxes_ret, class_ids_ret, scores_ret def remove_small_boxes(boxes): return boxes # dirty fix because it is not necessary anymore # yhat is model detection return. boxes = yhat['rois'] class_ids = yhat['class_ids'] scores = yhat['scores'] # -! works only on two individuals so far if len(boxes) >= 2: # remove multiple instances of individuals boxes, class_ids = remove_clones(boxes, class_ids, scores) # suppress double boxing boxes, class_ids, scores = remove_double_boxes(boxes, class_ids, scores) boxes = remove_small_boxes(boxes) return boxes, class_ids, scores def ensure_dir(directory): if not os.path.exists(directory): os.makedirs(directory) def _cut_out_prediction_data(od_prediction_set, od_model, od_cfg, enclosure_code, output_folder, label_names, img_size=cf.IMG_SIZE): def _individual_name_from_boxcode(label_names, boxcode): tmp = label_names[boxcode - 1] if tmp.startswith("Elenantilope"): tmp = tmp.replace("Elenantilope", "Elen") return tmp # load image and mask i = 1 for image_id in od_prediction_set.image_ids: i += 1 # load the image and mask image, image_meta, gt_class_id, gt_bbox, gt_mask = load_image_gt(od_prediction_set, od_cfg, image_id, use_mini_mask=False) scaled_image = mold_image(image, od_cfg) sample = np.expand_dims(scaled_image, 0) # make prediction yhat = od_model.detect(sample, verbose=0)[0] img_path = od_prediction_set.image_info[image_id]['path'] img_name = img_path.split("/")[-1] interval_num = img_path.split("/")[-2] if i % 6250 == 0: print(datetime.now()) print("Predicted " + str(i) + " images of " + output_folder) # plot each box boxes, classes, scores = postprocess_boxes(yhat) # OnePerClassOutOfTwo(yhat) box_num = 0 for box in boxes: pred_class = classes[box_num] ind_name = _individual_name_from_boxcode(label_names = label_names, boxcode=pred_class) # get coordinates y1, x1, y2, x2 = box box_part = image[y1:y2, x1:x2] box_part_rs = cv2.resize(box_part, img_size, interpolation=cv2.INTER_AREA) save_path = output_folder + ind_name + '/' + interval_num + '/' ensure_dir(save_path) cv2.imwrite(save_path + img_name, box_part_rs) text_file = open(save_path + "box_info.txt", "a+") text_file.write(img_name + "-" + str(y1) + "*" + str(x1) + "*" + str(y2) + "*" + str(x2) + "\n") text_file.close() box_num += 1 os.remove(img_path) def _predict_one_night(input_path_night, od_model, od_cfg, od_labels, enclosure_code, output_folder): def load_prediction_set(path = input_path_night, label_names = od_labels): prediction_set = Prediction_Dataset() prediction_set.load_dataset(night_images_path=path, names=label_names) prediction_set.prepare() print('In this folder, there are %d images to predict.' % len(prediction_set.image_ids)) return prediction_set prediction_set = load_prediction_set() _cut_out_prediction_data(prediction_set, od_model, od_cfg, enclosure_code, output_folder, od_labels) def merge_timeinterval_images(path_to_intervalfolders, output_path_intervalimg, output_path_single_frame, output_path_text): """ Parameters ---------- path_to_intervalfolders : string TMP_STORAGE/intervals/enclosure_code/datum/ contains for each individual a folder, each of those contains folders of intervals output_path_intervalimg : TYPE TMP_STORAGE/joint_images/enclosure_code/datum/. output_path_single_frame : TYPE TMP_STORAGE/single_frames/enclosure_code/datum/. Returns ------- Writes output_path_intervalimg/interval_num.jpg and output_path_single_frame/frame_num.jpg (up to 2 out of 4) """ def _write_joint_image(imgpath_list, out_directory, time_interval): img_list = [] for imgpath in imgpath_list: img = cv2.imread(imgpath) img_list.append(img) if len(img_list) == 0: return h, w, d = img_list[0].shape img_black = np.zeros([w, h, d],dtype=np.uint8) if len(img_list) == 1: vis1 = np.concatenate((img_list[0], img_black), axis=1) vis2 = np.concatenate((img_black, img_black), axis=1) vis =
np.concatenate((vis1, vis2), axis=0)
numpy.concatenate
import os import numpy as np from colorama import init as cinit from colorama import Fore, Back, Style import random from time import monotonic as clock import math import config as conf import utils from thing import Thing class FireBeam(Thing): ''' firebeam obstacle object uses physics inherited from Thing ''' DIR_HOR = 0 # -- DIR_VERT = 1 # | DIR_DIA_DOWN = 2 # \ DIR_DIA_UP = 3 # / def __init__(self, game_height, game_width, size, direction, x=0, y=0): if type(size) != int or direction not in (self.DIR_HOR, self.DIR_VERT, self.DIR_DIA_DOWN, self.DIR_DIA_UP): raise ValueError('Invalid arguments') if direction == self.DIR_HOR: size_arr =
np.array([1, size])
numpy.array
__author__ = "<NAME>" __license__ = "MIT" __version__ = "0.0.1" # -------------------------------------------------------------------------------------------------------------------- # # Imports # Module imports import shapely from shapely.geometry import Polygon import shapefile import numpy as np from numpy.linalg import norm import pymesh # Livestock imports # -------------------------------------------------------------------------------------------------------------------- # # Livestock Geometry Functions def fix_mesh(mesh, detail="normal"): bbox_min, bbox_max = mesh.bbox diag_len = norm(bbox_max - bbox_min) if detail == "normal": target_len = diag_len * 1e-2 elif detail == "high": target_len = diag_len * 5e-3 elif detail == "low": target_len = diag_len * 0.03 print("Target resolution: {} mm".format(target_len)) count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) mesh, __ = pymesh.split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices print("#v: {}".format(num_vertices)) count += 1 if count > 10: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh def ray_triangle_intersection(ray_near, ray_dir, V): """ Möller–Trumbore intersection algorithm in pure python Based on http://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm """ v1 = V[0] v2 = V[1] v3 = V[2] eps = 0.000001 edge1 = v2 - v1 edge2 = v3 - v1 pvec = np.cross(ray_dir, edge2) det = edge1.dot(pvec) if abs(det) < eps: return False, None inv_det = 1. / det tvec = ray_near - v1 u = tvec.dot(pvec) * inv_det if u < 0. or u > 1.: return False, None qvec = np.cross(tvec, edge1) v = ray_dir.dot(qvec) * inv_det if v < 0. or u + v > 1.: return False, None t = edge2.dot(qvec) * inv_det if t < eps: return False, None return True, t def lowest_face_vertex(v0, v1, v2): V = [v0, v1, v2] x0 = v0[0] y0 = v0[1] z0 = v0[2] x1 = v1[0] y1 = v1[1] z1 = v1[2] x2 = v2[0] y2 = v2[1] z2 = v2[2] X = [x0, x1, x2] Y = [y0, y1, y2] Z = [z0, z1, z2] Zsort = sorted(Z) if Zsort[0] == Zsort[2]: return np.array([sum(X)/3, sum(Y)/3, sum(Z)/3]) elif Zsort[0] < Zsort[1]: i = Z.index(Zsort[0]) return V[i] elif Zsort[0] == Zsort[1]: i0 = Z.index(Zsort[0]) i1 = Z.index(Zsort[1]) x = 0.5*(X[i0] + X[i1]) y = 0.5*(Y[i0] + Y[i1]) return np.array([x, y, Zsort[0]]) else: print('Error finding lowest point!') print('v0:',v0) print('v1:', v1) print('v2:', v2) return None def angle_between_vectors(v1, v2, force_angle=None): """ Computes the angle between two vectors. :param v1: Vector1 as numpy array :param v2: Vector2 as numpy array :param force_angle: Default is None. Use to force angle into acute or obtuse. :return: Angle in radians and its angle type. """ # Dot product dot_v1v2 = np.dot(v1, v2) # Determine angle type if dot_v1v2 > 0: angle_type = 'acute' elif dot_v1v2 == 0: return np.pi/2, 'perpendicular' else: angle_type = 'obtuse' # Vector magnitudes and compute angle mag_v1 = np.sqrt(v1.dot(v1)) mag_v2 = np.sqrt(v2.dot(v2)) angle = np.arccos(abs(dot_v1v2 / (mag_v1 * mag_v2))) # Compute desired angle type if not force_angle: return angle, angle_type elif force_angle == 'acute': if angle_type == 'acute': return angle, 'acute' else: angle = np.pi - angle return angle, 'acute' elif force_angle == 'obtuse': if angle > np.pi/2: return angle, 'obtuse' else: angle = np.pi - angle return angle, 'obtuse' else: print('force_angle has to be defined as None, acute or obtuse. force_angle was:', str(force_angle)) return None, None def line_intersection(p1, p2, p3, p4): """ Computes the intersection between two lines given 4 points on those lines. :param p1: Numpy array. First point on line 1 :param p2: Numpy array. Second point on line 1 :param p3: Numpy array. First point on line 2 :param p4: Numpy array. Second point on line 2 :return: Numpy array. Intersection point """ # Direction vectors v1 = (p2 - p1) v2 = (p4 - p3) # Cross-products and vector norm cv12 = np.cross(v1, v2) cpv = np.cross((p1 - p3), v2) t =
norm(cpv)
numpy.linalg.norm
# -*- coding: utf-8 -*- import matplotlib from matplotlib import pyplot as plt import numpy as np import pandas as pd # from mpl_toolkits.basemap import Basemap import xarray as xr import re from collections import OrderedDict from datetime import datetime, timedelta from scipy.spatial import cKDTree, KDTree from pyproj import Proj import numpy.ma as ma import argparse from glob import glob import json import os import logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO) deg2rad = np.pi / 180 NRANGE = {'LPRO': 90, 'SILL': 60, 'FIST': 60, 'VILA': 60, 'PRIO': 60} dtypes = {"TIME": 'float64', "DEPH": 'float32', "BEAR": 'float32', "RNGE": 'float32', "LONGITUDE": 'float32', "LATITUDE": 'float32', "XDST": 'int32', "YDST": 'int32', "RDVA": 'int16', "DRVA": 'int32', "EWCT": 'int16', "NSCT": 'int16', "MAXV": 'int16', "MINV": 'int16', "ESPC": 'int16', "ETMP": 'int16', "ERSC": 'int16', "ERTC": 'int16', "SPRC": 'int16', "NARX": 'int8', "NATX": 'int8', "SLTR": 'int32', "SLNR": 'int32', "SLTT": 'int16', "SLNT": 'int16', "TIME_QC": 'int8', "POSITION_QC": 'int8', "DEPH_QC": 'int8', "QCflag": 'int8', "OWTR_QC": 'int8', "MDFL_QC": 'int8', "VART_QC": 'int8', "CSPD_QC": 'int8', "AVRB_QC": 'int8', "RDCT_QC": 'int8'} scale_factors = {"XDST": 0.001, "YDST": 0.001, "RDVA": 0.001, "DRVA": 0.001, "EWCT": 0.001, "NSCT": 0.001, "ESPC": 0.001, "ETMP": 0.001, "MAXV": 0.001, "MINV": 0.001, "ERSC": 1, "ERTC": 1, "XDST": 0.001, "YDST": 0.001, "SPRC": 1, "NARX": 1, "NATX": 1, "SLTR": 0.001, "SLNR": 0.001, "SLTT": 0.001, "SLNT": 0.001, "TIME_QC": 1, "POSITION_QC": 1, "DEPH_QC": 1, "QCflag": 1, "OWTR_QC": 1, "MDFL_QC": 1, "VART_QC": 1, "CSPD_QC": 1, "AVRB_QC": 1, "RDCT_QC": 1} add_offsets = {} for key, value in scale_factors.items(): if isinstance(value, float): scale_factors[key] =
np.float32(scale_factors[key])
numpy.float32
''' Functions for use ''' import torch from torch.autograd import Variable import numpy as np import itertools import os import random import pickle import torch as t import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import ShuffleSplit from sklearn.feature_extraction.text import TfidfTransformer # from tsne import tsne USE_CUDA = torch.cuda.is_available() if USE_CUDA: torch.cuda.set_device(0) FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor LongTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor ByteTensor = torch.cuda.ByteTensor if USE_CUDA else torch.ByteTensor Device = 'cuda:1' if USE_CUDA else 'cpu' """process data input to bag-of-words representation""" def dataset(data_url, monitor=False): data_withorder = np.load(data_url + '.multi.npy', allow_pickle=True) seq = [list(x) for x in data_withorder] if monitor: print('Converting data to sequence') try: labels_with_names = np.load(data_url + '.labels.multi.npy', allow_pickle=True) labels = labels_with_names[0] class_names = labels_with_names[1] except: if monitor: print("No labels.") labels = None class_names = ['None'] return seq, labels, class_names def onehot(data, min_length): return np.bincount(data, minlength=min_length) def bow_dataset(data_url, vocab_size, additional_text=False, monitor=False): data_withorder = np.load(data_url + '.multi.npy', allow_pickle=True) if monitor: print('Converting data to BoW representation') data_multihot = np.array([onehot(doc.astype('int'), vocab_size) for doc in data_withorder]) word_count = [np.sum(doc) for doc in data_multihot] try: labels_with_names = np.load(data_url + '.labels.multi.npy', allow_pickle=True) labels = labels_with_names[0] class_names = labels_with_names[1] except: if monitor: print("No labels.") labels = None class_names = ['None'] if additional_text: return data_multihot, labels, word_count, class_names, data_withorder return data_multihot, labels, word_count, class_names '''Create batches''' def pad_to_batch(x, max_len=80): x_p = [] for i in range(len(x)): x_len = len(x[i]) if x_len < max_len: x_p.append(Variable(LongTensor(x[i] + [0]*(max_len - x_len)))) else: x_p.append(Variable(LongTensor(x[i][:max_len]))) return torch.stack(x_p, 0) # TODO: Populate the docstring. def pad_to_train(batch, max_len=80): x, y = zip(*batch) return pad_to_batch(x, max_len=max_len), y def getBatch(batch_size, train_data, shuffle=False): if shuffle: random.shuffle(train_data) sindex = 0 eindex = batch_size while eindex < len(train_data): batch = train_data[sindex: eindex] temp = eindex eindex = eindex + batch_size sindex = temp yield batch if eindex >= len(train_data): batch = train_data[sindex:] yield batch def getBatch_iter(batch_size, train_data, shuffle=False): if shuffle: random.shuffle(train_data) ret = [] while True: for i, data in enumerate(train_data): ret.append(data) if i % batch_size == 0: yield ret ret = [] if len(ret) > 0: yield ret break '''Build attributes''' def build_A(data_url, vocab_size, n_attribute): data, labels, _, _ = bow_dataset(data_url, vocab_size) n_label = labels.shape[1] n_vocab = len(data[1]) A_large = np.zeros([n_label, n_vocab]) for i, doc in enumerate(data): A_large[labels[i]==1] += doc transformer = TfidfTransformer(smooth_idf=False) A_tfidf = transformer.fit_transform(A_large).toarray() A = tsne.tsne(A_tfidf, n_attribute, n_vocab) return FloatTensor(A) '''Extract labels based on probability''' def multi_label_extract(label_dist, threshold=0.5): labels = torch.zeros(label_dist.size()) labels[label_dist > threshold] = 1 return labels def plot_threshold(thrs, var, threshold, title, savedir=None): for v in var: plt.plot(thrs, v[0], label=v[1]) plt.axvline(x=threshold) plt.legend() plt.title(title) if savedir is not None: plt.savefig('%s_%s.png'%(savedir, title)) plt.show() plt.clf() '''Evaluation''' # Sorower, <NAME>. "A literature survey on algorithms for multi-label learning." Oregon State University, Corvallis (2010) def multilabel_eval(true, pred, sample_weight=None, monitor=False, full=False): n, p = true.shape score = {} score['match'] = np.mean([(pred[i][true[i]]==1).any() for i in range(len(pred))]) hit = ((pred==1)*(true==1)).sum(1) score['HS'] = (hit/(((pred==1)+(true==1))>0).sum(1)).mean() score['f1'] = (2*hit/((pred==1).sum(1)+(true==1).sum(1))).mean() if full: match = (pred==true) score['HL'] = (pred!=true).mean(1).mean() score['exact_acc'] = match.all(1).mean() score['min_acc'] = match.mean(0).min() score['density_chosen'] = pred.sum(1).mean()/p score['density'] = true.sum(1).mean()/p score['precision'] = (hit/(true==1).sum(1)).mean() score['recal'] = (hit/((pred==1).sum(1)+1e-12)).mean() score['no_pred'] = (pred!=1).all(1).mean() if monitor: print(score) return score def singlelabel_eval(true, pred, sample_weight=None, monitor=False): score = {} score['acc'] = accuracy_score(true, pred) score['precision'] = precision_score(true, pred) score['recal'] = recall_score(true, pred) score['f1'] = f1_score(true, pred) score['cfm'] = confusion_matrix(true, pred) if monitor: print('Acc: %5f, F1: %5f, precision: %5f, recall: %5f' %(score['acc'], score['f1'], score['precision'], score['recal'])) return score def inference_analysis(class_word, vocab_url, class_names): if type(topic_word) is not np.ndarray: topic_word = topic_word.data.cpu().numpy() if 'pkl' in vocab_url: vocab = pickle.load(open(vocab_url, 'rb')) vocab = list(zip(*sorted(vocab.items(), key=lambda x: x[1])))[0] else: vocab = [] with open(vocab_url, 'r') as fin: for line in fin: vocab.append(line.split(' ')[0]) for i, weights in enumerate(topic_word): ind = np.argsort(topic)[-1:-21:-1] if len(names) == len(topic_word): print(names[i]) print(np.array(vocab)[ind]) def save_res_multi(tests, vals, trains, class_names, vocab_url): if 'pkl' in vocab_url: vocab = pickle.load(open(vocab_url, 'rb')) vocab = list(zip(*sorted(vocab.items(), key=lambda x: x[1])))[0] else: vocab = [] with open(vocab_url, 'r') as fin: for line in fin: vocab.append(line.split(' ')[0]) vocab_size = len(vocab) import csv with open('res.csv', 'w') as csvfile: spamwriter = csv.writer(csvfile, delimiter='\t', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(['sentence', 'true_label', 'prediction', 'word_by_importance', 'dataset']) for pred, sent, recon in tests: sent_order = ' '.join([vocab[word] for word in sent]) true_label = ' ' pred_labels = '+'.join(class_names[pred==1]) recon_sent = np.argsort(recon)[::-1] sent_importance = ' '.join([vocab[word] for word in recon_sent if word in sent]) group = 'test' spamwriter.writerow([sent_order, true_label, pred_labels, sent_importance, group]) for pred, true, sent, recon in vals: pred_labels = '+'.join(class_names[pred==1]) true_label = '+'.join(class_names[true==1]) sent_order = ' '.join([vocab[word] for word in sent]) recon_sent = np.argsort(recon)[::-1] sent_importance = ' '.join([vocab[word] for word in recon_sent if word in sent]) group = 'validation' spamwriter.writerow([sent_order, true_label, pred_labels, sent_importance, group]) for pred, true, sent, recon in trains: pred_labels = '+'.join(class_names[pred==1]) true_label = '+'.join(class_names[true==1]) sent_order = ' '.join([vocab[word] for word in sent]) recon_sent = np.argsort(recon)[::-1] sent_importance = ' '.join([vocab[word] for word in recon_sent if word in sent]) group = 'train' spamwriter.writerow([sent_order, true_label, pred_labels, sent_importance, group]) print('Result saved in csv.') def print_res_multi(tests, vals, trains, class_names, topic_word, class_word, vocab_url): if 'pkl' in vocab_url: vocab = pickle.load(open(vocab_url, 'rb')) vocab = list(zip(*sorted(vocab.items(), key=lambda x: x[1])))[0] else: with open(vocab_url, 'r') as fin: for line in fin: vocab.append(line.split(' ')[0]) vocab_size = len(vocab) with open('res.html', 'w', encoding='gbk') as f: if topic_word is not None: f.write('<p style="background-color:green;">Topic word (beta)</p>') for i, topic in enumerate(topic_word): ind = np.argsort(topic)[-1:-21:-1] f.write('<p> {} </p>'.format(class_names[i])) for word in ind: f.write('{} '.format(vocab[word])) f.write('</p>') if class_word is not None: f.write('<p style="background-color:green;">Class word (sum_theta*beta)</p>') for i, topic in enumerate(class_word): ind = np.argsort(topic)[-1:-21:-1] f.write('<p> {} </p>'.format(class_names[i])) for word in ind: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p style="background-color:green;">Test</p>') for pred_val, sent, recon in tests: f.write('<p>validation threshold: {}, train threshold: {}</p>'.format(class_names[pred_val==1], class_names[pred_train==1])) f.write('<p>') f.write('<p> In Order:') for word in sent: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p> By Importance:') recon_sent = np.argsort(recon)[::-1] for word in recon_sent: if word in sent: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p> Reconstruct:') for word in recon_sent: if recon[word]>=1/vocab_size*10: if word in sent: f.write('<mark class="red">{}</mark> '.format(vocab[word])) else: f.write('{} '.format(vocab[word])) else: break f.write('</p>') f.write('<HR SIZE=5>') if vals is not None: f.write('<p style="background-color:green;">Validation</p>') for pred, true, sent, recon in trains: if (pred[true==1] != 1).all(): f.write('<p style="background-color:red;">All Wrong</p>') elif (pred != true).any(): f.write('<p style="background-color:blue;">Partial Wrong</p>') f.write('<p>prediction: {}, true: {}</p>'.format(class_names[pred==1], class_names[true==1])) f.write('<p>') f.write('<p> In Order:') for word in sent: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p> By Importance:') recon_sent = np.argsort(recon)[::-1] for word in recon_sent: if word in sent: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p> Reconstruct:') for word in recon_sent: if recon[word]>=1/vocab_size*10: if word in sent: f.write('<mark class="red">{}</mark> '.format(vocab[word])) else: f.write('{} '.format(vocab[word])) else: break f.write('</p>') f.write('<HR SIZE=5>') f.write('<p style="background-color:green;">Train</p>') for pred, true, sent, recon in trains: if (pred[true==1] != 1).all(): f.write('<p style="background-color:red;">All Wrong</p>') elif (pred != true).any(): f.write('<p style="background-color:blue;">Partial Wrong</p>') f.write('<p>prediction: {}, true: {}</p>'.format(class_names[pred==1], class_names[true==1])) f.write('<p>') f.write('<p> In Order:') for word in sent: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p> By Importance:') recon_sent = np.argsort(recon)[::-1] for word in recon_sent: if word in sent: f.write('{} '.format(vocab[word])) f.write('</p>') f.write('<p> Reconstruct:') for word in recon_sent: if recon[word]>=1/vocab_size*10: if word in sent: f.write('<mark class="red">{}</mark> '.format(vocab[word])) else: f.write('{} '.format(vocab[word])) else: break f.write('</p>') f.write('<HR SIZE=5>') print('Result saved in html.') '''Visualization for development''' def plot_training(caches, labels, rec, names, save=False): n = len(names) plt.figure(figsize=(5*n, n)) plt.clf() gs = gridspec.GridSpec(1, n) gs.update(wspace=0.1, hspace=0.1) for i in range(n): plt.subplot(gs[i]) title = '%s_Plot' %(names[i]) plt.title(title) plt.xlabel('Training Steps') plt.ylabel(names[i]) for j, values in enumerate(caches[i]): plt.plot(rec[i], values, label=labels[i][j]) if save: plt.savefig('fig/log.png') plt.show() def multilabel_confusion_matrix(true, pred, labels, normalize=False, cmap=plt.cm.Blues): from sklearn.metrics import confusion_matrix conf_mats=[] for label_col in range(len(labels)): true_label = true[:, label_col] pred_label = pred[:, label_col] conf_mats.append(confusion_matrix(pred_label, true_label)) plt.figure(figsize=(5*len(labels), len(labels))) plt.clf() gs = gridspec.GridSpec(1, len(labels)) gs.update(wspace=1./len(labels), hspace=1./len(labels)) for i, label in enumerate(labels): if normalize: cm = conf_mats[i].astype('float') / cm.sum(axis=1)[:, np.newaxis] else: cm = conf_mats[i] plt.subplot(gs[i]) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(label) plt.colorbar() tick_marks = np.arange(2) plt.xticks(tick_marks, tick_marks) plt.yticks(tick_marks, tick_marks) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis].astype('float') print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def data_visualize_multilabel(data, labels, n_topic, classnames, save=False, show=True, legend=True): idx = np.random.choice(range(len(labels)), 100, replace=False) transformer = TfidfTransformer(smooth_idf=False) data = transformer.fit_transform(data[idx]).toarray() labels = np.array(labels)[idx] Y = tsne.tsne(data, 2, data.shape[0]) colors = ['orange'] + ['blue'] + ['y'] + ['m'] + ['r'] for i in range(n_topic): idx = np.where(labels[:,i]==1) plt.scatter(Y[idx, 0], Y[idx, 1], c=colors[i], label=classnames[i], marker='.') if legend: plt.legend() if save: plt.savefig('fig/train_distri.png') if show: plt.show() def explore(data, A_mean, A_logsigm, topic_word, topic_var, n_topic, n_hidden, name, save=False): test_set, test_labels, pred_labels, z, class_names = data # latent A_sigm = np.exp(A_logsigm) samples = [] for i in range(n_topic): sample = np.array(list(map(np.random.normal, A_mean[i], A_sigm[i], [50]*n_hidden))) samples += [sample.T] ss =
np.concatenate(samples)
numpy.concatenate
import numpy as np z = np.array([1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]) print(np.exp(z)/sum(
np.exp(z)
numpy.exp
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import scipy.sparse as sps import pandas as pd from mars import dataframe as md from mars import tensor as mt from mars.core import get_tiled from mars.tensor.base import copyto, transpose, moveaxis, broadcast_to, broadcast_arrays, where, \ expand_dims, rollaxis, atleast_1d, atleast_2d, atleast_3d, argwhere, array_split, split, \ hsplit, vsplit, dsplit, roll, squeeze, diff, ediff1d, flip, flipud, fliplr, repeat, tile, \ isin, searchsorted, unique, sort, argsort, partition, argpartition, topk, argtopk, \ trapz, shape, to_gpu, to_cpu, swapaxes from mars.tensor.datasource import tensor, ones, zeros, arange from mars.tests.core import require_cupy, TestBase class Test(TestBase): def setUp(self): self.ctx, self.executor = self._create_test_context() def testRechunkExecution(self): raw = np.random.RandomState(0).random((11, 8)) arr = tensor(raw, chunk_size=3) arr2 = arr.rechunk(4) res = self.executor.execute_tensor(arr2) self.assertTrue(np.array_equal(res[0], raw[:4, :4])) self.assertTrue(np.array_equal(res[1], raw[:4, 4:])) self.assertTrue(np.array_equal(res[2], raw[4:8, :4])) self.assertTrue(np.array_equal(res[3], raw[4:8, 4:])) self.assertTrue(np.array_equal(res[4], raw[8:, :4])) self.assertTrue(np.array_equal(res[5], raw[8:, 4:])) def testCopytoExecution(self): a = ones((2, 3), chunk_size=1) b = tensor([3, -1, 3], chunk_size=2) copyto(a, b, where=b > 1) res = self.executor.execute_tensor(a, concat=True)[0] expected = np.array([[3, 1, 3], [3, 1, 3]]) np.testing.assert_equal(res, expected) a = ones((2, 3), chunk_size=1) b = tensor(np.asfortranarray(np.random.rand(2, 3)), chunk_size=2) copyto(b, a) res = self.executor.execute_tensor(b, concat=True)[0] expected = np.asfortranarray(np.ones((2, 3))) np.testing.assert_array_equal(res, expected) self.assertTrue(res.flags['F_CONTIGUOUS']) self.assertFalse(res.flags['C_CONTIGUOUS']) def testAstypeExecution(self): raw = np.random.random((10, 5)) arr = tensor(raw, chunk_size=3) arr2 = arr.astype('i8') res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0], raw.astype('i8')) raw = sps.random(10, 5, density=.2) arr = tensor(raw, chunk_size=3) arr2 = arr.astype('i8') res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0].toarray(), raw.astype('i8').toarray())) raw = np.asfortranarray(np.random.random((10, 5))) arr = tensor(raw, chunk_size=3) arr2 = arr.astype('i8', order='C') res = self.executor.execute_tensor(arr2, concat=True)[0] np.testing.assert_array_equal(res, raw.astype('i8')) self.assertTrue(res.flags['C_CONTIGUOUS']) self.assertFalse(res.flags['F_CONTIGUOUS']) def testTransposeExecution(self): raw = np.random.random((11, 8, 5)) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0], raw.T) arr3 = transpose(arr, axes=(-2, -1, -3)) res = self.executor.execute_tensor(arr3, concat=True) np.testing.assert_array_equal(res[0], raw.transpose(1, 2, 0)) raw = sps.random(11, 8) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr) self.assertTrue(arr2.issparse()) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0].toarray(), raw.T.toarray()) # test order raw = np.asfortranarray(np.random.random((11, 8, 5))) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = np.transpose(raw).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr, (1, 2, 0)) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = np.transpose(raw, (1, 2, 0)).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) df = md.DataFrame(mt.random.rand(10, 5, chunk_size=5)) df = df[df[0] < 1] # generate tensor with unknown shape t = df.to_tensor() t2 = transpose(t) res = self.executor.execute_tensor(t2, concat=True)[0] self.assertEqual(res.shape, (5, 10)) def testSwapaxesExecution(self): raw = np.random.random((11, 8, 5)) arr = swapaxes(raw, 2, 0) res = self.executor.execute_tensor(arr, concat=True) np.testing.assert_array_equal(res[0], raw.swapaxes(2, 0)) raw = np.random.random((11, 8, 5)) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(2, 0) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0], raw.swapaxes(2, 0)) raw = sps.random(11, 8, density=.2) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(1, 0) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0].toarray(), raw.toarray().swapaxes(1, 0)) # test order raw = np.asfortranarray(np.random.rand(11, 8, 5)) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(2, 0) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = raw.swapaxes(2, 0).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(0, 2) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = raw.swapaxes(0, 2).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(1, 0) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = raw.swapaxes(1, 0).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) def testMoveaxisExecution(self): x = zeros((3, 4, 5), chunk_size=2) t = moveaxis(x, 0, -1) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (4, 5, 3)) t = moveaxis(x, -1, 0) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 3, 4)) t = moveaxis(x, [0, 1], [-1, -2]) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 4, 3)) t = moveaxis(x, [0, 1, 2], [-1, -2, -3]) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 4, 3)) def testBroadcastToExecution(self): raw = np.random.random((10, 5, 1)) arr = tensor(raw, chunk_size=2) arr2 = broadcast_to(arr, (5, 10, 5, 6)) res = self.executor.execute_tensor(arr2, concat=True)[0] np.testing.assert_array_equal(res, np.broadcast_to(raw, (5, 10, 5, 6))) # test chunk with unknown shape arr1 = mt.random.rand(3, 4, chunk_size=2) arr2 = mt.random.permutation(arr1) arr3 = broadcast_to(arr2, (2, 3, 4)) res = self.executor.execute_tensor(arr3, concat=True)[0] self.assertEqual(res.shape, (2, 3, 4)) def testBroadcastArraysExecutions(self): x_data = [[1, 2, 3]] x = tensor(x_data, chunk_size=1) y_data = [[1], [2], [3]] y = tensor(y_data, chunk_size=2) a = broadcast_arrays(x, y) res = [self.executor.execute_tensor(arr, concat=True)[0] for arr in a] expected = np.broadcast_arrays(x_data, y_data) for r, e in zip(res, expected): np.testing.assert_equal(r, e) def testWhereExecution(self): raw_cond = np.random.randint(0, 2, size=(4, 4), dtype='?') raw_x = np.random.rand(4, 1) raw_y = np.random.rand(4, 4) cond, x, y = tensor(raw_cond, chunk_size=2), tensor(raw_x, chunk_size=2), tensor(raw_y, chunk_size=2) arr = where(cond, x, y) res = self.executor.execute_tensor(arr, concat=True) self.assertTrue(np.array_equal(res[0], np.where(raw_cond, raw_x, raw_y))) raw_cond = sps.csr_matrix(np.random.randint(0, 2, size=(4, 4), dtype='?')) raw_x = sps.random(4, 1, density=.1) raw_y = sps.random(4, 4, density=.1) cond, x, y = tensor(raw_cond, chunk_size=2), tensor(raw_x, chunk_size=2), tensor(raw_y, chunk_size=2) arr = where(cond, x, y) res = self.executor.execute_tensor(arr, concat=True)[0] self.assertTrue(np.array_equal(res.toarray(), np.where(raw_cond.toarray(), raw_x.toarray(), raw_y.toarray()))) # GH 2009 raw_x = np.arange(9.).reshape(3, 3) x = arange(9.).reshape(3, 3) arr = where(x < 5, 2, -1) res = self.executor.execute_tensor(arr, concat=True)[0] np.testing.assert_array_equal(res, np.where(raw_x < 5, 2, -1)) def testReshapeExecution(self): raw_data = np.random.rand(10, 20, 30) x = tensor(raw_data, chunk_size=6) y = x.reshape(-1, 30) res = self.executor.execute_tensor(y, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(-1, 30)) y2 = x.reshape(10, -1) res = self.executor.execute_tensor(y2, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(10, -1)) y3 = x.reshape(-1) res = self.executor.execute_tensor(y3, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(-1)) y4 = x.ravel() res = self.executor.execute_tensor(y4, concat=True) np.testing.assert_array_equal(res[0], raw_data.ravel()) raw_data = np.random.rand(30, 100, 20) x = tensor(raw_data, chunk_size=6) y = x.reshape(-1, 20, 5, 5, 4) res = self.executor.execute_tensor(y, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(-1, 20, 5, 5, 4)) y2 = x.reshape(3000, 10, 2) res = self.executor.execute_tensor(y2, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(3000, 10, 2)) y3 = x.reshape(60, 25, 40) res = self.executor.execute_tensor(y3, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(60, 25, 40)) y4 = x.reshape(60, 25, 40) y4.op.extra_params['_reshape_with_shuffle'] = True size_res = self.executor.execute_tensor(y4, mock=True) res = self.executor.execute_tensor(y4, concat=True) self.assertEqual(res[0].nbytes, sum(v[0] for v in size_res)) self.assertTrue(np.array_equal(res[0], raw_data.reshape(60, 25, 40))) y5 = x.ravel(order='F') res = self.executor.execute_tensor(y5, concat=True)[0] expected = raw_data.ravel(order='F') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) def testExpandDimsExecution(self): raw_data = np.random.rand(10, 20, 30) x = tensor(raw_data, chunk_size=6) y = expand_dims(x, 1) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, 1))) y = expand_dims(x, 0) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, 0))) y = expand_dims(x, 3) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, 3))) y = expand_dims(x, -1) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, -1))) y = expand_dims(x, -4) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, -4))) with self.assertRaises(np.AxisError): expand_dims(x, -5) with self.assertRaises(np.AxisError): expand_dims(x, 4) def testRollAxisExecution(self): x = ones((3, 4, 5, 6), chunk_size=1) y = rollaxis(x, 3, 1) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.rollaxis(np.ones((3, 4, 5, 6)), 3, 1))) def testAtleast1dExecution(self): x = 1 y = ones(3, chunk_size=2) z = ones((3, 4), chunk_size=2) t = atleast_1d(x, y, z) res = [self.executor.execute_tensor(i, concat=True)[0] for i in t] self.assertTrue(np.array_equal(res[0], np.array([1]))) self.assertTrue(np.array_equal(res[1], np.ones(3))) self.assertTrue(np.array_equal(res[2], np.ones((3, 4)))) def testAtleast2dExecution(self): x = 1 y = ones(3, chunk_size=2) z = ones((3, 4), chunk_size=2) t = atleast_2d(x, y, z) res = [self.executor.execute_tensor(i, concat=True)[0] for i in t] self.assertTrue(np.array_equal(res[0], np.array([[1]]))) self.assertTrue(np.array_equal(res[1], np.atleast_2d(np.ones(3)))) self.assertTrue(np.array_equal(res[2], np.ones((3, 4)))) def testAtleast3dExecution(self): x = 1 y = ones(3, chunk_size=2) z = ones((3, 4), chunk_size=2) t = atleast_3d(x, y, z) res = [self.executor.execute_tensor(i, concat=True)[0] for i in t] self.assertTrue(np.array_equal(res[0], np.atleast_3d(x))) self.assertTrue(np.array_equal(res[1], np.atleast_3d(np.ones(3)))) self.assertTrue(np.array_equal(res[2], np.atleast_3d(np.ones((3, 4))))) def testArgwhereExecution(self): x = arange(6, chunk_size=2).reshape(2, 3) t = argwhere(x > 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.argwhere(np.arange(6).reshape(2, 3) > 1) np.testing.assert_array_equal(res, expected) data = np.asfortranarray(np.random.rand(10, 20)) x = tensor(data, chunk_size=10) t = argwhere(x > 0.5) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.argwhere(data > 0.5) np.testing.assert_array_equal(res, expected) self.assertTrue(res.flags['F_CONTIGUOUS']) self.assertFalse(res.flags['C_CONTIGUOUS']) def testArraySplitExecution(self): x = arange(48, chunk_size=3).reshape(2, 3, 8) ss = array_split(x, 3, axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.array_split(np.arange(48).reshape(2, 3, 8), 3, axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] ss = array_split(x, [3, 5, 6, 10], axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.array_split(np.arange(48).reshape(2, 3, 8), [3, 5, 6, 10], axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] def testSplitExecution(self): for a in ((1, 1, 1, 2, 2, 3), [1, 1, 1, 2, 2, 3]): splits = split(a, (3, 5)) self.assertEqual(len(splits), 3) splits0 = self.executor.execute_tensor(splits[0], concat=True)[0] np.testing.assert_array_equal(splits0, (1, 1, 1)) splits1 = self.executor.execute_tensor(splits[1], concat=True)[0] np.testing.assert_array_equal(splits1, (2, 2)) splits2 = self.executor.execute_tensor(splits[2], concat=True)[0] np.testing.assert_array_equal(splits2, (3,)) x = arange(48, chunk_size=3).reshape(2, 3, 8) ss = split(x, 4, axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.split(np.arange(48).reshape(2, 3, 8), 4, axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] ss = split(x, [3, 5, 6, 10], axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.split(np.arange(48).reshape(2, 3, 8), [3, 5, 6, 10], axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] # hsplit x = arange(120, chunk_size=3).reshape(2, 12, 5) ss = hsplit(x, 4) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.hsplit(np.arange(120).reshape(2, 12, 5), 4) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] # vsplit x = arange(48, chunk_size=3).reshape(8, 3, 2) ss = vsplit(x, 4) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.vsplit(np.arange(48).reshape(8, 3, 2), 4) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] # dsplit x = arange(48, chunk_size=3).reshape(2, 3, 8) ss = dsplit(x, 4) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.dsplit(np.arange(48).reshape(2, 3, 8), 4) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] x_data = sps.random(12, 8, density=.1) x = tensor(x_data, chunk_size=3) ss = split(x, 4, axis=0) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.split(x_data.toarray(), 4, axis=0) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r.toarray(), e) for r, e in zip(res, expected)] def testRollExecution(self): x = arange(10, chunk_size=2) t = roll(x, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10), 2) np.testing.assert_equal(res, expected) x2 = x.reshape(2, 5) t = roll(x2, 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10).reshape(2, 5), 1) np.testing.assert_equal(res, expected) t = roll(x2, 1, axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10).reshape(2, 5), 1, axis=0) np.testing.assert_equal(res, expected) t = roll(x2, 1, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10).reshape(2, 5), 1, axis=1) np.testing.assert_equal(res, expected) def testSqueezeExecution(self): data = np.array([[[0], [1], [2]]]) x = tensor(data, chunk_size=1) t = squeeze(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.squeeze(data) np.testing.assert_equal(res, expected) t = squeeze(x, axis=2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.squeeze(data, axis=2) np.testing.assert_equal(res, expected) def testDiffExecution(self): data = np.array([1, 2, 4, 7, 0]) x = tensor(data, chunk_size=2) t = diff(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data) np.testing.assert_equal(res, expected) t = diff(x, n=2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data, n=2) np.testing.assert_equal(res, expected) data = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) x = tensor(data, chunk_size=2) t = diff(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data) np.testing.assert_equal(res, expected) t = diff(x, axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data, axis=0) np.testing.assert_equal(res, expected) x = mt.arange('1066-10-13', '1066-10-16', dtype=mt.datetime64) t = diff(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)) np.testing.assert_equal(res, expected) def testEdiff1d(self): data = np.array([1, 2, 4, 7, 0]) x = tensor(data, chunk_size=2) t = ediff1d(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ediff1d(data) np.testing.assert_equal(res, expected) to_begin = tensor(-99, chunk_size=2) to_end = tensor([88, 99], chunk_size=2) t = ediff1d(x, to_begin=to_begin, to_end=to_end) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ediff1d(data, to_begin=-99, to_end=np.array([88, 99])) np.testing.assert_equal(res, expected) data = [[1, 2, 4], [1, 6, 24]] t = ediff1d(tensor(data, chunk_size=2)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ediff1d(data) np.testing.assert_equal(res, expected) def testFlipExecution(self): a = arange(8, chunk_size=2).reshape((2, 2, 2)) t = flip(a, 0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flip(np.arange(8).reshape(2, 2, 2), 0) np.testing.assert_equal(res, expected) t = flip(a, 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flip(np.arange(8).reshape(2, 2, 2), 1) np.testing.assert_equal(res, expected) t = flipud(a) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flipud(np.arange(8).reshape(2, 2, 2)) np.testing.assert_equal(res, expected) t = fliplr(a) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.fliplr(np.arange(8).reshape(2, 2, 2)) np.testing.assert_equal(res, expected) def testRepeatExecution(self): a = repeat(3, 4) res = self.executor.execute_tensor(a)[0] expected = np.repeat(3, 4) np.testing.assert_equal(res, expected) x_data = np.random.randn(20, 30) x = tensor(x_data, chunk_size=(3, 4)) t = repeat(x, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, 2) np.testing.assert_equal(res, expected) t = repeat(x, 3, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, 3, axis=1) np.testing.assert_equal(res, expected) t = repeat(x, np.arange(20), axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, np.arange(20), axis=0) np.testing.assert_equal(res, expected) t = repeat(x, arange(20, chunk_size=5), axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, np.arange(20), axis=0) np.testing.assert_equal(res, expected) x_data = sps.random(20, 30, density=.1) x = tensor(x_data, chunk_size=(3, 4)) t = repeat(x, 2, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data.toarray(), 2, axis=1) np.testing.assert_equal(res.toarray(), expected) def testTileExecution(self): a_data = np.array([0, 1, 2]) a = tensor(a_data, chunk_size=2) t = tile(a, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(a_data, 2) np.testing.assert_equal(res, expected) t = tile(a, (2, 2)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(a_data, (2, 2)) np.testing.assert_equal(res, expected) t = tile(a, (2, 1, 2)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(a_data, (2, 1, 2)) np.testing.assert_equal(res, expected) b_data = np.array([[1, 2], [3, 4]]) b = tensor(b_data, chunk_size=1) t = tile(b, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(b_data, 2) np.testing.assert_equal(res, expected) t = tile(b, (2, 1)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(b_data, (2, 1)) np.testing.assert_equal(res, expected) c_data = np.array([1, 2, 3, 4]) c = tensor(c_data, chunk_size=3) t = tile(c, (4, 1)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(c_data, (4, 1)) np.testing.assert_equal(res, expected) def testIsInExecution(self): element = 2 * arange(4, chunk_size=1).reshape((2, 2)) test_elements = [1, 2, 4, 8] mask = isin(element, test_elements) res = self.executor.execute_tensor(mask, concat=True)[0] expected = np.isin(2 * np.arange(4).reshape((2, 2)), test_elements) np.testing.assert_equal(res, expected) res = self.executor.execute_tensor(element[mask], concat=True)[0] expected = np.array([2, 4]) np.testing.assert_equal(res, expected) mask = isin(element, test_elements, invert=True) res = self.executor.execute_tensor(mask, concat=True)[0] expected = np.isin(2 * np.arange(4).reshape((2, 2)), test_elements, invert=True) np.testing.assert_equal(res, expected) res = self.executor.execute_tensor(element[mask], concat=True)[0] expected = np.array([0, 6]) np.testing.assert_equal(res, expected) test_set = {1, 2, 4, 8} mask = isin(element, test_set) res = self.executor.execute_tensor(mask, concat=True)[0] expected = np.isin(2 * np.arange(4).reshape((2, 2)), test_set) np.testing.assert_equal(res, expected) def testRavelExecution(self): arr = ones((10, 5), chunk_size=2) flat_arr = mt.ravel(arr) res = self.executor.execute_tensor(flat_arr, concat=True)[0] self.assertEqual(len(res), 50) np.testing.assert_equal(res, np.ones(50)) def testSearchsortedExecution(self): raw = np.sort(np.random.randint(100, size=(16,))) # test different chunk_size, 3 will have combine, 6 will skip combine for chunk_size in (3, 6): arr = tensor(raw, chunk_size=chunk_size) # test scalar, with value in the middle t1 = searchsorted(arr, 20) res = self.executor.execute_tensor(t1, concat=True)[0] expected = np.searchsorted(raw, 20) np.testing.assert_array_equal(res, expected) # test scalar, with value larger than 100 t2 = searchsorted(arr, 200) res = self.executor.execute_tensor(t2, concat=True)[0] expected = np.searchsorted(raw, 200) np.testing.assert_array_equal(res, expected) # test scalar, side left, with value exact in the middle of the array t3 = searchsorted(arr, raw[10], side='left') res = self.executor.execute_tensor(t3, concat=True)[0] expected = np.searchsorted(raw, raw[10], side='left') np.testing.assert_array_equal(res, expected) # test scalar, side right, with value exact in the middle of the array t4 = searchsorted(arr, raw[10], side='right') res = self.executor.execute_tensor(t4, concat=True)[0] expected = np.searchsorted(raw, raw[10], side='right') np.testing.assert_array_equal(res, expected) # test scalar, side left, with value exact in the end of the array t5 = searchsorted(arr, raw[15], side='left') res = self.executor.execute_tensor(t5, concat=True)[0] expected = np.searchsorted(raw, raw[15], side='left') np.testing.assert_array_equal(res, expected) # test scalar, side right, with value exact in the end of the array t6 = searchsorted(arr, raw[15], side='right') res = self.executor.execute_tensor(t6, concat=True)[0] expected = np.searchsorted(raw, raw[15], side='right') np.testing.assert_array_equal(res, expected) # test scalar, side left, with value exact in the start of the array t7 = searchsorted(arr, raw[0], side='left') res = self.executor.execute_tensor(t7, concat=True)[0] expected = np.searchsorted(raw, raw[0], side='left') np.testing.assert_array_equal(res, expected) # test scalar, side right, with value exact in the start of the array t8 = searchsorted(arr, raw[0], side='right') res = self.executor.execute_tensor(t8, concat=True)[0] expected = np.searchsorted(raw, raw[0], side='right') np.testing.assert_array_equal(res, expected) raw2 = np.random.randint(100, size=(3, 4)) # test tensor, side left t9 = searchsorted(arr, tensor(raw2, chunk_size=2), side='left') res = self.executor.execute_tensor(t9, concat=True)[0] expected = np.searchsorted(raw, raw2, side='left') np.testing.assert_array_equal(res, expected) # test tensor, side right t10 = searchsorted(arr, tensor(raw2, chunk_size=2), side='right') res = self.executor.execute_tensor(t10, concat=True)[0] expected = np.searchsorted(raw, raw2, side='right') np.testing.assert_array_equal(res, expected) # test one chunk arr = tensor(raw, chunk_size=16) # test scalar, tensor to search has 1 chunk t11 = searchsorted(arr, 20) res = self.executor.execute_tensor(t11, concat=True)[0] expected = np.searchsorted(raw, 20) np.testing.assert_array_equal(res, expected) # test tensor with 1 chunk, tensor to search has 1 chunk t12 = searchsorted(arr, tensor(raw2, chunk_size=4)) res = self.executor.execute_tensor(t12, concat=True)[0] expected = np.searchsorted(raw, raw2) np.testing.assert_array_equal(res, expected) # test tensor with more than 1 chunk, tensor to search has 1 chunk t13 = searchsorted(arr, tensor(raw2, chunk_size=2)) res = self.executor.execute_tensor(t13, concat=True)[0] expected = np.searchsorted(raw, raw2) np.testing.assert_array_equal(res, expected) # test sorter raw3 = np.random.randint(100, size=(16,)) arr = tensor(raw3, chunk_size=3) order = np.argsort(raw3) order_arr = tensor(order, chunk_size=4) t14 = searchsorted(arr, 20, sorter=order_arr) res = self.executor.execute_tensor(t14, concat=True)[0] expected = np.searchsorted(raw3, 20, sorter=order) np.testing.assert_array_equal(res, expected) def testUniqueExecution(self): rs = np.random.RandomState(0) raw = rs.randint(10, size=(10,)) for chunk_size in (10, 3): x = tensor(raw, chunk_size=chunk_size) y = unique(x) res = self.executor.execute_tensor(y, concat=True)[0] expected = np.unique(raw) np.testing.assert_array_equal(res, expected) y, indices = unique(x, return_index=True) res = self.executor.execute_tensors([y, indices]) expected = np.unique(raw, return_index=True) self.assertEqual(len(res), 2) self.assertEqual(len(expected), 2) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) y, inverse = unique(x, return_inverse=True) res = self.executor.execute_tensors([y, inverse]) expected = np.unique(raw, return_inverse=True) self.assertEqual(len(res), 2) self.assertEqual(len(expected), 2) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) y, counts = unique(x, return_counts=True) res = self.executor.execute_tensors([y, counts]) expected = np.unique(raw, return_counts=True) self.assertEqual(len(res), 2) self.assertEqual(len(expected), 2) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) y, indices, inverse, counts = unique(x, return_index=True, return_inverse=True, return_counts=True) res = self.executor.execute_tensors([y, indices, inverse, counts]) expected = np.unique(raw, return_index=True, return_inverse=True, return_counts=True) self.assertEqual(len(res), 4) self.assertEqual(len(expected), 4) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) np.testing.assert_array_equal(res[2], expected[2]) np.testing.assert_array_equal(res[3], expected[3]) y, indices, counts = unique(x, return_index=True, return_counts=True) res = self.executor.execute_tensors([y, indices, counts]) expected = np.unique(raw, return_index=True, return_counts=True) self.assertEqual(len(res), 3) self.assertEqual(len(expected), 3) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) np.testing.assert_array_equal(res[2], expected[2]) raw2 = rs.randint(10, size=(4, 5, 6)) x2 = tensor(raw2, chunk_size=chunk_size) y2 = unique(x2) res = self.executor.execute_tensor(y2, concat=True)[0] expected = np.unique(raw2) np.testing.assert_array_equal(res, expected) y2 = unique(x2, axis=1) res = self.executor.execute_tensor(y2, concat=True)[0] expected = np.unique(raw2, axis=1) np.testing.assert_array_equal(res, expected) y2 = unique(x2, axis=2) res = self.executor.execute_tensor(y2, concat=True)[0] expected = np.unique(raw2, axis=2) np.testing.assert_array_equal(res, expected) raw = rs.randint(10, size=(10, 20)) raw[:, 0] = raw[:, 11] = rs.randint(10, size=(10,)) x = tensor(raw, chunk_size=2) y, ind, inv, counts = unique(x, aggregate_size=3, axis=1, return_index=True, return_inverse=True, return_counts=True) res_unique, res_ind, res_inv, res_counts = self.executor.execute_tensors((y, ind, inv, counts)) exp_unique, exp_ind, exp_counts = np.unique(raw, axis=1, return_index=True, return_counts=True) raw_res_unique = res_unique res_unique_df = pd.DataFrame(res_unique) res_unique_ind = np.asarray(res_unique_df.sort_values(list(range(res_unique.shape[0])), axis=1).columns) res_unique = res_unique[:, res_unique_ind] res_ind = res_ind[res_unique_ind] res_counts = res_counts[res_unique_ind] np.testing.assert_array_equal(res_unique, exp_unique) np.testing.assert_array_equal(res_ind, exp_ind) np.testing.assert_array_equal(raw_res_unique[:, res_inv], raw) np.testing.assert_array_equal(res_counts, exp_counts) x = (mt.random.RandomState(0).rand(1000, chunk_size=20) > 0.5).astype(np.int32) y = unique(x) res = np.sort(self.executor.execute_tensor(y, concat=True)[0]) np.testing.assert_array_equal(res, np.array([0, 1])) # test sparse sparse_raw = sps.random(10, 3, density=0.1, format='csr', random_state=rs) x = tensor(sparse_raw, chunk_size=2) y = unique(x) res = np.sort(self.executor.execute_tensor(y, concat=True)[0]) np.testing.assert_array_equal(res, np.unique(sparse_raw.data)) # test empty x = tensor([]) y = unique(x) res = self.executor.execute_tensor(y, concat=True)[0] np.testing.assert_array_equal(res, np.unique([])) x = tensor([[]]) y = unique(x) res = self.executor.execute_tensor(y, concat=True)[0] np.testing.assert_array_equal(res, np.unique([[]])) @require_cupy def testToGPUExecution(self): raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=3) gx = to_gpu(x) res = self.executor.execute_tensor(gx, concat=True)[0] np.testing.assert_array_equal(res.get(), raw) @require_cupy def testToCPUExecution(self): raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=3, gpu=True) cx = to_cpu(x) res = self.executor.execute_tensor(cx, concat=True)[0] np.testing.assert_array_equal(res, raw) def testSortExecution(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # 1-d chunk raw = np.random.rand(100) x = tensor(raw, chunk_size=10) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # test force need_align=True sx = sort(x) sx.op._need_align = True res = self.executor.execute_tensor(sx, concat=True)[0] self.assertEqual(get_tiled(sx).nsplits, get_tiled(x).nsplits) np.testing.assert_array_equal(res, np.sort(raw)) # test psrs_kinds sx = sort(x, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # structured dtype raw = np.empty(100, dtype=[('id', np.int32), ('size', np.int64)]) raw['id'] = np.random.randint(1000, size=100, dtype=np.int32) raw['size'] = np.random.randint(1000, size=100, dtype=np.int64) x = tensor(raw, chunk_size=10) sx = sort(x, order=['size', 'id']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, order=['size', 'id'])) # test psrs_kinds with structured dtype sx = sort(x, order=['size', 'id'], psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, order=['size', 'id'])) # test flatten case raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=5) sx = sort(x, axis=None) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=None)) # test multi-dimension raw = np.random.rand(10, 100) x = tensor(raw, chunk_size=(2, 10)) sx = sort(x, psrs_kinds=['quicksort'] * 3) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) raw = np.random.rand(10, 99) x = tensor(raw, chunk_size=(2, 10)) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # test 3-d raw = np.random.rand(20, 25, 28) x = tensor(raw, chunk_size=(10, 5, 7)) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, axis=0) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=0)) sx = sort(x, axis=0, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=0)) sx = sort(x, axis=1) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=1)) sx = sort(x, axis=1, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=1)) # test multi-dimension with structured type raw = np.empty((10, 100), dtype=[('id', np.int32), ('size', np.int64)]) raw['id'] = np.random.randint(1000, size=(10, 100), dtype=np.int32) raw['size'] = np.random.randint(1000, size=(10, 100), dtype=np.int64) x = tensor(raw, chunk_size=(3, 10)) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res,
np.sort(raw)
numpy.sort
import numpy as np import torch import visdom import analysis.variationalbayes.mcvb as mcvb def vec_pts_to_line(pts, ptline, vline): """ Normal vector from a point to a line. Arguments: - pts - [N, D] - N D-dimensional points - ptline - [D] - point on a line - vline - [D] - vector of the line, not necessarily normalized Returns: - [N, D] - shortest vectors from the N points to the line (unnormalized) """ a = np.dot(vline, (pts - ptline).T) / vline.dot(vline) res = a[:, None] * vline + ptline - pts return res def rot_90(x): if x.dim() == 1: return x[[1, 0]] * torch.tensor([-1.0, 1.0]).to(x) elif x.dim() > 1: return x[..., [1, 0]] * torch.tensor([-1.0, 1.0]).to(x) def vec_pts_to_line_torch(pts, ptlines, vlines): """ Normal vector from a point to a line. Arguments: - pts - [N, D] - N D-dimensional points - ptlines - [N, D] - points on the lines - vlines - [N, D] - vectors of the lines, not necessarily normalized Returns: - [N, D] - shortest vectors from the N points to the lines (unnormalized) """ a = torch.sum(vlines * (pts - ptlines), dim=-1) / torch.sum(vlines * vlines, dim=-1) res = a[:, None] * vlines + ptlines - pts return res def vec_pts_to_lines_torch(pts, ptlines, vlines): """ Normal vector from N points to N lines, elementwise. Arguments: - pts - [..., D] - many D-dimensional points - ptlines - [..., D] - points on many lines - vlines - [..., D] - vectors of many lines, not necessarily normalized Returns: - [N, D] - shortest vectors from the N points to the lines (unnormalized) """ a = torch.sum(vlines * (pts - ptlines), dim=-1) / torch.sum(vlines * vlines, dim=-1) res = a[..., None] * vlines + ptlines - pts return res def stable_normalize(x, etha=1.0e-8): """ Numerically stable vector normalization """ n = np.linalg.norm(x, axis=-1, keepdims=True) if n < etha: n = etha return x / n def stable_normalize_torch(x, etha=1.0e-8): """ Numerically stable vector normalization """ return x / torch.norm(x, dim=-1, keepdim=True).clamp(min=etha) def stable_sigmoid(x): """ Numerically stable sigmoid function of one variable """ if x >= 0: z = exp(-x) return 1 / (1 + z) else: # if x is less than zero then z will be small, denom can't be # zero because it's 1+z. z = exp(x) return z / (1 + z) def sigmoid_torch(x, a=1, b=0): """ Sigmoid function """ #return 1.0 / (1.0 + torch.exp(-a*(x - b))) # numerically unstable, but directly interpretable #return 1.0 / (1.0 + torch.exp(- torch.abs(a)*(x - b))) # numerically unstable, but directly interpretable #return 1.0 / (1.0 + torch.exp(torch.clamp(-a*(x - b), min=-10, max=10))) # stable, interpretable #return 1.0 / (1.0 + torch.exp(-a*x + b)) # numerically most stable, use sigmoid_inflection_pt() to interpret return 1.0 / (1.0 + torch.exp(torch.clamp(-a*x + b, min=-10, max=10))) # numerically most stable, use sigmoid_inflection_pt() to interpret def sigmoid_inflection_pt(a=1, b=0): """ Inflection point (f(x_i)=0.5) -a*x+b = 0 x_i = b / a """ return b / a def sigmoid_inflection_a_to_b(x_i, a): """ x_i = b / a b = x_i * a """ return x_i * a if False: import matplotlib.pyplot as plt x = torch.arange(-3.0, 3, 0.1) y = sigmoid_torch(x, a=5, b=-2) plt.plot(x.data.numpy(), y.data.numpy()) plt.show() exit() class RegressorType(object): Const = 0 Position = 1 Velocity1D = 2 Acceleration = 3 Control = 4 OptimalTarget = 5 OptimalTrajectory = 6 count = 7 names = ("Const", "Position", "Velocity1D", "Acceleration", "Control", "OptimalTarget", "OptimalTrajectory",) statesize = (1, 2, 1, 2, 2, 2, 2) def pprint_policy(policy, regressortypes): print("Policy:") i = 0 for r in regressortypes: s = RegressorType.statesize[r] p = policy[:, i:i+s] i += s print("{}: max(abs)={} \n{}".format(RegressorType.names[r], np.max(np.abs(p)), p)) def signal_dependent_noise_covar_torch(control, scale=torch.tensor([2.0, 1.0]), uniform=0.0, etha=1.0e-6): """ Signal-dependent noise covariance matrix. control: [2] - control vector scale: [2] - covariance scale in the [control, normal] directions uniform: scalar - additional diagonal noise etha: scalar - diagonal boost """ control_n = rot_90(control) m_control_global = torch.stack([control, control_n], dim=-1) m_control_globalscaled = m_control_global * scale[None, :] vuvt = torch.einsum("...ik,...jk->...ij", m_control_globalscaled, m_control_globalscaled) m_covar = vuvt + torch.eye(2).to(vuvt) * (uniform + etha) return m_covar, m_control_globalscaled def signal_dependent_noise_covar_xaligned_torch(control, scale=torch.tensor([2.0, 1.0]), uniform=0.0, etha=1.0e-6): """ Signal-dependent uncorrelated noise covariances for x-aligned control vector. control: [2] - x-aligned control vector; control[-1] == 0 scale: [2] - covariance scale in the [control, normal] directions uniform: scalar - additional diagonal noise etha: scalar - diagonal boost """ control_n = rot_90(control) m_control_global = torch.stack([control, control_n], dim=-1) m_control_globalscaled = m_control_global * scale[None, :] diag_covar = (torch.norm(control, dim=-1, keepdim=True) * scale)**2 + (uniform + etha) return diag_covar, m_control_globalscaled class TargetSwitchingModel(mcvb.TensorContainer): def __init__(self, data, memsize=1, delaysize=0, regressortypes=None, initialpolicy=None, fitsigmoid=True, fittrajectories=False, fitpolicy=True, fitnoise=True, policyactivation=False): """ data : list of tumples (trajectory, ptstart, ptend, ptstart_sw, ptend_sw) """ super(TargetSwitchingModel, self).__init__() self.data = data self.memsize = memsize self.delaysize = delaysize self.regressortypes = regressortypes self.fitsigmoid = fitsigmoid self.fittrajectories = fittrajectories self.fitpolicy = fitpolicy self.fitnoise = fitnoise self.policyactivation = policyactivation statesize = 0 for r in regressortypes: if r == RegressorType.Const: statesize += 1 else: statesize += RegressorType.statesize[r] * self.memsize if initialpolicy is None: initialpolicy = np.zeros([2, statesize]) self.initialpolicy = initialpolicy # Construct extended data tensors with maxlength # to unify the model and a binary mask for the missing data N = len(self.data) # number of trials lengths = np.array([len(x) for x, _, _, _, _ in self.data]) # [N] self.lengths = lengths maxlength = np.max(lengths) # max trial length x = [np.concatenate([tr, 0.0 * np.zeros([maxlength-len(tr), 2])], axis=0) for tr, _, _, _, _ in self.data] # [N, Xmaxlength, D] self.x = np.stack(x, axis=0) # [N, T, D] m = [np.concatenate([np.ones(length), np.zeros(maxlength-length)]) for length in lengths] self.mask = np.stack(m, axis=0) # [N, T], {0-1} mask self.disturbed = np.array([not np.allclose(b1, b2) for tr, a1, b1, a2, b2 in self.data]) # [N] self.start = np.stack(np.array([s for _, s, _, _, _ in self.data], dtype=float), axis=0) # [N, D] self.target = np.stack(np.array([t for _, _, t, _, _ in self.data], dtype=float), axis=0) # [N, D] self.start_dist = np.stack(np.array([s for _, _, _, s, _ in self.data], dtype=float), axis=0) # [N, D], disturbed self.target_dist = np.stack(np.array([t for _, _, _, _, t in self.data], dtype=float), axis=0) # [N, D], disturbed self["x"] = torch.from_numpy(self.x) self["mask"] = torch.tensor(self.mask.astype(int)) self["disturbed"] = torch.tensor(self.disturbed.astype(int)) self["start"] = torch.from_numpy(self.start) self["target"] = torch.from_numpy(self.target) self["start_dist"] = torch.from_numpy(self.start_dist) self["target_dist"] = torch.from_numpy(self.target_dist) def model(self, env): xdata = self["x"] mask = self["mask"] disturbed = self["disturbed"] start = self["start"] target = self["target"] start_dist = self["start_dist"] target_dist = self["target_dist"] # Linear policy log_cn_covar = env.param("log_cn_covar", torch.tensor([-2.0, -2.0])) # control execution output noise cn_covar = torch.exp(log_cn_covar) log_pn_covar = env.param("log_pn_covar", torch.tensor(-2.0)) # policy noise covar pn_covar = torch.exp(log_pn_covar) policy = env.sample("policy", mcvb.Normal(loc=0.0, scale=10.0).expand_right(self.initialpolicy.shape)) # linear policy matrix N, T, D = xdata.shape # Process all N trials in parallel # Policy activation sigmoid (movement onset) if self.policyactivation: policy_act_log_sigm_a = env.param("policy_act_log_sigm_a", torch.ones(N)) policy_act_sigm_a = torch.exp(policy_act_log_sigm_a) policy_act_sigm_b = env.param("policy_act_sigm_b", -2.0 * torch.ones(N)) # Target switching sigmoid prior_inflection = 0.5 prior_a = 10.0 sigm_a = env.sample("sigm_a", mcvb.LogNormal(loc=np.log(prior_a), scale=5.0).expand_right([N]).mask(disturbed)) # [N], prior over sigmoid parameter a sigm_b = env.sample("sigm_b", mcvb.Normal(loc=prior_a * prior_inflection, scale=5.0).expand_right([N]).mask(disturbed)) # [N], prior over sigmoid parameter b env.store("sigm_a", sigm_a) env.store("sigm_b", sigm_b) x = [] # list of sampled trajectories for t in range(3): x.append(env.sample("x_{}".format(t), mcvb.Normal(loc=0.0, scale=1.0).expand_right([N, D]).mask(mask[..., t][..., None]), obs=xdata[..., t, :])) for t in range(2, T-1): # t - current time step # t+1 - next time step v = x[t] - x[t-1] # current velocity vector vnorm = stable_normalize_torch(v) nv_vnorm = rot_90(vnorm) vbasis = torch.stack([vnorm, nv_vnorm], dim=-1) # from local to global vbasisinv = vbasis.transpose(-2, -1) # from global to local. Because basis matrix is ortonormal, inverse is transpose v_local = torch.einsum("...ij,...j->...i", vbasisinv, v) vprev = x[t-1] - x[t-2] # previous velocity vector aprev = v - vprev # previous acceleration vprevnorm = stable_normalize_torch(vprev) nv_vprevnorm = rot_90(vprevnorm) vprevbasis = torch.stack([vprevnorm, nv_vprevnorm], dim=-1) # from local to global vprevbasisinv = vprevbasis.transpose(-2, -1) # from global to local. Because basis matrix is ortonormal, inverse is transpose aprev_local = torch.einsum("...ij,...j->...i", vprevbasisinv, aprev) # Sigmoid policy activation if self.policyactivation: policy_act_sigm = sigmoid_torch(x=t/T, a=policy_act_sigm_a, b=policy_act_sigm_b) # Sigmoidal switching of start and target sigm = sigmoid_torch(x=t/T, a=sigm_a, b=sigm_b) # sigmoidal weight for every time point env.store("sigmoid_{}".format(t+1), sigm) sigm = sigm[..., None] # broadcast to dimensions start_sigm = start * (1.0 - sigm) + start_dist * sigm target_sigm = target * (1.0 - sigm) + target_dist * sigm vbasisinv_ex = mcvb.extend_batch(vbasisinv, [target_sigm.shape[0]]) vbasis_ex = mcvb.extend_batch(vbasis, [target_sigm.shape[0]]) target_local = torch.einsum("...ij,...j->...i", vbasisinv_ex, target_sigm - x[t]) # Construct the current state vector (regressors) regressors = [] for r in self.regressortypes: if r == RegressorType.Const: regressors.append(torch.ones(N, 1).to(policy)) elif r == RegressorType.Position: raise NotImplementedError() elif r == RegressorType.Velocity1D: regressors.append(v_local[..., 0][..., None]) elif r == RegressorType.Acceleration: regressors.append(aprev_local) elif r == RegressorType.Control: raise NotImplementedError() elif r == RegressorType.OptimalTarget: regressors.append(target_local) elif r == RegressorType.OptimalTrajectory: vec_to_tr = vec_pts_to_lines_torch(x[t], start_sigm, target_sigm) vec_to_tr_local = torch.einsum("...ij,...j->...i", vbasisinv_ex, vec_to_tr) # vector to optimal trajectory regressors.append(vec_to_tr_local) state = mcvb.expand_cat(regressors, dim=-1) # policy: [nparticles, ndims, nregressors] # state: [nparticles, ntrials, nregressors] # prediction: [nparticles, ntrials, ndims] policy_ex = mcvb.insert_batch(policy, [state.shape[-2]], 2) control_local = torch.einsum("...ij,...j->...i", policy_ex, state) # control in local coordinates if self.policyactivation: control_local = policy_act_sigm[None, :, None] * control_local # modulate the control control_global = torch.einsum("...ij,...j->...i", vbasis_ex, control_local) # Control noise covariance covar_next, _ = signal_dependent_noise_covar_torch(control=control_global, scale=cn_covar, uniform=pn_covar) xnext_local = v_local + control_local loc_next = x[t] + torch.einsum("...ij,...j->...i", vbasis_ex, xnext_local) x.append(env.sample("x_{}".format(t+1), mcvb.MultivariateNormal(loc=loc_next, covariance_matrix=covar_next).mask(mask[..., t+1]), obs=xdata[..., t+1, :])) return x def model_fast(self, env): """ Fast but doesn't support sampling """ xdata = self["x"] mask = self["mask"] disturbed = self["disturbed"] start = self["start"] target = self["target"] start_dist = self["start_dist"] target_dist = self["target_dist"] # Linear policy log_cn_covar = env.param("log_cn_covar", torch.tensor(np.log([1.0, 1.0]))) # control execution output noise cn_covar = torch.exp(log_cn_covar) log_pn_covar = env.param("log_pn_covar", torch.tensor(np.log(1.0))) # policy noise covar pn_covar = torch.exp(log_pn_covar) #pn_covar = pn_covar * 0.0 policy = env.sample("policy", mcvb.Normal(loc=0.0, scale=10.0).expand_right(self.initialpolicy.shape)) # linear policy matrix N, T, D = xdata.shape # Process all N trials in parallel # Policy activation sigmoid (movement onset) if self.policyactivation: policy_act_log_sigm_a = env.param("policy_act_log_sigm_a", torch.ones(N)) policy_act_sigm_a = torch.exp(policy_act_log_sigm_a) policy_act_sigm_b = env.param("policy_act_sigm_b", -2.0 * torch.ones(N)) # Target switching sigmoid prior_inflection = 0.5 prior_a = 1.0 sigm_a = env.sample("sigm_a", mcvb.LogNormal(loc=np.log(prior_a), scale=1.0).expand_right([N]).mask(disturbed)) # [N], prior over sigmoid parameter a sigm_b = env.sample("sigm_b", mcvb.Normal(loc=prior_inflection * prior_a, scale=1.0).expand_right([N]).mask(disturbed)) # [N], prior over sigmoid parameter b #x = [] # list of sampled trajectories x = env.observe("xdata", xdata) for t in range(2 + self.memsize + self.delaysize): env.sample("x_{}".format(t), mcvb.Normal(loc=0.0, scale=1.0).expand_right([N, D]).mask(mask[..., t][..., None]), obs=xdata[..., t, :]) xtm2 = x[:, 0:T-3, :] # prev, t-1 xtm1 = x[:, 1:T-2, :] # prev, t-1 xt = x[:, 2:T-1, :] # current, t xtp1 = x[:, 3:T, :] # next, t+1 # t - current time step # t+1 - next time step v = xt - xtm1 # current velocity vector vnorm = stable_normalize_torch(v) nv_vnorm = rot_90(vnorm) vbasis = torch.stack([vnorm, nv_vnorm], dim=-1) # from local to global vbasisinv = vbasis.transpose(-2, -1) # from global to local. Because basis matrix is ortonormal, inverse is transpose v_local = torch.einsum("...ij,...j->...i", vbasisinv, v) vprev = xtm1 - xtm2 # previous velocity vector aprev = v - vprev # previous acceleration vprevnorm = stable_normalize_torch(vprev) nv_vprevnorm = rot_90(vprevnorm) vprevbasis = torch.stack([vprevnorm, nv_vprevnorm], dim=-1) # from local to global vprevbasisinv = vprevbasis.transpose(-2, -1) # from global to local. Because basis matrix is ortonormal, inverse is transpose aprev_local = torch.einsum("...ij,...j->...i", vprevbasisinv, aprev) t = torch.arange(2, T-1, device=self.device, dtype=self.dtype).to(xdata) # Sigmoid policy activation if self.policyactivation: policy_act_sigm = sigmoid_torch(x=t/T, a=policy_act_sigm_a[..., None], b=policy_act_sigm_b[..., None]) # Sigmoidal switching of start and target sigm = sigmoid_torch(x=t/T, a=sigm_a[..., None], b=sigm_b[..., None]) # sigmoidal weight for every time point sigm = sigm[..., None] # broadcast to dimensions start_sigm = start[:, None, :] * (1.0 - sigm) + start_dist[:, None, :] * sigm target_sigm = target[:, None, :] * (1.0 - sigm) + target_dist[:, None, :] * sigm vbasisinv_ex = mcvb.extend_batch(vbasisinv, [target_sigm.shape[0]]) vbasis_ex = mcvb.extend_batch(vbasis, [target_sigm.shape[0]]) target_local = torch.einsum("...ij,...j->...i", vbasisinv_ex, target_sigm - xt) # Construct the current state vector (regressors) regressors = [] for r in self.regressortypes: if r == RegressorType.Position: raise NotImplementedError() elif r == RegressorType.Velocity1D: regressors.append(v_local[..., 0][..., None]) # add higher order elif r == RegressorType.Acceleration: regressors.append(aprev_local) # add higher order elif r == RegressorType.Control: raise NotImplementedError() elif r == RegressorType.OptimalTarget: regressors.append(target_local) # add higher order elif r == RegressorType.OptimalTrajectory: vec_to_tr = vec_pts_to_lines_torch(xt[None, ...], start_sigm, target_sigm) vec_to_tr_local = torch.einsum("...ij,...j->...i", vbasisinv_ex, vec_to_tr) # vector to optimal trajectory regressors.append(vec_to_tr_local) # add higher order state = mcvb.expand_cat(regressors, dim=-1) # Tile the state for higher order regression state = torch.cat([state[..., i:i-self.memsize+len(t)+1, :] for i in range(self.memsize)], dim=-1) # Add single const regressor if r == RegressorType.Const: state = mcvb.expand_cat([state, torch.ones(N, state.shape[-2], 1).to(policy)], dim=-1) # policy: [nparticles, ndims, nregressors] # state: [nparticles, ntrials, nt, nregressors] # prediction: [nparticles, ntrials, nt, ndims] policy_ex = mcvb.insert_batch(policy, [state.shape[-3], state.shape[-2]], 2) if policy_ex.dim() == state.dim() + 2: state = mcvb.extend_batch(state, [policy_ex.shape[0]]) control_local = torch.einsum("...ij,...j->...i", policy_ex, state) # control in local coordinates if self.policyactivation: control_local = policy_act_sigm[None, :, :, None] * control_local vbasis_ex = vbasis_ex[..., self.memsize-1:, :, :] v_local = v_local[:, self.memsize-1:, :] control_global = torch.einsum("...ij,...j->...i", vbasis_ex, control_local) control_global_norm = stable_normalize_torch(control_global) vn_control_global_norm = rot_90(control_global_norm) controlbasis = torch.stack([control_global_norm, vn_control_global_norm], dim=-1) controlbasisinv = controlbasis.transpose(-2, -1) def global_to_control(a): a_control = torch.einsum("...ij,...j->...i", controlbasisinv, a) return a_control def local_to_control(a): a_global = torch.einsum("...ij,...j->...i", vbasis_ex, a) a_control = global_to_control(a_global) return a_control control_control = local_to_control(control_local) covar_next, _ = signal_dependent_noise_covar_xaligned_torch(control_control, cn_covar, pn_covar) std_next = torch.sqrt(covar_next) xnext_local = v_local + control_local xnext_control = local_to_control(xnext_local) xpt1_xt = (xtp1 - xt)[:, self.memsize-1:, :] xtp1_control = global_to_control(xpt1_xt.expand(xnext_local.shape)) tp1 = torch.arange(2+self.memsize+self.delaysize, T, device=self.device) s = xtp1_control.shape[-2] - self.delaysize # valid size for prediction env.sample("xtp1_control", mcvb.Normal(loc=xnext_control[..., :s, :], scale=std_next[..., :s, :]).mask(mask[..., tp1, None]), obs=xtp1_control[..., -s:, :]) def proposal(self, env): self.proposal_factorized(env) def proposal_factorized(self, env): xdata = self["x"] mask = self["mask"] disturbed = self["disturbed"] start = self["start"] target = self["target"] start_dist = self["start_dist"] target_dist = self["target_dist"] N, T, D = xdata.shape prior_inflection = 0.5 prior_a = 1.0 log_sigm_a_loc = env.param("log_sigm_a.loc", np.log(prior_a) * torch.ones(N)) log_sigm_a_logscale = env.param("log_sigm_a.logscale", np.log(1.0) * torch.ones(N)) sigm_a = env.sample("sigm_a", mcvb.LogNormal(loc=log_sigm_a_loc, scale=torch.exp(log_sigm_a_logscale)).mask(disturbed)) # [N], prior over sigmoid parameter a sigm_b_loc = env.param("sigm_b.loc", prior_inflection * prior_a * torch.ones(N)) sigm_b_logscale = env.param("sigm_b.logscale", np.log(1.0) * torch.ones(N)) sigm_b = env.sample("sigm_b", mcvb.Normal(loc=sigm_b_loc, scale=torch.exp(sigm_b_logscale)).mask(disturbed)) # [N], prior over sigmoid parameter b policy_loc = env.param("policy.loc", torch.zeros(self.initialpolicy.shape)) policy_logscale = env.param("policy.logscale", np.log(1.0) * torch.ones(self.initialpolicy.shape)) policy = env.sample("policy", mcvb.Normal(loc=policy_loc, scale=torch.exp(policy_logscale))) def run_policy(policy, start, target, n=5, regressortypes=None): def rot_90(x): return x[[1, 0]] * np.array([-1.0, 1.0]) x = np.zeros([n, 2]) if start is None: x[:3] = np.array([[0.0, 0.0], [0.01, 0.01], [0.02, 0.02]]) else: x[:3] = start if regressortypes is None: regressortypes = [RegressorType.Velocity, RegressorType.Acceleration, RegressorType.OptimalTarget, RegressorType.Const] regressortypes.append(RegressorType.OptimalTrajectory) for i in range(2, n-1): # i - current time step # i+1 - next time step v = x[i] - x[i-1] # current velocity vector vnorm = stable_normalize(v) nv_vnorm = rot_90(vnorm) vbasis = np.vstack([vnorm, nv_vnorm]).T # from local to global vbasisinv = vbasis.T # from global to local. Because basis matrix is ortonormal, inverse is transpose v_local = np.dot(vbasisinv, v) vprev = x[i-1] - x[i-2] # previous velocity vector aprev = v - vprev # previous acceleration vprevnorm = stable_normalize(vprev) nv_vprevnorm = rot_90(vprevnorm) vprevbasis = np.vstack([vprevnorm, nv_vprevnorm]).T # from local to global vprevbasisinv = vprevbasis.T # from global to local. Because basis matrix is ortonormal, inverse is transpose aprev_local = np.dot(vprevbasisinv, aprev) target_local =
np.dot(vbasisinv, target - x[i])
numpy.dot
import seaborn as sns import numpy as np import os N = 100 DELTA = 0.025 c = 1. def load_data(folder,dtype=float): return [np.loadtxt(folder+'/n_%d'%n,dtype=dtype) for n in range(1,100)] def save_mean_Lambda_CC(data_CC,str_MU): """saves mean Lambda_CC vals in file""" coop_int = np.array([np.mean(dat_n)/(i+1.) for i,dat_n in enumerate(data_CC)]) np.savetxt('MU-%s/Lambda_CC'%str_MU,coop_int) return coop_int # def fix_prob_1(b,c,Lambda_CC,DELTA): # """calculates fix probability for single initial cooperator""" # f = lambda j: -c/N +b/N*(Lambda_CC[j-1]*N-j)/(N-j) # return 1./N +DELTA/N*sum(sum(f(j) for j in range(1,k+1)) for k in range(1,N)) def fix_prob_1(b,c,Lambda_CC,DELTA): """calculates fix probability for single initial cooperator""" f = lambda j: (Lambda_CC[j-1]-float(j)/N)/float(N-j) return 1./N +DELTA/N*( (-c*(N-1.))/2. + b*sum(sum(f(j) for j in range(1,k+1)) for k in range(1,N))) def critical_ratio(str_MU): try: Lambda_CC = np.loadtxt('MU-%s/Lambda_CC'%str_MU) except: data_CC = load_data('MU-%s/wints_CC'%str_MU) Lambda_CC = save_mean_Lambda_CC(data_CC,str_MU) f = lambda j: (Lambda_CC[j-1]-float(j)/N)/float(N-j) return (N-1.)/2. *1/(sum(sum(f(j) for j in range(1,k+1)) for k in range(1,N))) def save_critical_ratios(str_MU_list,fname): with open(fname,'w') as f: for str_MU in str_MU_list: f.write('%s %.3f \n'%(str_MU,critical_ratio(str_MU))) def save_fix_probs(DELTA_vals,b_vals,fname,str_MU): try: Lambda_CC =
np.loadtxt('MU-%s/Lambda_CC'%str_MU)
numpy.loadtxt
import unittest from datetime import datetime import numpy as np import netCDF4 as nc from ocgis.api.operations import OcgOperations from ocgis.util.shp_cabinet import ShpCabinet from shapely.geometry.polygon import Polygon from ocgis import env from ocgis.api.interpreter import OcgInterpreter from ocgis.util.inspect import Inspect class NcSpatial(object): def __init__(self,resolution,lat_bnds,lon_bnds): self.resolution = resolution self.lat_bnds = lat_bnds self.lon_bnds = lon_bnds @property def shift(self): return(self.resolution/2.0) @property def lat_values(self): return(self.get_centroids(self.lat_bnds)) @property def lon_values(self): return(self.get_centroids(self.lon_bnds)) @property def latb_values(self): return(self.make_bounds(self.lat_values)) @property def lonb_values(self): return(self.make_bounds(self.lon_values)) def get_centroids(self,bounds): return(np.arange(bounds[0]+self.shift,bounds[1]+self.shift,self.resolution,dtype=float)) def make_bounds(self,arr): lower = arr - self.shift upper = arr + self.shift bounds = np.hstack((lower.reshape(-1,1),upper.reshape(-1,1))) return(bounds) class Test360(unittest.TestCase): def test_high_res(self): nc_spatial = NcSpatial(0.5,(-90.0,90.0),(0.0,360.0)) path = self.make_data(nc_spatial) dataset = {'uri':path,'variable':'foo'} output_format = 'nc' snippet = True geom = self.nebraska for s_abstraction in ['point','polygon']: interface = {'s_abstraction':s_abstraction} ops = OcgOperations(dataset=dataset,output_format=output_format, geom=geom,snippet=snippet,abstraction=s_abstraction) ret = OcgInterpreter(ops).execute() def test_low_res(self): nc_spatial = NcSpatial(5.0,(-90.0,90.0),(0.0,360.0)) path = self.make_data(nc_spatial) dataset = {'uri':path,'variable':'foo'} output_format = 'shp' geom = self.nebraska ip = Inspect(dataset['uri'],dataset['variable']) for s_abstraction in ['point','polygon']: interface = {'s_abstraction':s_abstraction} ops = OcgOperations(dataset=dataset, output_format=output_format, geom=geom, abstraction=s_abstraction) ret = OcgInterpreter(ops).execute() @property def nebraska(self): sc = ShpCabinet() geom_dict = sc.get_geom_dict('state_boundaries',{'ugid':[16]}) return(geom_dict) def transform_to_360(self,polygon): def _transform_lon_(ctup): lon = ctup[0] if lon < 180: lon += 360 return([lon,ctup[1]]) transformed = map(_transform_lon_,polygon.exterior.coords) new_polygon = Polygon(transformed) return(new_polygon) def make_variable(self,varname,arr,dimensions): var = self.ds.createVariable(varname,arr.dtype,dimensions=dimensions) var[:] = arr return(var) def make_data(self,nc_spatial): path = '/tmp/test360 {0}.nc'.format(datetime.now()) calendar = 'standard' units = 'days since 0000-01-01' time_values = [datetime(2000,m,15) for m in range(1,13)] time_values = nc.date2num(time_values,units,calendar=calendar) level_values =
np.array([100,200])
numpy.array
import os import time import warnings import multiprocessing as mp from typing import List import pandas as pd import numpy as np import scipy import scipy.stats as stats import matplotlib.pyplot as plt from dateutil.relativedelta import relativedelta from datetime import datetime from tqdm import tqdm from pvrpm.core.enums import ConfigKeys as ck from pvrpm.core.case import SamCase from pvrpm.core.components import Components from pvrpm.core.utils import summarize_dc_energy, component_degradation from pvrpm.core.logger import logger def cf_interval(alpha: float, std: float, num_samples: int) -> float: """ Calculates the two tails margin of error given the desired input. The margin of error is the value added and subtracted by the sample mean to obtain the confidence interval Sample sizes less then equal to 30 use t score, greater then 30 use z score Args: alpha (float): The significance level for the interval std (float): The standard deviation of the data num_samples (int): The number of samples in the data Returns: float: The margin of error """ # two tails alpha = alpha / 2 if num_samples > 30: score = stats.norm.ppf(alpha) else: score = stats.t.ppf(1 - alpha, num_samples - 1) return score * std / np.sqrt(num_samples) def simulate_day(case: SamCase, comp: Components, day: int): """ Updates and increments the simulation by a day, performing all neccesary component updates. Args: case (:obj:`SamCase`): The current Sam Case of the simulation comp (:obj:`Components`): The components class containing all the outputs for this simulation day (int): Current day in the simulation """ # static monitoring starts the day, if available. This is updated independently of component levels comp.update_indep_monitor(day) for c in ck.component_keys: if not case.config.get(c, None): continue df = comp.comps[c] # if component can't fail, just continue if case.config[c][ck.CAN_FAIL]: # decrement time to failures for operational modules # fail components when their time has come comp.update_fails(c, day) # update monitoring comp.update_monitor(c, day) if case.config[c][ck.CAN_REPAIR]: # repair components when they are done and can be repaired comp.update_repairs(c, day) if case.config[c].get(ck.WARRANTY, None): df["time_left_on_warranty"] -= 1 # availability if c == ck.GRID: # for the grid only, the availability is based on the full 24-hour day. df.loc[df["state"] == 0, "avail_downtime"] += 24 else: # else, use the sun hours for this day df.loc[df["state"] == 0, "avail_downtime"] += case.daylight_hours[day % 365] # module can still degrade even if it cant fail if case.config[c].get(ck.DEGRADE, None): df["days_of_degradation"] += 1 df["degradation_factor"] = [ component_degradation(case.config[c][ck.DEGRADE] / 365, d) for d in df["days_of_degradation"] ] def run_system_realization( case: SamCase, seed: bool = False, realization_num: int = 0, progress_bar: bool = False, debug: int = 0, ) -> Components: """ Run a full realization for calculating costs Args: case (:obj:`SamCase`): The loaded and verified case to use with the simulation seed (bool, Optional): Whether to seed the random number generator, for multiprocessing realization_num (int, Optional): Current realization number, used for multiprocessing progress_bar (bool, Optional): Whether to display progress bar during the realization debug (int, Optional): Whether to save simulation state every `debug` days (0 to turn off) Returns: :obj:`Components`: The components object which contains all the data for this realization """ if seed: np.random.seed() # data storage comp = Components(case) lifetime = case.config[ck.LIFETIME_YRS] if case.config[ck.TRACKING]: comp.tracker_power_loss_factor[0] = 1 comp.tracker_availability[0] = 1 # initial timestep comp.module_degradation_factor[0] = comp.current_degradation() comp.dc_power_availability[0] = comp.dc_availability() comp.ac_power_availability[0] = comp.ac_availability() if progress_bar: iterator = tqdm( range(1, lifetime * 365), ascii=True, desc=f"Running realization {realization_num}", unit="day", position=mp.current_process()._identity[0], leave=False, ) else: logger.info(f"Running realization {realization_num}...") iterator = range(1, lifetime * 365) for i in iterator: # calculate new labor rate each year if i == 1 or i % 365 == 0: year = np.floor(i / 365) inflation = np.power(1 + case.config[ck.INFLATION] / 100, year) comp.update_labor_rates(case.config[ck.LABOR_RATE] * inflation) # Decided to remove since it doesnt make sense for only trackers to rise with inflation and not # all other failures. Plus, this was broken. # need to store original cost of tracker failures for each failure and increase based on that cost # also need to take in concurrent failures # if case.config[ck.TRACKING]: # for fail in case.config[ck.TRACKER][ck.FAILURE].keys(): # case.config[ck.TRACKER][ck.FAILURE][fail][ck.COST] *= inflation # save state if debugging if debug > 0 and i % debug == 0: state_dict = comp.snapshot() folder = f"debug_day_{i}" save_path = os.path.join(case.config[ck.RESULTS_FOLDER], folder) os.makedirs(save_path, exist_ok=True) for key, val in state_dict.items(): val.to_csv(os.path.join(save_path, f"{key}_state.csv"), index=True) # timestep is applied each day simulate_day(case, comp, i) if case.config[ck.TRACKING]: comp.tracker_availability[i], comp.tracker_power_loss_factor[i] = comp.tracker_power_loss(i) comp.module_degradation_factor[i] = comp.current_degradation() comp.dc_power_availability[i] = comp.dc_availability() comp.ac_power_availability[i] = comp.ac_availability() # create same performance adjustment tables for avail, degradation, tracker losses if case.config[ck.TRACKING]: daily_dc_loss = 100 * ( 1 - (comp.dc_power_availability * comp.module_degradation_factor * comp.tracker_power_loss_factor) ) else: daily_dc_loss = 100 * (1 - (comp.dc_power_availability * comp.module_degradation_factor)) daily_ac_loss = 100 * (1 - comp.ac_power_availability) case.value("en_dc_lifetime_losses", 1) case.value("dc_lifetime_losses", list(daily_dc_loss)) case.value("en_ac_lifetime_losses", 1) case.value("ac_lifetime_losses", list(daily_ac_loss)) o_m_yearly_costs = np.zeros(lifetime) for c in ck.component_keys: if not case.config.get(c, None): continue comp_yearly_cost = np.sum(np.reshape(comp.costs[c], (lifetime, 365)), axis=1) o_m_yearly_costs += comp_yearly_cost case.value("om_fixed", list(o_m_yearly_costs)) case.simulate() # add the results of the simulation to the components class and return comp.timeseries_dc_power = case.output("dc_net") comp.timeseries_ac_power = case.value("gen") comp.lcoe = case.output("lcoe_real") comp.npv = case.get_npv() # remove the first element from cf_energy_net because it is always 0, representing year 0 comp.annual_energy = np.array(case.output("cf_energy_net")[1:]) # more results, for graphing and what not try: comp.tax_cash_flow = case.output("cf_after_tax_cash_flow") except AttributeError: comp.tax_cash_flow = case.output("cf_pretax_cashflow") for loss in ck.losses: try: comp.losses[loss] = case.output(loss) except: comp.losses[loss] = 0 return comp def gen_results(case: SamCase, results: List[Components]) -> List[pd.DataFrame]: """ Generates results for the given SAM case and list of component objects containing the results of each realization. Args: case (:obj:`SamCase`): The loaded and verified case to use with the simulation results (:obj:`list(Components)`): List of component objects that contain the results for each realization Returns: :obj:`list(pd.DataFrame)`: List of dataframes containing the results. Note: The order of the returned dataframes is: - Summary Results - Degradation Results - DC Power - AC Power - Yearly Costs """ summary_index = ["Base Case"] summary_data = {"lcoe": [case.base_lcoe], "npv": [case.base_npv]} lifetime = case.config[ck.LIFETIME_YRS] p_vals = [99, 95, 90, 75, 50, 10] # ac energy cumulative_ac_energy = np.cumsum(case.base_annual_energy) for i in range(int(lifetime)): summary_data[f"annual_ac_energy_{i+1}"] = [case.base_annual_energy[i]] # split up so the order of columns is nicer for i in range(int(lifetime)): summary_data[f"cumulative_ac_energy_{i+1}"] = [cumulative_ac_energy[i]] # dc energy for i in range(len(case.base_dc_energy)): summary_data[f"dc_energy_{i+1}"] = [case.base_dc_energy[i]] # TODO: also, need to clean this up, i just use dictionaries and fill in blanks for base case, but this can be much cleaner # per realization results day_index = np.arange(lifetime * 365) + 1 timeseries_index = np.arange(len(results[0].timeseries_dc_power)) year_index = np.arange(lifetime) + 1 yearly_cost_index = [] degradation_data = {} timeseries_dc_data = {} timeseries_ac_data = {} yearly_cost_data = {} yearly_fail_data = {} for i, comp in enumerate(results): # daily degradation degradation_data[f"Realization {i+1}"] = comp.module_degradation_factor # power timeseries_dc_data[f"Realization {i+1}"] = comp.timeseries_dc_power timeseries_ac_data[f"Realization {i+1}"] = comp.timeseries_ac_power # yearly cost and total fails for each component yearly_cost_index.append(f"Realization {i+1}") for c in ck.component_keys: if not case.config.get(c, None): continue if c not in yearly_cost_data: yearly_cost_data[c] = [] if c not in yearly_fail_data: yearly_fail_data[c] = [] yearly_cost_data[c] += list(np.sum(np.reshape(comp.costs[c], (lifetime, 365)), axis=1)) # add total fails per year for each failure mode for this component level total_fails = np.zeros(lifetime * 365) for f in comp.summarize_failures(c).values(): total_fails += f yearly_fail_data[c] += list(np.sum(np.reshape(total_fails, (lifetime, 365)), axis=1)) # summary summary_index.append(f"Realization {i+1}") summary_data["lcoe"] += [comp.lcoe] summary_data["npv"] += [comp.npv] # ac energy # remove the first element from cf_energy_net because it is always 0, representing year 0 cumulative_ac_energy = np.cumsum(comp.annual_energy) for i in range(int(lifetime)): summary_data[f"annual_ac_energy_{i+1}"] += [comp.annual_energy[i]] summary_data[f"cumulative_ac_energy_{i+1}"] += [cumulative_ac_energy[i]] # dc energy dc_energy = summarize_dc_energy(comp.timeseries_dc_power, lifetime) for i in range(len(dc_energy)): summary_data[f"dc_energy_{i+1}"] += [dc_energy[i]] # calculate total failures, availability, mttr, mtbf, etc for c in ck.component_keys: if not case.config.get(c, None): continue if f"{c}_total_failures" not in summary_data: summary_data[f"{c}_total_failures"] = [None] # no failures for base case if f"{c}_mtbf" not in summary_data: summary_data[f"{c}_mtbf"] = [None] if f"{c}_mttr" not in summary_data: summary_data[f"{c}_mttr"] = [None] if f"{c}_mttd" not in summary_data: summary_data[f"{c}_mttd"] = [None] if case.config[c][ck.CAN_FAIL]: sum_fails = comp.comps[c]["cumulative_failures"].sum() summary_data[f"{c}_total_failures"] += [sum_fails] for fail in case.config[c].get(ck.FAILURE, {}).keys(): if f"{c}_failures_by_type_{fail}" not in summary_data: summary_data[f"{c}_failures_by_type_{fail}"] = [None] summary_data[f"{c}_failures_by_type_{fail}"] += [comp.comps[c][f"failure_by_type_{fail}"].sum()] # partial failures for fail in case.config[c].get(ck.PARTIAL_FAIL, {}).keys(): if f"{c}_failures_by_type_{fail}" not in summary_data: summary_data[f"{c}_failures_by_type_{fail}"] = [None] summary_data[f"{c}_failures_by_type_{fail}"] += [comp.comps[c][f"failure_by_type_{fail}"].sum()] # if the component had no failures, set everything here and continue if sum_fails == 0: summary_data[f"{c}_mtbf"] += [lifetime * 365] summary_data[f"{c}_mttr"] += [0] summary_data[f"{c}_mttd"] += [0] else: # mean time between failure summary_data[f"{c}_mtbf"] += [lifetime * 365 * case.config[c][ck.NUM_COMPONENT] / sum_fails] # mean time to repair if case.config[c][ck.CAN_REPAIR]: # take the number of fails minus whatever components have not been repaired by the end of the simulation to get the number of repairs sum_repairs = sum_fails - len(comp.comps[c].loc[(comp.comps[c]["state"] == 0)]) if sum_repairs > 0: summary_data[f"{c}_mttr"] += [comp.total_repair_time[c] / sum_repairs] else: summary_data[f"{c}_mttr"] += [0] else: summary_data[f"{c}_mttr"] += [0] # mean time to detection (mean time to acknowledge) if ( case.config[c][ck.CAN_MONITOR] or case.config[c].get(ck.COMP_MONITOR, None) or case.config[c].get(ck.INDEP_MONITOR, None) ): # take the number of fails minus the components that have not been repaired and also not be detected by monitoring mask = (comp.comps[c]["state"] == 0) & (comp.comps[c]["time_to_detection"] > 1) sum_monitor = sum_fails - len(comp.comps[c].loc[mask]) if sum_monitor > 0: summary_data[f"{c}_mttd"] += [comp.total_monitor_time[c] / sum_monitor] else: summary_data[f"{c}_mttd"] += [0] else: summary_data[f"{c}_mttd"] += [0] else: # mean time between failure summary_data[f"{c}_total_failures"] += [0] summary_data[f"{c}_mtbf"] += [lifetime * 365] summary_data[f"{c}_mttr"] += [0] summary_data[f"{c}_mttd"] += [0] # availability if f"{c}_availability" not in summary_data: summary_data[f"{c}_availability"] = [None] summary_data[f"{c}_availability"] += [ ( 1 - (comp.comps[c]["avail_downtime"].sum() / (lifetime * case.annual_daylight_hours)) / case.config[c][ck.NUM_COMPONENT] ) ] # generate dataframes summary_results = pd.DataFrame(index=summary_index, data=summary_data) summary_results.index.name = "Realization" # reorder columns for summary results reorder = list(summary_results.columns[0:2]) # lcoe and npv reorder += list(summary_results.columns[lifetime * 3 + 2 :]) # failures and avail reorder += list(summary_results.columns[2 : lifetime * 3 + 2]) # energy summary_results = summary_results[reorder] degradation_results = pd.DataFrame(index=day_index, data=degradation_data) dc_power_results = pd.DataFrame(index=timeseries_index, data=timeseries_dc_data) ac_power_results = pd.DataFrame(index=timeseries_index, data=timeseries_ac_data) dc_power_results.index.name = "Hour" ac_power_results.index.name = "Hour" degradation_results.index.name = "Day" cost_index = pd.MultiIndex.from_product([yearly_cost_index, year_index], names=["Realization", "Year"]) yearly_cost_results = pd.DataFrame(index=cost_index, data=yearly_cost_data) yearly_cost_results["total"] = yearly_cost_results.sum(axis=1) # fails per year, same multi index as cost yearly_fail_results = pd.DataFrame(index=cost_index, data=yearly_fail_data) yearly_fail_results["total"] = yearly_fail_results.sum(axis=1) stats_append = [] summary_no_base = summary_results.iloc[1:] min = summary_no_base.min() min.name = "min" stats_append.append(min) max = summary_no_base.max() max.name = "max" stats_append.append(max) mean = summary_no_base.mean() mean.name = "mean" stats_append.append(mean) median = summary_no_base.median() median.name = "median" stats_append.append(median) std = summary_no_base.std() std.name = "stddev" stats_append.append(std) conf_interval = case.config[ck.CONF_INTERVAL] conf_int = cf_interval(1 - (conf_interval / 100), std, case.config[ck.NUM_REALIZATION]) lower_conf = mean - conf_int lower_conf.name = f"{conf_interval}% lower confidence interval of mean" stats_append.append(lower_conf) upper_conf = mean + conf_int upper_conf.name = f"{conf_interval}% upper confidence interval of mean" stats_append.append(upper_conf) # p test, which is using the ppf of the normal distribituion with our calculated mean and std. We use scipy's functions for this # see https://help.helioscope.com/article/141-creating-a-p50-and-p90-with-helioscope for p in p_vals: values = [] # calculate the p value for every column for m, s in zip(mean, std): if s != 0: # for columns with no STDDEV values.append(stats.norm.ppf((1 - p / 100), loc=m, scale=s)) else: values.append(None) # save results values = pd.Series(values, index=mean.index) values.name = f"P{p}" stats_append.append(values) # since pandas wants to depercate append, gotta convert series into dataframes summary_results = pd.concat([summary_results, *[s.to_frame().transpose() for s in stats_append]]) return [ summary_results, degradation_results, dc_power_results, ac_power_results, yearly_cost_results, yearly_fail_results, ] def graph_results(case: SamCase, results: List[Components], save_path: str = None) -> None: """ Generate graphs from a list of Component objects from each realization Args: case (:obj:`SamCase`): The loaded and verified case to use with the simulation results (:obj:`list(Components)`): List of component objects that contain the results for each realization save_path (str, Optional): Path to save graphs to, if provided """ lifetime = case.config[ck.LIFETIME_YRS] colors = [ "r", "g", "b", "c", "m", "y", "k", "tab:orange", "tab:brown", "lime", "tab:gray", "indigo", "navy", "pink", "coral", "yellow", "teal", "fuchsia", "palegoldenrod", "darkgreen", ] # base case data to compare to base_losses = case.base_losses base_load = np.array(case.base_load) if case.base_load is not None else None base_ac_energy = np.array(case.base_ac_energy) base_annual_energy = np.array(case.base_annual_energy) base_tax_cash_flow = np.array(case.base_tax_cash_flow) # parse data avg_ac_energy = np.zeros(len(case.base_ac_energy)) # since length is variable based on frequency of weather file avg_annual_energy = np.zeros(lifetime) avg_losses = np.zeros(len(ck.losses)) avg_tax_cash_flow = np.zeros(lifetime + 1) # add 1 for year 0 avg_failures = np.zeros((len(ck.component_keys), lifetime * 365)) # 7 types of components # computing the average across every realization for comp in results: avg_ac_energy += np.array(comp.timeseries_ac_power) avg_annual_energy += np.array(comp.annual_energy) avg_losses += np.array(list(comp.losses.values())) avg_tax_cash_flow += np.array(comp.tax_cash_flow) for i, c in enumerate(ck.component_keys): if not case.config.get(c, None): continue for f in comp.summarize_failures(c).values(): avg_failures[i] += f # monthly and annual energy avg_ac_energy /= len(results) avg_annual_energy /= len(results) avg_losses /= len(results) avg_tax_cash_flow /= len(results) avg_failures /= len(results) # sum up failures to be per year avg_failures = np.sum(np.reshape(avg_failures, (len(ck.component_keys), lifetime, 365)), axis=2) # determine the frequency of the data, same as frequncy of supplied weather file total = int(len(avg_ac_energy) / lifetime) if total == 8760: freq = 1 else: freq = 0 while total > 8760: freq += 1 total /= freq avg_ac_energy = np.reshape(avg_ac_energy[0::freq], (lifetime, 8760)) # yearly energy by hour avg_ac_energy = np.sum(avg_ac_energy, axis=0) / lifetime # yearly energy average avg_ac_energy = np.reshape(avg_ac_energy, (365, 24)) # day energy by hour avg_day_energy_by_hour = avg_ac_energy.copy() # copy for heatmap yearly energy generation avg_ac_energy = np.sum(avg_ac_energy, axis=1) # energy per day base_ac_energy = np.reshape(base_ac_energy[0::freq], (lifetime, 8760)) base_ac_energy = np.sum(base_ac_energy, axis=0) / lifetime base_ac_energy =
np.reshape(base_ac_energy, (365, 24))
numpy.reshape
import numpy as np import pandas as pd import sys np.random.seed(0) def one_hot_encoder(Y): new_Y = np.zeros((Y.shape[0], np.max(Y)+1)) new_Y[np.arange(Y.shape[0]), Y] = 1 return new_Y #Sigmoid function def sigmoid(Z): return 1/(1+np.exp(-Z)) #Tanh function, can be written in terms of sigmoid def tanh(Z): return np.tanh(Z) #Relu function def relu(Z): return Z*(Z > 0) def activate(Z, activation): if(activation == 'sigmoid'): return sigmoid(Z) elif(activation == 'relu'): return relu(Z) else: return tanh(Z) def derivative_activate(A, activation): if(activation == 'sigmoid'): return (A*(1-A)) elif(activation == 'relu'): return ((A>0)).astype(int) else: return (1-A*A) def init_network(M_data, num_labels, num_hidden_layers, hidden_layer_sizes, activation): W = dict() #W[l] means the weights between layer l and layer l-1. Dimension = (#units in layer l-1 x #units in layer l) b = dict() #b[l] means the bias value added for each unit of layer l #Will use 1-based indexing for weights, since hidden-layer are also 1-based indexed L = num_hidden_layers if(L != 0): #Will use Xavier initialization of weights if(activation == 'relu'): W[1] = np.random.randn(M_data, hidden_layer_sizes[0])*np.sqrt(2.0/M_data) #Factor of 2 helps in case of relu activation function else: W[1] = np.random.randn(M_data, hidden_layer_sizes[0])*np.sqrt(1.0/M_data) b[1] = np.zeros((1, hidden_layer_sizes[0])) for i in range(1, L): if(activation == 'relu'): W[i+1] = np.random.randn(hidden_layer_sizes[i-1], hidden_layer_sizes[i])*np.sqrt(2.0/hidden_layer_sizes[i-1]) else: W[i+1] =
np.random.randn(hidden_layer_sizes[i-1], hidden_layer_sizes[i])
numpy.random.randn
import datetime import numpy as np import matplotlib.pyplot as plt from numpy.lib.function_base import append import sympy as sp from multiprocessing import Pool import os import cppsolver as cs from tqdm import tqdm from ..filter import Magnet_UKF, Magnet_KF from ..solver import Solver, Solver_jac class Simu_Data: def __init__(self, gt, snr, result): self.gt = gt self.snr = snr self.result = result def __len__(self): return self.gt.shape[0] def store(self): np.savez('result/test.npz', gt=self.gt, data=self.result) class expression: def __init__(self, mag_count=1): if mag_count == 1: x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs = sp.symbols( 'x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) vecR = sp.Matrix([xs - x, ys - y, zs - z]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0]**2 + vecR[1]**2 + vecR[2]**2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecM = 1e-7 * sp.exp(M) * sp.Matrix([ sp.sin(theta) * sp.cos(phy), sp.sin(theta) * sp.sin(phy), sp.cos(theta) ]) VecB = 3 * vecR * (VecM.T * vecR) / dis**5 - VecM / dis**3 + G VecB *= 1e6 # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x, y, z, M, theta, phy], VecB, 'numpy') elif mag_count == 2: x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1, gx, gy, gz, xs, ys, zs = sp.symbols( 'x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) x = [x0, x1] y = [y0, y1] z = [z0, z1] M = [M0, M1] theta = [theta0, theta1] phy = [phy0, phy1] VecB = G for i in range(mag_count): vecR = sp.Matrix( [xs - x[i], ys - y[i], zs - z[i]]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0] ** 2 + vecR[1] ** 2 + vecR[2] ** 2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecMi = 1e-7 * sp.exp(M[i]) * sp.Matrix([sp.sin(theta[i]) * sp.cos( phy[i]), sp.sin(theta[i]) * sp.sin(phy[i]), sp.cos(theta[i])]) VecBi = 3 * vecR * (VecMi.T * vecR) / \ dis ** 5 - VecMi / dis ** 3 VecB += VecBi VecB = 1e6 * VecB # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1], VecB, 'numpy') class Result_Handler: def __init__(self, simu_data, scale): self.track_result = [] self.simu_data = simu_data self.scale = scale def __add__(self, new): self.track_result.append(new) return self def get_gt_result(self): a = self.simu_data.gt b = [] for i in range(len(self.track_result)): b.append(np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ])) b = np.stack(b) return [a, b] def cal_loss(self): dist = [] loss = [] for i in range(len(self.simu_data)): point_gt = self.simu_data.gt[i] point_estimate = np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ]) dist.append(np.linalg.norm(point_gt, 2)) loss.append(np.linalg.norm(point_gt - point_estimate, 2)) dist = 1e2 * np.array(dist) loss = 1e2 * np.array(loss) return [self.scale, dist, loss] def gt_and_route(self): dist = [] route = [] for i in range(len(self.simu_data)): point_gt = self.simu_data.gt[i] dist.append(np.linalg.norm(point_gt, 2)) route.append(np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ])) dist = np.array(dist) route = np.stack(route, axis=0) idx = np.argsort(dist) gt = self.simu_data.gt[idx] route = route[idx] return [gt, route] # plt.plot(dist, loss, label='scale = {}'.format(self.scale)) # plt.legend() # print('debug') class Simu_Test: def __init__(self, start, stop, scales, pSensor=None, resolution=100): self.scales = scales self.M = 2.7 self.build_route(start, stop, resolution) if pSensor is None: self.build_psensor() else: self.pSensor = pSensor # self.build_expression() self.params = { 'm': np.log(self.M), 'theta': 0, 'phy': 0, 'gx': 50 / np.sqrt(2) * 1e-6, 'gy': 50 / np.sqrt(2) * 1e-6, 'gz': 0, } def build_expression(self): x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs = sp.symbols( 'x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) vecR = sp.Matrix([xs - x, ys - y, zs - z]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0]**2 + vecR[1]**2 + vecR[2]**2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecM = 1e-7 * sp.exp(M) * sp.Matrix([ sp.sin(theta) * sp.cos(phy), sp.sin(theta) * sp.sin(phy), sp.cos(theta) ]) VecB = 3 * vecR * (VecM.T * vecR) / dis**5 - VecM / dis**3 + G VecB *= 1e6 # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x, y, z, M, theta, phy], VecB, 'numpy') def build_route(self, start, stop, resolution): # linear route theta = 90 / 180.0 * np.pi route = np.linspace(start, stop, resolution) route = np.stack([route * np.cos(theta), route * np.sin(theta)]).T route = np.pad(route, ((0, 0), (1, 0)), mode='constant', constant_values=0) self.route = 1e-2 * route # curvy route tmp = np.linspace(start, stop, resolution) route = np.stack([np.sin((tmp-start)/(stop-start) * np.pi * 5), np.cos((tmp-start)/(stop-start) * np.pi * 5), tmp], axis=0).T self.route = 1e-2 * route def build_psensor(self): self.pSensor = 1e-2 * np.array([ [1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1], ]) def simulate_process(self, scale): print(scale) pSensori = scale * self.pSensor simu = self.estimate_B(pSensori) simu.store() model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result return results.cal_loss() def gt_and_result(self): pSensori = 1 * self.pSensor simu = self.estimate_B(pSensori) simu.store() model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, 1) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result return results.get_gt_result() def compare_noise_thread(self, choice): scale = 5 pSensori = scale * self.pSensor if choice == 1: simu = self.estimate_B(pSensori) elif choice == 0: simu = self.estimate_B_even_noise(pSensori) elif choice == 2: simu = self.estimate_B_singular_noise(pSensori) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [choice, dist, loss] def compare_3_noise(self, loop): results = [] pool = Pool() for i in range(loop): # self.calculate_process(scale) results.append( pool.apply_async(self.compare_noise_thread, args=(0, ))) results.append( pool.apply_async(self.compare_noise_thread, args=(1, ))) results.append( pool.apply_async(self.compare_noise_thread, args=(2, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['Even Noise', 'Raw Noise', 'Single Noise'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') plt.savefig('result/butterfly.jpg', dpi=900) def compare_noise_type(self, loop): results = [] pool = Pool() for i in range(loop): # self.calculate_process(scale) results.append( pool.apply_async(self.compare_noise_type_thread, args=(0, ))) results.append( pool.apply_async(self.compare_noise_type_thread, args=(1, ))) results.append( pool.apply_async(self.compare_noise_type_thread, args=(2, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['ALL Noise', 'Only Noise', 'Only Precision'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') plt.savefig('result/compare_noise_type.jpg', dpi=900) def compare_noise_type_thread(self, choice): scale = 5 pSensori = scale * self.pSensor simu = self.estimate_B(pSensori, choice) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [choice, dist, loss] def simulate(self, loop=1): results = [] pool = Pool() for scale in self.scales: # self.calculate_process(scale) # test(self, scale) for i in range(loop): # self.simulate_process(scale) results.append( pool.apply_async(self.simulate_process, args=(scale, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label='scale = {} cm'.format(int(key) * 2)) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') plt.savefig('result/compare_scale/{}.jpg'.format(name), dpi=900) def simu_readings(self, pSensor): simu = self.estimate_B(pSensor, noise_type=3) simu.store() def simu_gt_and_result(self, pSensor, route, path, name): pSensori = pSensor simu = self.estimate_B(pSensori, route=route) # simu.store() # params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( # self.M), 1e-2 * route[0, 0], 1e-2 * (route[0, 1]), 1e-2 * (route[0, # 2]), 0, 0]) model = Solver_jac(1, route[0, 0], route[0, 1], route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False gt_ang = [] rec_ang = [] results = Result_Handler(simu, 1) for i in tqdm(range(simu.result.shape[0])): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result gt_ang.append(np.array([0, 0, 1])) t1 = result['theta0'].value t2 = result['phy0'].value rec_ang.append( np.array( [np.sin(t1) * np.cos(t2), np.sin(t1) * np.sin(t2), np.cos(t1)])) [gt, route] = results.gt_and_route() gt_ang = np.stack(gt_ang) rec_ang = np.stack(rec_ang) if not os.path.exists(path): os.makedirs(path) np.savez(os.path.join(path, name), gt=gt * 1e2, result=route * 1e2, gt_ang=gt_ang, result_ang=rec_ang) def compare_layout_thread(self, index, pSensori): overall_noise = np.random.randn(3) simu = self.estimate_B(pSensori) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, 1) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [index, dist, loss] def compare_layouts(self, pSensors, loop=1): results = [] pool = Pool() for index, pSensor in enumerate(pSensors): # self.calculate_process(scale) # test(self, scale) for i in range(loop): # self.calculate_process(scale) # self.compare_layout_thread(index, pSensor) results.append( pool.apply_async(self.compare_layout_thread, args=(index, pSensor))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss # msg = ['Plane Layout(MIT)', 'Our Current Layout', 'Cube Layout'] msg = ['Best Layout', 'Current Layout'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # plt.savefig('result/compare_layout/{}.jpg'.format(name), dpi=900) plt.show() def estimate_B( self, pSensor, route=None, noise_type=0, overall_noise=None): # noise type: 0: noise+precision, 1:only noise, 2: only precision # 3:none result = [] exp = expression() if route is None: route = self.route for i in range(route.shape[0]): routei = route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = 0.8 * np.random.randn(result.shape[0]) Noise_y = 0.8 * np.random.randn(result.shape[0]) Noise_z = 1.2 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T if noise_type != 3: if noise_type != 2: result += Noise if overall_noise is not None: result += overall_noise # add sensor resolution if noise_type != 1: result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(
np.power(result - Noise, 2)
numpy.power
# 生成式对抗网络示例 import os import keras import numpy as np from keras import layers from keras.preprocessing import image # GAN的生成器网络:将来自潜在空间的向量转换为一张候选图像 latent_dim = 32 height = 32 width = 32 channels = 3 generator_input = keras.Input(shape=(latent_dim, )) # 将输入转换为大小为16x16的128个通道的特征图 x = layers.Dense(128 * 16 * 16)(generator_input) x = layers.LeakyReLU()(x) x = layers.Reshape((16, 16, 128))(x) x = layers.Conv2D(256, 5, padding='same')(x) x = layers.LeakyReLU()(x) # 上采样为32x32 x = layers.Conv2DTranspose(256, 4, strides=2, padding='same')(x) x = layers.LeakyReLU()(x) x = layers.Conv2D(256, 5, padding='same')(x) x = layers.LeakyReLU()(x) x = layers.Conv2D(256, 5, padding='same')(x) x = layers.LeakyReLU()(x) # 生成一个大小为32x32的单通道特征图 x = layers.Conv2D(channels, 7, activation='tanh', padding='same')(x) generator = keras.models.Model(generator_input, x) #实例化模型 generator.summary() # GAN的判别器网络:接受一张候选图像,判断是生成的图像或真是图像 discriminator_input = layers.Input(shape=(height, width, channels)) x = layers.Conv2D(128, 3)(discriminator_input) x = layers.LeakyReLU()(x) x = layers.Conv2D(128, 4, strides=2)(x) x = layers.LeakyReLU()(x) x = layers.Conv2D(128, 4, strides=2)(x) x = layers.LeakyReLU()(x) x = layers.Conv2D(128, 4, strides=2)(x) x = layers.LeakyReLU()(x) x = layers.Flatten()(x) x = layers.Dropout(0.4)(x) # 判别器添加一个dropout层,重要技巧 x = layers.Dense(1, activation='sigmoid')(x) # 分类曾 discriminator = keras.models.Model(discriminator_input, x) discriminator.summary() # 优化器使用梯度裁剪,限制梯度值的范围 discriminator_optimizer = keras.optimizers.RMSprop(lr=0.0008, clipvalue=1.0, decay=1e-8) discriminator.compile(optimizer=discriminator_optimizer, loss='binary_crossentropy') # 对抗网络:将生成器和判别器连接在一起 # 设置判别器权重为不可训练,不然在训练过程中签字改变,预测结果会始终为真 discriminator.trainable = False gan_input = keras.Input(shape=(latent_dim, )) gan_output = discriminator(generator(gan_input)) # 连接生成器和判别器 gan = keras.models.Model(gan_input, gan_output) gan_optimizer = keras.optimizers.RMSprop(lr=0.0004, clipvalue=1.0, decay=1e-8) gan.compile(optimizer=gan_optimizer, loss='binary_crossentropy') # 训练GAN (x_train, y_train), (_, _) = keras.datasets.cifar10.load_data() # 加载数据 x_train = x_train[y_train.flatten() == 6] # 只选择数据集中的青蛙图像 x_train = x_train.reshape((x_train.shape[0], ) + (height, width, channels)).astype('float32') / 255. iterations = 10000 batch_size = 20 save_dir = 'your_dir' # 生成图像保存路径 start = 0 for step in range(iterations): # 在潜在空间随机采样 random_latent_vectors = np.random.normal(size=(batch_size, latent_dim)) # 随机采样点通过生成器得到虚假图像 generated_images = generator.predict(random_latent_vectors) stop = start + batch_size real_images = x_train[start:stop] # 将虚假图像和真是图像合在一起 combined_images = np.concatenate([generated_images, real_images]) # 合并标签区分真实和虚假图像 labels = np.concatenate( [np.ones((batch_size, 1)), np.zeros((batch_size, 1))]) # 想标签添加噪声,重要技巧 labels += 0.05 *
np.random.random(labels.shape)
numpy.random.random
import re import warnings from datetime import datetime, timedelta from unittest.mock import patch import numpy as np import pandas as pd import pytest from pandas.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) from woodwork.logical_types import Double, Integer from rayml.exceptions import ( MethodPropertyNotFoundError, MissingComponentError, ParameterNotUsedWarning, ) from rayml.pipelines import ComponentGraph from rayml.pipelines.components import ( DateTimeFeaturizer, DropRowsTransformer, ElasticNetClassifier, Estimator, Imputer, LogisticRegressionClassifier, NaturalLanguageFeaturizer, OneHotEncoder, RandomForestClassifier, SelectColumns, StandardScaler, TargetImputer, Transformer, Undersampler, ) from rayml.problem_types import is_classification from rayml.utils import infer_feature_types class DummyTransformer(Transformer): name = "Dummy Transformer" def __init__(self, parameters=None, random_seed=0): parameters = parameters or {} super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed ) def fit(self, X, y): return self def transform(self, X, y=None): return X class TransformerA(DummyTransformer): """copy class""" class TransformerB(DummyTransformer): """copy class""" class TransformerC(DummyTransformer): """copy class""" class DummyEstimator(Estimator): name = "Dummy Estimator" model_family = None supported_problem_types = None def __init__(self, parameters=None, random_seed=0): parameters = parameters or {} super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed ) def fit(self, X, y): return self class EstimatorA(DummyEstimator): """copy class""" class EstimatorB(DummyEstimator): """copy class""" class EstimatorC(DummyEstimator): """copy class""" @pytest.fixture def dummy_components(): return TransformerA, TransformerB, TransformerC, EstimatorA, EstimatorB, EstimatorC def test_init(example_graph): comp_graph = ComponentGraph() assert len(comp_graph.component_dict) == 0 graph = example_graph comp_graph = ComponentGraph(graph) assert len(comp_graph.component_dict) == 6 expected_order = [ "Imputer", "OneHot_ElasticNet", "Elastic Net", "OneHot_RandomForest", "Random Forest", "Logistic Regression Classifier", ] assert comp_graph.compute_order == expected_order def test_init_str_components(): graph = { "Imputer": ["Imputer", "X", "y"], "OneHot_RandomForest": ["One Hot Encoder", "Imputer.x", "y"], "OneHot_ElasticNet": ["One Hot Encoder", "Imputer.x", "y"], "Random Forest": ["Random Forest Classifier", "OneHot_RandomForest.x", "y"], "Elastic Net": ["Elastic Net Classifier", "OneHot_ElasticNet.x", "y"], "Logistic Regression Classifier": [ "Logistic Regression Classifier", "Random Forest.x", "Elastic Net.x", "y", ], } comp_graph = ComponentGraph(graph) assert len(comp_graph.component_dict) == 6 expected_order = [ "Imputer", "OneHot_ElasticNet", "Elastic Net", "OneHot_RandomForest", "Random Forest", "Logistic Regression Classifier", ] assert comp_graph.compute_order == expected_order def test_init_instantiated(): graph = { "Imputer": [ Imputer(numeric_impute_strategy="constant", numeric_fill_value=0), "X", "y", ] } component_graph = ComponentGraph(graph) component_graph.instantiate( {"Imputer": {"numeric_fill_value": 10, "categorical_fill_value": "Fill"}} ) cg_imputer = component_graph.get_component("Imputer") assert graph["Imputer"][0] == cg_imputer assert cg_imputer.parameters["numeric_fill_value"] == 0 assert cg_imputer.parameters["categorical_fill_value"] is None def test_invalid_init(): invalid_graph = {"Imputer": [Imputer, "X", "y"], "OHE": OneHotEncoder} with pytest.raises( ValueError, match="All component information should be passed in as a list" ): ComponentGraph(invalid_graph) graph = { "Imputer": [ None, "X", "y", ] } with pytest.raises( ValueError, match="may only contain str or ComponentBase subclasses" ): ComponentGraph(graph) graph = { "Fake": ["Fake Component", "X", "y"], "Estimator": [ElasticNetClassifier, "Fake.x", "y"], } with pytest.raises(MissingComponentError): ComponentGraph(graph) def test_init_bad_graphs(): graph_with_cycle = { "Imputer": [Imputer, "X", "y"], "OHE": [OneHotEncoder, "Imputer.x", "Estimator.x", "y"], "Estimator": [RandomForestClassifier, "OHE.x", "y"], } with pytest.raises(ValueError, match="given graph contains a cycle"): ComponentGraph(graph_with_cycle) graph_with_more_than_one_final_component = { "Imputer": ["Imputer", "X", "y"], "OneHot_RandomForest": ["One Hot Encoder", "Imputer.x", "y"], "OneHot_ElasticNet": ["One Hot Encoder", "Imputer.x", "y"], "Random Forest": ["Random Forest Classifier", "OneHot_RandomForest.x", "y"], "Elastic Net": ["Elastic Net Classifier", "X", "y"], "Logistic Regression Classifier": [ "Logistic Regression Classifier", "Random Forest.x", "Elastic Net.x", "y", ], } with pytest.raises(ValueError, match="graph has more than one final"): ComponentGraph(graph_with_more_than_one_final_component) graph_with_unconnected_imputer = { "Imputer": ["Imputer", "X", "y"], "DateTime": ["DateTime Featurizer", "X", "y"], "Logistic Regression Classifier": [ "Logistic Regression Classifier", "DateTime.x", "y", ], } with pytest.raises(ValueError, match="The given graph is not completely connected"): ComponentGraph(graph_with_unconnected_imputer) def test_order_x_and_y(): graph = { "Imputer": [Imputer, "X", "y"], "OHE": [OneHotEncoder, "Imputer.x", "y"], "Random Forest": [RandomForestClassifier, "OHE.x", "y"], } component_graph = ComponentGraph(graph).instantiate() assert component_graph.compute_order == ["Imputer", "OHE", "Random Forest"] def test_list_raises_error(): component_list = ["Imputer", "One Hot Encoder", RandomForestClassifier] with pytest.raises( ValueError, match="component_dict must be a dictionary which specifies the components and edges between components", ): ComponentGraph(component_list) def test_instantiate_with_parameters(example_graph): graph = example_graph component_graph = ComponentGraph(graph) assert not isinstance(component_graph.get_component("Imputer"), Imputer) assert not isinstance( component_graph.get_component("Elastic Net"), ElasticNetClassifier ) parameters = { "OneHot_RandomForest": {"top_n": 3}, "OneHot_ElasticNet": {"top_n": 5}, "Elastic Net": {"max_iter": 100}, } component_graph.instantiate(parameters) expected_order = [ "Imputer", "OneHot_ElasticNet", "Elastic Net", "OneHot_RandomForest", "Random Forest", "Logistic Regression Classifier", ] assert component_graph.compute_order == expected_order assert isinstance(component_graph.get_component("Imputer"), Imputer) assert isinstance( component_graph.get_component("Random Forest"), RandomForestClassifier ) assert isinstance( component_graph.get_component("Logistic Regression Classifier"), LogisticRegressionClassifier, ) assert component_graph.get_component("OneHot_RandomForest").parameters["top_n"] == 3 assert component_graph.get_component("OneHot_ElasticNet").parameters["top_n"] == 5 assert component_graph.get_component("Elastic Net").parameters["max_iter"] == 100 @pytest.mark.parametrize("parameters", [None, {}]) def test_instantiate_without_parameters(parameters, example_graph): graph = example_graph component_graph = ComponentGraph(graph) if parameters is not None: component_graph.instantiate(parameters) else: component_graph.instantiate() assert ( component_graph.get_component("OneHot_RandomForest").parameters["top_n"] == 10 ) assert component_graph.get_component("OneHot_ElasticNet").parameters["top_n"] == 10 assert component_graph.get_component( "OneHot_RandomForest" ) is not component_graph.get_component("OneHot_ElasticNet") expected_order = [ "Imputer", "OneHot_ElasticNet", "Elastic Net", "OneHot_RandomForest", "Random Forest", "Logistic Regression Classifier", ] assert component_graph.compute_order == expected_order def test_reinstantiate(example_graph): component_graph = ComponentGraph(example_graph) component_graph.instantiate() with pytest.raises(ValueError, match="Cannot reinstantiate a component graph"): component_graph.instantiate({"OneHot": {"top_n": 7}}) def test_bad_instantiate_can_reinstantiate(example_graph): component_graph = ComponentGraph(example_graph) with pytest.raises(ValueError, match="Error received when instantiating component"): component_graph.instantiate( parameters={"Elastic Net": {"max_iter": 100, "fake_param": None}} ) component_graph.instantiate({"Elastic Net": {"max_iter": 22}}) assert component_graph.get_component("Elastic Net").parameters["max_iter"] == 22 def test_get_component(example_graph): graph = example_graph component_graph = ComponentGraph(graph) assert component_graph.get_component("OneHot_ElasticNet") == OneHotEncoder assert ( component_graph.get_component("Logistic Regression Classifier") == LogisticRegressionClassifier ) with pytest.raises(ValueError, match="not in the graph"): component_graph.get_component("Fake Component") component_graph.instantiate( { "OneHot_RandomForest": {"top_n": 3}, "Random Forest": {"max_depth": 4, "n_estimators": 50}, } ) assert component_graph.get_component("OneHot_ElasticNet") == OneHotEncoder() assert component_graph.get_component("OneHot_RandomForest") == OneHotEncoder( top_n=3 ) assert component_graph.get_component("Random Forest") == RandomForestClassifier( n_estimators=50, max_depth=4 ) def test_get_estimators(example_graph): component_graph = ComponentGraph(example_graph) with pytest.raises(ValueError, match="Cannot get estimators until"): component_graph.get_estimators() component_graph.instantiate() assert component_graph.get_estimators() == [ RandomForestClassifier(), ElasticNetClassifier(), LogisticRegressionClassifier(), ] component_graph = ComponentGraph({"Imputer": ["Imputer", "X", "y"]}) component_graph.instantiate() assert component_graph.get_estimators() == [] def test_parents(example_graph): graph = example_graph component_graph = ComponentGraph(graph) assert component_graph.get_inputs("Imputer") == ["X", "y"] assert component_graph.get_inputs("OneHot_RandomForest") == ["Imputer.x", "y"] assert component_graph.get_inputs("OneHot_ElasticNet") == ["Imputer.x", "y"] assert component_graph.get_inputs("Random Forest") == ["OneHot_RandomForest.x", "y"] assert component_graph.get_inputs("Elastic Net") == ["OneHot_ElasticNet.x", "y"] assert component_graph.get_inputs("Logistic Regression Classifier") == [ "Random Forest.x", "Elastic Net.x", "y", ] with pytest.raises(ValueError, match="not in the graph"): component_graph.get_inputs("Fake component") component_graph.instantiate() assert component_graph.get_inputs("Imputer") == ["X", "y"] assert component_graph.get_inputs("OneHot_RandomForest") == ["Imputer.x", "y"] assert component_graph.get_inputs("OneHot_ElasticNet") == ["Imputer.x", "y"] assert component_graph.get_inputs("Random Forest") == ["OneHot_RandomForest.x", "y"] assert component_graph.get_inputs("Elastic Net") == ["OneHot_ElasticNet.x", "y"] assert component_graph.get_inputs("Logistic Regression Classifier") == [ "Random Forest.x", "Elastic Net.x", "y", ] with pytest.raises(ValueError, match="not in the graph"): component_graph.get_inputs("Fake component") def test_get_last_component(example_graph): component_graph = ComponentGraph() with pytest.raises( ValueError, match="Cannot get last component from edgeless graph" ): component_graph.get_last_component() component_graph = ComponentGraph(example_graph) assert component_graph.get_last_component() == LogisticRegressionClassifier component_graph.instantiate() assert component_graph.get_last_component() == LogisticRegressionClassifier() component_graph = ComponentGraph({"Imputer": [Imputer, "X", "y"]}) assert component_graph.get_last_component() == Imputer component_graph = ComponentGraph( {"Imputer": [Imputer, "X", "y"], "OneHot": [OneHotEncoder, "Imputer.x", "y"]} ) assert component_graph.get_last_component() == OneHotEncoder @patch("rayml.pipelines.components.Transformer.fit_transform") @patch("rayml.pipelines.components.Estimator.fit") @patch("rayml.pipelines.components.Estimator.predict_proba") def test_fit_component_graph( mock_predict_proba, mock_fit, mock_fit_transform, example_graph, X_y_binary ): X, y = X_y_binary mock_fit_transform.return_value = pd.DataFrame(X) mock_predict_proba.return_value = pd.DataFrame(y) mock_predict_proba.return_value.ww.init() component_graph = ComponentGraph(example_graph).instantiate() component_graph.fit(X, y) assert mock_fit_transform.call_count == 3 assert mock_fit.call_count == 3 assert mock_predict_proba.call_count == 2 @patch("rayml.pipelines.components.TargetImputer.fit_transform") @patch("rayml.pipelines.components.OneHotEncoder.fit_transform") def test_fit_correct_inputs( mock_ohe_fit_transform, mock_imputer_fit_transform, X_y_binary ): X, y = X_y_binary X = pd.DataFrame(X) y = pd.Series(y) graph = { "Target Imputer": [TargetImputer, "X", "y"], "OHE": [OneHotEncoder, "Target Imputer.x", "Target Imputer.y"], } expected_x = pd.DataFrame(index=X.index, columns=X.columns).fillna(1.0) expected_x.ww.init() expected_y = pd.Series(index=y.index).fillna(0) mock_imputer_fit_transform.return_value = tuple((expected_x, expected_y)) mock_ohe_fit_transform.return_value = expected_x component_graph = ComponentGraph(graph).instantiate() component_graph.fit(X, y) assert_frame_equal(expected_x, mock_ohe_fit_transform.call_args[0][0]) assert_series_equal(expected_y, mock_ohe_fit_transform.call_args[0][1]) @patch("rayml.pipelines.components.Transformer.fit_transform") @patch("rayml.pipelines.components.Estimator.fit") @patch("rayml.pipelines.components.Estimator.predict_proba") def test_component_graph_fit_and_transform_all_but_final( mock_predict_proba, mock_fit, mock_fit_transform, example_graph, X_y_binary ): X, y = X_y_binary component_graph = ComponentGraph(example_graph) component_graph.instantiate() mock_X_t = pd.DataFrame(np.ones(pd.DataFrame(X).shape)) mock_fit_transform.return_value = mock_X_t mock_fit.return_value = Estimator mock_predict_proba.return_value = pd.DataFrame(y) mock_predict_proba.return_value.ww.init() component_graph.fit_and_transform_all_but_final(X, y) assert mock_fit_transform.call_count == 3 assert mock_fit.call_count == 2 assert mock_predict_proba.call_count == 2 @patch("rayml.pipelines.components.Estimator.fit") @patch("rayml.pipelines.components.Estimator.predict_proba") @patch("rayml.pipelines.components.Estimator.predict") def test_predict(mock_predict, mock_predict_proba, mock_fit, example_graph, X_y_binary): X, y = X_y_binary mock_predict_proba.return_value = pd.DataFrame(y) mock_predict_proba.return_value.ww.init() mock_predict.return_value = pd.Series(y) component_graph = ComponentGraph(example_graph).instantiate() component_graph.fit(X, y) component_graph.predict(X) assert ( mock_predict_proba.call_count == 4 ) # Called twice when fitting pipeline, twice when predicting assert mock_predict.call_count == 1 # Called once during predict assert mock_fit.call_count == 3 # Only called during fit, not predict @patch("rayml.pipelines.components.Estimator.fit") @patch("rayml.pipelines.components.Estimator.predict_proba") @patch("rayml.pipelines.components.Estimator.predict") def test_predict_multiclass( mock_predict, mock_predict_proba, mock_fit, example_graph, X_y_multi ): X, y = X_y_multi mock_predict_proba.return_value = pd.DataFrame( { 0: np.full(X.shape[0], 0.33), 1: np.full(X.shape[0], 0.33), 2: np.full(X.shape[0], 0.33), } ) mock_predict_proba.return_value.ww.init() mock_predict.return_value = pd.Series(y) component_graph = ComponentGraph(example_graph).instantiate() component_graph.fit(X, y) final_estimator_input = component_graph.transform_all_but_final(X, y) assert final_estimator_input.columns.to_list() == [ "Col 0 Random Forest.x", "Col 1 Random Forest.x", "Col 2 Random Forest.x", "Col 0 Elastic Net.x", "Col 1 Elastic Net.x", "Col 2 Elastic Net.x", ] for col in final_estimator_input: assert np.array_equal( final_estimator_input[col].to_numpy(), np.full(X.shape[0], 0.33) ) component_graph.predict(X) assert ( mock_predict_proba.call_count == 6 ) # Called twice when fitting pipeline, twice to compute final features, and twice when predicting assert mock_predict.call_count == 1 # Called once during predict assert mock_fit.call_count == 3 # Only called during fit, not predict @patch("rayml.pipelines.components.Estimator.fit") @patch("rayml.pipelines.components.Estimator.predict_proba") @patch("rayml.pipelines.components.Estimator.predict") def test_predict_regression( mock_predict, mock_predict_proba, mock_fit, example_regression_graph, X_y_multi ): X, y = X_y_multi mock_predict.return_value = pd.Series(y) mock_predict_proba.side_effect = MethodPropertyNotFoundError component_graph = ComponentGraph(example_regression_graph).instantiate() component_graph.fit(X, y) final_estimator_input = component_graph.transform_all_but_final(X, y) assert final_estimator_input.columns.to_list() == [ "Random Forest.x", "Elastic Net.x", ] component_graph.predict(X) assert ( mock_predict_proba.call_count == 6 ) # Called twice when fitting pipeline, twice to compute final features, and twice when predicting assert ( mock_predict.call_count == 7 ) # Called because `predict_proba` does not exist for regresssions assert mock_fit.call_count == 3 # Only called during fit, not predict @patch("rayml.pipelines.components.Estimator.fit") @patch("rayml.pipelines.components.Estimator.predict_proba") @patch("rayml.pipelines.components.Estimator.predict") def test_predict_repeat_estimator( mock_predict, mock_predict_proba, mock_fit, X_y_binary ): X, y = X_y_binary mock_predict_proba.return_value = pd.DataFrame(y) mock_predict_proba.return_value.ww.init() mock_predict.return_value = pd.Series(y) graph = { "Imputer": [Imputer, "X", "y"], "OneHot_RandomForest": [OneHotEncoder, "Imputer.x", "y"], "OneHot_Logistic": [OneHotEncoder, "Imputer.x", "y"], "Random Forest": [RandomForestClassifier, "OneHot_RandomForest.x", "y"], "Logistic Regression Classifier": [ LogisticRegressionClassifier, "OneHot_Logistic.x", "y", ], "Final Estimator": [ LogisticRegressionClassifier, "Random Forest.x", "Logistic Regression Classifier.x", "y", ], } component_graph = ComponentGraph(graph) component_graph.instantiate() component_graph.fit(X, y) assert ( not component_graph.get_component( "Logistic Regression Classifier" )._component_obj == component_graph.get_component("Final Estimator")._component_obj ) component_graph.predict(X) assert mock_predict_proba.call_count == 4 assert mock_predict.call_count == 1 assert mock_fit.call_count == 3 @patch("rayml.pipelines.components.Imputer.transform") @patch("rayml.pipelines.components.OneHotEncoder.transform") @patch("rayml.pipelines.components.RandomForestClassifier.predict_proba") @patch("rayml.pipelines.components.ElasticNetClassifier.predict_proba") def test_transform_all_but_final( mock_en_predict_proba, mock_rf_predict_proba, mock_ohe, mock_imputer, example_graph, X_y_binary, ): X, y = X_y_binary mock_imputer.return_value = pd.DataFrame(X) mock_ohe.return_value = pd.DataFrame(X) mock_en_predict_proba.return_value = pd.DataFrame( ({0: np.zeros(X.shape[0]), 1: np.ones(X.shape[0])}) ) mock_en_predict_proba.return_value.ww.init() mock_rf_predict_proba.return_value = pd.DataFrame( ({0: np.ones(X.shape[0]), 1: np.zeros(X.shape[0])}) ) mock_rf_predict_proba.return_value.ww.init() X_expected = pd.DataFrame( { "Col 1 Random Forest.x": np.zeros(X.shape[0]), "Col 1 Elastic Net.x": np.ones(X.shape[0]), } ) component_graph = ComponentGraph(example_graph).instantiate() component_graph.fit(X, y) X_t = component_graph.transform_all_but_final(X) assert_frame_equal(X_expected, X_t) assert mock_imputer.call_count == 2 assert mock_ohe.call_count == 4 @patch(f"{__name__}.DummyTransformer.transform") def test_transform_all_but_final_single_component(mock_transform, X_y_binary): X, y = X_y_binary X = pd.DataFrame(X) mock_transform.return_value = X component_graph = ComponentGraph( {"Dummy Component": [DummyTransformer, "X", "y"]} ).instantiate() component_graph.fit(X, y) X_t = component_graph.transform_all_but_final(X) assert_frame_equal(X, X_t) @patch("rayml.pipelines.components.Imputer.fit_transform") def test_fit_y_parent(mock_fit_transform, X_y_binary): X, y = X_y_binary graph = { "Imputer": [Imputer, "X", "y"], "OHE": [OneHotEncoder, "Imputer.x", "y"], "Random Forest": [RandomForestClassifier, "OHE.x", "y"], } component_graph = ComponentGraph(graph).instantiate() mock_fit_transform.return_value = tuple((pd.DataFrame(X), pd.Series(y))) component_graph.fit(X, y) mock_fit_transform.assert_called_once() def test_predict_empty_graph(X_y_binary): X, y = X_y_binary X = pd.DataFrame(X) component_graph = ComponentGraph() component_graph.instantiate() component_graph.fit(X, y) X_t = component_graph.transform(X, y) assert_frame_equal(X, X_t) X_pred = component_graph.predict(X) assert_frame_equal(X, X_pred) def test_no_instantiate_before_fit(X_y_binary): X, y = X_y_binary graph = { "Imputer": [Imputer, "X", "y"], "OHE": [OneHotEncoder, "Imputer.x", "y"], "Estimator": [RandomForestClassifier, "OHE.x", "y"], } component_graph = ComponentGraph(graph) with pytest.raises( ValueError, match="All components must be instantiated before fitting or predicting", ): component_graph.fit(X, y) def test_multiple_y_parents(): graph = { "Imputer": [Imputer, "X", "y"], "TargetImputer": [Imputer, "Imputer.x", "y"], "Estimator": [RandomForestClassifier, "Imputer.x", "y", "TargetImputer.y"], } with pytest.raises(ValueError, match="All components must have exactly one target"): ComponentGraph(graph) def test_component_graph_order(example_graph): component_graph = ComponentGraph(example_graph) expected_order = [ "Imputer", "OneHot_ElasticNet", "Elastic Net", "OneHot_RandomForest", "Random Forest", "Logistic Regression Classifier", ] assert expected_order == component_graph.compute_order component_graph = ComponentGraph({"Imputer": [Imputer, "X", "y"]}) expected_order = ["Imputer"] assert expected_order == component_graph.compute_order @pytest.mark.parametrize( "index", [ list(range(-5, 0)), list(range(100, 105)), [f"row_{i}" for i in range(5)], pd.date_range("2020-09-08", periods=5), ], ) @pytest.mark.parametrize("with_estimator_last_component", [True, False]) def test_component_graph_transform_and_predict_with_custom_index( index, with_estimator_last_component, example_graph, example_graph_with_transformer_last_component, ): X = pd.DataFrame( {"categories": [f"cat_{i}" for i in range(5)], "numbers": np.arange(5)}, index=index, ) y = pd.Series([1, 2, 1, 2, 1], index=index) X.ww.init(logical_types={"categories": "categorical"}) graph_to_use = ( example_graph if with_estimator_last_component else example_graph_with_transformer_last_component ) component_graph = ComponentGraph(graph_to_use) component_graph.instantiate() component_graph.fit(X, y) if with_estimator_last_component: predictions = component_graph.predict(X) assert_index_equal(predictions.index, X.index) assert not predictions.isna().any(axis=None) else: X_t = component_graph.transform(X) assert_index_equal(X_t.index, X.index) assert not X_t.isna().any(axis=None) y_in = pd.Series([0, 1, 0, 1, 0], index=index) y_inv = component_graph.inverse_transform(y_in) assert_index_equal(y_inv.index, y.index) assert not y_inv.isna().any(axis=None) @patch(f"{__name__}.EstimatorC.predict") @patch(f"{__name__}.EstimatorB.predict") @patch(f"{__name__}.EstimatorA.predict") @patch(f"{__name__}.TransformerC.transform") @patch(f"{__name__}.TransformerB.transform") @patch(f"{__name__}.TransformerA.transform") def test_component_graph_evaluation_plumbing( mock_transform_a, mock_transform_b, mock_transform_c, mock_predict_a, mock_predict_b, mock_predict_c, dummy_components, ): ( TransformerA, TransformerB, TransformerC, EstimatorA, EstimatorB, EstimatorC, ) = dummy_components mock_transform_a.return_value = pd.DataFrame( {"feature trans": [1, 0, 0, 0, 0, 0], "feature a": np.ones(6)} ) mock_transform_b.return_value = pd.DataFrame({"feature b": np.ones(6) * 2}) mock_transform_c.return_value = pd.DataFrame({"feature c": np.ones(6) * 3}) mock_predict_a.return_value = pd.Series([0, 0, 0, 1, 0, 0]) mock_predict_b.return_value = pd.Series([0, 0, 0, 0, 1, 0]) mock_predict_c.return_value = pd.Series([0, 0, 0, 0, 0, 1]) graph = { "transformer a": [TransformerA, "X", "y"], "transformer b": [TransformerB, "transformer a.x", "y"], "transformer c": [TransformerC, "transformer a.x", "transformer b.x", "y"], "estimator a": [EstimatorA, "X", "y"], "estimator b": [EstimatorB, "transformer a.x", "y"], "estimator c": [ EstimatorC, "transformer a.x", "estimator a.x", "transformer b.x", "estimator b.x", "transformer c.x", "y", ], } component_graph = ComponentGraph(graph) component_graph.instantiate() X = pd.DataFrame({"feature1": np.zeros(6), "feature2": np.zeros(6)}) y = pd.Series(
np.zeros(6)
numpy.zeros
import numpy as np import argparse from base_module import Posenet, Camnet, discriminator, Encoder from mmdgan_mh_enc import Pose_mmdgan_enc import os import random import tensorflow as tf import scipy.io as sio import logging, logging.config import sys from eval_functions import err_3dpe import ops parse = argparse.ArgumentParser() parse.add_argument("--batchsize", help= "the batch size used in training", default=128, type = int) parse.add_argument("--epochs", help="number of epochs during training", default=50, type = int) parse.add_argument("--latent_dim", help="dimension of latent space", default=1024, type = int) parse.add_argument("--latent_dim_pose", help="dimension for pose in the latent space of discriminator", default=128, type=int) parse.add_argument("--latent_dim_kcs", help="dimension for kcs in the latent space of discriminator", default=1024, type=int) parse.add_argument("--d_output_dim", help="dimension for output of discriminator", default=8, type=int) parse.add_argument("--lr", help="learning rate", default=1e-4, type=float) parse.add_argument("--architecture", help="which architeture to use[mmdgan, mmdgan_enc]", default='mmdgan_enc', type=str) parse.add_argument("--beta1", help="beta1 for adamoptimizor", default=0.5, type=float) parse.add_argument("--diter", help="the number of discriminator updates oer generator updates", default=1, type=int) parse.add_argument("--kernel", help="kernel type used in mmd[dot, mix_rbf, mix_rq]", default='mix_rq', type=str) parse.add_argument("--repro_weight", help="weight of reprojection loss", default=10.0, type=float) parse.add_argument("--cam_weight", help="weight of camera loss", default=10.0, type=float) parse.add_argument("--gp_weight", help="weight of dot kernel in mix kernel", default=0.1, type=float) parse.add_argument("--reg_weight", help="weight for regularizer", default=7.5, type=float) parse.add_argument("--dot_weight", help="weight of dot kernel in mix kernel", default=10.0, type=float) parse.add_argument("--lr_decay", help="learning rate decay rate", default=0.94, type=float) parse.add_argument("--enc_weight", help="weight of encoder", default=10.0, type=float) parse.add_argument("--sampling", help="set to true if generate samples", default=True, type=bool) parse.add_argument("--checkpoint", help="which model to load", default=0, type=int) # 931070 for gt data # 971070 for shft parse.add_argument("--num_samples", help="number of hypotheses", default=10, type=int) parse.add_argument("--datatype", help="datatype used for training [GT, SHFT, GTMJ]", default='GT', type=str) parse.add_argument("--load_path", help="specify the path to load model", default='./models', type=str) args = parse.parse_args() actions = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Photo', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Waiting', 'WalkDog', 'WalkTogether', 'Walking'] pose3d_dim = 16 * 3 pose2d_dim = 16 * 2 cam_dim = 6 lr = args.lr model_name = '{}_regweight{}_encweight{}_2D{}'.format(args.architecture, args.reg_weight, args.enc_weight, args.datatype) log_dir = 'logs_eval' if not os.path.exists(log_dir): os.makedirs(log_dir) logging.config.fileConfig('./logging.conf') logger = logging.getLogger() fileHandler = logging.FileHandler("{0}/log.txt".format(log_dir)) logger.addHandler(fileHandler) logger.info("Logs will be written to %s" % log_dir) def log_arguments(): logger.info('Command: %s', ' '.join(sys.argv)) s = '\n'.join([' {}: {}'.format(arg, getattr(args, arg)) for arg in vars(args)]) s = 'Arguments:\n' + s logger.info(s) log_arguments() posenet = Posenet(args.latent_dim, pose3d_dim) camnet = Camnet(args.latent_dim, cam_dim) disc = discriminator(args.latent_dim_pose, args.latent_dim_kcs, args.d_output_dim) encoder = Encoder(args.latent_dim, args.latent_dim) mmd_posenet = Pose_mmdgan_enc(posenet, camnet, disc, encoder, args.latent_dim, args.batchsize, log_dir, args.epochs, pose2d_dim, pose3d_dim, args.kernel, args.repro_weight, args.cam_weight, args.gp_weight, args.reg_weight, args.dot_weight, args.enc_weight) mmd_posenet.build_model() config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: batchsize = args.batchsize load_dir = os.path.join(args.load_path, model_name) ckpt = tf.train.get_checkpoint_state(load_dir, latest_filename="checkpoint") if args.checkpoint > 0: ckpt_name = os.path.join(os.path.join(load_dir, "checkpoint-{}".format(args.checkpoint))) else: ckpt_name = ckpt.model_checkpoint_path mmd_posenet.saver.restore(sess, ckpt_name) print('Loading model {}'.format(os.path.basename(ckpt_name))) path = 'new_data/test/2d{}_3dTEM'.format(args.datatype) path_cam = 'new_data/test/2d{}_3dCAM'.format(args.datatype) logger.info('{0:>15} {1:>30} {2:>30}'.format('Action', 'Protocol1', 'Protocol2')) val_best_all = [] valcam_best_all = [] val_zc_all = [] valcam_zc_all = [] for action in actions: data_2d_3d_test = sio.loadmat('{}/{}_2d{}_3d_test.mat'.format(path, action, args.datatype)) data_cam = sio.loadmat('{}/{}_2d{}_3d_test.mat'.format(path_cam, action, args.datatype)) poses2d_eval = data_2d_3d_test['poses_2d'][::64, :] poses3d_eval = data_2d_3d_test['poses_3d'][::64, :] / 1000 poses_3d_cam = data_cam['poses_3d'][::64, :] / 1000 poses_zc = [] posescam_zc = [] # generate results under zero code setting for eval in range(poses2d_eval.shape[0] // batchsize): noise_zc = np.zeros([batchsize, args.latent_dim]) poses, cam = mmd_posenet.inference(sess, poses2d_eval[eval * batchsize: (eval + 1) * batchsize], poses3d_eval[eval * batchsize: (eval + 1) * batchsize], noise_zc, lr) poses_reshape = np.reshape(poses, [poses.shape[0], 3, 16]) k = np.reshape(cam, [cam.shape[0], 2, 3]) R = ops.compute_R(k) # recover rotation matrix from camera matrix poses_cam = np.matmul(R, poses_reshape) # transfer pose from the template frame to the camera frame poses_cam_reshape = np.reshape(poses_cam, [poses_cam.shape[0], -1]) posescam_zc.append(poses_cam_reshape) poses_zc.append(poses) poses_zc = np.vstack(poses_zc) posescam_zc = np.vstack(posescam_zc) # compute the error under zero code setting val_zc = 0.0 valcam_zc = 0.0 for p in range(poses_zc.shape[0]): err_zc = 1000 * err_3dpe(poses3d_eval[p:p + 1, :], poses_zc[p:p + 1, :], True) errcam_zc = 1000 * err_3dpe(poses_3d_cam[p:p + 1, :], 1.1 * posescam_zc[p:p + 1, :], False) # scale the output according to the ratio between poses in camera frame and poses in template frame in the training set val_zc = val_zc + err_zc valcam_zc = valcam_zc + errcam_zc val_zc_all.append(err_zc) valcam_zc_all.append(errcam_zc) val_zc = val_zc / poses_zc.shape[0] valcam_zc = valcam_zc/posescam_zc.shape[0] # generate results for multiple hypotheses poses_samples_all = [] posescam_samples_all = [] R_all = [] poses_repro_all = [] for eval in range(poses2d_eval.shape[0] // batchsize): poses_samples_batch = [] posescam_samples_batch = [] poses_repro_batch = [] for i in range(args.num_samples): z_test = np.random.normal(0, 1, (batchsize, args.latent_dim)) posespred, campred = mmd_posenet.inference(sess, poses2d_eval[eval * batchsize: (eval + 1) * batchsize], poses3d_eval[eval * batchsize: (eval + 1) * batchsize], z_test, lr) posespred_reshape = np.reshape(posespred, [posespred.shape[0], 3, 16]) poses_samples_batch.append(posespred) k =
np.reshape(campred, [campred.shape[0], 2, 3])
numpy.reshape
# -*- coding: utf-8 -*- """Test methods related to popluation of the proposal after training""" import numpy as np import pytest from unittest.mock import MagicMock, Mock, patch, call from nessai.proposal import FlowProposal from nessai.livepoint import numpy_array_to_live_points @pytest.fixture() def z(): return np.random.randn(2, 2) @pytest.fixture() def x(z): return numpy_array_to_live_points(np.random.randn(*z.shape), ['x', 'y']) @pytest.fixture() def log_q(x): return np.random.randn(x.size) def test_log_prior_wo_reparameterisation(proposal, x): """Test the lop prior method""" log_prior = -np.ones(x.size) proposal._reparameterisation = None proposal.model = MagicMock() proposal.model.log_prior = MagicMock(return_value=log_prior) log_prior_out = FlowProposal.log_prior(proposal, x) assert np.array_equal(log_prior, log_prior_out) proposal.model.log_prior.assert_called_once_with(x) def test_log_prior_w_reparameterisation(proposal, x): """Test the lop prior method with reparameterisations""" log_prior = -np.ones(x.size) proposal._reparameterisation = MagicMock() proposal._reparameterisation.log_prior = MagicMock(return_value=log_prior) proposal.model = MagicMock() proposal.model.log_prior = MagicMock(return_value=log_prior) log_prior_out = FlowProposal.log_prior(proposal, x) assert np.array_equal(log_prior_out, -2 * np.ones(x.size)) proposal._reparameterisation.log_prior.assert_called_once_with(x) proposal.model.log_prior.assert_called_once_with(x) def test_prime_log_prior(proposal): """Make sure the prime prior raises an error by default.""" with pytest.raises(RuntimeError) as excinfo: FlowProposal.x_prime_log_prior(proposal, 1.0) assert 'Prime prior is not implemented' in str(excinfo.value) @pytest.mark.parametrize('acceptance, scale', [(0.0, 10.0), (0.5, 2.0), (0.01, 10.0), (2.0, 1.0)]) def test_update_poolsize_scale(proposal, acceptance, scale): """Test the check the poolsize is correct adjusted based on the acceptance. """ proposal.max_poolsize_scale = 10. FlowProposal.update_poolsize_scale(proposal, acceptance) assert proposal._poolsize_scale == scale def test_compute_weights(proposal, x, log_q): """Test method for computing rejection sampling weights""" proposal.use_x_prime_prior = False proposal.log_prior = MagicMock(return_value=-np.ones(x.size)) log_w = FlowProposal.compute_weights(proposal, x, log_q) proposal.log_prior.assert_called_once_with(x) out = (-1 - log_q) out -= out.max() assert np.array_equal(log_w, out) def test_compute_weights_prime_prior(proposal, x, log_q): """Test method for computing rejection sampling weights with the prime prior. """ proposal.use_x_prime_prior = True proposal.x_prime_log_prior = MagicMock(return_value=-np.ones(x.size)) log_w = FlowProposal.compute_weights(proposal, x, log_q) proposal.x_prime_log_prior.assert_called_once_with(x) out = (-1 - log_q) out -= out.max() assert np.array_equal(log_w, out) @patch('numpy.random.rand', return_value=np.array([0.1, 0.9])) def test_rejection_sampling(proposal, z, x, log_q): """Test rejection sampling method.""" proposal.use_x_prime_prior = False proposal.truncate = False proposal.backward_pass = MagicMock(return_value=(x, log_q)) log_w = np.log(np.array([0.5, 0.5])) proposal.compute_weights = MagicMock(return_value=log_w) z_out, x_out = FlowProposal.rejection_sampling(proposal, z) assert proposal.backward_pass.called_once_with(x, True) assert proposal.compute_weights.called_once_with(x) assert x_out.size == 1 assert z_out.shape == (1, 2) assert np.array_equal(x_out[0], x[0]) assert np.array_equal(z_out[0], z[0]) def test_rejection_sampling_empty(proposal, z): """Test rejection sampling method if no valid points are produced by `backwards_pass` """ proposal.use_x_prime_prior = False proposal.truncate = False proposal.backward_pass = \ MagicMock(return_value=(np.array([]), np.array([]))) z_out, x_out = FlowProposal.rejection_sampling(proposal, z) assert x_out.size == 0 assert z_out.size == 0 @patch('numpy.random.rand', return_value=np.array([0.1])) def test_rejection_sampling_truncate(proposal, z, x): """Test rejection sampling method with truncation""" proposal.use_x_prime_prior = False proposal.truncate = True log_q = np.array([0.0, 1.0]) proposal.backward_pass = MagicMock(return_value=(x, log_q)) worst_q = 0.5 log_w = np.log(np.array([0.5])) proposal.compute_weights = MagicMock(return_value=log_w) z_out, x_out = \ FlowProposal.rejection_sampling(proposal, z, worst_q=worst_q) assert proposal.backward_pass.called_once_with(x, True) assert proposal.compute_weights.called_once_with(x) assert x_out.size == 1 assert z_out.shape == (1, 2) assert np.array_equal(x_out[0], x[1]) assert
np.array_equal(z_out[0], z[1])
numpy.array_equal
# -*- coding: utf-8 -*- # Author: XuMing <<EMAIL>> # Data: 17/10/16 # Brief: cnn网络结构 import csv import os import numpy as np import tensorflow as tf from tensorflow.contrib import learn import config import data_helpers from util import to_categorical if config.eval_all_train_data: x_raw, y = data_helpers.load_data_labels(config.data_dir) y = to_categorical(y) y = np.argmax(y, axis=1) elif config.infer_data_path: infer_datas = list(open(config.infer_data_path, "r", encoding="utf-8").readlines()) infer_datas = [s.strip() for s in infer_datas] x_raw = data_helpers.load_infer_data(infer_datas) y = [] else: x_raw = data_helpers.load_infer_data( ["do you think it is right.", "everything is off.", "i hate you .", "it is a bad film.", "good man and bad person.", "价格不是最便宜的,招商还是浦发银行是238*12=2856.00人家还可以分期的。", u"驱动还有系统要自装,还有显卡太鸡巴低了.还有装系统太麻烦了" ]) y = [1, 0, 0, 0, 1, 0, 1] # map data into vocabulary checkpoint_dir = config.checkpoint_dir vocab_path = os.path.join(checkpoint_dir, "..", "vocab") print("vocab_path:", vocab_path) vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path) x_test = np.array(list(vocab_processor.transform(x_raw))) print("\nEvluating...\n") checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) print("checkpoint file", checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto(allow_soft_placement=config.allow_soft_placement, log_device_placement=config.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # get the placeholders input_x = graph.get_operation_by_name("input_x").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # evaluate predictions = graph.get_operation_by_name("output/predictions").outputs[0] # generate batches for one epoch batches = data_helpers.batch_iter(list(x_test), config.batch_size, 1, shuffle=False) # collect the predictions all_predictions = [] for x_test_batch in batches: batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0}) all_predictions = np.concatenate([all_predictions, batch_predictions]) # print accuracy if y_test is defined if y is not None and len(y) > 0: correct_predictions = float(sum(all_predictions == y)) print("Total number of test examples: {}".format(len(y))) print("Accuracy: {:g}".format(correct_predictions / float(len(y)))) # save the evaluation to csv x_raw = [x.encode("utf-8") for x in x_raw] predictions_human_readable = np.column_stack((
np.array(x_raw)
numpy.array
import numpy as np import os from six.moves.urllib import request import unittest from chainer import testing from chainercv.evaluations import eval_detection_coco try: import pycocotools # NOQA _available = True except ImportError: _available = False data = { 'pred_bboxes': [ [[0, 0, 10, 10], [0, 0, 20, 20]]], 'pred_labels': [ [0, 0]], 'pred_scores': [ [0.8, 0.9]], 'gt_bboxes': [ [[0, 0, 10, 9]]], 'gt_labels': [ [0, 0]]} @unittest.skipUnless(_available, 'pycocotools is not installed') class TestEvalDetectionCOCOSimple(unittest.TestCase): def setUp(self): self.pred_bboxes = (np.array(bbox) for bbox in data['pred_bboxes']) self.pred_labels = (np.array(label) for label in data['pred_labels']) self.pred_scores = (np.array(score) for score in data['pred_scores']) self.gt_bboxes = (np.array(bbox) for bbox in data['gt_bboxes']) self.gt_labels = (np.array(label) for label in data['gt_labels']) def test_crowded(self): result = eval_detection_coco(self.pred_bboxes, self.pred_labels, self.pred_scores, self.gt_bboxes, self.gt_labels, gt_crowdeds=[[True]]) # When the only ground truth is crowded, nothing is evaluated. # In that case, all the results are nan. self.assertTrue( np.isnan(result['map/iou=0.50:0.95/area=small/maxDets=100'])) self.assertTrue(
np.isnan(result['map/iou=0.50:0.95/area=medium/maxDets=100'])
numpy.isnan
# -*- coding: utf-8 -*- import os import cv2 import sys import time import numpy as np S_NOW_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(S_NOW_DIR) from util__img import * class GistUtils: def __init__(self, n_resize=128, n_w=5, ln_orientation=[8, 8, 8, 8], n_block_num=4, n_prefilt=4): # vector dim(single chanle) = sum(ln_orientation) * n_block_num * n_block_num # (8+8+8+8)*(4*4) = 512 self.n_resize = n_resize self.n_boundaryExtension = self.n_resize // 4 self.n_w = n_w self.ln_orientation = ln_orientation self.n_block_num = n_block_num # MUST n_resize % n_block_num == 0 self.n_prefilt = n_prefilt self.__create_gabor() self.__get_gfmat() def get_gist_vec(self, np_img_raw, mode="rgb"): # resize np_img_resize, n_ret = img_resize(np_img_raw, (self.n_resize, self.n_resize)) if n_ret != 0: print("image resize error") return None # convert gray or rgb np_gist = None if mode.lower() == "gray": np_img_gray, n_ret = img_2gray(np_img_resize) np_prefilt_img = self.__get_pre_filt(np_img_gray) np_gist = self.__gist_main(np_prefilt_img) elif mode.lower() == "rgb" or mode.lower() == "bgr": np_img_bgr, n_ret = img_2bgr(np_img_resize) np_img_b = np_img_bgr[:,:,0] np_img_g = np_img_bgr[:,:,1] np_img_r = np_img_bgr[:,:,2] np_gist_b = self.__get_pre_filt(np_img_b) np_gist_g = self.__get_pre_filt(np_img_g) np_gist_r = self.__get_pre_filt(np_img_r) np_gist_b = self.__gist_main(np_gist_b) np_gist_g = self.__gist_main(np_gist_g) np_gist_r = self.__gist_main(np_gist_r) np_gist = np.hstack([np_gist_b, np_gist_g, np_gist_r]) else: print("input mode error") return np_gist def __get_pre_filt(self, np_img): np_log_img = np.log(np_img + 1.0) np_pad_img = np.pad(np_log_img,((self.n_w,self.n_w), (self.n_w,self.n_w)), 'symmetric') np_gf = self.np_gf np_out = np_pad_img - np.real(np.fft.ifft2(np.fft.fft2(np_pad_img) * np_gf )) np_local = np.sqrt(np.abs(np.fft.ifft2(np.fft.fft2(np_out **2) * np_gf))) np_out = np_out / (0.2 + np_local) n_size = self.n_resize + 2 * self.n_w return np_out[self.n_w: n_size - self.n_w, self.n_w : n_size - self.n_w] def __gist_main(self, np_prefilt_img): n_b = self.n_boundaryExtension np_pad_img =
np.pad(np_prefilt_img, ((n_b, n_b), (n_b, n_b)), 'symmetric')
numpy.pad
# This script is taken from https://github.com/mateuszbuda/ml-stat-util.git import numpy as np from scipy.stats import percentileofscore def score_ci( y_true, y_pred, score_fun, n_bootstraps=2000, confidence_level=0.95, seed=None, reject_one_class_samples=True, ): """ Compute confidence interval for given score function based on labels and predictions using bootstrapping. :param y_true: 1D list or array of labels. :param y_pred: 1D list or array of predictions corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param n_bootstraps: The number of bootstraps. (default: 2000) :param confidence_level: Confidence level for computing confidence interval. (default: 0.95) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Score evaluated on labels and predictions, lower confidence interval, upper confidence interval, array of bootstrapped scores. """ assert len(y_true) == len(y_pred) score = score_fun(y_true, y_pred) _, ci_lower, ci_upper, scores = score_stat_ci( y_true=y_true, y_preds=y_pred, score_fun=score_fun, n_bootstraps=n_bootstraps, confidence_level=confidence_level, seed=seed, reject_one_class_samples=reject_one_class_samples, ) return score, ci_lower, ci_upper, scores def score_stat_ci( y_true, y_preds, score_fun, stat_fun=np.mean, n_bootstraps=2000, confidence_level=0.95, seed=None, reject_one_class_samples=True, ): """ Compute confidence interval for given statistic of a score function based on labels and predictions using bootstrapping. :param y_true: 1D list or array of labels. :param y_preds: A list of lists or 2D array of predictions corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param stat_fun: Statistic for which confidence interval is computed. (e.g. np.mean) :param n_bootstraps: The number of bootstraps. (default: 2000) :param confidence_level: Confidence level for computing confidence interval. (default: 0.95) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Mean score statistic evaluated on labels and predictions, lower confidence interval, upper confidence interval, array of bootstrapped scores. """ y_true = np.array(y_true) y_preds = np.atleast_2d(y_preds) assert all(len(y_true) == len(y) for y in y_preds) np.random.seed(seed) scores = [] for i in range(n_bootstraps): readers = np.random.randint(0, len(y_preds), len(y_preds)) indices = np.random.randint(0, len(y_true), len(y_true)) if reject_one_class_samples and len(np.unique(y_true[indices])) < 2: continue reader_scores = [] for r in readers: reader_scores.append(score_fun(y_true[indices], y_preds[r][indices])) scores.append(stat_fun(reader_scores)) mean_score = np.mean(scores) sorted_scores = np.array(sorted(scores)) alpha = (1.0 - confidence_level) / 2.0 ci_lower = sorted_scores[int(round(alpha * len(sorted_scores)))] ci_upper = sorted_scores[int(round((1.0 - alpha) * len(sorted_scores)))] return mean_score, ci_lower, ci_upper, scores def pvalue( y_true, y_pred1, y_pred2, score_fun, n_bootstraps=2000, two_tailed=True, seed=None, reject_one_class_samples=True, ): """ Compute p-value for hypothesis that score function for model I predictions is higher than for model II predictions using bootstrapping. :param y_true: 1D list or array of labels. :param y_pred1: 1D list or array of predictions for model I corresponding to elements in y_true. :param y_pred2: 1D list or array of predictions for model II corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param n_bootstraps: The number of bootstraps. (default: 2000) :param two_tailed: Whether to use two-tailed test. (default: True) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Computed p-value, array of bootstrapped differences of scores. """ assert len(y_true) == len(y_pred1) assert len(y_true) == len(y_pred2) return pvalue_stat( y_true=y_true, y_preds1=y_pred1, y_preds2=y_pred2, score_fun=score_fun, n_bootstraps=n_bootstraps, two_tailed=two_tailed, seed=seed, reject_one_class_samples=reject_one_class_samples, ) def pvalue_stat( y_true, y_preds1, y_preds2, score_fun, stat_fun=np.mean, n_bootstraps=2000, two_tailed=True, seed=None, reject_one_class_samples=True, ): """ Compute p-value for hypothesis that given statistic of score function for model I predictions is higher than for model II predictions using bootstrapping. :param y_true: 1D list or array of labels. :param y_preds1: A list of lists or 2D array of predictions for model I corresponding to elements in y_true. :param y_preds2: A list of lists or 2D array of predictions for model II corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param stat_fun: Statistic for which p-value is computed. (e.g. np.mean) :param n_bootstraps: The number of bootstraps. (default: 2000) :param two_tailed: Whether to use two-tailed test. (default: True) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Computed p-value, array of bootstrapped differences of scores. """ y_true = np.array(y_true) y_preds1 = np.atleast_2d(y_preds1) y_preds2 = np.atleast_2d(y_preds2) assert all(len(y_true) == len(y) for y in y_preds1) assert all(len(y_true) == len(y) for y in y_preds2) np.random.seed(seed) z = [] for i in range(n_bootstraps): readers1 = np.random.randint(0, len(y_preds1), len(y_preds1)) readers2 = np.random.randint(0, len(y_preds2), len(y_preds2)) indices = np.random.randint(0, len(y_true), len(y_true)) if reject_one_class_samples and len(
np.unique(y_true[indices])
numpy.unique
import h5py import os, sys, glob import numpy as np import plotly.offline as offline from preprocessing import analysis_pp from analysis.general_utils import aqua_utils, saving_utils, plotly_utils, general_utils, compare_astro_utils, correlation_utils, stat_utils from scipy.stats.stats import power_divergence from scipy.stats import ttest_ind_from_stats import csv import scipy.signal as ss import math import time from pandas import DataFrame from scipy import optimize import pandas as pd import matplotlib.pyplot as plt from collections import deque class AstrocytePlotter(): def __init__(self, output_folder): self.output_folder = output_folder #For correlation plots self.filter_probs = [0.05, 0.10, 0.25] self.n_samples_corr_fake = 20 self.num_frames_splits_l = [250, 500, 1000, 3000, 6000, 12000, 24000, 100000] self.num_frames_splits_m_l = [0.5, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80] self.num_frames_splits_splits_m_l = [10, 15, 20, 25, 30, 35, 40] self.max_split_comparison_samples = 100 self.behaviours_list_a = ['default', 'rest', 'running', 'running_start', 'running_before', 'stick', 'stick_start', 'stick_end', 'stick_expect', 'stick_rest', 'whisker_rest_stick', 'whisker_stick'] self.behaviours_list_small = ['whisker_rest_stick', 'default', 'rest', 'running', 'stick'] def setup_plot_folders(self, output_experiment_path): paths = ['borders', 'behaviour_heatmaps', 'behaviours_basic', 'signal_delays', 'signal_durations', 'triplet', 'behaviour_activity', 'behaviour_areas', 'signal_basic_samples', 'signal_behaviour_samples', 'correlations', 'random_events', 'splits', 'splits_self', 'signal_amplitudes', 'signal_proportion_delays', 'signal_stick_run_samples', 'splits_split_split', 'triplet_bar', 'size_v_time_corr', 'behaviour_heatmaps_threshold_with_random', 'split_behaviour_grids', 'size_histogram_bh_comparison_individual', 'amplitude_histogram_bh_comparison_individual', 'duration_histogram_bh_comparison_individual',] for p in paths: try: os.makedirs(os.path.join(output_experiment_path, 'plots' , p)) except: pass def setup_file_folders(self, output_experiment_path): paths = ['correlations', 'csv'] for p in paths: try: print(os.path.join(output_experiment_path, 'files', p)) os.makedirs(os.path.join(output_experiment_path, 'files', p)) except: print('Folder structure exists?') def setup_plot_folders_comparison(self, output_experiment_path_comparison): paths = ['behaviour_heatmaps', 'triplet', 'intersection', 'correlations', 'align', 'intersection_border_xcorr_aligned',] for p in paths: try: os.makedirs(os.path.join(output_experiment_path_comparison, 'plots', p)) except: print('Folder structure exists?') def setup_file_folders_comparison(self, output_experiment_path_comparison): paths = ['correlations', 'csv'] for p in paths: try: print(os.path.join(output_experiment_path_comparison, 'files', p)) os.makedirs(os.path.join(output_experiment_path_comparison, 'files', p)) except: print('Folder structure exists?') def setup_plot_folders_all_comparison(self, output_experiment_path_all_comparison): #print(output_experiment_path_all_comparison) paths = ['size_histogram_comparison', 'amplitude_histogram_comparison', 'duration_histogram_comparison', 'size_histogram_bh_comparison', 'amplitude_histogram_bh_comparison', 'duration_histogram_bh_comparison', 'activity_all', 'activity_all_number_minute', 'waterfall_together', 'signal_proportion_delays', 'signal_proportion_delays_alt_average_proportions', 'behaviour_heatmaps_V2_comparison_scale', 'bar_rest_run_all', 'bar_rest_rest_stick_all', 'bar_run_run_stick_all', 'dot_rest_run_pair_all', 'bar_run_stick_run_transition_all', 'rest_to_run_proportions_alt', 'run_to_rest_proportions_alt', 'run_stick_run_proportions_alt', 'run_stick_run_proportions_alt_filter_max_3_frames', 'run_stick_run_proportions_alt_filter_max_5_frames', 'rest_to_run_amplitudes_default_alt', 'rest_to_run_amplitudes_alt', 'rest_to_run_durations_alt', 'rest_to_run_sizes_alt', 'rest_to_run_speed_alt', 'rest_to_run_pupil_alt', 'run_to_rest_amplitudes_default_alt', 'run_to_rest_amplitudes_alt', 'run_to_rest_durations_alt', 'run_to_rest_sizes_alt', 'rest_to_run_amplitudes_default_outlier_alt', 'rest_to_run_amplitudes_outlier_alt', 'rest_to_run_durations_outlier_alt', 'rest_to_run_sizes_outlier_alt', 'run_to_rest_amplitudes_default_outlier_alt', 'run_to_rest_amplitudes_outlier_alt', 'run_to_rest_durations_outlier_alt', 'run_to_rest_sizes_outlier_alt', 'run_to_rest_speed_alt', 'run_to_rest_pupil_alt', 'run_stick_run_amplitudes_default_alt', 'run_stick_run_amplitudes_alt', 'run_stick_run_durations_alt', 'run_stick_run_sizes_alt', 'run_stick_run_amplitudes_default_outlier_alt', 'run_stick_run_amplitudes_outlier_alt', 'run_stick_run_durations_outlier_alt', 'run_stick_run_sizes_outlier_alt', 'run_stick_run_speed_alt', 'run_stick_run_pupil_alt', 'run_stick_run_amplitudes_default_alt_filter_max_3_frames', 'run_stick_run_amplitudes_alt_filter_max_3_frames', 'run_stick_run_durations_alt_filter_max_3_frames', 'run_stick_run_sizes_alt_filter_max_3_frames', 'run_stick_run_speed_alt_filter_max_3_frames', 'run_stick_run_pupil_alt_filter_max_3_frames', 'run_stick_run_amplitudes_default_alt_filter_max_5_frames', 'run_stick_run_amplitudes_alt_filter_max_5_frames', 'run_stick_run_durations_alt_filter_max_5_frames', 'run_stick_run_sizes_alt_filter_max_5_frames', 'run_stick_run_speed_alt_filter_max_5_frames', 'run_stick_run_pupil_alt_filter_max_5_frames', 'all_amplitudes', 'all_durations', 'all_sizes', 'all_amplitudes_filt_bh', 'all_durations_filt_bh', 'all_sizes_filt_bh', 'correlations', 'correlations_long_events', 'correlations_short_events', 'correlations_no_align', 'correlations_no_align_long_events', 'correlations_no_align_short_events', 'correlations_csv', 'correlations_long_events_csv', 'correlations_short_events_csv', 'correlations_no_align_csv', 'correlations_no_align_long_events_csv', 'correlations_no_align_short_events_csv', 'control', 'outliers', 'triplet_dot_all', 'size_v_time_corr_ALL', 'speed_v_events_ALL', 'split_correlation_all', 'behaviour_over_recording', 'pixel_distribution', 'splits_self_all', ] data_paths = [ 'correlations', 'correlations_long_events', 'correlations_short_events', 'correlations_no_align', 'correlations_no_align_long_events', 'correlations_no_align_short_events', 'control', 'outliers', 'behaviour_ratios', 'top_average_values', 'split_correlation_all', 'splits_self_all' ] for p in paths: #print('Trying...', p) try: os.makedirs(os.path.join(output_experiment_path_all_comparison, 'plots', p)) except: print('Folder structure exists?') for p in data_paths: try: os.makedirs(os.path.join(output_experiment_path_all_comparison, 'data', p)) except: print('Folder structure exists?') def get_output_experiment_path(self, astroA, output_folder): experiment_id = '/'.join(astroA.experiment_path.split('/')[-2:]) output_experiment_path = os.path.join(output_folder, experiment_id) return output_experiment_path def plot_all_single(self, astroA): output_experiment_path = self.get_output_experiment_path(astroA, self.output_folder) print('Making dirs', output_experiment_path) self.setup_plot_folders(output_experiment_path) print('Plotting behaviours basic...') #Behaviour basic figs_basic_plots = self.get_behaviour_basic_plots(astroA) for fig_k in figs_basic_plots.keys(): saving_utils.save_plotly_fig(figs_basic_plots[fig_k], os.path.join(output_experiment_path, 'plots', 'behaviours_basic', '{}'.format(fig_k)), width=1000, height=400) print('Plotting random samples of signals...') fig_signals = self.get_signal_figs_samples(astroA, 20) for i, fig_signal in enumerate(fig_signals): fig_signal_path = os.path.join(output_experiment_path, 'plots', 'signal_basic_samples', 'signal_{}'.format(i)) saving_utils.save_plotly_fig(fig_signal, fig_signal_path) print('Plotting borders...') #Borders plot fig_border = self.get_border_plot(astroA) saving_utils.save_plotly_fig(fig_border, os.path.join(output_experiment_path, 'plots' , 'borders', 'border')) print('Plotting behaviour heatmaps...') #Behaviour heatmaps fig_heatmap_grids, fig_heatmap_dff_grids = self.get_behaviour_contour_plots(astroA) heatmap_grid_base_path = os.path.join(output_experiment_path, 'plots', 'behaviour_heatmaps') for k in fig_heatmap_grids.keys(): saving_utils.save_plotly_fig(fig_heatmap_grids[k], os.path.join(heatmap_grid_base_path, k)) saving_utils.save_plotly_fig(fig_heatmap_dff_grids[k], os.path.join(heatmap_grid_base_path, k + 'dff')) print('Plotting behaviour activity bar plot...') behaviour_activity_path = os.path.join(output_experiment_path, 'plots', 'behaviour_activity', 'activity') fig_behaviour_activity = self.get_behaviour_activity_plot(astroA) print('BEHAVIOUR ACTIVITY PATH \nn\\n\n\n\n', behaviour_activity_path) saving_utils.save_plotly_fig(fig_behaviour_activity, behaviour_activity_path, width=1200, height=800) print('Plotting behaviour event size bar plot...') behaviour_area_path = os.path.join(output_experiment_path, 'plots', 'behaviour_areas', 'areas') fig_behaviour_area = self.get_behaviour_area_plot(astroA) saving_utils.save_plotly_fig(fig_behaviour_area, behaviour_area_path) print('Plotting behaviour amplitude size bar plot...') behaviour_amplitude_path = os.path.join(output_experiment_path, 'plots', 'signal_amplitudes', 'amplitudes') fig_behaviour_amplitude = self.get_behaviour_amplitude_bar_plot(astroA) saving_utils.save_plotly_fig(fig_behaviour_amplitude, behaviour_amplitude_path) print('Plotting random samples of signals on different behaviours...') fig_bk_signals = self.get_signal_bk_figs_samples(astroA, 3) for bk in fig_bk_signals.keys(): for i, fig_bk_signal in enumerate(fig_bk_signals[bk]): fig_bk_signal_path = os.path.join(output_experiment_path, 'plots', 'signal_behaviour_samples', 'signal_{}-{}'.format(bk, i)) saving_utils.save_plotly_fig(fig_bk_signal, fig_bk_signal_path) print('Plotting local signal samples with stick and running...') stick_run_sample_path = os.path.join(output_experiment_path, 'plots', 'signal_stick_run_samples') fig_stick_run_samples_l = self.get_stick_run_sample_figs(astroA) for i, sample_figs in enumerate(fig_stick_run_samples_l): saving_utils.save_plotly_fig(sample_figs[0], os.path.join(stick_run_sample_path, '{}-running'.format(i))) saving_utils.save_plotly_fig(sample_figs[1], os.path.join(stick_run_sample_path, '{}-stick'.format(i))) for j in range(min(10, len(sample_figs[2]))): saving_utils.save_plotly_fig(sample_figs[2][j], os.path.join(stick_run_sample_path, '{}-signal_{}'.format(i, j))) bh_l = ['rest', 'stick_rest', 'running', 'stick_run_ind_15'] #Area: None, 60, num_bins = 10 #Duration: None, 30, num_bins = 10 #dff : 0.6, 5, num_bins = 20 print('Comparing behaviour distribution plots for SINGLE...') for n_bins in [10, 20]: print('NUM BINS:', n_bins) for behaviour_l in [bh_l]: #, ['rest', 'running'], ['running', 'stick'], ['rest', 'stick_rest'], ['running', 'stick_run_ind_15']]: for measure, min_measure, max_measure in [ ['area', None, 60], ['dffMax2', 0.6, 5], ['duration', None, 30], ]: for confidence in [True]: measure_name = aqua_utils.get_measure_names(measure) path = os.path.join(output_experiment_path, 'plots', '{}_histogram_bh_comparison_individual'.format(measure_name), 'behaviours-{}-nbins={}-min={}-max={}-conf={}'.format('_'.join(behaviour_l), n_bins, min_measure, max_measure, confidence)) plot, stats_d = self.measure_distribution_bh_compare_plot([astroA], behaviour_l, measure=measure, num_bins=n_bins, min_measure=min_measure, max_measure=max_measure, measure_name=measure_name, confidence=confidence, with_stats=True, mode='MOA') if measure == 'duration': plotly_utils.apply_fun_axis_fig(plot, lambda x : x / astroA.fr, axis='x') saving_utils.save_pth_plt_l_log([plot], [path], axis='x') saving_utils.save_pth_plt_l_log([plot], [path], axis='y') #Save results in text file for i, name in enumerate(stats_d['names']): #Create folder data_folder_path = path try: os.makedirs(path) except: pass temp_d = {k : stats_d[k][i] for k in stats_d.keys()} saving_utils.save_csv_dict(temp_d, os.path.join(data_folder_path, '{}.csv'.format(name)), key_order=['names', 'x', 'mean', 'conf_95', 'std']) np.savetxt(os.path.join(data_folder_path, '{}-data.csv'.format(name)),
np.array(temp_d['data'])
numpy.array
import configparser import os import sys import time import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt from astropy.io import fits import marg_mcmc as wl import batman # Set path to read in get_limb.py from bin_analysis sys.path.insert(0, '../bin_analysis') import get_limb as gl def event_time(date, properties): """Program to determine the expected event time Inputs date: 1D array of the date of each exposure (MJD) properties: 1D array containing the last observed eclipse and the period. (MJD, days)""" time = properties[1, 0] time_error = properties[1, 1] period = properties[4, 0] period_error = properties[4, 1] i = 0 while time < date[0]: i += 1 time += period epoch_error =
np.sqrt(time_error**2 + (i*period_error)**2)
numpy.sqrt
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the batch hafnian wrapper function""" # pylint: disable=no-self-use,redefined-outer-name from itertools import product import numpy as np from scipy.special import eval_hermitenorm, eval_hermite from thewalrus import hermite_multidimensional, hafnian_batched, hafnian_repeated def test_hermite_multidimensional_renorm(): """ This tests the renormalized batchhafnian wrapper function to compute photon number statistics for a fixed gaussian state. """ B = np.sqrt(0.5) * np.array([[0, 1], [1, 0]]) + 0 * 1j res = 10 expected = np.diag(0.5 ** (np.arange(0, res) / 2)) array = hermite_multidimensional(-B, res, renorm=True) assert np.allclose(array, expected) def test_reduction_to_physicists_polys(): """Tests that the multidimensional hermite polynomials reduce to the regular physicists' hermite polynomials in the appropriate limit""" x = np.arange(-1, 1, 0.1) init = 1 n_max = 5 A = np.ones([init, init], dtype=complex) vals = np.array( [hermite_multidimensional(2 * A, n_max, y=np.array([x0], dtype=complex)) for x0 in x] ).T expected = np.array([eval_hermite(i, x) for i in range(len(vals))]) assert np.allclose(vals, expected) def test_reduction_to_probabilist_polys(): """Tests that the multidimensional hermite polynomials reduce to the regular probabilist' hermite polynomials in the appropriate limit""" x = np.arange(-1, 1, 0.1) init = 1 n_max = 5 A = np.ones([init, init], dtype=complex) vals = np.array( [hermite_multidimensional(A, n_max, y=np.array([x0], dtype=complex)) for x0 in x] ).T expected = np.array([eval_hermitenorm(i, x) for i in range(len(vals))]) assert np.allclose(vals, expected) def test_hafnian_batched(): """Test hafnian_batched against hafnian_repeated for a random symmetric matrix""" n_modes = 4 A = np.random.rand(n_modes, n_modes) + 1j * np.random.rand(n_modes, n_modes) A += A.T n_photon = 5 v1 = np.array([hafnian_repeated(A, q) for q in product(np.arange(n_photon), repeat=n_modes)]) assert np.allclose(hafnian_batched(A, n_photon, make_tensor=False), v1) def test_hafnian_batched_loops(): """Test hafnian_batched with loops against hafnian_repeated with loops for a random symmetric matrix and a random vector of loops """ n_modes = 4 A = np.random.rand(n_modes, n_modes) + 1j * np.random.rand(n_modes, n_modes) A += A.T mu = np.random.rand(n_modes) + 1j * np.random.rand(n_modes) n_photon = 5 v1 = np.array( [ hafnian_repeated(A, q, mu=mu, loop=True) for q in product(np.arange(n_photon), repeat=n_modes) ] ) expected = hafnian_batched(A, n_photon, mu=mu, make_tensor=False) assert np.allclose(expected, v1) def test_hafnian_batched_loops_no_edges(): """Test hafnian_batched with loops against hafnian_repeated with loops for a random symmetric matrix and a random vector of loops """ n_modes = 4 A = np.zeros([n_modes, n_modes], dtype=complex) mu = np.random.rand(n_modes) + 1j * np.random.rand(n_modes) n_photon = 5 v1 = np.array( [ hafnian_repeated(A, q, mu=mu, loop=True) for q in product(np.arange(n_photon), repeat=n_modes) ] ) expected = hafnian_batched(A, n_photon, mu=mu, make_tensor=False) assert np.allclose(expected, v1) def test_hafnian_batched_zero_loops_no_edges(): """Test hafnian_batched with loops against hafnian_repeated with loops for a the zero matrix and a loops """ n_modes = 4 A = np.zeros([n_modes, n_modes], dtype=complex) n_photon = 5 v1 = np.array( [hafnian_repeated(A, q, loop=True) for q in product(np.arange(n_photon), repeat=n_modes)] ) expected = hafnian_batched(A, n_photon, make_tensor=False) assert
np.allclose(expected, v1)
numpy.allclose
#!/usr/bin/env python import roslib import sys import rospy import cv2 import math import imutils import statistics import numpy as np from std_msgs.msg import String from sensor_msgs.msg import Image from std_msgs.msg import Float64MultiArray, Float64 from cv_bridge import CvBridge, CvBridgeError from scipy.spatial import distance as dist class image_converter: # Defines publisher and subscriber def __init__(self): # initialize the node named image_processing rospy.init_node('image_processing', anonymous=True) # initialize a publisher to send images from camera1 to a topic named image_topic1 self.image_pub1 = rospy.Publisher("image_topic1", Image, queue_size=1) self.image_pub2 = rospy.Publisher("image_topic2", Image, queue_size=1) #Initialize a publisher to send joints angular posiion toa topic called joints_pos self.joints_pub=rospy.Publisher("joints_pos",Float64MultiArray,queue_size=10) #initialize a publisher for the four angles self.robot_joint1_pub = rospy.Publisher("/robot/joint1_position_controller/command", Float64, queue_size=10) self.robot_joint2_pub = rospy.Publisher("/robot/joint2_position_controller/command", Float64, queue_size=10) self.robot_joint3_pub = rospy.Publisher("/robot/joint3_position_controller/command", Float64, queue_size=10) self.robot_joint4_pub = rospy.Publisher("/robot/joint4_position_controller/command", Float64, queue_size=10) # initialize a subscriber to recieve messages rom a topic named /robot/camera1/image_raw and use callback function to recieve data self.image_sub1 = rospy.Subscriber("/camera1/robot/image_raw", Image, self.callback1) self.image_sub2 = rospy.Subscriber("/camera2/robot/image_raw", Image, self.callback2) #intialize variables to store self.time_trajectory = rospy.get_time() self.red = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64') self.green = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64') self.p2m = np.array([0.0], dtype='float64') self.ja4 = np.array([0.0], dtype='float64') # initialize errors self.time_previous_step = np.array([rospy.get_time()], dtype='float64') self.time_previous_step2 = np.array([rospy.get_time()], dtype='float64') # initialize error and derivative of error for trajectory tracking # initialize the bridge between openCV and ROS self.bridge = CvBridge() # Recieve data from camera 1, process it, and publish def callback1(self, data): # Recieve the image try: self.image1 = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) def callback2(self, data): # Recieve the image try: self.image2 = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) #Blob detection------------------------------------------------------- def detect_red(self,image1, image2): #smooth the image and reduce noise image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) #convert colours to HSV hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) #set the HSV values for red lower_red1 = np.array([0, 200, 0]) higher_red1 = np.array([0, 255, 255]) #Apply threshold to seperate the blob from rest of the robot red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) #convert to grey scale red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) #Detect the edges canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) #Find the contours contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) #Find the center coordinates and the radius of the blob (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) #convert to integers cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) #similar to above, but for image 2 image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([0, 200, 0]) higher_red2 = np.array([0, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_blue(self,image1, image2): #similar approach as detect_blue but different colour threshold image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([70, 0, 0]) higher_red1 = np.array([255, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([70, 0, 0]) higher_red2 = np.array([255, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_green(self,image1, image2): #similar approach as detect_blue but different colour threshold image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([55, 0, 0]) higher_red1 = np.array([100, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([55, 0, 0]) higher_red2 = np.array([100, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_yellow(self,image1, image2): #similar approach as detect_blue but different colour threshold image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([16, 244, 0]) higher_red1 = np.array([51, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([16, 244, 0]) higher_red2 = np.array([51, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return
np.array([cx, cy, cz1, cz2])
numpy.array
#!/usr/bin/env python import sys import numpy as np from netCDF4 import Dataset from scipy.interpolate import griddata import matplotlib.pyplot as plt def get_subset_indices(min_lat, max_lat, min_lon, max_lon, lats, lons): # These are the indices of the closest lat/lon values to # (min_lat, max_lat, min_lon, max_lon) indices = [] indices.append(int((np.abs(np.array(lats)-min_lat)).argmin())) indices.append(int((np.abs(np.array(lats)-max_lat)).argmin())) indices.append(int((np.abs(np.array(lons)-min_lon)).argmin())) indices.append(int((np.abs(np.array(lons)-max_lon)).argmin())) # return [min_lat_index, max_lat_index, min_lon_index, max_lon_index] return indices def grab_ETOPO1_subset(file_name, min_lat, max_lat, min_lon, max_lon): ETOPO1 = Dataset(file_name, 'r') lons = ETOPO1.variables["x"][:] lats = ETOPO1.variables["y"][:] # Grab indices for max/min lat/lon bounds minLat, maxLat, minLon, maxLon = get_subset_indices(min_lat, max_lat, min_lon, max_lon, lats, lons) bathy = ETOPO1.variables["z"][minLat:maxLat,minLon:maxLon] lons,lats = np.meshgrid(lons[minLon:maxLon],lats[minLat:maxLat]) print("== Selected {} points ({}x{}) from {}".format(bathy.size,bathy.shape[1],bathy.shape[0],file_name)) print("---- Lats: {} to {}, Lons: {} to {}".format(min_lat, max_lat, min_lon, max_lon)) return lats,lons,bathy def write_grid(out_file_name, lats, lons, bathy): outfile = open(out_file_name, 'w') dlon = abs(np.unique(lons)[1] - np.unique(lons)[0]) dlat = abs(np.unique(lats)[1] - np.unique(lats)[0]) outfile.write("# N_lats\n") outfile.write("# N_lons\n") outfile.write("# dlat\n") outfile.write("# dlon\n") outfile.write("{} {} {} {}\n".format(lons.shape[0], lons.shape[1], dlat, dlon)) outfile.write("##################################\n") # Write vertices from top left (Northwest) to bottom right (Southeast) for i in list(reversed(range(lons.shape[0]))): for j in range(lons.shape[1]): outfile.write("{}\t{}\t{}\n".format(lats[i][j],lons[i][j],bathy[i][j])) outfile.close() print("output written to {}".format(out_file_name)) def grab_ETOPO1_subset_interpolated(file_name, min_lat, max_lat, min_lon, max_lon, factor=3): debug = False ETOPO1 = Dataset(file_name, 'r') #adjusting lons to be able to cross the dateline lons = ETOPO1.variables["x"][:] lons2 =
np.copy(lons)
numpy.copy
import math import os import re from multiprocessing import Pool from collections import defaultdict import tables import numpy as np from astropy.io import fits from astropy.table import Table from beast.observationmodel.noisemodel.generic_noisemodel import get_noisemodelcat from beast.physicsmodel.grid import SEDGrid # from beast.external import eztables from beast.fitting.fit import save_pdf1d from beast.fitting.fit_metrics import percentile from beast.tools import read_beast_data def uniform_slices(num_points, num_slices): q = num_points // num_slices r = num_points % num_slices slices = [] for i in range(num_slices): if i < r: start = i * (q + 1) stop = start + q + 1 # After the remainder has been taken care of, do strides of q else: start = r * (q + 1) + (i - r) * q stop = start + q slices.append(slice(start, stop)) return slices def split_grid(grid_fname, num_subgrids, overwrite=False): """ Splits a spectral or sed grid (they are the same class actually) according to grid point index (so basically, arbitrarily). Parameters ---------- grid_fname: string file name of the existing grid to be split up num_subgrids: integer the number of parts the grid should be split into overwrite: bool any subgrids that already exist will be deleted if set to True. If set to False, skip over any grids that are already there. Returns ------- list of string the names of the newly created subgrid files """ g = SEDGrid(grid_fname, backend="disk") fnames = [] num_seds = len(g.seds) slices = uniform_slices(num_seds, num_subgrids) for i, slc in enumerate(slices): subgrid_fname = grid_fname.replace(".hd5", "sub{}.hd5".format(i)) fnames.append(subgrid_fname) if os.path.isfile(subgrid_fname): if overwrite: os.remove(subgrid_fname) else: print("{} already exists. Skipping.".format(subgrid_fname)) continue print("constructing subgrid " + str(i)) # Load a slice as a SEDGrid object sub_g = SEDGrid( g.lamb[:], seds=g.seds[slc], grid=Table(g.grid[slc]), backend="memory", ) if g.filters is not None: sub_g.header["filters"] = " ".join(g.filters) # Save it to a new file sub_g.write(subgrid_fname, append=False) return fnames def merge_grids(seds_fname, sub_names): """ Merges a set of grids into one big grid. The grids need to have the same columns Parameters ---------- seds_fname: string path for the output file sub_names: list of strings paths for the input grids """ if not os.path.isfile(seds_fname): for n in sub_names: print("Appending {} to {}".format(n, seds_fname)) g = SEDGrid(n) g.write(seds_fname, append=True) else: print("{} already exists".format(seds_fname)) def subgrid_info(grid_fname, noise_fname=None): """ Generates a list of mins and maxes of all the quantities in the given grid Parameters ---------- grid_fname: string path to a beast grid file (hd5 format) noise_fname: string Path to the noise model file for the given grid (hd5 format) (optional). If this is given, the mins/maxes for the full model fluxes are added too, under the name 'log'+filter+'_wd_bias' (needs to conform to the name used in fit.py). Returns ------- info_dict: dictionary {name of quantity [string]: {'min': min, 'max': max, 'unique': unique values}} """ # Use the disk backend to minimize the memory usage sedgrid = SEDGrid(grid_fname, backend="disk") seds = sedgrid.seds info_dict = {} qnames = sedgrid.keys() for q in qnames: qvals = sedgrid[q] qmin = np.amin(qvals) qmax = np.amax(qvals) qunique = np.unique(qvals) info_dict[q] = {} info_dict[q]["min"] = qmin info_dict[q]["max"] = qmax info_dict[q]["unique"] = qunique if noise_fname is not None: noisemodel = get_noisemodelcat(noise_fname) # The following is also in fit.py, so we're kind of doing double # work here, but it's necessary if we want to know the proper # ranges for these values. full_model_flux = seds[:] + noisemodel["bias"] logtempseds = np.array(full_model_flux) full_model_flux = ( np.sign(logtempseds) * np.log1p(np.abs(logtempseds * math.log(10))) / math.log(10) ) filters = sedgrid.filters for i, f in enumerate(filters): f_fluxes = full_model_flux[:, i] # Be sure to cut out the -100's in the calculation of the minimum qmin =
np.amin(f_fluxes[f_fluxes > -99.99])
numpy.amin
""" Tests for the model. """ import unittest import sys from numpy.testing import assert_array_almost_equal, assert_array_equal import numpy as np from numpy import random from pyhacrf import Hacrf from pyhacrf.state_machine import GeneralStateMachine, DefaultStateMachine from pyhacrf.pyhacrf import _GeneralModel, _AdjacentModel from pyhacrf import StringPairFeatureExtractor TEST_PRECISION = 3 class TestHacrf(unittest.TestCase): def test_initialize_parameters(self): start_states = [0] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0))] states_to_classes = {0: 'a'} state_machine = GeneralStateMachine(start_states=start_states, transitions=transitions, states_to_classes=states_to_classes) n_features = 3 actual_parameters = Hacrf._initialize_parameters(state_machine, n_features) expected_parameter_shape = (5, 3) self.assertEqual(actual_parameters.shape, expected_parameter_shape) def test_fit_predict(self): incorrect = ['helloooo', 'freshh', 'ffb', 'h0me', 'wonderin', 'relaionship', 'hubby', 'krazii', 'mite', 'tropic'] correct = ['hello', 'fresh', 'facebook', 'home', 'wondering', 'relationship', 'husband', 'crazy', 'might', 'topic'] training = zip(incorrect, correct) fe = StringPairFeatureExtractor(match=True, numeric=True) xf = fe.fit_transform(training) model = Hacrf() model.fit(xf, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) expected_parameters = np.array([[-10.76945326, 144.03414923, 0.], [31.84369748, -106.41885651, 0.], [-52.08919467, 4.56943665, 0.], [31.01495044, -13.0593297, 0.], [49.77302218, -6.42566204, 0.], [-28.69877796, 24.47127009, 0.], [-85.34524911, 21.87370646, 0.], [106.41949333, 6.18587125, 0.]]) print(model.parameters) assert_array_almost_equal(model.parameters, expected_parameters, decimal=TEST_PRECISION) expected_probas = np.array([[1.00000000e+000, 3.51235685e-039], [1.00000000e+000, 4.79716208e-039], [1.00000000e+000, 2.82744641e-139], [1.00000000e+000, 6.49580729e-012], [9.99933798e-001, 6.62022561e-005], [8.78935957e-005, 9.99912106e-001], [4.84538335e-009, 9.99999995e-001], [1.25170233e-250, 1.00000000e+000], [2.46673086e-010, 1.00000000e+000], [1.03521293e-033, 1.00000000e+000]]) actual_predict_probas = model.predict_proba(xf) print(actual_predict_probas) assert_array_almost_equal(actual_predict_probas, expected_probas, decimal=TEST_PRECISION) expected_predictions = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) actual_predictions = model.predict(xf) assert_array_almost_equal(actual_predictions, expected_predictions, decimal=TEST_PRECISION) def test_fit_predict_regularized(self): incorrect = ['helloooo', 'freshh', 'ffb', 'h0me', 'wonderin', 'relaionship', 'hubby', 'krazii', 'mite', 'tropic'] correct = ['hello', 'fresh', 'facebook', 'home', 'wondering', 'relationship', 'husband', 'crazy', 'might', 'topic'] training = zip(incorrect, correct) fe = StringPairFeatureExtractor(match=True, numeric=True) xf = fe.fit_transform(training) model = Hacrf(l2_regularization=10.0) model.fit(xf, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) print(model.parameters) expected_parameters = np.array([[-0.0569188, 0.07413339, 0.], [0.00187709, -0.06377866, 0.], [-0.01908823, 0.00586189, 0.], [0.01721114, -0.00636556, 0.], [0.01578279, 0.0078614, 0.], [-0.0139057, -0.00862948, 0.], [-0.00623241, 0.02937325, 0.], [0.00810951, -0.01774676, 0.]]) assert_array_almost_equal(model.parameters, expected_parameters, decimal=TEST_PRECISION) expected_probas = np.array([[0.5227226, 0.4772774], [0.52568993, 0.47431007], [0.4547091, 0.5452909], [0.51179222, 0.48820778], [0.46347576, 0.53652424], [0.45710098, 0.54289902], [0.46159657, 0.53840343], [0.42997978, 0.57002022], [0.47419724, 0.52580276], [0.50797852, 0.49202148]]) actual_predict_probas = model.predict_proba(xf) print(actual_predict_probas) assert_array_almost_equal(actual_predict_probas, expected_probas, decimal=TEST_PRECISION) expected_predictions = np.array([0, 0, 1, 0, 1, 1, 1, 1, 1, 0]) actual_predictions = model.predict(xf) assert_array_almost_equal(actual_predictions, expected_predictions, decimal=TEST_PRECISION) class TestGeneralModel(unittest.TestCase): def test_build_lattice(self): n_states = 4 # Because 3 is the max start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0)), (0, 3, lambda i, j, k: (0, 2))] states_to_classes = {0: 0, 1: 1, 3: 3} state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) x = np.zeros((2, 3, 9)) # # ________ # 1. . . # 1 0 - 10 - 31 # # | /_______ # 0. . . # 0 10 -- 1 3 # 0 1 2 # 0 1 2 # # 1(0, 1), 3(0, 2), 1(1, 1), 1(0, 0) should be pruned because they represent partial alignments. # Only nodes that are reachable by stepping back from (1, 2) must be included in the lattice. actual_lattice = state_machine.build_lattice(x) expected_lattice = np.array([(0, 0, 0, 1, 0, 0, 2 + n_states), (0, 0, 0, 1, 1, 0, 0 + n_states), (1, 0, 0, 1, 2, 3, 3 + n_states), (1, 1, 0, 1, 2, 1, 1 + n_states)]) assert_array_equal(actual_lattice, expected_lattice) def test_build_lattice_jumps(self): n_states = 2 # Because 1 is the max start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 2)), (0, 0, (1, 0))] states_to_classes = {0: 0, 1: 1} state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) x = np.zeros((2, 3, 9)) # # ________ # 1. . . # 1 0 . 1 # # | _______ # 0. . . # 0 10 / . 1 # 0 1 2 # 0 1 2 # # 1(0, 2) should be pruned because they represent partial alignments. # Only nodes that are reachable by stepping back from (1, 2) must be included in the lattice. actual_lattice = state_machine.build_lattice(x) expected_lattice = np.array([(0, 0, 0, 1, 0, 0, 2 + n_states), (1, 0, 0, 1, 2, 1, 1 + n_states)]) assert_array_equal(actual_lattice, expected_lattice) def test_forward_single(self): start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0)), (0, 2, lambda i, j, k: (0, 2))] states_to_classes = {0: 'a', 1: 'a', 2: 'b'} # Dummy state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) parameters = np.array(range(-7, 7), dtype='float64').reshape((7, 2)) # parameters = # 0([[-7, -6], # 1 [-5, -4], # 2 [-3, -2], # 3 [-1, 0], # 4 [ 1, 2], # 5 [ 3, 4], # 6 [ 5, 6]]) x = np.array([[[0, 1], [1, 0], [2, 1]], [[0, 1], [1, 0], [1, 0]]], dtype=np.float64) y = 'a' # Expected lattice: # # ________ # 1. . . # 1 0 __0 - 21 # # | / # 0. . . # 0 0 # 0 1 2 # 0 1 2 expected_alpha = { (0, 0, 0): np.exp(-6), (0, 0, 0, 1, 0, 0, 5): np.exp(-6) * np.exp(4), (0, 0, 0, 1, 1, 0, 3): np.exp(-6) * np.exp(-1), (1, 0, 0): np.exp(-6) * np.exp(4) * np.exp(-6), (1, 0, 0, 1, 2, 2, 6): np.exp(-6) * np.exp(4) * np.exp(-6) * np.exp(5), (1, 1, 0): np.exp(-6) * np.exp(-1) * np.exp(-7), (1, 1, 0, 1, 2, 1, 4): np.exp(-6) * np.exp(-1) * np.exp(-7) * np.exp(1), (1, 2, 1): np.exp(-6) * np.exp(-1) * np.exp(-7) * np.exp(1) * np.exp(-5), (1, 2, 2): np.exp(-6) * np.exp(4) * np.exp(-6) * np.exp(5) * np.exp(-3) } expected_alpha = {k: np.emath.log(v) for k, v in expected_alpha.items()} test_model = _GeneralModel(state_machine, x, y) x_dot_parameters = np.dot(x, parameters.T) # Pre-compute the dot product actual_alpha = test_model._forward(x_dot_parameters) actual_alpha = {k: v for k, v in actual_alpha.items() if not np.isneginf(v)} print(actual_alpha) self.assertEqual(len(actual_alpha), len(expected_alpha)) print for key in sorted(expected_alpha.keys()): print(key, (expected_alpha[key]), (actual_alpha[key])) self.assertEqual(actual_alpha[key], expected_alpha[key]) class TestAdjacentModel(unittest.TestCase): def test_forward_connected(self): classes = ['a', 'b'] parameters = np.array(range(-8, 8), dtype=np.float64).reshape((8, 2)) # parameters = #0([[-8, -7], #1 [-6, -5], #2 [-4, -3], #3 [-2, -1], #4 [ 0, 1], #5 [ 2, 3], #6 [ 4, 5], #7 [ 6, 7]]) x = np.array([[[0, 1], [2, 1]], [[0, 1], [1, 0]]], dtype=np.float64) y = 'a' expected_alpha = { (0, 0, 0): np.exp(-7), (0, 0, 0, 0, 1, 0, 4): np.exp(-7) * np.exp(1), (0, 0, 0, 1, 0, 0, 6): np.exp(-7) * np.exp(5), (0, 0, 0, 1, 1, 0, 2): np.exp(-7) * np.exp(-4), (0, 0, 1): np.exp(-5), (0, 0, 1, 0, 1, 1, 5): np.exp(-5) * np.exp(7), (0, 0, 1, 1, 0, 1, 7): np.exp(-5) * np.exp(7), (0, 0, 1, 1, 1, 1, 3): np.exp(-5) * np.exp(-2), (0, 1, 0): np.exp(-7) * np.exp(1) * np.exp(-23), (0, 1, 0, 1, 1, 0, 6): np.exp(-7) * np.exp(1) * np.exp(-23) * np.exp(4), (0, 1, 1): np.exp(-5) * np.exp(7) * np.exp(-17), (0, 1, 1, 1, 1, 1, 7): np.exp(-5) * np.exp(7) * np.exp(-17) * np.exp(6), (1, 0, 0): np.exp(-7) * np.exp(5) * np.exp(-7), (1, 0, 0, 1, 1, 0, 4): np.exp(-7) * np.exp(5) * np.exp(-7) * np.exp(0), (1, 0, 1): np.exp(-5) * np.exp(7) * np.exp(-5), (1, 0, 1, 1, 1, 1, 5): np.exp(-5) * np.exp(7) * np.exp(-5) * np.exp(2), (1, 1, 0): (np.exp(-11) + np.exp(-25) + np.exp(-9)) * np.exp(-8), (1, 1, 1): (
np.exp(-1)
numpy.exp
''' A script to compute the SAPT0 interaction energy without the the Single-Exchange Approximation Relevant equations can be found in the following papers: <NAME>.; <NAME>.; <NAME>. Int. J. Quantum Chem. 1976, 10, 281-297. Schaffer, R.; <NAME>. Theor. Chem. Acc. 2012, 131, 1235-1244. Schaffer, R.; Jansen, G. Mol. Phys. 2013, 111, 2570-2584. ''' __authors__ = "<NAME>" __credits__ = ["<NAME>"] __copyright__ = "(c) 2014-2017, The Psi4NumPy Developers" __license__ = "BSD-3-Clause" __date__ = "2018-01-09" import psi4 import numpy as np np.set_printoptions(precision=5, linewidth=200, threshold=2000, suppress=True) from helper_SAPT import * # Set Psi4 & NumPy Memory Options psi4.set_memory('2 GB') psi4.core.set_output_file('sapt0_no_S2.dat', False) numpy_memory = 2 # Set molecule to dimer dimer = psi4.geometry(""" O -0.066999140 0.000000000 1.494354740 H 0.815734270 0.000000000 1.865866390 H 0.068855100 0.000000000 0.539142770 -- O 0.062547750 0.000000000 -1.422632080 H -0.406965400 -0.760178410 -1.771744500 H -0.406965400 0.760178410 -1.771744500 symmetry c1 """) psi4.set_options({'basis': 'jun-cc-pVDZ', 'e_convergence': 1e-8, 'd_convergence': 1e-8}) sapt = helper_SAPT(dimer, memory=8) ### Overlap Matrix and Inverse S_a = np.concatenate((sapt.s('aa'), sapt.s('ab')), axis=1) S_b = np.concatenate((sapt.s('ba'), sapt.s('bb')), axis=1) S = np.concatenate((S_a, S_b), axis=0) # S_{AA} S_{AB} # S_{BA} S_{BB} D = np.linalg.inv(S) D_aa = D[:sapt.ndocc_A, :sapt.ndocc_A] D_ab = D[:sapt.ndocc_A, sapt.ndocc_A:sapt.ndocc_A + sapt.ndocc_B] D_ba = D[sapt.ndocc_A:sapt.ndocc_A + sapt.ndocc_B, :sapt.ndocc_A] D_bb = D[sapt.ndocc_A:, sapt.ndocc_A:] ### E10 Electrostatics Elst10 = 4 * np.einsum('abab', sapt.vt('abab')) ### Complete E10 v_abaa = sapt.v('abaa') v_abab = sapt.v('abab') v_abba = sapt.v('abba') v_abbb = sapt.v('abbb') # E10 Full e1_full = sapt.nuc_rep # Nuclear Repulsion e1_full += 2 * (np.einsum('aA,Aa->', sapt.potential('aa', 'B'), D_aa) + np.einsum('ab,ba->', sapt.potential('ab', 'B'), D_ba)) # B potential e1_full += 2 * (np.einsum('bB,Bb->', sapt.potential('bb', 'A'), D_bb) + np.einsum('ba,ab->', sapt.potential('ba', 'A'), D_ab)) # A potential e1_full += 4 * np.einsum('ijkl,ki,lj->', v_abaa, D_aa, D_ab) # Two electron part e1_full += 4 * np.einsum('ijkl,ki,lj->', v_abab, D_aa, D_bb) e1_full += 4 * np.einsum('ijkl,ki,lj->', v_abba, D_ba, D_ab) e1_full += 4 * np.einsum('ijkl,ki,lj->', v_abbb, D_ba, D_bb) e1_full += -2 * np.einsum('ijlk,ki,lj->', v_abaa, D_aa, D_ab) e1_full += -2 * np.einsum('ijlk,ki,lj->', v_abba, D_aa, D_bb) e1_full += -2 * np.einsum('ijlk,ki,lj->', v_abab, D_ba, D_ab) e1_full += -2 * np.einsum('ijlk,ki,lj->', v_abbb, D_ba, D_bb) # E10 Exchange Exch10 = e1_full - Elst10 ### E20 Induction and Exchange Induction # E20 Induction CPHF_ra, Ind20_ba = sapt.chf('B', ind=True) CPHF_sb, Ind20_ab = sapt.chf('A', ind=True) Ind20r = Ind20_ba + Ind20_ab # E20 Induction Full T_ar = np.einsum('ij,jk->ik', D_ab, sapt.s('br')) T_br = np.einsum('ij,jk->ik', D_bb, sapt.s('br')) T_as = np.einsum('ij,jk->ik', D_aa, sapt.s('as')) T_bs = np.einsum('ij,jk->ik', D_ba, sapt.s('as')) B_aa = sapt.potential('aa', 'B') B_ab = sapt.potential('ab', 'B') A_ba = sapt.potential('ba', 'A') A_bb = sapt.potential('bb', 'A') B_T_ar = np.einsum('ij,jk->ik', B_aa, T_ar) + np.einsum('ij,jk->ik', B_ab, T_br) B_T_as = np.einsum('ij,jk->ik', B_aa, T_as) + np.einsum('ij,jk->ik', B_ab, T_bs) A_T_br = np.einsum('ij,jk->ik', A_ba, T_ar) + np.einsum('ij,jk->ik', A_bb, T_br) A_T_bs = np.einsum('ij,jk->ik', A_ba, T_as) + np.einsum('ij,jk->ik', A_bb, T_bs) Bt_ar = sapt.potential('ar', 'B') - B_T_ar Bt_as = sapt.potential('as', 'B') - B_T_as At_br = sapt.potential('br', 'A') - A_T_br At_bs = sapt.potential('bs', 'A') - A_T_bs v_abaa = sapt.v('abaa') v_abab = sapt.v('abab') v_abba = sapt.v('abba') v_abbb = sapt.v('abbb') v_abra = sapt.v('abra') v_abar = sapt.v('abar') v_abrb = sapt.v('abrb') v_abbr = sapt.v('abbr') v_absa = sapt.v('absa') v_abas = sapt.v('abas') v_absb = sapt.v('absb') v_abbs = sapt.v('abbs') v_T_abra = np.einsum('ijkl,ka->ijal', v_abaa, T_ar) + np.einsum('ijkl,ka->ijal', v_abba, T_br) v_T_abrb = np.einsum('ijkl,ka->ijal', v_abab, T_ar) + np.einsum('ijkl,ka->ijal', v_abbb, T_br) v_T_abar = np.einsum('ijkl,la->ijka', v_abaa, T_ar) + np.einsum('ijkl,la->ijka', v_abab, T_br) v_T_abbr = np.einsum('ijkl,la->ijka', v_abba, T_ar) + np.einsum('ijkl,la->ijka', v_abbb, T_br) v_T_absa = np.einsum('ijkl,ka->ijal', v_abaa, T_as) + np.einsum('ijkl,ka->ijal', v_abba, T_bs) v_T_absb = np.einsum('ijkl,ka->ijal', v_abab, T_as) + np.einsum('ijkl,ka->ijal', v_abbb, T_bs) v_T_abas = np.einsum('ijkl,la->ijka', v_abaa, T_as) + np.einsum('ijkl,la->ijka', v_abab, T_bs) v_T_abbs = np.einsum('ijkl,la->ijka', v_abba, T_as) + np.einsum('ijkl,la->ijka', v_abbb, T_bs) vt_abra = v_abra - v_T_abra vt_abar = v_abar - v_T_abar vt_abrb = v_abrb - v_T_abrb vt_abbr = v_abbr - v_T_abbr vt_absa = v_absa - v_T_absa vt_abas = v_abas - v_T_abas vt_absb = v_absb - v_T_absb vt_abbs = v_abbs - v_T_abbs O_ar = 2 * np.einsum('kj,ik->ij', Bt_ar, D_aa) + 2 * np.einsum('kj,ik->ij', At_br, D_ab) O_ar += 4 * np.einsum('ijkl,mi,lj->mk', vt_abra, D_aa, D_ab) O_ar += 4 * np.einsum('ijkl,mi,lj->mk', vt_abrb, D_aa, D_bb) O_ar -= 2 * np.einsum('ijkl,mj,li->mk', vt_abra, D_ab, D_aa) O_ar -= 2 * np.einsum('ijkl,mj,li->mk', vt_abrb, D_ab, D_ba) O_ar -= 2 * np.einsum('ijkl,mi,kj->ml', vt_abar, D_aa, D_ab) O_ar -= 2 * np.einsum('ijkl,mi,kj->ml', vt_abbr, D_aa, D_bb) O_ar += 4 * np.einsum('ijkl,mj,ki->ml', vt_abar, D_ab, D_aa) O_ar += 4 * np.einsum('ijkl,mj,ki->ml', vt_abbr, D_ab, D_ba) O_bs = 2 * np.einsum('kj,ik->ij', Bt_as, D_ba) + 2 * np.einsum('kj,ik->ij', At_bs, D_bb) O_bs += 4 * np.einsum('ijkl,mj,ki->ml', vt_abas, D_bb, D_aa) O_bs += 4 * np.einsum('ijkl,mj,ki->ml', vt_abbs, D_bb, D_ba) O_bs -= 2 * np.einsum('ijkl,mi,kj->ml', vt_abas, D_ba, D_ab) O_bs -= 2 * np.einsum('ijkl,mi,kj->ml', vt_abbs, D_ba, D_bb) O_bs -= 2 * np.einsum('ijkl,mj,li->mk', vt_absa, D_bb, D_aa) O_bs -= 2 * np.einsum('ijkl,mj,li->mk', vt_absb, D_bb, D_ba) O_bs += 4 * np.einsum('ijkl,mi,lj->mk', vt_absa, D_ba, D_ab) O_bs += 4 * np.einsum('ijkl,mi,lj->mk', vt_absb, D_ba, D_bb) e2_ind_full = np.einsum('ar,ra->', O_ar, CPHF_ra) + np.einsum('bs,sb->', O_bs, CPHF_sb) # E20 Exchange-Induction ExchInd20r = e2_ind_full - Ind20r ### E20 Dispersion and Exchange-Dispersion # E20 Dispersion v_abrs = sapt.v('abrs') v_rsab = sapt.v('rsab') e_rsab = 1 / (-sapt.eps('r', dim=4) - sapt.eps('s', dim=3) + sapt.eps('a', dim=2) + sapt.eps('b')) Disp20 = 4 * np.einsum('rsab,rsab,abrs->', e_rsab, v_rsab, v_abrs) # E20 Dispersion Full. Several pieces already produced in E20 Induction Full. v_T_abRs = np.einsum('ijkl,ka->ijal', v_abas, T_ar) + np.einsum('ijkl,ka->ijal', v_abbs, T_br) v_T_absR = np.einsum('ijkl,la->ijka', v_absa, T_ar) + np.einsum('ijkl,la->ijka', v_absb, T_br) v_T_abrS = np.einsum('ijkl,la->ijka', v_abra, T_as) + np.einsum('ijkl,la->ijka', v_abrb, T_bs) v_T_abSr = np.einsum('ijkl,ka->ijal', v_abar, T_as) +
np.einsum('ijkl,ka->ijal', v_abbr, T_bs)
numpy.einsum
import numpy as np from sklearn.neighbors import NearestNeighbors import cv2 def estimate_normals(p, k=20): neigh = NearestNeighbors(n_neighbors=k) neigh.fit(p) distances, indices = neigh.kneighbors(return_distance=True) dp = (p[indices] - p[:,None]) U, s, V = np.linalg.svd(dp.transpose(0,2,1)) nv = U[:, :, -1] return nv / np.linalg.norm(nv) def test_norm(): np.random.seed(3) from matplotlib import pyplot as plt pt_map = np.concatenate([get_line(n=33, s=1.0) for _ in range(3)], axis=0) pt_map = np.random.normal(loc=pt_map, scale=0.05) nv = estimate_normals(pt_map) plt.plot(pt_map[:,0], pt_map[:,1], '.', label='map') plt.quiver( pt_map[:,0], pt_map[:,1], nv[:,0], nv[:,1], scale_units='xy', angles='xy' ) plt.gca().set_aspect('equal', 'datalim') plt.legend() plt.show() def stable_subsample(p): """ Geometrically Stable ICP Subsampling with constraints analysis Gelfand et al. 2003 http://www.people.vcu.edu/~dbandyop/pubh8472/Gelfand_SVC.pdf https://graphics.stanford.edu/papers/stabicp/stabicp.pdf """ # TODO : implement pass class ICP(): def __init__(self): pass @staticmethod def best_fit_transform(A, B): ''' Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions Input: A: Naxm numpy array of corresponding points B: Nbxm numpy array of corresponding points Returns: T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B R: mxm rotation matrix t: mx1 translation vector ''' # assert A.shape == B.shape # get number of dimensions m = A.shape[1] # translate points to their centroids centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) AA = A - centroid_A BB = B - centroid_B # rotation matrix H = np.dot(AA.T, BB) U, S, Vt = np.linalg.svd(H) R = np.dot(Vt.T, U.T) # special reflection case if np.linalg.det(R) < 0: Vt[m-1,:] *= -1 R = np.dot(Vt.T, U.T) # translation t = centroid_B.T - np.dot(R,centroid_A.T) # homogeneous transformation T = np.identity(m+1) T[:m, :m] = R T[:m, m] = t return T, R, t @staticmethod def best_fit_transform_point_to_plane(src, dst): # TODO : generalize to N-d cases? # TODO : use neighborhood from prior computations? nvec = estimate_normals(dst, k=20) # construct according to # https://gfx.cs.princeton.edu/proj/iccv05_course/iccv05_icp_gr.pdf A_lhs = np.cross(src, nvec)[:,None] A_rhs = nvec Amat = np.concatenate([A_lhs, A_rhs], axis=1) # == Nx3 # == Experimental : Stability Analysis == #C = Amat.T.dot(Amat) # 3x3 cov-mat #w,v = np.linalg.eig(C) ##c = w[0] / w[-1] # stability #c = w[-1] ##print('w[-1] : {}'.format(w[-1])) c = None # ======================================= bvec = - ((src - dst)*(nvec)).sum(axis=-1) tvec = np.linalg.pinv(Amat).dot(bvec) # == (dh, dx, dy) R = Rmat( tvec[0] ) t = tvec[1:] T = np.eye(3, dtype=np.float32) T[:2, :2] = R T[:2, 2] = t return T, R, t, c @staticmethod def nearest_neighbor(src, dst): ''' Find the nearest (Euclidean) neighbor in dst for each point in src Input: src: Naxm array of points dst: Nbxm array of points Output: distances: Euclidean distances of the nearest neighbor indices: dst indices of the nearest neighbor ''' assert src.shape[1:] == dst.shape[1:] neigh = NearestNeighbors(n_neighbors=1) neigh.fit(dst) distances, indices = neigh.kneighbors(src, return_distance=True) return distances.ravel(), indices.ravel() @staticmethod def projected_neighbor(src, dst, origin): """ index-matching correspondences, according to Blais and Levine, '95 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=400574 """ # TODO : implement pass @staticmethod def icp(A, B, init_pose=None, max_iterations=20, tolerance=0.001): ''' The Iterative Closest Point method: finds best-fit transform that maps points A on to points B Input: A: Naxm numpy array of source mD points B: Nbxm numpy array of destination mD point init_pose: (m+1)x(m+1) homogeneous transformation max_iterations: exit algorithm after max_iterations tolerance: convergence criteria Output: T: final homogeneous transformation that maps A on to B, T.A = B distances: Euclidean distances (errors) of the nearest neighbor i: number of iterations to converge ''' # assert A.shape == B.shape # get number of dimensions ndim = A.shape[1] nA, nB = A.shape[0], B.shape[0] assert(A.shape[1:] == B.shape[1:]) # make points homogeneous, copy them to maintain the originals src = np.ones((nA,ndim+1), dtype=np.float32) dst =
np.ones((nB,ndim+1), dtype=np.float32)
numpy.ones
import logging import numpy as np logger = logging.getLogger(__name__) def _distance(Z, X, Y, epsilon): """ Distance function """ Y = Y + epsilon d = np.dot(X, Y) - np.dot(Z, np.log(Y)) return d def _initialize_clusters(n_el, n_clusters): """ Initialize cluster array """ cluster_idx = np.mod(np.arange(n_el), n_clusters) return np.random.permutation(cluster_idx) def _setup_cluster_matrix(n_clusters, cluster_idx): """ Set cluster occupation matrix """ return np.eye(n_clusters, dtype=np.bool)[cluster_idx] def triclustering(Z, nclusters_row, nclusters_col, nclusters_bnd, errobj, niters, epsilon, row_clusters_init=None, col_clusters_init=None, bnd_clusters_init=None): """ Run the tri-clustering, Numpy-based implementation :param Z: d x m x n data matrix :param nclusters_row: number of row clusters :param nclusters_col: number of column clusters :param nclusters_bnd: number of band clusters :param errobj: convergence threshold for the objective function :param niters: maximum number of iterations :param epsilon: numerical parameter, avoids zero arguments in log :param row_clusters_init: initial row cluster assignment :param col_clusters_init: initial column cluster assignment :param bnd_clusters_init: initial band cluster assignment :return: has converged, number of iterations performed, final row, column, and band clustering, error value """ [d, m, n] = Z.shape # Setup matrices to .. Y = np.concatenate(Z, axis=1) # .. update rows Y1 = np.concatenate(Z, axis=0) # .. update columns Y2 = Z.reshape(d, m*n) # .. update bands # Calculate average Gavg = Y.mean() # Initialize cluster assignments row_clusters = row_clusters_init if row_clusters_init is not None \ else _initialize_clusters(m, nclusters_row) col_clusters = col_clusters_init if col_clusters_init is not None \ else _initialize_clusters(n, nclusters_col) bnd_clusters = bnd_clusters_init if bnd_clusters_init is not None \ else _initialize_clusters(d, nclusters_bnd) x_clusters = np.repeat(bnd_clusters, n) R = _setup_cluster_matrix(nclusters_row, row_clusters) C = _setup_cluster_matrix(nclusters_col, col_clusters) B = _setup_cluster_matrix(nclusters_bnd, bnd_clusters) C1 = _setup_cluster_matrix(nclusters_bnd, x_clusters) e, old_e = 2 * errobj, 0 s = 0 converged = False while (not converged) & (s < niters): logger.debug(f'Iteration # {s} ..') # Obtain all the cluster based averages CoCavg = (np.dot(np.dot(R.T, Y), C1) + Gavg * epsilon) / ( np.dot(np.dot(R.T, np.ones((m, n * d))), C1) + epsilon) # CoCavg is such that for row cluster i and col cluster j: # mask_row = row_clusters == i # mask_bnd = bnd_clusters == j # Z[mask_bnd][:, mask_row].mean(axis=2).mean() ~ CoCavg[i, j] # Calculate distance based on row approximation d2 = _distance(Y, np.ones((m, n * d)), np.dot(C1, CoCavg.T), epsilon) # Assign to best row cluster row_clusters = np.argmin(d2, axis=1) R = _setup_cluster_matrix(nclusters_row, row_clusters) R1 =
np.tile(R, (d, 1))
numpy.tile
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import numpy.polynomial.polynomial as poly import warnings def segment_ratios(nSegments, end_length_ratio=0.02): """ Discretize a borehole into segments of different lengths using a geometrically expanding mesh from the provided end-length-ratio towards the middle of the borehole. Eskilson (1987) [#Eskilson_1987]_ proposed that segment lengths increase with a factor of sqrt(2) towards the middle of the borehole. Here, the expansion factor is inferred from the provided number of segments and end-length-ratio. Parameters ---------- nSegments : int Number of line segments along the borehole. end_length_ratio: float, optional The ratio of the height of the borehole that accounts for the end segment lengths. Default is 0.02. Returns ------- segment_ratios : array The segment ratios along the borehole, from top to bottom. Examples -------- >>> gt.utilities.segment_ratios(5) array([0.02, 0.12, 0.72, 0.12, 0.02]) References ---------- .. [#Eskilson_1987] <NAME>. (1987). Thermal analysis of heat extraction boreholes. PhD Thesis. University of Lund, Department of Mathematical Physics. Lund, Sweden. """ def is_even(n): "Returns True if n is even." return not(n & 0x1) assert nSegments >= 1 and isinstance(nSegments, int), \ "The number of segments `nSegments` should be greater or equal " \ "to 1 and of type int." assert nSegments <= 2 or 0. < end_length_ratio < 0.5 and \ isinstance(end_length_ratio, (float, np.floating)), \ "The end-length-ratio `end_length_ratio` should be greater than " \ "0, less than 0.5 (0 < end_length_ratio < 0.5) and of type float." # If nSegments == 1, the only segment covers the entire length if nSegments == 1: return np.array([1.0]) # If nSegments == 2, split the borehole in two even segments elif nSegments == 2: if not np.abs(end_length_ratio - 0.5) < 1e-6: warnings.warn('nSegments = 2 has been provided. The ' '`end_length_ratio` will be over-ridden. Two ' 'segment ratios of [0.5, 0.5] will be returned.') return np.array([0.5, 0.5]) # If nSegments == 3, then the middle segment is simply the remainder of the # length elif nSegments == 3: segment_ratios = np.array( [end_length_ratio, 1 - 2 * end_length_ratio, end_length_ratio]) return segment_ratios else: pass # If end_length_ratio == 1 / nSegments, then the discretization is # uniform if np.abs(1. - nSegments * end_length_ratio) < 1e-6: return np.full(nSegments, 1 / nSegments) # Find the required constant expansion ratio to fill the borehole length # from the provided end-length-ratio inwards with the provided nSegments if is_even(nSegments): # The ratio is a root of the polynomial expression : # 0 = (1 - 2 * end_length_ratio) # - ratio * x # + 2 * end_length_ratio * x**nz nz = int(nSegments / 2) coefs = np.zeros(nz + 1) coefs[0] = 1 - 2 * end_length_ratio coefs[1] = -1 coefs[-1] = 2 * end_length_ratio # Roots of the polynomial roots = poly.Polynomial(coefs).roots() # Find the correct root for x in roots: if np.isreal(x): factor = np.real(x) dz = [factor**i * end_length_ratio for i in range(nz)] segment_ratios = np.concatenate( (dz, dz[::-1])) if (np.abs(1. - np.sum(segment_ratios)) < 1e-6 and np.all(segment_ratios > 0.)): break else: raise RuntimeError( f'utilities.segment_ratios failed to generate segment ' f'discretization for the given input parameters : ' f'nSegments={nSegments}, end_length_ratio={end_length_ratio}.') else: # The ratio is a root of the polynomial expression # 0 = (1 - 2 * end_length_ratio) - ratio * x # + end_length_ratio * x**nz # + end_length_ratio * x**(nz + 1) nz = int((nSegments - 1) / 2) coefs = np.zeros(nz + 2) coefs[0] = 1 - 2 * end_length_ratio coefs[1] = -1 coefs[-2] = end_length_ratio coefs[-1] = end_length_ratio # Roots of the polynomial roots = poly.Polynomial(coefs).roots() # Find the correct root for x in roots: if np.isreal(x): factor = np.real(x) dz = [factor**i * end_length_ratio for i in range(nz)] segment_ratios = np.concatenate( (dz, np.array([factor**nz]) * end_length_ratio, dz[::-1])) if (np.abs(1. -
np.sum(segment_ratios)
numpy.sum
import numpy as np from ncephes.cprob import incbet from numba import vectorize, float64 from significance_from_pvalue import significance_from_pvalue # This decorator vectorize the function for fast execution @vectorize([float64(float64, float64, float64)]) def z_bi_cephes(n_on, n_off, alpha): tau = 1.0 / alpha aa = n_on bb = n_off + 1 xx = 1.0 / (1+tau) # Checks to avoid Nan in some cases if aa <= 0.0 or bb <= 0.0: return 0.0 if xx <= 0.0: return 0.0 if xx >= 1.0: return 1.0 # I use the incbet from cephes instead of the scipy.special.betainc function because the latter has numerical # problems in some instances and return Nans, while the incbet from Cephes is more robust P_Bi = incbet(aa, bb, xx) return significance_from_pvalue(P_Bi) def z_bi_vectorized(n, b, alpha): """ Use the estimator Z_Bi from Cousins et al. 2008 to compute the significance :param n: observed counts (can be an array) :param b: expected background counts (can be an array) :param alpha: ratio of the source observation efficiency and background observation efficiency (must be the same for all items in n and b) :return: the significance (z score) for the measurement(s) """ n_ = np.array(n, dtype=float, ndmin=1) b_ = np.array(b, dtype=float, ndmin=1) assert n_.shape[0] == b_.shape[0], "n and b must have the same size" alpha_ = np.array(alpha, dtype=float, ndmin=1) if alpha_.shape[0] == 1: alpha_ = np.array([alpha] * n_.shape[0]) else: assert alpha_.shape[0] == n_.shape[0], "Alpha must be either a scalar or an array of the same length of n" # Assign sign depending on whether n_ > b_ sign =
np.where(n_ >= alpha * b_, 1, -1)
numpy.where
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ This module contains scripts for image manipulation including denoising, enhancement and cropping functions """ import numpy as np def uint16_2_uint8(vidstack): """ Casts any input image to be of uint8 type. Note: Though named uint16, converts any input to uint8. We are just implicitly assuming with biological imaging uint16 input. Parameters ---------- vidstack : numpy array an input image (any size) as a numpy array. Returns ------- uint8_img : numpy array a numpy array of same size as input rescaled to be of uint8 (range [0,255]). """ uint8_img = np.uint8(255.*(vidstack/float(np.max(vidstack)))) return uint8_img def rescale_intensity_stack(img_stack): """ rescales the intensity of a series of images given as a (n_imgs x n_rows x n_cols x channels) tensor such that it is [0,255] for uint8 and [0,1] for floats. Parameters ---------- img_stack : numpy array an input image of 3 or 4 dimensions: (n_imgs x n_rows x n_cols): gray-image stack (n_imgs x n_rows x n_cols x 3): rgb-image stack Returns ------- img_stack_rescale : numpy array intensity rescaled images with range [0,255] for uint8 and [0,1] for floats """ from skimage.exposure import rescale_intensity img_stack_rescale = np.concatenate([rescale_intensity(im)[None,:] for im in img_stack], axis=0) return img_stack_rescale def resize_img_stack(img_stack, shape=(256,256)): """ Resizes a series of images given as a (n_imgs x n_rows x n_cols x channels) tensor. Parameters ---------- img_stack : numpy array an input image of 3 or 4 dimensions: (n_imgs x n_rows x n_cols): gray-image stack (n_imgs x n_rows x n_cols x 3): rgb-image stack shape : 2-tuple (row_size, col_size) tuple giving the desired output image dimension Returns ------- img_stack_new : numpy array a numpy array of resized input: (n_imgs x shape[0] x shape[1]): gray-image stack (n_imgs x shape[0] x shape[1] x 3): rgb-image stack """ from skimage.transform import resize img_stack_new = [] for im in imgs: img_stack_new.append(resize(im, output_shape=shape)[None,:]) img_stack_new = np.concatenate(imgs_, axis=0) return img_stack_new def denoise_zstack(zstack): # from skimage.restoration import denoise_wavelet from skimage.filters import gaussian stacked = [] for z in zstack: # stacked.append(denoise_wavelet(z)[None,:]) stacked.append(gaussian(z, sigma=3)[None,:]) return np.vstack(stacked) def perona_malik(img, iterations=10, delta=0.14, kappa=15): """ Runs Perona-Malik anisotropic on a given grayscale image. Parameters ---------- img : numpy array (n_rows x n_cols) grayscale image. iterations : int Number of iterations to run the diffusion process. Higher gives smoother output. delta : float This is the time step :math:`\Delta t` in the diffusion equation. kappa : float This regulates the sensitivity to edges in the Perona-Malik formulation. Returns ------- filtered_img : numpy array The filtered output image. Same size as input of type float. References ---------- .. [1] <NAME> et. al, "Anisotropic diffusion." Geometry-driven diffusion in computer vision. Springer, Dordrecht, 1994. 73-92. """ from scipy import misc, ndimage import numpy as np # center pixel distances dx = 1 dy = 1 dd = np.sqrt(2) u = img.copy() # 2D finite difference windows windows = [ np.array( [[0, 1, 0], [0, -1, 0], [0, 0, 0]], np.float64 ), np.array( [[0, 0, 0], [0, -1, 0], [0, 1, 0]], np.float64 ), np.array( [[0, 0, 0], [0, -1, 1], [0, 0, 0]], np.float64 ), np.array( [[0, 0, 0], [1, -1, 0], [0, 0, 0]], np.float64 ), np.array( [[0, 0, 1], [0, -1, 0], [0, 0, 0]], np.float64 ), np.array( [[0, 0, 0], [0, -1, 0], [0, 0, 1]], np.float64 ), np.array( [[0, 0, 0], [0, -1, 0], [1, 0, 0]], np.float64 ), np.array( [[1, 0, 0], [0, -1, 0], [0, 0, 0]], np.float64 ), ] for r in range(iterations): # approximate gradients nabla = [ ndimage.filters.convolve(u, w) for w in windows ] # approximate diffusion function diff = [ 1./(1 + (n/kappa)**2) for n in nabla] # update image terms = [diff[i]*nabla[i] for i in range(4)] terms += [(1/(dd**2))*diff[i]*nabla[i] for i in range(4, 8)] u = u + delta*(sum(terms)) # Kernel for Gradient in x-direction Kx = np.array( [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], np.int32 ) # Kernel for Gradient in y-direction Ky = np.array( [[1, 2, 1], [0, 0, 0], [-1, -2, -1]], np.int32 ) # Apply kernels to the image Ix = ndimage.filters.convolve(u, Kx) Iy = ndimage.filters.convolve(u, Ky) # return norm of (Ix, Iy) filtered_img = np.hypot(Ix, Iy) return filtered_img def crop_patches_from_img(zstack, centroids, width=25): """ Crop image patches from a given input image of given width at given (x,y) centroid coordinates. Float centroids are first cast into ints. Parameters ---------- zstack : numpy array input (n_rows x n_cols x n_channels) numpy array. centroids : numpy array or list array of (y,x) centroid coordinates width : int (odd) size of cropped image patch is (width x width x n_channels) Returns ------- zs : numpy array an array of cropped patches with length equal to the number of centroids. """ zs = [] for cent in centroids: cent = cent.astype(np.int) if len(zstack.shape) == 3: # bug if this is a RGB image? patch = zstack[:,cent[0]-width//2:cent[0]-width//2+width, cent[1]-width//2:cent[1]-width//2+width][None,:] else: patch = zstack[cent[0]-width//2:cent[0]-width//2+width, cent[1]-width//2:cent[1]-width//2+width][None,:] zs.append(patch) zs = np.concatenate(zs, axis=0) return zs def filter_masks( mask, min_area=10, max_area=300, keep_centre=True, dist_thresh=0.5, min_max_area_cutoff=20): """ filters binary masks to identify the primary large area of interest. 1. consideration of minimum and maximum area range. 2. preferential consideration of areas near the image centre if the 2nd option is used, and the found area is smaller than an expected area (min_max_area_cut_off) we default to finding the largest area. Parameters ---------- mask : bool numpy array input (n_rows x n_cols) binary image. min_area : int minimum area of region of interest. max_area : int maximum area of region of interest. keep_centre : bool if True, preferentially consider the closest connected component to the image centre. dist_thresh : float (0-1) what is the upper bound on the distance between the centroid of the segmented area of interest candidate and the image centre given as a fraction of the image patch width. min_max_area_cutoff : int what is the minimum size below which we disregard the closest area to the image centre and fallback to the largest area. (only used if keep_centre=True) Returns ------- cand_mask : bool numpy array either a blank image same size as input if nothing is detected or a refined binary mask with only one area of interest of same image size as the input. """ from skimage.measure import label, regionprops from skimage.filters import gaussian nrows, ncols = mask.shape labelled = label(mask) uniq_reg = np.unique(labelled)[1:] mask_centre = np.array([nrows/2, ncols/2]) if len(uniq_reg) == 1: area = np.sum(mask) if (area > min_area) and (area < max_area): return mask else: return np.zeros_like(mask) else: reg = regionprops(labelled) uniq_reg = np.unique(labelled)[1:] areas = [] centres = [] for re in reg: y,x = re.centroid areas.append(re.area) centres.append([y,x]) if keep_centre: centres = np.array(centres) centre_dist = np.sqrt(np.sum((centres - mask_centre)**2, axis=1)) largest_reg = uniq_reg[np.argmin(centre_dist)] min_dist = centre_dist[np.argmin(centre_dist)] if largest_reg <= min_max_area_cutoff: # if too small then take the maximum area. largest_reg = uniq_reg[np.argmax(areas)] min_dist = centre_dist[np.argmax(areas)] if min_dist >= dist_thresh * nrows: cand_mask = np.zeros_like(mask) return cand_mask else: cand_mask = labelled == largest_reg if np.sum(cand_mask) > min_area and np.sum(cand_mask) < max_area: return cand_mask else: cand_mask = np.zeros_like(cand_mask) return cand_mask else: # check the maximum area. largest_reg = uniq_reg[np.argmax(areas)] cand_mask = labelled == largest_reg if np.sum(cand_mask) > min_area and np.sum(cand_mask) < max_area: return cand_mask else: cand_mask = np.zeros_like(cand_mask) return cand_mask def find_best_focus(zstack): """ Finds the best focus slice by finding the z-slice that maximises the signal-to-noise ratio given by coefficient of variation (CV). .. math:: CV = \sigma/\mu where :math:`\sigma` and :math:`\mu` are the standard deviation and mean of the slice pixel intensities. Parameters ---------- zstack : numpy array an input (n_z x n_rows x n_cols) image. Returns ------- best_focus_slice : int index of the z-slice of best focus. """ focus_vals = [np.var(z) / (np.mean(z)+1e-8) for z in zstack] best_focus_slice = np.argmax(focus_vals) return best_focus_slice def find_best_focus_stacks(zstacks): """ Finds the best focus slice of a series of z-slice stacks and constructs an array composed of the best-focus slices. Parameters ---------- zstacks : numpy array an input (n_stacks x n_z x n_rows x n_cols) image. Returns ------- best_focus_imgs : numpy array a new numpy array (n_stacks x n_rows x n_cols) composed of the best-focus slices only. best_focus_slices : numpy array list of the index of the z-slice of best focus for each z-slice stack. """ best_focus_imgs = [] best_focus_slices = [] for zstack in zstacks: best_slice = find_best_focus(zstack) best_focus_img = zstack[best_slice] best_focus_slices.append(best_slice) # the best slice is needed to provide the slice to retrieve in the original video. best_focus_imgs.append(best_focus_img[None,:]) best_focus_imgs = np.concatenate(best_focus_imgs, axis=0) best_focus_slices = np.hstack(best_focus_slices) return best_focus_imgs, best_focus_slices def locate_centroids_simple(mask): """ Given an image, locates all centroids of connected components. Note: This function inherently assumes a threshold of 0 and dilation with disk kernel of 3. Parameters ---------- mask : numpy array an input grayscale image. Returns ------- centroids : numpy array an array of (y,x) coordinate pairs giving the peaks in the input image. """ from skimage.measure import label, regionprops from skimage.morphology import binary_dilation, disk centroids = [] mask_ = mask>0 mask_ = binary_dilation(mask_, disk(3)) labelled = label(mask_) regions = regionprops(labelled) for reg in regions: y,x = reg.centroid centroids.append([y,x]) centroids = np.array(centroids) return centroids def produce_valid_img_mask(img, min_I=0.1, max_area=1000, dilation=3): """ Example Centriole images may have a ring of high pixel intensity of a much larger structure. This function is designed to identify such large continuous areas in order to filter detections. Parameters ---------- img : numpy array an input grayscale image. min_I : float the lower threshold for identifying the bright intensity regions. Assumes normalised intensities i.e. image intensities should be between [0,1] max_area : integer threshold for identifying 'large' region based on counting the number of pixels within the area. dilation : int size of the disk kernel used to postprocess and smoothen resulting binary segmentation. Returns ------- invalid_regions : numpy array a binary image of either 0, 1 pixel intensities indicating the large regions of high intensity i.e. invalid centriole zones. """ from scipy.ndimage.morphology import binary_fill_holes from skimage.filters import threshold_otsu from skimage.measure import label, regionprops from skimage.morphology import binary_dilation, disk thresh = threshold_otsu(img) # determines an Ostu threshold. if np.mean(img[img>thresh]) > min_I: # is there signal in the image? which is the lower / better threshold to use. binary = img > thresh else: binary = img > min_I # resort to the manual guidance. # connected component analysis to identify large areas of high intensity. labelled = label(binary) regions = regionprops(labelled) # initialise the mask invalid_regions = np.zeros(labelled.shape) for i in range(len(regions)): area = regions[i].area # is it large?, if yes if area > max_area: invalid_regions[labelled==i+1] = 1 # mark areas that satisfy the check to background invalid_regions = binary_dilation(binary_fill_holes(invalid_regions>0), disk(dilation)) # dilation is to smooth edges. return invalid_regions def filter_noise_centroids_detection(centroids, mask): """ Given (y,x) coordinates and a binary mask of 0,1 of background regions, removes coordinates that lie in 1 areas (background). Parameters ---------- centroids : numpy array array of (y,x) 2D coordinates. mask : numpy array boolean or integer mask with values 1 or 0 denoting invalid and valid spatial regions respectively. Returns ------- filtered_centroids : numpy array array of only valid (y,x) 2D coordinates that lie in mask==0 regions. select : bool array a binary array either 0 or 1 indicating which centroids are valid. """ valid_mask = mask[centroids[:,0].astype(np.int), centroids[:,1].astype(np.int)] #(y,x) format filtered_centroids = centroids[valid_mask==0] select = valid_mask == 0 return filtered_centroids, select def filter_border_centroids_detection(centroids, size, limits): """ Given (y,x) coordinates and the size of the border, removes all coordinates that lie within the defined border. Parameters ---------- centroids : numpy array array of (y,x) 2D coordinates. size : int border size, how many pixels from the image edge do you consider the border. Isotropic border is assumed. limits : tuple-like (y_max, x_max) pair that define the maximum number of rows, columns respectively of the image. Returns ------- filtered_centroids : numpy array array of only valid (y,x) 2D coordinates that do not lie in the border zone. select : bool array a binary array either 0 or 1 indicating which centroids lie within the border zone. """ select_y = np.logical_and(centroids[:,0] > size, centroids[:,0] < limits[0]-size) select_x = np.logical_and(centroids[:,1] > size, centroids[:,1] < limits[1]-size) filtered_centroids = centroids[ np.logical_and(select_x, select_y)] select = np.logical_and(select_x, select_y) return filtered_centroids, select def filter_centrioles_BCV(centroids, max_slice_im, patch_size, CV_thresh=0.3): """ Given (y,x) centroid coordinates, the maximum slice whole frame image filter detections based on signal-to-noise (SNR) ratio within local image crops. The SNR measure used is the coefficient of variation, :math:`\sigma/\mu` where :math:`\sigma` and :math:`\mu` are the standard deviation and mean of the pixel intensities in the image patch. Parameters ---------- centroids : numpy array array of (y,x) 2D coordinates. max_slice_im : numpy array a grayscale 2D image patch_size : int (odd) width of the local area to crop around the given (y,x) centroid CV_thresh : float Signal-to-noise ratio cut-off where SNR is measured by CV i.e. centroids are kept if :math:`CV>` CV_thresh Returns ------- filtered_centroids : numpy array array of only valid (y,x) 2D coordinates that have :math:`CV>` CV_thresh. select : bool array a binary array either 0 or 1 indicating which centroids have :math:`CV>` CV_thresh. filtered_CV : array array with the corresponding CV of filtered_centroids. """ # signal (biological coefficient of variation filter) patches = crop_patches_from_img(max_slice_im, centroids, width=patch_size) snr_patches = np.hstack([np.std(p)/np.mean(p) for p in patches]) # filter out the bogus detections? select = snr_patches >= CV_thresh filtered_centroids = centroids[select] filtered_CV = snr_patches[select] return filtered_centroids, select, filtered_CV def remove_duplicate_centrioles(centroids, min_dist, lam=1000): """ Removes duplicate (y,x) returning only one (y,x) instance given array of (y,x) centroid coordinates and a minimum distance threshold below which we call two (y,x) duplicates, Parameters ---------- centroids : numpy array array of (y,x) 2D coordinates. min_dist : float two (y,x) coordinates are a duplicate if the distance between them is less than mid_dist. lam : float a very large float, typically just a number larger than the image diagonal to exclude oneself in the pairwise pairing process of (y,x) coordinates. Returns ------- filtered_centroids : numpy array array of unique (y,x) 2D coordinates. select : bool array a binary array either 0 or 1 indicating which centroids are taken as unique (y,x) instances. """ from sklearn.metrics.pairwise import pairwise_distances dist_matrix = pairwise_distances(centroids) dist_matrix += np.diag(lam*np.ones(len(centroids))) # prevent self interaction. # initialisation. select_filter = np.ones(len(centroids)) for i in range(len(dist_matrix)): if select_filter[i] == 1: dist = dist_matrix[i] min_dist_arg = np.argmin(dist) if dist[min_dist_arg] < min_dist: select_filter[min_dist_arg] = 0 # set to false. select_filter = select_filter>0 # make binary filtered_centroids = centroids[select_filter>0] return filtered_centroids, select_filter def detect_centrioles_in_img( zstack_img, size, aniso_params, patch_size, CV_thresh=0.3, tslice=0, is_img_slice=False, filter_border=True, filter_high_intensity_bg=True, remove_duplicates=True, filter_CV=True, separation=5, invert=False, minmass=10, minoverlap=10, bg_min_I=0.2, bg_max_area=1000, bg_dilation=3, bg_invalid_check=0.5, debug=False): """ Primary function that wraps various functions in this module into one API call to detect centrioles given an image or image stack. Parameters ---------- zstack_img : numpy array either i) a temporal z-stack (n_frames x n_z x n_rows x n_cols), ii) a z-stack (n_z x n_rows x n_cols) or iii) a grayscale image (n_rows x n_cols) size : float Approximate expected width of centriole to detect in image pixels. aniso_params : Python dict A Python dictionary giving the parameters for running the anisotropic filtering of Perona-Malik [1]_. This dictionary should contain the following keys: 'iterations', 'delta', kappa', see :meth:`image_fn.perona_malik` patch_size : int size of the local image patch to crop for filtering by CV if used, see :meth:`image_fn.filter_centrioles_BCV` CV_thresh : float coefficient of variation threshold for keeping high SNR detections as in :meth:`image_fn.filter_centrioles_BCV` tslice : int if tslice :math:`>=` 0, takes the corresponding time slice of the temporal z image and returns the max projection image over z. If zstack_img is just a zstack set tslice=-1. is_img_slice : bool Set True if input is a grayscale image. filter_border : bool If True, removes detections within a defined border zone filter_high_intensity_bg : bool If True, removes detections from high intensity background areas. remove_duplicates : bool If True, detects potential duplication of (y,x) locations that may by detecting the same centriole. filter_CV : bool If True, keeps only (y,x) centriole detections whose CV evaluated over a local image crop is greater than a given threshold. separation : float minimum separation distance in pixels between blobs. invert : bool if True, features of interest to detect are assumed darker than background, used in trackpy.locate, see [2]_ minmass : float minimum integrated intensity values of detected blob used in trackpy.locate, see [2]_ minoverlap : float distance threshold for calling duplicate (y,x) coordinates, see :meth:`image_fn.remove_duplicate_centrioles` bg_min_I : float intensity cut-off for defining 'high' intensity image areas as in :meth:`image_fn.produce_valid_img_mask` bg_max_area : int area cut-off for defining 'large' background areas as in :meth:`image_fn.produce_valid_img_mask` bg_dilation : int disk kernel size to dilate background noise mask as in :meth:`image_fn.produce_valid_img_mask` bg_invalid_check : float this is a check to prevent everything in the image being regarded as being invalid if one knows centrioles should be present. It is an upper bound on the total area of the invalid image area mask output of :meth:`image_fn.produce_valid_img_mask`. debug: bool if True, will produce all intermediate plotting graphics to help debugging. Returns ------- out_dict : Python dict dictionary which collects the final output detections along with additional detection information. The dictionary has the following structure 'centriole_centroids': (y,x) coordinates of detected centrioles 'centriole_pos': table of all centriole detections with associated intensity statistics 'max_proj_full_img': maximum projection image 'max_proj_full_img_denoise': anisotropically filtered maximum projection image 'background_mask': background image area mask 'valid_detection_mask': non-background image areas where centrioles are being detected. 'centriole_SNR': associated :math:`CV` of detected centrioles References ---------- .. [1] <NAME> et. al, "Anisotropic diffusion." Geometry-driven diffusion in computer vision. Springer, Dordrecht, 1994. 73-92. .. [2] TrackPy Gaussian blob detection, http://soft-matter.github.io/trackpy/dev/generated/trackpy.locate.html. """ import trackpy as tp from skimage.filters import threshold_otsu from skimage.exposure import rescale_intensity import visualization as viz import pylab as plt ########################################## # # Handle different file inputs. # ########################################## if is_img_slice==False: if tslice >= 0: zstack_time_img = zstack_img[tslice].copy() else: zstack_time_img = zstack_img.copy() # max projection to detect positions. slice_img = zstack_time_img.max(axis=0) else: slice_img = zstack_img.copy() # nothing to do. ########################################## # Anisotropic filtering to enhance signal to background. ########################################## slice_img_denoise = rescale_intensity(perona_malik(rescale_intensity(slice_img/255.), iterations=aniso_params['iterations'], kappa=aniso_params['kappa'], delta=aniso_params['delta'])) # denoising, these parameters work well thus far for anisotropic diffusion. ########################################## # Gaussian blob detection (through TrackPy) ########################################## f = tp.locate(slice_img_denoise, size, separation=separation, invert=invert, minmass=minmass) centriole_centroids = np.vstack([f['y'], f['x']]).T if debug: """ Viz 1 : initial detection """ fig, ax = plt.subplots(figsize=(10,10)) plt.title('Initial Gaussian Blob Detection') plt.imshow(slice_img, cmap='gray') viz.draw_circles(np.vstack([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() ########################################## # Precompute some binary masks for later (optional) use ########################################## valid_img_mask = produce_valid_img_mask(rescale_intensity(slice_img/255.), min_I=bg_min_I, max_area=bg_max_area, dilation=bg_dilation) background_img = slice_img < threshold_otsu(slice_img) """ Optionally filter out border centriole detections """ if filter_border: # filter the centroids ( don't care for those at the side. ) centriole_centroids, centriole_centroids_filter = filter_border_centroids_detection(centriole_centroids, size=size, limits = slice_img.shape) f = f.iloc[centriole_centroids_filter] f.index = np.arange(len(centriole_centroids)) # re-index. if debug: """ Viz 2 : Filter border detections. Border is highlighted with a yellow transparency mask. """ border_mask = np.zeros((slice_img.shape[0], slice_img.shape[1], 3)) border_mask[-size:,:, 0] = 1; border_mask[-size:,:, 1] = 1 border_mask[:size, :, 0] = 1; border_mask[:size, :, 1] = 1 border_mask[:,:size, 0] = 1; border_mask[:,:size, 1] = 1 border_mask[:,-size:, 0] = 1; border_mask[:,-size:, 1] = 1 fig, ax = plt.subplots(figsize=(10,10)) plt.title('Filtering border detections') plt.imshow(slice_img, cmap='gray') plt.imshow(border_mask, alpha=0.6) viz.draw_circles(np.vstack([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() """ Optionally filter out centriole detections in spurious large intensity band zones. """ if filter_high_intensity_bg: if np.sum(valid_img_mask) / float(np.product(valid_img_mask.shape)) < bg_invalid_check: # check that not all the image is being highlighted as invalid. centriole_centroids, centriole_centroids_filter = filter_noise_centroids_detection(centriole_centroids, valid_img_mask) f = f.iloc[centriole_centroids_filter] f.index = np.arange(len(centriole_centroids)) # re-index. valid_img_mask = np.abs(1-valid_img_mask) >0 # invert since the valid_img_mask is really a background. else: valid_img_mask = np.ones_like(valid_img_mask) if debug: """ Viz 3 : Filter background detections in spurious high intensity zones. """ # compose a colour mask to highlight the invalid image regions color_slice_valid_mask = np.zeros([valid_img_mask.shape[0], valid_img_mask.shape[1], 3]); color_slice_valid_mask[:,:,0] = np.logical_not(valid_img_mask); color_slice_valid_mask[:,:,1] = np.logical_not(valid_img_mask) fig, ax = plt.subplots(figsize=(10,10)) plt.title('Filtering high intensity regions') plt.imshow(slice_img, cmap='gray') plt.imshow(color_slice_valid_mask, alpha=0.6) viz.draw_circles(np.vstack([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() else: valid_img_mask = np.ones_like(valid_img_mask) """ Remove duplicates. """ if remove_duplicates: centriole_centroids, centriole_centroids_filter = remove_duplicate_centrioles(centriole_centroids, min_dist=minoverlap) f = f.iloc[centriole_centroids_filter] f.index = np.arange(len(centriole_centroids)) # re-index. if debug: """ Viz 4 : Remove duplicate detections """ fig, ax = plt.subplots(figsize=(10,10)) plt.title('Removing duplicates by spatial proximity') plt.imshow(slice_img, cmap='gray') viz.draw_circles(np.vstack([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() """ Remove low SNR. """ if filter_CV: # signal (biological coefficient of variation filter) [helps reduce false positives.] centriole_centroids, centriole_centroids_filter, centriole_SNR = filter_centrioles_BCV(centriole_centroids, slice_img, patch_size, CV_thresh=CV_thresh) f = f.iloc[centriole_centroids_filter] f.index = np.arange(len(centriole_centroids)) # re-index. if debug: """ Viz 5 : Remove by CV """ # final detection with white boxes fig, ax = plt.subplots(figsize=(10,10)) plt.title('Filtering by CV') plt.imshow(slice_img, cmap='gray') viz.draw_squares(np.vstack([f['y'], f['x']]).T, ax, width=patch_size, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() else: centriole_SNR = 0 # not computed. if debug: """ Viz 6 : Final detections """ # final detection with white boxes fig, ax = plt.subplots(figsize=(10,10)) plt.title('Final Detections') plt.imshow(slice_img, cmap='gray') viz.draw_squares(
np.vstack([f['y'], f['x']])
numpy.vstack
# The MIT License (MIT) # Copyright (c) 2022 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR # THE USE OR OTHER DEALINGS IN THE SOFTWARE. # %% import os import json from pathlib import Path import numpy as np import cv2 import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from torch.utils.data import Dataset as BaseDataset import segmentation_models_pytorch as smp # import albumentations as albu from typing import List, Union def img_scaler(img:np.array) -> np.array: """ 0~255の範囲にスケーリングする Args: img (np.array): 入力画像 Returns: np.array: スケーリング画像 Note: 画像である必要はないが、array全体でスケーリングされる点に注意。 """ img = (img - img.min()) / (img.max() - img.min() + 1e-8) img = (img * 255).astype(np.uint8) return img def canny(img:np.ndarray, low_threshold:int, high_threshold:int)-> np.ndarray: """ Applies the Canny transform Args: img (np.ndarray): グレースケール画像 low_threshold (int): minVal high_threshold (int): maxVal Returns: np.ndarray: エッジ画像 Note: https://docs.opencv.org/4.5.5/da/d22/tutorial_py_canny.html """ return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def grayscale(img, is_bgr=False): """Applies the Grayscale transform Args: img (np.ndarray): 画像 is_bgr (bool, optional): カラー表現がBGRか. Defaults to False. Note: OpenCVで画像ファイルをReadした場合はBGR形式で読まれ、 pltはRGB形式で処理するため、変換が必要。 """ if is_bgr: return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. """ #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def calc_region(imshape, left_bottom_rate, left_top_rate, right_top_rate, right_bottom_rate): """ マスク画像の4点を指定。画像は左上が原点 Args: imshape (list): 元画像のshape。ただし[W, H]に変換している。 left_bottom_rate ([list]): 画像に対する、左下の点の割合 left_top_rate ([type]): 画像に対する、左上の点の割合 right_top_rate ([type]): 画像に対する、右上の点の割合 right_bottom_rate ([type]): 画像に対する、右下の点の割合 Returns: (List[List[int]]): マスク領域の4点を示すリスト[[w1,h1],[w2,h2],[w3,h3],[w4,h4]] """ left_bottom = imshape * np.array(left_bottom_rate) left_top = imshape * np.array(left_top_rate) right_top = imshape * np.array(right_top_rate) right_bottom = imshape * np.array(right_bottom_rate) region_coord = [left_bottom, left_top, right_top, right_bottom] # 先行車領域の座標4点(左下から時計回り) return region_coord # TODO 要改善 # 線分の延長を行う。.Append、や np.poly1d、 np.polyfit(x,y,n)を利用した効率化が必要 # np.polyfit(x,y,n): n次式で2変数x,yの回帰分析 def draw_ext_lines(img, lines, color=[255, 0, 0], thickness=2): d = 300 # required extend length for line in lines: for x1,y1,x2,y2 in line: if (x2 != x1): slope = (y2-y1)/(x2-x1) sita = np.arctan(slope) if (slope > 0): # 傾きに応じて場合分け if (x2 > x1): x3 = int(x2 + d*np.cos(sita)) y3 = int(y2 + d*np.sin(sita)) cv2.line(img, (x3, y3), (x1, y1), color, thickness) else: x3 = int(x1 + d*np.cos(sita)) y3 = int(y1 + d*np.sin(sita)) cv2.line(img, (x3, y3), (x2, y2), color, thickness) elif (slope < 0): if (x2 > x1): x3 = int(x1 - d*np.cos(sita)) y3 = int(y1 - d*np.sin(sita)) cv2.line(img, (x3, y3), (x2, y2), color, thickness) else: x3 = int(x2 - d*np.cos(sita)) y3 = int(y2 - d*
np.sin(sita)
numpy.sin
import numpy as np import random from numpy.core.fromnumeric import transpose # 1.Matrix Creation dim = int(input("Enter Dimension of matrix :")) matrix = np.random.randint(10, size=(dim, dim)) # 2.Matrix inversion inverse = np.linalg.inv(matrix) print ("Inverse matrix : %s" %inverse) # 3.dot Product won't exactly yield I I =
np.dot(matrix, inverse)
numpy.dot
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestNoNewAttributesMixin: def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") with pytest.raises(AttributeError): t.b = "test" assert not hasattr(t, "b") class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta("1 days"), Timedelta("2 days")] s = Series(vals) assert s.dtype == "timedelta64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timedelta) assert res == exp # period vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] s = Series(vals) assert s.dtype == "Period[M]" for res, exp in zip(s, vals): assert isinstance(res, pd.Period) assert res.freq == "M" assert res == exp @pytest.mark.parametrize( "array, expected_type, dtype", [ (np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), (np.array(["a", "b"]), np.ndarray, "object"), (pd.Categorical(["a", "b"]), pd.Categorical, "category"), ( pd.DatetimeIndex(["2017", "2018"], tz="US/Central"), DatetimeArray, "datetime64[ns, US/Central]", ), ( pd.PeriodIndex([2018, 2019], freq="A"), pd.core.arrays.PeriodArray, pd.core.dtypes.dtypes.PeriodDtype("A-DEC"), ), ( pd.IntervalIndex.from_breaks([0, 1, 2]), pd.core.arrays.IntervalArray, "interval", ), # This test is currently failing for datetime64[ns] and timedelta64[ns]. # The NumPy type system is sufficient for representing these types, so # we just use NumPy for Series / DataFrame columns of these types (so # we get consolidation and so on). # However, DatetimeIndex and TimedeltaIndex use the DateLikeArray # abstraction to for code reuse. # At the moment, we've judged that allowing this test to fail is more # practical that overriding Series._values to special case # Series[M8[ns]] and Series[m8[ns]] to return a DateLikeArray. pytest.param( pd.DatetimeIndex(["2017", "2018"]), np.ndarray, "datetime64[ns]", marks=[pytest.mark.xfail(reason="datetime _values", strict=True)], ), pytest.param( pd.TimedeltaIndex([10 ** 10]), np.ndarray, "m8[ns]", marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)], ), ], ) def test_values_consistent(array, expected_type, dtype): l_values = pd.Series(array)._values r_values = pd.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) tm.assert_equal(l_values, r_values) @pytest.mark.parametrize( "array, expected", [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(["0", "1"]),
np.array(["0", "1"], dtype=object)
numpy.array
""" Native matplotlib support of frequently used 2d projections, for looking up to the sky. This file is initially developed as part of skymapper by <NAME> based on the example in matplotlib. It is later adopted by me (<NAME>), and I will maintain a copy in imaginglss for easier access, also because I do plan to clean up the function signatures and variable naming (breaking compatibility with old skymapper code). The current version adds the ability to generate equal area histograms on HealPix pixels. It does not depend on healpy, there is a minimal python implementation of healpix at the end of the file; imported in the javascript/lua style. The intention is one day we will submit a PR of this to matplotlib. What does not work: 1. Panning. 2. Color bar is sometimes in the wrong place 3. Label locations are poorly calculated. What does work: Evertying else. Author: <NAME> <NAME> """ from __future__ import unicode_literals import matplotlib from matplotlib.axes import Axes from matplotlib.patches import Rectangle, Polygon from matplotlib.path import Path from matplotlib.collections import PolyCollection, TriMesh from matplotlib.tri.triangulation import Triangulation from matplotlib.ticker import NullLocator, Formatter, FixedLocator, MaxNLocator from matplotlib.transforms import Affine2D, BboxTransformTo, Transform, blended_transform_factory, Bbox from matplotlib.projections import register_projection import matplotlib.spines as mspines import matplotlib.axis as maxis import numpy as np __author__ = "<NAME>" __email__ = "<EMAIL>" class SkymapperAxes(Axes): """ A base class for a Skymapper axes that takes in ra0, dec0, dec1, dec2. The base class takes care of clipping and interpolating with matplotlib. Subclass and override class method get_projection_class. """ # The subclass projection must specify a name. This will be used be the # user to select the projection. name = None @classmethod def get_projection_class(kls): raise NotImplementedError('Must implement this in subclass') def __init__(self, *args, **kwargs): self.ra0 = None self.dec0 = None self.dec1 = None self.dec2 = None Axes.__init__(self, *args, **kwargs) self.cla() def _init_axis(self): # Axes._init_axis() -- until HammerAxes.xaxis.cla() works. self.xaxis = maxis.XAxis(self) self.spines['bottom'].register_axis(self.xaxis) self.spines['top'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis) self._update_transScale() def cla(self): """ Override to set up some reasonable defaults. """ # Don't forget to call the base class Axes.cla(self) # Turn off minor ticking altogether self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_major_locator(MaxNLocator(5, prune='both')) self.yaxis.set_major_locator(MaxNLocator(5, prune='both')) # Do not display ticks -- we only want gridlines and text self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.set_center(None, None) # FIXME: probabaly want to override autoscale_view # to properly handle wrapping introduced by margin # and properlty wrap data. # It doesn't make sense to have xwidth > 360. self._tight = True def _set_lim_and_transforms(self): """ This is called once when the plot is created to set up all the transforms for the data, text and grids. """ # There are three important coordinate spaces going on here: # # 1. Data space: The space of the data itself # # 2. Axes space: The unit rectangle (0, 0) to (1, 1) # covering the entire plot area. # # 3. Display space: The coordinates of the resulting image, # often in pixels or dpi/inch. # This function makes heavy use of the Transform classes in # ``lib/matplotlib/transforms.py.`` For more information, see # the inline documentation there. # The goal of the first two transformations is to get from the # data space (in this case meridian and parallel) to axes # space. It is separated into a non-affine and affine part so # that the non-affine part does not have to be recomputed when # a simple affine change to the figure has been made (such as # resizing the window or changing the dpi). # 1) The core transformation from data space into # rectilinear space defined in the HammerTransform class. self.transProjection = self.get_projection_class()() self.transProjection.set_center((180, 0)) self.transProjection.set_dec1(-65) self.transProjection.set_dec2(80) # 2) The above has an output range that is not in the unit # rectangle, so scale and translate it so it fits correctly # within the axes. The peculiar calculations of xscale and # yscale are specific to a Aitoff-Hammer projection, so don't # worry about them too much. # This will be updated after the xy limits are set. self.transAffine = Affine2D() # 3) This is the transformation from axes space to display # space. self.transAxes = BboxTransformTo(self.bbox) # Now put these 3 transforms together -- from data all the way # to display coordinates. Using the '+' operator, these # transforms will be applied "in order". The transforms are # automatically simplified, if possible, by the underlying # transformation framework. self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes self.transClip = \ self.transProjection + \ self.transAffine # The main data transformation is set up. Now deal with # gridlines and tick labels. # Longitude gridlines and ticklabels. The input to these # transforms are in display space in x and axes space in y. # Therefore, the input values will be in range (-xmin, 0), # (xmax, 1). The goal of these transforms is to go from that # space to display space. The tick labels will be offset 4 # pixels from the equator. self._xaxis_pretransform = \ Affine2D() \ .scale(1.0, 180) \ .translate(0.0, -90) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ self._xaxis_pretransform + \ self.transData + \ Affine2D().translate(0.0, -8.0) self._xaxis_text2_transform = \ self._xaxis_pretransform+ \ self.transData + \ Affine2D().translate(0.0, -8.0) # Now set up the transforms for the parallel ticks. The input to # these transforms are in axes space in x and display space in # y. Therefore, the input values will be in range (0, -ymin), # (1, ymax). The goal of these transforms is to go from that # space to display space. The tick labels will be offset 4 # pixels from the edge of the axes ellipse. self._yaxis_stretch = Affine2D().scale(360, 1.0).translate(0.0, 0.0) self._yaxis_stretch1 = Affine2D().scale(360, 1.0).translate(0.0, 0.0) self._yaxis_stretch2 = Affine2D().scale(360, 1.0).translate(0.0, 0.0) self._yaxis_transform = \ self._yaxis_stretch + \ self.transData self._yaxis_text1_transform = \ self._yaxis_stretch1 + \ self.transData # Affine2D().translate(-8.0, 0.0) self._yaxis_text2_transform = \ self._yaxis_stretch2 + \ self.transData # Affine2D().translate(8.0, 0.0) def _update_affine(self): # update the transformations and clip paths # after new lims are set. if self.ra0 is None: x0, x1 = self.viewLim.intervalx ra0 = 0.5 * (x0 + x1) else: ra0 = self.ra0 if self.dec0 is None: y0, y1 = self.viewLim.intervaly dec0 = 0.5 * (y0 + y1) else: dec0 = self.dec0 if self.dec1 is None: y0, y1 = self.viewLim.intervaly dec1 = y0 + (y1 - y0) / 12. else: dec1 = self.dec1 if self.dec2 is None: y0, y1 = self.viewLim.intervaly dec2 = y1 - (y1 - y0) / 12. else: dec2 = self.dec2 self.transProjection.set_center((ra0, dec0)) self.transProjection.set_dec1(dec1) self.transProjection.set_dec2(dec2) self._yaxis_stretch\ .clear() \ .scale(self.viewLim.width, 1.0) \ .translate(self.viewLim.x0, 0) self._yaxis_stretch1\ .clear() \ .scale(self.viewLim.width, 1.0) \ .translate(self.viewLim.x0 - 0.00 * self.viewLim.width, 0) self._yaxis_stretch2\ .clear() \ .scale(self.viewLim.width, 1.0) \ .translate(self.viewLim.x0 + 0.00 * self.viewLim.width, 0) self._xaxis_pretransform \ .clear() \ .scale(1.0, self.viewLim.height) \ .translate(0.0, self.viewLim.y0) corners_data = np.array([[self.viewLim.x0, self.viewLim.y0], [ra0, self.viewLim.y0], [self.viewLim.x1, self.viewLim.y0], [self.viewLim.x1, self.viewLim.y1], [self.viewLim.x0, self.viewLim.y1],]) corners = self.transProjection.transform_non_affine(corners_data) x0 = corners[0][0] x1 = corners[2][0] # special case when x1 is wrapped back to x0 # FIXME: I don't think we need it anymore. if x0 == x1: x1 = - x0 y0 = corners[1][1] y1 = max([corners[3][1], corners[4][1]]) xscale = x1 - x0 yscale = y1 - y0 self.transAffine.clear() \ .translate( - (x0 + x1) * 0.5, - (y0 + y1) * 0.5) \ .scale(0.95 / xscale, 0.95 / yscale) \ .translate(0.5, 0.5) # now update the clipping path path = Path(corners_data) path0 = self.transProjection.transform_path(path) path = self.transClip.transform_path(path) self.patch.set_xy(path.vertices) def get_xaxis_transform(self, which='grid'): """ Override this method to provide a transformation for the x-axis grid and ticks. """ assert which in ['tick1', 'tick2', 'grid'] return self._xaxis_transform def get_xaxis_text1_transform(self, pixelPad): """ Override this method to provide a transformation for the x-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._xaxis_text1_transform, 'center', 'center' def get_xaxis_text2_transform(self, pixelPad): """ Override this method to provide a transformation for the secondary x-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._xaxis_text2_transform, 'center', 'center' def get_yaxis_transform(self, which='grid'): """ Override this method to provide a transformation for the y-axis grid and ticks. """ assert which in ['tick1', 'tick2', 'grid'] return self._yaxis_transform def get_yaxis_text1_transform(self, pixelPad): """ Override this method to provide a transformation for the y-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._yaxis_text1_transform, 'center', 'center' def get_yaxis_text2_transform(self, pixelPad): """ Override this method to provide a transformation for the secondary y-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._yaxis_text2_transform, 'center', 'center' def _gen_axes_patch(self): """ ClipPath. Initially set to a size of 2 box in transAxes. After xlim and ylim are set, this will be changed to the actual region in transData. For unclear reason the very initial clip path is always applied to the grid. Therefore we set size to 2.0 to avoid bad clipping. """ return Polygon([(0, 0), (2, 0), (2, 2), (0, 2)], fill=False) def _gen_axes_spines(self): d = { 'left': mspines.Spine.linear_spine(self, spine_type='left'), 'right': mspines.Spine.linear_spine(self, spine_type='right'), 'top': mspines.Spine.linear_spine(self, spine_type='top'), 'bottom': mspines.Spine.linear_spine(self, spine_type='bottom'), } d['left'].set_position(('axes', 0)) d['right'].set_position(('axes', 1)) d['top'].set_position(('axes', 0)) d['bottom'].set_position(('axes', 1)) #FIXME: these spines can be moved wit set_position(('axes', ?)) but # 'data' fails. Because the transformation is non-separatable, # and because spines / data makes that assumption, we probably # do not have a easy way to support moving spines via native matplotlib # api on data axis. # also the labels currently do not follow the spines. Likely because # they are not registered? return d # Prevent the user from applying scales to one or both of the # axes. In this particular case, scaling the axes wouldn't make # sense, so we don't allow it. def set_xscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError Axes.set_xscale(self, *args, **kwargs) def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError Axes.set_yscale(self, *args, **kwargs) def set_center(self, ra0, dec0): """ Set the center of ra """ self.ra0 = ra0 self.dec0 = dec0 self._update_affine() def set_parallels(self, dec1, dec2): """ Set the parallels """ self.dec1 = dec1 self.dec2 = dec2 self._update_affine() # when xlim and ylim are updated, the transformation # needs to be updated too. def set_xlim(self, *args, **kwargs): Axes.set_xlim(self, *args, **kwargs) # FIXME: wrap x0 x1 to ensure they enclose ra0. x0, x1 = self.viewLim.intervalx if self.ra0 is not None: if not x0 <= self.transProjection.ra0 or \ not x1 > self.transProjection.ra0: raise ValueError("The given limit in RA does not enclose ra0") self._update_affine() def set_ylim(self, *args, **kwargs): Axes.set_ylim(self, *args, **kwargs) self._update_affine() def _histmap(self, show, ra, dec, weights=None, nside=32, perarea=False, mean=False, range=None, **kwargs): r = histogrammap(ra, dec, weights, nside, perarea=perarea, range=range) if weights is not None: w, N = r else: w = r if mean: mask = N != 0 w[mask] /= N[mask] else: mask = w > 0 return w, mask, show(w, mask, nest=False, **kwargs) def histmap(self, ra, dec, weights=None, nside=32, perarea=False, mean=False, range=None, **kwargs): return self._histmap(self.mapshow, ra, dec, weights, nside, perarea, mean, range, **kwargs) def histcontour(self, ra, dec, weights=None, nside=32, perarea=False, mean=False, range=None, **kwargs): return self._histmap(self.mapcontour, ra, dec, weights, nside, perarea, mean, range, **kwargs) def mapshow(self, map, mask=None, nest=False, shading='flat', **kwargs): """ Display a healpix map """ vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) defaults = dict(rasterized=True, alpha=1.0, linewidth=0) defaults.update(kwargs) if mask is None: mask = map == map if shading == 'flat': coll = HealpixCollection(map, mask, transform=self.transData, **defaults) else: coll = HealpixTriCollection(map, mask, transform=self.transData, **defaults) coll.set_clim(vmin=vmin, vmax=vmax) self.add_collection(coll) self._sci(coll) self.autoscale_view(tight=True) return coll def mapcontour(self, map, mask=None, nest=False, **kwargs): """ Display a healpix map as coutours. This is approximate. """ if mask is None: mask = map == map ra, dec = pix2radec(healpix.npix2nside(len(map)), mask.nonzero()[0]) im = self.tricontour(ra, dec, map[mask], **kwargs) self._sci(im) self.autoscale_view(tight=True) return im def format_coord(self, lon, lat): """ Override this method to change how the values are displayed in the status bar. In this case, we want them to be displayed in degrees N/S/E/W. """ lon = lon lat = lat if lat >= 0.0: ns = 'N' else: ns = 'S' if lon >= 0.0: ew = 'E' else: ew = 'W' # \u00b0 : degree symbol return '%f\u00b0%s, %f\u00b0%s' % (abs(lat), ns, abs(lon), ew) class DegreeFormatter(Formatter): """ This is a custom formatter that converts the native unit of radians into (truncated) degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to def __call__(self, x, pos=None): degrees = round(x / self._round_to) * self._round_to # \u00b0 : degree symbol return "%d\u00b0" % degrees def set_meridian_grid(self, degrees): """ Set the number of degrees between each meridian grid. It provides a more convenient interface to set the ticking than set_xticks would. """ # Set up a FixedLocator at each of the points, evenly spaced # by degrees. x0, x1 = self.get_xlim() number = abs((x1 - x0) / degrees) + 1 self.xaxis.set_major_locator( FixedLocator( np.linspace(x0, x1, number, True)[1:-1])) # Set the formatter to display the tick labels in degrees, # rather than radians. self.xaxis.set_major_formatter(self.DegreeFormatter(degrees)) def set_parallel_grid(self, degrees): """ Set the number of degrees between each meridian grid. It provides a more convenient interface than set_yticks would. """ # Set up a FixedLocator at each of the points, evenly spaced # by degrees. y0, y1 = self.get_ylim() number = ((y1 - y0) / degrees) + 1 self.yaxis.set_major_locator( FixedLocator( np.linspace(y0, y1, number, True)[1:-1])) # Set the formatter to display the tick labels in degrees, # rather than radians. self.yaxis.set_major_formatter(self.DegreeFormatter(degrees)) # Interactive panning and zooming is not supported with this projection, # so we override all of the following methods to disable it. def _in_axes(self, mouseevent): if hasattr(self._pan_trans): return True else: return Axes._in_axes(self, mouseevent) def can_zoom(self): """ Return True if this axes support the zoom box """ return True def start_pan(self, x, y, button): self._pan_trans = self.transAxes.inverted() + \ blended_transform_factory( self._yaxis_stretch, self._xaxis_pretransform,) def end_pan(self): delattr(self, '_pan_trans') def drag_pan(self, button, key, x, y): pan1 = self._pan_trans.transform([(x, y)])[0] self.set_ra0(360 - pan1[0]) self.set_dec0(pan1[1]) self._update_affine() # now define the Albers equal area axes class AlbersEqualAreaAxes(SkymapperAxes): """ A custom class for the Albers Equal Area projection. https://en.wikipedia.org/wiki/Albers_projection """ name = 'aea' @classmethod def get_projection_class(kls): return kls.AlbersEqualAreaTransform # Now, the transforms themselves. class AlbersEqualAreaTransform(Transform): """ The base Hammer transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, **kwargs): Transform.__init__(self, **kwargs) self.dec0 = 0 self.ra0 = 180 self.dec1 = -60 self.dec2 = 30 self._update() def set_center(self, center): ra0, dec0 = center self.ra0 = ra0 self.dec0 = dec0 self._update() def set_dec1(self, dec1): self.dec1 = dec1 self._update() def set_dec2(self, dec2): self.dec2 = dec2 self._update() def _update(self): self.n = 0.5 * (np.sin(np.radians(self.dec1)) + np.sin(np.radians(self.dec2))) self.C = np.cos(np.radians(self.dec1))**2 + 2 * self.n * np.sin(np.radians(self.dec1)) self.rho0 = self.__rho__(self.dec0) def __rho__(self, dec): if self.n == 0: return np.sqrt(self.C - 2 * self.n * np.sin(np.radians(dec))) else: return np.sqrt(self.C - 2 * self.n * np.sin(np.radians(dec))) / self.n def transform_non_affine(self, ll): """ Override the transform_non_affine method to implement the custom transform. The input and output are Nx2 numpy arrays. """ ra = ll[:,0] dec = ll[:,1] ra0 = self.ra0 ra_ = np.radians(ra - ra0) # Do not inverse for RA # FIXME: problem with the slices sphere: outer parallel needs to be dubplicated at the expense of the central one if self.n == 0: rt = np.array([ self.rho0 * (ra_), - self.rho0 * (np.sin(np.radians(self.dec0) - np.sin(np.radians(dec)))), ]).T else: theta = self.n * ra_ rho = self.__rho__(dec) rt = np.array([ rho*np.sin(theta), self.rho0 - rho*np.cos(theta)]).T #if np.isnan(rt).any(): # raise ValueError('nan occured : ll =%s' % (str(ll))) return rt # This is where things get interesting. With this projection, # straight lines in data space become curves in display space. # This is done by interpolating new values between the input # values of the data. Since ``transform`` must not return a # differently-sized array, any transform that requires # changing the length of the data array must happen within # ``transform_path``. def transform_path_non_affine(self, path): # Adaptive interpolation: # we keep adding control points, till all control points # have an error of less than 0.01 (about 1%) # or if the number of control points is > 80. ra0 = self.ra0 path = path.cleaned(curves=False) v = path.vertices diff = v[:, 0] - v[0, 0] v00 = v[0][0] - ra0 while v00 > 180: v00 -= 360 while v00 < -180: v00 += 360 v00 += ra0 v[:, 0] = v00 + diff nonstop = path.codes > 0 path = Path(v[nonstop], path.codes[nonstop]) isteps = int(path._interpolation_steps * 1.5) if isteps < 10: isteps = 10 while True: ipath = path.interpolated(isteps) tiv = self.transform(ipath.vertices) itv = Path(self.transform(path.vertices)).interpolated(isteps).vertices if np.mean(np.abs(tiv - itv)) < 0.01: break if isteps > 20: break isteps = int(isteps * 1.5) return Path(tiv, ipath.codes) transform_path_non_affine.__doc__ = \ Transform.transform_path_non_affine.__doc__ if matplotlib.__version__ < '1.2': transform = transform_non_affine transform_path = transform_path_non_affine transform_path.__doc__ = Transform.transform_path.__doc__ def inverted(self): return AlbersEqualAreaAxes.InvertedAlbersEqualAreaTransform(self) inverted.__doc__ = Transform.inverted.__doc__ class InvertedAlbersEqualAreaTransform(Transform): """ Inverted transform. This will always only give values in the prime ra0-180 ~ ra0+180 range, I believe. So it is inherently broken. I wonder when matplotlib actually calls this function, given that interactive is disabled. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, inverted, **kwargs): Transform.__init__(self, **kwargs) self.inverted = inverted def transform_non_affine(self, xy): x = xy[:,0] y = xy[:,1] inverted = self.inverted rho = np.sqrt(x**2 + (inverted.rho0 - y)**2) # make sure that the signs are correct if inverted.n == 0: rt = np.degrees( [ np.radians(inverted.ra0) + x / inverted.rho0, np.arcsin(y / inverted.rho0 + np.sin(np.radians(inverted.dec0))) ]).T return rt elif inverted.n > 0: theta = np.degrees(np.arctan2(x, inverted.rho0 - y)) else: theta = np.degrees(np.arctan2(-x, -(inverted.rho0 - y))) return np.degrees([np.radians(inverted.ra0) + theta/inverted.n, np.arcsin((inverted.C - (rho * inverted.n)**2)/(2*inverted.n))]).T transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ if matplotlib.__version__ < '1.2': transform = transform_non_affine def inverted(self): # The inverse of the inverse is the original transform... ;) return self.inverted inverted.__doc__ = Transform.inverted.__doc__ class HealpixCollection(PolyCollection): def __init__(self, map, mask, nest=False, **kwargs): nside = healpix.npix2nside(len(mask)) self.v = pix2quad(nside, mask.nonzero()[0], nest) PolyCollection.__init__(self, self.v, array=map[mask], **kwargs) def get_datalim(self, transData): """ The data lim of a healpix collection. """ # FIXME: it is currently set to the full sky. # This could have been trimmed down. # We want to set xlim smartly such that the largest # empty region is chopped off. I think it is possible, by # doing a histogram in ra, for example. vmin = (0, -90) vmax = (360, 90) return Bbox((vmin, vmax)) import matplotlib.transforms as mtransforms import warnings import numpy as np import numpy.ma as ma import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as mcolors import matplotlib.cm as cm from matplotlib import docstring import matplotlib.transforms as transforms import matplotlib.artist as artist from matplotlib.artist import allow_rasterization import matplotlib.backend_bases as backend_bases import matplotlib.path as mpath from matplotlib import _path import matplotlib.mlab as mlab import matplotlib.lines as mlines from matplotlib.collections import Collection class HealpixTriCollection(Collection): """ Class for the efficient drawing of a triangular mesh using Gouraud shading. A triangular mesh is a :class:`~matplotlib.tri.Triangulation` object. """ def __init__(self, map, mask, nest=False, **kwargs): Collection.__init__(self, **kwargs) nside = healpix.npix2nside(len(map)) # remove the first axes verts = pix2tri(nside, mask.nonzero()[0]).reshape(-1, 3, 2) c = np.ones((verts.shape[0], verts.shape[1])) * np.repeat(map[mask][:, None], 2, axis=0) self._verts = verts self._shading = 'gouraud' self._is_filled = True self.set_array(c.reshape(-1)) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths(self._verts) @staticmethod def convert_mesh_to_paths(verts): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support meshes. This function is primarily of use to backend implementers. """ Path = mpath.Path return [Path(x) for x in verts] @allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() # Get a list of triangles and the color at each vertex. verts = self._verts self.update_scalarmappable() colors = self._facecolors.reshape(-1, 3, 4) oldshape = list(verts.shape) verts = transform.transform(verts.reshape(-1, 2)).reshape(oldshape) gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) renderer.draw_gouraud_triangles(gc, verts, colors, mtransforms.IdentityTransform()) gc.restore() renderer.close_group(self.__class__.__name__) def get_datalim(self, transData): """ The data lim of a healpix collection. """ # FIXME: it is currently set to the full sky. # This could have been trimmed down. # We want to set xlim smartly such that the largest # empty region is chopped off. I think it is possible, by # doing a histogram in ra, for example. vmin = (0, -90) vmax = (360, 90) return Bbox((vmin, vmax)) def _wrap360(phi, dir='left'): phi[np.abs(phi) < 1e-9] = 0 if dir == 'left': ref = phi.min(axis=-1) else: ref = phi.max(axis=-1) # print('ref', ref, phi, ref % 360 - ref) diff = (ref % 360) - ref phi = phi + diff[:, None] #diff = phi - ref[:, None] #print('great', (diff > 180).sum()) #diff[diff > 180] -= 360 #print('less', (diff < -180).sum()) #diff[diff < -180] += 360 #phi = ref[:, None] + diff return phi # a few helper functions talking to healpy/healpix. def pix2quad(nside, pix, nest=False): """Generate healpix quad vertices for pixels where mask is True Args: pix: list of pixel numbers nest: nested or not nside: HealPix nside Returns: vertices vertices: (N,4,2), RA/Dec coordinates of 4 boundary points of cell """ pix = np.asarray(pix) vertices = np.zeros((pix.size, 4, 2)) theta, phi = healpix.vertices(nside, pix) theta = np.degrees(theta) phi = np.degrees(phi) vertices[:, :, 0] = phi vertices[:, :, 1] = 90.0 - theta # ensure objects are in the same image plane. vertices[:, :, 0] = _wrap360(phi, 'right') return vertices def pix2tri(nside, pix, nest=False): """Generate healpix quad vertices for pixels where mask is True Args: pix: list of pixel numbers nest: nested or not nside: HealPix nside Returns: vertices vertices: (N,3,2,2), RA/Dec coordinates of 3 boundary points of 2 triangles """ # each pixel contains 2 triangles. pix = np.asarray(pix) vertices = np.zeros((pix.size, 2, 3, 2)) theta, phi = healpix.vertices(nside, pix) theta = np.degrees(theta) phi = np.degrees(phi) vertices[:, 0, :, 0] = _wrap360(phi[:, [0, 1, 3]], 'left') vertices[:, 0, :, 1] = 90.0 - theta[:, [0, 1, 3]] vertices[:, 1, :, 0] = _wrap360(phi[:, [1, 2, 3]], 'right') vertices[:, 1, :, 1] = 90.0 - theta[:, [1, 2, 3]] return vertices def pix2radec(nside, pix): theta, phi = healpix.pix2ang(nside, pix) return np.degrees(phi), 90 - np.degrees(theta) def radec2pix(nside, ra, dec): phi = np.radians(ra) theta = np.radians(90 - dec) return healpix.ang2pix(nside, theta, phi) def histogrammap(ra, dec, weights=None, nside=32, perarea=False, range=None): if range is not None: (ra1, ra2), (dec1, dec2) = range m = (ra >= ra1)& (ra <= ra2) m &= (dec >= dec1)& (dec <= dec2) ra = ra[m] dec = dec[m] if weights is not None: weights = weights[m] ipix = healpix.ang2pix(nside, np.radians(90-dec), np.radians(ra)) npix = healpix.nside2npix(nside) if perarea: npix = healpix.nside2npix(nside) sky = 360. ** 2 / np.pi area = 1. * (sky / npix) else: area = 1 if weights is not None: w = np.bincount(ipix, weights=weights, minlength=npix) N = np.bincount(ipix, minlength=npix) w = w / area N = N / area return w, N else: w = 1.0 * np.bincount(ipix, minlength=npix) return w / area # Now register the projection with matplotlib so the user can select # it. register_projection(AlbersEqualAreaAxes) def create_healpix(): """ A pure python (numpy-based) version of key healpix functions. The ring scheme is implemented. Depencency: numpy. It shall probably be self-hosted as an individual python package. Author: <NAME> <<EMAIL>> """ import numpy def npix2nside(npix): # FIXME: this could be buggy for large npix nside2 = npix // 12 nside = numpy.array(nside2 ** 0.5).astype('i8') return nside def nside2npix(nside): return nside * nside * 12 def ang2pix(nside, theta, phi): r"""Convert angle :math:`\theta` :math:`\phi` to pixel. This is translated from chealpix.c; but refer to Section 4.1 of http://adsabs.harvard.edu/abs/2005ApJ...622..759G """ nside, theta, phi = numpy.lib.stride_tricks.broadcast_arrays(nside, theta, phi) def equatorial(nside, tt, z): t1 = nside * (0.5 + tt) t2 = nside * z * 0.75 jp = (t1 - t2).astype('i8') jm = (t1 + t2).astype('i8') ir = nside + 1 + jp - jm # in {1, 2n + 1} kshift = 1 - (ir & 1) # kshift=1 if ir even, 0 odd ip = (jp + jm - nside + kshift + 1) // 2 # in {0, 4n - 1} ip = ip % (4 * nside) return nside * (nside - 1) * 2 + (ir - 1) * 4 * nside + ip def polecaps(nside, tt, z, s): tp = tt - numpy.floor(tt) za = numpy.abs(z) tmp = nside * s / ((1 + za) / 3) ** 0.5 mp = za > 0.99 tmp[mp] = nside[mp] * (3 *(1-za[mp])) ** 0.5 jp = (tp * tmp).astype('i8') jm = ((1 - tp) * tmp).astype('i8') ir = jp + jm + 1 ip = (tt * ir).astype('i8') ip = ip % (4 * ir) r1 = 2 * ir * (ir - 1) r2 = 2 * ir * (ir + 1) r = numpy.empty_like(r1) r[z > 0] = r1[z > 0] + ip[z > 0] r[z < 0] = 12 * nside[z < 0] * nside[z < 0] - r2[z < 0] + ip[z < 0] return r z = numpy.cos(theta) s = numpy.sin(theta) tt = (phi / (0.5 * numpy.pi) ) % 4 # in [0, 4] result = numpy.zeros(z.shape, dtype='i8') mask = (z < 2. / 3) & (z > -2. / 3) result[mask] = equatorial(nside[mask], tt[mask], z[mask]) result[~mask] = polecaps(nside[~mask], tt[~mask], z[~mask], s[~mask]) return result def pix2ang(nside, pix): r"""Convert pixel to angle :math:`\theta` :math:`\phi`. nside and pix are broadcast with numpy rules. Returns: theta, phi This is translated from chealpix.c; but refer to Section 4.1 of http://adsabs.harvard.edu/abs/2005ApJ...622..759G """ nside, pix = numpy.lib.stride_tricks.broadcast_arrays(nside, pix) ncap = nside * (nside - 1) * 2 npix = 12 * nside * nside def northpole(pix, npix): iring = (1 + ((1 + 2 * pix) ** 0.5)).astype('i8') // 2 iphi = (pix + 1) - 2 * iring * (iring - 1) z = 1.0 - (iring*iring) * 4. / npix phi = (iphi - 0.5) * 0.5 * numpy.pi / iring return z, phi def equatorial(pix, nside, npix, ncap): ip = pix - ncap iring = ip // (4 * nside) + nside iphi = ip % (4 * nside) + 1 fodd = (((iring + nside) &1) + 1.) * 0.5 z = (2 * nside - iring) * nside * 8.0 / npix phi = (iphi - fodd) * (0.5 * numpy.pi) / nside return z, phi def southpole(pix, npix): ip = npix - pix iring = (1 + ((2 * ip - 1)**0.5).astype('i8')) // 2 iphi = 4 * iring + 1 - (ip - 2 * iring * (iring - 1)) z = -1 + (iring * iring) * 4. / npix phi = (iphi - 0.5 ) * 0.5 * numpy.pi / iring return z, phi mask1 = pix < ncap mask2 = (~mask1) & (pix < npix - ncap) mask3 = pix >= npix - ncap z = numpy.zeros(pix.shape, dtype='f8') phi = numpy.zeros(pix.shape, dtype='f8') z[mask1], phi[mask1] = northpole(pix[mask1], npix[mask1]) z[mask2], phi[mask2] = equatorial(pix[mask2], nside[mask2], npix[mask2], ncap[mask2]) z[mask3], phi[mask3] = southpole(pix[mask3], npix[mask3]) return numpy.arccos(z), phi def ang2xy(theta, phi): r"""Convert :math:`\theta` :math:`\phi` to :math:`x_s` :math:`y_s`. Returns: x, y Refer to Section 4.4 of http://adsabs.harvard.edu/abs/2005ApJ...622..759G """ theta, phi = numpy.lib.stride_tricks.broadcast_arrays(theta, phi) z = numpy.cos(theta) x = numpy.empty(theta.shape, dtype='f8') y = numpy.empty(theta.shape, dtype='f8') def sigma(z): return numpy.sign(z) * (2 - (3 * (1- numpy.abs(z))) ** 0.5) def equatorial(z, phi): return phi, 3 * numpy.pi / 8 * z def polarcaps(z, phi): s = sigma(z) x = phi - (numpy.abs(s) - 1) * (phi % (0.5 * numpy.pi) - 0.25 * numpy.pi) y = 0.25 * numpy.pi * s return x, y mask = numpy.abs(z) < 2. / 3 x[mask], y[mask] = equatorial(z[mask], phi[mask]) x[~mask], y[~mask] = polarcaps(z[~mask], phi[~mask]) return x, y def xy2ang(x, y): r"""Convert :math:`x_s` :math:`y_s` to :math:`\theta` :math:`\phi`. Returns: theta, phi Refer to Section 4.4 of http://adsabs.harvard.edu/abs/2005ApJ...622..759G """ x, y = numpy.lib.stride_tricks.broadcast_arrays(x, y) theta = numpy.empty(x.shape, dtype='f8') phi = numpy.empty(x.shape, dtype='f8') def equatorial(x, y): return numpy.arccos(8 * y / (3 * numpy.pi)), x def polarcaps(x, y): ya = numpy.abs(y) xt = x % (0.5 * numpy.pi) phi = x - (ya - numpy.pi * 0.25) / (ya - numpy.pi * 0.5) * (xt - 0.25 * numpy.pi) z = (1 - 1. / 3 * (2 - 4 * ya / numpy.pi)**2) * y / ya return numpy.arccos(z), phi mask = numpy.abs(y) < numpy.pi * 0.25 theta[mask], phi[mask] = equatorial(x[mask], y[mask]) theta[~mask], phi[~mask] = polarcaps(x[~mask], y[~mask]) return theta, phi def vertices(nside, pix): r""" Calculate the vertices for pixels Returns: theta, phi for each (nside, pix) pair, a four-vector of theta, and a four-vector of phi is returned, corresponding to the theta, phi of each vertex of the pixel boundary. (left, bottom, right, top) """ nside, pix = numpy.lib.stride_tricks.broadcast_arrays(nside, pix) x = numpy.zeros(nside.shape, dtype=('f8', 4)) y =
numpy.zeros(nside.shape, dtype=('f8', 4))
numpy.zeros
import collections from enum import Enum from functools import reduce from operator import mul from typing import Iterable, Tuple, TypeVar, Dict, NamedTuple, Optional, Union import warnings import logging import numpy as np import six from scipy.linalg import block_diag from scipy.optimize import OptimizeResult from collections import abc from autofit.mapper.variable import Variable, VariableData def try_getitem(value, index, default=None): try: return value[index] except TypeError: return default class LogWarnings(warnings.catch_warnings): def __init__(self, *, module=None, messages=None, action=None, logger=logging.warning): super().__init__(record=True, module=module) self.messages = [] if messages is None else messages self.log = [] self.action = action self.logger = logger def log_warning(self, warn): self.log.append(warn) warn_message = f"{warn.filename}:{warn.lineno}: {warn.message}" self.messages.append(warn_message) self.logger(warn_message) def __enter__(self): self.log = super().__enter__() self._module._showwarnmsg_impl = self.log_warning if self.action: warnings.simplefilter(self.action) return self def is_variable(v, *args): return isinstance(v, Variable) def is_iterable(arg): return isinstance(arg, abc.Iterable) and not isinstance( arg, six.string_types ) def nested_filter(func, *args): """ Iterates through a potentially nested set of list, tuples and dictionaries, recursively looping through the structure and returning the arguments that func return true on, Example ------- >>> list(nested_filter( ... lambda x, *args: x==2, ... [1, (2, 3), [3, 2, {1, 2}]] ... )) [(2,), (2,), (2,)] >>> list(nested_filter( ... lambda x, *args: x==2, ... [1, (2, 3), [3, 2, {1, 2}]], ... [1, ('a', 3), [3, 'b', {1, 'c'}]] ... )) [(2, 'a'), (2, 'b'), (2, 'c')] """ out, *_ = args if isinstance(out, dict): for k in out: yield from nested_filter(func, *(out[k] for out in args)) elif is_iterable(out): for elems in zip(*args): yield from nested_filter(func, *elems) else: if func(*args): yield args def nested_update(out, to_replace: dict, replace_keys=False): """ Given a potentially nested set of list, tuples and dictionaries, recursively loop through the structure and replace any values that appear in the dict to_replace can set to replace dictionary keys optionally, Example ------- >>> nested_update([1, (2, 3), [3, 2, {1, 2}]], {2: 'a'}) [1, ('a', 3), [3, 'a', {1, 'a'}]] >>> nested_update([{2: 2}], {2: 'a'}) [{2: 'a'}] >>> nested_update([{2: 2}], {2: 'a'}, True) [{'a': 'a'}] """ try: return to_replace[out] except KeyError: pass if isinstance(out, dict): if replace_keys: return type(out)( { nested_update(k, to_replace, replace_keys): nested_update( v, to_replace, replace_keys ) for k, v in out.items() } ) else: return type(out)( {k: nested_update(v, to_replace, replace_keys) for k, v in out.items()} ) elif is_iterable(out): return type(out)(nested_update(elem, to_replace, replace_keys) for elem in out) return out class StatusFlag(Enum): FAILURE = 0 SUCCESS = 1 NO_CHANGE = 2 BAD_PROJECTION = 3 @classmethod def get_flag(cls, success, n_iter): if success: if n_iter > 0: return cls.SUCCESS else: return cls.NO_CHANGE return cls.FAILURE class Status(NamedTuple): success: bool = True messages: Tuple[str, ...] = () updated: bool = True flag: StatusFlag = StatusFlag.SUCCESS def __bool__(self): return self.success def __str__(self): if self.success: return "Optimisation succeeded" return f"Optimisation failed: {self.messages}" class FlattenArrays(dict): """ >>> shapes = FlattenArrays(a=(1, 2), b=(2, 3)) >>> shapes FlattenArrays(a=(1, 2), b=(2, 3)) >>> shapes.flatten( a = np.arange(2).reshape(1, 2), b = np.arange(6).reshape(2, 3)**2) array([ 0, 1, 0, 1, 4, 9, 16, 25]) >>> shapes.unflatten( [ 0, 1, 0, 1, 4, 9, 16, 25]) {'a': array([[0, 1]]), 'b': array([[ 0, 1, 4], [ 9, 16, 25]])} """ def __init__(self, dict_: Dict[Variable, Tuple[int, ...]]): super().__init__() self.update(dict_) self.splits = np.cumsum([np.prod(s) for s in self.values()], dtype=int) self.inds = [ slice(i0, i1) for i0, i1 in # np.arange(i0, i1, dtype=int) for i0, i1 in zip(np.r_[0, self.splits[:-1]], self.splits) ] self.sizes = {k: np.prod(s, dtype=int) for k, s in self.items()} self.k_inds = dict(zip(self, self.inds)) @classmethod def from_arrays(cls, arrays: Dict[str, np.ndarray]) -> "FlattenArrays": return cls({k: np.shape(arr) for k, arr in arrays.items()}) def flatten(self, arrays_dict: Dict[Variable, np.ndarray]) -> np.ndarray: assert all(np.shape(arrays_dict[k]) == shape for k, shape in self.items()) return np.concatenate([np.ravel(arrays_dict[k]) for k in self.keys()]) def extract(self, key, flat, ndim=None): if ndim is None: ndim = len(flat.shape) ind = self.k_inds[key] return flat[(ind,) * ndim] def unflatten(self, arr: np.ndarray, ndim=None) -> Dict[str, np.ndarray]: arr = np.asanyarray(arr) if ndim is None: ndim = arr.ndim arrays = [arr[(ind,) * ndim] for ind in self.inds] arr_shapes = [arr.shape[ndim:] for arr in arrays] return VariableData({ k: arr.reshape(shape * ndim + arr_shape) if shape or arr_shape else arr.item() for (k, shape), arr_shape, arr in zip(self.items(), arr_shapes, arrays) }) def flatten2d(self, values: Dict[Variable, np.ndarray]) -> np.ndarray: assert all(np.shape(values[k]) == shape * 2 for k, shape in self.items()) return block_diag( *(np.reshape(values[k], (n, n)) for k, n in self.sizes.items()) ) unflatten2d = unflatten def __repr__(self): shapes = ", ".join(map("{0[0]}={0[1]}".format, self.items())) return f"{type(self).__name__}({shapes})" @property def size(self): return self.splits[-1] class OptResult(NamedTuple): mode: Dict[Variable, np.ndarray] hess_inv: Dict[Variable, np.ndarray] log_norm: float full_hess_inv: np.ndarray result: OptimizeResult status: Status = Status() def gen_subsets(n, x, n_iters=None, rng=None): """ Generates random subsets of length n of the array x, if the elements of x are unique then each subset will not contain repeated elements. Each element is guaranteed to reappear after at most 2*len(x) new elements. If `x` is a multi-dimensional array, it is only shuffled along its first index. if x is an integer, generate subsets of ``np.arange(x)``. generates n_iters subsets before stopping. If n_iters is None then generates random subsets for ever rng is an optionally passed random number generator Examples -------- >>> list(gen_subsets(3, 5, n_iters=3)) [array([0, 2, 3]), array([1, 4, 0]), array([2, 3, 4])] >>> list(gen_subsets(3, [1,10,5,3], n_iters=3)) [array([ 5, 10, 1]), array([3, 5, 1]), array([10, 3, 5])] """ rng = rng or np.random.default_rng() x_shuffled = rng.permutation(x) tot = len(x_shuffled) i = 0 stop = tot - n + 1 iters = iter(int, 1) if n_iters is None else range(n_iters) for j in iters: if i < stop: yield x_shuffled[i : i + n] i += n else: x_shuffled = np.r_[x_shuffled[i:], rng.permutation(x_shuffled[:i])] yield x_shuffled[:n] i = n def gen_dict(dict_gen): """ Examples -------- >>> list(gen_dict({1: gen_subsets(3, 4, 3), 2: gen_subsets(2, 5, 3)})) [{1: array([2, 1, 3]), 2: array([2, 0])}, {1: array([0, 3, 1]), 2: array([3, 1])}, {1: array([2, 0, 1]), 2: array([4, 2])}] """ keys = tuple(dict_gen.keys()) for val in zip(*dict_gen.values()): yield dict(zip(keys, val)) _M = TypeVar("_M") def prod(iterable: Iterable[_M], *arg: Tuple[_M]) -> _M: """calculates the product of the passed iterable, much like sum, if a second argument is passed, this is the initial value of the calculation Examples -------- >>> prod(range(1, 3)) 2 >>> prod(range(1, 3), 2.) 4. """ iterable = list(iterable) return reduce(mul, iterable, *arg) def r2_score(y_true, y_pred, axis=None): y_true = np.asanyarray(y_true) y_pred = np.asanyarray(y_pred) mse = np.square(y_true - y_pred).mean(axis=axis) var = y_true.var(axis=axis) return 1 - mse / var def propagate_uncertainty(cov: np.ndarray, jac: np.ndarray) -> np.ndarray: """Propagates the uncertainty of a covariance matrix given the passed Jacobian If the variable arrays are multidimensional then will output in the shape of the arrays see https://en.wikipedia.org/wiki/Propagation_of_uncertainty """ cov = np.asanyarray(cov) var_ndim = cov.ndim // 2 det_ndim = jac.ndim - var_ndim det_shape, var_shape = jac.shape[:det_ndim], jac.shape[det_ndim:] assert var_shape == cov.shape[:var_ndim] == cov.shape[var_ndim:] var_size = np.prod(var_shape, dtype=int) det_size = np.prod(det_shape, dtype=int) cov2d = cov.reshape((var_size, var_size)) jac2d = jac.reshape((det_size, var_size)) det_cov2d = np.linalg.multi_dot((jac2d, cov2d, jac2d.T)) det_cov = det_cov2d.reshape(det_shape + det_shape) return det_cov def rescale_to_artists(artists, ax=None): import matplotlib.pyplot as plt ax = ax or plt.gca() while True: r = ax.figure.canvas.get_renderer() extents = [ t.get_window_extent(renderer=r).transformed(ax.transData.inverted()) for t in artists ] min_extent = np.min([e.min for e in extents], axis=0) max_extent = np.max([e.max for e in extents], axis=0) min_lim, max_lim = zip(ax.get_xlim(), ax.get_ylim()) # Sometimes the window doesn't always rescale first time around if (min_extent < min_lim).any() or (max_extent > max_lim).any(): extent = max_extent - min_extent max_extent += extent * 0.05 min_extent -= extent * 0.05 xlim, ylim = zip( np.minimum(min_lim, min_extent), np.maximum(max_lim, max_extent) ) ax.set_xlim(*xlim) ax.set_ylim(*ylim) else: break return xlim, ylim # These may no longer be needed? def add_arrays(*arrays: np.ndarray) -> np.ndarray: """Sums over broadcasting multidimensional arrays whilst preserving the total sum a = np.arange(10).reshape(1, 2, 1, 5) b = np.arange(8).reshape(2, 2, 2, 1) >>> add_arrays(a, b).sum() 73.0 >>> add_arrays(a, b).shape (2, 2, 2, 5) >>> a.sum() + b.sum() 73 """ b = np.broadcast(*arrays) return sum(a * np.size(a) / b.size for a in arrays) Axis = Optional[Union[bool, int, Tuple[int, ...]]] def aggregate(array: np.ndarray, axis: Axis = None, **kwargs) -> np.ndarray: """ aggregates the values of array if axis is False then aggregate returns the unmodified array otherwise aggrate returns np.sum(array, axis=axis, **kwargs) """ if axis is False: return array return np.sum(array, axis=axis, **kwargs) def diag(array: np.ndarray, *ds: Tuple[int, ...]) -> np.ndarray: array =
np.asanyarray(array)
numpy.asanyarray
import math import numpy as np import paddle import paddle.nn as nn import os import cv2 import paddle.vision.transforms as T import paddle.distributed as dist from paddle.io import DistributedBatchSampler, DataLoader from scheduler import WarmupCosineScheduler from PIL import Image from paddle.vision import transforms import time from common import Attention as Attention_Pure from common import Unfold from common import add_parameter from common import DropPath, Identity, Mlp from common import orthogonal_, trunc_normal_, zeros_, ones_ from config import get_config,configs from dataset import get_dataset from t2t import t2t_vit_7 from sys import argv import sys, getopt #use_gpu = True #paddle.set_device('gpu:1') if use_gpu else paddle.set_device('cpu') dist.init_parallel_env() if __name__ == '__main__': file_path = './config/t2t_vit_7.yaml' ''' opts, args = getopt.getopt(sys.argv[1:], "t:") for op, value in opts: if op == "-t": file_path = value print(file_path) ''' config = get_config(file_path) num_epochs = config.NUM_EPOCHS loss_fun = nn.CrossEntropyLoss() if config.PRE_TRAIN: model = t2t_vit_7(pretrained = config.PRE_TRAIN,model_path = config.MODEL_PATH) else: model = t2t_vit_7(pretrained = config.PRE_TRAIN) #model = paddle.Model(model) model = paddle.DataParallel(model) model.train() dataset_train = get_dataset(config.TRAIN_DATASET_PATH,config.TRAIN_DATASET_LABEL_PATH,mode = 'train') #dataset_train = ImageFolder('ILSVRC2012_w/train', transforms_train) train_sampler = DistributedBatchSampler(dataset_train, batch_size = config.TRAIN_BATCH_SIZE, drop_last=False,shuffle=True ) dataloader_train = paddle.io.DataLoader(dataset_train,num_workers = config.TRAIN_NUM_WORKS,batch_sampler = train_sampler) dataset_val = get_dataset( config.VAL_DATASET_PATH, config.VAL_DATASET_LABEL_PATH,mode = 'val' ) val_sampler = DistributedBatchSampler(dataset_val, batch_size = config.VAL_BATCH_SIZE, drop_last=False) dataloader_val = paddle.io.DataLoader(dataset_val,batch_sampler = val_sampler,num_workers = config.VAL_NUM_WORKS) if config.USE_WARMUP: scheduler = WarmupCosineScheduler(learning_rate = config.BASE_LR, warmup_start_lr = float(config.WARMUP_START_LR), start_lr = config.BASE_LR, end_lr = float(config.END_LR), warmup_epochs = config.WARMUP_EPOCHS, total_epochs = config.NUM_EPOCHS, last_epoch = config.LAST_EPOCHS, ) optimizer = paddle.optimizer.AdamW( parameters = model.parameters(), learning_rate = scheduler, weight_decay = config.WEIGHT_DECAY, #0.03可以试一试 beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0) ) else: optimizer = paddle.optimizer.AdamW( parameters = model.parameters(), learning_rate = config.BASE_LR, weight_decay = config.WEIGHT_DECAY, #0.03可以试一试 beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0) ) #optimizer = paddle.optimizer.Momentum(parameters=model.parameters(), learning_rate=0.05,weight_decay = 0.03) #model.prepare(optimizer = optimizer,loss = loss_fun,metrics=paddle.metric.Accuracy(topk=(1, 5))) #model.fit(dataset_train,epochs = num_epochs,batch_size=128,verbose=1) total_step = len(dataloader_train) read_start_time = 0 read_time = 0 train_start_time = 0 train_time = 0 flag_lr = 0 max_acc = 0.71 for epoch in range(0,num_epochs): model.train() i = 0 train_losses = [] train_accs = [] #read_time read_start_time = time.time() for X,Y in dataloader_train: read_time+=(time.time()-read_start_time) i = i + 1 #train time train_start_time = time.time() pre_y = model(X) loss = loss_fun(pre_y,Y) optimizer.clear_grad() loss.backward() optimizer.step() train_time += (time.time()-train_start_time) train_losses.append(loss.item()) Y = paddle.reshape(Y,shape=[-1, 1]) acc = paddle.metric.accuracy(input=pre_y, label=Y) train_accs.append(acc) if i%1000 == 0: train_loss = np.sum(train_losses) / len(train_losses) train_acc = np.sum(train_accs) / len(train_accs) print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, read_time: {:.4f}, train_time: {:.4f}, lr: {:.6f}'.format(epoch, num_epochs, i, total_step, train_loss,read_time/1000,train_time/1000,optimizer.get_lr())) read_time=0 train_time=0 read_start_time = time.time() scheduler.step() train_loss = np.sum(train_losses) / len(train_losses) train_acc = np.sum(train_accs) / len(train_accs) print('Epoch [{}/{}], avg_Loss: {:.4f}, avg_acc: {:.4f}'.format(epoch, num_epochs, train_loss,train_acc)) if train_acc > 0.70: model.eval() val_accs = [] for X,Y in dataloader_val: pre_y = model(X) Y =paddle.reshape(Y,shape=[-1, 1]) all_Y = [] paddle.distributed.all_gather(all_Y, Y) all_labels = paddle.concat(all_Y, 0) all_pre_y = [] paddle.distributed.all_gather(all_pre_y, pre_y) all_pre = paddle.concat(all_pre_y, 0) acc = paddle.metric.accuracy(input=all_pre, label=all_labels) val_accs.append(acc) val_acc = np.sum(val_accs) / len(val_accs) print("ImageNet val acc is:%.4f" %val_acc) if val_acc > max_acc: max_acc = val_acc print('avg_acc: {:.4f} model saved!'.format( val_acc)) paddle.save(model.state_dict(), "./output/t2t_vit_7_max.pdparams") if(val_acc > 0.7155): print("model saved!\n") paddle.save(model.state_dict(), "./output/t2t_vit_7_final.pdparams") print("train ended!\n") model.eval() val_accs = [] for X,Y in dataloader_val: pre_y = model(X) Y =paddle.reshape(Y,shape=[-1, 1]) all_Y = [] paddle.distributed.all_gather(all_Y, Y) all_labels = paddle.concat(all_Y, 0) all_pre_y = [] paddle.distributed.all_gather(all_pre_y, pre_y) all_pre = paddle.concat(all_pre_y, 0) acc = paddle.metric.accuracy(input=all_pre, label=all_labels) val_accs.append(acc) val_acc =
np.sum(val_accs)
numpy.sum
# Copyright 2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hypothesis import settings, given, strategies as st from hypothesis.extra.numpy import arrays import numpy as np import tensorflow as tf from thewalrus.symplectic import two_mode_squeezing from mrmustard.lab.gates import Sgate, BSgate, S2gate, Ggate, Interferometer, Ggate from mrmustard.lab.circuit import Circuit from mrmustard.utils.training import Optimizer from mrmustard.utils.parametrized import Parametrized from mrmustard.lab.states import Vacuum from mrmustard.physics.gaussian import trace, von_neumann_entropy from mrmustard import settings from mrmustard.math import Math math = Math() @given(n=st.integers(0, 3)) def test_S2gate_coincidence_prob(n): """Testing the optimal probability of obtaining |n,n> from a two mode squeezed vacuum""" tf.random.set_seed(137) S = S2gate( r=abs(np.random.normal()), phi=np.random.normal(), r_trainable=True, phi_trainable=True, ) def cost_fn(): return -tf.abs((Vacuum(2) >> S[0, 1]).ket(cutoffs=[n + 1, n + 1])[n, n]) ** 2 opt = Optimizer(euclidean_lr=0.01) opt.minimize(cost_fn, by_optimizing=[S], max_steps=300) expected = 1 / (n + 1) * (n / (n + 1)) ** n assert np.allclose(-cost_fn(), expected, atol=1e-5) @given(i=st.integers(1, 5), k=st.integers(1, 5)) def test_hong_ou_mandel_optimizer(i, k): """Finding the optimal beamsplitter transmission to get Hong-Ou-Mandel dip This generalizes the single photon Hong-Ou-Mandel effect to the many photon setting see Eq. 20 of https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.3.043065 which lacks a square root in the right hand side. """ tf.random.set_seed(137) r = np.arcsinh(1.0) ops = [ S2gate(r=r, phi=0.0, phi_trainable=True)[0, 1], S2gate(r=r, phi=0.0, phi_trainable=True)[2, 3], BSgate( theta=np.arccos(np.sqrt(k / (i + k))) + 0.1 * np.random.normal(), phi=np.random.normal(), theta_trainable=True, phi_trainable=True, )[1, 2], ] circ = Circuit(ops) state_in = Vacuum(num_modes=4) cutoff = 1 + i + k def cost_fn(): return tf.abs((state_in >> circ).ket(cutoffs=[cutoff] * 4)[i, 1, i + k - 1, k]) ** 2 opt = Optimizer(euclidean_lr=0.01) opt.minimize(cost_fn, by_optimizing=[circ], max_steps=300) assert np.allclose( np.cos(circ.trainable_parameters["euclidean"][2]) ** 2, k / (i + k), atol=1e-2 ) def test_squeezing_hong_ou_mandel_optimizer(): """Finding the optimal squeezing parameter to get Hong-Ou-Mandel dip in time see https://www.pnas.org/content/117/52/33107/tab-article-info """ tf.random.set_seed(137) r = np.arcsinh(1.0) ops = [ S2gate(r=r, phi=0.0, phi_trainable=True)[0, 1], S2gate(r=r, phi=0.0, phi_trainable=True)[2, 3], S2gate(r=1.0, phi=np.random.normal(), r_trainable=True, phi_trainable=True)[1, 2], ] circ = Circuit(ops) state_in = Vacuum(num_modes=4) def cost_fn(): return tf.abs((state_in >> circ).ket(cutoffs=[2, 2, 2, 2])[1, 1, 1, 1]) ** 2 opt = Optimizer(euclidean_lr=0.001) opt.minimize(cost_fn, by_optimizing=[circ], max_steps=300) assert np.allclose(np.sinh(circ.trainable_parameters["euclidean"][2]) ** 2, 1, atol=1e-2) def test_learning_two_mode_squeezing(): """Finding the optimal beamsplitter transmission to make a pair of single photons""" tf.random.set_seed(137) ops = [ Sgate( r=abs(np.random.normal(size=(2))), phi=np.random.normal(size=(2)), r_trainable=True, phi_trainable=True, ), BSgate( theta=np.random.normal(), phi=np.random.normal(), theta_trainable=True, phi_trainable=True, ), ] circ = Circuit(ops) tf.random.set_seed(20) state_in = Vacuum(num_modes=2) def cost_fn(): amps = (state_in >> circ).ket(cutoffs=[2, 2]) return -tf.abs(amps[1, 1]) ** 2 + tf.abs(amps[0, 1]) ** 2 opt = Optimizer(euclidean_lr=0.05) opt.minimize(cost_fn, by_optimizing=[circ], max_steps=1000) assert np.allclose(-cost_fn(), 0.25, atol=1e-5) def test_learning_two_mode_Ggate(): """Finding the optimal Ggate to make a pair of single photons""" tf.random.set_seed(137) G = Ggate(num_modes=2, symplectic_trainable=True) tf.random.set_seed(20) def cost_fn(): amps = (Vacuum(2) >> G).ket(cutoffs=[2, 2]) return -tf.abs(amps[1, 1]) ** 2 + tf.abs(amps[0, 1]) ** 2 opt = Optimizer(symplectic_lr=0.5, euclidean_lr=0.01) opt.minimize(cost_fn, by_optimizing=[G], max_steps=500) assert np.allclose(-cost_fn(), 0.25, atol=1e-4) def test_learning_two_mode_Interferometer(): """Finding the optimal Interferometer to make a pair of single photons""" np.random.seed(11) ops = [ Sgate( r=np.random.normal(size=(2)) ** 2, phi=np.random.normal(size=(2)), r_trainable=True, phi_trainable=True, ), Interferometer(num_modes=2, orthogonal_trainable=True), ] circ = Circuit(ops) state_in = Vacuum(num_modes=2) def cost_fn(): amps = (state_in >> circ).ket(cutoffs=[2, 2]) return -tf.abs(amps[1, 1]) ** 2 + tf.abs(amps[0, 1]) ** 2 opt = Optimizer(orthogonal_lr=0.5, euclidean_lr=0.01) opt.minimize(cost_fn, by_optimizing=[circ], max_steps=1000) assert np.allclose(-cost_fn(), 0.25, atol=1e-5) def test_learning_four_mode_Interferometer(): """Finding the optimal Interferometer to make a NOON state with N=2""" np.random.seed(11) ops = [ Sgate( r=np.random.uniform(size=4), phi=np.random.normal(size=4), r_trainable=True, phi_trainable=True, ), Interferometer(num_modes=4, orthogonal_trainable=True), ] circ = Circuit(ops) state_in = Vacuum(num_modes=4) def cost_fn(): amps = (state_in >> circ).ket(cutoffs=[3, 3, 3, 3]) return ( -tf.abs( tf.reduce_sum( amps[1, 1] * np.array([[0, 0, 1 / np.sqrt(2)], [0, 0, 0], [1 / np.sqrt(2), 0, 0]]) ) ) ** 2 ) opt = Optimizer(symplectic_lr=0.5, euclidean_lr=0.01) opt.minimize(cost_fn, by_optimizing=[circ], max_steps=1000) assert np.allclose(-cost_fn(), 0.0625, atol=1e-5) def test_squeezing_hong_ou_mandel_optimizer(): """Finding the optimal squeezing parameter to get Hong-Ou-Mandel dip in time see https://www.pnas.org/content/117/52/33107/tab-article-info """ tf.random.set_seed(137) r = np.arcsinh(1.0) ops = [ S2gate(r=r, phi=0.0, phi_trainable=True)[0, 1], S2gate(r=r, phi=0.0, phi_trainable=True)[2, 3], S2gate(r=1.0, phi=np.random.normal(), r_trainable=True, phi_trainable=True)[1, 2], ] circ = Circuit(ops) def cost_fn(): return tf.abs((Vacuum(4) >> circ).ket(cutoffs=[2, 2, 2, 2])[1, 1, 1, 1]) ** 2 opt = Optimizer(euclidean_lr=0.001) opt.minimize(cost_fn, by_optimizing=[circ], max_steps=300) assert np.allclose(np.sinh(circ.trainable_parameters["euclidean"][2]) ** 2, 1, atol=1e-2) def test_parameter_passthrough(): """Same as the test above, but with param passthrough""" tf.random.set_seed(137) r = np.arcsinh(1.0) par = Parametrized( r=math.new_variable(r, (0.0, None), "r"), phi=math.new_variable(
np.random.normal()
numpy.random.normal
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 17:45:51 2020 Author: <NAME> License: BSD-3 """ import numpy as np from numpy.testing import assert_allclose, assert_equal import pytest from statsmodels.regression.linear_model import OLS import statsmodels.stats.power as smpwr import statsmodels.stats.oneway as smo # needed for function with `test` from statsmodels.stats.oneway import ( confint_effectsize_oneway, confint_noncentrality, effectsize_oneway, anova_oneway, anova_generic, equivalence_oneway, equivalence_oneway_generic, power_equivalence_oneway, power_equivalence_oneway0, f2_to_wellek, fstat_to_wellek, wellek_to_f2) from statsmodels.stats.robust_compare import scale_transform from statsmodels.stats.contrast import ( wald_test_noncent_generic, wald_test_noncent, _offset_constraint) def test_oneway_effectsize(): # examole 3 in Steiger 2004 Beyond the F-test, p. 169 F = 5 df1 = 3 df2 = 76 nobs = 80 ci = confint_noncentrality(F, df1, df2, alpha=0.05, alternative="two-sided") ci_es = confint_effectsize_oneway(F, df1, df2, alpha=0.05) ci_steiger = ci_es.ci_f * np.sqrt(4 / 3) res_ci_steiger = [0.1764, 0.7367] res_ci_nc = np.asarray([1.8666, 32.563]) assert_allclose(ci, res_ci_nc, atol=0.0001) assert_allclose(ci_es.ci_f_corrected, res_ci_steiger, atol=0.00006) assert_allclose(ci_steiger, res_ci_steiger, atol=0.00006) assert_allclose(ci_es.ci_f**2, res_ci_nc / nobs, atol=0.00006) assert_allclose(ci_es.ci_nc, res_ci_nc, atol=0.0001) def test_effectsize_power(): # example and results from PASS documentation n_groups = 3 means = [527.86, 660.43, 649.14] vars_ = 107.4304**2 nobs = 12 es = effectsize_oneway(means, vars_, nobs, use_var="equal", ddof_between=0) es = np.sqrt(es) alpha = 0.05 power = 0.8 nobs_t = nobs * n_groups kwds = {'effect_size': es, 'nobs': nobs_t, 'alpha': alpha, 'power': power, 'k_groups': n_groups} from statsmodels.stats.power import FTestAnovaPower res_pow = 0.8251 res_es = 0.559 kwds_ = kwds.copy() del kwds_['power'] p = FTestAnovaPower().power(**kwds_) assert_allclose(p, res_pow, atol=0.0001) assert_allclose(es, res_es, atol=0.0006) # example unequal sample sizes nobs = np.array([15, 9, 9]) kwds['nobs'] = nobs es = effectsize_oneway(means, vars_, nobs, use_var="equal", ddof_between=0) es = np.sqrt(es) kwds['effect_size'] = es p = FTestAnovaPower().power(**kwds_) res_pow = 0.8297 res_es = 0.590 assert_allclose(p, res_pow, atol=0.005) # lower than print precision assert_allclose(es, res_es, atol=0.0006) def test_effectsize_fstat(): # results from R package `effectsize`, confint is 0.9 confidence # > es = F_to_eta2(45.8, 3, 35) Eta_Sq_partial = 0.796983758700696 CI_eta2 = 0.685670133284926, 0.855981325777856 # reformated from output # > es = F_to_epsilon2(45.8, 3, 35) Epsilon_Sq_partial = 0.779582366589327 CI_eps2 = 0.658727573280777, 0.843636867987386 # > es = F_to_omega2(45.8, 3, 35) Omega_Sq_partial = 0.775086505190311 CI_omega2 = 0.65286429480169, 0.840179680453464 # > es = F_to_f(45.8, 3, 35) Cohens_f_partial = 1.98134153686695 CI_f = 1.47694659580859, 2.43793847155554 f_stat, df1, df2 = 45.8, 3, 35 # nobs = df1 + df2 + 1 # not directly used in the following, only df fes = smo._fstat2effectsize(f_stat, df1, df2) assert_allclose(np.sqrt(fes.f2), Cohens_f_partial, rtol=1e-13) assert_allclose(fes.eta2, Eta_Sq_partial, rtol=1e-13) assert_allclose(fes.eps2, Epsilon_Sq_partial, rtol=1e-13) assert_allclose(fes.omega2, Omega_Sq_partial, rtol=1e-13) ci_nc = confint_noncentrality(f_stat, df1, df2, alpha=0.1) # the following replicates R package effectsize ci_es = smo._fstat2effectsize(ci_nc / df1, df1, df2) assert_allclose(ci_es.eta2, CI_eta2, rtol=2e-4) assert_allclose(ci_es.eps2, CI_eps2, rtol=2e-4) assert_allclose(ci_es.omega2, CI_omega2, rtol=2e-4) assert_allclose(np.sqrt(ci_es.f2), CI_f, rtol=2e-4) def test_effectsize_fstat_stata(): # reference numbers computed with Stata 14 # Stata 16 does not seem to have confint for omega2 # esizei 2 40 7.47403193349075, level(90) eta2 = 0.2720398648288652 lb_eta2 = 0.0742092468714613 ub_eta2 = 0.4156116886974804 omega2 = 0.2356418580703085 lb_omega2 = 0.0279197092150344 ub_omega2 = 0.3863922731323545 # level = 90 f_stat, df1, df2 = 7.47403193349075, 2, 40 fes = smo._fstat2effectsize(f_stat, df1, df2) assert_allclose(fes.eta2, eta2, rtol=1e-13) assert_allclose(fes.omega2, omega2, rtol=0.02) # low agreement ci_es = smo.confint_effectsize_oneway(f_stat, df1, df2, alpha=0.1) assert_allclose(ci_es.eta2, (lb_eta2, ub_eta2), rtol=1e-4) assert_allclose(ci_es.ci_omega2, (lb_omega2, ub_omega2), rtol=0.025) @pytest.mark.parametrize("center", ['median', 'mean', 'trimmed']) def test_scale_transform(center): x = np.random.randn(5, 3) xt = scale_transform(x, center=center, transform='abs', trim_frac=0.2, axis=0) xtt = scale_transform(x.T, center=center, transform='abs', trim_frac=0.2, axis=1) assert_allclose(xt.T, xtt, rtol=1e-13) xt0 = scale_transform(x[:, 0], center=center, transform='abs', trim_frac=0.2) assert_allclose(xt0, xt[:, 0], rtol=1e-13) assert_allclose(xt0, xtt[0, :], rtol=1e-13) class TestOnewayEquivalenc(object): @classmethod def setup_class(cls): y0 = [112.488, 103.738, 86.344, 101.708, 95.108, 105.931, 95.815, 91.864, 102.479, 102.644] y1 = [100.421, 101.966, 99.636, 105.983, 88.377, 102.618, 105.486, 98.662, 94.137, 98.626, 89.367, 106.204] y2 = [84.846, 100.488, 119.763, 103.736, 93.141, 108.254, 99.510, 89.005, 108.200, 82.209, 100.104, 103.706, 107.067] y3 = [100.825, 100.255, 103.363, 93.230, 95.325, 100.288, 94.750, 107.129, 98.246, 96.365, 99.740, 106.049, 92.691, 93.111, 98.243] n_groups = 4 arrs_w = [np.asarray(yi) for yi in [y0, y1, y2, y3]] nobs = np.asarray([len(yi) for yi in arrs_w]) nobs_mean = np.mean(nobs) means = np.asarray([yi.mean() for yi in arrs_w]) stds = np.asarray([yi.std(ddof=1) for yi in arrs_w]) cls.data = arrs_w # TODO use `data` cls.means = means cls.nobs = nobs cls.stds = stds cls.n_groups = n_groups cls.nobs_mean = nobs_mean def test_equivalence_equal(self): # reference numbers from Jan and Shieh 2019, p. 5 means = self.means nobs = self.nobs stds = self.stds n_groups = self.n_groups eps = 0.5 res0 = anova_generic(means, stds**2, nobs, use_var="equal") f = res0.statistic res = equivalence_oneway_generic(f, n_groups, nobs.sum(), eps, res0.df, alpha=0.05, margin_type="wellek") assert_allclose(res.pvalue, 0.0083, atol=0.001) assert_equal(res.df, [3, 46]) # the agreement for f-stat looks too low assert_allclose(f, 0.0926, atol=0.0006) res = equivalence_oneway(self.data, eps, use_var="equal", margin_type="wellek") assert_allclose(res.pvalue, 0.0083, atol=0.001) assert_equal(res.df, [3, 46]) def test_equivalence_welch(self): # reference numbers from Jan and Shieh 2019, p. 6 means = self.means nobs = self.nobs stds = self.stds n_groups = self.n_groups vars_ = stds**2 eps = 0.5 res0 = anova_generic(means, vars_, nobs, use_var="unequal", welch_correction=False) f_stat = res0.statistic res = equivalence_oneway_generic(f_stat, n_groups, nobs.sum(), eps, res0.df, alpha=0.05, margin_type="wellek") assert_allclose(res.pvalue, 0.0110, atol=0.001) assert_allclose(res.df, [3.0, 22.6536], atol=0.0006) # agreement for Welch f-stat looks too low b/c welch_correction=False assert_allclose(f_stat, 0.1102, atol=0.007) res = equivalence_oneway(self.data, eps, use_var="unequal", margin_type="wellek") assert_allclose(res.pvalue, 0.0110, atol=1e-4) assert_allclose(res.df, [3.0, 22.6536], atol=0.0006) assert_allclose(res.f_stat, 0.1102, atol=1e-4) # 0.007) # check post-hoc power, JS p. 6 pow_ = power_equivalence_oneway0(f_stat, n_groups, nobs, eps, res0.df) assert_allclose(pow_, 0.1552, atol=0.007) pow_ = power_equivalence_oneway(eps, eps, nobs.sum(), n_groups=n_groups, df=None, alpha=0.05, margin_type="wellek") assert_allclose(pow_, 0.05, atol=1e-13) nobs_t = nobs.sum() es = effectsize_oneway(means, vars_, nobs, use_var="unequal") es = np.sqrt(es) es_w0 = f2_to_wellek(es**2, n_groups) es_w = np.sqrt(fstat_to_wellek(f_stat, n_groups, nobs_t / n_groups)) pow_ = power_equivalence_oneway(es_w, eps, nobs_t, n_groups=n_groups, df=None, alpha=0.05, margin_type="wellek") assert_allclose(pow_, 0.1552, atol=0.007) assert_allclose(es_w0, es_w, atol=0.007) margin = wellek_to_f2(eps, n_groups) pow_ = power_equivalence_oneway(es**2, margin, nobs_t, n_groups=n_groups, df=None, alpha=0.05, margin_type="f2") assert_allclose(pow_, 0.1552, atol=0.007) class TestOnewayScale(object): @classmethod def setup_class(cls): yt0 = np.array([102., 320., 0., 107., 198., 200., 4., 20., 110., 128., 7., 119., 309.]) yt1 = np.array([0., 1., 228., 81., 87., 119., 79., 181., 43., 12., 90., 105., 108., 119., 0., 9.]) yt2 = np.array([33., 294., 134., 216., 83., 105., 69., 20., 20., 63., 98., 155., 78., 75.]) y0 = np.array([452., 874., 554., 447., 356., 754., 558., 574., 664., 682., 547., 435., 245.]) y1 = np.array([546., 547., 774., 465., 459., 665., 467., 365., 589., 534., 456., 651., 654., 665., 546., 537.]) y2 = np.array([785., 458., 886., 536., 669., 857., 821., 772., 732., 689., 654., 597., 830., 827.]) n_groups = 3 data = [y0, y1, y2] nobs = np.asarray([len(yi) for yi in data]) nobs_mean = np.mean(nobs) means = np.asarray([yi.mean() for yi in data]) stds = np.asarray([yi.std(ddof=1) for yi in data]) cls.data = data cls.data_transformed = [yt0, yt1, yt2] cls.means = means cls.nobs = nobs cls.stds = stds cls.n_groups = n_groups cls.nobs_mean = nobs_mean def test_means(self): # library onewaystats, BF test for equality of means # st = bf.test(y ~ g, df3) statistic = 7.10900606421182 parameter = [2, 31.4207256105052] p_value = 0.00283841965791224 # method = 'Brown-Forsythe Test' res = anova_oneway(self.data, use_var="bf") # R bf.test uses original BF df_num
assert_allclose(res.pvalue2, p_value, rtol=1e-13)
numpy.testing.assert_allclose
''' Neuro Evolution Algorithm by <NAME> author of FitML github blog and repository https://github.com/FitMachineLearning/FitML/ See the agents in action at https://www.youtube.com/channel/UCi7_WxajoowBl4_9P0DhzzA/featured ''' import numpy as np import keras import gym from random import gauss #import roboschool import math from random import randint import tensorflow as tf from Lib.Individual import IndividualTF ''' ENVIRONMENT_NAME = "RoboschoolAnt-v1" OBSERVATION_SPACE = 28 ACTION_SPACE = 8 ''' ENVIRONMENT_NAME = "LunarLanderContinuous-v2" OBSERVATION_SPACE = 8 ACTION_SPACE = 2 B_DISCOUNT = 0.98 POPULATION_SIZE = 12 NETWORK_WIDTH = 32 NETWORK_HIDDEN_LAYERS = 0 NUM_TEST_EPISODES = 1 NUM_SELECTED_FOR_REPRODUCTION = 2 NOISE_SIGMA = 0.05 MUTATION_PROB = 0.1 MAX_GENERATIONS = 200000 USE_GAUSSIAN_NOISE = True HAS_EARLY_TERMINATION_REWARD = False EARLY_TERMINATION_REWARD = -50 CLIP_ACTIONS = True MAX_STEPS = 950 all_individuals = [] generations_count = 0 total_population_counter = 0 #numLandings = 0 '''---------ENVIRONMENT INITIALIZATION--------''' env = gym.make(ENVIRONMENT_NAME) #env.render(mode="human") env.reset() print("-- Observations",env.observation_space) print("-- actionspace",env.action_space) #initialize training matrix with random states and actions apdataX = tf.placeholder("float", [None, OBSERVATION_SPACE]) #apdataY = np.random.random((5,num_env_actions)) apdataY = tf.placeholder("float", [None, ACTION_SPACE]) sess = tf.Session() '''---------------------''' def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def apModel(X, apw_h, apw_o): h = tf.nn.leaky_relu(tf.matmul(X, apw_h)) # this is a basic mlp, think 2 stacked logistic regressions return tf.matmul(h, apw_o) # note that we dont take the softmax at the end because our cost fn does that for us def GetRememberedOptimalPolicy(indiv,qstate): predX = np.zeros(shape=(1,OBSERVATION_SPACE)) predX[0] = qstate #print("trying to predict reward at qs_a", predX[0]) #pred = action_predictor_model.predict(predX[0].reshape(1,predX.shape[1])) inputVal = predX[0].reshape(1,predX.shape[1]) pred = sess.run(indiv.appy_x, feed_dict={apdataX: inputVal}) r_remembered_optimal_policy = pred[0] return r_remembered_optimal_policy def create_individualTF(network_width, network_hidden_layers, observation_space, action_space): ''' apModel ''' apw_h = init_weights([OBSERVATION_SPACE, 2048]) # create symbolic variables apw_h2 = init_weights([32, 32]) # create symbolic variables apw_h3 = init_weights([32, 32]) # create symbolic variable apw_o = init_weights([2048, ACTION_SPACE]) appy_x = apModel(apdataX, apw_h, apw_o) apcost = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(apdataY, appy_x)))) apOptimizer = tf.train.AdadeltaOptimizer(1.,0.9,1e-6) aptrain_op = apOptimizer.minimize(apcost) ''' end apModel ''' sess.run(tf.global_variables_initializer()) #action_predictor_model = create_model(network_width,network_hidden_layers, observation_space, action_space) indiv = IndividualTF(generationID=generations_count, indivID=total_population_counter , apw_h=apw_h,apw_h2=apw_h2, apw_h3=apw_h3,apw_o=apw_o,appy_x=appy_x) print("Creating individual ",generations_count) return indiv def initialize_population(population_size,network_width,network_hidden_layers, observation_space, action_space, environment_name,total_population_counter): initial_population = [] for i in range (population_size): #print("kk", network_width,network_hidden_layers,observation_space,action_space) indiv = create_individualTF( network_width, network_hidden_layers, observation_space, action_space) total_population_counter += 1 initial_population.append(indiv) return initial_population, total_population_counter def test_individual(indiv,num_test_episodes): indiv.lifeScore = 0 allRewards = [] terminated_early = False for i in range(num_test_episodes): episodeRewards = [] cumulativeRewards = 0 #print("episode "+str(i)+" performing test for indiv ",indiv.printme()) qs = env.reset() for step in range (5000): a = GetRememberedOptimalPolicy(indiv, qs) if CLIP_ACTIONS: for i in range (np.alen(a)): if a[i] < -1: a[i]=-0.99999999999 if a[i] > 1: a[i] = 0.99999999999 qs,r,done,info = env.step(a) if HAS_EARLY_TERMINATION_REWARD and done and step<MAX_STEPS-3: r = EARLY_TERMINATION_REWARD terminated_early = True cumulativeRewards = cumulativeRewards + r episodeRewards.append(r) #indiv.lifeScore += r env.render() if step > MAX_STEPS: done = True if done: episodeRewards.reverse() for j in range(len(episodeRewards)): #if j ==0: # print("last reward ",episodeRewards[j]) if j > 0: episodeRewards[j] = episodeRewards[j] + B_DISCOUNT * episodeRewards[j-1] #avg = sum(episodeRewards)/len(episodeRewards) #print("episode average ", avg) for j in range(len(episodeRewards)): allRewards.append(episodeRewards[j]) #allRewards = allRewards + episodeRewards epAvg = sum(episodeRewards) / len(episodeRewards) allRewards.append(epAvg) #f epAvg >0: # numLandings = numLandings+1 break #print("generationID",indiv.generationID,"IndivID",indiv.indivID,"episodeRewards rewards ",epAvg) avg = sum(allRewards) / len(allRewards) indiv.lifeScore = avg #indiv.lifeScore = math.fabs(float(env.unwrapped.walk_target_dist) - 1001.0) #if terminated_early: # print("Terminated early") # indiv.lifeScore = math.fabs(float(env.unwrapped.walk_target_dist) - 1001.0) - ( - EARLY_TERMINATION_REWARD) print("generationID",indiv.generationID,"indivID - ",indiv.indivID,"numLandings ",0,"lifeScore =",indiv.lifeScore) def test_all_individuals(num_test_episodes): for i in range(len(all_individuals)): test_individual(all_individuals[i],NUM_TEST_EPISODES) def select_top_individuals(num_selected,population_size): scores = np.zeros(population_size) for i in range(np.alen(scores)): scores[i] = all_individuals[i].lifeScore #print( scores ) topScores = scores[ scores.argsort()[-num_selected:][::-1] ] #print ("Top Scores ", topScores) selected_individuals = [] for i in range(len(all_individuals)): if all_individuals[i].lifeScore >= topScores.min(): #print("Selecting individual",i," with score ", all_individuals[i].lifeScore,"cuttoff ", topScores.min()) selected_individuals.append(all_individuals[i]) else: all_individuals[i].indivID = -1 all_individuals[i].generationID = -1 all_individuals[i].lifeScore = -10000 print("Selected individuals ") for i in range (len(selected_individuals)): print(selected_individuals[i].printme()) return selected_individuals # --- Parameter Noising def add_noise_simple(mu,noiseSigma, largeNoise=False): x =
np.random.rand(1)
numpy.random.rand
""" primitive.py ---------- Process detected planar primitives. Primitives are supported in vertex group format (.vg, .bvg). Mapple as in [Easy3D](https://github.com/LiangliangNan/Easy3D) can be used to generate such primitives from point clouds. Otherwise, one can refer to the vertex group file format specification attached to the README document. """ from random import random from pathlib import PosixPath import struct import numpy as np from sklearn.decomposition import PCA from tqdm import tqdm from .logger import attach_to_log logger = attach_to_log() class VertexGroup: """ Class for manipulating planar primitives. """ def __init__(self, filepath, process=True): """ Init VertexGroup. Class for manipulating planar primitives. Parameters ---------- filepath: pathlib.Path Filepath to vertex group file (.vg) or binary vertex group file (.bvg) process: bool Immediate processing if set True """ self.filepath = filepath self.processed = False self.points = None self.planes = None self.bounds = None self.points_grouped = None self.points_ungrouped = None self.vgroup_ascii = self.load_file() self.vgroup_binary = None if process: self.process() def load_file(self): """ Load (ascii / binary) vertex group file. """ if self.filepath.suffix == '.vg': with open(self.filepath, 'r') as fin: return fin.readlines() elif self.filepath.suffix == '.bvg': # define size constants _SIZE_OF_INT = 4 _SIZE_OF_FLOAT = 4 _SIZE_OF_PARAM = 4 _SIZE_OF_COLOR = 3 vgroup_ascii = '' with open(self.filepath, 'rb') as fin: # points num_points = struct.unpack('i', fin.read(_SIZE_OF_INT))[0] points = struct.unpack('f' * num_points * 3, fin.read(_SIZE_OF_FLOAT * num_points * 3)) vgroup_ascii += f'num_points: {num_points}\n' vgroup_ascii += ' '.join(map(str, points)) + '\n' # colors num_colors = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] vgroup_ascii += f'num_colors: {num_colors}\n' # normals num_normals = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] normals = struct.unpack('f' * num_normals * 3, fin.read(_SIZE_OF_FLOAT * num_normals * 3)) vgroup_ascii += f'num_normals: {num_normals}\n' vgroup_ascii += ' '.join(map(str, normals)) + '\n' # groups num_groups = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] vgroup_ascii += f'num_groups: {num_groups}\n' group_counter = 0 while group_counter < num_groups: group_type = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] num_group_parameters = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] group_parameters = struct.unpack("f" * _SIZE_OF_PARAM, fin.read(_SIZE_OF_INT * _SIZE_OF_PARAM)) group_label_size = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] # be reminded that vg <-> bvg in Mapple does not maintain group order group_label = struct.unpack("c" * group_label_size, fin.read(group_label_size)) group_color = struct.unpack("f" * _SIZE_OF_COLOR, fin.read(_SIZE_OF_FLOAT * _SIZE_OF_COLOR)) group_num_point = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] group_points = struct.unpack("i" * group_num_point, fin.read(_SIZE_OF_INT * group_num_point)) num_children = struct.unpack("i", fin.read(_SIZE_OF_INT))[0] vgroup_ascii += f'group_type: {group_type}\n' vgroup_ascii += f'num_group_parameters: {num_group_parameters}\n' vgroup_ascii += 'group_parameters: ' + ' '.join(map(str, group_parameters)) + '\n' vgroup_ascii += 'group_label: ' + ''.join(map(str, group_label)) + '\n' vgroup_ascii += 'group_color: ' + ' '.join(map(str, group_color)) + '\n' vgroup_ascii += f'group_num_point: {group_num_point}\n' vgroup_ascii += ' '.join(map(str, group_points)) + '\n' vgroup_ascii += f'num_children: {num_children}\n' group_counter += 1 # convert vgroup_ascii to list return vgroup_ascii.split('\n') else: raise ValueError(f'unable to load {self.filepath}, expected *.vg or .bvg.') def process(self): """ Start processing vertex group. """ logger.info('processing {}'.format(self.filepath)) self.points = self.get_points() self.planes, self.bounds, self.points_grouped, self.points_ungrouped = self.get_primitives() self.processed = True def get_points(self, row=1): """ Get points from vertex group. Parameters ---------- row: int Row number where points are specified, defaults to 1 for filename.vg Returns ---------- as_float: (n, 3) float Point cloud """ pc = np.fromstring(self.vgroup_ascii[row], sep=' ') return np.reshape(pc, (-1, 3)) def get_primitives(self): """ Get primitives from vertex group. Returns ---------- params: (n, 4) float Plane parameters bounds: (n, 2, 3) float Bounding box of the primitives groups: (n, m, 3) float Groups of points ungrouped_points: (u, 3) float Points that belong to no group """ is_primitive = [line.startswith('group_num_point') for line in self.vgroup_ascii] primitives = [self.vgroup_ascii[line] for line in np.where(is_primitive)[0] + 1] # lines of groups in the file params = [] bounds = [] groups = [] grouped_indices = set() # indices of points being grouped for i, p in enumerate(primitives): point_indices = np.fromstring(p, sep=' ').astype(np.int64) grouped_indices.update(point_indices) points = self.points[point_indices] param = self.fit_plane(points, mode='PCA') if param is None: continue params.append(param) bounds.append(self._points_bound(points)) groups.append(points) ungrouped_indices = set(range(len(self.points))).difference(grouped_indices) ungrouped_points = self.points[list(ungrouped_indices)] # points that belong to no groups return np.array(params), np.array(bounds),
np.array(groups, dtype=object)
numpy.array
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from SimPEG import Mesh, Utils import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from scipy.sparse import spdiags,csr_matrix, eye,kron,hstack,vstack,eye,diags import copy from scipy.constants import mu_0 from SimPEG import SolverLU from scipy.sparse.linalg import spsolve,splu from SimPEG.EM import TDEM from SimPEG.EM.Analytics.TDEM import hzAnalyticDipoleT,hzAnalyticCentLoopT from scipy.interpolate import interp2d,LinearNDInterpolator from scipy.special import ellipk,ellipe def rectangular_plane_layout(mesh,corner, closed = False,I=1.): """ corner: sorted list of four corners (x,y,z) 2--3 | | 1--4 y | |--> x Output: Js """ Jx = np.zeros(mesh.nEx) Jy = np.zeros(mesh.nEy) Jz = np.zeros(mesh.nEz) indy1 = np.logical_and( \ np.logical_and( \ np.logical_and(mesh.gridEy[:,0]>=corner[0,0],mesh.gridEy[:,0]<=corner[1,0]), \ np.logical_and(mesh.gridEy[:,1] >=corner[0,1] , mesh.gridEy[:,1]<=corner[1,1] )), (mesh.gridEy[:,2] == corner[0,2] ) ) indx1 = np.logical_and( \ np.logical_and( \ np.logical_and(mesh.gridEx[:,0]>=corner[1,0],mesh.gridEx[:,0]<=corner[2,0]), \ np.logical_and(mesh.gridEx[:,1] >=corner[1,1] , mesh.gridEx[:,1]<=corner[2,1] )), (mesh.gridEx[:,2] == corner[1,2] ) ) indy2 = np.logical_and( \ np.logical_and( \ np.logical_and(mesh.gridEy[:,0]>=corner[2,0],mesh.gridEy[:,0]<=corner[3,0]), \ np.logical_and(mesh.gridEy[:,1] <=corner[2,1] , mesh.gridEy[:,1]>=corner[3,1] )), (mesh.gridEy[:,2] == corner[2,2] ) ) if closed: indx2 = np.logical_and( \ np.logical_and( \ np.logical_and(mesh.gridEx[:,0]>=corner[0,0],mesh.gridEx[:,0]<=corner[3,0]), \ np.logical_and(mesh.gridEx[:,1] >=corner[0,1] , mesh.gridEx[:,1]<=corner[3,1] )), (mesh.gridEx[:,2] == corner[0,2] ) ) else: indx2 = [] Jy[indy1] = -I Jx[indx1] = -I Jy[indy2] = I Jx[indx2] = I J = np.hstack((Jx,Jy,Jz)) J = J*mesh.edge return J def BiotSavart(locs,mesh,Js): """ Compute the magnetic field generated by current discretized on a mesh using Biot-Savart law Input: locs: observation locations mesh: mesh on which the current J is discretized Js: discretized source current in A-m (Finite Volume formulation) Output: B: magnetic field [Bx,By,Bz] """ c = mu_0/(4*np.pi) nwire = np.sum(Js!=0.) ind= np.where(Js!=0.) ind = ind[0] B = np.zeros([locs.shape[0],3]) gridE = np.vstack([mesh.gridEx,mesh.gridEy,mesh.gridEz]) for i in range(nwire): # x wire if ind[i]<mesh.nEx: r = locs-gridE[ind[i]] I = Js[ind[i]]*np.hstack([np.ones([locs.shape[0],1]),np.zeros([locs.shape[0],1]),np.zeros([locs.shape[0],1])]) cr = np.cross(I,r) rsq = np.linalg.norm(r,axis=1)**3. B = B + c*cr/rsq[:,None] # y wire elif ind[i]<mesh.nEx+mesh.nEy: r = locs-gridE[ind[i]] I = Js[ind[i]]*np.hstack([np.zeros([locs.shape[0],1]),np.ones([locs.shape[0],1]),np.zeros([locs.shape[0],1])]) cr = np.cross(I,r) rsq = np.linalg.norm(r,axis=1)**3. B = B + c*cr/rsq[:,None] # z wire elif ind[i]<mesh.nEx+mesh.nEy+mesh.nEz: r = locs-gridE[ind[i]] I = Js[ind[i]]*np.hstack([np.zeros([locs.shape[0],1]),np.zeros([locs.shape[0],1]),np.ones([locs.shape[0],1])]) cr = np.cross(I,r) rsq = np.linalg.norm(r,axis=1)**3. B = B + c*cr/rsq[:,None] else: print('error: index of J out of bounds (number of edges in the mesh)') return B def analytic_infinite_wire(obsloc,wireloc,orientation,I=1.): """ Compute the response of an infinite wire with orientation 'orientation' and current I at the obsvervation locations obsloc Output: B: magnetic field [Bx,By,Bz] """ n,d = obsloc.shape t,d = wireloc.shape d = np.sqrt(np.dot(obsloc**2.,np.ones([d,t]))+np.dot(np.ones([n,d]),(wireloc.T)**2.) - 2.*np.dot(obsloc,wireloc.T)) distr = np.amin(d, axis=1, keepdims = True) idxmind = d.argmin(axis=1) r = obsloc - wireloc[idxmind] orient = np.c_[[orientation for i in range(obsloc.shape[0])]] B = (mu_0*I)/(2*np.pi*(distr**2.))*np.cross(orientation,r) return B def mag_dipole(m,obsloc): """ Compute the response of an infinitesimal mag dipole at location (0,0,0) with orientation X and magnetic moment 'm' at the obsvervation locations obsloc Output: B: magnetic field [Bx,By,Bz] """ loc = np.r_[[[0.,0.,0.]]] n,d = obsloc.shape t,d = loc.shape d = np.sqrt(np.dot(obsloc**2.,np.ones([d,t]))+np.dot(np.ones([n,d]),(loc.T)**2.) - 2.*np.dot(obsloc,loc.T)) d = d.flatten() ind = np.where(d==0.) d[ind] = 1e6 x = obsloc[:,0] y = obsloc[:,1] z = obsloc[:,2] #orient = np.c_[[orientation for i in range(obsloc.shape[0])]] Bz = (mu_0*m)/(4*np.pi*(d**3.))*(3.*((z**2.)/(d**2.))-1.) By = (mu_0*m)/(4*np.pi*(d**3.))*(3.*(z*y)/(d**2.)) Bx = (mu_0*m)/(4*np.pi*(d**3.))*(3.*(x*z)/(d**2.)) B = np.vstack([Bx,By,Bz]).T return B def circularloop(a,obsloc,I=1.): """ From Simpson, Lane, Im<NAME> 2001 Compute the magnetic field B response of a current loop of radius 'a' with intensity 'I'. input: a: radius in m obsloc: obsvervation locations Output: B: magnetic field [Bx,By,Bz] """ x = np.atleast_2d(obsloc[:,0]).T y = np.atleast_2d(obsloc[:,1]).T z = np.atleast_2d(obsloc[:,2]).T r = np.linalg.norm(obsloc,axis=1) loc = np.r_[[[0.,0.,0.]]] n,d = obsloc.shape r2 = x**2.+y**2.+z**2. rho2 = x**2.+y**2. alpha2 = a**2.+r2-2*a*np.sqrt(rho2) beta2 = a**2.+r2+2*a*np.sqrt(rho2) k2 = 1-(alpha2/beta2) lbda = x**2.-y**2. C = mu_0*I/np.pi Bx = ((C*x*z)/(2*alpha2*np.sqrt(beta2)*rho2))*\ ((a**2.+r2)*ellipe(k2)-alpha2*ellipk(k2)) Bx[np.isnan(Bx)] = 0. By = ((C*y*z)/(2*alpha2*np.sqrt(beta2)*rho2))*\ ((a**2.+r2)*ellipe(k2)-alpha2*ellipk(k2)) By[
np.isnan(By)
numpy.isnan
""" Some utility functions for dealing with perturbative expansions numerically. """ import parafermions.ParafermionUtils as pf import parafermions.ParafermionUtilsCython as pfcy import time import numpy as np import scipy.sparse as sps # define a function that gets the U operator to the nth order for given operators def Ufunc(n, Q, V, P): """ The U operator, see Messiah book, chapter 16. Parameters: ---------- n: int Order of expansion. Q: matrix Projection matrix rescaled by inverse energy difference. V: matrix Perturbing part of Hamiltonian. P: matrix Projection matrix to degenerate subspace we are perturbing from. Returns: -------- matrix The expansion of U to nth order. """ if n == 0: return P elif n > 0: U = V*Ufunc(n-1, Q, V, P) for p in range(1,n): U = U - Ufunc(p,Q,V,P)*V*Ufunc(n-p-1,Q,V,P) return Q*U def Afunc(n, Q, V, P, As=None): """ Function A operators of Bloch's perturbation theory expansion to nth order. Parameters ----------- n: int The order to calculate to. Q: operator Normalised projector to all states outside band. V: operator Perturbing part of hamiltonian. P: operator Projector to band we are perturbing from. As: dict Dictionary of precomputed expansions. Returns -------- operator The effective operator to nth order. dict Dictionary of operators are each order up to this. """ if As is None or type(As) is not dict: As = dict() if 0 not in As: A = P*V*Ufunc(0,Q,V,P) As[0] = A else: A = As[0] for j in range(1, n): if j not in As: A_new = P*V*Ufunc(j,Q,V,P) As[j] = A_new else: A_new = As[j] A += A_new return A, As def ProjectToBand(A, E0Band, E0s): select = np.abs(E0s - E0Band) < 1e-12 return A[select,:][:, select] def Sfunc(k, P0, Q): if k == 0: return -P0 else: return Q**k def AKato(n, Q, V, P0): # project to the unperturbed band to make multiplications more efficient A = None bins = n+1 Table = pf.PartitionTable(bins, n) # print ("Partition table" + str([bins,n])) for idx in range(Table[bins,n]): ks = pf.FindPartition(bins, n, idx, Table) # print ks Tmp = Sfunc(ks[0], P0, Q) for k in ks[1:]: Tmp = Tmp * V * Sfunc(k, P0, Q) if A is None: A = Tmp else: A = A + Tmp return -A def BKato(n, Q, V, P0): # project to the unperturbed band to make multiplications more efficient B = None bins = n+1 Table = pf.PartitionTable(bins, n-1) # print ("Partition table" + str([bins,n-1])) for idx in range(Table[bins, n-1]): ks = pf.FindPartition(bins, n-1, idx, Table) # print ks Tmp = Sfunc(ks[0], P0, Q) for k in ks[1:]: Tmp = Tmp * V * Sfunc(k, P0, Q) if B is None: B = Tmp else: B = B + Tmp return B def HaKato(n, Q, V, P0): Ha = P0 * BKato(1, Q, V, P0) * P0 for i in range(2,n+1): Ha = Ha + P0 * BKato(i, Q, V, P0) * P0 return Ha def KaKato(n, Q, V, P0): Ka = P0 for i in range(1,n+1): Ka = Ka + P0 * AKato(i, Q, V, P0) * P0 return Ka def pt_operators(N, L, J, theta, f, phi, band_idxs, deltaE, exact=False, qs=None, verbose=False, **kwargs): """ Function to calculate the operators needed for perturbation theory given input parameters. Parameters: ---------- N: int The number of clock positions. L: int The length of the chain. J: float J coupling constant value(s). theta: float Chiral parameter on J term. f: float f coupling constant value(s). phi: float Chiral parameter on f term. band_idxs: array Band indexes to start from. deltaE: float The energy range in which to consider bands. exact: bool Flag to indicate that exact values should be calculated using ED (default=False). qs: list List of q values to use. If None all values 0,...,N-1 used(default=None). Returns ------- matrix Projector to starting subspace. matrix Projector to complement of starting subspace within given energy range and scaled according to the inverse unperturbed energy difference. matrix Unperturbed hamiltonian matrix. list of matrices Perturbing hamiltonian for each q requested. int The full dimension of the starting band. float The unperturbed energy of the starting band. list of arrays List of arrays of exact eigenvalues for each requested q or None if exact is false. """ if qs is None: qs = range(N) BandIdxs = band_idxs DeltaE = deltaE if 'theta0' in kwargs: theta0 = kwargs['theta0'] else: theta0 = theta H0Op = pf.ParafermionicChainOp(N, L, J, theta0, 0.0, 0.0, q=0) # we get MPO object for full unperturbed Hamiltonian (note the same in each sector) HfOps = [] for q in qs: if 'exclude_side' in kwargs: if kwargs['exclude_side'] == 'left': fs = np.ones(L)*f fs[0] = 0.0 Hf = pf.ParafermionicChainOp(N, L, J, theta, fs, phi, q=q) elif kwargs['exclude_side'] == 'right': fs = np.ones(L)*f fs[-1] = 0.0 Hf = pf.ParafermionicChainOp(N, L, J, theta, fs, phi, q=q) elif kwargs['exclude_side'] == 'neither': fs = np.ones(L)*f fs[0] = 0.0 fs[-1] = 0.0 Hf = pf.ParafermionicChainOp(N, L, J, theta, fs, phi, q=q) else: raise Exception('\'exlude_side\' argument should be either left or right') else: Hf = pf.ParafermionicChainOp(N, L, J, theta, f, phi, q=q) Hf.add(H0Op, c1=1.0, c2=-1.0, inplace=True, compress=False) HfOps.append(Hf) [Partitions, H0Energies] = H0Op.get_bands_and_energies() # get all the partitions and energies of each BandEnergy = H0Energies[BandIdxs[0]] # get the energy of the band we start from, this is E0 BandPartitions = list(map(lambda x: Partitions[x], BandIdxs)) # get the FullBand = np.vstack(list(map(lambda x: pfcy.GetFullBandDW(BandPartitions[x]), range(len(BandIdxs))))) FullBandDim = len(FullBand) [NeighbouringBands,] = np.where(np.abs(H0Energies - BandEnergy) < DeltaE) # find other bands within deltaE in energy FullSubspace =
np.copy(FullBand)
numpy.copy
import numpy as np def dist(x, y, norm=2): # x: N x D # y: M x D n = x.shape[0] m = y.shape[0] d = x.shape[1] assert d == y.shape[1] x =
np.expand_dims(x, axis=1)
numpy.expand_dims
import numpy as np import os from annoy import AnnoyIndex import trimesh as trm from scipy.spatial import distance from scipy.stats import wasserstein_distance from shape import Shape from utils import flatten_features_array, read_off from settings import Settings # from src.utils import flatten_features_array, read_off # from src.shape import Shape # from src.settings import Settings s = Settings() def calculate_weights(features: {}): """ It determines the weights of the single features for distance computation The features are compared in pairs to determine the euclidean distance, for simple features, or the Wassertein distance, for distributions. The weights are computed as 1 over the standard deviation of the respective set of distances. The weights are then saved to cache. ---------------------------- Args: features (obj: 'dict'): The dictionary containing the feature metrics of each shape """ d_v, d_a, d_c, d_bb, d_d, d_e, d_a3, d_d1, d_d2, d_d3, d_d4 = [],[],[],[],[],[],[],[],[],[],[] for i in range(0, len(features.keys())): featureList1 = list(features.values())[i] for j in range(i+1, len(features.keys())): featureList2 = list(features.values())[j] d_v.append(distance.euclidean(featureList1['volume'], featureList2['volume'])) d_a.append(distance.euclidean(featureList1['area'], featureList2['area'])) d_c.append(distance.euclidean(featureList1['compactness'], featureList2['compactness'])) d_bb.append(distance.euclidean(featureList1['bbox_volume'], featureList2['bbox_volume'])) d_d.append(distance.euclidean(featureList1['diameter'], featureList2['diameter'])) d_e.append(distance.euclidean(featureList1['eccentricity'], featureList2['eccentricity'])) d_a3.append(wasserstein_distance(featureList1['A3'][0], featureList2['A3'][0])) d_d1.append(wasserstein_distance(featureList1['D1'][0], featureList2['D1'][0])) d_d2.append(wasserstein_distance(featureList1['D2'][0], featureList2['D2'][0])) d_d3.append(wasserstein_distance(featureList1['D3'][0], featureList2['D3'][0])) d_d4.append(wasserstein_distance(featureList1['D4'][0], featureList2['D4'][0])) weights = {} weights["w_v"] = 1/np.std(d_v) weights["w_a"] = 1/np.std(d_a) weights["w_c"] = 1/np.std(d_c) weights["w_bb"] = 1/np.std(d_bb) weights["w_d"] = 1/np.std(d_d) weights["w_e"] = 1/np.std(d_e) weights["w_A3"] = 1/np.std(d_a3) weights["w_D1"] = 1/np.std(d_d1) weights["w_D2"] = 1/np.std(d_d2) weights["w_D3"] = 1/np.std(d_d3) weights["w_D4"] = 1/
np.std(d_d4)
numpy.std
# Copyright 2021 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Filters and filter banks""" import abc from typing import Mapping, Optional, Tuple, Union import numpy as np from pydrobert.speech import AliasedFactory from pydrobert.speech import config from pydrobert.speech.scales import MelScaling from pydrobert.speech.scales import ScalingFunction from pydrobert.speech.util import alias_factory_subclass_from_arg from pydrobert.speech.util import angular_to_hertz from pydrobert.speech.util import hertz_to_angular __all__ = [ "LinearFilterBank", "TriangularOverlappingFilterBank", "GaborFilterBank", "ComplexGammatoneFilterBank", "WindowFunction", "BartlettWindow", "BlackmanWindow", "HammingWindow", "HannWindow", "GammaWindow", ] # banks class LinearFilterBank(AliasedFactory): """A collection of linear, time invariant filters A :class:`LinearFilterBank` instance is expected to provide factory methods for instantiating a fixed number of LTI filters in either the time or frequency domain. Filters should be organized lowest frequency first. Attributes ---------- is_real : bool is_analytic : bool is_zero_phase : bool num_filts : int sampling_rate : float centers_hz : tuple supports_hz : tuple supports : tuple supports_ms : tuple """ @abc.abstractproperty def is_real(self) -> bool: """Whether the filters are real or complex""" pass @abc.abstractproperty def is_analytic(self) -> bool: """Whether the filters are (approximately) analytic""" pass @abc.abstractproperty def is_zero_phase(self) -> bool: """Whether the filters are zero phase or not Zero phase filters are even functions with no imaginary part in the fourier domain. Their impulse responses center around 0. """ pass @abc.abstractproperty def num_filts(self) -> int: """Number of filters in the bank""" pass @abc.abstractproperty def sampling_rate(self) -> float: """Number of samples in a second of a target recording""" pass @abc.abstractproperty def supports_hz(self) -> Tuple: """Boundaries of effective support of filter freq responses, in Hz. Returns a tuple of length `num_filts` containing pairs of floats of the low and high frequencies. Frequencies outside the span have a response of approximately (with magnitude up to :obj:`pydrobert.speech.EFFECTIVE_SUPPORT_SIGNAL`) zero. The boundaries need not be tight, i.e. the region inside the boundaries could be zero. It is more important to guarantee that the region outside the boundaries is approximately zero. The boundaries ignore the Hermitian symmetry of the filter if it is real. Bounds of ``(10, 20)`` for a real filter imply that the region ``(-20, -10)`` could also be nonzero. The user is responsible for adjusting the for the periodicity induced by sampling. For example, if the boundaries are ``(-5, 10)`` and the filter is sampled at 15Hz, then all bins of an associated DFT could be nonzero. """ pass @abc.abstractproperty def supports(self) -> Tuple: """Boundaries of effective support of filter impulse resps, in samples Returns a tuple of length `num_filts` containing pairs of integers of the first and last (effectively) nonzero samples. The boundaries need not be tight, i.e. the region inside the boundaries could be zero. It is more important to guarantee that the region outside the boundaries is approximately zero. If a filter is instantiated using a buffer that is unable to fully contain the supported region, samples will wrap around the boundaries of the buffer. Noncausal filters will have start indices less than 0. These samples will wrap to the end of the filter buffer when the filter is instantiated. """ pass @property def supports_ms(self) -> tuple: """Boundaries of effective support of filter impulse resps, in ms""" return tuple( (s[0] * 1000 / self.sampling_rate, s[1] * 1000 / self.sampling_rate,) for s in self.supports ) @abc.abstractmethod def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: """Construct filter impulse response in a fixed-width buffer Construct the filter in the time domain. Parameters ---------- filt_idx : int The index of the filter to generate. Less than `num_filts` width : int The length of the buffer, in samples. If less than the support of the filter, the filter will alias. Returns ------- array-like 1D float64 or complex128 numpy array of length `width` """ pass @abc.abstractmethod def get_frequency_response( self, filt_idx: int, width: int, half: bool = False ) -> np.ndarray: """Construct filter frequency response in a fixed-width buffer Construct the 2pi-periodized filter in the frequency domain. Zero-phase filters `is_zero_phase` are returned as 8-byte float arrays. Otherwise, they will be 16-byte complex floats. Parameters ---------- filt_idx : int The index of the filter to generate. Less than `num_filts` width : int The length of the DFT to output half : bool, optional Whether to return only the DFT bins between [0,pi] Results ------- array-like If `half` is `False`, returns a 1D float64 or complex128 numpy array of length `width`. If `half` is `True` and `width` is even, the returned array is of length ``width // 2 + 1``. If `width` is odd, the returned array is of length ``(width + 1) // 2``. """ pass @abc.abstractmethod def get_truncated_response( self, filt_idx: int, width: int ) -> Tuple[int, np.ndarray]: """Get nonzero region of filter frequency response Many filters will be compactly supported in frequency (or approximately so). This method generates a tuple `(bin_idx, buf)` of the nonzero region. In the case of a complex filter, ``bin_idx + len(buf)`` may be greater than `width`; the filter wraps around in this case. The full frequency response can be calculated from the truncated response by: >>> bin_idx, trnc = bank.get_truncated_response(filt_idx, width) >>> full = numpy.zeros(width, dtype=trnc.dtype) >>> wrap = min(bin_idx + len(trnc), width) - bin_idx >>> full[bin_idx:bin_idx + wrap] = trnc[:wrap] >>> full[:len(trnc) - wrap] = tnc[wrap:] In the case of a real filter, only the nonzero region between ``[0, pi]`` (half-spectrum) is returned. No wrapping can occur since it would inevitably interfere with itself due to conjugate symmetry. The half-spectrum can easily be recovered by: >>> half_width = (width + width % 2) // 2 + 1 - width % 2 >>> half = numpy.zeros(half_width, dtype=trnc.dtype) >>> half[bin_idx:bin_idx + len(trnc)] = trnc And the full spectrum by: >>> full[bin_idx:bin_idx + len(trnc)] = trnc >>> full[width - bin_idx - len(trnc) + 1:width - bin_idx + 1] = \\ ... trnc[:None if bin_idx else 0:-1].conj() (the embedded if-statement is necessary when bin_idx is 0, as the full fft excludes its symmetric bin) Parameters ---------- filt_idx : int The index of the filter to generate. Less than `num_filts` width : int The length of the DFT to output Returns ------- tuple of int, array """ pass class TriangularOverlappingFilterBank(LinearFilterBank): """Triangular frequency response whose vertices are along the scale The vertices of the filters are sampled uniformly along the passed scale. If the scale is nonlinear, the triangles will be asymmetrical. This is closely related to, but not identical to, the filters described in [povey2011]_ and [young]_. Parameters ---------- scaling_function : pydrobert.speech.ScalingFunction, str, or dict Dictates the layout of filters in the Fourier domain. Can be a :class:`ScalingFunction` or something compatible with :func:`pydrobert.speech.alias_factory_subclass_from_arg` num_filts : int, optional The number of filters in the bank high_hz, low_hz : float, optional The topmost and bottommost edge of the filters, respectively. The default for `high_hz` is the Nyquist sampling_rate : float, optional The sampling rate (cycles/sec) of the target recordings analytic : bool, optional Whether to use an analytic form of the bank. The analytic form is easily derived from the real form in [povey2011]_ and [young]_. Since the filter is compactly supported in frequency, the analytic form is simply the suppression of the ``[-pi, 0)`` frequencies Attributes ---------- centers_hz : tuple is_real : bool is_analytic : bool num_filts : int sampling_rate : float supports_hz : tuple supports : tuple supports_ms : tuple Raises ------ ValueError If `high_hz` is above the Nyquist, or `low_hz` is below 0, or ``high_hz <= low_hz`` """ aliases = {"tri", "triangular"} def __init__( self, scaling_function: Union[ScalingFunction, Mapping, str], num_filts: int = 40, high_hz: Optional[float] = None, low_hz: float = 20.0, sampling_rate: float = 16000, analytic: bool = False, ): scaling_function = alias_factory_subclass_from_arg( ScalingFunction, scaling_function ) if low_hz < 0 or ( high_hz and (high_hz <= low_hz or high_hz > sampling_rate // 2) ): raise ValueError( "Invalid frequency range: ({:.2f},{:.2f}".format(low_hz, high_hz) ) self._rate = sampling_rate if high_hz is None: high_hz = sampling_rate // 2 # compute vertices scale_low = scaling_function.hertz_to_scale(low_hz) scale_high = scaling_function.hertz_to_scale(high_hz) scale_delta = (scale_high - scale_low) / (num_filts + 1) self._vertices = tuple( scaling_function.scale_to_hertz(scale_low + scale_delta * idx) for idx in range(0, num_filts + 2) ) self._analytic = analytic @property def is_real(self) -> bool: return not self._analytic @property def is_analytic(self) -> bool: return self._analytic @property def is_zero_phase(self) -> bool: return True @property def num_filts(self) -> int: return len(self._vertices) - 2 @property def sampling_rate(self) -> float: return self._rate @property def centers_hz(self) -> Tuple[float]: """The point of maximum gain in each filter's frequency response, in Hz This property gives the so-called "center frequencies" - the point of maximum gain - of each filter. """ return self._vertices[1:-1] @property def supports_hz(self) -> tuple: return tuple( (low, high) for low, high in zip(self._vertices[:-2], self._vertices[2:]) ) @property def supports(self) -> tuple: # A given filter is bound from above by # 2(w_r - w_l) / ((w_c - w_l)(w_r - w_c)t^2pi) supports = [] for idx in range(len(self._vertices) - 2): left = hertz_to_angular(self._vertices[idx], self._rate) mid = hertz_to_angular(self._vertices[idx + 1], self._rate) right = hertz_to_angular(self._vertices[idx + 2], self._rate) K = np.sqrt(8 * (right - left) / np.pi) K /= np.sqrt(config.EFFECTIVE_SUPPORT_THRESHOLD) K /= np.sqrt(mid - left) * np.sqrt(right - mid) K = int(np.ceil(K)) supports.append((-K // 2 - 1, K // 2 + 1)) return tuple(supports) def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: left = hertz_to_angular(self._vertices[filt_idx], self._rate) mid = hertz_to_angular(self._vertices[filt_idx + 1], self._rate) right = hertz_to_angular(self._vertices[filt_idx + 2], self._rate) res = np.zeros(width, dtype=np.complex128 if self._analytic else np.float64) # for numerical stability (angles can get pretty small) if right - mid > mid - left: denom = right - mid div_term = mid - left else: denom = mid - left div_term = right - mid denom *= (int(self._analytic) + 1) * np.pi for t in range(1, width + 1): if self._analytic: numer = (right - left) / div_term * np.exp(1j * mid * t) numer -= (right - mid) / div_term * np.exp(1j * left * t) numer -= (mid - left) / div_term * np.exp(1j * right * t) else: numer = (right - left) / div_term * np.cos(mid * t) numer -= (right - mid) / div_term * np.cos(left * t) numer -= (mid - left) / div_term * np.cos(right * t) val = numer / t ** 2 if t < width: res[t] += val res[-t] += val.conj() else: res[0] += val numer = mid / div_term * (right ** 2 - left ** 2) numer += right / div_term * (left ** 2 - mid ** 2) numer += left / div_term * (mid ** 2 - right ** 2) res[0] += numer / 2 res /= denom return res def get_frequency_response( self, filt_idx: int, width: int, half: bool = False ) -> np.ndarray: left = self._vertices[filt_idx] mid = self._vertices[filt_idx + 1] right = self._vertices[filt_idx + 2] left_idx = int(np.ceil(width * left / self._rate)) right_idx = int(width * right / self._rate) assert self._rate * (left_idx - 1) / width <= left assert self._rate * (right_idx + 1) / width >= right, width dft_size = width if half: if width % 2: dft_size = (width + 1) // 2 else: dft_size = width // 2 + 1 res = np.zeros(dft_size, dtype=np.float64) for idx in range(left_idx, min(dft_size, right_idx + 1)): hz = self._rate * idx / width if hz <= mid: val = (hz - left) / (mid - left) else: val = (right - hz) / (right - mid) res[idx] = val if not half and not self._analytic: res[-idx] = val return res def get_truncated_response( self, filt_idx: int, width: int ) -> Tuple[int, np.ndarray]: left = self._vertices[filt_idx] mid = self._vertices[filt_idx + 1] right = self._vertices[filt_idx + 2] left_idx = int(np.ceil(width * left / self._rate)) right_idx = int(width * right / self._rate) assert self._rate * (left_idx - 1) / width <= left assert self._rate * (right_idx + 1) / width >= right, width res = np.zeros(1 + right_idx - left_idx, dtype=np.float64) for idx in range(left_idx, min(width, right_idx + 1)): hz = self._rate * idx / width if hz <= mid: res[idx - left_idx] = (hz - left) / (mid - left) else: res[idx - left_idx] = (right - hz) / (right - mid) return left_idx, res class Fbank(LinearFilterBank): """A mel-triangular filter bank that is square-rooted An ``Fbank`` instance is intended to replicate the filters from Kaldi [povey2011]_ and HTK [young]_. Its scale is fixed to Mel-scale. Like a ``TriangularOverlappingFilterBank``, ``Fbank`` places the vertices of triangular filters uniformly along the target scale. However, an ``Fbank`` is triangular in the Mel-scale, whereas the triangular bank is triangular in frequency. Parameters ---------- num_filts : int, optional The number of filters in the bank high_hz, low_hz : float, optional The topmost and bottommost edge of the filters, respectively. The default for high_hz is the Nyquist sampling_rate : float, optional The sampling rate (cycles/sec) of the target recordings analytic : bool, optional Whether to use an analytic form of the bank. The analytic form is easily derived from the real form in [1]_ and [2]_. Since the filter is compactly supported in frequency, the analytic form is simply the suppression of the ``[-pi, 0)`` frequencies Attributes ---------- centers_hz : tuple is_real : bool is_analytic : bool num_filts : int sampling_rate : float supports_hz : tuple supports : tuple supports_ms : tuple Notes ----- In a standard mel-filterbank spectrogram, the power spectrum is calculated before filtering. This module's spectrogram takes the power spectrum after filtering. To recreate the frequency response of the alternate order, we can take the pointwise square root of the frequency response. """ aliases = {"fbank"} def __init__( self, num_filts: int = 40, high_hz: Optional[float] = None, low_hz: float = 20.0, sampling_rate: float = 16000, analytic: bool = False, ): scaling_function = MelScaling() if low_hz < 0 or ( high_hz and (high_hz <= low_hz or high_hz > sampling_rate // 2) ): raise ValueError( "Invalid frequency range: ({:.2f},{:.2f}".format(low_hz, high_hz) ) self._rate = sampling_rate if high_hz is None: high_hz = sampling_rate // 2 # compute vertices scale_low = scaling_function.hertz_to_scale(low_hz) scale_high = scaling_function.hertz_to_scale(high_hz) scale_delta = (scale_high - scale_low) / (num_filts + 1) self._vertices = tuple( scaling_function.scale_to_hertz(scale_low + scale_delta * idx) for idx in range(0, num_filts + 2) ) self._analytic = analytic @property def is_real(self) -> bool: return not self._analytic @property def is_analytic(self) -> bool: return self._analytic @property def is_zero_phase(self) -> bool: return True @property def num_filts(self) -> int: return len(self._vertices) - 2 @property def sampling_rate(self) -> float: return self._rate @property def centers_hz(self) -> Tuple[float]: """The point of maximum gain in each filter's frequency response, in Hz This property gives the so-called "center frequencies" - the point of maximum gain - of each filter. """ return self._vertices[1:-1] @property def supports_hz(self) -> tuple: return tuple( (low, high) for low, high in zip(self._vertices[:-2], self._vertices[2:]) ) @property def supports(self) -> tuple: # A given filter is bound above for t > 0 by # ((w_r - w_c) ** .5 + (w_c - w_l) ** .5) / # (2 ** 3 * t ** 3 * (w_c - w_l) * (w_r - w_c) * pi) ** .5 supports = [] for idx in range(len(self._vertices) - 2): left = hertz_to_angular(self._vertices[idx], self._rate) mid = hertz_to_angular(self._vertices[idx + 1], self._rate) right = hertz_to_angular(self._vertices[idx + 2], self._rate) K = right - left + 2 * ((right - mid) * (mid - left)) ** 2 K /= config.EFFECTIVE_SUPPORT_THRESHOLD ** 2 * np.pi K /= (right - mid) * (mid - left) K /= np.sqrt(config.EFFECTIVE_SUPPORT_THRESHOLD) K /= np.sqrt(mid - left) * np.sqrt(right - mid) K **= 0.3333 K = int(np.ceil(K)) supports.append((-K // 2 - 1, K // 2 + 1)) return tuple(supports) def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: # For the time being, I'll just invert the frequency response if self.is_analytic: freq_response = self.get_frequency_response(filt_idx, width, half=False) return np.fft.ifft(freq_response) else: freq_response = self.get_frequency_response(filt_idx, width, half=True) return np.fft.irfft(freq_response, n=width) def get_frequency_response( self, filt_idx: int, width: int, half: bool = False ) -> np.ndarray: scaling_function = MelScaling() left_hz = self._vertices[filt_idx] mid_hz = self._vertices[filt_idx + 1] right_hz = self._vertices[filt_idx + 2] left_mel = scaling_function.hertz_to_scale(left_hz) mid_mel = scaling_function.hertz_to_scale(mid_hz) right_mel = scaling_function.hertz_to_scale(right_hz) left_idx = int(np.ceil(width * left_hz / self._rate)) right_idx = int(width * right_hz / self._rate) assert self._rate * (left_idx - 1) / width <= left_hz assert self._rate * (right_idx + 1) / width >= right_hz, width dft_size = width if half: if width % 2: dft_size = (width + 1) // 2 else: dft_size = width // 2 + 1 res = np.zeros(dft_size, dtype=np.float64) for idx in range(left_idx, min(dft_size, right_idx + 1)): hz = self._rate * idx / width mel = scaling_function.hertz_to_scale(hz) if mel <= mid_mel: val = (mel - left_mel) / (mid_mel - left_mel) else: val = (right_mel - mel) / (right_mel - mid_mel) res[idx] = val ** 0.5 if not half and not self._analytic: res[-idx] = val ** 0.5 return res def get_truncated_response(self, filt_idx: int, width: int) -> np.ndarray: scaling_function = MelScaling() left_hz = self._vertices[filt_idx] mid_hz = self._vertices[filt_idx + 1] right_hz = self._vertices[filt_idx + 2] left_mel = scaling_function.hertz_to_scale(left_hz) mid_mel = scaling_function.hertz_to_scale(mid_hz) right_mel = scaling_function.hertz_to_scale(right_hz) left_idx = int(np.ceil(width * left_hz / self._rate)) right_idx = int(width * right_hz / self._rate) assert self._rate * (left_idx - 1) / width <= left_hz assert self._rate * (right_idx + 1) / width >= right_hz, width res = np.zeros(min(width, right_idx + 1) - left_idx, dtype=np.float64) for idx in range(left_idx, min(width, right_idx + 1)): hz = self._rate * idx / width mel = scaling_function.hertz_to_scale(hz) if mel <= mid_mel: res[idx - left_idx] = (mel - left_mel) / (mid_mel - left_mel) else: res[idx - left_idx] = (right_mel - mel) / (right_mel - mid_mel) return left_idx, res ** 0.5 class GaborFilterBank(LinearFilterBank): r"""Gabor filters with ERBs between points from a scale Gabor filters are complex, mostly analytic filters that have a Gaussian envelope in both the time and frequency domains. They are defined as .. math:: f(t) = C \sigma^{-1/2} \pi^{-1/4} e^{\frac{-t^2}{2\sigma^2} + i\xi t} in the time domain and .. math:: \widehat{f}(\omega) = C \sqrt{2\sigma} \pi^{1/4} e^{\frac{-\sigma^2(\xi - \omega)^2}{2}} in the frequency domain. Though Gaussians never truly reach 0, in either domain, they are effectively compactly supported. Gabor filters are optimal with respect to their time-bandwidth product. `scaling_function` is used to split up the frequencies between `high_hz` and `low_hz` into a series of filters. Every subsequent filter's width is scaled such that, if the filters are all of the same height, the intersection with the precedent filter's response matches the filter's Equivalent Rectangular Bandwidth (``erb == True``) or its 3dB bandwidths (``erb == False``). The ERB is the width of a rectangular filter with the same height as the filter's maximum frequency response that has the same :math:`L^2` norm. Parameters ---------- scaling_function : pydrobert.speech.ScalingFunction, str, or dict Dictates the layout of filters in the Fourier domain. Can be a :class:`ScalingFunction` or something compatible with :func:`pydrobert.speech.alias_factory_subclass_from_arg` num_filts : int The number of filters in the bank high_hz, low_hz : float, optional The topmost and bottommost edge of the filters, respectively. The default for `high_hz` is the Nyquist sampling_rate : float, optional The sampling rate (cycles/sec) of the target recordings scale_l2_norm : bool Whether to scale the l2 norm of each filter to 1. Otherwise the frequency response of each filter will max out at an absolute value of 1. erb : bool Attributes ---------- centers_hz : tuple is_real : bool is_analytic : bool num_filts : int sampling_rate : float supports_hz : tuple supports : tuple supports_ms : tuple scaled_l2_norm : bool erb : bool See Also -------- pydrobert.speech.config.EFFECTIVE_SUPPORT_THRESHOLD The absolute value below which counts as zero """ aliases = {"gabor"} def __init__( self, scaling_function: Union[ScalingFunction, Mapping, str], num_filts: int = 40, high_hz: Optional[float] = None, low_hz: float = 20.0, sampling_rate: float = 16000, scale_l2_norm: bool = False, erb: bool = False, ): scaling_function = alias_factory_subclass_from_arg( ScalingFunction, scaling_function ) self._scale_l2_norm = scale_l2_norm self._erb = erb if low_hz < 0 or ( high_hz and (high_hz <= low_hz or high_hz > sampling_rate // 2) ): raise ValueError( "Invalid frequency range: ({:.2f},{:.2f}".format(low_hz, high_hz) ) self._rate = sampling_rate if high_hz is None: high_hz = sampling_rate // 2 scale_low = scaling_function.hertz_to_scale(low_hz) scale_high = scaling_function.hertz_to_scale(high_hz) scale_delta = (scale_high - scale_low) / (num_filts + 1) # edges dictate the points where filters should intersect. We # make a pretend intersection halfway between low_hz and # the first filter center in the scaled domain. Likewise with # high_hz and the last filter center. Intersections are spaced # uniformly in the scaled domain edges = tuple( scaling_function.scale_to_hertz(scale_low + scale_delta * (idx + 0.5)) for idx in range(0, num_filts + 1) ) centers_hz = [] centers_ang = [] stds = [] supports_ang = [] supports = [] wrap_supports_ang = [] self._wrap_below = False log_2 = np.log(2) log_pi = np.log(np.pi) t_support_const = -2 * np.log(config.EFFECTIVE_SUPPORT_THRESHOLD) f_support_const = t_support_const if scale_l2_norm: f_support_const += log_2 + 0.5 * log_pi t_support_const -= 0.5 * log_pi else: t_support_const -= log_2 + log_pi if erb: bandwidth_const = np.sqrt(np.pi) / 2 else: bandwidth_const = np.sqrt(3 / 10 * np.log(10)) for left_intersect, right_intersect in zip(edges[:-1], edges[1:]): center_hz = (left_intersect + right_intersect) / 2 center_ang = hertz_to_angular(center_hz, self._rate) std = bandwidth_const / hertz_to_angular( center_hz - left_intersect, self._rate ) log_std = np.log(std) if scale_l2_norm: diff_ang = np.sqrt(log_std + f_support_const) / std wrap_diff_ang = np.sqrt(log_std + f_support_const + log_2) / std diff_samps = int(np.ceil(std * np.sqrt(t_support_const - log_std))) else: diff_ang = np.sqrt(f_support_const) / std wrap_diff_ang = np.sqrt(f_support_const + log_2) / std diff_samps = int(np.ceil(std * np.sqrt(t_support_const - 2 * log_std))) supp_ang_low = center_ang - diff_ang if supp_ang_low < 0: self._wrap_below = True centers_hz.append(center_hz) centers_ang.append(center_ang) supports_ang.append((center_ang - diff_ang, center_ang + diff_ang)) wrap_supports_ang.append(2 * wrap_diff_ang) supports.append((-diff_samps, diff_samps)) stds.append(std) self._centers_ang = tuple(centers_ang) self._centers_hz = tuple(centers_hz) self._stds = tuple(stds) self._supports_ang = tuple(supports_ang) self._wrap_supports_ang = tuple(wrap_supports_ang) self._supports_hz = tuple( (angular_to_hertz(ang_l, self._rate), angular_to_hertz(ang_h, self._rate),) for ang_l, ang_h in supports_ang ) self._supports = tuple(supports) @property def is_real(self) -> bool: return False @property def is_analytic(self) -> bool: return not self._wrap_below @property def num_filts(self) -> int: return len(self._centers_hz) @property def is_zero_phase(self) -> bool: return True @property def sampling_rate(self) -> float: return self._rate @property def centers_hz(self) -> Tuple[float]: """The point of maximum gain in each filter's frequency response, in Hz This property gives the so-called "center frequencies" - the point of maximum gain - of each filter. """ return self._centers_hz @property def supports_hz(self) -> tuple: return self._supports_hz @property def supports(self) -> tuple: return self._supports @property def scaled_l2_norm(self) -> bool: return self._scale_l2_norm @property def erb(self) -> bool: return self._erb def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: center_ang = self._centers_ang[filt_idx] std = self._stds[filt_idx] res = np.zeros(width, dtype=np.complex128) if self._scale_l2_norm: const_term = -0.5 * np.log(std) - 0.25 * np.log(np.pi) else: const_term = -0.5 * np.log(2 * np.pi) - np.log(std) denom_term = 2 * std ** 2 for t in range(width + 1): val = -(t ** 2) / denom_term + const_term + 1j * center_ang * t val = np.exp(val) if t != width: res[t] += val if t: res[-t] += val.conj() return res def get_frequency_response( self, filt_idx: int, width: int, half: bool = False ) -> np.ndarray: center_ang = self._centers_ang[filt_idx] lowest_ang, highest_ang = self._supports_ang[filt_idx] std = self._stds[filt_idx] dft_size = width if half: if width % 2: dft_size = (width + 1) // 2 else: dft_size = width // 2 + 1 res = np.zeros(dft_size, dtype=np.float64) if self._scale_l2_norm: const_term = 0.5 * np.log(2 * std) + 0.25 * np.log(np.pi) else: const_term = 0 num_term = -(std ** 2) / 2 for idx in range(dft_size): for period in range( -1 - int(max(-lowest_ang, 0) / (2 * np.pi)), 2 + int(highest_ang / (2 * np.pi)), ): omega = (idx / width + period) * 2 * np.pi val = num_term * (center_ang - omega) ** 2 + const_term val = np.exp(val) res[idx] += val return res def get_truncated_response(self, filt_idx: int, width: int) -> np.ndarray: # wrap_supports_ang contains the angular supports of each filter # if the effective support threshold were halved. If this # support exceeds the 2pi period, overlap from aliasing in the # periphery will exceed the effective support, meaning the # entire period lies in the support if self._wrap_supports_ang[filt_idx] >= 2 * np.pi: return 0, self.get_frequency_response(filt_idx, width) center_ang = self._centers_ang[filt_idx] std = self._stds[filt_idx] lowest_ang, highest_ang = self._supports_ang[filt_idx] left_idx = int(np.ceil(width * lowest_ang / (2 * np.pi))) right_idx = int(width * highest_ang / (2 * np.pi)) res = np.zeros(1 + right_idx - left_idx, dtype=np.float64) if self._scale_l2_norm: const_term = 0.5 * np.log(2 * std) + 0.25 * np.log(np.pi) else: const_term = 0 num_term = -(std ** 2) / 2 for idx in range(left_idx, right_idx + 1): for period in range( -int(max(-lowest_ang, 0) / (2 * np.pi)), 1 + int(highest_ang / (2 * np.pi)), ): omega = (idx / width + period) * 2 * np.pi val = num_term * (center_ang - omega) ** 2 + const_term val = np.exp(val) res[idx - left_idx] += val return left_idx % width, res class ComplexGammatoneFilterBank(LinearFilterBank): r"""Gammatone filters with complex carriers A complex gammatone filter [flanagan1960]_ [aertsen1981]_ can be defined as .. math:: h(t) = c t^{n - 1} e^{- \alpha t + i\xi t} u(t) in the time domain, where :math:`\alpha` is the bandwidth parameter, :math:`\xi` is the carrier frequency, :math:`n` is the order of the function, :math:`u(t)` is the step function, and :math:`c` is a normalization constant. In the frequency domain, the filter is defined as .. math:: H(\omega) = \frac{c(n - 1)!)}{\left( \alpha + i(\omega - \xi) \right)^n} For large :math:`\xi`, the complex gammatone is approximately analytic. `scaling_function` is used to split up the frequencies between `high_hz` and `low_hz` into a series of filters. Every subsequent filter's width is scaled such that, if the filters are all of the same height, the intersection with the precedent filter's response matches the filter's Equivalent Rectangular Bandwidth (``erb == True``) or its 3dB bandwidths (``erb == False``). The ERB is the width of a rectangular filter with the same height as the filter's maximum frequency response that has the same :math:`L^2` norm. Parameters ---------- scaling_function : pydrobert.speech.ScalingFunction, str, or dict Dictates the layout of filters in the Fourier domain. Can be a :class:`ScalingFunction` or something compatible with :func:`pydrobert.speech.alias_factory_subclass_from_arg` num_filts : int, optional The number of filters in the bank high_hz, low_hz : float, optional The topmost and bottommost edge of the filters, respectively. The default for high_hz is the Nyquist sampling_rate : float, optional The sampling rate (cycles/sec) of the target recordings order : int, optional The :math:`n` parameter in the Gammatone. Should be positive. Larger orders will make the gammatone more symmetrical. max_centered : bool, optional While normally causal, setting `max_centered` to true will shift all filters in the bank such that the maximum absolute value in time is centered at sample 0. scale_l2_norm : bool Whether to scale the l2 norm of each filter to 1. Otherwise the frequency response of each filter will max out at an absolute value of 1. erb : bool Attributes ---------- centers_hz : tuple is_real : bool is_analytic : bool num_filts : int order : int sampling_rate : float supports_hz : tuple supports : tuple supports_ms : tuple scaled_l2_norm : bool erb : bool See Also -------- pydrobert.speech.config.EFFECTIVE_SUPPORT_THRESHOLD The absolute value below which counts as zero """ aliases = {"gammatone", "tonebank"} def __init__( self, scaling_function: Union[ScalingFunction, Mapping, str], num_filts: int = 40, high_hz: Optional[float] = None, low_hz: float = 20.0, sampling_rate: float = 16000, order: int = 4, max_centered: bool = False, scale_l2_norm: bool = False, erb: bool = False, ): scaling_function = alias_factory_subclass_from_arg( ScalingFunction, scaling_function ) self._scale_l2_norm = scale_l2_norm self._erb = erb if low_hz < 0 or ( high_hz and (high_hz <= low_hz or high_hz > sampling_rate // 2) ): raise ValueError( "Invalid frequency range: ({:.2f},{:.2f}".format(low_hz, high_hz) ) if not isinstance(order, int) or order <= 0: raise ValueError("order must be a positive integer") self._order = order self._rate = sampling_rate if high_hz is None: high_hz = sampling_rate // 2 scale_low = scaling_function.hertz_to_scale(low_hz) scale_high = scaling_function.hertz_to_scale(high_hz) scale_delta = (scale_high - scale_low) / (num_filts + 1) # see gabor filters for more info edges = tuple( scaling_function.scale_to_hertz(scale_low + scale_delta * (idx + 0.5)) for idx in range(0, num_filts + 1) ) self._centers_hz = [] self._xis = [] self._alphas = [] self._cs = [] self._offsets = [] self._supports = [] self._supports_ang = [] self._wrap_supports_ang = [] self._wrap_below = False log_eps = np.log(config.EFFECTIVE_SUPPORT_THRESHOLD) log_double_factorial = np.log(np.math.factorial(2 * order - 2)) log_factorial = np.log(np.math.factorial(order - 1)) log_2 = np.log(2) if erb: alpha_const = (order - 1) * log_2 alpha_const += 2 * log_factorial alpha_const -= log_double_factorial else: alpha_const = -0.5 * np.log(4 * (2 ** (1 / order)) - 4) for left_intersect, right_intersect in zip(edges[:-1], edges[1:]): center_hz = (left_intersect + right_intersect) / 2 xi = hertz_to_angular(center_hz, self._rate) log_alpha = alpha_const + np.log( hertz_to_angular(right_intersect - left_intersect, self._rate) ) alpha = np.exp(log_alpha) if scale_l2_norm: log_c = 0.5 * (log_2 + log_alpha + log_double_factorial) log_c -= order * (log_alpha + log_2) else: log_c = order * log_alpha - log_factorial c = np.exp(log_c) if max_centered: offset = -(order - 1) / alpha else: offset = 0 supp_a = (2 / order) * (log_c + log_factorial - log_eps) wrap_supp_a = supp_a + (2 / order) * log_2 supp_b = np.exp(2 * log_alpha) diff_ang = (np.exp(supp_a) - supp_b) ** 0.5 wrap_diff_ang = (np.exp(wrap_supp_a) - supp_b) ** 0.5 self._centers_hz.append(center_hz) self._xis.append(xi) self._alphas.append(alpha) self._cs.append(c) self._offsets.append(offset) self._supports.append(self._calculate_temp_support(-1)) self._supports_ang.append((xi - diff_ang, xi + diff_ang)) if self._supports_ang[-1][0] < 0: self._wrap_below = True self._wrap_supports_ang.append(2 * wrap_diff_ang) self._xis = tuple(self._xis) self._cs = tuple(self._cs) self._alphas = tuple(self._alphas) self._offsets = tuple(self._offsets) self._centers_hz = tuple(self._centers_hz) self._supports_ang = tuple(self._supports_ang) self._wrap_supports_ang = tuple(self._wrap_supports_ang) self._supports_hz = tuple( (angular_to_hertz(ang_l, self._rate), angular_to_hertz(ang_h, self._rate),) for ang_l, ang_h in self._supports_ang ) self._supports = tuple(self._supports) @property def is_real(self) -> bool: return False @property def is_analytic(self) -> bool: return not self._wrap_below @property def num_filts(self) -> int: return len(self._centers_hz) @property def order(self) -> int: return self._order @property def is_zero_phase(self) -> bool: return False @property def sampling_rate(self) -> float: return self._rate @property def centers_hz(self) -> Tuple[float]: """The point of maximum gain in each filter's frequency response, in Hz This property gives the so-called "center frequencies" - the point of maximum gain - of each filter. """ return self._centers_hz @property def supports_hz(self) -> tuple: return self._supports_hz @property def supports(self) -> tuple: return self._supports @property def scaled_l2_norm(self) -> bool: return self._scale_l2_norm @property def erb(self) -> bool: return self._erb def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: left_sup, right_sup = self.supports[filt_idx] left_period = int(np.floor(left_sup / width)) right_period = int(np.ceil(right_sup / width)) res = np.zeros(width, dtype=np.complex128) for period in range(left_period, right_period + 1): for idx in range(width): t = period * width + idx res[idx] += self._h(t, filt_idx) return res def get_frequency_response( self, filt_idx: int, width: int, half: bool = False ) -> np.ndarray: left_sup, right_sup = self._supports_ang[filt_idx] left_period = int(np.floor(left_sup / 2 / np.pi)) right_period = int(np.ceil(right_sup / 2 / np.pi)) if half: if width % 2: dft_size = (width + 1) // 2 else: dft_size = width // 2 + 1 else: dft_size = width res = np.zeros(dft_size, dtype=np.complex128) for period in range(left_period, right_period + 1): for idx in range(dft_size): omega = (idx / width + period) * 2 * np.pi res[idx] += self._H(omega, filt_idx) return res def get_truncated_response(self, filt_idx: int, width: int) -> np.ndarray: left_sup, right_sup = self._supports_ang[filt_idx] wrap_ang = self._wrap_supports_ang[filt_idx] # wrap_ang is the additional support needed to hit # half the effective support threshold. If that support is # greater than the 2pi periodization, some points could exceed # the threshold due to wrapping. if right_sup - left_sup + wrap_ang >= 2 * np.pi: return 0, self.get_frequency_response(filt_idx, width) left_idx = int(np.ceil(width * left_sup / 2 / np.pi)) right_idx = int(width * right_sup / 2 / np.pi) omega = np.arange(left_idx, right_idx + 1, dtype=np.float64) omega *= 2 * np.pi / width return left_idx % width, self._H(omega, filt_idx) def _h(self, t, idx): # calculate impulse response of filt idx at sample t offset = self._offsets[idx] if t <= offset: return 0j alpha = self._alphas[idx] log_c = np.log(self._cs[idx]) xi = self._xis[idx] n = self._order r = log_c + (n - 1) * np.log(t - offset) r += (-alpha + 1j * xi) * (t - offset) return np.exp(r) def _H(self, omega, idx): # calculate frequency response of filt idx at ang freqs omega alpha = self._alphas[idx] c = self._cs[idx] xi = self._xis[idx] offset = self._offsets[idx] n = self._order numer = np.exp(-1j * omega * offset) * c * np.math.factorial(n - 1) denom = (alpha + 1j * (omega - xi)) ** n return numer / denom def _calculate_temp_support(self, idx): # calculate the nonzero region of the temp support of filt idx alpha = self._alphas[idx] c = self._cs[idx] # xi = self._xis[idx] offset = self._offsets[idx] n = self._order eps = config.EFFECTIVE_SUPPORT_THRESHOLD if n == 1: right = int(np.ceil((np.log(c) - np.log(eps) / alpha))) else: def _d(t): # derivative of abs func v = c * np.exp(-alpha * t) * t ** (n - 2) v *= (n - 1) - alpha * t return v right = (n - 1 + np.sqrt((n - 1) / 2)) / alpha h_0 = np.abs(self._h(right, idx)) while h_0 > eps: d_0 = _d(right) right -= h_0 / d_0 h_0 = np.abs(self._h(right, idx)) return (int(np.floor(offset)), int(np.ceil(right) + offset)) # windows class WindowFunction(AliasedFactory): """A real linear filter, usually lowpass""" @abc.abstractmethod def get_impulse_response(self, width: int) -> np.ndarray: """Write the filter into a numpy array of fixed width""" pass class BartlettWindow(WindowFunction): """A unit-normalized triangular window See Also -------- numpy.bartlett """ aliases = {"bartlett", "triangular", "tri"} def get_impulse_response(self, width: int) -> np.ndarray: window = np.bartlett(width) window /= max(1, width - 1) / 2 return window class BlackmanWindow(WindowFunction): """A unit-normalized Blackman window See Also -------- numpy.blackman """ aliases = {"blackman", "black"} def get_impulse_response(self, width: int) -> np.ndarray: window = np.blackman(width) window /= 0.42 * max(1, width - 1) return window class HammingWindow(WindowFunction): """A unit-normalized Hamming window See Also -------- numpy.hamming """ aliases = {"hamming"} def get_impulse_response(self, width: int) -> np.ndarray: window = np.hamming(width) window /= 0.54 * max(1, width - 1) return window class HannWindow(WindowFunction): """A unit-normalized Hann window See Also -------- numpy.hanning """ aliases = {"hanning", "hann"} def get_impulse_response(self, width: int) -> np.ndarray: window = np.hanning(width) window /= 0.5 * max(1, width - 1) return window class GammaWindow(WindowFunction): r"""A lowpass filter based on the Gamma function A Gamma function is defined as: .. math:: p(t; \alpha, n) = t^{n - 1} e^{-\alpha t} u(t) Where :math:`n` is the order of the function, :math:`\alpha` controls the bandwidth of the filter, and :math:`u` is the step function. This function returns a window based off a reflected Gamma function. :math:`\alpha` is chosen such that the maximum value of the window aligns with `peak`. The window is clipped to the width. For reasonable values of `peak` (i.e. in the last quarter of samples), the majority of the support should lie in this interval anyways. Arguments --------- order : int peak : float ``peak * width``, where ``width`` is the length of the window in samples, is where the approximate maximal value of the window lies Attributes ---------- order : int peak : float """ aliases = {"gamma"} def __init__(self, order: int = 4, peak: float = 0.75): self.order = order self.peak = peak def get_impulse_response(self, width: np.ndarray) -> np.ndarray: if width <= 0: return
np.array([], dtype=float)
numpy.array
from numpy.random import seed import scipy.io from keras.utils import np_utils import numpy as np import pickle import scipy as sc def createDataset_12(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): sample.append(mat['muestras'].item(i)[18][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject) def createDataset_11(path): seed(0) sample = [] labels = [] subject = [] ages = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): sample.append(mat['muestras'].item(i)[18][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] age = mat['muestras'].item(i)[3] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) ages.append(age) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject), np.array(ages) def createDataset_15(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if np.any(mat['muestras'].item(i)[23][:, 1:4]): sample.append(mat['muestras'].item(i)[23][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject) def createDataset_07(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if np.any(mat['muestras'].item(i)[19][:, 1:4]): sample.append(mat['muestras'].item(i)[19][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject) def createDataset_03(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if np.any(mat['muestras'].item(i)[18][:, 1:4]): sample.append(mat['muestras'].item(i)[18][:, 1:4]) subject.append(np_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Fall" else 0 label = filter_label(label) labels.append(np_utils.to_categorical(label, 2)) sample = np.expand_dims(sample, 1) return sample, np.array(labels), np.array(subject) def createDataset_05(path): data_adl = getAllDataAsListNew('adl') data_adl = data_adl[:, :, 125:176] data_adl =
np.stack(data_adl, 2)
numpy.stack
""" SECS utils """ import numpy as np d2r = np.pi/180 MU0 = 4 * np.pi * 1e-7 RE = 6371.2 * 1e3 def dpclip(x, delta = 1e-7): """ dot product clip: clip x to values between -1 + delta and 1 - delta """ return np.clip(x, -1 + delta, 1 - delta) def get_theta(lat, lon, lat_secs, lon_secs, return_degrees = False): """" calculate theta angle - the angle between data point and secs node. Parameters ---------- lat: array-like Array of latitudes of evaluation points [deg] Flattened array must have same size as lon lon: array-like Array of longitudes of evaluation points [deg]. Flattened array must have same size as lat lat_secs: array-like Array of SECS pole latitudes [deg] Flattened array must have same size as lon_secs lon_secs: array-like Array of SECS pole longitudes [deg] Flattened array must havef same size as lat_secs Output will be a 2D array with shape (mlat.size, mlat_secs.size) return_degrees: bool, optional Set to True if you want output in degrees. Default is False (radians) Returns ------- theta: 2D array (lat.size, lat_secs.size) Array of polar angles, angular distances between the points described by (lat, lon) and the points described by (lat_secs, lon_secs). Unit in radians unless return_degrees is set to True """ # reshape angles and convert to radians: la = np.array(lat).flatten()[:, np.newaxis] * d2r lo = np.array(lon).flatten()[:, np.newaxis] * d2r la_s = np.array(lat_secs).flatten()[np.newaxis, :] * d2r lo_s = np.array(lon_secs).flatten()[np.newaxis, :] * d2r # ECEF position vectors of data points - should be N by 3, where N is number of data points ecef_r_data = np.hstack((np.cos(la ) * np.cos(lo ), np.cos(la ) * np.sin(lo ), np.sin(la ))) # position vectors SECS poles - should be 3 by M, where M is number of SECS - these are the z axes of each SECS ecef_r_secs = np.vstack((np.cos(la_s) * np.cos(lo_s), np.cos(la_s) * np.sin(lo_s), np.sin(la_s))).T # the polar angles (N, M): theta = np.arccos(dpclip(np.einsum('ij, kj -> ik', ecef_r_data, ecef_r_secs))) if return_degrees: theta = theta / d2r return theta def get_SECS_J_G_matrices(lat, lon, lat_secs, lon_secs, current_type = 'divergence_free', constant = 1./(4*np.pi), RI = RE + 110 * 1e3, singularity_limit = 0): """ Calculate matrices Ge and Gn which relate SECS amplitudes to current density vector components. Parameters ---------- lat: array-like Array of latitudes of evaluation points [deg] Flattened array must have same size as lon lon: array-like Array of longitudes of evaluation points [deg]. Flattened array must have same size as lat lat_secs: array-like Array of SECS pole latitudes [deg] Flattened array must have same size as lon_secs lon_secs: array-like Array of SECS pole longitudes [deg] Flattened array must havef same size as lat_secs current_type: string, optional The type of SECS function. This must be either 'divergence_free' (default): divergence-free basis functions 'curl_free': curl-free basis functions 'potential': scalar field whose negative gradient is curl-free SECS 'scalar': constant: float, optional The SECS functions are scaled by the factor 1/(4pi), which is the default value of 'constant'. Change if you want something different. RI: float (optional) Radius of SECS poles. Default is Earth radius + 110,000 m singularity_limit: float (optional) A modified version of the SECS functions will be used at points that are closer than singularity_limit. The modification is given by equations 2.43 (CF) and 2.44 (DF) in Vanhamaki and Juusola (2020), and singularity_limit / RI is equal to theta0 in these equations. Default is 0, which means that the original version of the SECS functions are used (with singularities). singularity_limit is ignored if current_type is 'potential' or 'scalar' Returns ------- If current_type is 'divergence_free' or 'curl_free': Ge: 2D array 2D array with shape (lat.size, lat_secs.size), relating SECS amplitudes m to the eastward current densities at (lat, lon) via 'je = Ge.dot(m)' Gn: 2D array 2D array with shape (lat.size, lat_secs.size), relating SECS amplitudes m to the northward current densities at (lat, lon) via 'jn = Gn.dot(m)' If current_type is 'potential' or 'scalar': G: 2D array 2D array with shape (lat.size, lat_secs.size), relating amplitudes m to scalar field magnitude at (lat, lon) via 'z = G.dot(m)' """ # reshape angles and convert to radians: la = np.array(lat).flatten()[:, np.newaxis] * d2r lo = np.array(lon).flatten()[:, np.newaxis] * d2r la_s = np.array(lat_secs).flatten()[np.newaxis, :] * d2r lo_s = np.array(lon_secs).flatten()[np.newaxis, :] * d2r # ECEF position vectors of data points - should be N by 3, where N is number of data points ecef_r_data = np.hstack((np.cos(la ) * np.cos(lo ), np.cos(la ) * np.sin(lo ), np.sin(la ))) # position vectors SECS poles - should be 3 by M, where M is number of SECS - these are the z axes of each SECS ecef_r_secs = np.vstack((np.cos(la_s) * np.cos(lo_s), np.cos(la_s) * np.sin(lo_s), np.sin(la_s))).T # unit vector pointing from SECS to data points - (M, N, 3) ecef_t = ecef_r_secs[np.newaxis, :, :] - ecef_r_data[:, np.newaxis, :] # difference vector - not tangential yet ecef_t = ecef_t - np.einsum('ijk,ik->ij', ecef_t, ecef_r_data)[:, :, np.newaxis] * ecef_r_data[:, np.newaxis, :] # subtract radial part of the vector to make it tangential ecef_t = ecef_t/np.linalg.norm(ecef_t, axis = 2)[:, :, np.newaxis] # normalize the result # make N rotation matrices to rotate ecef_t to enu_t - one rotation matrix per SECS: R = np.hstack( (np.dstack((-np.sin(lo) , np.cos(lo) , np.zeros_like(la) )), np.dstack((-np.cos(lo) * np.sin(la), -np.sin(lo) * np.sin(la), np.cos( la) )), np.dstack(( np.cos(lo) * np.cos(la), np.sin(lo) * np.cos(la), np.sin( la) ))) ) # apply rotation matrices to make enu vectors pointing from data points to SECS enu_t = np.einsum('lij, lkj->lki', R, ecef_t)[:, :, :-1] # remove last component (up), which should deviate from zero only by machine precicion if current_type == 'divergence_free': # rotate these vectors to get vectors pointing eastward with respect to SECS systems at each data point enu_vec = np.dstack((enu_t[:, :, 1], -enu_t[:, :, 0])) # north -> east and east -> south elif current_type == 'curl_free': enu_vec = -enu_t # outward from SECS elif current_type in ['potential', 'scalar']: enu_vec = 1 else: raise Exception('type must be "divergence_free", "curl_free", "potential", or "sclar"') # get the scalar part of Amm's divergence-free SECS: theta = np.arccos(dpclip(np.einsum('ij,kj->ik', ecef_r_secs, ecef_r_data))) if current_type in ['divergence_free', 'curl_free']: coeff = constant /np.tan(theta/2)/ RI # apply modifications to handle singularities: theta0 = singularity_limit / RI if theta0 > 0: alpha = 1 / np.tan(theta0/2)**2 coeff[theta < theta0] = constant * alpha * np.tan(theta[theta < theta0]/2) / RI # G matrices Ge = coeff * enu_vec[:, :, 0].T Gn = coeff * enu_vec[:, :, 1].T return Ge.T, Gn.T else: # current_type is 'potential' or 'scalar' if current_type == 'potential': return -2*constant*np.log(np.sin(theta/2)).T elif current_type == 'scalar': return constant / np.tan(theta/2).T def get_SECS_B_G_matrices(lat, lon, r, lat_secs, lon_secs, current_type = 'divergence_free', constant = 1./(4*np.pi), RI = RE + 110 * 1e3, singularity_limit = 0, induction_nullification_radius = None): """ Calculate matrices Ge, Gn, and Gr which relate SECS amplitudes to magnetic field Based on equations (9) and (10) of Amm and Viljanen 1999, or (2.13)-(2.14) in Vanhamaki and Juusola 2020. If singularity_limit > 0, the magnetic field of curl-free currents is modified, but not the magnetic field of divergence-free currents (!). See Section 2.10.2 and equation (2.46) in Vanhamaki and Juusola 2020. Parameters ---------- lat: array-like Array of latitudes of evaluation points [deg] Flattened array must have same size as lon lon: array-like Array of longitudes of evaluation points [deg]. Flattened array must have same size as lat r: array-like Array of radii of evaluation points. Flattened array must either have size 1, in which case one radius is used for all points, or have same size as lat. Unit should be the same as RI lat_secs: array-like Array of SECS pole latitudes [deg] Flattened array must have same size as lon_secs lon_secs: array-like Array of SECS pole longitudes [deg] Flattened array must havef same size as lat_secs current_type: string, optional The type of SECS function. This must be either 'divergence_free' (default): divergence-free basis functions 'curl_free': curl-free basis functions constant: float, optional The SECS functions are scaled by the factor 1/(4pi), which is the default value of 'constant'. Change if you want something different. RI: float (optional) Radius of SECS poles. Default is Earth radius + 110,000 m singularity_limit: float (optional) A modified version of the SECS functions will be used at points that are closer than singularity_limit. The modification is given by equations 2.43 (CF) and 2.44 (DF) in Vanhamaki and Juusola (2020), and singularity_limit / RI is equal to theta0 in these equations. Default is 0, which means that the original version of the SECS functions are used (with singularities). induction_nullification_radius: float or None, optional The radius at which ground induced image currents cancel the radial magnetic field. Default in None, in which case there are no induced image currents. This part is based on equations of Appendix A in "<NAME>., <NAME>., <NAME>., <NAME>., and <NAME>. (2016), Comparison of auroral ionospheric and field‐ aligned currents derived from Swarm and ground magnetic field measurements, J. Geophys. Res. Space Physics, 121, 9256– 9283, doi:10.1002/2016JA022961." Returns ------- Ge: 2D array 2D array with shape (lat.size, lat_secs.size), relating SECS amplitudes m to the eastward magnetic field at (lat, lon) via 'Be = Ge.dot(m)' Gn: 2D array 2D array with shape (lat.size, lat_secs.size), relating SECS amplitudes m to the northward magnetic field at (lat, lon) via 'Bn = Gn.dot(m)' Gr: 2D array 2D array with shape (lat.size, lat_secs.size), relating SECS amplitudes m to the radial magnetic field at (lat, lon) via 'Br = Gr.dot(m)' """ # reshape angles and convert to radians: la = np.array(lat).flatten()[:, np.newaxis] * d2r lo = np.array(lon).flatten()[:, np.newaxis] * d2r la_s =
np.array(lat_secs)
numpy.array
import numpy as np import math import pyvista as pv import tree as T import assignment as AS import time import pickle from tqdm import tqdm_notebook from pathlib import Path from scipy.optimize import linear_sum_assignment from pyvista import examples from operator import itemgetter dataset_teapot = examples.download_teapot() dataset_bunny = examples.download_bunny_coarse() teapot_points, temp = T.generate_points(dataset_teapot) bunny_points, temp = T.generate_points(dataset_bunny) source = teapot_points destination = bunny_points * 10 source_points, destination_points = [], [] src_pts_path = Path("source_pts.pkl") dst_pts_path = Path("dst_pts.pkl") if src_pts_path.exists(): with open(src_pts_path, "rb") as fp: source_points = pickle.load(fp) with open(dst_pts_path, "rb") as fp: destination_points = pickle.load(fp) else : start = time.time() Morphing = AS.Assignment(source, destination) Morphing.calculate() source_points, destination_points = Morphing.get_result() print("time : ", time.time() - start) if not src_pts_path.exists(): with open(src_pts_path, "wb") as fp: pickle.dump(source_points, fp) with open("dst_pts.pkl", "wb") as fp: pickle.dump(destination_points, fp) # Test FRAME = 240 filename = "test.mp4" # Frame Image start_dataset = pv.PolyData(np.array(source_points)) source_dataset = pv.PolyData(np.array(source_points)) #source_dataset.plot(show_edges = True) destination_dataset = pv.PolyData(
np.array(destination_points)
numpy.array
"""Demo code shows how to estimate human head pose. Currently, human face is detected by a detector from an OpenCV DNN module. Then the face box is modified a little to suits the need of landmark detection. The facial landmark detection is done by a custom Convolutional Neural Network trained with TensorFlow. After that, head pose is estimated by solving a PnP problem. """ from argparse import ArgumentParser from multiprocessing import Process, Queue import cv2 import numpy as np from mark_detector import MarkDetector from os_detector import detect_os from pose_estimator import PoseEstimator from stabilizer import Stabilizer import math print("OpenCV version: {}".format(cv2.__version__)) # multiprocessing may not work on Windows and macOS, check OS for safety. detect_os() CNN_INPUT_SIZE = 128 real_width = 114 focal_length = 474 # Take arguments from user input. parser = ArgumentParser() parser.add_argument("--video", type=str, default=None, help="Video file to be processed.") parser.add_argument("--cam", type=int, default=None, help="The webcam index.") args = parser.parse_args() def rotate_vector(v, x_angle, y_angle): rotated_v = np.copy(v) rotated_v[1] = -rotated_v[1] # rotate around y axis, e.g. in horizontal plane x_prime = v[0] * math.cos(x_angle) + v[2] * math.sin(x_angle) y_prime = v[1] z_prime = -v[0] * math.sin(x_angle) + v[2] * math.cos(x_angle) rotated_v[0] = x_prime rotated_v[1] = y_prime rotated_v[2] = z_prime # rotate around x axis, e.g. in vertical plane x_prime = rotated_v[0] y_prime = rotated_v[1] * math.cos(y_angle) - rotated_v[2] * math.sin(y_angle) z_prime = rotated_v[1] * math.sin(y_angle) + rotated_v[2] * math.cos(y_angle) return rotated_v def sharpen(gray): blurred = gray.copy() cv2.GaussianBlur(gray, (5, 5), 0.8, blurred) sharpened = gray.copy() cv2.addWeighted(gray, 1.5, blurred, 0.5, 0, sharpened) return sharpened def get_face(detector, img_queue, box_queue): """Get face from image queue. This function is used for multiprocessing""" while True: image = img_queue.get() box = detector.extract_cnn_facebox(image) box_queue.put(box) def adjust_angle(eye_frame_part, x, y): adjusted_x = x - eye_frame_part.shape[0] / 2 adjusted_y = y - eye_frame_part.shape[1] / 2 proportion_x = adjusted_x / eye_frame_part.shape[0] proportion_y = adjusted_y / eye_frame_part.shape[1] vertical_max_angle = 75 horizontal_max_angle = 75 return proportion_x * horizontal_max_angle, proportion_y * vertical_max_angle def process_eyes(frame, landmarks): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = sharpen(gray) left_eye = gray[int(landmarks[38][1]) - 7: int(landmarks[41][1]) + 7, int(landmarks[36][0]) - 7: int(landmarks[39][0]) + 7] right_eye = gray[int(landmarks[44][1]) - 7: int(landmarks[46][1]) + 7, int(landmarks[42][0]) - 7: int(landmarks[45][0]) + 7] eyes = [left_eye, right_eye] centers = [] origins = [[int(landmarks[36][0]), int(landmarks[38][1])], [int(landmarks[42][0]), int(landmarks[44][1])]] for eye, origin in zip(eyes, origins): circles = cv2.HoughCircles(eye, cv2.HOUGH_GRADIENT, 1, eye.shape[0]/64, param1=200, param2=13, minRadius=5, maxRadius=30) eye_center = (eye.shape[0] / 2, eye.shape[1] / 2) if circles is None: # no circles were detected on either or both eyes # so return prematurely return {} circles = np.uint16(np.around(circles)) needed_circles = circles[0, :].tolist() needed_circles.sort(key=lambda circle: math.sqrt((eye_center[0] - circle[0])**2 + (eye_center[1] - circle[1])**2)) the_circle = needed_circles[0] # simplePutText(eye, str(len(circles))) # for i in circles[0, :]: # cv2.circle(eye, (i[0], i[1]), i[2], (255, 255, 255), 2) angles = adjust_angle(eye, the_circle[0], the_circle[1]) cv2.circle(frame, (the_circle[0] + origin[0] - 7, the_circle[1] + origin[1] - 7), 2, (255, 255, 255)) centers.append(angles) centers = {'right': centers[0], 'left': centers[1]} return centers def angle_to_radian(angle_degrees): return math.pi * angle_degrees / 180 def cvt_to_radians(eye_angles): right = eye_angles['right'] eye_angles['right'] = (angle_to_radian(right[0]), angle_to_radian(right[1])) left = eye_angles['left'] eye_angles['left'] = (angle_to_radian(left[0]), angle_to_radian(left[1])) return eye_angles def main(): """MAIN""" # Video source from webcam or video file. video_src = args.cam if args.cam is not None else args.video if video_src is None: print("Warning: video source not assigned, default webcam will be used.") video_src = 0 cap = cv2.VideoCapture(video_src) if video_src == 0: cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) _, sample_frame = cap.read() # Introduce mark_detector to detect landmarks. mark_detector = MarkDetector() # Setup process and queues for multiprocessing. img_queue = Queue() box_queue = Queue() img_queue.put(sample_frame) box_process = Process(target=get_face, args=( mark_detector, img_queue, box_queue,)) box_process.start() # Introduce pose estimator to solve pose. Get one frame to setup the # estimator according to the image size. height, width = sample_frame.shape[:2] pose_estimator = PoseEstimator(img_size=(height, width)) # Introduce scalar stabilizers for pose. pose_stabilizers = [Stabilizer( state_num=2, measure_num=1, cov_process=0.1, cov_measure=0.1) for _ in range(6)] tm = cv2.TickMeter() while True: # Read frame, crop it, flip it, suits your needs. frame_got, frame = cap.read() if frame_got is False: break # Crop it if frame is larger than expected. # frame = frame[0:480, 300:940] # If frame comes from webcam, flip it so it looks like a mirror. if video_src == 0: frame = cv2.flip(frame, 2) # Pose estimation by 3 steps: # 1. detect face; # 2. detect landmarks; # 3. estimate pose # Feed frame to image queue. img_queue.put(frame) # Get face from box queue. facebox = box_queue.get() if facebox is not None: # Detect landmarks from image of 128x128. face_img = frame[facebox[1]: facebox[3], facebox[0]: facebox[2]] face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE)) face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB) tm.start() marks = mark_detector.detect_marks([face_img]) tm.stop() # Convert the marks locations from local CNN to global image. marks *= (facebox[2] - facebox[0]) marks[:, 0] += facebox[0] marks[:, 1] += facebox[1] # Uncomment following line to show raw marks. mark_detector.draw_marks( frame, marks, color=(0, 255, 0)) right_corner = tuple([int(i) for i in marks[36]]) left_corner = tuple([int(i) for i in marks[45]]) # print(marks[36], marks[45]) cv2.line(frame, right_corner, left_corner, (255, 0, 0), 2) pixel_distance = int(math.sqrt((right_corner[0] - left_corner[0]) ** 2 + (right_corner[1] - left_corner[1]) ** 2)) estimated_distance = (real_width * focal_length) / pixel_distance cv2.putText(frame, str(round(estimated_distance, 2)), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0)) # Uncomment following line to show facebox. # mark_detector.draw_box(frame, [facebox]) # Try pose estimation with 68 points. pose = pose_estimator.solve_pose_by_68_points(marks) # Stabilize the pose. steady_pose = [] pose_np =
np.array(pose)
numpy.array
# ■ 3장 목차 # # 1. 활성화함수(activation function) # - 계단 함수 # - sigmoid 함수 # - relu 함수 # 2. 행렬의 내적 # # ■ 3.1 활성화 함수 # *퍼셉트론과 신경망의 차이점: # - 퍼셉트론: 원하는 결과를 출력하도록 가중치의 값을 적절히 정하는 작업을 사람이 수동으로 해야한다. # - 신경망: 가중치 매개변수의 적절한 값을 기계가 데이터로부터 자동으로 학습해서 알아낸다. # # 단층 퍼셉트론: 계단 함수 # 다층 퍼셉트론: sigmoid, relu....를 써야 다층의 출력: 0 or 1 의미가 생긴다. print('====================================================================================================') print('== 문제 35. 파이썬으로 계단함수를 구현하시오.') print('====================================================================================================\n') def step_function(x): if x > 0: return 1 else: return 0 import numpy as np def step_function(x): y = x > 0 return y.astype(np.int) # astype은 true는 1로 변경, false는 0으로 변경한다. x_data = np.array([-1, 0, 1]) print(step_function(x_data)) print('====================================================================================================') print('== 문제 36. 위의 step_function 함수를 이용해서 계단함수를 그리시오.') print('====================================================================================================\n') import numpy as np import matplotlib.pylab as plt def step_function(x): y = x > 0 return y.astype(np.int) # astype은 true는 1로 변경, false는 0으로 변경한다. x_data = np.arange(-5, 5, 0.1) y = step_function(x_data) plt.plot(x_data, y) plt.ylim(-0.1, 1.1) plt.show() print(step_function(x_data)) print('====================================================================================================') print('== 문제 37. 아래와 같이 그래프가 출력되게 하시오.') print('====================================================================================================\n') import numpy as np import matplotlib.pylab as plt def step_function(x): y = x < 0 return y.astype(np.int) # astype은 true는 1로 변경, false는 0으로 변경한다. x_data = np.arange(-5, 5, 0.1) y = step_function(x_data) plt.plot(x_data, y) plt.ylim(-0.1, 1.1) plt.show() print(step_function(x_data)) print('====================================================================================================') print('== 문제 38. (점심시간 문제)') print('====================================================================================================\n') import numpy as np def step_function(x): y = x > 0 return y.astype(np.int) # astype은 true는 1로 변경, false는 0으로 변경한다. x = np.array([-1, 0, 0]) w = np.array([0.3, 0.4, 0.1]) print(step_function(sum(x * w))) print('====================================================================================================') print('== 문제 39. 시그모이드 함수를 파이썬으로 구현하시오.') print('====================================================================================================\n') import numpy as np def sigmoid(a): return 1/(1+np.exp(-a) + 0.00001) print(sigmoid(2.0)) print('====================================================================================================') print('== 문제 40. 시그모이드 함수를 그래프로 그리시오.') print('====================================================================================================\n') import numpy as np import matplotlib.pyplot as plt def sigmoid(a): return 1/(1+np.exp(-a) + 0.00001) x = np.arange(-5.0, 5.0, 0.1) y = sigmoid(x) plt.plot(x, y) plt.ylim(-0.1, 1.1) plt.show() print('====================================================================================================') print('== 문제 41. 아래와 같이 그래프가 출력되게 하시오.') print('====================================================================================================\n') def sigmoid(a): return 1/(1+
np.exp(a)
numpy.exp
import glob import numpy as np import os from tqdm import tqdm from lib.utils import mkdir_p from lib.pc_utils import save_point_cloud import MinkowskiEngine as ME STANFORD_3D_IN_PATH = '/cvgl/group/Stanford3dDataset_v1.2/' STANFORD_3D_OUT_PATH = '/home/chrischoy/datasets/Stanford3D' STANFORD_3D_TO_SEGCLOUD_LABEL = { 4: 0, 8: 1, 12: 2, 1: 3, 6: 4, 13: 5, 7: 6, 5: 7, 11: 8, 3: 9, 9: 10, 2: 11, 0: 12, } class Stanford3DDatasetConverter: CLASSES = [ 'clutter', 'beam', 'board', 'bookcase', 'ceiling', 'chair', 'column', 'door', 'floor', 'sofa', 'stairs', 'table', 'wall', 'window' ] TRAIN_TEXT = 'train' VAL_TEXT = 'val' TEST_TEXT = 'test' @classmethod def read_txt(cls, txtfile): # Read txt file and parse its content. with open(txtfile) as f: pointcloud = [l.split() for l in f] # Load point cloud to named numpy array. pointcloud = np.array(pointcloud).astype(np.float32) assert pointcloud.shape[1] == 6 xyz = pointcloud[:, :3].astype(np.float32) rgb = pointcloud[:, 3:].astype(np.uint8) return xyz, rgb @classmethod def convert_to_ply(cls, root_path, out_path): """Convert Stanford3DDataset to PLY format that is compatible with Synthia dataset. Assumes file structure as given by the dataset. Outputs the processed PLY files to `STANFORD_3D_OUT_PATH`. """ txtfiles = glob.glob(os.path.join(root_path, '*/*/*.txt')) for txtfile in tqdm(txtfiles): file_sp = os.path.normpath(txtfile).split(os.path.sep) target_path = os.path.join(out_path, file_sp[-3]) out_file = os.path.join(target_path, file_sp[-2] + '.ply') if os.path.exists(out_file): print(out_file, ' exists') continue annotation, _ = os.path.split(txtfile) subclouds = glob.glob(os.path.join(annotation, 'Annotations/*.txt')) coords, feats, labels = [], [], [] for inst, subcloud in enumerate(subclouds): # Read ply file and parse its rgb values. xyz, rgb = cls.read_txt(subcloud) _, annotation_subfile = os.path.split(subcloud) clsidx = cls.CLASSES.index(annotation_subfile.split('_')[0]) coords.append(xyz) feats.append(rgb) labels.append(np.ones((len(xyz), 1), dtype=np.int32) * clsidx) if len(coords) == 0: print(txtfile, ' has 0 files.') else: # Concat coords = np.concatenate(coords, 0) feats = np.concatenate(feats, 0) labels =
np.concatenate(labels, 0)
numpy.concatenate
""" Author: <NAME> Ray Tracing functions for internal waves with satGEM T,S,u,and v fields CURRENT STATUS: load in satGEM data and rewrite functions to remove all assumptions and run in a 4d field. - Figure out how to make k and l and m vary in all 4 dimensions (x,y,z, and t) - need a solid conversion method for x and y distances to lat and long (long is the tricker one) """ import numpy as np import scipy import pandas as pd import gsw import oceans as oc import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib.colors import ListedColormap, BoundaryNorm import matplotlib.colors as colors import matplotlib.dates as mdates import cmocean import h5py from datetime import datetime, timedelta from netCDF4 import Dataset def instructions(): """ Print instructions """ text = ''' Ray Tracing Instructions: ------------------------ 1. Generate a "wave" object : rt.wave(inputs) - enter wave frequency, horizontal and vertical wavenumber components, and initial depth - view properties to check if things were entered correctly - when loading and calculating N2, take chunks out at a time otherwise it will crash. (too big of a file) satGEM Details -------------- \t This ray tracing model utilizes the 4D velocity and density field constructed by Dr. <NAME>. Full details are available in Meijers 2013. ''' print(text) # Wave ray tracing equations def Kvec(k, l, m): """ Returns magnitude of wavenumber vector """ return k**2 + l**2 + m**2 def dispersion(f, N2, k, l, m): """ WKB Disperision Relation as a function of and K(k, l, m) """ W = np.sqrt((f**2 * m**2 + N2*(k**2 + l**2))\ / ((k**2 +l**2 + m**2))) return W def CGz(Omega, k, l, m, f, N2, w=0): """ Vertical Group Speed (includes vertical flow but is 0 by default) """ K2 = k**2 + l**2 + m**2 return (-1*(k**2 + l**2) * m * (N2 - f**2)) / (K2**2 * Omega) def CGx(N2, Omega, k, l, m, u, f): """ Horizontal group speed in x-direction in a flow """ # K2 = k**2 + l**2 + m**2 cgx = ((k * m**2 * (N2 - f**2))/((k**2 + l**2 + m**2)**2 * Omega)) + u return cgx def CGy(N2, Omega, k, l, m, v, f): """ Horizontal group speed in y-direction in a flow """ K2 = k**2 + l**2 + m**2 cgy = (l * m**2 * (N2 - f**2))/(K2**2 * Omega) + v return cgy def EoZ(N2, w0, f, ): """ Wave ray energy when variations can only occur in the vertical (i.e. N2 and flow only vary with depth not horizontally) - Olbers 1981 """ Ez = np.squeeze((w0**2 * (N2 - f**2)) / ((w0**2 - f**2)**(3 / 2) * (N2 - w0**2)**(1 / 2))) return Ez def refraction(N, k, l, m, dN, di, Omega): """ Refraction index of internal wave """ K = k**2 + l**2 + m**2 return ((N*(k**2 + l**2)) / (K * Omega)) * (dN/di) def dk(dU, dV,dx, k, l , m, dN, N, Omega): """ Change of wavenumber k in time """ ri = refraction(N, k, l, m, dN, dx, Omega) dk = -1 * (ri + k * (dU/dx) + l * (dV/dx)) return dk def dl(dU, dV, dy, k, l, m, dN, N, Omega): """ Change of wavenumber k in time """ ri = refraction(N, k, l, m, dN, dy, Omega) dl = -1 * (ri + k * (dU / dy) + l * (dV / dy)) return dl def dm(dU, dV, dz, k, l, m, dN, N, Omega): """ Discretized Change of wavenumber k in time """ ri = refraction(N, k, l, m, dN, dz, Omega) dm = -1 * (ri + k * (dU / dz) + l * (dV / dz)) return dm def dOmega(rx, ry, rz, k, l, dU, dV): """ Change in intrinsic frequency / dispersion relation """ dW = (rx + ry + rx) + k * dU + l * dV return dW def make_segments(x, y): """ Create list of line segments from x and y coordinates, in the correct format for LineCollection: an array of the form numlines x (points per line) x 2 (x and y) array """ points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments def inverse_hav(x, y, lon1, lat1): """ Uses the inverse haversine function to convert x and y distance to a new lat and long coordinate. (see ray tracing docs for full formula) Parameters ---------- x: x distance traveled (east-west) y: y distance traveled (north-south) lon1: starting longitude (Degrees) lat1: starting latitude (Degrees) Returns ------- lon2: final longitude (Degrees) lat2: final latitude (Degrees) """ r = 6371e3 # radius of the earth d = np.sqrt(x**2 + y**2) # total distance traveled lat2 = lat1 + (y/111.11e3) # convert y distance to a new latitude point # Convert to radians for use in trig functions latrev1 = np.deg2rad(lat1) latrev2 = np.deg2rad(lat2) # inverse haversine formula shift = 0.5 * np.rad2deg(np.arccos(1 - 2 * ((np.sin(d / (2 * r))**2 - np.sin((latrev2 - latrev1)/2)**2) / (np.cos(latrev1) * np.cos(latrev2))))) if x < 0: lon2 = lon1 - shift else: lon2 = lon1 + shift return lon2, lat2 # in degrees class Wave(object): """ Creates a wave which has varying functionality including: - time forward modelling - time reverse modelling - variable velocity and density field inputs - plotting and saving rays - HOPEFULLY: built in gui """ # Add functionality for a default Buoyancy Frequncy and Velocity Profile def __init__(self, k=10*1000, l=10*1000, t0=datetime(2012, 11, 2, 3, 0, 0), m=500, w0=-1.3e-4, z0=500, lat=-55, lon=-55): # Convert wavelengths into wavenumbers # Save initial values becuase running the model will change # the wave features. self.k = np.array([k], dtype='float') self.l = np.array([l], dtype='float') self.m = np.array([m], dtype='float') self.w0 = np.array([w0], dtype='float') self.kh = np.array([np.sqrt(self.k**2 + self.l**2)]) self.z0 = np.array([z0], dtype='float') self.lat0 = np.array([lat], dtype='float') self.lon0 = np.array([lon], dtype='float') self.t0 = t0 # These are empty for now- they get filled in during model runs. self.x_all = [] self.y_all = [] self.z_all = [] self.m_all = [] self.w0_all = [] self.E_all = [] self.Ac_all = [] def help(self): """ Print instructions on how to use wave class """ text = ''' Instructions for using ray tracing model. \nGenerate a wave with chosen properties or use the defualt Parameters ''' print(text) def model_error_message(self, x, y, z, m, idx, idx2): error_message = ''' current variables: ----------------- x = {} y = {} z = {} N2 = {} U = {} V = {} m = {} '''.format(x, y, z, self.N2[idx2], self.U[idx], self.V[idx], m) return error_message def properties(self): """ Print wave properties """ txt = '''Wave Properties: --------------- k: {} l: {} m: {} kh: {} Frequency: {} '''.format(np.array2string(self.k), self.l, self.m, self.kh, self.w0) print(txt) class satGEM_field(object): """ load in the satGEM data as an object (this might be wierd though becuase the h5py module loads in each file as an object so not sure...) The objects built in functions can then be used to easily access the data set without ever having to load the whole thing in. Also Contains bathymetry data """ def __init__(self): # Load satGEM data as h5py file objects gamma_file = h5py.File('DIMES_GAMMA_09_12_upd.mat') vel_file = h5py.File('DIMES_vel_09_12_upd.mat') ts_file = h5py.File('DIMES_TS_09_12_upd.mat') gamma = gamma_file['satGEM_gamma'] self.u = vel_file['satGEM_east'] self.v = vel_file['satGEM_north'] self.temp = ts_file['satGEM_temp'] self.sal = ts_file['satGEM_sal'] # Data grids time = np.squeeze(np.array(gamma_file['time'])) # convert from matlab to python date time. self.time = np.array([oc.matlab2datetime(timeIn) for timeIn in time]) self.depth_grid = gamma_file['depthlvl'] self.lon = gamma_file['lons'] self.lat = gamma_file['lats'] # The u and v grids are one point off each so I need # to figure out how to handle this self.centerlat = vel_file['centerlat'] self.centerlon = vel_file['centerlon'] ################################### # Bathymetry file self.bathy = Dataset('bathy.nc') def locate(self, lon, lat, depth, time): """ Locate point/points within the satgem data set Parameters ---------- lon: longitude of point lat: latitude of point depth: depth of point time: of point Returns ------- lon_id: index along longitude axis lat_id: index along latitude axis depth_id: index along latitude axis time_id: index along time axis These are for the velocity grids centerlon_id: index along centerlon axis centerlat_id: index along centerlat axis """ # Add warning for out of time and space boundaries. lon_id = np.argmin(np.abs(self.lon[:] - lon)) lat_id = np.argmin(np.abs(self.lat[:] - lat)) depth_id = np.argmin(np.abs(self.depth_grid[:] - depth)) time_id = np.argmin(np.abs(self.time[:] - time)) centerlon_id = np.argmin(
np.abs(self.centerlon[:] - lon)
numpy.abs
""" CellProfiler is distributed under the GNU General Public License. See the accompanying file LICENSE for details. Copyright (c) 2003-2009 Massachusetts Institute of Technology Copyright (c) 2009-2014 Broad Institute All rights reserved. Please see the AUTHORS file for credits. Website: http://www.cellprofiler.org """ '''<b>Atrous filter</b> - an image processing module which applies the "A Trous" wavelet transform to an image. <hr> This is a module that takes one image as an input and produces a second image for downstream processing. ''' ################################# # # Imports from useful Python libraries # ################################# import platform import numpy as np import imp import libatrous from scipy.ndimage import gaussian_gradient_magnitude, correlate1d ################################# # # Imports from CellProfiler # # The package aliases are the standard ones we use # throughout the code. # ################################## import cellprofiler.cpimage as cpi try: import cellprofiler.module as cpm except: import cellprofiler.cpmodule as cpm import cellprofiler.settings as cps ################################### # # Constants # # It's good programming practice to replace things like strings with # constants if they will appear more than once in your program. That way, # if someone wants to change the text, that text will change everywhere. # Also, you can't misspell it by accident. ################################### KERNEL_CHOICES = libatrous.get_names() #["Linear 3x3", "B-Spline 5x5"] ################################### # # The module class # # Your module should "inherit" from cellprofiler.cpmodule.CPModule. # This means that your module will use the methods from CPModule unless # you re-implement them. You can let CPModule do most of the work and # implement only what you need. # ################################### class Atrous(cpm.CPModule): ############################################### # # The module starts by declaring the name that's used for display, # the category under which it is stored and the variable revision # number which can be used to provide backwards compatibility if # you add user-interface functionality later. # ############################################### module_name = "AtrousFilter" category = "Image Processing" variable_revision_number = 1 ############################################### # # create_settings is where you declare the user interface elements # (the "settings") which the user will use to customize your module. # # You can look at other modules and in cellprofiler.settings for # settings you can use. # ################################################ def create_settings(self): # # The ImageNameSubscriber "subscribes" to all ImageNameProviders in # prior modules. Modules before yours will put images into CellProfiler. # The ImageSubscriber gives your user a list of these images # which can then be used as inputs in your module. # self.input_image_name = cps.ImageNameSubscriber( # The text to the left of the edit box "Input image name:", # HTML help that gets displayed when the user presses the # help button to the right of the edit box doc = """This is the image that the module operates on. You can choose any image that is made available by a prior module. <br> <b>AtrousFilter</b> will produce a filtered version of the input image. """) # # The ImageNameProvider makes the image available to subsequent # modules. # self.output_image_name = cps.ImageNameProvider( "Output image name:", # The second parameter holds a suggested name for the image. "OutputImage", doc = """This is the image resulting from the operation.""") # # Here's a choice box - the user gets a drop-down list of what # can be done. # n_kernel = len(KERNEL_CHOICES) doc = "Choose which kernel to filter with: <ul>" for i in range(n_kernel): kernel = libatrous.get_kernel(i) doc += "<li><i>%s:</i> %s</li>" % (KERNEL_CHOICES[i],str(kernel)) doc += "</ul>" self.atrous_choice = cps.Choice( "Kernel type:", # The choice takes a list of possibilities. The first one # is the default - the one the user will typically choose. KERNEL_CHOICES, # # Here, in the documentation, we do a little trick so that # we use the actual text that's displayed in the documentation. # # %(KERNEL_CHOICES[0])s will get changed into "Linear 3x3" # etc. Python will look in globals() for the "ATROUS_" names # and paste them in where it sees %(ATROUS_...)s # # The <ul> and <li> tags make a neat bullet-point list in the docs # doc = doc % globals() ) self.atrous_scalerange = cps.IntegerRange( "Band-pass filter width (smallest / largest scale):", (1, 8), minval=1, maxval=10, doc="""The smallest and largest scale to include in the filter determine the width of the band-pass filter. Single scale filters are entered by using the same scale index for the smallest and largest scale.<br><br> A High-pass filter would start at scale 1 and not include the residual low-pass filter, whereas a low-pass filter would start at a small scale greater than 1 and would include the residual low-pass filter.<br><br> Any filter whose smallest scale is 1 and includes the residual low-pass filter would output the input image. """) self.atrous_lowpass = cps.Binary( "Do you want to include the residual Low Pass image?", False, doc = """Add the residual Low Pass image to the filtered image. """) self.atrous_threshold = cps.Binary( "Do you want to threshold the output?", True, doc = """The output image will be thresholded """) self.atrous_threshrange = cps.FloatRange( "Threshold range:", (0, 100), doc="""The lower and upper limits for the threshold range. """) self.atrous_normalise = cps.Binary( "Do you want to normalise the output?", False, doc = """The output image will be normalised. """) # # This method ensures that the scales are within range def validate_scales(self): low_scale,high_scale = self.atrous_scalerange.value if low_scale > high_scale: low_scale = high_scale if high_scale < low_scale: high_scale = low_scale self.atrous_scalerange.value = (low_scale,high_scale) # # The "settings" method tells CellProfiler about the settings you # have in your module. CellProfiler uses the list for saving # and restoring values for your module when it saves or loads a # pipeline file. # def settings(self): self.validate_scales() return [self.input_image_name, self.output_image_name, self.atrous_choice, self.atrous_scalerange, self.atrous_lowpass, self.atrous_threshold,self.atrous_threshrange, self.atrous_normalise] # # visible_settings tells CellProfiler which settings should be # displayed and in what order. # # You don't have to implement "visible_settings" - if you delete # visible_settings, CellProfiler will use "settings" to pick settings # for display. # def visible_settings(self): self.validate_scales() result = [self.input_image_name, self.output_image_name, self.atrous_choice, self.atrous_scalerange, self.atrous_lowpass, self.atrous_threshold] #only show the min/max threshold values if threshold is ticked if self.atrous_threshold: result += [self.atrous_threshrange] result += [self.atrous_normalise] return result # # CellProfiler calls "run" on each image set in your pipeline. # This is where you do the real work. # def run(self, workspace): # # Get the input and output image names. You need to get the .value # because otherwise you'll get the setting object instead of # the string name. # input_image_name = self.input_image_name.value output_image_name = self.output_image_name.value # # Get the image set. The image set has all of the images in it. # image_set = workspace.image_set # # Get the input image object. We want a grayscale image here. # The image set will convert a color image to a grayscale one # and warn the user. # input_image = workspace.image_set.get_image(input_image_name, must_be_grayscale = True) # # Get the pixels - these are a 2-d Numpy array. # value_max = input_image.scale pixels = input_image.pixel_data # # Get the wavelet parameters # kernel_index = KERNEL_CHOICES.index(self.atrous_choice) kernel = libatrous.get_kernel(kernel_index) low_scale,high_scale = self.atrous_scalerange.value low_thresh,high_thresh = self.atrous_threshrange.value low_thresh /= value_max high_thresh /= value_max # # build the output_pixels array iteratively # lowpass = pixels.astype(np.float32) output_pixels = np.zeros(pixels.shape,np.float32) for i in range(high_scale): bandpass,lowpass = libatrous.iterscale(lowpass,kernel,i) if i >= (low_scale-1): output_pixels += bandpass if self.atrous_lowpass: output_pixels += lowpass # # Do the thresholding (if needed -- always) # if self.atrous_threshold: mi = np.min(output_pixels) ma = np.max(output_pixels) output_pixels[output_pixels < low_thresh] = low_thresh output_pixels[output_pixels > high_thresh] = high_thresh # # Do we normalise? # if self.atrous_normalise: mi = np.min(output_pixels) ma =
np.max(output_pixels)
numpy.max
import numpy as np def _recall_values(labels, x_absolute=False, y_absolute=False): n_docs = len(labels) n_pos_docs = sum(labels) x = np.arange(1, n_docs + 1) recall = np.cumsum(labels) if not x_absolute: x = x / n_docs if y_absolute: y = recall else: y = recall / n_pos_docs return x.tolist(), y.tolist() def _wss_values(labels, x_absolute=False, y_absolute=False): n_docs = len(labels) n_pos_docs = sum(labels) docs_found = np.cumsum(labels) docs_found_random = np.round(np.linspace(0, n_pos_docs, n_docs)) # Get the first occurrence of 1, 2, 3, ..., n_pos_docs in both arrays. when_found = np.searchsorted(docs_found, np.arange(1, n_pos_docs + 1)) when_found_random = np.searchsorted(docs_found_random, np.arange(1, n_pos_docs + 1)) n_found_earlier = when_found_random - when_found x = np.arange(1, n_pos_docs + 1) if not x_absolute: x = x / n_pos_docs if y_absolute: y = n_found_earlier else: y = n_found_earlier / n_docs return x.tolist(), y.tolist() def _erf_values(labels, x_absolute=False, y_absolute=False): n_docs = len(labels) n_pos_docs = sum(labels) docs_found = np.cumsum(labels) docs_found_random = np.round(np.linspace(0, n_pos_docs, n_docs)) extra_records_found = docs_found - docs_found_random x =
np.arange(1, n_docs + 1)
numpy.arange
print("\n===================================================================================================") import argparse import copy import gc import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import h5py import os import random from tqdm import tqdm import torch import torchvision import torch.nn as nn import torch.backends.cudnn as cudnn from torchvision.utils import save_image import timeit from PIL import Image from opts import parse_opts args = parse_opts() wd = args.root_path os.chdir(wd) from utils import * from models import * from Train_cGAN import * from Train_CcGAN import * from eval_metrics import cal_FID, cal_labelscore ####################################################################################### ''' Settings ''' ####################################################################################### #----------------------------- # images NC = args.num_channels #number of channels IMG_SIZE = args.img_size #-------------------------------- # system NGPU = torch.cuda.device_count() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #------------------------------- # seeds random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True cudnn.benchmark = False np.random.seed(args.seed) #------------------------------- # output folders save_models_folder = wd + '/output/saved_models' os.makedirs(save_models_folder, exist_ok=True) save_images_folder = wd + '/output/saved_images' os.makedirs(save_images_folder, exist_ok=True) save_traincurves_folder = wd + '/output/training_loss_fig' os.makedirs(save_traincurves_folder, exist_ok=True) ####################################################################################### ''' Data loader ''' ####################################################################################### # data loader data_filename = args.data_path + '/Cell200_{}x{}.h5'.format(IMG_SIZE, IMG_SIZE) hf = h5py.File(data_filename, 'r') counts = hf['CellCounts'][:] counts = counts.astype(float) images = hf['IMGs_grey'][:] hf.close() raw_images = copy.deepcopy(images) raw_counts = copy.deepcopy(counts) ############## ### show some real images if args.show_real_imgs: unique_counts_show = sorted(list(set(counts))) nrow = len(unique_counts_show); ncol = 10 images_show = np.zeros((nrow*ncol, images.shape[1], images.shape[2], images.shape[3])) for i in range(nrow): curr_label = unique_counts_show[i] indx_curr_label = np.where(counts==curr_label)[0][0:ncol] for j in range(ncol): images_show[i*ncol+j,:,:,:] = images[indx_curr_label[j]] print(images_show.shape) images_show = (images_show/255.0-0.5)/0.5 images_show = torch.from_numpy(images_show) save_image(images_show.data, save_images_folder +'/real_images_grid_{}x{}.png'.format(nrow, ncol), nrow=ncol, normalize=True) ############## # images for training GAN # for each cell count select n_imgs_per_cellcount images n_imgs_per_cellcount = args.num_imgs_per_count selected_cellcounts = np.arange(args.start_count, args.end_count+1, args.stepsize_count) n_unique_cellcount = len(selected_cellcounts) images_subset = np.zeros((n_imgs_per_cellcount*n_unique_cellcount, NC, IMG_SIZE, IMG_SIZE), dtype=np.uint8) counts_subset = np.zeros(n_imgs_per_cellcount*n_unique_cellcount) for i in range(n_unique_cellcount): curr_cellcount = selected_cellcounts[i] index_curr_cellcount = np.where(counts==curr_cellcount)[0] if i == 0: images_subset = images[index_curr_cellcount[0:n_imgs_per_cellcount]] counts_subset = counts[index_curr_cellcount[0:n_imgs_per_cellcount]] else: images_subset = np.concatenate((images_subset, images[index_curr_cellcount[0:n_imgs_per_cellcount]]), axis=0) counts_subset = np.concatenate((counts_subset, counts[index_curr_cellcount[0:n_imgs_per_cellcount]])) # for i images = images_subset counts = counts_subset del images_subset, counts_subset; gc.collect() print("Number of images: %d" % len(images)) if args.GAN == "cGAN": #treated as classification; convert cell counts to class labels unique_counts = np.sort(np.array(list(set(raw_counts)))) #not counts because we want the last element is the max_count num_unique_counts = len(unique_counts) print("{} unique counts are split into {} classes".format(num_unique_counts, args.cGAN_num_classes)) ## convert cell counts to class labels and vice versa ### step 1: prepare two dictionaries label2class = dict() class2label = dict() num_labels_per_class = num_unique_counts//args.cGAN_num_classes class_cutoff_points = [unique_counts[0]] #the cutoff points on [min_label, max_label] to determine classes; each interval is a class curr_class = 0 for i in range(num_unique_counts): label2class[unique_counts[i]]=curr_class if (i+1)%num_labels_per_class==0 and (curr_class+1)!=args.cGAN_num_classes: curr_class += 1 class_cutoff_points.append(unique_counts[i+1]) class_cutoff_points.append(unique_counts[-1]) assert len(class_cutoff_points)-1 == args.cGAN_num_classes ### the cell count of each interval equals to the average of the two end points for i in range(args.cGAN_num_classes): class2label[i] = (class_cutoff_points[i]+class_cutoff_points[i+1])/2 ### step 2: convert cell counts to class labels counts_new = -1*np.ones(len(counts)) for i in range(len(counts)): counts_new[i] = label2class[counts[i]] assert np.sum(counts_new<0)==0 counts = counts_new del counts_new; gc.collect() unique_counts = np.sort(np.array(list(set(counts)))).astype(int) else: counts /= args.end_count # normalize to [0,1] if args.kernel_sigma<0: std_count = np.std(counts) args.kernel_sigma =1.06*std_count*(len(counts))**(-1/5) print("\n Use rule-of-thumb formula to compute kernel_sigma >>>") print("\n The std of {} cell counts is {} so the kernel sigma is {}".format(len(counts), std_count, args.kernel_sigma)) if args.kappa<0: unique_counts_norm = np.sort(np.array(list(set(counts)))) diff_list = [] for i in range(1,len(unique_counts_norm)): diff_list.append(unique_counts_norm[i] - unique_counts_norm[i-1]) kappa_base = np.abs(args.kappa)*np.max(np.array(diff_list)) if args.threshold_type=="hard": args.kappa = kappa_base else: args.kappa = 1/kappa_base**2 #end if ####################################################################################### ''' GAN training ''' ####################################################################################### print("{}, Sigma is {}, Kappa is {}".format(args.threshold_type, args.kernel_sigma, args.kappa)) if args.GAN == 'CcGAN': save_GANimages_InTrain_folder = save_images_folder + '/{}_{}_{}_{}_InTrain'.format(args.GAN, args.threshold_type, args.kernel_sigma, args.kappa) else: save_GANimages_InTrain_folder = save_images_folder + '/{}_InTrain'.format(args.GAN) os.makedirs(save_GANimages_InTrain_folder, exist_ok=True) start = timeit.default_timer() print("\n Begin Training %s:" % args.GAN) #---------------------------------------------- # cGAN: treated as a classification dataset if args.GAN == "cGAN": Filename_GAN = save_models_folder + '/ckpt_{}_niters_{}_nclass_{}_seed_{}.pth'.format(args.GAN, args.niters_gan, args.cGAN_num_classes, args.seed) print(Filename_GAN) if not os.path.isfile(Filename_GAN): print("There are {} unique cell counts".format(len(unique_counts))) netG = cond_cnn_generator(nz=args.dim_gan, num_classes=args.cGAN_num_classes) netD = cond_cnn_discriminator(num_classes=args.cGAN_num_classes) netG = nn.DataParallel(netG) netD = nn.DataParallel(netD) # Start training netG, netD = train_cGAN(images, counts, netG, netD, save_images_folder=save_GANimages_InTrain_folder, save_models_folder = save_models_folder) # store model torch.save({ 'netG_state_dict': netG.state_dict(), 'netD_state_dict': netD.state_dict(), }, Filename_GAN) else: print("Loading pre-trained generator >>>") checkpoint = torch.load(Filename_GAN) netG = cond_cnn_generator(args.dim_gan, num_classes=args.cGAN_num_classes).to(device) netG = nn.DataParallel(netG) netG.load_state_dict(checkpoint['netG_state_dict']) # function for sampling from a trained GAN def fn_sampleGAN_given_label(nfake, count, batch_size): fake_counts = np.ones(nfake) * count #normalized count count = int(count*args.end_count) #back to original scale of cell count fake_images, _ = SampcGAN_given_label(netG, count, class_cutoff_points=class_cutoff_points, NFAKE = nfake, batch_size = batch_size) return fake_images, fake_counts #---------------------------------------------- # Concitnuous cGAN elif args.GAN == "CcGAN": Filename_GAN = save_models_folder + '/ckpt_{}_niters_{}_seed_{}_{}_{}_{}.pth'.format(args.GAN, args.niters_gan, args.seed, args.threshold_type, args.kernel_sigma, args.kappa) print(Filename_GAN) if not os.path.isfile(Filename_GAN): netG = cont_cond_cnn_generator(nz=args.dim_gan) netD = cont_cond_cnn_discriminator() netG = nn.DataParallel(netG) netD = nn.DataParallel(netD) # Start training netG, netD = train_CcGAN(args.kernel_sigma, args.kappa, images, counts, netG, netD, save_images_folder=save_GANimages_InTrain_folder, save_models_folder = save_models_folder) # store model torch.save({ 'netG_state_dict': netG.state_dict(), 'netD_state_dict': netD.state_dict(), }, Filename_GAN) else: print("Loading pre-trained generator >>>") checkpoint = torch.load(Filename_GAN) netG = cont_cond_cnn_generator(args.dim_gan).to(device) netG = nn.DataParallel(netG) netG.load_state_dict(checkpoint['netG_state_dict']) def fn_sampleGAN_given_label(nfake, label, batch_size): fake_images, fake_counts = SampCcGAN_given_label(netG, label, path=None, NFAKE = nfake, batch_size = batch_size) return fake_images, fake_counts stop = timeit.default_timer() print("GAN training finished; Time elapses: {}s".format(stop - start)) ####################################################################################### ''' Evaluation ''' ####################################################################################### if args.comp_FID: #for FID PreNetFID = encoder(dim_bottleneck=512).to(device) PreNetFID = nn.DataParallel(PreNetFID) Filename_PreCNNForEvalGANs = save_models_folder + '/ckpt_AE_epoch_50_seed_2020_CVMode_False.pth' checkpoint_PreNet = torch.load(Filename_PreCNNForEvalGANs) PreNetFID.load_state_dict(checkpoint_PreNet['net_encoder_state_dict']) # for LS PreNetLS = ResNet34_regre(ngpu = NGPU).to(device) Filename_PreCNNForEvalGANs = save_models_folder + '/ckpt_PreCNNForEvalGANs_ResNet34_regre_epoch_200_seed_2020_Transformation_True_Cell_200.pth' checkpoint_PreNet = torch.load(Filename_PreCNNForEvalGANs) PreNetLS.load_state_dict(checkpoint_PreNet['net_state_dict']) ##################### # generate nfake images print("Start sampling {} fake images per label from GAN >>>".format(args.nfake_per_label)) eval_labels_norm = np.arange(args.start_count, args.end_count + 1) / args.end_count num_eval_labels = len(eval_labels_norm) ## wo dump for i in tqdm(range(num_eval_labels)): curr_label = eval_labels_norm[i] curr_fake_images, curr_fake_labels = fn_sampleGAN_given_label(args.nfake_per_label, curr_label, args.samp_batch_size) if i == 0: fake_images = curr_fake_images fake_labels_assigned = curr_fake_labels.reshape(-1) else: fake_images = np.concatenate((fake_images, curr_fake_images), axis=0) fake_labels_assigned = np.concatenate((fake_labels_assigned, curr_fake_labels.reshape(-1))) assert len(fake_images) == args.nfake_per_label*num_eval_labels assert len(fake_labels_assigned) == args.nfake_per_label*num_eval_labels print("End sampling!") print("\n We got {} fake images.".format(len(fake_images))) ## dump fake images for evaluation: NIQE if args.dump_fake_for_NIQE: if args.GAN == "cGAN": dump_fake_images_folder = wd + "/dump_fake_data/fake_images_cGAN_nclass_{}_nsamp_{}".format(args.cGAN_num_classes, len(fake_images)) else: if args.kernel_sigma>1e-30: dump_fake_images_folder = wd + "/dump_fake_data/fake_images_CcGAN_{}_nsamp_{}".format(args.threshold_type, len(fake_images)) else: dump_fake_images_folder = wd + "/dump_fake_data/fake_images_CcGAN_limit_nsamp_{}".format(len(fake_images)) for i in tqdm(range(len(fake_images))): label_i = round(fake_labels_assigned[i]*args.end_count) filename_i = dump_fake_images_folder + "/{}_{}.png".format(i, label_i) os.makedirs(os.path.dirname(filename_i), exist_ok=True) image_i = fake_images[i] image_i = ((image_i*0.5+0.5)*255.0).astype(np.uint8) image_i_pil = Image.fromarray(image_i[0]) image_i_pil.save(filename_i) #end for i print("End sampling {} fake images per label from GAN >>>".format(args.nfake_per_label)) ##################### # normalize real images and labels real_images = (raw_images/255.0-0.5)/0.5 real_labels = raw_counts/args.end_count nfake_all = len(fake_images) nreal_all = len(real_images) ##################### # Evaluate FID within a sliding window with a radius R on the label's range (i.e., [args.start_count,args.end_count]). The center of the sliding window locate on [R+args.start_count,2,3,...,args.end_count-R]. center_start = args.start_count+args.FID_radius center_stop = args.end_count-args.FID_radius centers_loc = np.arange(center_start, center_stop+1) FID_over_centers = np.zeros(len(centers_loc)) labelscores_over_centers = np.zeros(len(centers_loc)) #label score at each center num_realimgs_over_centers = np.zeros(len(centers_loc)) for i in range(len(centers_loc)): center = centers_loc[i] interval_start = (center - args.FID_radius)/args.end_count interval_stop = (center + args.FID_radius)/args.end_count indx_real = np.where((real_labels>=interval_start)*(real_labels<=interval_stop)==True)[0] np.random.shuffle(indx_real) real_images_curr = real_images[indx_real] num_realimgs_over_centers[i] = len(real_images_curr) indx_fake = np.where((fake_labels_assigned>=interval_start)*(fake_labels_assigned<=interval_stop)==True)[0] np.random.shuffle(indx_fake) fake_images_curr = fake_images[indx_fake] fake_labels_assigned_curr = fake_labels_assigned[indx_fake] # FID FID_over_centers[i] = cal_FID(PreNetFID, real_images_curr, fake_images_curr, batch_size = 200, resize = None) # Label score labelscores_over_centers[i], _ = cal_labelscore(PreNetLS, fake_images_curr, fake_labels_assigned_curr, min_label_before_shift=0, max_label_after_shift=args.end_count, batch_size = 200, resize = None) print("\r Center:{}; Real:{}; Fake:{}; FID:{}; LS:{}.".format(center, len(real_images_curr), len(fake_images_curr), FID_over_centers[i], labelscores_over_centers[i])) # average over all centers print("\n {} SFID: {}({}); min/max: {}/{}.".format(args.GAN, np.mean(FID_over_centers), np.std(FID_over_centers), np.min(FID_over_centers), np.max(FID_over_centers))) print("\n {} LS over centers: {}({}); min/max: {}/{}.".format(args.GAN, np.mean(labelscores_over_centers),
np.std(labelscores_over_centers)
numpy.std
import os import sys import glob import gzip import json import argparse import numpy as np import scipy.sparse as sp from sklearn.linear_model import LogisticRegression def load_sparse_embeddings(path, words_to_keep=None, max_words=-1): """ Reads in the sparse embedding file. Parameters ---------- path : str Location of the gzipped sparse embedding file If None, no filtering takes place. words_to_keep : list, optional list of words to keep max_words : int, optional Indicates the number of lines to read in. If negative, the entire file gets processed. Returns ------- tuple: w2i: Wordform to identifier dictionary, i2w: Identifier to wordform dictionary, W: The sparse embedding matrix """ i2w = {} data, indices, indptr = [], [], [0] with gzip.open(path, 'rt') as f: for line_number, line in enumerate(f): if line_number == max_words: break parts = line.rstrip().split(' ') if words_to_keep is not None and parts[0] not in words_to_keep: continue i2w[len(i2w)] = parts[0] for i, value in enumerate(parts[1:]): value = float(value) if value != 0: data.append(float(value)) indices.append(i) indptr.append(len(indices)) return {w: i for i, w in i2w.items()}, i2w, sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, i + 1)) def get_word_index(w2i, token): if token in w2i: return w2i[token] elif token.lower() in w2i: return w2i[token.lower()] else: return -1 def sparse_pmi(indices, vals, row_marginal, col_marginal, total, nonneg_pmi=True): pmis = np.ma.log((total * vals) / (row_marginal * col_marginal)).filled(0) pmis /= -np.ma.log(vals/total).filled(1) indices_to_return, pmis_to_return = [], [] for idx in range(len(indices)): if not nonneg_pmi or pmis[0,idx] > 0: indices_to_return.append(indices[idx]) pmis_to_return.append(pmis[0,idx]) return indices_to_return, pmis_to_return def calc_pmi(M): total, row_sum, col_sum = M.sum(), M.sum(axis=1), M.sum(axis=0)+1e-11 data, indices, ind_ptr = [], [], [0] for i, r in enumerate(M): if np.any(r.data==0): zero_idx = np.where(r.data==0)[0] #logging.warning(("contains 0: ",i,self.id_to_label[i], [r.indices[z] for z in zero_idx])) idxs, pmi_values = sparse_pmi(r.indices, r.data, row_sum[i,0], col_sum[0, r.indices], total) indices.extend(idxs) data.extend(pmi_values) ind_ptr.append(len(data)) return sp.csr_matrix((data, indices, ind_ptr), shape=(M.shape[0], M.shape[1])) def get_rank(gold, list_predictions, max_k=3): list_predictions = list_predictions[:max_k] try: rank = list_predictions.index(gold) + 1 except ValueError: rank = max_k + 1 return rank if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input_files', nargs='+', default='models/sparse_DLSC_cbow_1_2000.gz models/sparse_DLSC_cbow_3_1500.gz models/sparse_DLSC_cbow_3_2000.gz models/sparse_DLSC_cbow_4_1000.gz models/sparse_DLSC_cbow_4_1500.gz models/sparse_DLSC_cbow_5_1000.gz models/sparse_DLSC_cbow_5_2000.gz'.split()) parser.add_argument('--out_dir', type=str, default='final_submission') parser.add_argument('--verbose', dest='verbose', action='store_true') parser.add_argument('--no-verbose', dest='verbose', action='store_false') parser.set_defaults(verbosity=False) parser.add_argument('--normalize', dest='normalize', action='store_true') parser.add_argument('--no-normalize', dest='normalize', action='store_false') parser.set_defaults(normalize=False) args = parser.parse_args() training_data = json.load(open('data/terms/train.json')) test_data = json.load(open('data/terms/test.json')) tags = {i:t['label'] for i, t in enumerate(json.load(open('data/tagset/finsim.json')))} golds = {} if os.path.exists('data/terms/gold.json'): golds = {g['term']:g['label'] for g in json.load(open('data/terms/gold.json'))} labels_to_ids = {v:k for k,v in tags.items()} if not os.path.exists(args.out_dir): os.mkdir(args.out_dir) aggregated_ranks, aggregated_corrects = [], [] aggregated_train_predictions = [[] for _ in range(len(training_data))] aggregated_test_predictions = [[] for _ in range(len(test_data))] if args.input_files: files_used = sorted(args.input_files) else: files_used = sorted(glob.glob('models/*.gz')) print(len(files_used)) for fn in files_used: print(fn) w2i, i2w, S = load_sparse_embeddings(fn) labels_to_vecs = {} oovs = {} for t in training_data: label = t['label'] label_id = labels_to_ids[label] term_tokens = t['term'].split() oovs[t['term']] = [] for ti, tt in enumerate([ttt for T in term_tokens for ttt in T.split('-')]): ind = get_word_index(w2i, tt) if ind==-1: oovs[t['term']].append(tt) continue vec = S[ind,:] if 'vec' in t: t['vec'] += vec else: t['vec'] = vec if 'vec' in t and args.normalize: if 'sparse' in fn: t['vec'].data /= t['vec'].sum() else: t['vec'].data /= np.linalg.norm(t['vec'].data) elif not 'vec' in t: t['vec'] = sp.csr_matrix((1, S.shape[1])) if label_id in labels_to_vecs: labels_to_vecs[label_id] += t['vec'] else: labels_to_vecs[label_id] = t['vec'] mtx = sp.vstack([labels_to_vecs[row] for row in sorted(labels_to_vecs)]) etalon, predictions = [],[] ranking_scores = {} for i,t in enumerate(training_data): gold_label = labels_to_ids[t['label']] etalon.append(gold_label) mtx[gold_label] -= t['vec'] if 'sparse' in fn: product = (-t['vec'] @ calc_pmi(mtx).T).todense() else: row_norms = np.linalg.norm(mtx.todense(), axis=1) M = mtx / row_norms[:, np.newaxis] product = np.array(-t['vec'] @ M.T) ranking_scores[t['term']] = product aggregated_train_predictions[i].append(product) ranked_labels = np.argsort(product) ranked_labels = [ranked_labels[0,r] for r in range(len(tags))][0:5] mtx[gold_label] += t['vec'] if args.verbose and ranked_labels[0]!=gold_label: term = t['term'] print('{}\t{}\t{}\t{}\tOOVs: {}'.format(i, term, t['label'], ' '.join([tags[r] for r in ranked_labels]), ' '.join(oovs[term]))) predictions.append(ranked_labels) del training_data[i]['vec'] corrects = 100*sum([1 if p[0]==g else 0 for g,p in zip(etalon, predictions)]) / len(etalon) aggregated_corrects.append(corrects) avg_rank_metric = np.mean([get_rank(g, p) for g,p in zip(etalon, predictions)]) aggregated_ranks.append(avg_rank_metric) print("Accuracy_loo, rank: ", corrects, avg_rank_metric) if 'sparse' in fn: M = calc_pmi(mtx).toarray().T else: row_norms = np.linalg.norm(mtx.todense(), axis=1) M = np.transpose(mtx / row_norms[:, np.newaxis]) gold_etalons, gold_predictions = [], [] for i,t in enumerate(test_data): t['label'] = None gold_etalons.append(golds[t['term']]) term_tokens = t['term'].split() for ti, tt in enumerate([ttt for T in term_tokens for ttt in T.split('-')]): ind = get_word_index(w2i, tt) if ind==-1: continue vec = S[ind,:] if 'vec' in t: t['vec'] += vec else: t['vec'] = vec if not 'vec' in t: t['vec'] = sp.csr_matrix((1, S.shape[1])) product = (-t['vec'] @ M) aggregated_test_predictions[i].append(product) ranked_labels = np.argsort(product) ranked_labels = [ranked_labels[0,r] for r in range(len(tags))] t['predicted_labels'] = [tags[r] for r in ranked_labels][0:5] gold_predictions.append(t['predicted_labels']) del t['vec'] #print(len(test_data), t) corrects = 100*sum([1 if p[0]==g else 0 for g,p in zip(gold_etalons, gold_predictions)]) / len(gold_etalons) avg_rank_metric = np.mean([get_rank(g, p) for g,p in zip(gold_etalons, gold_predictions)]) print("Accuracy_test, rank: ", corrects, avg_rank_metric) bn = os.path.basename(fn) with open('{}/{}.json'.format(args.out_dir, bn), 'w') as outfile: json.dump(test_data, outfile) correct = 3*[0] ranks = [[] for _ in range(3)] for i,(p,c) in enumerate(zip(aggregated_train_predictions, etalon)): stacked_scores = np.vstack(p) rankings = np.argsort(stacked_scores, axis=1) scores1 = np.zeros(rankings.shape[1]) for r in np.array(rankings): for j,v in enumerate(r): scores1[v] += j row_norms = np.linalg.norm(stacked_scores, axis=1) scores2 = np.array(np.sum(stacked_scores / (row_norms[:, np.newaxis]+1e-9), axis=0)).flatten() scores3 = np.array(np.sum(stacked_scores, axis=0)).flatten() for si, scores in enumerate([scores1, scores2, scores3]): ranked_labels =
np.argsort(scores)
numpy.argsort
import numpy as np def p_basis(x, orders=[1]): y = np.concatenate([np.power(x, o) for o in orders], axis=0) return y.flatten() class LDS(object): """ Describes trajectory distribution of agent moving in a plane. State given by x in R^4, action given by u in R^2. action = k * x + N(0, std) state = A * x + B * u + N(0, 1) """ def __init__(self, K, sigma, polynomial_degrees=[1], L=20): # Environment constants dimension = 2 A = np.eye(2 * dimension) B = np.vstack([0.5 * np.eye(dimension), np.eye(dimension)]) def step(x, u): return A.dot(x) + B.dot(u) self._step = step self._horizon = L # goal is point (5, 5) goal = np.zeros(2 * dimension) for i in range(dimension): goal[2 * i] = 5 def cost(x, u): return -1 * np.linalg.norm(x - goal) self._cost = cost # Agent policy self._K = np.array(K, copy=True) self._sigma = sigma * np.ones(dimension, dtype=float) base_in_dim = 2 * dimension if polynomial_degrees: in_dim = len(polynomial_degrees) * 2 * dimension else: in_dim = 1 def input_fn(x): # if polynomial_degree == 1: # return x rows = [] for row in x.reshape(-1, base_in_dim): rows.append(p_basis(row, orders=polynomial_degrees)) y = np.concatenate(rows, axis=0).reshape(-1, in_dim) return y # Class private member variables self._dimension = dimension self._in_dim = in_dim self._input_fn = input_fn def sample(self, n=1, policy=None): paths = [] gs = np.zeros(n) for i in range(n): state = np.zeros(2 * self._dimension) x = np.zeros((self._horizon, 2 * self._dimension)) u = np.zeros((self._horizon, self._dimension)) r = np.zeros(self._horizon) pi_noise = np.random.normal(0, self._sigma, (self._horizon, self._dimension)) noise = np.random.normal(0, 0.05, (self._horizon, self._dimension * 2)) for t in range(self._horizon): control = self.mean(self._input_fn(state)) + pi_noise[t] x[t] = state u[t] = control state = self._step(state, control) + noise[t] state = np.clip(state, -10, 10) r[t] = self._cost(state, u) g = np.sum(r) gs[i] = g paths.append({'x': x, 'u': u, 'r': r}) return paths, gs def expected_value(self): _, fs = self.sample(n=100000) print('True Eval CI %f' % (np.std(fs) * 1.96 * 0.01)) return np.mean(fs) def mean(self, x): mean = x.dot(self._K) return mean.flatten() def mle_fit(self, paths): """ Fit _K with ordinary least squares. Fit _sigma with residuals. paths: dict, must include keys 'x' and 'u' which are numpy arrays. """ xs = np.concatenate([path['x'] for path in paths]) xs = self._input_fn(xs) us =
np.concatenate([path['u'] for path in paths])
numpy.concatenate
import sys import numpy as np from river.drift import D3 from time import process_time as timer from sklearn.ensemble import RandomForestClassifier from TrainingFunctions.LoadDataStream import load_data_stream from TrainingFunctions.PreprocessingWithoutLabels import preprocessing_without_labels from TrainingFunctions.PreprocessingWithLabels import preprocessing_with_labels from EvaluationFunctions.GeneratePerformanceMetrics import generate_performance_metrics from EvaluationFunctions.GenerateResultsTableIterations import generate_results_table_iterations from Utility_Functions.CreateResultsFileName import create_results_file_name # Not possible to execute on server! # Installation using GitHub necessary: https://github.com/ogozuacik/d3-discriminative-drift-detector-concept-drift # Set parameters n_iterations = 10 # 1. Load Data # Differentiate whether data is provided in separate train and test file separate_train_test_file = False image_data = False drift_labels_known = True proxy_evaluation = False if not drift_labels_known and not proxy_evaluation: print("Error: Change detection evaluation and/or proxy evaluation missing!") sys.exit() if not proxy_evaluation: acc_vector = False if not drift_labels_known: drift_labels = False # Set name of data set and path if separate_train_test_file: path = "IBDD_Datasets/benchmark_real/" # dataset = "Yoga" # dataset = "StarLightCurves" # dataset = "Heartbeats" elif image_data: path = "Generated_Streams/Image_Data_Drift_And_Classifier_Labels/" # dataset = "RandomMNIST_and_FashionMNIST_SortAllNumbers19DR_2021-08-06_11.07.pickle" else: if drift_labels_known: if proxy_evaluation: path = "Generated_Streams/Drift_And_Classifier_Labels/" # dataset = "RandomRandomRBF_50DR_100Dims_50Centroids_1MinDriftCentroids_300MinL_2000MaxL_2021-08-06_10.57.pickle" else: path = "Generated_Streams/Drift_Labels/" # Experiments Evaluation # dataset = "RandomNumpyRandomNormalUniform_onlyMeanDrift_var0.01_50DR_100Dims_1MinDimBroken_300MinL_2000MaxL_2021-08-10_10.32.pickle" # dataset = "RandomNumpyRandomNormalUniform_onlyMeanDrift_var0.05_50DR_100Dims_1MinDimBroken_300MinL_2000MaxL_2021-08-06_10.42.pickle" # dataset = "RandomNumpyRandomNormalUniform_onlyMeanDrift_var0.25_50DR_100Dims_1MinDimBroken_300MinL_2000MaxL_2021-08-06_10.45.pickle" # dataset = "RandomNumpyRandomNormalUniform_onlyVarianceDrift_50DR_100Dims_1MinDimBroken_300MinL_2000MaxL_2021-08-06_11.15.pickle" # dataset = "RandomNumpyRandomNormalUniform_50DR_100Dims_100MinDimBroken_300MinL_2000MaxL_2021-08-06_10.54.pickle" # dataset = "RandomNumpyRandomNormalUniform_50DR_100Dims_1MinDimBroken_300MinL_2000MaxL_2021-08-06_10.53.pickle" # dataset = "Mixed_300MinDistance_DATASET_A_RandomNumpyRandomNormalUniform_50DR_100Dims_1MinDimBroken_DATASET_B_RandomRandomRBF_50DR_100Dims_50Centroids_1MinDriftCentroids.pickle" # Experiments Time Complexity # "Time_RandomNumpyRandomNormalUniform_10DR_10Dims_1MinDimBroken_300MinL_2000MaxL_2021-09-06_22.24.pickle", # "Time_RandomNumpyRandomNormalUniform_10DR_50Dims_5MinDimBroken_300MinL_2000MaxL_2021-09-06_22.25.pickle", # "Time_RandomNumpyRandomNormalUniform_10DR_100Dims_10MinDimBroken_300MinL_2000MaxL_2021-09-06_22.26.pickle", # "Time_RandomNumpyRandomNormalUniform_10DR_500Dims_50MinDimBroken_300MinL_2000MaxL_2021-09-06_22.26.pickle", # "Time_RandomNumpyRandomNormalUniform_10DR_1000Dims_100MinDimBroken_300MinL_2000MaxL_2021-09-06_22.27.pickle" else: path = "Generated_Streams/Classifier_Labels/" dataset = "" print("Current dataset:") print(dataset) # Load data stream data_stream = load_data_stream(dataset=dataset, path=path, separate_train_test_file=separate_train_test_file, image_data=image_data, drift_labels_known=drift_labels_known, proxy_evaluation=proxy_evaluation) # Set number of instances n_instances = data_stream.shape[0] # Set number of train data, validation data, and test data if dataset == "Yoga": n_train_data = 300 elif dataset == "Heartbeats": n_train_data = 500 else: n_train_data = 1000 n_val_data = 0 n_test_data = int(n_instances - n_val_data - n_train_data) # 2. Pre-processing # Separate data stream and drift labels if drift_labels_known: data_stream, drift_labels = data_stream[:, :-1], data_stream[:, -1] drift_labels = drift_labels[(len(drift_labels) - n_test_data):] # Preprocess data stream if proxy_evaluation: train_X, train_y, val_X, val_y, test_X, test_y = preprocessing_with_labels( data_stream, n_instances, n_train_data, n_val_data, n_test_data, image_data) else: train_X, val_X, test_X = preprocessing_without_labels( data_stream, n_instances, n_train_data, n_val_data, n_test_data) # Set number of dimensions n_dimensions = train_X.shape[1] # Start global iterations all_performance_metrics = [] all_accuracies = [] all_times_per_example = [] for iteration in range(n_iterations): print("Global Iteration:") print(iteration) # 3. Train classifier for Evaluation if proxy_evaluation: model_classifier = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0) model_classifier.fit(np.concatenate((train_X, val_X), axis=0), np.concatenate((train_y, val_y), axis=0)) acc_vector = np.zeros(len(test_y), dtype=int) # 4. Drift Detection with D3 start = timer() d3 = D3() # Transform data to array with dictionaries data_stream_dict = [] for idx in range(len(train_X)): new_element = dict(enumerate(train_X[idx], 1)) data_stream_dict.append(new_element) for idx in range(len(val_X)): new_element = dict(enumerate(val_X[idx], 1)) data_stream_dict.append(new_element) for idx in range(len(test_X)): new_element = dict(enumerate(test_X[idx], 1)) data_stream_dict.append(new_element) # Start saving drift decisions when test data start drift_decisions = [False] * len(data_stream_dict) for idx in range(len(data_stream_dict)): test_idx = idx - (n_train_data + n_val_data) # If test data start and proxy evaluation, start prediction if test_idx >= 0 and proxy_evaluation: # Test: Make prediction for element with classifier y_pred = model_classifier.predict(test_X[test_idx].reshape(1, -1)) if y_pred == test_y[test_idx]: acc_vector[test_idx] = 1 # Detect drift in_drift, in_warning = d3.update(data_stream_dict[idx]) # If drift is detected if in_drift: print(f"Change detected at index {idx}") drift_decisions[idx] = True if test_idx >= d3.new_data_window_size and proxy_evaluation: # Train model again on new window data window_train_X = test_X[(test_idx - d3.new_data_window_size):test_idx] window_train_y = test_y[(test_idx - d3.new_data_window_size):test_idx] model_classifier.fit(window_train_X, window_train_y) # Save only drift decisions for test data drift_decisions_in_test_data = drift_decisions[(n_train_data + n_val_data):] # Measure the elapsed time end = timer() execution_time = end - start print('Time per example: {} sec'.format(np.round(execution_time / len(test_X), 4))) print('Total time: {} sec'.format(np.round(execution_time, 2))) all_times_per_example.append(execution_time / len(test_X)) # 5. Evaluation # 5.1 Proxy Evaluation if proxy_evaluation: # Calculate mean accuracy of classifier mean_acc = np.mean(acc_vector) * 100 print('Average classification accuracy: {}%'.format(
np.round(mean_acc, 2)
numpy.round
import cv2 import numpy as np #cwd(),dir() import os #ocr from PIL import Image import pytesseract import argparse #small object removal from skimage import morphology # import matplotlib.pyplot as plt from matplotlib import interactive def Show(img,title="image"): #comment line below in and out if you want to see results at every step return cv2.imshow(title,img) cv2.waitKey() def main(): img1 = cv2.imread("troll_template.png", cv2.IMREAD_GRAYSCALE) #Show(img1) ## img2 = cv2.imread("img2.png") ## diff = cv2.absdiff(img1, img2) # threshold the diff image so that we get the foreground _,im_bin = cv2.threshold(img1, 25, 255, cv2.THRESH_BINARY) (trollmask,trollsliced)=segment(im_bin,img1) trollmoment=cv2.moments(trollmask) trollmoment = [i for i in trollmoment.values()] trollmoment=( np.log10(np.abs(trollmoment)), np.sign(trollmoment) ) namelist = os.listdir('data') N=len(namelist) errors = np.zeros( N ) errors_moment = np.zeros( N ) nos = np.linspace(1,N,N) for i,fname in enumerate(namelist): ## if (i<48) | (i>49): ## continue print('---'*30) print('image '+str(i+1)+'/'+str(N)+' : '+fname) img=preprocIm(fname) img=segment(img) cv2.imwrite('gener/'+fname,img) merged = overlap(img, trollsliced) cv2.imwrite('merged/'+fname,merged) ## Show(img,'Sliced') ## cv2.waitKey() ## cv2.destroyAllWindows() errors[i] = computeErr(img, trollmask) errors_moment[i] = computeErrMoment(img, trollmoment) ## fname = namelist[0] M = np.stack((nos,errors,errors_moment)) #sort by 2nd row, reverse ## a[:,a[1,:].argsort()[::-1] ] M = M[:,M[1,:].argsort()[::-1] ] interactive(True) fig,ax=plt.subplots() Zoom=20 ax.plot(M[1,:Zoom]) #labels=[str(int(i)) for i in M[0,:Zoom]] #ax.set_xticklabels(labels) labels=[int(i)-1 for i in M[0,:Zoom]] labels=[namelist[i].replace('.jpg','') for i in labels] ax.set_xticklabels(labels) ax.set_xticks(nos[:Zoom]-1) ax.set_title('pixel diff') plt.xticks(rotation=90) plt.tight_layout() plt.show() M = M[:,M[2,:].argsort()] fig,ax=plt.subplots() Zoom=20 ax.plot(M[2,:Zoom]) labels=[int(i)-1 for i in M[0,:Zoom]] labels=[namelist[i].replace('.jpg','') for i in labels] ax.set_xticklabels(labels) ax.set_xticks(nos[:Zoom]-1) ax.set_title('rms hu moment diff') plt.xticks(rotation=90) plt.tight_layout() plt.show() def computeErr(img, mask): if img.ndim<2: print("failed") return -1 hi,wi = img.shape[:2] hm,wm = mask.shape[:2] #fit mask to img dims if (hi != hm) & ( wi != wm): mask = cv2.resize(mask, (wi,hi), interpolation=cv2.INTER_CUBIC) _,mask = cv2.threshold(mask, 25, 255, cv2.THRESH_BINARY) #compute same part, subtract different net = cv2.bitwise_and(img,mask) sub = cv2.bitwise_and(img,cv2.bitwise_not(mask)) SS = np.sum(net/255) - np.sum(sub/255) SS/=(hi*wi) ## print(SS) ## Show(mask,"mask") Show(net,"product") return SS def computeErrMoment(img, moment): m1 = cv2.moments(img) m1=[i for i in m1.values()] #clean up zero moments (empty image) L1 = [np.log10(i) if i>0 else 10 for i in np.abs(m1)] S1 = [i if i!=0 else 1 for i in np.sign(m1)] ## print(L1,S1) print('len: '+str(len(L1))) SS = np.multiply(L1,S1)-np.multiply(moment[0],moment[1]) SS = np.linalg.norm(SS)/len(L1) ## print(SS) return SS def overlap(img1, img2): hi,wi = img1.shape[:2] hm,wm = img2.shape[:2] #fit img2 to img dims if (hi != hm) & ( wi != wm): img2 = cv2.resize(img2, (wi,hi), interpolation=cv2.INTER_CUBIC) print('hi:',hi,wi) #assume img1,img2 are bw M=cv2.bitwise_and(np.ones((hi,wi),dtype='uint8'), img1) #background black -> white Bg=cv2.bitwise_not(M) ## print(type(Bg),type(Bg[0][0]),Bg[0][0]) R=26*M+Bg G=240*M+Bg B=40*M+Bg #build color from mask img1 = cv2.merge((B,G,R)) #restore 3channel from bw img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2RGB) out = cv2.addWeighted(img1, 0.6, img2, 0.4, gamma=0) ## Show(img1,'colored') ## Show(out,'mixed') return out def segment(image, colored=[]): # Copy the thresholded image. im_floodfill = cv2.bitwise_not(image.copy()) im_bin_inv = cv2.bitwise_not(image) # Mask used to flood filling. # Notice the size needs to be 2 pixels than the image. h, w = image.shape[:2] mask = np.zeros((h+2, w+2), np.uint8) # Floodfill from point (1,1) cv2.floodFill(im_floodfill, mask, (1,1), 255); im_floodfill_inv = cv2.bitwise_not(im_floodfill) # Combine the two images to get the foreground. ## out = cv2.bitwise_not(im_bin_inv | im_floodfill_inv) out = im_bin_inv | im_floodfill_inv # Display images. ## cv2.imshow("OG Image", image) ## cv2.imshow("Floodfilled Image", im_floodfill) ## cv2.imshow("Inverted Floodfilled Image", im_floodfill_inv) ## cv2.imshow("Inv thres", im_bin_inv) ## cv2.imshow("Inv thres + inv flood", out) #remove small islands ## se1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,8) ) ## se2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2,2) ) ## out = cv2.morphologyEx(out, cv2.MORPH_CLOSE, se1) ## out = cv2.morphologyEx(out, cv2.MORPH_OPEN, se2) #remove with morph lumpSize=np.round( np.min([w, h])/6 ) processed = morphology.remove_small_objects(out.astype(bool), min_size=lumpSize, connectivity=1).astype(int) # black out pixels mask_x, mask_y = np.where(processed == 0) out[mask_x, mask_y] = 0 Show(out,"Eroded") # get the contours in the thresholded image ## contours, hierarchy = cv2.findContours(out, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) ## x,y,w,h = cv2.boundingRect(contours[0]) ## cv2.rectangle(out,(x,y),(x+w,y+h),(0,255,0),2) ## cv2.imwrite("troll_mask.png",out) # get the outline for proper scaling pos = np.where(out==255) py,px = pos if len(px)==0: #empty outline out =
np.zeros((300,300),dtype='uint8')
numpy.zeros
## Imports import os import random import numpy as np import cv2 import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from keras import backend as K ## Seeding seed = 2019 random.seed = seed np.random.seed = seed tf.seed = seed def dice_coef(y_true, y_pred, smooth=1.): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def dice_coef_loss(y_true, y_pred): return -dice_coef(y_true, y_pred) #Data Generator class DataGen(keras.utils.Sequence): def __init__(self, ids, path, batch_size=8, image_size=128): self.ids = ids self.path = path self.batch_size = batch_size self.image_size = image_size self.on_epoch_end() def __load__(self, id_name): ## Path image_path = os.path.join(self.path, "images\\", id_name) mask_path = os.path.join(self.path, "masks\\", id_name) ## Reading Image image = cv2.imread(image_path, 1) image = cv2.resize(image, (self.image_size, self.image_size)) ## Reading Mask mask = np.zeros((self.image_size, self.image_size, 1)) _mask = cv2.imread(mask_path, -1) _mask = cv2.resize(_mask, (self.image_size, self.image_size)) _mask = np.expand_dims(_mask, axis=-1) mask = np.maximum(mask, _mask) ## Multiple Masks reading # all_masks = os.listdir(mask_path) # for name in all_masks: # _mask_path = mask_path + name # _mask_image = cv2.imread(_mask_path, -1) # _mask_image = cv2.resize(_mask_image, (self.image_size, self.image_size)) # 128x128 # _mask_image = np.expand_dims(_mask_image, axis=-1) # mask = np.maximum(mask, _mask_image) ## Normalizaing image = image / 255.0 mask = mask / 255.0 return image, mask def __getitem__(self, index): if (index + 1) * self.batch_size > len(self.ids): self.batch_size = len(self.ids) - index * self.batch_size files_batch = self.ids[index * self.batch_size: (index + 1) * self.batch_size] image = [] mask = [] for id_name in files_batch: _img, _mask = self.__load__(id_name) image.append(_img) mask.append(_mask) image = np.array(image) mask =
np.array(mask)
numpy.array
""" 2D Disc models ============== Classes: Rosenfeld2d, General2d, Velocity, Intensity, Cube, Tools """ #TODO in show(): Perhaps use text labels on line profiles to distinguish profiles for more than 2 cubes. #TODO in make_model(): Find a smart way to detect and pass only the coords needed by a prop attribute. #TODO in run_mcmc(): Enable an arg to allow the user see the position of parameter walkers every 'arg' steps. #TODO in General2d: Implement irregular grids (see e.g. meshio from nschloe on github) for the disc grid. #TODO in General2d: Compute props in the interpolated grid (not in the original grid) to avoid interpolation of props and save time. #TODO in General2d: Allow the lower surface to have independent intensity and line width parametrisations. #TODO in General2d: Implement pressure support term #TODO in make_model(): Allow for warped emitting surfaces, check notes for ideas as to how to solve for multiple intersections between l.o.s and emission surface. #TODO in __main__(): show intro message when python -m disc2d #TODO in run_mcmc(): use get() methods instead of allowing the user to use self obj attributes. #TODO in make_model(): Allow R_disc to be a free parameter. #TODO in make_model(): Enable 3D velocities too when subpixel algorithm is used #TODO in v1.0: migrate to astropy units from __future__ import print_function from ..utils import constants as sfc from ..utils import units as sfu from astropy.convolution import Gaussian2DKernel, convolve from scipy.interpolate import griddata, interp1d from scipy.special import ellipk, ellipe from scipy.optimize import curve_fit from scipy.integrate import quad import matplotlib.patches as patches import matplotlib.pyplot as plt from matplotlib import ticker import numpy as np import matplotlib import itertools import warnings import numbers import pprint import copy import time import sys import os from multiprocessing import Pool os.environ["OMP_NUM_THREADS"] = "1" try: import termtables found_termtables = True except ImportError: print ("\n*** For nicer outputs we recommend installing 'termtables' by typing in terminal: pip install termtables ***") found_termtables = False #warnings.filterwarnings("error") __all__ = ['Cube', 'Tools', 'Intensity', 'Velocity', 'General2d', 'Rosenfeld2d'] path_file = os.path.dirname(os.path.realpath(__file__))+'/' """ matplotlib.rcParams['font.family'] = 'monospace' matplotlib.rcParams['font.weight'] = 'normal' matplotlib.rcParams['lines.linewidth'] = 1.5 matplotlib.rcParams['axes.linewidth'] = 3.0 matplotlib.rcParams['xtick.major.width']=1.6 matplotlib.rcParams['ytick.major.width']=1.6 matplotlib.rc('font', size=MEDIUM_SIZE) # controls default text sizes matplotlib.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of axes title matplotlib.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of x and y labels matplotlib.rc('xtick', labelsize=MEDIUM_SIZE-2) # fontsize of y tick labels matplotlib.rc('ytick', labelsize=MEDIUM_SIZE-2) # fontsize of x tick labels matplotlib.rc('legend', fontsize=SMALL_SIZE-1) # legend fontsize matplotlib.rc('figure', titlesize=BIGGER_SIZE) # fontsize of figure title params = {'xtick.major.size': 6.5, 'ytick.major.size': 6.5 } matplotlib.rcParams.update(params) """ SMALL_SIZE = 10 MEDIUM_SIZE = 15 BIGGER_SIZE = 22 hypot_func = lambda x,y: np.sqrt(x**2 + y**2) #Slightly faster than np.hypot<np.linalg.norm<scipydistance. Checked precision up to au**2 orders and seemed ok. class InputError(Exception): """Exception raised for errors in the input. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, expression, message): self.expression = expression self.message = message def __str__(self): return '%s --> %s'%(self.expression, self.message) class Tools: @staticmethod def _rotate_sky_plane(x, y, ang): xy = np.array([x,y]) cos_ang = np.cos(ang) sin_ang = np.sin(ang) rot = np.array([[cos_ang, -sin_ang], [sin_ang, cos_ang]]) return
np.dot(rot, xy)
numpy.dot
import collections import glob import cv2 import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np from calibration_functions import calibrateCamera_SLOW, undistort from globals import xm_per_pix, ym_per_pix from perspective_function import birdview from threshold_functions import binarize_image # Define a class to receive the characteristics of each line detection class Line(): def __init__(self, buffer_length=10): # was the line detected in the last iteration? self.detected = False # x values of the last n fits of the line self.recent_xfitted = [] # polynomial coefficients for the most recent fit self.last_fit_pixel = None self.last_fit_meter = None # list of polynomial coefficients of the last N iterations self.recent_fits_pixel = collections.deque(maxlen=2 * buffer_length) self.recent_fits_meter = collections.deque(maxlen=2 * buffer_length) # distance in meters of vehicle center from the line self.line_base_pos = None # difference in fit coefficients between last and new fits self.diffs = np.array([0, 0, 0], dtype='float') # x values for detected line pixels self.allx = None # y values for detected line pixels self.ally = None def draw(self, mask, color=(0, 255, 0), line_width=50, average=False): """ Draw the line on a color mask image. """ h, w, c = mask.shape plot_y = np.linspace(0, h - 1, h) coeffs = self.average_fit if average else self.last_fit_pixel line_center = coeffs[0] * plot_y ** 2 + coeffs[1] * plot_y + coeffs[2] line_left_side = line_center - line_width // 2 line_right_side = line_center + line_width // 2 # recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array(list(zip(line_left_side, plot_y))) pts_right = np.array(np.flipud(list(zip(line_right_side, plot_y)))) pts = np.hstack([pts_left, pts_right]) # Draw the lane onto the warped blank image return cv2.fillPoly(mask, [np.int32(pts)], color) def update_line(self, new_fit_pixel, new_fit_meter, detected, clear_buffer=False): """ Update Line with new fitted coefficients. :param new_fit_pixel: new polynomial coefficients (pixel) :param new_fit_meter: new polynomial coefficients (meter) :param detected: if the Line was detected or inferred :param clear_buffer: if True, reset state :return: None """ self.detected = detected if clear_buffer: self.recent_fits_pixel = [] self.recent_fits_meter = [] self.last_fit_pixel = new_fit_pixel self.last_fit_meter = new_fit_meter self.recent_fits_pixel.append(self.last_fit_pixel) self.recent_fits_meter.append(self.last_fit_meter) # PROPERTIES @property # polynomial coefficients averaged over the last n iterations def best_fit_pixels(self): return np.mean(self.recent_fits_pixel, axis=0) @property # polynomial coefficients averaged over the last n iterations def best_fit_meters(self): return np.mean(self.recent_fits_meter, axis=0) @property # radius of curvature of the line in some units def radius_of_curvature_pixels(self): y_eval = 0 coeffs = self.best_fit_pixels return ((1 + (2 * coeffs[0] * y_eval + coeffs[1]) ** 2) ** 1.5) / np.absolute(2 * coeffs[0]) @property # radius of curvature of the line in some units def radius_of_curvature_meters(self): y_eval = 0 coeffs = self.last_fit_meter return ((1 + (2 * coeffs[0] * y_eval + coeffs[1]) ** 2) ** 1.5) / np.absolute(2 * coeffs[0]) def find_lane_pixels(binary_warped, line_L, line_R, nwindows=9, verbose=False): # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[binary_warped.shape[0]//2:, :], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped)) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]//2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # HYPERPARAMETERS """ # Choose the number of sliding windows nwindows = 9 """ # Set the width of the windows +/- margin margin = 100 # Set minimum number of pixels found to recenter window minpix = 50 # Set height of windows - based on nwindows above and image shape window_height = np.int(binary_warped.shape[0]//nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window+1)*window_height win_y_high = binary_warped.shape[0] - window*window_height ### TO-DO: Find the four below boundaries of the window ### win_xleft_low = leftx_current - margin # Update this win_xleft_high = leftx_current + margin # Update this win_xright_low = rightx_current - margin # Update this win_xright_high = rightx_current + margin # Update this # Draw the windows on the visualization image out_img = cv2.rectangle( out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2) out_img = cv2.rectangle( out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2) ### TO-DO: Identify the nonzero pixels in x and y within the window ### good_left_inds = ((nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high) & (nonzeroy >= win_y_low) & (nonzeroy < win_y_high)).nonzero()[0] good_right_inds = ((nonzerox >= win_xright_low) & (nonzerox < win_xright_high) & (nonzeroy >= win_y_low) & (nonzeroy < win_y_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) ### TO-DO: If you found > minpix pixels, recenter next window ### ### (`right` or `leftx_current`) on their mean position ### if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices (previously was a list of lists of pixels) try: left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass # Extract left and right line pixel positions # leftx = nonzerox[left_lane_inds] # lefty = nonzeroy[left_lane_inds] # rightx = nonzerox[right_lane_inds] # righty = nonzeroy[right_lane_inds] leftx = line_L.allx = nonzerox[left_lane_inds] lefty = line_L.ally = nonzeroy[left_lane_inds] rightx = line_R.allx = nonzerox[right_lane_inds] righty = line_R.ally = nonzeroy[right_lane_inds] detected = True if not list(line_L.allx) or not list(line_L.ally): left_fit_pixel = line_L.last_fit_pixel left_fit_meter = line_L.last_fit_meter detected = False else: left_fit_pixel = np.polyfit(line_L.ally, line_L.allx, 2) left_fit_meter = np.polyfit( line_L.ally * ym_per_pix, line_L.allx * xm_per_pix, 2) if not list(line_R.allx) or not list(line_R.ally): right_fit_pixel = line_R.last_fit_pixel right_fit_meter = line_R.last_fit_meter detected = False else: right_fit_pixel = np.polyfit(line_R.ally, line_R.allx, 2) right_fit_meter = np.polyfit( line_R.ally * ym_per_pix, line_R.allx * xm_per_pix, 2) #Fit a second order polynomial to each using `np.polyfit` ### left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) left_fit_meter = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2) right_fit_meter = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2) line_L.update_line(left_fit_pixel, left_fit_meter, detected=detected) line_R.update_line(right_fit_pixel, right_fit_meter, detected=detected) # Generate x and y values for plotting ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0]) try: left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] except TypeError: # Avoids an error if `left` and `right_fit` are still none or incorrect print('The function failed to fit a line!') left_fitx = 1*ploty**2 + 1*ploty right_fitx = 1*ploty**2 + 1*ploty ## Visualization ## # Colors in the left and right lane regions out_img[lefty, leftx] = [255, 0, 0] out_img[righty, rightx] = [0, 0, 255] if verbose: # Plots the left and right polynomials on the lane lines plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') plt.imshow(out_img, cmap='gray') figManager = plt.get_current_fig_manager() # to control the figure to be showen # maximaize the window of the plot to cover the whole screen figManager.window.showMaximized() plt.show() return line_L, line_R, out_img def get_fits_by_previous_fits(birdeye_binary, line_L, line_R, verbose=False): """ Get polynomial coefficients for lane-lines detected in an binary image. This function starts from previously detected lane-lines to speed-up the search of lane-lines in the current frame. :param birdeye_binary: input bird's eye view binary image :param line_L: left lane-line previously detected :param line_R: left lane-line previously detected :param verbose: if True, display intermediate output :return: updated lane lines and output image """ height, width = birdeye_binary.shape left_fit_pixel = line_L.last_fit_pixel right_fit_pixel = line_R.last_fit_pixel # Identify the x and y positions of all nonzero pixels in the image nonzero = birdeye_binary.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Set the width of the windows +/- margin margin = 100 # Identify the nonzero pixels in x and y within the previous detected line-lane left_lane_inds = ( (nonzerox > (left_fit_pixel[0] * (nonzeroy ** 2) + left_fit_pixel[1] * nonzeroy + left_fit_pixel[2] - margin)) & ( nonzerox < (left_fit_pixel[0] * (nonzeroy ** 2) + left_fit_pixel[1] * nonzeroy + left_fit_pixel[2] + margin))) right_lane_inds = ( (nonzerox > (right_fit_pixel[0] * (nonzeroy ** 2) + right_fit_pixel[1] * nonzeroy + right_fit_pixel[2] - margin)) & ( nonzerox < (right_fit_pixel[0] * (nonzeroy ** 2) + right_fit_pixel[1] * nonzeroy + right_fit_pixel[2] + margin))) # Extract left and right line pixel positions line_L.allx, line_L.ally = nonzerox[left_lane_inds], nonzeroy[left_lane_inds] line_R.allx, line_R.ally = nonzerox[right_lane_inds], nonzeroy[right_lane_inds] # check if lane-line are detected in the prefious frame, if so, then load the fitting coefficents from the last frame. if not, then detected = True if not list(line_L.allx) or not list(line_L.ally): # left_fit_pixel = line_L.best_fit_pixel # left_fit_meter = line_L.best_fit_meter left_fit_pixel = line_L.last_fit_pixel left_fit_meter = line_L.last_fit_meter detected = False else: # left_fit_pixel = line_L.best_fit_pixels # left_fit_meter = line_L.best_fit_meters left_fit_pixel = np.polyfit(line_L.ally, line_L.allx, 2) left_fit_meter = np.polyfit(line_L.ally * ym_per_pix, line_L.allx * xm_per_pix, 2) if not list(line_R.allx) or not list(line_R.ally): # right_fit_pixel = line_R.best_fit_pixel # right_fit_meter = line_R.best_fit_meter right_fit_pixel = line_R.last_fit_pixel right_fit_meter = line_R.last_fit_meter detected = False else: # right_fit_pixel = line_R.best_fit_pixels # right_fit_meter = line_R.best_fit_meters right_fit_pixel = np.polyfit(line_R.ally, line_R.allx, 2) right_fit_meter = np.polyfit(line_R.ally * ym_per_pix, line_R.allx * xm_per_pix, 2) line_L.update_line(left_fit_pixel, left_fit_meter, detected=detected) line_R.update_line(right_fit_pixel, right_fit_meter, detected=detected) # AVG the lane-lines data detected over N iterations for both Left and Right lanes. line_L.last_fit_pixel = left_fit_pixel = line_L.best_fit_pixels line_L.last_fit_meter = left_fit_meter = line_L.best_fit_meters line_R.last_fit_pixel = right_fit_pixel = line_R.best_fit_pixels line_R.last_fit_meter = right_fit_meter = line_R.best_fit_meters # Generate x and y values for plotting ploty =
np.linspace(0, height - 1, height)
numpy.linspace
import numpy as np from scipy.misc import * import os, struct def load_MNIST_test(): path = './MNIST' fname_img = os.path.join(path, 't10k-images.idx3-ubyte') fname_lbl = os.path.join(path, 't10k-labels.idx1-ubyte') n_cluster = 10 with open(fname_lbl, 'rb') as flbl: magic, num = struct.unpack(">II", flbl.read(8)) labels =
np.fromfile(flbl, dtype=np.int8)
numpy.fromfile
import gym from gym.spaces import Discrete, MultiDiscrete, Tuple import numpy as np from mujoco_worldgen.util.rotation import mat2quat from mae_envs.wrappers.util import update_obs_space from mae_envs.util.geometry import dist_pt_to_cuboid from copy import deepcopy from itertools import compress class GrabObjWrapper(gym.Wrapper): ''' Allows agents to grab an object using a weld constraint. Args: body_names (list): list of body names that the agent can grab radius_multiplier (float): How far away can this be activated (multiplier on box size) grab_dist (float): If set, the object is held at a specific distance during grabbing (default: None). Note: This does not work well with oblong objects grab_exclusive (bool): If set true, each object can only be grabbed by a single agent. If several agents attempt to grab the same object, only the closer agents succeeds. obj_in_game_metadata_keys (list of string): keys in metadata with boolean array saying which objects are currently in the game. This is used in the event we are randomizing number of objects ''' def __init__(self, env, body_names, radius_multiplier=1.7, grab_dist=None, grab_exclusive=False, obj_in_game_metadata_keys=None): super().__init__(env) self.n_agents = self.unwrapped.n_agents self.body_names = body_names self.n_obj = len(body_names) self.obj_in_game_metadata_keys = obj_in_game_metadata_keys self.action_space.spaces['action_pull'] = ( Tuple([MultiDiscrete([2] * self.n_obj) for _ in range(self.n_agents)])) self.observation_space = update_obs_space( env, {'obj_pull': (self.n_obj, 1), 'you_pull': (self.n_obj, self.n_agents)}) self.grab_radius = radius_multiplier * self.metadata['box_size'] self.grab_dist = grab_dist self.grab_exclusive = grab_exclusive def observation(self, obs): obs['you_pull'] = self.obj_grabbed.T obs['obj_pull'] = np.any(obs['you_pull'], axis=-1, keepdims=True) return obs def reset(self): obs = self.env.reset() sim = self.unwrapped.sim if self.obj_in_game_metadata_keys is not None: self.actual_body_slice = np.concatenate([self.metadata[k] for k in self.obj_in_game_metadata_keys]) else: self.actual_body_slice = np.ones((len(self.body_names))).astype(np.bool) actual_body_names = list(compress(self.body_names, self.actual_body_slice)) self.n_obj = len(actual_body_names) # Cache body ids self.obj_body_idxs = np.array([sim.model.body_name2id(body_name) for body_name in actual_body_names]) self.agent_body_idxs = np.array([sim.model.body_name2id(f"agent{i}:particle") for i in range(self.n_agents)]) # Cache geom ids self.obj_geom_ids = np.array([sim.model.geom_name2id(body_name) for body_name in actual_body_names]) self.agent_geom_ids = np.array([sim.model.geom_name2id(f'agent{i}:agent') for i in range(self.n_agents)]) # Cache constraint ids self.agent_eq_ids = np.array( [i for i, obj1 in enumerate(sim.model.eq_obj1id) if sim.model.body_names[obj1] == f"agent{i}:particle"]) assert len(self.agent_eq_ids) == self.n_agents # turn off equality constraints sim.model.eq_active[self.agent_eq_ids] = 0 self.obj_grabbed = np.zeros((self.n_agents, self.n_obj), dtype=bool) self.last_obj_grabbed = np.zeros((self.n_agents, self.n_obj), dtype=bool) return self.observation(obs) def grab_obj(self, action): ''' Implements object grabbing for all agents Args: action: Action dictionary ''' action_pull = action['action_pull'][:, self.actual_body_slice] sim = self.unwrapped.sim agent_pos = sim.data.body_xpos[self.agent_body_idxs] obj_pos = sim.data.body_xpos[self.obj_body_idxs] obj_width = sim.model.geom_size[self.obj_geom_ids] obj_quat = sim.data.body_xquat[self.obj_body_idxs] assert len(obj_width) == len(obj_quat), ( "Number of object widths must be equal to number of quaternions for direct distance calculation method. " + "This might be caused by a body that contains several geoms.") obj_dist = dist_pt_to_cuboid(agent_pos, obj_pos, obj_width, obj_quat) allowed_and_desired = np.logical_and(action_pull, obj_dist <= self.grab_radius) obj_dist_masked = obj_dist.copy() # Mask the obj dists to find a valid argmin obj_dist_masked[~allowed_and_desired] = np.inf if self.grab_exclusive: closest_obj = np.zeros((self.n_agents,), dtype=int) while np.any(obj_dist_masked < np.inf): # find agent and object of closest object distance agent_idx, obj_idx = np.unravel_index(np.argmin(obj_dist_masked), obj_dist_masked.shape) # set closest object for this agent closest_obj[agent_idx] = obj_idx # ensure exclusivity of grabbing obj_dist_masked[:, obj_idx] = np.inf obj_dist_masked[agent_idx, :] = np.inf # mark same object as undesired for all other agents allowed_and_desired[:agent_idx, obj_idx] = False allowed_and_desired[(agent_idx + 1):, obj_idx] = False else: closest_obj = np.argmin(obj_dist_masked, axis=-1) valid_grabs = np.any(allowed_and_desired, axis=-1) # (n_agent,) which agents have valid grabs # Turn on/off agents with valid grabs sim.model.eq_active[self.agent_eq_ids] = valid_grabs sim.model.eq_obj2id[self.agent_eq_ids] = self.obj_body_idxs[closest_obj] # keep track of which object is being grabbed self.obj_grabbed = np.zeros((self.n_agents, self.n_obj), dtype=bool) agent_with_valid_grab = np.argwhere(valid_grabs)[:, 0] self.obj_grabbed[agent_with_valid_grab, closest_obj[agent_with_valid_grab]] = 1 # If there are new grabs, then setup the weld constraint parameters new_grabs = np.logical_and( valid_grabs, np.any(self.obj_grabbed != self.last_obj_grabbed, axis=-1)) for agent_idx in np.argwhere(new_grabs)[:, 0]: agent_rot = sim.data.body_xmat[self.agent_body_idxs[agent_idx]].reshape((3, 3)) obj_rot = sim.data.body_xmat[self.obj_body_idxs[closest_obj[agent_idx]]].reshape((3, 3)) # Need to use the geom xpos rather than the qpos obj_pos = sim.data.body_xpos[self.obj_body_idxs[closest_obj[agent_idx]]] agent_pos = sim.data.body_xpos[self.agent_body_idxs[agent_idx]] grab_vec = agent_pos - obj_pos if self.grab_dist is not None: grab_vec = self.grab_dist / (1e-3 + np.linalg.norm(grab_vec)) * grab_vec # The distance constraint needs to be rotated into the frame of reference of the agent sim.model.eq_data[self.agent_eq_ids[agent_idx], :3] = np.matmul(agent_rot.T, grab_vec) # The angle constraint is the difference between the agents frame and the objects frame sim.model.eq_data[self.agent_eq_ids[agent_idx], 3:] = mat2quat(np.matmul(agent_rot.T, obj_rot)) self.last_obj_grabbed = self.obj_grabbed def step(self, action): self.grab_obj(action) obs, rew, done, info = self.env.step(action) return self.observation(obs), rew, done, info class GrabClosestWrapper(gym.ActionWrapper): ''' Convert the action_pull (either grab or pull) to a binary action rather than having the dimension of boxes. The grab wrapper will only grab the closest box, so we convert the new action into an all 1's action. ''' def __init__(self, env): super().__init__(env) self.action_space = deepcopy(self.action_space) self.n_obj = len(self.action_space.spaces['action_pull'].spaces[0].nvec) self.action_space.spaces['action_pull'] = ( Tuple([Discrete(2) for _ in range(self.unwrapped.n_agents)])) def action(self, action): action = deepcopy(action) action['action_pull'] = np.repeat(action['action_pull'][:, None], self.n_obj, -1) return action class LockObjWrapper(gym.Wrapper): ''' Allows agents to lock objects at their current position. Args: body_names (list): list of body names that the agent can lock radius_multiplier (float): How far away can this be activated (multiplier on box size) agent_idx_allowed_to_lock (np array of ints): Indicies of agents that are allowed to lock. Defaults to all lock_type (string): Options are any_lock: if any agent wants to lock an object it will get locked all_lock: all agents that are close enough must want to lock the object any_lock_specific: if any agent wants to lock an object it will get locked. However, now the lock is agent specific, and only the agent that locked the object can unlock it. all_lock_team_specific: like all_lock, but only team members of the agent that locked the object can unlock it. ac_obs_prefix (string): prefix for the action and observation keys. This is useful if using the lock wrapper more than once. obj_in_game_metadata_keys (list of string): keys in metadata with boolean array saying which objects are currently in the game. This is used in the event we are randomizing number of objects agent_allowed_to_lock_keys (list of string): keys in obs determining whether agent is allowed to lock a certain object. Each key should be a mask matrix of dim (n_agents, n_obj) ''' def __init__(self, env, body_names, radius_multiplier=1.5, agent_idx_allowed_to_lock=None, lock_type="any_lock", ac_obs_prefix='', obj_in_game_metadata_keys=None, agent_allowed_to_lock_keys=None): super().__init__(env) self.n_agents = self.unwrapped.n_agents self.n_obj = len(body_names) self.body_names = body_names self.agent_idx_allowed_to_lock = np.arange(self.n_agents) if agent_idx_allowed_to_lock is None else agent_idx_allowed_to_lock self.lock_type = lock_type self.ac_obs_prefix = ac_obs_prefix self.obj_in_game_metadata_keys = obj_in_game_metadata_keys self.agent_allowed_to_lock_keys = agent_allowed_to_lock_keys self.action_space.spaces[f'action_{ac_obs_prefix}glue'] = ( Tuple([MultiDiscrete([2] * self.n_obj) for _ in range(self.n_agents)])) self.observation_space = update_obs_space(env, {f'{ac_obs_prefix}obj_lock': (self.n_obj, 1), f'{ac_obs_prefix}you_lock': (self.n_agents, self.n_obj, 1), f'{ac_obs_prefix}team_lock': (self.n_agents, self.n_obj, 1)}) self.lock_radius = radius_multiplier*self.metadata['box_size'] self.obj_locked = np.zeros((self.n_obj,), dtype=int) def observation(self, obs): obs[f'{self.ac_obs_prefix}obj_lock'] = self.obj_locked[:, None] you_lock = np.arange(self.n_agents)[:, None] == self.which_locked[None, :] obs[f'{self.ac_obs_prefix}you_lock'] = np.expand_dims(you_lock * obs[f'{self.ac_obs_prefix}obj_lock'].T, axis=-1) obs[f'{self.ac_obs_prefix}team_lock'] = np.zeros((self.n_agents, self.n_obj, 1)) for team in np.unique(self.metadata['team_index']): team_mask = self.metadata['team_index'] == team obs[f'{self.ac_obs_prefix}team_lock'][team_mask] = np.any(obs[f'{self.ac_obs_prefix}you_lock'][team_mask], 0) return obs def reset(self): obs = self.env.reset() sim = self.unwrapped.sim if self.obj_in_game_metadata_keys is not None: self.actual_body_slice = np.concatenate([self.metadata[k] for k in self.obj_in_game_metadata_keys]) else: self.actual_body_slice = np.ones((len(self.body_names))).astype(np.bool) actual_body_names = list(compress(self.body_names, self.actual_body_slice)) self.n_obj = len(actual_body_names) # Cache ids self.obj_body_idxs = np.array([sim.model.body_name2id(body_name) for body_name in actual_body_names]) self.obj_jnt_idxs = [np.where(sim.model.jnt_bodyid == body_idx)[0] for body_idx in self.obj_body_idxs] self.obj_geom_ids = [np.where(sim.model.geom_bodyid == body_idx)[0] for body_idx in self.obj_body_idxs] self.agent_body_idxs = np.array([sim.model.body_name2id(f"agent{i}:particle") for i in range(self.n_agents)]) self.agent_body_idxs = self.agent_body_idxs[self.agent_idx_allowed_to_lock] self.agent_geom_ids = np.array([sim.model.geom_name2id(f'agent{i}:agent') for i in range(self.n_agents)]) self.agent_geom_ids = self.agent_geom_ids[self.agent_idx_allowed_to_lock] self.unlock_objs() self.obj_locked = np.zeros((self.n_obj,), dtype=bool) self.which_locked = np.zeros((self.n_obj,), dtype=int) if self.agent_allowed_to_lock_keys is not None: self.agent_allowed_to_lock_mask = np.concatenate([obs[k] for k in self.agent_allowed_to_lock_keys]) else: self.agent_allowed_to_lock_mask = np.ones((self.n_agents, self.n_obj)) return self.observation(obs) def lock_obj(self, action_lock): ''' Implements object gluing for all agents Args: lock: (n_agent, n_obj) boolean matrix ''' sim = self.unwrapped.sim action_lock = action_lock[self.agent_idx_allowed_to_lock] action_lock = action_lock[:, self.actual_body_slice] agent_pos = sim.data.body_xpos[self.agent_body_idxs] obj_pos = sim.data.body_xpos[self.obj_body_idxs] obj_width = sim.model.geom_size[np.concatenate(self.obj_geom_ids)] obj_quat = sim.data.body_xquat[self.obj_body_idxs] assert len(obj_width) == len(obj_quat), ( "Number of object widths must be equal to number of quaternions for direct distance calculation method. " + "This might be caused by a body that contains several geoms.") obj_dist = dist_pt_to_cuboid(agent_pos, obj_pos, obj_width, obj_quat) allowed_and_desired = np.logical_and(action_lock, obj_dist <= self.lock_radius) allowed_and_desired = np.logical_and(allowed_and_desired, self.agent_allowed_to_lock_mask) allowed_and_not_desired = np.logical_and(1 - action_lock, obj_dist <= self.lock_radius) allowed_and_not_desired = np.logical_and(allowed_and_not_desired, self.agent_allowed_to_lock_mask) # objs_to_lock should _all_ be locked this round. new_objs_to_lock are objs that were not locked last round # objs_to_unlock are objs that no one wants to lock this round if self.lock_type == "any_lock": # If any agent wants to lock, the obj becomes locked objs_to_lock = np.any(allowed_and_desired, axis=0) objs_to_unlock = np.logical_and(np.any(allowed_and_not_desired, axis=0), ~objs_to_lock) new_objs_to_lock = np.logical_and(objs_to_lock, ~self.obj_locked) elif self.lock_type == "all_lock": # All agents that are close enough must want to lock the obj objs_to_unlock = np.any(allowed_and_not_desired, axis=0) objs_to_lock = np.logical_and(np.any(allowed_and_desired, axis=0), ~objs_to_unlock) new_objs_to_lock = np.logical_and(objs_to_lock, ~self.obj_locked) elif self.lock_type == "any_lock_specific": # If any agent wants to lock, the obj becomes locked allowed_to_unlock = np.arange(self.n_agents)[:, None] == self.which_locked[None, :] # (n_agent, n_obj) allowed_to_unlock = np.logical_and(allowed_to_unlock, self.obj_locked[None, :]) # Can't unlock an obj that isn't locked allowed_and_not_desired = np.logical_and(allowed_to_unlock[self.agent_idx_allowed_to_lock], allowed_and_not_desired) objs_to_unlock = np.any(allowed_and_not_desired, axis=0) objs_to_lock = np.any(allowed_and_desired, axis=0) objs_to_relock = np.logical_and(objs_to_unlock, objs_to_lock) new_objs_to_lock = np.logical_and(
np.logical_and(objs_to_lock, ~objs_to_relock)
numpy.logical_and
import copy import warnings from collections.abc import Iterable, Iterator import numpy as np import scipy import scipy.optimize import scipy.stats from stingray.exceptions import StingrayError from stingray.gti import bin_intervals_from_gtis, check_gtis, cross_two_gtis from stingray.largememory import createChunkedSpectra, saveData from stingray.utils import genDataPath, rebin_data, rebin_data_log, simon from .events import EventList from .lightcurve import Lightcurve from .utils import show_progress # location of factorial moved between scipy versions try: from scipy.misc import factorial except ImportError: from scipy.special import factorial try: from pyfftw.interfaces.scipy_fft import fft, fftfreq except ImportError: warnings.warn("pyfftw not installed. Using standard scipy fft") from scipy.fft import fft, fftfreq __all__ = [ "Crossspectrum", "AveragedCrossspectrum", "coherence", "time_lag", "cospectra_pvalue", "normalize_crossspectrum" ] def normalize_crossspectrum(unnorm_power, tseg, nbins, nphots1, nphots2, norm="none", power_type="real"): """ Normalize the real part of the cross spectrum to Leahy, absolute rms^2, fractional rms^2 normalization, or not at all. Parameters ---------- unnorm_power: numpy.ndarray The unnormalized cross spectrum. tseg: int The length of the Fourier segment, in seconds. nbins : int Number of bins in the light curve nphots1 : int Number of photons in the light curve no. 1 nphots2 : int Number of photons in the light curve no. 2 Other parameters ---------------- norm : str One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'abs'` (absolute rms) power_type : str One of `'real'` (real part), `'all'` (all complex powers), `'abs'` (absolute value) Returns ------- power: numpy.nd.array The normalized co-spectrum (real part of the cross spectrum). For 'none' normalization, imaginary part is returned as well. """ # The "effective" counts/bin is the geometrical mean of the counts/bin # of the two light curves. Same goes for counts/second in meanrate. log_nphots1 = np.log(nphots1) log_nphots2 = np.log(nphots2) actual_nphots = np.float64(np.sqrt(np.exp(log_nphots1 + log_nphots2))) if power_type == "all": c_num = unnorm_power elif power_type == "real": c_num = unnorm_power.real elif power_type == "absolute": c_num = np.absolute(unnorm_power) else: raise ValueError("`power_type` not recognized!") if norm.lower() == 'leahy': power = c_num * 2. / actual_nphots elif norm.lower() == 'frac': meancounts1 = nphots1 / nbins meancounts2 = nphots2 / nbins actual_mean = np.sqrt(meancounts1 * meancounts2) assert actual_mean > 0.0, \ "Mean count rate is <= 0. Something went wrong." c = c_num / float(nbins ** 2.) power = c * 2. * tseg / (actual_mean ** 2.0) elif norm.lower() == 'abs': meanrate = np.sqrt(nphots1 * nphots2) / tseg power = c_num * 2. * meanrate / actual_nphots elif norm.lower() == 'none': power = unnorm_power else: raise ValueError("Value for `norm` not recognized.") return power def normalize_crossspectrum_gauss( unnorm_power, mean_flux, var, dt, N, norm="none", power_type="real"): """ Normalize the real part of the cross spectrum to Leahy, absolute rms^2, fractional rms^2 normalization, or not at all. Parameters ---------- unnorm_power: numpy.ndarray The unnormalized cross spectrum. mean_flux: float The mean flux of the light curve (if a cross spectrum, the geometrical mean of the flux in the two channels) var: float The variance of the light curve (if a cross spectrum, the geometrical mean of the variance in the two channels) dt: float The sampling time of the light curve N: int The number of bins in the light curve Other parameters ---------------- norm : str One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'abs'` (absolute rms) power_type : str One of `'real'` (real part), `'all'` (all complex powers), `'abs'` (absolute value) Returns ------- power: numpy.nd.array The normalized co-spectrum (real part of the cross spectrum). For 'none' normalization, imaginary part is returned as well. Examples -------- >>> lc_c = np.random.poisson(10000, 10000) >>> lc_c_var = 10000 >>> lc = lc_c / 17.3453 >>> lc_var = (100 / 17.3453)**2 >>> pds_c = np.absolute(np.fft.fft(lc_c))**2 >>> pds = np.absolute(np.fft.fft(lc))**2 >>> norm_c = normalize_crossspectrum_gauss(pds_c, np.mean(lc_c), lc_c_var, 0.1, len(lc_c), norm='leahy') >>> norm = normalize_crossspectrum_gauss(pds, np.mean(lc), lc_var, 0.1, len(lc), norm='leahy') >>> np.allclose(norm, norm_c) True >>> np.isclose(np.mean(norm[1:]), 2, atol=0.1) True >>> norm_c = normalize_crossspectrum_gauss(pds_c, np.mean(lc_c), np.mean(lc_c), 0.1, len(lc_c), norm='frac') >>> norm = normalize_crossspectrum_gauss(pds, np.mean(lc), lc_var, 0.1, len(lc), norm='frac') >>> np.allclose(norm, norm_c) True >>> norm_c = normalize_crossspectrum_gauss(pds_c, np.mean(lc_c), np.mean(lc_c), 0.1, len(lc_c), norm='abs') >>> norm = normalize_crossspectrum_gauss(pds, np.mean(lc), lc_var, 0.1, len(lc), norm='abs') >>> np.allclose(norm / np.mean(lc)**2, norm_c / np.mean(lc_c)**2) True >>> np.isclose(np.mean(norm_c[2:]), 2 * np.mean(lc_c * 0.1), rtol=0.1) True """ # The "effective" counts/bin is the geometrical mean of the counts/bin # of the two light curves. Same goes for counts/second in meanrate. if power_type == "all": c_num = unnorm_power elif power_type == "real": c_num = unnorm_power.real elif power_type == "absolute": c_num = np.absolute(unnorm_power) else: raise ValueError("`power_type` not recognized!") common_factor = 2 * dt / N rate_mean = mean_flux * dt if norm.lower() == 'leahy': norm = 2 / var / N elif norm.lower() == 'frac': norm = common_factor / rate_mean**2 elif norm.lower() == 'abs': norm = common_factor elif norm.lower() == 'none': norm = 1 else: raise ValueError("Value for `norm` not recognized.") return norm * c_num def _averaged_cospectra_cdf(xcoord, n): """ Function calculating the cumulative distribution function for averaged cospectra, Equation 19 of Huppenkothen & Bachetti (2018). Parameters ---------- xcoord : float or iterable The cospectral power for which to calculate the CDF. n : int The number of averaged cospectra Returns ------- cdf : float The value of the CDF at `xcoord` for `n` averaged cospectra """ if np.size(xcoord) == 1: xcoord = [xcoord] cdf = np.zeros_like(xcoord) for i, x in enumerate(xcoord): prefac_bottom1 = factorial(n - 1) for j in range(n): prefac_top = factorial(n - 1 + j) prefac_bottom2 = factorial( n - 1 - j) * factorial(j) prefac_bottom3 = 2.0 ** (n + j) prefac = prefac_top / (prefac_bottom1 * prefac_bottom2 * prefac_bottom3) gf = -j + n first_fac = scipy.special.gamma(gf) if x >= 0: second_fac = scipy.special.gammaincc(gf, n * x) * first_fac fac = 2.0 * first_fac - second_fac else: fac = scipy.special.gammaincc(gf, -n * x) * first_fac cdf[i] += (prefac * fac) if np.size(xcoord) == 1: return cdf[i] else: continue return cdf def cospectra_pvalue(power, nspec): """ This function computes the single-trial p-value that the power was observed under the null hypothesis that there is no signal in the data. Important: the underlying assumption that make this calculation valid is that the powers in the power spectrum follow a Laplace distribution, and this requires that: 1. the co-spectrum is normalized according to [Leahy 1983]_ 2. there is only white noise in the light curve. That is, there is no aperiodic variability that would change the overall shape of the power spectrum. Also note that the p-value is for a *single trial*, i.e. the power currently being tested. If more than one power or more than one power spectrum are being tested, the resulting p-value must be corrected for the number of trials (Bonferroni correction). Mathematical formulation in [Huppenkothen 2017]_. Parameters ---------- power : float The squared Fourier amplitude of a spectrum to be evaluated nspec : int The number of spectra or frequency bins averaged in ``power``. This matters because averaging spectra or frequency bins increases the signal-to-noise ratio, i.e. makes the statistical distributions of the noise narrower, such that a smaller power might be very significant in averaged spectra even though it would not be in a single power spectrum. Returns ------- pval : float The classical p-value of the observed power being consistent with the null hypothesis of white noise References ---------- * .. [Leahy 1983] https://ui.adsabs.harvard.edu/#abs/1983ApJ...266..160L/abstract * .. [Huppenkothen 2017] http://adsabs.harvard.edu/abs/2018ApJS..236...13H """ if not np.all(np.isfinite(power)): raise ValueError("power must be a finite floating point number!") # if power < 0: # raise ValueError("power must be a positive real number!") if not np.isfinite(nspec): raise ValueError("nspec must be a finite integer number") if not np.isclose(nspec % 1, 0): raise ValueError("nspec must be an integer number!") if nspec < 1: raise ValueError("nspec must be larger or equal to 1") elif nspec == 1: lapl = scipy.stats.laplace(0, 1) pval = lapl.sf(power) elif nspec > 50: exp_sigma = np.sqrt(2) / np.sqrt(nspec) gauss = scipy.stats.norm(0, exp_sigma) pval = gauss.sf(power) else: pval = 1. - _averaged_cospectra_cdf(power, nspec) return pval def coherence(lc1, lc2): """ Estimate coherence function of two light curves. For details on the definition of the coherence, see Vaughan and Nowak, 1996 [#]_. Parameters ---------- lc1: :class:`stingray.Lightcurve` object The first light curve data for the channel of interest. lc2: :class:`stingray.Lightcurve` object The light curve data for reference band Returns ------- coh : ``np.ndarray`` The array of coherence versus frequency References ---------- .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf """ if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") cs = Crossspectrum(lc1, lc2, norm='none') return cs.coherence() def time_lag(lc1, lc2): """ Estimate the time lag of two light curves. Calculate time lag and uncertainty. Equation from Bendat & Piersol, 2011 [bendat-2011]_. Returns ------- lag : np.ndarray The time lag lag_err : np.ndarray The uncertainty in the time lag References ---------- .. [bendat-2011] https://www.wiley.com/en-us/Random+Data%3A+Analysis+and+Measurement+Procedures%2C+4th+Edition-p-9780470248775 """ if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") cs = Crossspectrum(lc1, lc2, norm='none') lag = cs.time_lag() return lag class Crossspectrum(object): """ Make a cross spectrum from a (binned) light curve. You can also make an empty :class:`Crossspectrum` object to populate with your own Fourier-transformed data (this can sometimes be useful when making binned power spectra). Stingray uses the scipy.fft standards for the sign of the Nyquist frequency. Parameters ---------- data1: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` The first light curve data for the channel/band of interest. data2: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` The light curve data for the reference band. norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` The normalization of the (real part of the) cross spectrum. power_type: string, optional, default ``real`` Parameter to choose among complete, real part and magnitude of the cross spectrum. fullspec: boolean, optional, default ``False`` If False, keep only the positive frequencies, or if True, keep all of them . Other Parameters ---------------- gti: 2-d float array ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care! lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data1``, but no :class:`stingray.events.EventList` objects allowed lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data2``, but no :class:`stingray.events.EventList` objects allowed dt: float The time resolution of the light curve. Only needed when constructing light curves in the case where ``data1``, ``data2`` are :class:`EventList` objects Attributes ---------- freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples power: numpy.ndarray The array of cross spectra (complex numbers) power_err: numpy.ndarray The uncertainties of ``power``. An approximation for each bin given by ``power_err= power/sqrt(m)``. Where ``m`` is the number of power averaged in each bin (by frequency binning, or averaging more than one spectra). Note that for a single realization (``m=1``) the error is equal to the power. df: float The frequency resolution m: int The number of averaged cross-spectra amplitudes in each bin. n: int The number of data points/time bins in one segment of the light curves. nphots1: float The total number of photons in light curve 1 nphots2: float The total number of photons in light curve 2 """ def __init__(self, data1=None, data2=None, norm='none', gti=None, lc1=None, lc2=None, power_type="real", dt=None, fullspec=False): if isinstance(norm, str) is False: raise TypeError("norm must be a string") if norm.lower() not in ["frac", "abs", "leahy", "none"]: raise ValueError("norm must be 'frac', 'abs', 'leahy', or 'none'!") self.norm = norm.lower() # check if input data is a Lightcurve object, if not make one or # make an empty Crossspectrum object if lc1 == ``None`` or lc2 == ``None`` if lc1 is not None or lc2 is not None: warnings.warn("The lcN keywords are now deprecated. Use dataN " "instead", DeprecationWarning) # for backwards compatibility if data1 is None: data1 = lc1 if data2 is None: data2 = lc2 if data1 is None or data2 is None: if data1 is not None or data2 is not None: raise TypeError("You can't do a cross spectrum with just one " "light curve!") else: self.freq = None self.power = None self.power_err = None self.df = None self.nphots1 = None self.nphots2 = None self.m = 1 self.n = None return if (isinstance(data1, EventList) or isinstance(data2, EventList)) and \ dt is None: raise ValueError("If using event lists, please specify the bin " "time to generate lightcurves.") if not isinstance(data1, EventList): lc1 = data1 else: lc1 = data1.to_lc(dt) if not isinstance(data2, EventList): lc2 = data2 elif isinstance(data2, EventList) and data2 is not data1: lc2 = data2.to_lc(dt) elif data2 is data1: lc2 = lc1 self.gti = gti self.lc1 = lc1 self.lc2 = lc2 self.power_type = power_type self.fullspec = fullspec self._make_crossspectrum(lc1, lc2, fullspec) # These are needed to calculate coherence self._make_auxil_pds(lc1, lc2) def _make_auxil_pds(self, lc1, lc2): """ Helper method to create the power spectrum of both light curves independently. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. """ if lc1 is not lc2 and isinstance(lc1, Lightcurve): self.pds1 = Crossspectrum(lc1, lc1, norm='none') self.pds2 = Crossspectrum(lc2, lc2, norm='none') def _make_crossspectrum(self, lc1, lc2, fullspec=False): """ Auxiliary method computing the normalized cross spectrum from two light curves. This includes checking for the presence of and applying Good Time Intervals, computing the unnormalized Fourier cross-amplitude, and then renormalizing using the required normalization. Also computes an uncertainty estimate on the cross spectral powers. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. fullspec: boolean, default ``False`` Return full frequency array (True) or just positive frequencies (False) """ # make sure the inputs work! if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") if self.lc2.mjdref != self.lc1.mjdref: raise ValueError("MJDref is different in the two light curves") # Then check that GTIs make sense if self.gti is None: self.gti = cross_two_gtis(lc1.gti, lc2.gti) check_gtis(self.gti) if self.gti.shape[0] != 1: raise TypeError("Non-averaged Cross Spectra need " "a single Good Time Interval") lc1 = lc1.split_by_gti()[0] lc2 = lc2.split_by_gti()[0] # total number of photons is the sum of the # counts in the light curve self.meancounts1 = lc1.meancounts self.meancounts2 = lc2.meancounts self.nphots1 = np.float64(np.sum(lc1.counts)) self.nphots2 = np.float64(np.sum(lc2.counts)) self.err_dist = 'poisson' if lc1.err_dist == 'poisson': self.var1 = lc1.meancounts else: self.var1 = np.mean(lc1.counts_err) ** 2 self.err_dist = 'gauss' if lc2.err_dist == 'poisson': self.var2 = lc2.meancounts else: self.var2 = np.mean(lc2.counts_err) ** 2 self.err_dist = 'gauss' if lc1.n != lc2.n: raise StingrayError("Light curves do not have same number " "of time bins per segment.") # If dt differs slightly, its propagated error must not be more than # 1/100th of the bin if not np.isclose(lc1.dt, lc2.dt, rtol=0.01 * lc1.dt / lc1.tseg): raise StingrayError("Light curves do not have same time binning " "dt.") # In case a small difference exists, ignore it lc1.dt = lc2.dt self.dt = lc1.dt self.n = lc1.n # the frequency resolution self.df = 1.0 / lc1.tseg # the number of averaged periodograms in the final output # This should *always* be 1 here self.m = 1 # make the actual Fourier transform and compute cross spectrum self.freq, self.unnorm_power = self._fourier_cross(lc1, lc2, fullspec) # If co-spectrum is desired, normalize here. Otherwise, get raw back # with the imaginary part still intact. self.power = self._normalize_crossspectrum(self.unnorm_power, lc1.tseg) if lc1.err_dist.lower() != lc2.err_dist.lower(): simon("Your lightcurves have different statistics." "The errors in the Crossspectrum will be incorrect.") elif lc1.err_dist.lower() != "poisson": simon("Looks like your lightcurve statistic is not poisson." "The errors in the Powerspectrum will be incorrect.") if self.__class__.__name__ in ['Powerspectrum', 'AveragedPowerspectrum']: self.power_err = self.power / np.sqrt(self.m) elif self.__class__.__name__ in ['Crossspectrum', 'AveragedCrossspectrum']: # This is clearly a wild approximation. simon("Errorbars on cross spectra are not thoroughly tested. " "Please report any inconsistencies.") unnorm_power_err = np.sqrt(2) / np.sqrt(self.m) # Leahy-like unnorm_power_err /= (2 / np.sqrt(self.nphots1 * self.nphots2)) unnorm_power_err += np.zeros_like(self.power) self.power_err = \ self._normalize_crossspectrum(unnorm_power_err, lc1.tseg) else: self.power_err = np.zeros(len(self.power)) def _fourier_cross(self, lc1, lc2, fullspec=False): """ Fourier transform the two light curves, then compute the cross spectrum. Computed as CS = lc1 x lc2* (where lc2 is the one that gets complex-conjugated). The user has the option to either get just the positive frequencies or the full spectrum. Parameters ---------- lc1: :class:`stingray.Lightcurve` object One light curve to be Fourier transformed. Ths is the band of interest or channel of interest. lc2: :class:`stingray.Lightcurve` object Another light curve to be Fourier transformed. This is the reference band. fullspec: boolean. Default is False. If True, return the whole array of frequencies, or only positive frequencies (False). Returns ------- fr: numpy.ndarray The squared absolute value of the Fourier amplitudes """ fourier_1 = fft(lc1.counts) # do Fourier transform 1 fourier_2 = fft(lc2.counts) # do Fourier transform 2 freqs = scipy.fft.fftfreq(lc1.n, lc1.dt) cross = np.multiply(fourier_1, np.conj(fourier_2)) if fullspec is True: return freqs, cross else: return freqs[freqs > 0], cross[freqs > 0] def rebin(self, df=None, f=None, method="mean"): """ Rebin the cross spectrum to a new frequency resolution ``df``. Parameters ---------- df: float The new frequency resolution Other Parameters ---------------- f: float the rebin factor. If specified, it substitutes df with ``f*self.df`` Returns ------- bin_cs = :class:`Crossspectrum` (or one of its subclasses) object The newly binned cross spectrum or power spectrum. Note: this object will be of the same type as the object that called this method. For example, if this method is called from :class:`AveragedPowerspectrum`, it will return an object of class :class:`AveragedPowerspectrum`, too. """ if f is None and df is None: raise ValueError('You need to specify at least one between f and ' 'df') elif f is not None: df = f * self.df # rebin cross spectrum to new resolution binfreq, bincs, binerr, step_size = \ rebin_data(self.freq, self.power, df, self.power_err, method=method, dx=self.df) # make an empty cross spectrum object # note: syntax deliberate to work with subclass Powerspectrum bin_cs = copy.copy(self) # store the binned periodogram in the new object bin_cs.freq = binfreq bin_cs.power = bincs bin_cs.df = df bin_cs.n = self.n bin_cs.norm = self.norm bin_cs.nphots1 = self.nphots1 bin_cs.power_err = binerr if hasattr(self, 'unnorm_power'): _, binpower_unnorm, _, _ = \ rebin_data(self.freq, self.unnorm_power, df, method=method, dx=self.df) bin_cs.unnorm_power = binpower_unnorm if hasattr(self, 'cs_all'): cs_all = [] for c in self.cs_all: cs_all.append(c.rebin(df=df, f=f, method=method)) bin_cs.cs_all = cs_all if hasattr(self, 'pds1'): bin_cs.pds1 = self.pds1.rebin(df=df, f=f, method=method) if hasattr(self, 'pds2'): bin_cs.pds2 = self.pds2.rebin(df=df, f=f, method=method) try: bin_cs.nphots2 = self.nphots2 except AttributeError: if self.type == 'powerspectrum': pass else: raise AttributeError( 'Spectrum has no attribute named nphots2.') bin_cs.m = np.rint(step_size * self.m) return bin_cs def _normalize_crossspectrum(self, unnorm_power, tseg): """ Normalize the real part of the cross spectrum to Leahy, absolute rms^2, fractional rms^2 normalization, or not at all. Parameters ---------- unnorm_power: numpy.ndarray The unnormalized cross spectrum. tseg: int The length of the Fourier segment, in seconds. Returns ------- power: numpy.nd.array The normalized co-spectrum (real part of the cross spectrum). For 'none' normalization, imaginary part is returned as well. """ if self.err_dist == 'poisson': return normalize_crossspectrum( unnorm_power, tseg, self.n, self.nphots1, self.nphots2, self.norm, self.power_type) return normalize_crossspectrum_gauss( unnorm_power, np.sqrt(self.meancounts1 * self.meancounts2), np.sqrt(self.var1 * self.var2), dt=self.dt, N=self.n, norm=self.norm, power_type=self.power_type) def rebin_log(self, f=0.01): """ Logarithmic rebin of the periodogram. The new frequency depends on the previous frequency modified by a factor f: .. math:: d\\nu_j = d\\nu_{j-1} (1+f) Parameters ---------- f: float, optional, default ``0.01`` parameter that steers the frequency resolution Returns ------- new_spec : :class:`Crossspectrum` (or one of its subclasses) object The newly binned cross spectrum or power spectrum. Note: this object will be of the same type as the object that called this method. For example, if this method is called from :class:`AveragedPowerspectrum`, it will return an object of class """ binfreq, binpower, binpower_err, nsamples = \ rebin_data_log(self.freq, self.power, f, y_err=self.power_err, dx=self.df) # the frequency resolution df = np.diff(binfreq) # shift the lower bin edges to the middle of the bin and drop the # last right bin edge binfreq = binfreq[:-1] + df / 2 new_spec = copy.copy(self) new_spec.freq = binfreq new_spec.power = binpower new_spec.power_err = binpower_err new_spec.m = nsamples * self.m if hasattr(self, 'unnorm_power'): _, binpower_unnorm, _, _ = \ rebin_data_log(self.freq, self.unnorm_power, f, dx=self.df) new_spec.unnorm_power = binpower_unnorm if hasattr(self, 'pds1'): new_spec.pds1 = self.pds1.rebin_log(f) if hasattr(self, 'pds2'): new_spec.pds2 = self.pds2.rebin_log(f) if hasattr(self, 'cs_all'): cs_all = [] for c in self.cs_all: cs_all.append(c.rebin_log(f)) new_spec.cs_all = cs_all return new_spec def coherence(self): """ Compute Coherence function of the cross spectrum. Coherence is defined in Vaughan and Nowak, 1996 [#]_. It is a Fourier frequency dependent measure of the linear correlation between time series measured simultaneously in two energy channels. Returns ------- coh : numpy.ndarray Coherence function References ---------- .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf """ # this computes the averaged power spectrum, but using the # cross spectrum code to avoid circular imports return self.unnorm_power.real / (self.pds1.power.real * self.pds2.power.real) def _phase_lag(self): """Return the fourier phase lag of the cross spectrum.""" return np.angle(self.unnorm_power) def time_lag(self): """ Calculate the fourier time lag of the cross spectrum. The time lag is calculate using the center of the frequency bins. """ if self.__class__ in [Crossspectrum, AveragedCrossspectrum]: ph_lag = self._phase_lag() return ph_lag / (2 * np.pi * self.freq) else: raise AttributeError("Object has no attribute named 'time_lag' !") def plot(self, labels=None, axis=None, title=None, marker='-', save=False, filename=None): """ Plot the amplitude of the cross spectrum vs. the frequency using ``matplotlib``. Parameters ---------- labels : iterable, default ``None`` A list of tuple with ``xlabel`` and ``ylabel`` as strings. axis : list, tuple, string, default ``None`` Parameter to set axis properties of the ``matplotlib`` figure. For example it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other acceptable argument for the``matplotlib.pyplot.axis()`` method. title : str, default ``None`` The title of the plot. marker : str, default '-' Line style and color of the plot. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. See ``matplotlib.pyplot.plot`` for more options. save : boolean, optional, default ``False`` If ``True``, save the figure with specified filename. filename : str File name of the image to save. Depends on the boolean ``save``. """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError("Matplotlib required for plot()") plt.figure('crossspectrum') plt.plot(self.freq, np.abs(self.power), marker, color='b', label='Amplitude') plt.plot(self.freq, np.abs(self.power.real), marker, color='r', alpha=0.5, label='Real Part') plt.plot(self.freq, np.abs(self.power.imag), marker, color='g', alpha=0.5, label='Imaginary Part') if labels is not None: try: plt.xlabel(labels[0]) plt.ylabel(labels[1]) except TypeError: simon("``labels`` must be either a list or tuple with " "x and y labels.") raise except IndexError: simon("``labels`` must have two labels for x and y " "axes.") # Not raising here because in case of len(labels)==1, only # x-axis will be labelled. plt.legend(loc='best') if axis is not None: plt.axis(axis) if title is not None: plt.title(title) if save: if filename is None: plt.savefig('spec.png') else: plt.savefig(filename) else: plt.show(block=False) def classical_significances(self, threshold=1, trial_correction=False): """ Compute the classical significances for the powers in the power spectrum, assuming an underlying noise distribution that follows a chi-square distributions with 2M degrees of freedom, where M is the number of powers averaged in each bin. Note that this function will *only* produce correct results when the following underlying assumptions are fulfilled: 1. The power spectrum is Leahy-normalized 2. There is no source of variability in the data other than the periodic signal to be determined with this method. This is important! If there are other sources of (aperiodic) variability in the data, this method will *not* produce correct results, but instead produce a large number of spurious false positive detections! 3. There are no significant instrumental effects changing the statistical distribution of the powers (e.g. pile-up or dead time) By default, the method produces ``(index,p-values)`` for all powers in the power spectrum, where index is the numerical index of the power in question. If a ``threshold`` is set, then only powers with p-values *below* that threshold with their respective indices. If ``trial_correction`` is set to ``True``, then the threshold will be corrected for the number of trials (frequencies) in the power spectrum before being used. Parameters ---------- threshold : float, optional, default ``1`` The threshold to be used when reporting p-values of potentially significant powers. Must be between 0 and 1. Default is ``1`` (all p-values will be reported). trial_correction : bool, optional, default ``False`` A Boolean flag that sets whether the ``threshold`` will be corrected by the number of frequencies before being applied. This decreases the ``threshold`` (p-values need to be lower to count as significant). Default is ``False`` (report all powers) though for any application where `threshold`` is set to something meaningful, this should also be applied! Returns ------- pvals : iterable A list of ``(index, p-value)`` tuples for all powers that have p-values lower than the threshold specified in ``threshold``. """ if not self.norm == "leahy": raise ValueError("This method only works on " "Leahy-normalized power spectra!") if np.size(self.m) == 1: # calculate p-values for all powers # leave out zeroth power since it just encodes the number of photons! pv = np.array([cospectra_pvalue(power, self.m) for power in self.power]) else: pv = np.array([cospectra_pvalue(power, m) for power, m in zip(self.power, self.m)]) # if trial correction is used, then correct the threshold for # the number of powers in the power spectrum if trial_correction: threshold /= self.power.shape[0] # need to add 1 to the indices to make up for the fact that # we left out the first power above! indices = np.where(pv < threshold)[0] pvals = np.vstack([pv[indices], indices]) return pvals class AveragedCrossspectrum(Crossspectrum): """ Make an averaged cross spectrum from a light curve by segmenting two light curves, Fourier-transforming each segment and then averaging the resulting cross spectra. Parameters ---------- data1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object A light curve from which to compute the cross spectrum. In some cases, this would be the light curve of the wavelength/energy/frequency band of interest. data2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object A second light curve to use in the cross spectrum. In some cases, this would be the wavelength/energy/frequency reference band to compare the band of interest with. segment_size: float The size of each segment to average. Note that if the total duration of each :class:`Lightcurve` object in ``lc1`` or ``lc2`` is not an integer multiple of the ``segment_size``, then any fraction left-over at the end of the time series will be lost. Otherwise you introduce artifacts. norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` The normalization of the (real part of the) cross spectrum. Other Parameters ---------------- gti: 2-d float array ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care! dt : float The time resolution of the light curve. Only needed when constructing light curves in the case where data1 or data2 are of :class:EventList power_type: string, optional, default ``real`` Parameter to choose among complete, real part and magnitude of the cross spectrum. silent : bool, default False Do not show a progress bar when generating an averaged cross spectrum. Useful for the batch execution of many spectra lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data1``, but no :class:`stingray.events.EventList` objects allowed lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data2``, but no :class:`stingray.events.EventList` objects allowed fullspec: boolean, optional, default ``False`` If True, return the full array of frequencies, otherwise return just the positive frequencies. large_data : bool, default False Use only for data larger than 10**7 data points!! Uses zarr and dask for computation. save_all : bool, default False Save all intermediate PDSs used for the final average. Use with care. This is likely to fill up your RAM on medium-sized datasets, and to slow down the computation when rebinning. Attributes ---------- freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples power: numpy.ndarray The array of cross spectra power_err: numpy.ndarray The uncertainties of ``power``. An approximation for each bin given by ``power_err= power/sqrt(m)``. Where ``m`` is the number of power averaged in each bin (by frequency binning, or averaging powerspectrum). Note that for a single realization (``m=1``) the error is equal to the power. df: float The frequency resolution m: int The number of averaged cross spectra n: int The number of time bins per segment of light curve nphots1: float The total number of photons in the first (interest) light curve nphots2: float The total number of photons in the second (reference) light curve gti: 2-d float array ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. They are calculated by taking the common GTI between the two light curves """ def __init__(self, data1=None, data2=None, segment_size=None, norm='none', gti=None, power_type="real", silent=False, lc1=None, lc2=None, dt=None, fullspec=False, large_data=False, save_all=False): if lc1 is not None or lc2 is not None: warnings.warn("The lcN keywords are now deprecated. Use dataN " "instead", DeprecationWarning) # for backwards compatibility if data1 is None: data1 = lc1 if data2 is None: data2 = lc2 if segment_size is None and data1 is not None: raise ValueError("segment_size must be specified") if segment_size is not None and not np.isfinite(segment_size): raise ValueError("segment_size must be finite!") if large_data and data1 is not None and data2 is not None: if isinstance(data1, EventList): input_data = 'EventList' elif isinstance(data1, Lightcurve): input_data = 'Lightcurve' chunks = int(np.rint(segment_size // data1.dt)) segment_size = chunks * data1.dt else: raise ValueError( f'Invalid input data type: {type(data1).__name__}') dir_path1 = saveData(data1, persist=False, chunks=chunks) dir_path2 = saveData(data2, persist=False, chunks=chunks) data_path1 = genDataPath(dir_path1) data_path2 = genDataPath(dir_path2) spec = createChunkedSpectra(input_data, 'AveragedCrossspectrum', data_path=list(data_path1 + data_path2), segment_size=segment_size, norm=norm, gti=gti, power_type=power_type, silent=silent, dt=dt) for key, val in spec.__dict__.items(): setattr(self, key, val) return self.type = "crossspectrum" self.segment_size = segment_size self.power_type = power_type self.fullspec = fullspec self.show_progress = not silent self.dt = dt self.save_all = save_all if isinstance(data1, EventList): lengths = data1.gti[:, 1] - data1.gti[:, 0] good = lengths >= segment_size data1.gti = data1.gti[good] data1 = list(data1.to_lc_list(dt)) if isinstance(data2, EventList): lengths = data2.gti[:, 1] - data2.gti[:, 0] good = lengths >= segment_size data2.gti = data2.gti[good] data2 = list(data2.to_lc_list(dt)) Crossspectrum.__init__(self, data1, data2, norm, gti=gti, power_type=power_type, dt=dt, fullspec=fullspec) return def _make_auxil_pds(self, lc1, lc2): """ Helper method to create the power spectrum of both light curves independently. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. """ is_event = isinstance(lc1, EventList) is_lc = isinstance(lc1, Lightcurve) is_lc_iter = isinstance(lc1, Iterator) is_lc_list = isinstance(lc1, Iterable) and not is_lc_iter # A way to say that this is actually not a power spectrum if self.type != "powerspectrum" and \ (lc1 is not lc2) and (is_event or is_lc or is_lc_list): self.pds1 = AveragedCrossspectrum(lc1, lc1, segment_size=self.segment_size, norm='none', gti=self.gti, power_type=self.power_type, dt=self.dt, fullspec=self.fullspec, save_all=self.save_all) self.pds2 = AveragedCrossspectrum(lc2, lc2, segment_size=self.segment_size, norm='none', gti=self.gti, power_type=self.power_type, dt=self.dt, fullspec=self.fullspec, save_all=self.save_all) def _make_segment_spectrum(self, lc1, lc2, segment_size, silent=False): """ Split the light curves into segments of size ``segment_size``, and calculate a cross spectrum for each. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. segment_size : ``numpy.float`` Size of each light curve segment to use for averaging. Other parameters ---------------- silent : bool, default False Suppress progress bars Returns ------- cs_all : list of :class:`Crossspectrum`` objects A list of cross spectra calculated independently from each light curve segment nphots1_all, nphots2_all : ``numpy.ndarray` for each of ``lc1`` and ``lc2`` Two lists containing the number of photons for all segments calculated from ``lc1`` and ``lc2``. """ assert isinstance(lc1, Lightcurve) assert isinstance(lc2, Lightcurve) if lc1.tseg != lc2.tseg: simon("Lightcurves do not have same tseg. This means that the data" "from the two channels are not completely in sync. This " "might or might not be an issue. Keep an eye on it.") # If dt differs slightly, its propagated error must not be more than # 1/100th of the bin if not np.isclose(lc1.dt, lc2.dt, rtol=0.01 * lc1.dt / lc1.tseg): raise ValueError("Light curves do not have same time binning dt.") # In case a small difference exists, ignore it lc1.dt = lc2.dt current_gtis = cross_two_gtis(lc1.gti, lc2.gti) lc1.gti = lc2.gti = current_gtis lc1.apply_gtis() lc2.apply_gtis() if self.gti is None: self.gti = current_gtis else: if not np.allclose(self.gti, current_gtis): self.gti = np.vstack([self.gti, current_gtis]) check_gtis(current_gtis) cs_all = [] nphots1_all = [] nphots2_all = [] start_inds, end_inds = \ bin_intervals_from_gtis(current_gtis, segment_size, lc1.time, dt=lc1.dt) simon("Errorbars on cross spectra are not thoroughly tested. " "Please report any inconsistencies.") local_show_progress = show_progress if not self.show_progress or silent: local_show_progress = lambda a: a for start_ind, end_ind in \ local_show_progress(zip(start_inds, end_inds)): time_1 = copy.deepcopy(lc1.time[start_ind:end_ind]) counts_1 = copy.deepcopy(lc1.counts[start_ind:end_ind]) counts_1_err = copy.deepcopy(lc1.counts_err[start_ind:end_ind]) time_2 = copy.deepcopy(lc2.time[start_ind:end_ind]) counts_2 = copy.deepcopy(lc2.counts[start_ind:end_ind]) counts_2_err = copy.deepcopy(lc2.counts_err[start_ind:end_ind]) if np.sum(counts_1) == 0 or np.sum(counts_2) == 0: warnings.warn( "No counts in interval {}--{}s".format(time_1[0], time_1[-1])) continue gti1 = np.array([[time_1[0] - lc1.dt / 2, time_1[-1] + lc1.dt / 2]]) gti2 = np.array([[time_2[0] - lc2.dt / 2, time_2[-1] + lc2.dt / 2]]) lc1_seg = Lightcurve(time_1, counts_1, err=counts_1_err, err_dist=lc1.err_dist, gti=gti1, dt=lc1.dt, skip_checks=True) lc2_seg = Lightcurve(time_2, counts_2, err=counts_2_err, err_dist=lc2.err_dist, gti=gti2, dt=lc2.dt, skip_checks=True) with warnings.catch_warnings(record=True) as w: cs_seg = Crossspectrum(lc1_seg, lc2_seg, norm=self.norm, power_type=self.power_type, fullspec=self.fullspec) cs_all.append(cs_seg) nphots1_all.append(np.sum(lc1_seg.counts)) nphots2_all.append(np.sum(lc2_seg.counts)) return cs_all, nphots1_all, nphots2_all def _make_crossspectrum(self, lc1, lc2, fullspec=False): """ Auxiliary method computing the normalized cross spectrum from two light curves. This includes checking for the presence of and applying Good Time Intervals, computing the unnormalized Fourier cross-amplitude, and then renormalizing using the required normalization. Also computes an uncertainty estimate on the cross spectral powers. Stingray uses the scipy.fft standards for the sign of the Nyquist frequency. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. fullspec: boolean, default ``False``, If True, return all frequencies otherwise return only positive frequencies """ local_show_progress = show_progress if not self.show_progress: local_show_progress = lambda a: a # chop light curves into segments if isinstance(lc1, Lightcurve) and \ isinstance(lc2, Lightcurve): if self.type == "crossspectrum": cs_all, nphots1_all, nphots2_all = \ self._make_segment_spectrum(lc1, lc2, self.segment_size) elif self.type == "powerspectrum": cs_all, nphots1_all = \ self._make_segment_spectrum(lc1, self.segment_size) else: raise ValueError("Type of spectrum not recognized!") else: cs_all, nphots1_all, nphots2_all = [], [], [] for lc1_seg, lc2_seg in local_show_progress(zip(lc1, lc2)): if self.type == "crossspectrum": cs_sep, nphots1_sep, nphots2_sep = \ self._make_segment_spectrum(lc1_seg, lc2_seg, self.segment_size, silent=True) nphots2_all.append(nphots2_sep) elif self.type == "powerspectrum": cs_sep, nphots1_sep = \ self._make_segment_spectrum(lc1_seg, self.segment_size, silent=True) else: raise ValueError("Type of spectrum not recognized!") cs_all.append(cs_sep) nphots1_all.append(nphots1_sep) cs_all = np.hstack(cs_all) nphots1_all = np.hstack(nphots1_all) if self.type == "crossspectrum": nphots2_all = np.hstack(nphots2_all) m = len(cs_all) nphots1 = np.mean(nphots1_all) power_avg = np.zeros_like(cs_all[0].power) power_err_avg = np.zeros_like(cs_all[0].power_err) unnorm_power_avg = np.zeros_like(cs_all[0].unnorm_power) for cs in cs_all: power_avg += cs.power unnorm_power_avg += cs.unnorm_power power_err_avg += (cs.power_err) ** 2 power_avg /= float(m) power_err_avg = np.sqrt(power_err_avg) / m unnorm_power_avg /= float(m) self.freq = cs_all[0].freq self.power = power_avg self.unnorm_power = unnorm_power_avg self.m = m self.power_err = power_err_avg self.df = cs_all[0].df self.n = cs_all[0].n self.nphots1 = nphots1 if self.save_all: self.cs_all = cs_all if self.type == "crossspectrum": self.nphots1 = nphots1 nphots2 = np.mean(nphots2_all) self.nphots2 = nphots2 def coherence(self): """Averaged Coherence function. Coherence is defined in Vaughan and Nowak, 1996 [#]_. It is a Fourier frequency dependent measure of the linear correlation between time series measured simultaneously in two energy channels. Compute an averaged Coherence function of cross spectrum by computing coherence function of each segment and averaging them. The return type is a tuple with first element as the coherence function and the second element as the corresponding uncertainty associated with it. Note : The uncertainty in coherence function is strictly valid for Gaussian \ statistics only. Returns ------- (coh, uncertainty) : tuple of np.ndarray Tuple comprising the coherence function and uncertainty. References ---------- .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf """ if
np.any(self.m < 50)
numpy.any
import numpy as np from matplotlib import pylab as plt in_range = lambda x, lim: [i for i, v in enumerate(x) if (v >= lim[0]) and (v <= lim[1])] def scale1(arr, mval=None): if mval is None: mval = np.max(arr) return
np.array([i / mval for i in arr])
numpy.array
import os.path from data.base_dataset import BaseDataset from data.image_folder import make_dataset import numpy as np import torch import data.exrlib as exrlib class ExrHeightDataset(BaseDataset): def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) assert(opt.image_type == 'exr') #self.A = os.path.join(opt.dataroot, opt.phase + '_input') self.A1 = os.path.join(opt.dataroot, opt.phase + '_input_terraform') self.B = os.path.join(opt.dataroot, opt.phase + '_output') #self.A_paths = sorted(make_dataset(self.A, opt.max_dataset_size)) self.A1_paths = sorted(make_dataset(self.A1, opt.max_dataset_size)) self.B_paths = sorted(make_dataset(self.B, opt.max_dataset_size)) #self.A_size = len(self.A_paths) # get the size of dataset A self.A1_size = len(self.A1_paths) self.B_size = len(self.B_paths) # get the size of dataset B btoA = self.opt.direction == 'BtoA' input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image self.A1_test_paths = sorted(make_dataset(os.path.join(opt.dataroot, 'test_input_terraform'))) self.B_test_paths = sorted(make_dataset(os.path.join(opt.dataroot, 'test_output'))) self.A1_test_size = len(self.A1_test_paths) self.B_test_size = len(self.B_test_paths) self.input_names = np.array(["RockDetailMask.RockDetailMask", "SoftDetailMask.SoftDetailMask", "cliffs.cliffs", "height.height", "mesa.mesa", "slope.slope", "slopex.slopex", "slopez.slopez"]) self.output_names = np.array(["RockDetailMask.RockDetailMask", "SoftDetailMask.SoftDetailMask", "bedrock.bedrock", "cliffs.cliffs", "flow.flow", "flowx.flowx", "flowz.flowz", "height.height", "mesa.mesa", "sediment.sediment", "water.water"]) self.input_channels = np.array([3, 6, 7]) #height, slopex, slopez self.output_channels = np.array([7]) #height if not self.opt.compute_bounds: self.i_channels_min = np.array([[[0, -400, -400]]]) self.i_channels_max = np.array([[[824, 20, 20]]]) self.o_channels_min = np.array([[[-4]]]) self.o_channels_max = np.array([[[819]]]) return channels_min = np.array([2**16 for _ in self.input_channels]) channels_max = np.array([0 for _ in self.input_channels]) examples = 0 for A1_path in self.A1_paths: A1_img = exrlib.read_exr_float32(A1_path, list(self.input_names[self.input_channels]), 512, 512).transpose(2, 0, 1).reshape(len(self.input_channels), -1) channels_min = np.min(np.concatenate((np.expand_dims(channels_min, 1), np.expand_dims(
np.min(A1_img, 1)
numpy.min
# Copyright 2021 <NAME>. All Rights Reserved. # # Licensed under the MIT License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """ A collection of functions which are useful for getting the necessary information from the volume in order to compute nephrometry metrics """ from pathlib import Path import numpy as np import pydicom from scipy.signal import convolve2d from scipy.ndimage.measurements import label from scipy.stats import mode from scipy.spatial.distance import pdist, squareform from pyfastnns import NNS import time import cv2 def get_centroid(volume): coordinates = np.transpose(np.array(np.nonzero(volume))) centroid = np.mean(coordinates, axis=0) return centroid def _blur_thresh(vol): kernel = np.ones((3,3))/9.0 ret = np.zeros(np.shape(vol), dtype=np.float32) for i in range(vol.shape[0]): ret[i] = convolve2d( vol[i], kernel, mode="same", boundary="fill", fillvalue=0 ) return ret def _get_distance(c1, c2, x_width=1, y_width=1, z_width=1): return np.linalg.norm( np.multiply(c1 - c2, np.array((x_width, y_width, z_width))), ord=2 ) def distance_between_regions(first_coordinates, second_coordinates): nns = NNS(first_coordinates) _, distance = nns.search(second_coordinates) min_distance = np.min(distance) return min_distance def nearest_pair(first_coordinates, second_coordinates): nns = NNS(first_coordinates) pts, distances = nns.search(second_coordinates) min_distance_idx = np.argmin(distances) sp = second_coordinates[min_distance_idx] fp = first_coordinates[pts[min_distance_idx]] return fp, sp def furthest_pair_distance(coordinates): coordinates = np.array(coordinates).T D = pdist(coordinates) return np.nanmax(D) def get_nearest_rim_point(region_boundaries, pixel_width, slice_thickness): # Get coordinates of collecting system voxels rim_bin = np.equal(region_boundaries, 5).astype(np.int32) rim_coordinates = np.transpose(np.array(np.nonzero(rim_bin))) if rim_coordinates.shape[0] == 0: raise ValueError("Renal rim could not be identified") # Get coordinates of tumor voxels tumor_bin = np.equal(region_boundaries, 2).astype(np.int32) tumor_coordinates = np.transpose(np.array(np.nonzero(tumor_bin))) # Scale coordinates such that they correspond to the real world (mm) multiplier = np.array( [[slice_thickness, pixel_width, pixel_width]] ).astype(np.float32) rim_coordinates = np.multiply(rim_coordinates, multiplier) tumor_coordinates = np.multiply(tumor_coordinates, multiplier) nearest_pt, _ = nearest_pair(rim_coordinates, tumor_coordinates) return np.divide(nearest_pt, multiplier[0]) def get_distance_to_collecting_system(region_boundaries, pixel_width, slice_thickness): # Get coordinates of collecting system voxels ucs_bin = np.equal(region_boundaries, 4).astype(np.int32) ucs_coordinates = np.transpose(np.array(np.nonzero(ucs_bin))) if ucs_coordinates.shape[0] == 0: return get_distance_to_sinus( region_boundaries, pixel_width, slice_thickness ) # raise ValueError("Collecting system could not be identified") # Get coordinates of tumor voxels tumor_bin =
np.equal(region_boundaries, 2)
numpy.equal
from __future__ import print_function from sklearn.metrics.pairwise import cosine_similarity import nltk from sklearn.preprocessing import Normalizer from sklearn.cluster import KMeans, MiniBatchKMeans from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import metrics from nltk.tokenize import word_tokenize from sklearn.feature_extraction.text import CountVectorizer import logging from optparse import OptionParser import sys from time import time import numpy as np import pandas as pd # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() def is_interactive(): return not hasattr(sys.modules['__main__'], '__file__') # work-around for Jupyter notebook and IPython console argv = [] if is_interactive() else sys.argv[1:] (opts, args) = op.parse_args(argv) if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) def is_interactive(): return not hasattr(sys.modules['__main__'], '__file__') # Bring in standard stopwords with np.errstate(divide='ignore'): np.float64(1.0) / 0.0 from nltk.corpus import stopwords data = [] # Bring in the default English NLTK stop words stoplist = stopwords.words('english') # Define additional stopwords in a string additional_stopwords = """To [ ] I you am As it can't <<...>> sincerely, . > - < <NAME>/Corp/Enron@Enron Best regards Sincerely From Sent Original Message Q <-> * | /\ 100% 12345678910 () """ # Split the the additional stopwords string on each word and then add # those words to the NLTK stopwords list stoplist += additional_stopwords.split() stopWords = stopwords.words('english') print ("\nCalculating document Dissimilarity and similarity scores...") # Open and read a bunch of files f = open('ken-lay_body.txt') doc1 = str(f.read()) f = open('jeff-skilling_body.txt') doc2 = str(f.read()) f = open('Richard-shapiro_body.txt') doc3 = str(f.read()) f = open('kay-mann_body.txt') doc4 = str(f.read()) f = open('Jeff-dasovich_body.txt',) doc5 = str(f.read()) f = open('tana jones_body.txt') doc6 = str(f.read()) f = open('steven kean_body.txt') doc7 = str(f.read()) f = open('shackleton sara_body.txt') doc8 = str(f.read()) f = open('<NAME>es_body.txt') doc9 = str(f.read()) f = open('Mark taylor_body.txt') doc10 = str(f.read()) f = open('davis pete_body.txt') doc11 = str(f.read()) f = open('Chris g_body.txt') doc12 = str(f.read()) f = open('kate symes_body.txt') doc13 = str(f.read()) f = open('Mcconnell.body.txt') doc14 = str(f.read()) f = open('kaminski_body.txt') doc15 = str(f.read()) #train_string = 'By these proceedings for judicial review the Claimant seeks to challenge the decision of the Defendant dated the 23rd of May 2014 refusing the Claimant’s application of the 3rd of January 2012 for naturalisation as a British citizen' # Construct the training set as a list document = [ doc1, doc2, doc3, doc4, doc5, doc6,doc7, doc8, doc9, doc10, doc11, doc12, doc13, doc14, doc15] # Set up the vectoriser, passing in the stop words tfidf_vectorizer = TfidfVectorizer(stop_words=stopWords) tfidf_matrix_train = tfidf_vectorizer.fit_transform(document) # Apply the vectoriser to the training set Cardinality=0 for files in document: if files.endswith('.txt'): Cardinality+=1 counts = CountVectorizer(input='document') dtm = counts.fit_transform(document) # a sparse matrix vocab = counts.get_feature_names() # a list #type(dtm) dtm = dtm.toarray() # convert to a regular array #print (dtm.shape) N, K = dtm.shape ind = np.arange(N) # points on the x-axis width = 0.2 vocab = np.array(vocab) n, _ = dtm.shape dist = np.zeros((n, n)) #dissimilarity Dissimilarity=dist for i in range(n): for j in range(n): x, y = dtm[i, :], dtm[j, :] dist[i, j] = np.sqrt(np.sum((x - y)**2)) vectorizer = CountVectorizer(min_df=5, max_df=0.9, stop_words='english', lowercase=True, token_pattern='[a-zA-Z\-][a-zA-Z\-]{2,}') matrix = tfidf_vectorizer.fit_transform(document) dtm = vectorizer.fit_transform(document) t=vectorizer.get_feature_names() #print (t) x= ' '.join(t) stop = set(stopwords.words('english')) #sentence = "this is a foo bar sentence" g=[i for i in x.lower().split() if i not in stop] #print (nltk.pos_tag(g)) dd= ', '.join(str(x) for x in g) #','.join(map(str,g) ) #print (dd) stop_words = set(stopwords.words('english')) word_tokens = word_tokenize(dd) #print (dd) terms = vectorizer.get_feature_names() from nltk.corpus import wordnet as wn sents = dd tokens = nltk.word_tokenize(dd) tags = nltk.pos_tag(tokens) nouns = [word for word,pos in tags if (pos == 'NN' or pos == 'NNP' or pos == 'NNS' or pos == 'NNPS' or pos == 'VBZ'or pos == 'VB')] print(nouns) lsa = TruncatedSVD(2, algorithm = 'arpack') dtm_lsa = lsa.fit_transform(dtm) dtm_lsa = Normalizer(copy=False).fit_transform(dtm_lsa) similarity = np.asarray(np.asmatrix(dtm_lsa) * np.asmatrix(dtm_lsa).T) print (similarity) #pd.DataFrame(similarity,index=nouns, columns=nouns).head(10) true_k = 5 model = KMeans(n_clusters=true_k, init='k-means++', max_iter=1000, n_init=1) x=model.fit(matrix) labels = x.labels_ print ("Top terms per labels:", labels) print("Top terms per cluster:") n_topics = 10 NUM_TOPICS = 10 # Build a Latent Semantic Indexing Model lsi_model = TruncatedSVD(n_components=NUM_TOPICS) lsi_Z = lsi_model.fit_transform(dtm) print(lsi_Z.shape) # (NO_DOCUMENTS, NO_TOPICS) # Let's see how the first document in the corpus looks like in different topic spaces print(lsi_Z[0]) def print_topics(model, vectorizer, top_n=10): for idx, topic in enumerate(model.components_): print("Concepts %d:" % (idx)) print([(vectorizer.get_feature_names()[i], topic[i]) for i in topic.argsort()[:-top_n - 1:-1]]) true_k = 10 print("LSI Model:") print_topics(lsi_model, vectorizer) print("=" * 20) # ############################################################################# # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=10000, batch_size=10000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=1000, n_init=1, algorithm = 'arpack', verbose=opts.verbose) #km.labels_=labels print("Clustering sparse data with %s" % km) t0 = time() km.fit(matrix) #km.labels_=labels print ("Top terms per labels:",km.labels_) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(matrix, km.labels_, metric='cosine', sample_size=10000)) nbins=len(set(km.labels_)) vals,bins=np.histogram(km.labels_,bins=nbins) print (20*' ','hist-min,max',np.min(vals),np.max(vals) ) print() from sklearn.metrics import r2_score from sklearn.metrics import v_measure_score print(metrics.v_measure_score(labels, km.labels_)) print(r2_score(labels, km.labels_)) from sklearn.metrics import accuracy_score print (accuracy_score(labels, km.labels_)) #word_list= nouns #word_list = ['Jellicle', 'Cats', 'are', 'black', 'and', 'white,', 'Jellicle', 'Cats', 'are', 'rather', 'small;', 'Jellicle', 'Cats', 'are', 'merry', 'and', 'bright,', 'And', 'pleasant', 'to', 'hear', 'when', 'they', 'caterwaul.', 'Jellicle', 'Cats', 'have', 'cheerful', 'faces,', 'Jellicle', 'Cats', 'have', 'bright', 'black', 'eyes;', 'They', 'like', 'to', 'practise', 'their', 'airs', 'and', 'graces', 'And', 'wait', 'for', 'the', 'Jellicle', 'Moon', 'to', 'rise.', ''] word_counter = {} for word in word_list: if word in word_counter: word_counter[word] += 1 else: word_counter[word] = 1 popular_words = sorted(word_counter, key = word_counter.get, reverse = True) top_ = popular_words[:100] tfidf_vectorizer = TfidfVectorizer(stop_words=stopWords) tfidf_matrix_train = tfidf_vectorizer.fit_transform(word_list) # Apply the vectoriser to the training set Cardinality=0 for files in document: if files.endswith('.txt'): Cardinality+=1 counts = CountVectorizer(input='word_list') dtm = counts.fit_transform(tt) # a sparse matrix vocab = counts.get_feature_names() # a list #type(dtm) dtm = dtm.toarray() # convert to a regular array #print (dtm.shape) N, K = dtm.shape ind = np.arange(N) # points on the x-axis width = 0.2 vocab =
np.array(vocab)
numpy.array
import warnings import copy import math as m import numpy as nu from scipy import integrate, optimize import scipy if int(scipy.__version__.split('.')[1]) < 10: #pragma: no cover from scipy.maxentropy import logsumexp else: from scipy.misc import logsumexp from galpy.potential_src.Potential import evaluateRforces, evaluatezforces,\ evaluatePotentials, evaluatephiforces, evaluateDensities from galpy.util import galpyWarning import galpy.util.bovy_plot as plot import galpy.util.bovy_symplecticode as symplecticode import galpy.util.bovy_coords as coords #try: from galpy.orbit_src.integrateFullOrbit import integrateFullOrbit_c, _ext_loaded ext_loaded= _ext_loaded from galpy.util.bovy_conversion import physical_conversion from galpy.orbit_src.OrbitTop import OrbitTop _ORBFITNORMRADEC= 360. _ORBFITNORMDIST= 10. _ORBFITNORMPMRADEC= 4. _ORBFITNORMVLOS= 200. class FullOrbit(OrbitTop): """Class that holds and integrates orbits in full 3D potentials""" def __init__(self,vxvv=[1.,0.,0.9,0.,0.1],vo=220.,ro=8.0,zo=0.025, solarmotion=nu.array([-10.1,4.0,6.7])): """ NAME: __init__ PURPOSE: intialize a full orbit INPUT: vxvv - initial condition [R,vR,vT,z,vz,phi] vo - circular velocity at ro (km/s) ro - distance from vantage point to GC (kpc) zo - offset toward the NGP of the Sun wrt the plane (kpc) solarmotion - value in [-U,V,W] (km/s) OUTPUT: (none) HISTORY: 2010-08-01 - Written - Bovy (NYU) 2014-06-11 - Added conversion kwargs to physical coordinates - Bovy (IAS) """ OrbitTop.__init__(self,vxvv=vxvv, ro=ro,zo=zo,vo=vo,solarmotion=solarmotion) return None def integrate(self,t,pot,method='symplec4_c',dt=None): """ NAME: integrate PURPOSE: integrate the orbit INPUT: t - list of times at which to output (0 has to be in this!) pot - potential instance or list of instances method= 'odeint' for scipy's odeint 'leapfrog' for a simple leapfrog implementation 'leapfrog_c' for a simple leapfrog implementation in C 'rk4_c' for a 4th-order Runge-Kutta integrator in C 'rk6_c' for a 6-th order Runge-Kutta integrator in C 'dopr54_c' for a Dormand-Prince integrator in C (generally the fastest) dt= (None) if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize OUTPUT: (none) (get the actual orbit using getOrbit() HISTORY: 2010-08-01 - Written - Bovy (NYU) """ #Reset things that may have been defined by a previous integration if hasattr(self,'_orbInterp'): delattr(self,'_orbInterp') if hasattr(self,'rs'): delattr(self,'rs') self.t= nu.array(t) self._pot= pot self.orbit= _integrateFullOrbit(self.vxvv,pot,t,method,dt) @physical_conversion('energy') def Jacobi(self,*args,**kwargs): """ NAME: Jacobi PURPOSE: calculate the Jacobi integral of the motion INPUT: Omega - pattern speed of rotating frame t= time pot= potential instance or list of such instances OUTPUT: Jacobi integral HISTORY: 2011-04-18 - Written - Bovy (NYU) """ if not 'OmegaP' in kwargs or kwargs['OmegaP'] is None: OmegaP= 1. if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") else: pot= kwargs['pot'] if isinstance(pot,list): for p in pot: if hasattr(p,'OmegaP'): OmegaP= p.OmegaP() break else: if hasattr(pot,'OmegaP'): OmegaP= pot.OmegaP() kwargs.pop('OmegaP',None) else: OmegaP= kwargs.pop('OmegaP') #Make sure you are not using physical coordinates old_physical= kwargs.get('use_physical',None) kwargs['use_physical']= False if not isinstance(OmegaP,(int,float)) and len(OmegaP) == 3: if isinstance(OmegaP,list): thisOmegaP= nu.array(OmegaP) else: thisOmegaP= OmegaP out= self.E(*args,**kwargs)-nu.dot(thisOmegaP, self.L(*args,**kwargs).T).T else: out= self.E(*args,**kwargs)-OmegaP*self.L(*args,**kwargs)[:,2] if not old_physical is None: kwargs['use_physical']= old_physical else: kwargs.pop('use_physical') return out @physical_conversion('energy') def E(self,*args,**kwargs): """ NAME: E PURPOSE: calculate the energy INPUT: t - (optional) time at which to get the energy pot= potential instance or list of such instances OUTPUT: energy HISTORY: 2010-09-15 - Written - Bovy (NYU) """ if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") if 'pot' in kwargs and kwargs['pot'] is None: kwargs.pop('pot') else: pot= kwargs.pop('pot') if len(args) > 0: t= args[0] else: t= 0. #Get orbit thiso= self(*args,**kwargs) onet= (len(thiso.shape) == 1) if onet: return evaluatePotentials(thiso[0],thiso[3],pot, phi=thiso[5],t=t)\ +thiso[1]**2./2.\ +thiso[2]**2./2.\ +thiso[4]**2./2. else: return nu.array([evaluatePotentials(thiso[0,ii],thiso[3,ii], pot,phi=thiso[5,ii], t=t[ii])\ +thiso[1,ii]**2./2.\ +thiso[2,ii]**2./2.\ +thiso[4,ii]**2./2. for ii in range(len(t))]) @physical_conversion('energy') def ER(self,*args,**kwargs): """ NAME: ER PURPOSE: calculate the radial energy INPUT: t - (optional) time at which to get the energy pot= potential instance or list of such instances OUTPUT: radial energy HISTORY: 2013-11-30 - Written - Bovy (IAS) """ if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") if 'pot' in kwargs and kwargs['pot'] is None: kwargs.pop('pot') else: pot= kwargs.pop('pot') if len(args) > 0: t= args[0] else: t= 0. #Get orbit thiso= self(*args,**kwargs) onet= (len(thiso.shape) == 1) if onet: return evaluatePotentials(thiso[0],0.,pot, phi=thiso[5],t=t)\ +thiso[1]**2./2.\ +thiso[2]**2./2. else: return nu.array([evaluatePotentials(thiso[0,ii],0., pot,phi=thiso[5,ii], t=t[ii])\ +thiso[1,ii]**2./2.\ +thiso[2,ii]**2./2. for ii in range(len(t))]) @physical_conversion('energy') def Ez(self,*args,**kwargs): """ NAME: Ez PURPOSE: calculate the vertical energy INPUT: t - (optional) time at which to get the energy pot= potential instance or list of such instances OUTPUT: vertical energy HISTORY: 2013-11-30 - Written - Bovy (IAS) """ if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") if 'pot' in kwargs and kwargs['pot'] is None: kwargs.pop('pot') else: pot= kwargs.pop('pot') if len(args) > 0: t= args[0] else: t= 0. #Get orbit thiso= self(*args,**kwargs) onet= (len(thiso.shape) == 1) if onet: return evaluatePotentials(thiso[0],thiso[3],pot, phi=thiso[5],t=t)\ -evaluatePotentials(thiso[0],0.,pot, phi=thiso[5],t=t)\ +thiso[4]**2./2. else: return nu.array([evaluatePotentials(thiso[0,ii],thiso[3,ii], pot,phi=thiso[5,ii], t=t[ii])\ -evaluatePotentials(thiso[0,ii],0., pot,phi=thiso[5,ii], t=t[ii])\ +thiso[4,ii]**2./2. for ii in range(len(t))]) def e(self,analytic=False,pot=None): """ NAME: e PURPOSE: calculate the eccentricity INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: eccentricity HISTORY: 2010-09-15 - Written - Bovy (NYU) """ if analytic: self._setupaA(pot=pot,type='adiabatic') (rperi,rap)= self._aA.calcRapRperi(self) return (rap-rperi)/(rap+rperi) if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first") if not hasattr(self,'rs'): self.rs= nu.sqrt(self.orbit[:,0]**2.+self.orbit[:,3]**2.) return (nu.amax(self.rs)-nu.amin(self.rs))/(nu.amax(self.rs)+nu.amin(self.rs)) @physical_conversion('position') def rap(self,analytic=False,pot=None,**kwargs): """ NAME: rap PURPOSE: return the apocenter radius INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: R_ap HISTORY: 2010-09-20 - Written - Bovy (NYU) """ if analytic: self._setupaA(pot=pot,type='adiabatic') (rperi,rap)= self._aA.calcRapRperi(self) return rap if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first") if not hasattr(self,'rs'): self.rs= nu.sqrt(self.orbit[:,0]**2.+self.orbit[:,3]**2.) return nu.amax(self.rs) @physical_conversion('position') def rperi(self,analytic=False,pot=None,**kwargs): """ NAME: rperi PURPOSE: return the pericenter radius INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: R_peri HISTORY: 2010-09-20 - Written - Bovy (NYU) """ if analytic: self._setupaA(pot=pot,type='adiabatic') (rperi,rap)= self._aA.calcRapRperi(self) return rperi if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first") if not hasattr(self,'rs'): self.rs= nu.sqrt(self.orbit[:,0]**2.+self.orbit[:,3]**2.) return nu.amin(self.rs) @physical_conversion('position') def zmax(self,analytic=False,pot=None,**kwargs): """ NAME: zmax PURPOSE: return the maximum vertical height INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: Z_max HISTORY: 2010-09-20 - Written - Bovy (NYU) 2012-06-01 - Added analytic calculation - Bovy (IAS) """ if analytic: self._setupaA(pot=pot,type='adiabatic') zmax= self._aA.calczmax(self) return zmax if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first") return nu.amax(nu.fabs(self.orbit[:,3])) def fit(self,vxvv,vxvv_err=None,pot=None,radec=False,lb=False, customsky=False,lb_to_customsky=None,pmllpmbb_to_customsky=None, tintJ=10,ntintJ=1000,integrate_method='dopr54_c', disp=False, **kwargs): """ NAME: fit PURPOSE: fit an Orbit to data using the current orbit as the initial condition INPUT: vxvv - [:,6] array of positions and velocities along the orbit vxvv_err= [:,6] array of errors on positions and velocities along the orbit (if None, these are set to 0.01) pot= Potential to fit the orbit in Keywords related to the input data: radec= if True, input vxvv and vxvv_err are [ra,dec,d,mu_ra, mu_dec,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (all J2000.0; mu_ra = mu_ra * cos dec); the attributes of the current Orbit are used to convert between these coordinates and Galactocentric coordinates lb= if True, input vxvv and vxvv_err are [long,lat,d,mu_ll, mu_bb,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (mu_ll = mu_ll * cos lat); the attributes of the current Orbit are used to convert between these coordinates and Galactocentric coordinates customsky= if True, input vxvv and vxvv_err are [custom long,custom lat,d,mu_customll, mu_custombb,vlos] in [deg,deg,kpc,mas/yr,mas/yr,km/s] (mu_ll = mu_ll * cos lat) where custom longitude and custom latitude are a custom set of sky coordinates (e.g., ecliptic) and the proper motions are also expressed in these coordinats; you need to provide the functions lb_to_customsky and pmllpmbb_to_customsky to convert to the custom sky coordinates (these should have the same inputs and outputs as lb_to_radec and pmllpmbb_to_pmrapmdec); the attributes of the current Orbit are used to convert between these coordinates and Galactocentric coordinates obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer (in kpc and km/s) (default=Object-wide default) Cannot be an Orbit instance with the orbit of the reference point, as w/ the ra etc. functions ro= distance in kpc corresponding to R=1. (default: taken from object) vo= velocity in km/s corresponding to v=1. (default: taken from object) lb_to_customsky= function that converts l,b,degree=False to the custom sky coordinates (like lb_to_radec); needs to be given when customsky=True pmllpmbb_to_customsky= function that converts pmll,pmbb,l,b,degree=False to proper motions in the custom sky coordinates (like pmllpmbb_to_pmrapmdec); needs to be given when customsky=True Keywords related to the orbit integrations: tintJ= (default: 10) time to integrate orbits for fitting the orbit ntintJ= (default: 1000) number of time-integration points integrate_method= (default: 'dopr54_c') integration method to use disp= (False) display the optimizer's convergence message OUTPUT: max of log likelihood HISTORY: 2014-06-17 - Written - Bovy (IAS) TEST: from galpy.potential import LogarithmicHaloPotential; lp= LogarithmicHaloPotential(normalize=1.); from galpy.orbit import Orbit; o= Orbit(vxvv=[1.,0.1,1.1,0.1,0.02,0.]); ts= numpy.linspace(0,10,1000); o.integrate(ts,lp); outts= [0.,0.1,0.2,0.3,0.4]; vxvv= numpy.array([o.R(outts),o.vR(outts),o.vT(outts),o.z(outts),o.vz(outts),o.phi(outts)]).T; of= Orbit(vxvv=[1.02,0.101,1.101,0.101,0.0201,0.001]); of._orb.fit(vxvv,pot=lp,radec=False,tintJ=10,ntintJ=1000) """ if pot is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit first or specify pot=") if radec or lb or customsky: obs, ro, vo= self._parse_radec_kwargs(kwargs,vel=True,dontpop=True) else: obs, ro, vo= None, None, None if customsky \ and (lb_to_customsky is None or pmllpmbb_to_customsky is None): raise IOError('if customsky=True, the functions lb_to_customsky and pmllpmbb_to_customsky need to be given') new_vxvv, maxLogL= _fit_orbit(self,vxvv,vxvv_err,pot,radec=radec,lb=lb, customsky=customsky, lb_to_customsky=lb_to_customsky, pmllpmbb_to_customsky=pmllpmbb_to_customsky, tintJ=tintJ,ntintJ=ntintJ, integrate_method=integrate_method, ro=ro,vo=vo,obs=obs,disp=disp) #Setup with these new initial conditions self.vxvv= new_vxvv return maxLogL def plotEz(self,*args,**kwargs): """ NAME: plotEz PURPOSE: plot Ez(.) along the orbit INPUT: bovy_plot.bovy_plot inputs OUTPUT: figure to output device HISTORY: 2014-06-16 - Written - Bovy (IAS) """ if kwargs.pop('normed',False): kwargs['d2']= 'Eznorm' else: kwargs['d2']= 'Ez' self.plot(*args,**kwargs) def plotER(self,*args,**kwargs): """ NAME: plotER PURPOSE: plot ER(.) along the orbit INPUT: bovy_plot.bovy_plot inputs OUTPUT: figure to output device HISTORY: 2014-06-16 - Written - Bovy (IAS) """ if kwargs.pop('normed',False): kwargs['d2']= 'ERnorm' else: kwargs['d2']= 'ER' self.plot(*args,**kwargs) def plotEzJz(self,*args,**kwargs): """ NAME: plotEzJz PURPOSE: plot E_z(.)/sqrt(dens(R)) along the orbit INPUT: pot= Potential instance or list of instances in which the orbit was integrated d1= - plot Ez vs d1: e.g., 't', 'z', 'R', 'vR', 'vT', 'vz' +bovy_plot.bovy_plot inputs OUTPUT: figure to output device HISTORY: 2010-08-08 - Written - Bovy (NYU) """ labeldict= {'t':r'$t$','R':r'$R$','vR':r'$v_R$','vT':r'$v_T$', 'z':r'$z$','vz':r'$v_z$','phi':r'$\phi$', 'x':r'$x$','y':r'$y$','vx':r'$v_x$','vy':r'$v_y$'} if not 'pot' in kwargs: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit first or specify pot=") else: pot= kwargs.pop('pot') d1= kwargs.pop('d1','t') self.EzJz= [(evaluatePotentials(self.orbit[ii,0],self.orbit[ii,3], pot,t=self.t[ii])- evaluatePotentials(self.orbit[ii,0],0.,pot, phi= self.orbit[ii,5],t=self.t[ii])+ self.orbit[ii,4]**2./2.)/\ nu.sqrt(evaluateDensities(self.orbit[ii,0],0.,pot,phi=self.orbit[ii,5],t=self.t[ii]))\ for ii in range(len(self.t))] if not 'xlabel' in kwargs: kwargs['xlabel']= labeldict[d1] if not 'ylabel' in kwargs: kwargs['ylabel']= r'$E_z/\sqrt{\rho}$' if d1 == 't': plot.bovy_plot(nu.array(self.t),nu.array(self.EzJz)/self.EzJz[0], *args,**kwargs) elif d1 == 'z': plot.bovy_plot(self.orbit[:,3],nu.array(self.EzJz)/self.EzJz[0], *args,**kwargs) elif d1 == 'R': plot.bovy_plot(self.orbit[:,0],nu.array(self.EzJz)/self.EzJz[0], *args,**kwargs) elif d1 == 'vR': plot.bovy_plot(self.orbit[:,1],nu.array(self.EzJz)/self.EzJz[0], *args,**kwargs) elif d1 == 'vT': plot.bovy_plot(self.orbit[:,2],
nu.array(self.EzJz)
numpy.array
""" test_standard.py - This module provides unit tests on the qoc.standard module. """ ### qoc.standard.constants ### def test_constants(): import numpy as np from qoc.standard.constants import (get_creation_operator, get_annihilation_operator) big = 100 # Use the fact that (create)(annihilate) is the number operator # to test the creation and annihilation operator methods. for i in range(1, big): analytic_number_operator = np.diag(np.arange(i)) generated_number_operator = np.matmul(get_creation_operator(i), get_annihilation_operator(i)) assert np.allclose(generated_number_operator, analytic_number_operator) ### qoc.standard.costs ### # TODO: implement me def test_controlarea(): pass # TODO: implement me def test_controlnorm(): pass # TODO: implement me def test_controlvariation(): pass def test_forbiddensities(): import numpy as np from qoc.standard import conjugate_transpose from qoc.standard.costs.forbiddensities import ForbidDensities system_eval_count = 11 state0 = np.array([[1], [0]]) density0 = np.matmul(state0, conjugate_transpose(state0)) forbid0_0 = np.array([[1], [0]]) density0_0 = np.matmul(forbid0_0, conjugate_transpose(forbid0_0)) forbid0_1 = np.divide(np.array([[1], [1]]), np.sqrt(2)) density0_1 = np.matmul(forbid0_1, conjugate_transpose(forbid0_1)) state1 = np.array([[0], [1]]) density1 = np.matmul(state1, conjugate_transpose(state1)) forbid1_0 = np.divide(np.array([[1], [1]]), np.sqrt(2)) density1_0 = np.matmul(forbid1_0, conjugate_transpose(forbid1_0)) forbid1_1 = np.divide(np.array([[1j], [1j]]), np.sqrt(2)) density1_1 = np.matmul(forbid1_1, conjugate_transpose(forbid1_1)) densities = np.stack((density0, density1,)) forbidden_densities0 = np.stack((density0_0, density0_1,)) forbidden_densities1 = np.stack((density1_0, density1_1,)) forbidden_densities = np.stack((forbidden_densities0, forbidden_densities1,)) fd = ForbidDensities(forbidden_densities, system_eval_count) cost = fd.cost(None, densities, None) expected_cost = 7 / 640 assert(np.allclose(cost, expected_cost,)) def test_forbidstates(): import numpy as np from qoc.standard.costs.forbidstates import ForbidStates system_eval_count = 11 state0 = np.array([[1], [0]]) forbid0_0 = np.array([[1], [0]]) forbid0_1 = np.divide(np.array([[1], [1]]), np.sqrt(2)) state1 = np.array([[0], [1]]) forbid1_0 = np.divide(np.array([[1], [1]]), np.sqrt(2)) forbid1_1 = np.divide(np.array([[1j], [1j]]), np.sqrt(2)) states = np.stack((state0, state1,)) forbidden_states0 = np.stack((forbid0_0, forbid0_1,)) forbidden_states1 = np.stack((forbid1_0, forbid1_1,)) forbidden_states = np.stack((forbidden_states0, forbidden_states1,)) fs = ForbidStates(forbidden_states, system_eval_count) cost = fs.cost(None, states, None) expected_cost = np.divide(5, 80) assert(np.allclose(cost, expected_cost,)) def test_targetdensityinfidelity(): import numpy as np from qoc.standard import conjugate_transpose from qoc.standard.costs.targetdensityinfidelity import TargetDensityInfidelity state0 = np.array([[0], [1]]) density0 = np.matmul(state0, conjugate_transpose(state0)) target_state0 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) densities = np.stack((density0,), axis=0) targets = np.stack((target_density0,), axis=0) ti = TargetDensityInfidelity(targets) cost = ti.cost(None, densities, None) assert(np.allclose(cost, 1)) ti = TargetDensityInfidelity(densities) cost = ti.cost(None, densities, None) assert(np.allclose(cost, 0.5)) state0 = np.array([[1], [0]]) state1 = (np.array([[1j], [1]]) / np.sqrt(2)) density0 = np.matmul(state0, conjugate_transpose(state0)) density1 = np.matmul(state1, conjugate_transpose(state1)) target_state0 = np.array([[1j], [0]]) target_state1 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) target_density1 = np.matmul(target_state1, conjugate_transpose(target_state1)) densities = np.stack((density0, density1,), axis=0) targets = np.stack((target_density0, target_density1,), axis=0) ti = TargetDensityInfidelity(targets) cost = ti.cost(None, densities, None) expected_cost = 0.625 assert(np.allclose(cost, expected_cost)) def test_targetdensityinfidelitytime(): import numpy as np from qoc.standard import conjugate_transpose from qoc.standard.costs.targetdensityinfidelitytime import TargetDensityInfidelityTime system_eval_count = 11 state0 = np.array([[0], [1]]) density0 = np.matmul(state0, conjugate_transpose(state0)) target_state0 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) densities =
np.stack((density0,), axis=0)
numpy.stack
from itertools import product import numpy as np import pytest import sympy as sym import symopt.config as config from symopt.problem import OptimizationProblem tol = 1.0e-8 wrap_using_values = ['lambdify', 'autowrap'] def needs_ipopt(test_func): def new_test_func(solver, wrap_using): if solver == 'ipopt' and not config.HAS_IPOPT: pytest.skip( "Test requires optional dependency ipopt, which is not " "installed.") else: return test_func(solver, wrap_using) return new_test_func @pytest.mark.parametrize("solver,wrap_using", product(["ipopt", "slsqp"], wrap_using_values)) @needs_ipopt def test_prob18(solver, wrap_using): """ problem 18 from the Hock-Schittkowski test suite """ if solver == "ipopt" and not config.HAS_IPOPT: pytest.skip( "Test requires optional dependency ipopt, which is not installed.") x = sym.MatrixSymbol('x', 2, 1) p = sym.Symbol('p') prob = OptimizationProblem(mode='min', wrap_using=wrap_using) prob.add_parameter(p) prob.add_variable(x, lb=[2, 0], ub=[p, p]) prob.add_constraints_from([x[0] * x[1] >= 25, x[0] ** 2 + x[1] ** 2 >= 25]) prob.obj = x[0] ** 2 / 100 + x[1] ** 2 x0 = [2, 2] res_50 = prob.solve(x0, 50, solver=solver, tol=tol) assert res_50['success'] assert np.allclose(res_50['x'], np.array([15.8114, 1.58114])) res_20 = prob.solve(x0, 20, solver=solver, tol=tol) assert res_20['success'] assert np.allclose(res_20['x'],
np.array([15.8114, 1.58114])
numpy.array
from __future__ import division import numpy as np from scipy import interpolate import pandas as pd def load_run(run_num, df): """Load in trial data. Parameters ---------- run_num : int Which run to load. df : DataFrame The DataFrame loaded from the original excel file. Returns ------- pos : array (x, z) positions tvec : array Time vector for the run. dt : float Sampling interval between data points. """ # sampling rate # http://rsif.royalsocietypublishing.org/content/10/80/20120794/suppl/DC1 if run_num <= 7: dt = 1 / 60. else: dt = 1 / 125. xkey = "'Caribou_Trial_{0:02d}_Xvalues'".format(run_num) zkey = "'Caribou_Trial_{0:02d}_Zvalues'".format(run_num) d = df[[xkey, zkey]] d = np.array(d) # get rid of nans and a bunch of junky zeros starting at row 301 start_bad = np.where(np.isnan(d))[0] if len(start_bad) > 0: start_bad = start_bad[0] d = d[:start_bad] # get rid of zeros (if we get past rows 301...) start_bad = np.where(d == 0.)[0] if len(d) > 300 and len(start_bad) > 0: start_bad = start_bad[0] d = d[:start_bad] tvec = np.arange(0, len(d)) * dt return d, tvec, dt def calc_vel(pos_data, dt): """Velocity in the x and z directions. Parameters ---------- pos_data : array (x, z) position information dt : float Sampling rate Returns ------- vel : array (vx, vz) """ vx = np.gradient(pos_data[:, 0], dt) vy = np.gradient(pos_data[:, 1], dt) return np.c_[vx, vy] def calc_accel(vel_data, dt): """Acceleration in the x and z directions. Parameters ---------- vel_data : array (vx, vz) velocity data dt : float Sampling rate Returns ------- accel : array (ax, az) """ ax = np.gradient(vel_data[:, 0], dt) ay = np.gradient(vel_data[:, 1], dt) return np.c_[ax, ay] def calc_vel_mag(vel_data): """Velocity magnitude. Parameters ---------- vel_data : array (vx, vz) velocity data Returns ------- vel_mag : array np.sqrt(vx**2 + vz**2) """ return np.sqrt(vel_data[:, 0]**2 + vel_data[:, 1]**2) def calc_gamma(vel_data): """Glide angle. Parameters ---------- vel_data : array (vx, vz) Returns ------- gamma : array Glide angle in rad """ return -np.arctan2(vel_data[:, 1], vel_data[:, 0]) def splfit_all(data, tvec, k=5, s=.5): """Fit a spline to the data. """ posx = interpolate.UnivariateSpline(tvec, data[:, 0], k=k, s=s) posz = interpolate.UnivariateSpline(tvec, data[:, 1], k=k, s=s) velx = posx.derivative(1) velz = posz.derivative(1) accx = posx.derivative(2) accz = posz.derivative(2) pos = np.c_[posx(tvec), posz(tvec)] vel = np.c_[velx(tvec), velz(tvec)] acc = np.c_[accx(tvec), accz(tvec)] return pos, vel, acc def polyfit(data, tvec, intfun): """Fit a spline to the data. """ posx = intfun(tvec, data[:, 0]) posz = intfun(tvec, data[:, 1]) velx = posx.derivative(1) velz = posz.derivative(1) accx = posx.derivative(2) accz = posz.derivative(2) pos = np.c_[posx(tvec), posz(tvec)] vel = np.c_[velx(tvec), velz(tvec)] acc = np.c_[accx(tvec), accz(tvec)] return pos, vel, acc def polyfit_all(data, tvec, deg, wn=0): """Fit a spline to the data. TODO: this does not to the mirroring correctly! """ start = data[:wn][::-1] stop = data[-wn:][::-1] datanew = np.r_[start, data, stop] tvecnew = np.r_[tvec[:wn][::-1], tvec, tvec[-wn:][::-1]] posx = np.polyfit(tvecnew, datanew[:, 0], deg) posz = np.polyfit(tvecnew, datanew[:, 1], deg) velx = np.polyder(posx, 1) velz = np.polyder(posz, 1) accx = np.polyder(posx, 2) accz = np.polyder(posz, 2) pos = np.c_[np.polyval(posx, tvec), np.polyval(posz, tvec)] vel = np.c_[np.polyval(velx, tvec), np.polyval(velz, tvec)] acc = np.c_[np.polyval(accx, tvec), np.polyval(accz, tvec)] return pos, vel, acc def fill_df(pos, vel, acc, gamma, velmag, tvec, i): """Put one trial's data into a DataFrame. Parameters ---------- pos : (n x 2) array x and z position data vel : (n x 2) array x and z velocity data acc : (n x 2) array x and z acceleration data gamma : (n x 1) array Glide angles in deg velmag : (n x 1) array Velocity magnitude tvec : (n x 1) array Time points i : int Trial number that becomes the column name Returns ------- posx, posz, velx, velz, accx, accz, gamm, vmag : DataFrame Data in a DataFrame """ posx = pd.DataFrame(pos[:, 0], index=tvec, columns=[str(i)]) posz = pd.DataFrame(pos[:, 1], index=tvec, columns=[str(i)]) velx = pd.DataFrame(vel[:, 0], index=tvec, columns=[str(i)]) velz = pd.DataFrame(vel[:, 1], index=tvec, columns=[str(i)]) accx = pd.DataFrame(acc[:, 0], index=tvec, columns=[str(i)]) accz = pd.DataFrame(acc[:, 1], index=tvec, columns=[str(i)]) gamm = pd.DataFrame(gamma, index=tvec, columns=[str(i)]) vmag = pd.DataFrame(velmag, index=tvec, columns=[str(i)]) return posx, posz, velx, velz, accx, accz, gamm, vmag def window_bounds(i, n, wn): """Start and stop indices for a moving window. Parameters ---------- i : int Current index n : int Total number of points wn : int, odd Total window size Returns ------- start : int Start index stop : int Stop index at_end : bool Whether we are truncating the window """ at_end = False hw = wn // 2 start = i - hw stop = i + hw + 1 if start < 0: at_end = True start = 0 elif stop > n: at_end = True stop = n return start, stop, at_end def moving_window_pts(data, tvec, wn, deg=2, drop_deg=False): """Perform moving window smoothing. Parameters ---------- data : (n x 2) array Data to smooth and take derivatives of tvec : (n x 1) array Time vector wn : int, odd Total window size deg : int, default=2 Polynomial degree to fit to data drop_deg : bool, default=False Whether to drop in interpolating polynomial at the ends of the time series, since the truncated window can negatively affect things. Returns ------- spos : (n x 2) array x and z smoothed data svel : (n x 2) array First derivatives of smoothed data (velocity) sacc : (n x 2) array Second derivatives of smoothed data (acceleration) """ deg_orig = deg posx, posz = data.T npts = len(posx) spos = np.zeros((npts, 2)) svel =
np.zeros((npts, 2))
numpy.zeros
import numpy as np # import pandas as pd import matplotlib.pyplot as plt import joblib from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split, GridSearchCV, learning_curve from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectKBest, mutual_info_classif, RFECV from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import RidgeClassifierCV from sklearn.metrics import matthews_corrcoef, confusion_matrix, classification_report rng = np.random.RandomState(0) # initialize random number generator # %% # Load the wine dataset: n_samples=178, n_features=13. data, y = load_wine(return_X_y=True, as_frame=True) print(data.info()) # %% # Select best features based on mutual information. select_features = SelectKBest(score_func=mutual_info_classif, k=11).fit(data, y) # Plot MI scores fig, ax = plt.subplots(2, 1, figsize=(6, 10), dpi=100) ax[0].bar(np.arange(data.columns.shape[0]), select_features.scores_) ax[0].set_xticks(np.arange(data.shape[1])) ax[0].set(title='Mutual Information scores for features', xlabel='Feature #', ylabel='MI') # Arbitrary choice: eliminate 2 features with the lowest MI scores. print("#: FEATURE NAME") for i, col in enumerate(data.columns): print(f'{i}: {col}') print('\nCan eliminate two features with lowest MI score: ', data.columns[2], ', ', data.columns[7], '.', sep='') del i, col # Get new dataset (convert to dataframe) with reduced number of features # X = pd.DataFrame(select_features.transform(data), columns=data.columns.delete([2, 7])) # Try recursive feature elimination (with cross-validation) using SVM with linear kernel. clf = SVC(kernel='linear') rfecv = RFECV(clf, step=1, min_features_to_select=1, cv=5, scoring='accuracy') rfecv.fit(data, y) print(f"\nOptimal number of features using RFECV: {rfecv.n_features_}") # Plot number of features vs. cross-validation scores ax[1].plot(np.arange(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_, '.-r') ax[1].set(title='Recursive feature elimination using SVM with linear kernel', xlabel="Number of features selected", ylabel="Cross validation score (accuracy)") ax[1].set_xticks(np.arange(rfecv.grid_scores_.shape[0] + 1)) fig.savefig('featureselection.png') # RFE result: keep all features. # Same result when two features with low MI were already eliminated. print('\nKeeping all 13 features.') # %% # Split data infor train and test sets. X_train, X_test, y_train, y_test = train_test_split(data, y, random_state=rng, test_size=0.2, stratify=y) # %% # Try different estimators estimators = [GaussianNB(), RidgeClassifierCV(alphas=np.logspace(-3, 1, num=10)), SVC(kernel='linear'), RandomForestClassifier(random_state=rng)] models = dict() for estimator in estimators: estimator_name = str(estimator)[:str(estimator).index('(')] # Make a pipeline pipe = make_pipeline(StandardScaler(), estimator) # print(pipe.get_params()) if 'GaussianNB' in estimator_name: print("\nEstimator: Gaussian Naive Bayes Classifier.") model = pipe.fit(X_train, y_train) elif 'Ridge' in estimator_name: print("\nEstimator: Ridge Classifier with cross-validation.") model = pipe.fit(X_train, y_train) elif 'SVC' in estimator_name: print("\nEstimator: Support Vector Machine Classifier.") model = pipe.fit(X_train, y_train) else: hyperparams = {"randomforestclassifier__max_features": ["auto", "sqrt"], "randomforestclassifier__max_leaf_nodes": [None, 2, 3, 5], "randomforestclassifier__max_depth": [None, 1, 3]} model = GridSearchCV(pipe, hyperparams, cv=10) model.fit(X_train, y_train) print("\nEstimator: Random Forest Classifier. \n" "Best parameters after grid search with cross-validation (cv=10): \n" f"{model.best_params_}\nwith score {model.best_score_}") # If model.refit is true (default), the model automatically refits to all of X_train. print(f"Automatic refit to full X_train: {model.refit}") y_pred = model.predict(X_test) # Predict classes in test set # *** Calculate metrics of prediction quality *** # print('Matthews correlation coefficient=', matthews_corrcoef(y_test, y_pred)) # print('Confusion matrix:\n', confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) # Append model to 'models' dict (requires Python 3.9) models |= {estimator_name: {'model': model, 'y_pred': y_pred, 'matthews': matthews_corrcoef(y_test, y_pred), 'confusion': confusion_matrix(y_test, y_pred)} } # Compute learning curve lc_sizes, train_scores, cv_scores = learning_curve(pipe, X_train, y_train, cv=5, train_sizes=np.linspace(0.1, 1.0, 10), scoring='accuracy') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) cv_scores_mean = np.mean(cv_scores, axis=1) cv_scores_std =
np.std(cv_scores, axis=1)
numpy.std
# From http://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/pyaslDoc/aslDoc/unredDoc.html import numpy as np import scipy.interpolate as interpolate def unred(wave, flux, ebv, R_V=3.1, LMC2=False, AVGLMC=False): """ Deredden a flux vector using the Fitzpatrick (1999) parameterization Parameters ---------- wave : array Wavelength in Angstrom flux : array Calibrated flux vector, same number of elements as wave. ebv : float, optional Color excess E(B-V). If a negative ebv is supplied, then fluxes will be reddened rather than dereddened. The default is 3.1. AVGLMC : boolean If True, then the default fit parameters c1,c2,c3,c4,gamma,x0 are set to the average values determined for reddening in the general Large Magellanic Cloud (LMC) field by Misselt et al. (1999, ApJ, 515, 128). The default is False. LMC2 : boolean If True, the fit parameters are set to the values determined for the LMC2 field (including 30 Dor) by Misselt et al. Note that neither `AVGLMC` nor `LMC2` will alter the default value of R_V, which is poorly known for the LMC. Returns ------- new_flux : array Dereddened flux vector, same units and number of elements as input flux. Notes ----- .. note:: This function was ported from the IDL Astronomy User's Library. :IDL - Documentation: PURPOSE: Deredden a flux vector using the Fitzpatrick (1999) parameterization EXPLANATION: The R-dependent Galactic extinction curve is that of Fitzpatrick & Massa (Fitzpatrick, 1999, PASP, 111, 63; astro-ph/9809387 ). Parameterization is valid from the IR to the far-UV (3.5 microns to 0.1 microns). UV extinction curve is extrapolated down to 912 Angstroms. CALLING SEQUENCE: FM_UNRED, wave, flux, ebv, [ funred, R_V = , /LMC2, /AVGLMC, ExtCurve= gamma =, x0=, c1=, c2=, c3=, c4= ] INPUT: WAVE - wavelength vector (Angstroms) FLUX - calibrated flux vector, same number of elements as WAVE If only 3 parameters are supplied, then this vector will updated on output to contain the dereddened flux. EBV - color excess E(B-V), scalar. If a negative EBV is supplied, then fluxes will be reddened rather than dereddened. OUTPUT: FUNRED - unreddened flux vector, same units and number of elements as FLUX OPTIONAL INPUT KEYWORDS R_V - scalar specifying the ratio of total to selective extinction R(V) = A(V) / E(B - V). If not specified, then R = 3.1 Extreme values of R(V) range from 2.3 to 5.3 /AVGLMC - if set, then the default fit parameters c1,c2,c3,c4,gamma,x0 are set to the average values determined for reddening in the general Large Magellanic Cloud (LMC) field by Misselt et al. (1999, ApJ, 515, 128) /LMC2 - if set, then the fit parameters are set to the values determined for the LMC2 field (including 30 Dor) by Misselt et al. Note that neither /AVGLMC or /LMC2 will alter the default value of R_V which is poorly known for the LMC. The following five input keyword parameters allow the user to customize the adopted extinction curve. For example, see Clayton et al. (2003, ApJ, 588, 871) for examples of these parameters in different interstellar environments. x0 - Centroid of 2200 A bump in microns (default = 4.596) gamma - Width of 2200 A bump in microns (default =0.99) c3 - Strength of the 2200 A bump (default = 3.23) c4 - FUV curvature (default = 0.41) c2 - Slope of the linear UV extinction component (default = -0.824 + 4.717/R) c1 - Intercept of the linear UV extinction component (default = 2.030 - 3.007*c2 """ x = 10000./ wave # Convert to inverse microns curve = x*0. # Set some standard values: x0 = 4.596 gamma = 0.99 c3 = 3.23 c4 = 0.41 c2 = -0.824 + 4.717/R_V c1 = 2.030 - 3.007*c2 if LMC2: x0 = 4.626 gamma = 1.05 c4 = 0.42 c3 = 1.92 c2 = 1.31 c1 = -2.16 elif AVGLMC: x0 = 4.596 gamma = 0.91 c4 = 0.64 c3 = 2.73 c2 = 1.11 c1 = -1.28 # Compute UV portion of A(lambda)/E(B-V) curve using FM fitting function and # R-dependent coefficients xcutuv = np.array([10000.0/2700.0]) xspluv = 10000.0/np.array([2700.0,2600.0]) iuv = np.where(x >= xcutuv)[0] N_UV = len(iuv) iopir =
np.where(x < xcutuv)
numpy.where
"""Test HDF5 I/O tools.""" import os import h5py import numpy as np import pytest from becquerel.io.h5 import ensure_string, is_h5_filename, open_h5, write_h5, read_h5 TEST_OUTPUTS = os.path.join(os.path.split(__file__)[0], "test_outputs") if not os.path.exists(TEST_OUTPUTS): os.mkdir(TEST_OUTPUTS) DSETS = { "dset_1d": np.ones(100, dtype=int), "dset_2d":
np.ones((30, 30), dtype=float)
numpy.ones
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown copyright. The Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Unit tests for the wind_components.ResolveWindComponents plugin.""" import unittest import iris import numpy as np from iris.coord_systems import OSGB from iris.coords import DimCoord from iris.tests import IrisTest from improver.synthetic_data.set_up_test_cubes import set_up_variable_cube from improver.wind_calculations.wind_components import ResolveWindComponents RAD_TO_DEG = 180.0 / np.pi def set_up_cube(data_2d, name, unit): """Set up a 2D test cube of wind direction or speed""" cube = set_up_variable_cube( data_2d.astype(np.float32), name=name, units=unit, spatial_grid="equalarea" ) cube.coord("projection_x_coordinate").points = np.linspace( 150000, 250000, data_2d.shape[1] ) cube.coord("projection_y_coordinate").points = np.linspace( 0, 600000, data_2d.shape[0] ) for axis in ["x", "y"]: cube.coord(axis=axis).units = "metres" cube.coord(axis=axis).coord_system = OSGB() cube.coord(axis=axis).bounds = None return cube def add_new_dimension(cube, npoints, name, unit): """Add a new dimension with npoints by copying cube data""" cubelist = iris.cube.CubeList([]) for i in range(npoints): newcube = cube.copy(cube.data) newcube.add_aux_coord(DimCoord(i, name, unit)) cubelist.append(newcube) merged_cube = cubelist.merge_cube() return merged_cube class Test__repr__(IrisTest): """Tests the __repr__ method""" def test_basic(self): """Tests the output string is as expected""" result = str(ResolveWindComponents()) self.assertEqual(result, "<ResolveWindComponents>") class Test_calc_true_north_offset(IrisTest): """Tests the calc_true_north_offset function""" def setUp(self): """Set up a target cube with OSGB projection""" wind_angle = np.zeros((3, 5), dtype=np.float32) self.directions = set_up_cube(wind_angle, "wind_to_direction", "degrees") self.plugin = ResolveWindComponents() def test_basic(self): """Test function returns correct type""" result = self.plugin.calc_true_north_offset(self.directions) self.assertIsInstance(result, np.ndarray) def test_values(self): """Test that for UK National Grid coordinates the angle adjustments are sensible""" expected_result = np.array( [ [2.651483, 2.386892, 2.122119, 1.857182, 1.592121], [2.921058, 2.629620, 2.337963, 2.046132, 1.754138], [3.223816, 2.902300, 2.580523, 2.258494, 1.936247], ], dtype=np.float32, ) result = self.plugin.calc_true_north_offset(self.directions) self.assertArrayAlmostEqual(RAD_TO_DEG * result, expected_result) class Test_resolve_wind_components(IrisTest): """Tests the resolve_wind_components method""" def setUp(self): """Set up some arrays to convert""" self.plugin = ResolveWindComponents() wind_speed = 10.0 * np.ones((4, 4), dtype=np.float32) wind_angle = np.array( [ [0.0, 30.0, 45.0, 60.0], [90.0, 120.0, 135.0, 150.0], [180.0, 210.0, 225.0, 240.0], [270.0, 300.0, 315.0, 330.0], ], dtype=np.float32, ) self.wind_cube = set_up_cube(wind_speed, "wind_speed", "knots") self.directions = set_up_cube(wind_angle, "wind_to_direction", "degrees") self.adjustments = np.zeros((4, 4), dtype=np.float32) def test_basic(self): """Test function returns correct type""" uspeed, vspeed = self.plugin.resolve_wind_components( self.wind_cube, self.directions, self.adjustments ) self.assertIsInstance(uspeed, iris.cube.Cube) self.assertIsInstance(vspeed, iris.cube.Cube) def test_values(self): """Test correct values are returned for well-behaved angles""" expected_uspeed = 5.0 * np.array( [ [0.0, 1.0, np.sqrt(2.0), np.sqrt(3.0)], [2.0, np.sqrt(3.0), np.sqrt(2.0), 1.0], [0.0, -1.0, -np.sqrt(2.0), -np.sqrt(3.0)], [-2.0, -np.sqrt(3.0), -np.sqrt(2.0), -1.0], ], dtype=np.float32, ) expected_vspeed = 5 * np.array( [ [2.0, np.sqrt(3.0),
np.sqrt(2.0)
numpy.sqrt