prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import print_function, division """ For investigating accuracy of field distribution required to provide realistic BMPG membership probabilities based on current best fit to group """ import logging import numpy as np from distutils.dir_util import mkpath import sys from astropy.io import fits sys.path.insert(0, '..') import chronostar.traceorbit as torb import chronostar.transform as tf import chronostar.retired2.datatool as dt def MVGaussian(vec_x, mean, cov, inv_cov = None): """ Evaluate the MVGaussian defined by mean and cov at vec_x Parameters ---------- vec_x : [dim] float array the point at which to evaluate the function mean : [dim] float array the mean of the MVGaussian distribution cov : [dim, dim] float array the covaraince matrix of the MVGaussian distribution Returns ------- (float) evaluation of vec_x """ if inv_cov is None: inv_cov = np.linalg.inv(cov) dim = vec_x.shape[0] assert (mean.shape == vec_x.shape) assert (cov.shape == (dim, dim)) coeff = 1./np.sqrt((2*np.pi)**dim * np.linalg.det(cov)) diff = vec_x - mean expon = -0.5 * np.dot(diff, np.dot(inv_cov, diff)) return coeff * np.exp(expon) logging.basicConfig(level=logging.INFO, stream=sys.stdout) rdir = "../results/em_fit/gaia_dr2_bp/" # final groups represent the mode of the final sampling stage final_groups_file = rdir + "final/final_groups.npy" final_chain0_file = rdir + "final/group0/final_chain.npy" final_chain1_file = rdir + "final/group1/final_chain.npy" final_membership_file = rdir + "final/final_membership.npy" bp_xyzuvw_file = "../data/gaia_dr2_bp_xyzuvw.fits" gaia_xyzuvw_mean_file = "../data/gaia_dr2_mean_xyzuvw.npy" gaia_astr_file = "../data/all_rvs_w_ok_plx.fits" # analysis files andir = "../results/bp_members/" mkpath(andir) gaia_bpmg_evals_file = andir + "gaia_bpmg_evals.npy" gaia_gaia_evals_file = andir + "gaia_gaia_evals.npy" bpmg_candidates_mask_file = andir + "bpmg_candidates_mask.npy" gaia_mean_file = andir + "gaia_mean.npy" gaia_cov_file = andir + "gaia_cov.npy" bpmg_memb_probs_file = andir + "bpmg_memb_probs.npy" gaia_xyzuvw = np.load(gaia_xyzuvw_mean_file) z_final = np.load(final_membership_file) bp_hdul = fits.open(bp_xyzuvw_file) gaia_hdul = fits.open(gaia_astr_file) bp_xyzuvw = bp_hdul[1].data bp_xyzuvw_cov = bp_hdul[2].data bp_core_mask = np.where(z_final[:,0] > 0.75) bp_core_xyzuvw = bp_xyzuvw[bp_core_mask] bpmg_then = np.load(final_groups_file)[0] bpmg_mean_now = torb.trace_cartesian_orbit(bpmg_then.mean, bpmg_then.age, single_age=True) bpmg_cov_now = tf.transform_covmatrix( bpmg_then.generateCovMatrix(), torb.trace_cartesian_orbit, bpmg_then.mean, dim=6, args=(bpmg_then.age, True) ) ngaia_stars = gaia_xyzuvw.shape[0] try: gaia_bpmg_evals = np.load(gaia_bpmg_evals_file) except IOError: print("Evaluating gaia stars at BPMG current MVGauss distribution") gaia_bpmg_evals = np.zeros(ngaia_stars) bpmg_invcov_now = np.linalg.inv(bpmg_cov_now) for i, gaia_star in enumerate(gaia_xyzuvw): if (i % 100000 == 0): print("{:10} of {:10}... {:6.1f}%".format(i, ngaia_stars, i / ngaia_stars*100)) # UNTESTED!!! gaia_bpmg_evals[i] = MVGaussian(gaia_star, bpmg_mean_now, bpmg_cov_now, inv_cov=bpmg_invcov_now) np.save(gaia_bpmg_evals_file, gaia_bpmg_evals) bpmg_candidates_mask = np.where(gaia_bpmg_evals > np.percentile(gaia_bpmg_evals,99.99)) np.save(bpmg_candidates_mask_file, bpmg_candidates_mask) try: gaia_mean = np.load(gaia_mean_file) gaia_cov =
np.load(gaia_cov_file)
numpy.load
import abc import datetime import numpy as np # type: ignore from image import Image from numba import jit # type: ignore from scipy import ndimage # type: ignore from typing import Tuple class TextureSynthesizer(abc.ABC): """ A TextureSynthesizer object synthesizes output images of arbitrary size that resemble the texture captured in a source image. """ def __init__(self, source_image_path: str, source_image_size: Tuple[int, int], output_image_path: str, output_image_size: Tuple[int, int]) -> None: """ Constructs a TextureSynthesizer superclass object with the given source and output image paths, along with a source and output image size. Args: source_image_path: Path to load the source image. source_image_size: Size of the source image. output_image_path: Path to save the output image. output_image_size: Size of the output image. """ assert source_image_size >= (1, 1), "Source image size cannot be zero or negative." assert output_image_size >= (1, 1), "Output image size cannot be zero or negative." self.__source_image = Image(source_image_path) self.__source_image_size = source_image_size self.__output_image = Image(output_image_path) self.__output_image_size = output_image_size def synthesize(self) -> None: """Synthesizes the output image from the source image.""" # Load the source image. self.__source_image.load() self.__source_image.resize(*self.__source_image_size) # Create the output image. self.__output_image.create(*self.__output_image_size) beg = datetime.datetime.now() self.render(self.__source_image, self.__output_image) end = datetime.datetime.now() self.__output_image.save() duration = end - beg print(f'Finished texture synthesis in {duration}.') @abc.abstractmethod def render(self, source_image: Image, output_image: Image) -> None: """ Renders an output Image from the given source Image. Args: source_image: The source Image. output_image: The output Image. """ raise NotImplementedError("TextureSynthesizer.render() is not implemented.") @staticmethod def _apply_distance_filter(image: Image, window: Image, members: np.ndarray, weights: np.ndarray) -> np.ndarray: """ Returns a matrix containing the weighted squared difference of the pixel values between each window in the given Image and the reference window. Pixels that fall outside the Image are reflected across the boundaries of the Image. Args: image: The Image. window: The reference window. members: Elements to compare between the windows. weights: The weighting of each pixel difference within a window. Returns: A matrix containing the desired weighted squared differences. """ distances =
np.zeros(image.size)
numpy.zeros
""" This module contains a class for discrete 1-dimensional exponential families. The main uses for this class are exact (post-selection) hypothesis tests and confidence intervals. """ import numpy as np import warnings from ..truncated import find_root def crit_func(test_statistic, left_cut, right_cut): """ A generic critical function for an interval, with weights at the endpoints. ((test_statistic < CL) + (test_statistic > CR) + gammaL * (test_statistic == CL) + gammaR * (test_statistic == CR)) where (CL, gammaL) = left_cut, (CR, gammaR) = right_cut. Parameters ---------- test_statistic : np.float Observed value of test statistic. left_cut : (float, float) (CL, gammaL): left endpoint and value at exactly the left endpoint (should be in [0,1]). right_cut : (float, float) (CR, gammaR): right endpoint and value at exactly the right endpoint (should be in [0,1]). Returns ------- decision : np.float """ CL, gammaL = left_cut CR, gammaR = right_cut value = ((test_statistic < CL) + (test_statistic > CR)) * 1. if gammaL != 0: value += gammaL * (test_statistic == CL) if gammaR != 0: value += gammaR * (test_statistic == CR) return value class discrete_family(object): def __init__(self, sufficient_stat, weights): r""" A discrete 1-dimensional exponential family with reference measure $\sum_j w_j \delta_{X_j}$ and sufficient statistic `sufficient_stat`. For any $\theta$, the distribution is .. math:: P_{\theta} = \sum_{j} e^{\theta X_j - \Lambda(\theta)} w_j \delta_{X_j} where .. math:: \Lambda(\theta) = \log \left(\sum_j w_j e^{\theta X_j} \right). Parameters ---------- sufficient_stat : `np.float((n))` weights : `np.float(n)` Notes ----- The weights are normalized to sum to 1. """ xw = np.array(sorted(zip(sufficient_stat, weights))) self._x = xw[:,0] self._w = xw[:,1] self._lw =
np.log(xw[:,1])
numpy.log
import scipy.io.wavfile as sio import scipy.signal as sis from scipy import interpolate import numpy as np import math import matplotlib.pyplot as plt import mylib as myl import sys import copy as cp import re import scipy.fftpack as sf # NOTE: int2float might be removed after scipy update/check # (check defaults in myl.sig_preproc) # read wav file # IN: # fileName # OUT: # signal ndarray # sampleRate def wavread(f,opt={'do_preproc':True}): ## signal input fs, s_in = sio.read(f) # int -> float s = myl.wav_int2float(s_in) # preproc if opt['do_preproc']: s = myl.sig_preproc(s) return s, fs # DCT # IN: # y - 1D signal vector # opt # ['fs'] - sample rate # ['wintyp'] - <'kaiser'>, any type supported by # scipy.signal.get_window() # ['winparam'] - <1> additionally needed window parameters, # scalar, string, list ..., depends on 'wintyp' # ['nsm'] - <3> number of spectral moments # ['rmo'] - skip first (lowest) cosine (=constant offset) # in spectral moment calculation <1>|0 # ['lb'] - lower cutoff frequency for coef truncation <0> # ['ub'] - upper cutoff frequency (if 0, no cutoff) <0> # Recommended e.g. for f0 DCT, so that only influence # of events with <= 10Hz on f0 contour is considered) # ['peak_prct'] - <80> lower percentile threshold to be superseeded for # amplitude maxima in DCT spectrum # OUT: # dct # ['c_orig'] all coefs # ['f_orig'] their frequencies # ['c'] coefs with freq between lb and ub # ['f'] their freqs # ['i'] their indices in c_orig # ['sm'] spectral moments based on c # ['opt'] input options # ['m'] y mean # ['sd'] y standard dev # ['cbin'] array of sum(abs(coef)) in frequency bins # ['fbin'] corresponding lower boundary freqs # ['f_max'] frequency of global amplitude maximum # ['f_lmax'] frequencies of local maxima (array of minlen 1) # ['c_cog'] the coef amplitude of the cog freq (sm[0]) # PROBLEMS: # - if segment is too short (< 5 samples) lowest freqs associated to # DCT components are too high for ub, that is dct_trunc() returns # empty array. # -> np.nan assigned to respective variables def dct_wrapper(y,opt): dflt={'wintyp':'kaiser','winparam':1,'nsm':3,'rmo':True, 'lb':0,'ub':0,'peak_prct':80} opt = myl.opt_default(opt,dflt) # weight window w = sig_window(opt['wintyp'],len(y),opt['winparam']) y = y*w #print(1,len(y)) # centralize y = y-np.mean(y) #print(2,len(y)) # DCT coefs c = sf.dct(y,norm='ortho') #print(3,len(c)) # indices (starting with 0) ly = len(y) ci = myl.idx_a(ly) # corresponding cos frequencies f = ci+1 * (opt['fs']/(ly*2)) # band pass truncation of coefs # indices of coefs with lb <= freq <= ub i = dct_trunc(f,ci,opt) #print('f ci i',f,ci,i) # analysis segment too short -> DCT freqs above ub if len(i)==0: sm = myl.ea() while len(sm) <= opt['nsm']: sm = np.append(sm,np.nan) return {'c_orig':c,'f_orig':f,'c':myl.ea(),'f':myl.ea(),'i':[],'sm':sm,'opt':opt, 'm':np.nan,'sd':np.nan,'cbin':myl.ea(),'fbin':myl.ea(), 'f_max':np.nan, 'f_lmax':myl.ea(), 'c_cog': np.nan} # mean abs error from band-limited IDCT #mae = dct_mae(c,i,y) # remove constant offset with index 0 # already removed by dct_trunc in case lb>0. Thus checked for i[0]==0 # (i[0] indeed represents constant offset; tested by # cr = np.zeros(ly); cr[0]=c[0]; yr = sf.idct(cr); print(yr) if opt['rmo']==True and len(i)>1 and i[0]==0: j = i[1:len(i)] else: j = i if type(j) is not list: j = [j] # coefs and their frequencies between lb and ub # (+ constant offset removed) fi = f[j] ci = c[j] # spectral moments if len(j)>0: sm = specmom(ci,fi,opt['nsm']) else: sm = np.zeros(opt['nsm']) # frequency bins fbin, cbin = dct_fbin(fi,ci,opt) # frequencies of global and local maxima in DCT spectrum f_max, f_lmax, px = dct_peak(ci,fi,sm[0],opt) # return return {'c_orig':c,'f_orig':f,'c':ci,'f':fi,'i':j,'sm':sm,'opt':opt, 'm':np.mean(y),'sd':np.std(y),'cbin':cbin,'fbin':fbin, 'f_max':f_max, 'f_lmax':f_lmax, 'c_cog': px} # returns local and max peak frequencies # IN: # x: array of abs coef amplitudes # f: corresponding frequencies # cog: center of gravity # OUT: # f_gm: freq of global maximu # f_lm: array of freq of local maxima # px: threshold to be superseeded (derived from prct specs) def dct_peak(x,f,cog,opt): x = abs(cp.deepcopy(x)) ## global maximum i = myl.find(x,'is','max') if len(i)>1: i=int(np.mean(i)) f_gm = float(f[i]) ## local maxima # threshold to be superseeded px = dct_px(x,f,cog,opt) idx = myl.find(x,'>=',px) # 2d array of neighboring+1 indices # e.g. [[0,1,2],[5,6],[9,10]] ii = [] # min freq distance between maxima fd_min = 1 for i in myl.idx(idx): if len(ii)==0: ii.append([idx[i]]) elif idx[i]>ii[-1][-1]+1: xi = x[ii[-1]] fi = f[ii[-1]] j = myl.find(xi,'is','max') #print('xi',xi,'fi',fi,'f',f[idx[i]]) if len(j)>0 and f[idx[i]]>fi[j[0]]+fd_min: #print('->1') ii.append([idx[i]]) else: #print('->2') ii[-1].append(idx[i]) #myl.stopgo() #!c else: ii[-1].append(idx[i]) # get index of x maximum within each subsegment # and return corresponding frequencies f_lm = [] for si in ii: zi = myl.find(x[si],'is','max') if len(zi)>1: zi=int(np.mean(zi)) else: zi = zi[0] i = si[zi] if not np.isnan(i): f_lm.append(f[i]) #print('px',px) #print('i',ii) #print('x',x) #print('f',f) #print('m',f_gm,f_lm) #myl.stopgo() return f_gm, f_lm, px # return center-of-gravity related amplitude # IN: # x: array of coefs # f: corresponding freqs # cog: center of gravity freq # opt # OUT: # coef amplitude related to cog def dct_px(x,f,cog,opt): x = abs(cp.deepcopy(x)) # cog outside freq range if cog <= f[0]: return x[0] elif cog >= f[-1]: return x[-1] # find f-indices adjacent to cog for i in range(len(f)-1): if f[i] == cog: return x[i] elif f[i+1] == cog: return x[i+1] elif f[i] < cog and f[i+1] > cog: # interpolate #xi = np.interp(cog,f[i:i+2],x[i:i+2]) #print('cog:',cog,'xi',f[i:i+2],x[i:i+2],'->',xi) return np.interp(cog,f[i:i+2],x[i:i+2]) return np.percentile(x,opt['peak_prct']) # pre-emphasis # alpha > 1 (interpreted as lower cutoff freq) # alpha <- exp(-2 pi alpha delta) # s'[n] = s[n]-alpha*s[n-1] # IN: # signal # alpha - s[n-1] weight <0.95> # fs - sample rate <-1> # do_scale - <FALSE> if TRUE than the pre-emphasized signal is scaled to # same abs_mean value as original signal (in general pre-emphasis # leads to overall energy loss) def pre_emphasis(y,a=0.95,fs=-1,do_scale=False): # determining alpha directly or from cutoff freq if a>1: if fs <= 0: print('pre emphasis: alpha cannot be calculated deltaT. Set to 0.95') a = 0.95 else: a = math.exp(-2*math.pi*a*1/fs) #print('alpha',a) # shifted signal ype = np.append(y[0], y[1:] - a * y[:-1]) # scaling if do_scale: sf = np.mean(abs(y))/np.mean(abs(ype)) ype*=sf ## plot #ys = y[30000:40000] #ypes = ype[30000:40000] #t = np.linspace(0,len(ys),len(ys)) #fig, spl = plt.subplots(2,1,squeeze=False) #cid1 = fig.canvas.mpl_connect('button_press_event', onclick_next) #cid2 = fig.canvas.mpl_connect('key_press_event', onclick_exit) #spl[0,0].plot(t,ys) #spl[1,0].plot(t,ypes) #plt.show() ## return ype # frequency bins: symmetric 2-Hz windows around freq integers # in bandpass overlapped by 1 Hz # IN: # f - ndarray frequencies # c - ndarray coefs # opt['lb'] - lower and upper truncation freqs # ['ub'] # OUT: # fbin - ndarray, lower bnd of freq bins # cbin - ndarray, summed abs coef values in these bins def dct_fbin(f,c,opt): fb = myl.idx_seg(math.floor(opt['lb']),math.ceil(opt['ub'])) cbin = np.zeros(len(fb)-1); for j in myl.idx_a(len(fb)-1): k = myl.intersect(myl.find(f,'>=',fb[j]), myl.find(f,'<=',fb[j+1])) cbin[j] = sum(abs(c[k])) fbin = fb[myl.idx_a(len(fb)-1)] return fbin, cbin # spectral moments # IN: # c - ndarray, coefficients # f - ndarray, related frequencies <1:len(c)> # n - number of spectral moments <3> # OUT: # m - ndarray moments (increasing) def specmom(c,f=[],n=3): if len(f)==0: f = myl.idx_a(len(c))+1 c = abs(c) s = sum(c) k=0; m = np.asarray([]) for i in myl.idx_seg(1,n): m = myl.push(m, sum(c*((f-k)**i))/s) k = m[-1] return m # wrapper around IDCT # IN: # c - coef vector derived by dct # i - indices of coefs to be taken for IDCT; if empty (default), # all coefs taken) # OUT: # y - IDCT result def idct_bp(c,i=myl.ea()): if len(i)==0: return sf.idct(c,norm='ortho') cr = np.zeros(len(c)) cr[i]=c[i] return sf.idct(cr) # mean abs error from IDCT def dct_mae(c,i,y): cr = np.zeros(len(c)) cr[i]=c[i] yr = sf.idct(cr) return myl.mae(yr,y) # indices to truncate DCT output to freq band # IN: # f - ndarray, all frequencies # ci - all indices of coef ndarray # opt['lb'] - lower cutoff freq # ['ub'] - upper cutoff freq # OUT: # i - ndarray, indices in F of elements to be kept def dct_trunc(f,ci,opt): if opt['lb']>0: ihp = myl.find(f,'>=',opt['lb']) else: ihp = ci if opt['ub']>0: ilp = myl.find(f,'<=',opt['ub']) else: ilp = ci return myl.intersect(ihp,ilp) # wrapper around wavread and energy calculation # IN: # f: wavFileName (any number of channels) or array containing # the signal (any number of channels=columns) # opt: energy extraction and postprocessing # .win, .wintyp, .winparam: window parameters # .sts: stepsize for energy contour # .do_preproc: centralizing signal # .do_out: remove outliers # .do_interp: linear interpolation over silence # .do_smooth: smoothing (median or savitzky golay) # .out dict; see pp_outl() # .smooth dict; see pp_smooth() # fs: <-1> needed if f is array # OUT: # y: time + energy contour 2-dim np.array # (1st column: time, other columns: energy) def wrapper_energy(f,opt = {}, fs = -1): opt = myl.opt_default(opt,{'wintyp':'hamming', 'winparam':'', 'sts':0.01, 'win':0.05, 'do_preproc': True, 'do_out': False, 'do_interp': False, 'do_smooth': False, 'out': {}, 'smooth': {}}) opt['out'] = myl.opt_default(opt['out'], {'f': 3, 'm': 'mean'}) opt['smooth'] = myl.opt_default(opt['smooth'],{"mtd": "sgolay", "win": 7, "ord": 3}) if type(f) is str: s, fs = wavread(f,opt) else: if fs < 0: sys.exit("array input requires sample rate fs. Exit.") s = f opt['fs']=fs # convert to 2-dim array; each column represents a channel if np.ndim(s)==1: s = np.expand_dims(s, axis=1) # output (.T-ed later, reserve first list for time) y = myl.ea() # over channels for i in np.arange(0,s.shape[1]): e = sig_energy(s[:,i],opt) # setting outlier to 0 if opt['do_out']: e = pp_outl(e,opt['out']) # interpolation over 0 if opt['do_interp']: e = pp_interp(e) # smoothing if opt['do_smooth']: e = pp_smooth(e,opt['smooth']) # <0 -> 0 e[myl.find(e,'<',0)]=0 y = myl.push(y,e) # output if np.ndim(y)==1: y = np.expand_dims(y, axis=1) else: y = y.T # concat time as 1st column sts = opt['sts'] t = np.arange(0,sts*y.shape[0],sts) if len(t) != y.shape[0]: while len(t) > y.shape[0]: t = t[0:len(t)-1] while len(t) < y.shape[0]: t = np.append(t,t[-1]+sts) t = np.expand_dims(t, axis=1) y = np.concatenate((t,y),axis=1) return y ### replacing outliers by 0 ################### def pp_outl(y,opt): if "m" not in opt: return y # ignore zeros opt['zi'] = True io = myl.outl_idx(y,opt) if np.size(io)>0: y[io] = 0 return y ### interpolation over 0 (+constant extrapolation) ############# def pp_interp(y,opt={}): xi = myl.find(y,'==',0) xp = myl.find(y,'>',0) yp = y[xp] if "kind" in opt: f = interpolate.interp1d(xp,yp,kind=opt["kind"], fill_value=(yp[0],yp[-1])) yi = f(xi) else: yi = np.interp(xi,xp,yp) y[xi]=yi return y #!check ### smoothing ######################################## # remark: savgol_filter() causes warning # Using a non-tuple sequence for multidimensional indexing is deprecated # will be out with scipy.signal 1.2.0 # (https://github.com/scipy/scipy/issues/9086) def pp_smooth(y,opt): if opt['mtd']=='sgolay': if len(y) <= opt['win']: return y y = sis.savgol_filter(y,opt['win'],opt['ord']) elif opt['mtd']=='med': y = sis.medfilt(y,opt['win']) return y # calculates energy contour from acoustic signal # do_preproc per default False. If not yet preprocessed by myl.sig_preproc() # set to True # IN: # x ndarray signal # opt['fs'] - sample frequency # ['wintyp'] - <'hamming'>, any type supported by # scipy.signal.get_window() # ['winparam'] - <''> additionally needed window parameters, # scalar, string, list ... # ['sts'] - stepsize of moving window # ['win'] - window length # OUT: # y ndarray energy contour def sig_energy(x,opt): dflt={'wintyp':'hamming','winparam':'','sts':0.01,'win':0.05} opt = myl.opt_default(opt,dflt) # stepsize and winlength in samples sts = round(opt['sts']*opt['fs']) win = min([math.floor(len(x)/2),round(opt['win']*opt['fs'])]) # weighting window w = sig_window(opt['wintyp'],win,opt['winparam']) # energy values y = np.asarray([]) for j in myl.idx_a(len(x)-win,sts): s = x[j:j+len(w)]*w y = myl.push(y,myl.rmsd(s)) return y # wrapper around windows # IN: # typ: any type supported by scipy.signal.get_window() # lng: <1> length # par: <''> additional parameters as string, scalar, list etc # OUT: # window array def sig_window(typ,l=1,par=''): if typ=='none' or typ=='const': return np.ones(l) if ((type(par) is str) and (len(par) == 0)): return sis.get_window(typ,l) return sis.get_window((typ,par),l) # pause detection # IN: # s - mono signal # opt['fs'] - sample frequency # ['ons'] - idx onset <0> (to be added to time output) # ['flt']['f'] - filter options, boundary frequencies in Hz # (2 values for btype 'band', else 1): <8000> (evtl. lowered by fu_filt()) # ['btype'] - <'band'>|'high'|<'low'> # ['ord'] - butterworth order <5> # ['fs'] - (internally copied) # ['l'] - analysis window length (in sec) # ['l_ref'] - reference window length (in sec) # ['e_rel'] - min energy quotient analysisWindow/referenceWindow # ['fbnd'] - True|<False> assume pause at beginning and end of file # ['n'] - <-1> extract exactly n pauses (if > -1) # ['min_pau_l'] - min pause length <0.5> sec # ['min_chunk_l'] - min inter-pausal chunk length <0.2> sec # ['force_chunk'] - <False>, if True, pause-only is replaced by chunk-only # ['margin'] - <0> time to reduce pause on both sides (sec; if chunks need init and final silence) # OUT: # pau['tp'] 2-dim array of pause [on off] (in sec) # ['tpi'] 2-dim array of pause [on off] (indices in s = sampleIdx-1 !!) # ['tc'] 2-dim array of speech chunks [on off] (i.e. non-pause, in sec) # ['tci'] 2-dim array of speech chunks [on off] (indices) # ['e_ratio'] - energy ratios corresponding to pauses in ['tp'] (analysisWindow/referenceWindow) def pau_detector(s,opt={}): if 'fs' not in opt: sys.exit('pau_detector: opt does not contain key fs.') dflt = {'e_rel':0.0767,'l':0.1524,'l_ref':5,'n':-1,'fbnd':False,'ons':0,'force_chunk':False, 'min_pau_l':0.4,'min_chunk_l':0.2,'margin':0, 'flt':{'btype':'low','f':np.asarray([8000]),'ord':5}} opt = myl.opt_default(opt,dflt) opt['flt']['fs'] = opt['fs'] ## removing DC, low-pass filtering flt = fu_filt(s,opt['flt']) y = flt['y'] ## pause detection for >=n pauses t, e_ratio = pau_detector_sub(y,opt) if len(t)>0: ## extending 1st and last pause to file boundaries if opt['fbnd']==True: t[0,0]=0 t[-1,-1]=len(y)-1 ## merging pauses across too short chunks ## merging chunks across too small pauses if (opt['min_pau_l']>0 or opt['min_chunk_l']>0): t, e_ratio = pau_detector_merge(t,e_ratio,opt) ## too many pauses? # -> subsequently remove the ones with highest e-ratio if (opt['n']>0 and len(t)>opt['n']): t, e_ratio = pau_detector_red(t,e_ratio,opt) ## speech chunks tc = pau2chunk(t,len(y)) ## pause-only -> chunk-only if (opt['force_chunk']==True and len(tc)==0): tc = cp.deepcopy(t) t = np.asarray([]) e_ratio = np.asarray([]) ## add onset t = t+opt['ons'] tc = tc+opt['ons'] ## return dict ## incl fields with indices to seconds (index+1=sampleIndex) pau={'tpi':t, 'tci':tc, 'e_ratio': e_ratio} pau['tp'] = myl.idx2sec(t,opt['fs']) pau['tc'] = myl.idx2sec(tc,opt['fs']) #print(pau) return pau # merging pauses across too short chunks # merging chunks across too small pauses # IN: # t [[on off]...] of pauses # e [e_rat ...] # OUT: # t [[on off]...] merged # e [e_rat ...] merged (simply mean of merged segments taken) def pau_detector_merge(t,e,opt): ## min pause and chunk length in samples mpl = myl.sec2smp(opt['min_pau_l'],opt['fs']) mcl = myl.sec2smp(opt['min_chunk_l'],opt['fs']) ## merging chunks across short pauses tm = np.asarray([]) em = np.asarray([]) for i in myl.idx_a(len(t)): if ((t[i,1]-t[i,0] >= mpl) or (opt['fbnd']==True and (i==0 or i==len(t)-1))): tm = myl.push(tm,t[i,:]) em = myl.push(em,e[i]) # nothing done in previous step? if len(tm)==0: tm = cp.deepcopy(t) em = cp.deepcopy(e) if len(tm)==0: return t, e ## merging pauses across short chunks tn = np.asarray([tm[0,:]]) en = np.asarray([em[0]]) if (tn[0,0]<mcl): tn[0,0]=0 for i in np.arange(1,len(tm),1): if (tm[i,0] - tn[-1,1] < mcl): tn[-1,1] = tm[i,1] en[-1] = np.mean([en[-1],em[i]]) else: tn = myl.push(tn,tm[i,:]) en = myl.push(en,em[i]) #print("t:\n", t, "\ntm:\n", tm, "\ntn:\n", tn) #!v return tn, en # pause to chunk intervals # IN: # t [[on off]] of pause segments (indices in signal) # l length of signal vector # OUT: # tc [[on off]] of speech chunks def pau2chunk(t,l): if len(t)==0: return np.asarray([[0,l-1]]) if t[0,0]>0: tc = np.asarray([[0,t[0,0]-1]]) else: tc = np.asarray([]) for i in np.arange(0,len(t)-1,1): if t[i,1] < t[i+1,0]-1: tc = myl.push(tc,[t[i,1]+1,t[i+1,0]-1]) if t[-1,1]<l-1: tc = myl.push(tc,[t[-1,1]+1,l-1]) return tc # called by pau_detector # IN: # as for pau_detector # OUT: # t [on off] # e_ratio def pau_detector_sub(y,opt): ## settings # reference window span rl = math.floor(opt['l_ref']*opt['fs']) # signal length ls = len(y) # min pause length ml = opt['l']*opt['fs'] # global rmse and pause threshold e_rel = cp.deepcopy(opt['e_rel']) # global rmse # as fallback in case reference window is likely to be pause # almost-zeros excluded (cf percentile) since otherwise pauses # show a too high influence, i.e. lower the reference too much # so that too few pauses detected #e_glob = myl.rmsd(y) ya = abs(y) qq = np.percentile(ya,[50]) e_glob = myl.rmsd(ya[ya>qq[0]]) t_glob = opt['e_rel']*e_glob # stepsize sts=max([1,math.floor(0.05*opt['fs'])]) # energy calculation in analysis and reference windows wopt_en = {'win':ml,'rng':[0,ls]} wopt_ref = {'win':rl,'rng':[0,ls]} # loop until opt.n criterion is fulfilled # increasing energy threshold up to 1 while e_rel < 1: # pause [on off], pause index t=np.asarray([]) j=0 # [e_y/e_rw] indices as in t e_ratio=np.asarray([]) i_steps = np.arange(1,ls,sts) for i in i_steps: # window yi = myl.windowing_idx(i,wopt_en) e_y = myl.rmsd(y[yi]) # energy in reference window e_r = myl.rmsd(y[myl.windowing_idx(i,wopt_ref)]) # take overall energy as reference if reference window is pause if (e_r <= t_glob): e_r = e_glob # if rmse in window below threshold if e_y <= e_r*e_rel: yis = yi[0] yie = yi[-1] if len(t)-1==j: # values belong to already detected pause if len(t)>0 and yis<t[j,1]: t[j,1]=yie # evtl. needed to throw away superfluous # pauses with high e_ratio e_ratio[j]=np.mean([e_ratio[j],e_y/e_r]) else: t = myl.push(t,[yis, yie]) e_ratio = myl.push(e_ratio,e_y/e_r) j=j+1 else: t=myl.push(t,[yis, yie]) e_ratio = myl.push(e_ratio,e_y/e_r) # (more than) enough pauses detected? if len(t) >= opt['n']: break e_rel = e_rel+0.1 if opt['margin']==0 or len(t)==0: return t, e_ratio # shorten pauses by margins mar=int(opt['margin']*opt['fs']) tm, erm = myl.ea(), myl.ea() for i in myl.idx_a(len(t)): # only slim non-init and -fin pauses if i>0: ts = t[i,0]+mar else: ts = t[i,0] if i < len(t)-1: te = t[i,1]-mar else: te = t[i,1] # pause disappeared if te <= ts: # ... but needs to be kept if opt['n']>0: tm = myl.push(tm,[t[i,0],t[i,1]]) erm = myl.push(erm,e_ratio[i]) continue # pause still there tm = myl.push(tm,[ts,te]) erm = myl.push(erm,e_ratio[i]) return tm, erm def pau_detector_red(t,e_ratio,opt): # keep boundary pauses if opt['fbnd']==True: n=opt['n']-2 #bp = [t[0,],t[-1,]] bp = np.concatenate((np.array([t[0,]]),np.array([t[-1,]])),axis=0) ii = np.arange(1,len(t)-1,1) t = t[ii,] e_ratio=e_ratio[ii] else: n=opt['n'] bp=np.asarray([]) if n==0: t=[] # remove pause with highest e_ratio while len(t)>n: i = myl.find(e_ratio,'is','max') j = myl.find(np.arange(1,len(e_ratio),1),'!=',i[0]) t = t[j,] e_ratio = e_ratio[j] # re-add boundary pauses if removed if opt['fbnd']==True: if len(t)==0: t=np.concatenate((np.array([bp[0,]]),np.array([bp[1,]])),axis=0) else: t=np.concatenate((np.array([bp[0,]]),np.array([t]),np.array([bp[1,]])),axis=0) return t, e_ratio # spectral balance calculation according to Fant 2000 # IN: # sig: signal (vowel segment) # fs: sampe rate # opt: # 'win': length of central window in ms <len(sig)>; -1 is same as len(sig) # 'ub': upper freq boundary in Hz <-1> default: no low-pass filtering # 'domain': <'freq'>|'time'; pre-emp in frequency (Fant) or time domain # 'alpha': <0.95> for time domain only y[n] = x[n]-alpha*x[n-1] # if alpha>0 it is interpreted as lower freq threshold for pre-emp # OUT: # sb: spectral tilt def splh_spl(sig,fs,opt_in={}): opt = cp.deepcopy(opt_in) opt = myl.opt_default(opt,{'win':len(sig),'f':-1,'btype':'none', 'domain':'freq','alpha':0.95}) #print(opt) #myl.stopgo() ## cut out center window ################################## ls = len(sig) if opt['win'] <= 0: opt['win'] = ls if opt['win'] < ls: wi = myl.windowing_idx(int(ls/2), {'rng':[0, ls], 'win':int(opt['win']*fs)}) y = sig[wi] else: y = cp.deepcopy(sig) if len(y)==0: return np.nan # reference sound pressure level p_ref = pRef('spl') ## pre-emp in time domain #################################### if opt['domain']=='time': # low pass filtering if opt['btype'] != 'none': flt = fu_filt(y,{'fs':fs,'f':opt['f'],'ord':6, 'btype':opt['btype']}) y = flt['y'] yp = pre_emphasis(y,opt['alpha'],fs,False) y_db = 20*np.log10(myl.rmsd(y)/p_ref) yp_db = 20*np.log10(myl.rmsd(yp)/p_ref) #print(yp_db - y_db) return yp_db - y_db ## pre-emp in frequency domain ############################## # according to Fant # actual length of cut signal n = len(y) ## hamming windowing y *= np.hamming(n) ## spectrum Y = np.fft.fft(y,n) N = int(len(Y)/2) ## frequency components XN = np.fft.fftfreq(n,d=1/fs) X = XN[0:N] # same as X = np.linspace(0, fs/2, N, endpoint=True) ## amplitudes # sqrt(Y.real**2 + Y.imag**2) # to be normalized: # *2 since only half of transform is used # /N since output needs to be normalized by number of samples # (tested on sinus, cf # http://www.cbcity.de/die-fft-mit-python-einfach-erklaert) a = 2*np.abs(Y[:N])/N ## vowel-relevant upper frequency boundary if opt['btype'] != 'none': vi = fu_filt_freq(X,opt) if len(vi)>0: X = X[vi] a = a[vi] ## Fant preemphasis filter (Fant et al 2000, p10f eq 20) preemp = 10*np.log10((1+X**2/200**2)/(1+X**2/5000**2)) ap = 10*np.log10(a)+preemp # retransform to absolute scale ap = 10**(ap/10) # corresponds to gain values in Fant 2000, p11 #for i in myl.idx(a): # print(X[i],preemp[i]) #myl.stopgo() ## get sound pressure level of both spectra # as 20*log10(P_eff/P_ref) spl = 20*np.log10(myl.rmsd(a)/p_ref) splh = 20*np.log10(myl.rmsd(ap)/p_ref) ## get energy level of both spectra #spl = 20*np.log10(myl.mse(a)/p_ref) #splh = 20*np.log10(myl.mse(ap)/p_ref) ## spectral balance sb = splh-spl #print(spl,splh,sb) #myl.stopgo() #fig = plt.figure() #plt.plot(X,20*np.log10(a),'b') #plt.plot(X,20*np.log10(preemp),'g') #plt.plot(X,20*np.log10(ap),'r') #plt.show() return sb # returns indices of freq in x fullfilling conditions in opt # IN: # X: freq array # opt: 'btype' - 'none'|'low'|'high'|'band'|'stop' # 'f': 1 freq for low|high, 2 freq for band|stop # OUT: # i: indices in X fulfilling condition def fu_filt_freq(X,opt): typ = opt['btype'] f = opt['f'] # all indices if typ=='none': return myl.idx_a(len(X)) # error handling if re.search('(band|stop)',typ) and (not myl.listType(f)): print('filter type requires frequency list. Done nothing.') return myl.idx_a(len(X)) if re.search('(low|high)',typ) and myl.listType(f): print('filter type requires only 1 frequency value. Done nothing.') return myl.idx_a(len(X)) if typ=='low': return np.nonzero(X<=f) elif typ=='high': return np.nonzero(X>=f) elif typ == 'band': i = set(np.nonzero(X>=f[0])) return np.sort(np.array(i.intersection(set(np.nonzero(X<=f[1]))))) elif typ == 'stop': i = set(np.nonzero(X<=f[0])) return np.sort(np.array(i.union(set(np.nonzero(X>=f[1]))))) return myl.idx_a(len(X)) # returns reverence levels for typ # IN: # typ # 'spl': sound pressure level # 'i': intensity level # OUT: # corresponding reference level def pRef(typ): if typ=='spl': return 2*10**(-5) return 10**(-12) # syllable nucleus detection # IN: # s - mono signal # opt['fs'] - sample frequency # ['ons'] - onset in sec <0> (to be added to time output) # ['flt']['f'] - filter options, boundary frequencies in Hz # (2 values for btype 'band', else 1): <np.asarray([200,4000])> # ['btype'] - <'band'>|'high'|'low' # ['ord'] - butterworth order <5> # ['fs'] - (internally copied) # ['l'] - analysis window length # ['l_ref'] - reference window length # ['d_min'] - min distance between subsequent nuclei (in sec) # ['e_min'] - min energy required for nucleus as a proportion to max energy <0.16> # ['e_rel'] - min energy quotient analysisWindow/referenceWindow # ['e_val'] - quotient, how sagged the energy valley between two nucleus # candidates should be. Measured relative to the lower energy # candidate. The lower, the deeper the required valley between # two peaks. Meaningful range ]0, 1]. Recommended range: # [0.9 1[ # ['center'] - boolean; subtract mean energy # OUT: # ncl['t'] - vector of syl ncl time stamps (in sec) # ['ti'] - corresponding vector idx in s # ['e_ratio'] - corresponding energy ratios (analysisWindow/referenceWindow) # bnd['t'] - vector of syl boundary time stamps (in sec) # ['ti'] - corresponding vector idx in s # ['e_ratio'] - corresponding energy ratios (analysisWindow/referenceWindow) def syl_ncl(s,opt={}): ## settings if 'fs' not in opt: sys.exit('syl_ncl: opt does not contain key fs.') dflt = {'flt':{'f':np.asarray([200,4000]),'btype':'band','ord':5}, 'e_rel':1.05,'l':0.08,'l_ref':0.15, 'd_min':0.12, 'e_min':0.1, 'ons':0, 'e_val': 1, 'center': False} opt = myl.opt_default(opt,dflt) opt['flt']['fs'] = opt['fs'] if syl_ncl_trouble(s,opt): t = np.asarray([round(len(s)/2+opt['ons'])]) ncl = {'ti':t, 't':myl.idx2sec(t,opt['fs']), 'e_ratio':[0]} bnd = cp.deepcopy(ncl) return ncl, bnd # reference window length rws = math.floor(opt['l_ref']*opt['fs']) # energy win length ml = math.floor(opt['l']*opt['fs']) # stepsize sts = max([1,math.floor(0.03*opt['fs'])]) # minimum distance between subsequent nuclei # (in indices) #md = math.floor(opt['d_min']*opt['fs']/sts) md = math.floor(opt['d_min']*opt['fs']) # bandpass filtering flt = fu_filt(s,opt['flt']) y = flt['y'] # signal length ls = len(y) # minimum energy as proportion of maximum energy found e_y = np.asarray([]) i_steps = np.arange(1,ls,sts) for i in i_steps: yi = np.arange(i,min([ls,i+ml-1]),1) e_y = np.append(e_y,myl.rmsd(y[yi])) if bool(opt['center']): e_y -= np.mean(e_y) e_min = opt['e_min']*max(e_y) # output vector collecting nucleus sample indices t = np.asarray([]) all_i = np.asarray([]) all_e = np.asarray([]) all_r = np.asarray([]) # energy calculation in analysis and reference windows wopt_en = {'win':ml,'rng':[0,ls]} wopt_ref = {'win':rws,'rng':[0,ls]} for i in i_steps: yi = myl.windowing_idx(i,wopt_en) #yi = np.arange(yw[0],yw[1],1) ys = y[yi] e_y = myl.rmsd(ys) #print(ys,'->',e_y) ri = myl.windowing_idx(i,wopt_ref) #ri = np.arange(rw[0],rw[1],1) rs = y[ri] e_rw = myl.rmsd(rs) all_i = np.append(all_i,i) all_e = np.append(all_e,e_y) all_r = np.append(all_r,e_rw) # local energy maxima # (do not use min duration md for order option, since local # maximum might be obscured already by energy increase # towards neighboring peak further away than md, and not only by # closer than md peaks) idx = sis.argrelmax(all_e,order=1) #plot_sylncl(all_e,idx) #!v #print(opt["ons"]/opt["fs"] + np.array(idx)*sts/opt["fs"]) #!v #myl.stopgo() #!v ### maxima related to syl ncl ## a) energy constraints # timestamps (idx) tx = np.asarray([]) # energy ratios e_ratiox = np.asarray([]) # idx in all_i tix = np.asarray([]).astype(int) for i in idx[0]: # valley between this and previous nucleus deep enough? if len(tix)>0: ie = all_e[tix[-1]:i] if len(ie)<3: continue valley = np.min(ie) nclmin = np.min([ie[0],all_e[i]]) if valley >= opt['e_val'] * nclmin: # replace previous nucleus by current one if all_e[i] > ie[0]: #!n all_e[tix[-1]] = all_e[i] #!n tx[-1] = all_i[i] #!n tix[-1] = i #!n e_ratiox[-1] = all_e[i]/all_r[i] #!n #print("valley constraint -- tx:", all_i[i]/opt["fs"], "nclmin:", nclmin, "valley:", valley, "ie0:", ie[0], "all_e:", all_e[i], "--> skip!") #!v continue if ((all_e[i] >= all_r[i]*opt['e_rel']) and (all_e[i] > e_min)): tx = np.append(tx,all_i[i]) tix = np.append(tix,i) e_ratiox = np.append(e_ratiox, all_e[i]/all_r[i]) #else: #!v # print("min_en constraint -- tx:", all_i[i]/opt["fs"], "all_e:", all_e[i], "all_r:", all_r[i], "e_min:", e_min, "--> skip!") #!v #print(len(tx)) #!v if len(tx)==0: dflt = {'ti':myl.ea(), 't':myl.ea(), 'e_ratio':myl.ea()} return dflt, dflt #plot_sylncl(all_e,tix) #!v ## b) min duration constraints # init by first found ncl t = np.array([tx[0]]) e_ratio = np.array([e_ratiox[0]]) # idx in all_i ti = np.array([tix[0]]).astype(int) for i in range(1,len(tx)): # ncl too close if np.abs(tx[i]-t[-1]) < md: # current ncl with higher energy: replace last stored one if e_ratiox[i] > e_ratio[-1]: t[-1] = tx[i] ti[-1] = tix[i] e_ratio[-1] = e_ratiox[i] else: t = np.append(t,tx[i]) ti = np.append(ti,tix[i]) e_ratio = np.append(e_ratio,e_ratiox[i]) #plot_sylncl(all_e,ti) #!v ### minima related to syl bnd tb = np.asarray([]) e_ratio_b = np.asarray([]) if len(t)>1: for i in range(len(ti)-1): j = myl.idx_seg(ti[i],ti[i+1]) j_min = myl.find(all_e[j],'is','min') if len(j_min)==0: j_min=[0] # bnd idx bj = j[0]+j_min[0] tb = np.append(tb,all_i[bj]) e_ratio_b = np.append(e_ratio_b, all_e[bj]/all_r[bj]) # add onset t = t+opt['ons'] tb = tb+opt['ons'] # output dict, # incl idx to seconds ncl = {'ti':t, 't':myl.idx2sec(t,opt['fs']), 'e_ratio':e_ratio} bnd = {'ti':tb, 't':myl.idx2sec(tb,opt['fs']), 'e_ratio':e_ratio_b} #print(ncl['t'], e_ratio) return ncl, bnd def syl_ncl_trouble(s,opt): if len(s)/opt['fs'] < 0.1: return True return False # wrapper around Butter filter # IN: # 1-dim vector # opt['fs'] - sample rate # ['f'] - scalar (high/low) or 2-element vector (band) of boundary freqs # ['order'] - order # ['btype'] - band|low|high; all other values: signal returned as is # OUT: # flt['y'] - filtered signal # ['b'] - coefs # ['a'] def fu_filt(y,opt): # do nothing if not re.search('^(high|low|band)$',opt['btype']): return {'y': y, 'b': myl.ea(), 'a': myl.ea()} # check f<fs/2 if (opt['btype'] == 'low' and opt['f']>=opt['fs']/2): opt['f']=opt['fs']/2-100 elif (opt['btype'] == 'band' and opt['f'][1]>=opt['fs']/2): opt['f'][1]=opt['fs']/2-100 fn = opt['f']/(opt['fs']/2) b, a = sis.butter(opt['ord'], fn, btype=opt['btype']) yf = sis.filtfilt(b,a,y) return {'y':yf,'b':b,'a':a} ##### discontinuity measurement ####################################### # measures delta and linear fit discontinuities between # adjacent array elements in terms of: # - delta # - reset of regression lines # - root mean squared deviation between overall regression line and # -- preceding segment's regression line # -- following segment's regression line # -- both, preceding and following, regression lines # - extrapolation rmsd between following regression line # and following regression line, extrapolated by regression # on preceding segment # IN: # x: nx2 array [[time val] ...] # OR # nx1 array [val ...] # for the latter indices are taken as time stamps # ts: nx1 array [time ...] of time stamps (or indices for size(x)=nx1) # at which to calculate discontinuity; if empty, discontinuity is # calculated at each point in time. If size(x)=nx1 ts MUST contain # indices # nx2 array [[t_off t_on] ...] to additionally account for pauses # opt: dict # .win: <'glob'>|'loc' calculate discontinuity over entire sequence # or within window # .l: <3> if win==loc, length of window in sec or idx # (splitpoint - .l : splitpoint + .l) # .do_plot: <0> plots orig contour and linear stylization # .plot: <{}> dict with plotting options; cf. discont_seg() # OUT: # d dict # (s1: pre-bnd segment [i-l,i[, # s2: post-bnd segment [i,i+l] # sc: joint segment [i-l,i+l]) # dlt: delta # res: reset # ry1: s1, rmsd between joint vs pre-bnd fit # ry2: s2, rmsd between joint vs post-bnd fit # ryc: sc, rmsd between joint vs pre+post-bnd fit # ry2e: s2: rmsd between pre-bnd fit extrapolated to s2 and post-bnd fit # rx1: s1, rmsd between joint fit and pre-boundary x-values # rx2: s2, rmsd between joint fit and post-boundary x-values # rxc: sc, rmsd between joint fit and pre+post-boundary x-values # rr1: s1, ratio rmse(joint_fit)/rmse(pre-bnd_fit) # rr2: s2, ratio rmse(joint_fit)/rmse(post-bnd_fit) # rrc: sc, ratio rmse(joint_fit)/rmse(pre+post-bnd_fit) # ra1: c1-rate s1 # ra2: c1-rate s2 # dlt_ra: ra2-ra1 # s1_c3: cubic fitting coefs of s1 # s1_c2 # s1_c1 # s1_c0 # s2_c3: cubic fitting coefs of s2 # s2_c2 # s2_c1 # s2_c0 # dlt_c3: s2_c3-s1_c3 # dlt_c2: s2_c2-s1_c2 # dlt_c1: s2_c1-s1_c1 # dlt_c0: s2_c0-s1_c0 # eucl_c: euclDist(s1_c*,s2_c*) # corr_c: corr(s1_c*,s2_c*) # v1: variance in s1 # v2: variance in s2 # vc: variance in sc # vr: variance ratio (mean(v1,v2))/vc # dlt_v: v2-v1 # m1: mean in s1 # m2: mean in s2 # dlt_m: m2-m1 # p: pause length (in sec or idx depending on numcol(x); # always 0, if t is empty or 1-dim) # i in each list refers to discontinuity between x[i-1] and x[i] # dimension of each list: if len(ts)==0: n-1 array (first x-element skipped) # else: mx6; m is number of ts-elements in range of x[:,0], # resp. in index range of x[1:-1] ## REMARKS: # for all variables but corr_c and vr higher values indicate higher discontinuity ## variables: # x1: original f0 contour for s1 # x2: original f0 contour for s2 # xc: original f0 contour for sc # y1: line fitted on segment a # y2: line fitted on segment b # yc: line fitted on segments a+b # yc1: yc part for x1 # yc2: yc part for x2 # ye: x1/y1-fitted line for x2 # cu1: cubic fit coefs of time-nrmd s1 # cu2: cubic fit coefs of time-nrmd s2 # yu1: polyval(cu1) # yu2: polyval(cu2); yu1 and yu2 are cut to same length def discont(x,ts=[],opt={}): # time: first column or indices if np.ndim(x)==1: t = np.arange(0,len(x)) x = np.asarray(x) else: t = x[:,0] x = x[:,1] # tsi: index pairs in x for which to derive discont values # [[infimum supremum]...] s1 right-aligned to infimum, s2 left-aligne to supremum # for 1-dim ts both values are adjacent [[i-1, i]...] # zp: zero pause True for 1-dim ts input, False for 2-dim tsi, zp = discont_tsi(t,ts) # opt init opt = myl.opt_default(opt,{'win':'glob','l':3,'do_plot':False, 'plot': {}}) # output d = discont_init() # linear fits # over time stamp pairs for ii in tsi: ## delta d['dlt'].append(x[ii[1]]-x[ii[0]]) ## segments (x, y values of pre-, post, joint segments) t1,t2,tc,x1,x2,xc,y1,y2,yc,yc1,yc2,ye,cu1,cu2,yu1,yu2 = discont_seg(t,x,ii,opt) d = discont_feat(d,t1,t2,tc,x1,x2,xc,y1,y2,yc,yc1,yc2,ye,cu1,cu2,yu1,yu2,zp) # to np.array for x in d: d[x] = np.asarray(d[x]) return d # init discont dict def discont_init(): return {"dlt": [], "res": [], "ry1": [], "ry2": [], "ryc": [], "ry2e": [], "rx1": [], "rx2": [], "rxc": [], "rr1": [], "rr2": [], "rrc": [], "ra1": [], "ra2": [], "dlt_ra": [], "s1_c3": [], "s1_c2": [], "s1_c1": [], "s1_c0": [], "s2_c3": [], "s2_c2": [], "s2_c1": [], "s2_c0": [], "dlt_c3": [], "dlt_c2": [], "dlt_c1": [], "dlt_c0": [], "eucl_c": [], "corr_c": [], "eucl_y": [], "corr_y": [], "v1": [], "v2": [], "vc": [], "vr": [], "dlt_v": [], "m1": [], "m2": [], "dlt_m": [], "p": []} # pre/post-boundary and joint segments def discont_seg(t,x,ii,opt): # preceding, following segment indices i1, i2 = discont_idx(t,ii,opt) #print(ii,"\n-> ", i1,"\n-> ", i2) #!v #myl.stopgo() #!v t1, t2, x1, x2 = t[i1], t[i2], x[i1], x[i2] tc = np.concatenate((t1,t2)) xc = np.concatenate((x1,x2)) # normalized time (only needed for reported polycoefs, not # for output lines tn1 = myl.nrm_vec(t1,{'mtd': 'minmax', 'rng': [-1, 1]}) tn2 = myl.nrm_vec(t2,{'mtd': 'minmax', 'rng': [-1, 1]}) # linear fit coefs c1 = myPolyfit(t1,x1,1) c2 = myPolyfit(t2,x2,1) cc = myPolyfit(tc,xc,1) # cubic fit coefs (for later shape comparison) cu1 = myPolyfit(tn1,x1,3) cu2 = myPolyfit(tn2,x2,3) yu1 = np.polyval(cu1,tn1) yu2 = np.polyval(cu2,tn2) # cut to same length (from boundary) ld = len(yu1)-len(yu2) if ld>0: yu1=yu1[ld:len(yu1)] elif ld<0: yu2=yu2[0:ld] # robust treatment while len(yu2)<len(yu1): yu2 =
np.append(yu2,yu2[-1])
numpy.append
#!/usr/bin/env python import sys sys.path.append('../neural_networks') import numpy as np import numpy.matlib import pickle import copy from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt import os import time import copy from gym_collision_avoidance.envs.policies.CADRL.scripts.neural_networks import neural_network_regr_multi as nn from gym_collision_avoidance.envs.policies.CADRL.scripts.multi import pedData_processing_multi as pedData from gym_collision_avoidance.envs.policies.CADRL.scripts.neural_networks.nn_training_param import NN_training_param from gym_collision_avoidance.envs.policies.CADRL.scripts.neural_networks.multiagent_network_param import Multiagent_network_param from gym_collision_avoidance.envs.policies.CADRL.scripts.multi import global_var as gb # setting up global variables COLLISION_COST = gb.COLLISION_COST DIST_2_GOAL_THRES = gb.DIST_2_GOAL_THRES GETTING_CLOSE_PENALTY = gb.GETTING_CLOSE_PENALTY GETTING_CLOSE_RANGE = gb.GETTING_CLOSE_RANGE EPS = gb.EPS # terminal states NON_TERMINAL = gb.NON_TERMINAL COLLIDED = gb.COLLIDED REACHED_GOAL = gb.REACHED_GOAL # plotting colors plt_colors = gb.plt_colors GAMMA = gb.RL_gamma DT_NORMAL = gb.RL_dt_normal SMOOTH_COST = gb.SMOOTH_COST # for 'rotate_constr' TURNING_LIMIT = np.pi/6.0 # neural network NN_ranges = gb.NN_ranges # calculate the minimum distance between two line segments # not counting the starting point def find_dist_between_segs(x1, x2, y1, y2): # x1.shape = (2,) # x2.shape = (num_actions,2) # y1.shape = (2,) # y2.shape = (num_actions,2) if_one_pt = False if x2.shape == (2,): x2 = x2.reshape((1,2)) y2 = y2.reshape((1,2)) if_one_pt = True start_dist = np.linalg.norm(x1 - y1) end_dist = np.linalg.norm(x2 - y2, axis=1) critical_dist = end_dist.copy() # start_dist * np.ones((num_pts,)) # initialize # critical points (where d/dt = 0) z_bar = (x2 - x1) - (y2 - y1) # shape = (num_actions, 2) inds = np.where((np.linalg.norm(z_bar,axis=1)>0))[0] t_bar = - np.sum((x1-y1) * z_bar[inds,:], axis=1) \ / np.sum(z_bar[inds,:] * z_bar[inds,:], axis=1) t_bar_rep = np.matlib.repmat(t_bar, 2, 1).transpose() dist_bar = np.linalg.norm(x1 + (x2[inds,:]-x1) * t_bar_rep \ - y1 - (y2[inds,:]-y1) * t_bar_rep, axis=1) inds_2 = np.where((t_bar > 0) & (t_bar < 1.0)) critical_dist[inds[inds_2]] = dist_bar[inds_2] # end_dist = end_dist.clip(min=0, max=start_dist) min_dist = np.amin(
np.vstack((end_dist, critical_dist))
numpy.vstack
''' code in python3 Needs to be in the same directory as SONG (/.../song/) The python part of song call songy is written in python2. Make the following change: In /song/python/songy.py line 170: range(0,N*(N+1)/2) --> list(range(0,int(N*(N+1)/2))) ''' ####################################################################################### import import numpy as np import os import sys from numba import numba,jit,prange,config import h5py import subprocess #import matplotlib.pyplot as plt import time import params_relic as params import importlib importlib.reload(params) sys.path.insert(0, params.song_path+'python') # path to python module of song import songy as s from classy import Class import warnings warnings.filterwarnings("ignore") ####################################################################################### ####################################################################################### SONG wrapper def run_song(hkmax,hkmin): ''' Call this function in song repository: It will create the ini and pre files from the global parameters and run song ''' ini_file=r"""output = delta_cdm_bk T_cmb = 2.7255 N_eff = 3.046 reio_parametrization = reio_none tau_reio = 0.0952 k_pivot = 0.05 A_s = {} n_s = {} YHe = 0.2477055 gauge = newtonian output_single_precision = yes output_class_perturbations = yes background_verbose = 1 thermodynamics_verbose = 1 primordial_verbose = 1 spectra_verbose = 1 nonlinear_verbose = 1 lensing_verbose = 1 output_verbose = 1 perturbations_verbose = 1 perturbations2_verbose = 2 transfer_verbose = 1 transfer2_verbose = 1 bessels_verbose = 1 bessels2_verbose = 1 bispectra_verbose = 1 fisher_verbose = 1 format = camb write parameters = yes h={} omega_b={} omega_cdm={} Omega_k={} primordial_local_fnl_phi={} z_out={}""" pre_file=r"""sources2_k3_sampling = {} k3_size = {} k_min_tau0 = 0.05 k_max_tau0_over_l_max = 2.8 k_step_sub =0.1 k_logstep_super = 1.2 k_step_super = 0.025 k_step_transition = 0.2 quadsources_time_interpolation = cubic sources_time_interpolation = linear sources_k3_interpolation = cubic #linear tau_start_evolution_song = 0 start_small_k_at_tau_c_over_tau_h_song = 0.001 start_large_k_at_tau_h_over_tau_k_song = 0.04 sources2_k_sampling = {} k_min_custom_song = {} k_max_custom_song = {} k_size_custom_song = {}""" ini="./matter_{}.ini".format(params.key_song) pre="./matter_{}.pre".format(params.key_song) file = open(ini, "w") file.write(ini_file.format(params.A_s,params.n_s,params.h,params.omega_b*params.h**2, params.omega_cdm*params.h**2,params.omega_k,params.fnl,params.z)) file.close() file = open(pre, "w") if params.interp in ['nearest','lin']: file.write(pre_file.format('lin',int(params.N_song_k3),'lin',hkmin,hkmax,int(params.N_song_k12))) else : file.write(pre_file.format('smart',int(params.N_song_k3),'lin',hkmin,hkmax,int(params.N_song_k12))) file.close() os.system("./song "+ini+' '+pre) os.system("mv "+params.song_path+'output/sources_song_z000.dat '+params.song_path+"output/sources_song_z000_{}.dat".format(params.key_song)) def song_output(hkmax,hkmin,force): ''' Once song has run, this function load the output by using songy (see song/python/songy.py) routine FixedTauFile. It return the needed output: -song.get_source(b'delta_cdm') = song :second order kernel mulptiply by two transfer functions i.e. K(k1,k2,k3)*T_delta(k1)*T_delta(k2) in the expression int_k1_k2 (K(k1,k2,k3) T_delta(k1) T_delta(k2) zeta(k1) zeta(k2)) -song.tau conformal time corresponding to the redshift. It is needed to get the velocity potential (dK/dtau) -song.k1, song.k2, song.k3: grie of mode -song.flatidx: Song output shape is weird ! see song/python/songy.py -dk12,dk3: step of the grid ''' filename='sources_song_z000_{}.dat'.format(params.key_song) if not os.path.isfile(params.song_path+'output/'+filename) : print(params.song_path+'output/{} not found'.format(filename)) print('===========================================================================================') run_song(hkmax,hkmin) elif force: print('force running SONG') #os.system("rm "+params.song_path+'output/{} not found'.format(filename)) print('===========================================================================================') run_song(hkmax,hkmin) print('===========================================================================================') print('loading '+params.song_path+'output/{}'.format(filename)) song=s.FixedTauFile(params.song_path+'output/'+filename) if len(params.source)==0 and (len(song.k1)!=params.N_song_k12 \ or np.min(song.k1)!=hkmin or np.max(song.k1)!=hkmax): print('The output '+params.song_path+'output/ found does not have the right shape or hkmax/hkmin') print('SONG N_song_k1={}, you ask {}'.format(len(song.k1),params.N_song_k12)) print('SONG N_song_k3={}, you ask {}'.format(len(song.k3[0]),params.N_song_k3)) print('SONG hkmin={}, you ask {}'.format(np.min(song.k1),hkmin)) print('SONG hkmax={}, you ask {}'.format(np.max(song.k1),hkmax)) print('===========================================================================================') dk12=song.k1[1]-song.k1[0] k3=np.concatenate(song.k3) if params.interp in ['nearest','lin']: dk3=np.diff(song.k3)[:,0] else : dk3=np.array([],dtype=np.float32) for k1_ind,k1 in enumerate(song.k1): for k2_ind,k2 in enumerate(song.k2[k1_ind]): k3_ind=song.flatidx[k1_ind,k2_ind] dk3=np.append(dk3,song.k3[k3_ind][2]-song.k3[k3_ind][1]) k3sizes_cumsum = np.zeros(len(song.k3sizes_cumsum)+2,dtype=int) k3sizes_cumsum[1:-1]=song.k3sizes_cumsum k3sizes_cumsum[-1] =len(k3) return np.concatenate(song.get_source(b'delta_cdm')),song.tau,song.k1,np.concatenate(song.k2),k3,song.flatidx,dk12,dk3,k3sizes_cumsum def song_main(hkmax,hkmin,force=False): '''Main function for SONG ''' source,tau,k1,k2,k3,flatidx,dk12,dk3,k3sizes_cumsum=song_output(hkmax,hkmin,force) return source,k1/params.h,k2/params.h,k3/params.h,flatidx,dk12/params.h,dk3/params.h,k3sizes_cumsum ####################################################################################### ####################################################################################### first order transfert fct def trans(clss=True): ''' This function returns the Primordial power spectrum, the transfer functions of delta_cdm and phi, and derivative of the last transfer function. -Primordial power spectrum: Primordial = A_s(k/k_0)**(ns-1) / (k**3/(2*np.pi**2)). -delta_cdm transfer function: tr_delta_cdm(k,z)*zeta(k)=delta_cdm(k,z) -potential transfer function: tr_phi(z,k)*zeta(k)=phi(z,k) ''' if not clss: song=s.FixedTauFile(params.song_path+"output/sources_song_z000_{}.dat".format(params.key_song)) song.first_order_sources['k']/=params.h tr_delta_cdm=song.first_order_sources[b'delta_cdm'] tr_delta_b =song.first_order_sources[b'delta_b'] song.first_order_sources[b'delta_m']= (params.omega_b/(params.omega_b+params.omega_cdm)*tr_delta_b \ + params.omega_cdm/(params.omega_b+params.omega_cdm)*tr_delta_cdm) song.first_order_sources[b'phi']= song.first_order_sources[b'delta_m']*(-3*params.H**2/2)/(song.first_order_sources['k']**2+3*params.H**2) dk=np.diff(np.append(song.first_order_sources['k'],song.first_order_sources['k'][-1]*2-song.first_order_sources['k'][-2])) dT=np.diff(np.append(song.first_order_sources[b'phi'],song.first_order_sources[b'phi'][-1]*2-song.first_order_sources[b'phi'][-2])) song.first_order_sources[b'dTdk'] = dT/dk return song.first_order_sources else: clss = Class() clss.set({'gauge': 'newtonian', 'h':params.h,'omega_b':params.omega_b*params.h**2, 'omega_cdm': params.omega_cdm*params.h**2, 'output':'dTk,vTk','z_pk':1000}) clss.compute() #clss=np.loadtxt('class_tk.dat') tr=clss.get_transfer(z=params.z) tr['k'] = tr.pop('k (h/Mpc)') dk=np.diff(np.append(tr['k'],tr['k'][-1]*2-tr['k'][-2])) dT=np.diff(np.append(tr['phi'],tr['phi'][-1]*2-tr['phi'][-2])) tr['dTdk'] = dT/dk tr['d_m'] = (params.omega_cdm*tr['d_cdm'] + params.omega_b*tr['d_b'])/(params.omega_b+params.omega_cdm) tr['t_m'] = (params.omega_cdm*tr['t_cdm'] + params.omega_b*tr['t_b'])/(params.omega_b+params.omega_cdm) tr['v_m'] = -tr['t_m']/tr['k']**2/params.h return tr #clas = np.loadtxt('gevolution-1.2/class_tk.dat') #k=clas[:,0] #dk=np.diff(np.append(k,k[-1]*2-k[-2])) #dT=np.diff(np.append(clas[:,6],clas[:,6][-1]*2-clas[:,6][-2])) #xi = (clas[:,3] - 3*clas[:,6])/k**2 #first_order_sources={'k':clas[:,0],b'delta_cdm':clas[:,3],b'phi':clas[:,6],b'dTdk':dT/dk,b'xi':xi,b'v':-2*clas[:,6]/3/params.H} #return first_order_sources def primordial(k): return params.A_s*(k/(params.k_pivot/params.h))**(params.n_s-1)/k**3*2*np.pi**2 def powerspectrum(k,delta_cdm): prim = primordial(k) T=np.interp(k,delta_cdm[0],delta_cdm[1]) return prim*T**2 ####################################################################################### ####################################################################################### mode grid def k_distrib(k_min,N,klbd,absolute=True): ''' Inputs: -k_min: Minimum mode to be consider. Setting k_min automatically set the step dk=k_min because in order for k-k1 to be always on the grid k1, we need to include 0 and to have a constant step dk. -N size of the grid. In order to include 0. If it is not odd, we set N+=1 (the final ifft return the right even N grid) -klbd: k_lambda: if absolute==True: the function will return the closest in the grid else: klbd is considered as being a ratio, return kL=k[N//2:][int(klbd*N//2)] output: klin_concat,kmax,N,dk,klambda -k: list of k coordinate -kmax: largest mode to be considered -N like input -k_min in float32 -kL: actual k_lambda ''' if N%2==0: print('N has to be odd to include 0: N+=1') N+=1 params.N=N k=np.linspace(-(N//2)*k_min,N//2*k_min,N,dtype=np.float32) if absolute: idxL=np.where(np.abs(klbd-k[N//2:])==np.min(np.abs(klbd-k[N//2:])))[0] kL=k[N//2:][idxL][0] else: kL=k[N//2:][int(klbd*N//2)] return k,np.float32(N//2*k_min),N,np.float32(k_min),kL def W(grid,field): if params.coarse_graine: l = 2*np.pi/params.kmin/(N-1) k1,k2,k3=grid[0][N//2:]*l/2/np.pi,grid[1]*l/2/np.pi,grid[2]*l/2/np.pi W=(np.sinc(k1)*np.sinc(k2)*np.sinc(k3)) return W*field else: return field def ifft(field): '''This function performs the inverse Fourier transform. It uses the numpy function irfftn. The input array has first to be re-organized. In this code, the array filed is organized this way field=(z=0:Nyquist,y=-Nyquist:0:Nyquist,x=-Nyquist:0:Nyquist) which means shape(field)=(N//2+1,N,N) (Reminder: in the code, N is always odd while N_input is even, N=N_input+1). The python modules takes as an input an array organized as follow: field=(x=0:Nyquist-1:-1:-Nyquist, y=0:Nyquist-1:-1:-Nyquist, z=0:Nyquist) which means shape(field)=(N//2+1,N-1,N-1) Note that -Nyquist=+Nyquist since N_input is even. ''' field[0,params.N//2,:params.N//2]=np.conjugate(field[0,params.N//2,params.N//2+1:][::-1]) field[0,:params.N//2,:] =np.conjugate(field[0,params.N//2+1:,:][::-1,::-1]) return np.fft.irfftn(np.fft.ifftshift(field.transpose()[:-1,:-1],axes=(0,1)),(params.N-1,params.N-1,params.N-1) ) # Equivalent to : #new_field=np.zeros((N//2+1,N-1,N-1),dtype=np.complex64) #new_field[:,N//2+1:,N//2+1:]=field[:,1:N//2,1:N//2] #new_field[:,:N//2+1,:N//2+1]=field[:,N//2:,N//2:] #new_field[:,:N//2+1,N//2+1:]=field[:,N//2:,1:N//2] #new_field[:,N//2+1:,:N//2+1]=field[:,1:N//2,N//2:] #return np.fft.irfftn(new_field.transpose(),(N-1,N-1,N-1)) def fft(f_field): field=np.zeros((params.N//2+1,params.N,params.N),dtype=np.complex) field[:,:-1,:-1]=np.fft.fftshift(np.fft.rfftn(f_field),axes=(0,1)).transpose() field[:,-1],field[:,:,-1]=field[:,0],field[:,:,0] return field def read_h5(filename,dtype=np.float32): if len(filename)==0: f1 = h5py.File(params.output_path+params.key+'_{}{}_{}.h5'.format(field,order,real), 'r') dat1=np.array(f1['data'],dtype=dtype) return dat1 else: f1 = h5py.File(filename, 'r') dat1=np.array(f1['data'],dtype=dtype) return dat1 def save_h5(filename,f): hf = h5py.File(filename, 'w') # Save in h5 format hf.create_dataset('data', data=f) # hf.close() ####################################################################################### ####################################################################################### First order stochastic potential def zeta_realisation(k_grid): ''' Generate the linear curvature perturbation field (N//2+1,N,N) at redshift z in half of Fourier space. The reality condition ensures the other half. The computation is in 3 steps: -compute the modulus of k in the grid (k) -interpolate transfer function and primordial power spectrum tr=T(k) and P=P(k) -randomly draw the real/imaginary part of the primordial curvature zeta following a Gaussian PDF with std=sqrt(P(k)/2) ''' def random (k): with np.errstate(divide='ignore'): P=primordial(k) zeta_ini_Re=np.random.normal(0,(params.N-1)**3*np.sqrt(P/2*params.kmin**3/(2*np.pi)**3),k.shape) #https://nms.kcl.ac.uk/eugene.lim/AdvCos/lecture2.pdf zeta_ini_Im=np.random.normal(0,(params.N-1)**3*np.sqrt(P/2*params.kmin**3/(2*np.pi)**3),k.shape) # equivalent : #rho = np.random.normal(0,(N-1)**3*np.sqrt(P*params.kmin**3/(2*np.pi)**3),k.shape) #phase = np.random.uniform(0,2*np.pi,k.shape) #zeta_ini_Re=rho*np.cos(phase) #zeta_ini_Im=rho*np.sin(phase) return np.complex64(zeta_ini_Re+zeta_ini_Im*1j) k=np.sqrt(k_grid[0][params.N//2:]**2+k_grid[1]**2+k_grid[2]**2) zeta=random(k) zeta[np.isnan(zeta)]=0 # Even N in real space give a N+1 FFT grid with symmetries ! zeta[1:-1,-1,1:-1]=zeta[1:-1,0,1:-1] #z&x Plan zeta[1:-1,1:-1,-1]=zeta[1:-1,1:-1,0] #z&y Plan # Zmax plan Surfaces zeta[-1,1:params.N//2,1:params.N//2] =np.conjugate(zeta[-1,params.N//2+1:-1,params.N//2+1:-1][::-1,::-1]) zeta[-1,params.N//2+1:-1,1:params.N//2]=np.conjugate(zeta[-1,1:params.N//2,params.N//2+1:-1][::-1,::-1]) # Zmax plan lines X constant and Y constant zeta[-1,params.N//2,1:params.N//2]=np.conjugate(zeta[-1,params.N//2,params.N//2+1:-1][::-1]) zeta[-1,1:params.N//2,params.N//2]=np.conjugate(zeta[-1,params.N//2+1:-1,params.N//2][::-1]) r=zeta[:-1,-1,0] # All edges (x=0,y=0),(x=0,y=-1),(x=-1,y=0) and (x=-1,y=-1) are equal zeta[:-1,-1,-1],zeta[:-1,0,0],zeta[:-1,0,-1]=r,r,r r=zeta[-1,0,1:params.N//2] # Zmax edges sym with Y constant zeta[-1,-1,1:params.N//2],zeta[-1,0,params.N//2+1:-1],zeta[-1,-1,params.N//2+1:-1]=r,np.conjugate(r[::-1]),np.conjugate(r[::-1]) r=zeta[-1,1:params.N//2,0]# Zmax edges sym with X constant zeta[-1,1:params.N//2,-1],zeta[-1,params.N//2+1:-1,0],zeta[-1,params.N//2+1:-1,-1]=r,np.conjugate(r[::-1]),np.conjugate(r[::-1]) r=zeta[-1,0,0].real # Zmax plan corners all equal and real zeta[-1,0,0],zeta[-1,-1,0],zeta[-1,-1,-1],zeta[-1,0,-1]=r,r,r,r r=zeta[-1,params.N//2,0].real # Zmax plan: middle point of edges zeta[-1,params.N//2,0],zeta[-1,params.N//2,-1]=r,r r=zeta[-1,0,params.N//2].real zeta[-1,0,params.N//2],zeta[-1,-1,params.N//2]=r,r # Zmax middle point real zeta[-1,params.N//2,params.N//2]=zeta[-1,params.N//2,params.N//2].real # z=0 Plan zeta[0,params.N//2,-1]=zeta[0,params.N//2,-1].real zeta[0,-1,params.N//2]=zeta[0,-1,params.N//2].real zeta[0,params.N//2+1:-1,-1]=zeta[0,params.N//2+1:-1,0] zeta[0,-1,params.N//2+1:-1]=np.conjugate(zeta[0,-1,1:params.N//2][::-1]) r=zeta[0,-1,0].real zeta[0,-1,0],zeta[0,-1,-1]=r,r zeta[0,:params.N//2] =np.conjugate(zeta[0,params.N//2+1:][::-1,::-1]) zeta [0,params.N//2,:params.N//2]=np.conjugate(zeta [0,params.N//2,params.N//2+1:][::-1]) return zeta ####################################################################################### ####################################################################################### From initial potential to displacement field def order1(k,transfer): '''Compute the first order quantities X1/delta1 at a given k. X being: potential phi1 (==psi1), displacement field xi1, velocity v1 See equation (36) of the note. ''' d1=np.interp(k,transfer['k'],transfer['d_m']) phi1= np.interp(k,transfer['k'],transfer['phi']) psi1= np.interp(k,transfer['k'],transfer['psi']) xi1 = (d1-3*phi1)/k**2 v1 = np.interp(k,transfer['k'],transfer['v_m']) return phi1,psi1,xi1,v1,d1 def song2xi(song,k1,k2,k3,flatidx,k3sizes_cumsum,transfer): d2 =np.zeros_like(song) xi2 =np.zeros_like(song) phi2 =np.zeros_like(song) phi2p=np.zeros_like(song) chi2 =np.zeros_like(song) v2 =np.zeros_like(song) q2 =np.zeros_like(song) phiLxi_term=np.zeros_like(song) v_term =np.zeros_like(song) phi_term =np.zeros_like(song) xi_term =np.zeros_like(song) xi2_term =np.zeros_like(song) phi2_term =np.zeros_like(song) for ind1 in prange(len(k1)): if ind1%10==0: print(ind1) kk1=k1[ind1] for ind2 in prange(len(k1[:ind1+1])): kk2=k1[ind2] iii=k3sizes_cumsum[flatidx[ind1,ind2]] jjj=k3sizes_cumsum[flatidx[ind1,ind2]+1] kk3=k3[iii: jjj] phi1_k1,psi1_k1,xi1_k1,v1_k1,d1_k1= order1(kk1,transfer) phi1_k2,psi1_k2,xi1_k2,v1_k2,d1_k2= order1(kk2,transfer) chi1_k1,chi1_k2=phi1_k1-psi1_k1,phi1_k2-psi1_k2 k1dk2=(kk3**2-kk1**2-kk2**2)/2 d2[iii: jjj] =- k1dk2*v1_k1*v1_k2 +song[iii:jjj] chi2[iii: jjj]=(3*(kk1**2+k1dk2)*(kk2**2+k1dk2)-kk3**2*k1dk2)\ *(3*params.H**2*params.Om*v1_k1*v1_k2/2+psi1_k1*psi1_k2-chi1_k1*chi1_k2/2)/kk3**4 phi2p[iii: jjj]=(-3*params.H**2*params.Om*k1dk2*v1_k1*v1_k2-2*kk3**2*chi2[iii: jjj]\ +k1dk2*phi1_k1*phi1_k2)/21/params.H phi2[iii: jjj] = ((3*params.H**2/2)*(-params.Om*d2[iii: jjj]+2*chi2[iii: jjj] \ + 2*psi1_k1*psi1_k2 -2*phi2p[iii:jjj]/params.H ) \ +(k1dk2/2-(kk1**2+kk2**2))*phi1_k1*phi1_k2) /(3*params.H**2+kk3**2) xi2[iii:jjj] = 1/kk3**2*(d2[iii:jjj]-3*phi2[iii:jjj]-3./2*\ (kk2**2*phi1_k1*xi1_k2+kk1**2*phi1_k2*xi1_k1)\ +1./2*k1dk2*v1_k1*v1_k2-9./2*phi1_k1*phi1_k2-1./2*(kk1**2*kk2**2-k1dk2**2)*xi1_k1*xi1_k2) v2[iii:jjj]= (params.H*psi1_k2*psi1_k1/2-params.H*(phi2-chi2)[iii:jjj]-phi2p[iii:jjj] \ -3/2/kk3**2*params.H**2*params.Om*((k1dk2+kk2**2)* (d1_k1-2*phi1_k1-psi1_k1)*v1_k2 \ + (k1dk2+kk1**2)* (d1_k2-2*phi1_k2-psi1_k2)*v1_k1)/2) /(3/2*params.H**2*params.Om) q2[iii:jjj]=v2[iii:jjj]-((k1dk2+kk1**2)*(2*phi1_k1+psi1_k1)*v1_k2+(k1dk2+kk2**2)*(2*phi1_k2+psi1_k2)*v1_k1)/2/kk3**2 phiLxi_term[iii:jjj]=3./2*(kk2**2*phi1_k1*xi1_k2+kk1**2*phi1_k2*xi1_k1) v_term [iii:jjj]=-k1dk2*v1_k1*v1_k2 phi_term [iii:jjj]=9./2*phi1_k1*phi1_k2 xi_term [iii:jjj]=1./2*(kk1**2*kk2**2-k1dk2**2)*xi1_k1*xi1_k2 xi2_term [iii:jjj]=kk3**2*xi2[iii:jjj] phi2_term [iii:jjj]=3*phi2[iii:jjj] delta_37=phi2_term+xi2_term +phiLxi_term+v_term +phi_term+xi_term return {'delta_song':song,'delta': d2,'xi':xi2,'phi':phi2,'phip':phi2p,'chi':chi2, 'v':v2, 'q':q2, 'phiLxi_term':phiLxi_term,\ 'v_term':v_term,'phi_term':phi_term,'xi_term':xi_term,'delta_37':delta_37,'xi2_term':xi2_term,'phi2_term':phi2_term} def eq37(): def plot(f,t,c,linewidth=2): integral=np.loadtxt(params.output_path+'ps_d3+_N65_kmin1.0e-03_kmax3.2e-02_kl5.0e-03_z100_{}2_0.h5.dat'.format(t)) Pk =PKL.Pk(np.float32(f), BoxSize, axis, MAS, threads, verbose) plt.loglog(integral[:,0],integral[:,1],c,linewidth=linewidth,label='d3p {}'.format(t)) plt.loglog(Pk.k3D, Pk.Pk[:,0],c,linewidth=linewidth,linestyle='--',label='real {}'.format(t)) def grad(tableau): step=2*np.pi/params.kmin/(params.N-1) new=np.zeros((params.N+1,params.N+1,params.N+1)) new[1:-1,1:-1,1:-1]=tableau new[0,1:-1,1:-1]=tableau[-1] new[1:-1,0,1:-1]=tableau[:,-1] new[1:-1,1:-1,0]=tableau[:,:,-1] new[-1,1:-1,1:-1]=tableau[0] new[1:-1,-1,1:-1]=tableau[:,0] new[1:-1,1:-1,-1]=tableau[:,:,0] interm=np.gradient(new,step) interm=np.array([interm[0][1:-1,1:-1,1:-1],interm[1][1:-1,1:-1,1:-1],interm[2][1:-1,1:-1,1:-1]]) return interm import Pk_library as PKL MAS = 'None' axis = 0 BoxSize = 2*np.pi/params.kmin step = BoxSize/params.N threads = 4 verbose = False x={} field = ['v','phi','xi'] key=params.output_path+'d3+_N65_kmin1.0e-03_kmax3.2e-02_kl5.0e-03_z100' for f in field: x[f]=read_h5(key+'_{}1_{}.h5'.format(f,0)) for f in ['phi','xi','delta']: x[f+'2']=read_h5(key+'_{}2_{}.h5'.format(f,0)) x['gev_e1']=read_h5('gevolution-1.2/output/lcdm_snape1000_T00.h5')*1e6 x['gev_1'] =read_h5('gevolution-1.2/output/lcdm_snap1000_T00.h5') x['gev_2'] =read_h5('gevolution-1.2/output/lcdm_snap2000_T00.h5') term = ['phi_term','phiLxi_term','v_term','xi_term','xi2_term','phi2_term','delta_37','gev','delta'] color= ['red','cyan','orange','violet','green','yellow','blue'] for t in term: if t=='phi_term': phi= 9/2*x['phi']**2 plot(phi,t,color[0]) elif t=='phiLxi_term': Gxi=grad(x['xi']) Lxi=grad(Gxi[0])[0] + grad(Gxi[1])[1] + grad(Gxi[2])[2] phiLxi=-3*x['phi']*Lxi plot(phiLxi,t,color[1]) elif t=='v_term': Gv=grad(x['v']) v=1/2*(Gv[0]**2+Gv[1]**2+Gv[2]**2) plot(v,t,color[2]) elif t=='xi_term': Gxi=grad(x['xi']) Lxi=grad(Gxi[0])[0] + grad(Gxi[1])[1] + grad(Gxi[2])[2] XGxi,YGxi,ZGxi=grad(Gxi[0]),\ grad(Gxi[1]),\ grad(Gxi[2]) XGxi=XGxi[0]**2+XGxi[1]**2+XGxi[2]**2 YGxi=YGxi[0]**2+YGxi[1]**2+YGxi[2]**2 ZGxi=ZGxi[0]**2+ZGxi[1]**2+ZGxi[2]**2 xi=-1/2*(Lxi**2-XGxi-YGxi-ZGxi) plot(xi,t,color[3]) elif t=='xi2_term': Gxi=grad(x['xi2']) Lxi=grad(Gxi[0])[0] + grad(Gxi[1])[1] + grad(Gxi[2])[2] xi2=-Lxi plot(xi2,t,color[4]) elif t=='phi2_term': phi2=3*x['phi2'] plot(phi2,t,color[5]) elif t=='delta_37': delta2=phi2+xi2+xi+v+phiLxi+phi plot(delta2,t,color[6],5) elif t=='delta': delta2=x['delta2'] integral=np.loadtxt(params.output_path+'ps_d3+_N65_kmin1.0e-03_kmax3.2e-02_kl5.0e-03_z100_delta2_0.h5.dat') plt.loglog(integral[:,0],integral[:,1],'black',linewidth=5,linestyle='--',label='delta2 d3p') elif t=='gev': rho=0.31204608 g_delta1 =x['gev_e1']/rho -1 g_delta1Q=x['gev_1']/rho -1 g_delta2 =x['gev_2']/rho -1 g_delta2=g_delta2+g_delta1Q-g_delta1 Pk =PKL.Pk(g_delta2, BoxSize, axis, MAS, threads, verbose) plt.loglog(Pk.k3D, Pk.Pk[:,0],'black',linewidth=5,label='Gevolution') else: break plt.legend() plt.xlabel('k') plt.ylabel('P(k)') plt.show() def zeta2fields(field,zeta,k_grid,tr=0): '''Compute the whole first order stocastic field from the first order density computed in zeta_realisation(). field can be 'phi','psi','xi','v','chi'. ''' k=np.sqrt(k_grid[0][params.N//2:]**2+k_grid[1]**2+k_grid[2]**2) if field in ['delta','delta_song']: tr_d=np.interp(k,tr['k'],tr['d_m']) return zeta*tr_d elif field=='xi': tr_d=np.interp(k,tr['k'],tr['d_m']) tr_p=
np.interp(k,tr['k'],tr['phi'])
numpy.interp
import numpy as np def merge_data(data, outcomes, repetitions, metric): for key in outcomes.keys(): scenario_avgs = [] for scenario in range(len(outcomes[key])): results = [] for replication in range(repetitions): if metric == 1: results.append(np.mean(outcomes[key][scenario][replication])) if metric == 2: results.append(min(outcomes[key][scenario][replication])) if metric == 3: results.append(max(outcomes[key][scenario][replication])) if metric == 4: results.append(outcomes[key][scenario][replication][-1]) scenario_avgs.append(
np.mean(results)
numpy.mean
import io import os import pickle import numpy as np import torch from PIL import Image from learn2learn.vision.datasets import TieredImagenet class TieredImageNet(TieredImagenet): def __init__(self, root, partition="train", mode='coarse', transform=None, target_transform=None, download=False): self.root = root self.transform = transform self.target_transform = target_transform self.mode = mode tiered_imaganet_path = os.path.join(self.root, 'tiered-imagenet') short_partition = 'val' if partition == 'validation' else partition labels_path = os.path.join(tiered_imaganet_path, short_partition + '_labels.pkl') images_path = os.path.join(tiered_imaganet_path, short_partition + '_images_png.pkl') with open(images_path, 'rb') as images_file: self.images = pickle.load(images_file) with open(labels_path, 'rb') as labels_file: self.labels = pickle.load(labels_file) self.coarse2fine = {} for c, f in zip(self.labels['label_general'], self.labels['label_specific']): if c in self.coarse2fine: if f not in self.coarse2fine[c]: self.coarse2fine[c].append(f) else: self.coarse2fine[c] = [f] if self.mode == 'coarse': self.labels = self.labels['label_general'] elif self.mode == 'fine': self.labels = self.labels['label_specific'] else: raise NotImplementedError @property def num_classes(self): return len(np.unique(self.labels)) class MetaTieredImageNet(TieredImageNet): def __init__(self, args, partition='train', train_transform=None, test_transform=None, fix_seed=True): super(MetaTieredImageNet, self).__init__( root=args.data_root, partition=partition, mode=args.mode) self.fix_seed = fix_seed self.n_ways = args.n_ways self.n_shots = args.n_shots self.n_queries = args.n_queries self.n_test_runs = args.n_test_runs self.n_aug_support_samples = args.n_aug_support_samples self.train_transform = train_transform self.test_transform = test_transform self.data = {} for idx in range(len(self.images)): if self.labels[idx] not in self.data: self.data[self.labels[idx]] = [] self.data[self.labels[idx]].append(self.images[idx]) self.classes = list(self.data.keys()) def __getitem__(self, item): if self.fix_seed: np.random.seed(item) if len(self.classes) > self.n_ways: cls_sampled = np.random.choice(self.classes, self.n_ways, False) else: cls_sampled = np.array(self.classes) if self.classes is not np.ndarray else self.classes # cls_sampled = np.random.choice(self.classes, self.n_ways, False) support_xs = [] support_ys = [] query_xs = [] query_ys = [] for idx, cls in enumerate(cls_sampled): imgs = np.asarray(self.data[cls]) support_xs_ids_sampled = np.random.choice(range(imgs.shape[0]), self.n_shots, False) support_xs.append(imgs[support_xs_ids_sampled]) support_ys.append([idx] * self.n_shots) query_xs_ids = np.setxor1d(np.arange(imgs.shape[0]), support_xs_ids_sampled) query_xs_ids = np.random.choice(query_xs_ids, self.n_queries, False) query_xs.append(imgs[query_xs_ids]) query_ys.append([idx] * query_xs_ids.shape[0]) support_xs, support_ys, query_xs, query_ys = np.array(support_xs), np.array(support_ys), np.array( query_xs), np.array(query_ys) num_ways, n_queries_per_way = query_xs.shape query_xs = query_xs.reshape((num_ways * n_queries_per_way)) query_ys = query_ys.reshape((num_ways * n_queries_per_way)) support_xs = support_xs.reshape(-1) if self.n_aug_support_samples > 1: support_xs = np.tile(support_xs, (self.n_aug_support_samples)) support_ys = np.tile(support_ys.reshape(-1), self.n_aug_support_samples) support_xs = np.split(support_xs, support_xs.shape[0], axis=0) query_xs = query_xs.reshape((-1)) query_xs = np.split(query_xs, query_xs.shape[0], axis=0) support_xs = torch.stack(list(map(lambda x: self.train_transform(self._load_png_byte(x[0])), support_xs))) query_xs = torch.stack(list(map(lambda x: self.test_transform(self._load_png_byte(x[0])), query_xs))) return support_xs, support_ys, query_xs, query_ys def _load_png_byte(self, bytes): return Image.open(io.BytesIO(bytes)) def __len__(self): return self.n_test_runs class MetaFGTieredImageNet(MetaTieredImageNet): def __getitem__(self, item): if self.fix_seed: np.random.seed(item) coarse_sampled = np.random.choice(list(self.coarse2fine.keys()), 1, False)[0] cls_sampled = np.random.choice(self.coarse2fine[coarse_sampled], self.n_ways, False) support_xs = [] support_ys = [] query_xs = [] query_ys = [] for idx, cls in enumerate(cls_sampled): imgs = np.asarray(self.data[cls]) support_xs_ids_sampled = np.random.choice(range(imgs.shape[0]), self.n_shots, False) support_xs.append(imgs[support_xs_ids_sampled]) support_ys.append([idx] * self.n_shots) query_xs_ids = np.setxor1d(np.arange(imgs.shape[0]), support_xs_ids_sampled) query_xs_ids =
np.random.choice(query_xs_ids, self.n_queries, False)
numpy.random.choice
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 22 09:58:49 2021 @author: cghiaus Import functions for EPW data files. Adapted from https://github.com/pvlib/pvlib-python/blob/master/pvlib/iotools/epw.py """ import numpy as np import pandas as pd import sys def tc2ss(A, G, b, C, f, y): """ Parameters ---------- A : TYPE np.array adjancecy (TC connection ) matrix: #rows = #heat flow rates; #cols = #temperature nodes G : TYPE np.array square diagonal matrix of conductances #rows = #heat flow rates (or resistances) b : TYPE np.array vector indicating the presence of temperature sources on branches: 1 for branches with temperature sources, otherwise 0 C : TYPE np.array square diagonal matrix of capacities f : TYPE np.array vector indicating the presence of flow sources in nodes: 1 for nodes with heat sources, otherwise 0 y : TYPE np.array vector indicating the temperatures in the outputs: 1 for output nodes, otherwise 0 Returns ------- As state matrix in state equation Bs input matrix in state equation Cs output matrix in observation equation Ds input matrix in observation equation Idx{1} nodes with capacities {2} branches with temp. sources {3} nodes with flow sources {4} nodes output temperatures """ rC = np.nonzero(np.diag(C))[0] # rows of non-zero elements in C r0 = np.nonzero(np.diag(C) == 0)[0] # rows of zero elements in C # idx_nonzero = {'C': rC, # 'b': np.nonzero(b)[0], # 'f': np.nonzero(f)[0], # 'y': np.nonzero(y)[0]} if rC.size == 0: sys.exit('Error in dm4bem.tc2ss: capacity C matrix is zero') CC = np.diag(C[np.nonzero(C)]) K = -A.T @ G @ A K11 = K[r0, :][:, r0] K12 = K[r0, :][:, rC] K21 = K[rC, :][:, r0] K22 = K[rC, :][:, rC] Kb = A.T @ G Kb1 = Kb[r0, :] Kb2 = Kb[rC, :] # State equation As = np.linalg.inv(CC) @ ( -K21 @ np.linalg.inv(K11) @ K12 + K22) Bs = np.linalg.inv(CC) @ np.hstack([ -K21 @ np.linalg.inv(K11) @ Kb1 + Kb2, -K21 @ np.linalg.inv(K11), np.eye(CC.shape[0])]) # re-arragne B s in order of f-sources # index B for sources [b f0 fC] idx_new = np.hstack([np.arange(b.size), b.size + r0, b.size + rC]) Bs[:, idx_new] =
np.array(Bs)
numpy.array
import numpy as np import matplotlib.pyplot as plt import ipywidgets as widgets import html import matplotlib.patches as patches from matplotlib.colors import SymLogNorm import astropy.units as u from .crisp import CRISP, CRISPSequence, CRISPWidebandSequence, CRISPNonU, CRISPNonUSequence from .inversions import Inversion from .utils import CRISP_sequence_constructor from matplotlib import ticker import matplotlib.patheffects as PathEffects from matplotlib.lines import Line2D from astropy.wcs.wcsapi import SlicedLowLevelWCS from .utils import pt_bright_cycler from IPython.core.display import display from matplotlib.dates import date2num, DateFormatter class SpectralViewer: """ Imaging spectroscopic viewer. SpectralViewer should be used when one wants to click on points of an image and have the spectrum displayed for that point. This works **exclusively** in Jupyter notebook but can be a nice data exploration tool. This viewer utilises the data structures defined in `crispy.crisp` and has many variable options. :param data: The data to explore, this can be either one or two spectral lines (support for more than two can be added if required). This is the only required argument to view the data. :type data: str or list or CRISP or CRISPSequence or CRISPNonU or CRISPNonUSequence :param wcs: A prescribed world coordinate system. If None, the world coordinate system is derived from the data. Default is None. :type wcs: astropy.wcs.WCS or None, optional :param uncertainty: The uncertainty in the intensity values of the data. Default is None. :type uncertainty: numpy.ndarray or None, optional :param mask: A mask to be used on the data. Default is None. :type mask: numpy.ndarray or None, optional :param nonu: Whether or not the spectral axis is non-uniform. Default is False. :type nonu: bool, optional :cvar coords: The coordinates selected to produce spectra. :type coords: list[tuple] :cvar px_coords: The coordinates selected to produce spectra in pixel space. This is important for indexing the data later to get the correct spectra. :type px_coords: list[tuple] :cvar shape_type: The spectra can be selected for a single point or for a box with specified dimensions with top-left corner where the user clicks. This attribute tells the user which point is described by which shape. :type shape_type: list[str] """ def __init__(self, data, wcs=None, uncertainty=None, mask=None, nonu=False): plt.style.use("bmh") self.aa = html.unescape("&#8491;") self.l = html.unescape("&lambda;") self.a = html.unescape("&alpha;") self.D = html.unescape("&Delta;") shape = widgets.Dropdown(options=["point", "box"], value="point", description="Shape: ") if not nonu: if type(data) == str: self.cube = CRISP(filename=data, wcs=wcs, uncertainty=uncertainty, mask=mask) if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == list: data = CRISP_sequence_constructor(data, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube = CRISPSequence(data) if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom elif type(data) == CRISP: self.cube = data if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == CRISPSequence: self.cube = data if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom else: if type(data) == str: self.cube = CRISPNonU(filename=data, wcs=wcs, uncertainty=uncertainty, mask=mask) if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == list: data = CRISP_sequence_constructor(data, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube = CRISPNonUSequence(data) if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom elif type(data) == CRISPNonU: self.cube = data if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == CRISPNonUSequence: self.cube = data if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom if type(self.cube) == CRISP or type(self.cube) == CRISPNonU: self.fig = plt.figure(figsize=(8,10)) try: self.ax1 = self.fig.add_subplot(1, 2, 1, projection=self.cube.wcs.dropaxis(-1)) except: self.ax1 = self.fig.add_subplot(1, 2, 1, projection=SlicedLowLevelWCS(self.cube[0].wcs.low_level_wcs, 0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax2 = self.fig.add_subplot(1, 2, 2) self.ax2.yaxis.set_label_position("right") self.ax2.yaxis.tick_right() self.ax2.set_ylabel("I [DNs]") self.ax2.set_xlabel(f"{self.l} [{self.aa}]") self.ax2.tick_params(direction="in") ll = widgets.SelectionSlider(options=[np.round(l - np.median(self.wvls), decimals=2).value for l in self.wvls], description = f"{self.D} {self.l} [{self.aa}]") out1 = widgets.interactive_output(self._img_plot1, {"ll" : ll}) out2 = widgets.interactive_output(self._shape, {"opts" : shape}) display(widgets.HBox([ll, shape])) elif type(self.cube) == CRISPSequence or type(self.cube) == CRISPNonUSequence: self.fig = plt.figure(figsize=(8,10)) try: self.ax1 = self.fig.add_subplot(2, 2, 1, projection=self.cube.list[0].wcs.dropaxis(-1)) except: self.ax1 = self.fig.add_subplot(2, 2, 1, projection=SlicedLowLevelWCS(self.cube.list[0][0].wcs.low_level_wcs, 0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax1.xaxis.set_label_position("top") self.ax1.xaxis.tick_top() try: self.ax2 = self.fig.add_subplot(2, 2, 3, projection=self.cube.list[0].wcs.dropaxis(-1)) except: self.ax2 = self.fig.add_subplot(2, 2, 3, projection=SlicedLowLevelWCS(self.cube.list[0][0].wcs.low_level_wcs, 0)) self.ax2.set_ylabel("Helioprojective Latitude [arcsec]") self.ax2.set_xlabel("Helioprojective Longitude [arcsec]") self.ax3 = self.fig.add_subplot(2, 2, 2) self.ax3.yaxis.set_label_position("right") self.ax3.yaxis.tick_right() self.ax3.set_ylabel("Intensity [DNs]") self.ax3.set_xlabel(f"{self.l} [{self.aa}]") self.ax3.xaxis.set_label_position("top") self.ax3.xaxis.tick_top() self.ax3.tick_params(direction="in") self.ax4 = self.fig.add_subplot(2, 2, 4) self.ax4.yaxis.set_label_position("right") self.ax4.yaxis.tick_right() self.ax4.set_ylabel("Intensity [DNs]") self.ax4.set_xlabel(f"{self.l} [{self.aa}]") self.ax4.tick_params(direction="in") ll1 = widgets.SelectionSlider( options=[np.round(l - np.median(self.wvls1), decimals=2).value for l in self.wvls1], description=fr"{self.D} {self.l}$_{1}$ [{self.aa}]", style={"description_width" : "initial"} ) ll2 = widgets.SelectionSlider( options=[np.round(l - np.median(self.wvls2), decimals=2).value for l in self.wvls2], description=fr"{self.D} {self.l}$_{2}$ [{self.aa}]", style={"description_width" : "initial"} ) out1 = widgets.interactive_output(self._img_plot2, {"ll1" : ll1, "ll2" : ll2}) out2 = widgets.interactive_output(self._shape, {"opts" : shape}) display(widgets.HBox([widgets.VBox([ll1, ll2]), shape])) self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 self.receiver = self.fig.canvas.mpl_connect("button_press_event", self._on_click) try: x = widgets.IntText(value=1, min=1, max=self.cube.shape[-1], description="x [pix]") y = widgets.IntText(value=1, min=1, max=self.cube.shape[-2], description="y [pix]") except: x = widgets.IntText(value=1, min=1, max=self.cube.list[0].shape[-1], description="x [pix]") y = widgets.IntText(value=1, min=1, max=self.cube.list[0].shape[-2], description="y [pix]") outx = widgets.interactive_output(self._boxx, {"x" : x}) outy = widgets.interactive_output(self._boxy, {"y" : y}) display(widgets.HBox([x, y])) done_button = widgets.Button(description="Done") done_button.on_click(self._disconnect_matplotlib) clear_button = widgets.Button(description="Clear") clear_button.on_click(self._clear) save_button = widgets.Button(description="Save") save_button.on_click(self._save) display(widgets.HBox([done_button, clear_button, save_button])) widgets.interact(self._file_name, fn= widgets.Text(description="Filename to save as: ", style={"description_width" : "initial"}, layout=widgets.Layout(width="50%"))) def _on_click(self, event): if self.fig.canvas.manager.toolbar.mode != "": return if type(self.cube) == CRISP or type(self.cube) == CRISPNonU: if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) self.px_coords.append(centre_coord) self.shape_type.append("point") circ = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) px = self.cube.to_lonlat(*centre_coord) << u.arcsec if self.cube.file.data.ndim == 3: self.ax2.plot(self.wvls, self.cube.file.data[:, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube.file.data.ndim == 4: self.ax2.plot(self.wvls, self.cube.file.data[0, :, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax2.legend() self.coords.append(px) self.colour_idx += 1 self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax1.patches] for p in self.ax1.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.cube.to_lonlat(*box_anchor) << u.arcsec) rect = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) if self.cube.file.data.ndim == 3: self.ax2.plot(self.wvls, np.mean(self.cube.file.data[:,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube.file.data.ndim == 4: self.ax2.plot(self.wvls, np.mean(self.cube.file.data[0, :,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax2.legend() self.colour_idx += 1 self.fig.canvas.draw() elif type(self.cube) == CRISPSequence or type(self.cube) == CRISPNonUSequence: if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) #with WCS, the event data is returned in pixels so we don't need to do the conversion from real world but rather to real world later on self.px_coords.append(centre_coord) circ1 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) circ2 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ1) self.ax2.add_patch(circ2) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt_1 = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_2 = self.ax2.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt_2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) px = self.cube.list[0].to_lonlat(*centre_coord) << u.arcsec if self.cube.list[0].file.data.ndim == 3: self.ax3.plot(self.wvls1, self.cube.list[0].file.data[:, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube.list[0].file.data.ndim == 4: self.ax3.plot(self.wvls1, self.cube.list[0].file.data[0, :, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) if self.cube.list[1].file.data.ndim == 3: self.ax4.plot(self.wvls2, self.cube.list[1].file.data[:, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube.list[1].file.data.ndim == 4: self.ax4.plot(self.wvls2, self.cube.list[1].file.data[0, :, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.legend() self.ax4.legend() self.coords.append(px) self.colour_idx += 1 self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax.patches] for p in self.ax.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.cube.to_lonlat(*box_anchor) << u.arcsec) rect1 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) rect2 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect1) self.ax2.add_patch(rect2) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt1 = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt2 = self.ax2.text(box_anchor[1]-50, box_anchor[0]-1, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt2.set_path_effect([PathEffects.withStroke(linewidth=3, foreground="k")]) if self.cube.list[0].file.data.ndim == 3: self.ax3.plot(self.wvls1, np.mean(self.cube.list[0].file.data[:,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube.list[0].file.data.ndim == 4: self.ax3.plot(self.wvls1, np.mean(self.cube.list[0].file.data[0, :,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) if self.cube.list[1].file.data.ndim == 3: self.ax4.plot(self.wvls2, np.mean(self.cube.list[1].file.data[:,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube.list[1].file.data.ndim == 4: self.ax4.plot(self.wvls2, np.mean(self.cube.list[1].file.data[0, :,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.legend() self.ax4.legend() self.colour_idx += 1 self.fig.canvas.draw() def _shape(self, opts): self.shape = opts def _boxx(self, x): self.boxx = x def _boxy(self, y): self.boxy = y def _disconnect_matplotlib(self, _): self.fig.canvas.mpl_disconnect(self.receiver) def _clear(self, _): self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 if type(self.cube) == CRISP: while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.texts: t.remove() self.ax2.clear() self.ax2.set_ylabel("Intensity [DNs]") self.ax2.set_xlabel(f"{self.l} [{self.aa}]") self.fig.canvas.draw() self.fig.canvas.flush_events() else: while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax2.patches) > 0: for p in self.ax2.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.texts: t.remove() while len(self.ax2.texts) > 0: for t in self.ax2.texts: t.remove() self.ax3.clear() self.ax3.set_ylabel("Intensity [DNs]") self.ax3.set_xlabel(f"{self.l} [{self.aa}]") self.ax4.clear() self.ax4.set_ylabel("Intensity [DNs]") self.ax4.set_xlabel(f"{self.l} [{self.aa}]") self.fig.canvas.draw() self.fig.canvas.flush_events() def _save(self, _): self.fig.savefig(self.filename, dpi=300) def _file_name(self, fn): self.filename = fn def _img_plot1(self, ll): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar != None: self.ax1.images[-1].colorbar.remove() ll_idx = int(np.where(np.round(self.wvls, decimals=2).value == np.round(np.median(self.wvls).value + ll, decimals=2))[0]) try: data = self.cube.file.data[ll_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") except: data = self.cube.file.data[0, ll_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") try: el = self.cube.file.header["WDESC1"] except KeyError: el = self.cube.file.header["element"] self.ax1.set_title(fr"{el} {self.aa} {self.D} {self.l}$_{1}$ = {ll} {self.aa}") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="Intensity [DNs]") def _img_plot2(self, ll1, ll2): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar != None: self.ax1.images[-1].colorbar.remove() if self.ax2.images == []: pass elif self.ax2.images[-1].colorbar != None: self.ax2.images[-1].colorbar.remove() ll1_idx = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + ll1, decimals=2))[0]) ll2_idx = int(np.where(np.round(self.wvls2, decimals=2).value == np.round(np.median(self.wvls2).value + ll2, decimals=2))[0]) try: data = self.cube.list[0].file.data[ll1_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") except: data = self.cube.list[0].file.data[0, ll1_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") try: data = self.cube.list[1].file.data[ll2_idx].astype(np.float) data[data < 0] = np.nan im2 = self.ax2.imshow(data, cmap="Greys_r") except: data = self.cube.list[1].file.data[0, ll2_idx].astype(np.float) data[data < 0] = np.nan im2 = self.ax2.imshow(data, cmap="Greys_r") try: el1 = self.cube.list[0].file.header["WDESC1"] el2 = self.cube.list[1].file.header["WDESC1"] except KeyError: el1 = self.cube.list[0].file.header["element"] el2 = self.cube.list[1].file.header["element"] self.ax1.set_title(fr"{el1} {self.aa} {self.D} {self.l}$_{1}$ = {ll1} {self.aa}") self.ax2.set_title(fr"{el2} {self.aa} {self.D} {self.l}$_{2}$ = {ll2} {self.aa}") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="Intensity [DNs]") self.fig.colorbar(im2, ax=self.ax2, orientation="horizontal", label="Intensity [DNs]") class WidebandViewer: """ Wideband image viewer. This visualisation tool is useful for exploring the time series evolution of the wideband images. :param files: The files to explore the time series for. :type files: CRISPWidebandSequence or list :cvar coords: The coordinates selected to produce spectra. :type coords: list[tuple] :cvar px_coords: The coordinates selected to produce spectra in pixel space. This is important for indexing the data later to get the correct spectra. :type px_coords: list[tuple] :cvar shape_type: The spectra can be selected for a single point or for a box with specified dimensions with top-left corner where the user clicks. This attribute tells the user which point is described by which shape. :type shape_type: list[str] """ def __init__(self, files): plt.style.use("bmh") shape = widgets.Dropdown(options=["point", "box"], value="point", description="Shape: ") if type(files) == CRISPWidebandSequence: self.cube = files elif type(files) == list and type(files[0]) == dict: self.cube = CRISPWidebandSequence(files) elif type(files) == list and type(files[0]) == str: files = [{"filename" : f} for f in files] self.cube = CRISPWidebandSequence(files) elif type(files) == list and type(files[0]) == CRISPWidebandSequence: self.cube = files if type(self.cube) is not list: try: self.time = [date2num(f.file.header["DATE-AVG"]) for f in self.cube.list] except KeyError: self.time = [date2num(f.file.header["date_obs"]+" "+f.file.header["time_obs"]) for f in self.cube.list] self.fig = plt.figure(figsize=(8,10)) self.ax1 = self.fig.add_subplot(1, 2, 1, projection=self.cube.list[0].wcs) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax2 = self.fig.add_subplot(1, 2, 2) self.ax2.yaxis.set_label_position("right") self.ax2.yaxis.tick_right() self.ax2.set_ylabel("I [DNs]") self.ax2.set_xlabel("Time [UTC]") self.ax2.xaxis.set_major_locator(plt.MaxNLocator(4)) self.ax2.tick_params(direction="in") t = widgets.IntSlider(value=0, min=0, max=len(self.cube.list)-1, step=1, description="Time index: ", style={"description_width" : "initial"}) widgets.interact(self._img_plot1, t = t) else: try: self.time1 = [date2num(f.file.header["DATE-AVG"]) for f in self.cube[0].list] self.time2 = [date2num(f.file.header["DATE-AVG"]) for f in self.cube[1].list] except KeyError: self.time1 = [date2num(f.file.header["date_obs"]+" "+f.file.header["time_obs"]) for f in self.cube[0].list] self.time2 = [date2num(f.file.header["date_obs"]+" "+f.file.header["time_obs"]) for f in self.cube[1].list] self.fig = plt.figure(figsize=(8,10)) self.ax1 = self.fig.add_subplot(2, 2, 1, projection=self.cube[0].list[0].wcs) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax1.xaxis.set_label_position("top") self.ax1.xaxis.tick_top() self.ax2 = self.fig.add_subplot(2, 2, 3, projection=self.cube[1].list[0].wcs) self.ax2.ylabel("Helioprojective Latitude [arcsec]") self.ax2.xlabel("Helioprojective Longitude [arcsec]") self.ax3 = self.fig.add_subplot(2, 2, 2) self.ax3.yaxis.set_label_position("right") self.ax3.yaxis.tick_right() self.ax3.set_ylabel("I [DNs]") self.ax3.set_xlabel("Time [UTC]") self.ax3.xaxis.set_label_position("top") self.ax3.xaxis.tick_top() self.ax3.xaxis.set_major_locator(plt.MaxNLocator(4)) self.ax3.tick_params(direction="in") self.ax4 = self.fig.add_subplot(2, 2, 4) self.ax4.yaxis.set_label_position("right") self.ax4.yaxis.tick_right() self.ax4.set_ylabel("I [DNs]") self.ax4.set_xlabel("Time [UTC]") self.ax4.xaxis.set_major_locator(plt.MaxNLocator(4)) self.ax4.tick_params(direction="in") t1 = widgets.IntSlider(value=0, min=0, max=len(self.cube[0].list)-1, step=1, description="Time index: ", style={"description_width" : "initial"}) t2 = widgets.IntSlider(value=0, min=0, max=len(self.cube[1].list)-1, step=1, description="Time index: ", style={"description_width" : "initial"}) widgets.interact(self._img_plot2, t1=t1, t2=t2) self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 self.reveiver = self.fig.canvas.mpl_connect("button_press_event", self._on_click) widgets.interact(self._shape, opts=shape) x = widgets.IntText(value=1, min=1, max=self.cube.list[0].shape[-1], description="x [pix]") y = widgets.IntText(value=1, min=1, max=self.cube.list[0].shape[-2], description="y [pix]") outx = widgets.interactive_output(self._boxx, {"x" : x}) outy = widgets.interactive_output(self._boxy, {"y" : y}) display(widgets.HBox([x, y])) done_button = widgets.Button(description="Done") done_button.on_click(self._disconnect_matplotlib) clear_button = widgets.Button(description="Clear") clear_button.on_click(self._clear) save_button = widgets.Button(description="Save") save_button.on_click(self._save) display(widgets.HBox([done_button, clear_button, save_button])) widgets.interact(self._file_name, fn= widgets.Text(description="Filename to save as: ", style={"description_width" : "initial"}, layout=widgets.Layout(width="50%"))) def _on_click(self, event): if self.fig.canvas.manager.toolbar.mode != "": return if type(self.cube) == CRISPWidebandSequence: if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) self.px_coords.append(centre_coord) self.shape_type.append("point") circ = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) px = self.cube.list[0].wcs.array_index_to_world(*centre_coord) << u.arcsec prof = [f.file.data[centre_coord[0], centre_coord[1]] for f in self.cube.list] self.ax2.plot(self.time, prof, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax2.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax2.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.ax2.legend() self.coords.append(px) self.colour_idx += 1 self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax.patches] for p in self.ax.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.cube.to_lonlat(*box_anchor) << u.arcsec) rect = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) prof = [np.mean(f.file.data[box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube.list] self.ax2.plot(self.time, prof, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax2.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax2.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.ax2.legend() self.colour_idx += 1 self.fig.canvas.draw() elif type(self.cube) == list: if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) self.px_coords.append(centre_coord) circ1 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) circ2 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ1) self.ax2.add_patch(circ2) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt_1 = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_2 = self.ax2.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt_2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) px = self.cube[0].list[0].wcs.array_index_to_world(*centre_coord) << u.arcsec prof_1 = [f.file.data[centre_coord[0], centre_coord[1]] for f in self.cube[0].list] prof_2 = [f.file.data[centre_coord[0], centre_coord[1]] for f in self.cube[1].list] self.ax3.plot(self.time1, prof_1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax4.plot(self.time2, prof_2, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.legend() self.ax3.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax3.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.ax4.legend() self.ax4.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax4.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.coords.append(px) self.colour_idx += 1 self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax.patches] for p in self.ax.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.cube.to_lonlat(*box_anchor) << u.arcsec) rect1 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect1.set_path_effects([PathEffects(linewidth=3, foreground="k")]) rect2 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect1) self.ax2.add_patch(rect2) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt1 = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt1.set_path_effects([PathEffects(linewidth=3, foreground="k")]) txt2 = self.ax2.text(box_anchor[1]-50, box_anchor[0]-1, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt2.set_path_effect([PathEffects(linewidth=3, foreground="k")]) prof_1 = [np.mean(f.file.data[box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube[0].list] prof_2 = [np.mean(f.file.data[box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube[1].list] self.ax3.plot(self.time1, prof_1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax4.plot(self.time2, prof_2, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax3.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.ax4.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax4.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.ax3.legend() self.ax4.legend() self.colour_idx += 1 self.fig.canvas.draW() def _shape(self, opts): self.shape = opts def _boxx(self, x): self.boxx = x def _boxy(self, y): self.boxy = y def _disconnect_matplotlib(self, _): self.fig.canvas.mpl_disconnect(self.receiver) def _clear(self, _): self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 if type(self.cube) == CRISPWidebandSequence: while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.texts: t.remove() self.ax2.clear() self.ax2.set_ylabel("I [DNs]") self.ax2.set_xlabel("Time [UTC]") self.ax2.xaxis.set_major_locator(plt.MaxNLocator(4)) self.fig.canvas.draw() self.fig.canvas.flush_events() else: while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax2.patches) > 0: for p in self.ax2.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.patches: t.remove() while len(self.ax2.patches) > 0: for t in self.ax2.patches: t.remove() self.ax3.clear() self.ax3.set_ylabel("I [DNs]") self.ax3.set_xlabel("Time [UTC]") self.ax3.xaxis.set_major_locator(plt.MaxNLocator(4)) self.ax4.clear() self.ax4.set_ylabel("I [DNs]") self.ax4.set_xlabel("Time [UTC]") self.ax4.xaxis.set_major_locator(plt.MaxNLocator(4)) self.fig.canvas.draw() self.fig.canvas.flush_events() def _save(self, _): self.fig.savefig(self.filename, dpi=300) def _file_name(self, fn): self.filename = fn def _img_plot1(self, t): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar is not None: self.ax1.images[-1].colorbar.remove() im1 = self.ax1.imshow(self.cube.list[t].file.data, cmap="Greys_r") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="I [DNs]") def _img_plot2(self, t1, t2): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar is not None: self.ax1.images[-1].colorbar.remove() if self.ax2.images == []: pass elif self.ax2.images[-1].colorbar is not None: self.ax2.images[-1].colorbar.remove() im1 = self.ax1.imshow(self.cube[0].list[t].file.data, cmap="Greys_r") im2 = self.ax2.imshow(self.cube[1].list[t].file.data, cmap="Greys_r") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="I [DNs]") self.fig.colorbar(im2, ax=self.ax2, orientation="horizontal", label="I [DNs]") class AtmosViewer: """ This visualisation tool is for the investigation of atmospheric parameters found via inversion techniques. This makes use of the ``Inversion`` class. This assumes that there are three atmospheric parameters in the inversion: electron number density, electron temperature and bulk line-of-sight velocity. These are the estimated quantities by RADYNVERSION. :param filename: The inversion file to be used. :type filename: str or Inversion :param z: The physical height grid of the estimated atmospheric parameters in megametres. Can only be None if filename is already an ``Inversion`` instance. Default is None. (N.B. the RADYNVERSION height grid is available from ``crispy.radynversion.utils``). :type z: numpy.ndarray or None, optional :param wcs: The world coordinate system that the inversion parameters are defined by. Can be None only if filename is already an ``Inversion`` instance. Default is None. :type wcs: astropy.wcs.WCS or None, optional :param header: The additional header information from the observations. Default is None. :type header: dict or None, optional :param eb: Whether or not to plot the errorbars on the parameter profiles. Default is False. :type eb: bool, optional :cvar coords: The coordinates selected to produce spectra. :type coords: list[tuple] :cvar px_coords: The coordinates selected to produce spectra in pixel space. This is important for indexing the data later to get the correct spectra. :type px_coords: list[tuple] :cvar shape_type: The spectra can be selected for a single point or for a box with specified dimensions with top-left corner where the user clicks. This attribute tells the user which point is described by which shape. :type shape_type: list[str] """ def __init__(self, filename, z=None, wcs=None, header=None, eb=False): plt.style.use("bmh") shape = widgets.Dropdown(options=["point", "box"], value="point", description="Shape: ") if type(filename) == str: assert z is not None assert header is not None self.inv = Inversion(filename=filename, wcs=wcs, z=z, header=header) elif type(filename) == Inversion: self.inv = filename self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 self.eb = eb self.fig = plt.figure(figsize=(8,10)) self.gs = self.fig.add_gridspec(nrows=5, ncols=3) self.ax1 = self.fig.add_subplot(self.gs[:2, 0], projection=self.inv.wcs.dropaxis(-1)) self.ax2 = self.fig.add_subplot(self.gs[:2, 1], projection=self.inv.wcs.dropaxis(-1)) self.ax3 = self.fig.add_subplot(self.gs[:2, 2], projection=self.inv.wcs.dropaxis(-1)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax2.set_xlabel("Helioprojective Longitude [arcsec]") self.ax3.set_xlabel("Helioprojective Longitude [arcsec]") self.ax2.tick_params(axis="y", labelleft=False) self.ax3.tick_params(axis="y", labelleft=False) self.ax4 = self.fig.add_subplot(self.gs[2, :]) self.ax4.set_ylabel(r"log $n_{e}$ [cm$^{-3}$]") self.ax4.yaxis.set_label_position("right") self.ax4.yaxis.tick_right() self.ax5 = self.fig.add_subplot(self.gs[3, :]) self.ax5.set_ylabel(r"log T [K]") self.ax5.yaxis.set_label_position("right") self.ax5.yaxis.tick_right() self.ax6 = self.fig.add_subplot(self.gs[4, :]) self.ax6.set_ylabel(r"v [km s$^{-1}$]") self.ax6.set_xlabel(r"z [Mm]") self.ax6.yaxis.set_label_position("right") self.ax6.yaxis.tick_right() self.ax4.tick_params(axis="x", labelbottom=False, direction="in") self.ax5.tick_params(axis="x", labelbottom=False, direction="in") self.ax6.tick_params(axis="both", direction="in") widgets.interact(self._img_plot, z = widgets.SelectionSlider(options=np.round(self.inv.z, decimals=3), description="Image height [Mm]: ", style={"description_width" : "initial"}, layout=widgets.Layout(width="50%"))) widgets.interact(self._shape, opts=shape) self.receiver = self.fig.canvas.mpl_connect("button_press_event", self._on_click) x = widgets.IntText(value=1, min=1, max=self.inv.ne.shape[-1], description="x [pix]") y = widgets.IntText(value=1, min=1, max=self.inv.ne.shape[-2], description="y [pix]") outx = widgets.interactive_output(self._boxx, {"x" : x}) outy = widgets.interactive_output(self._boxy, {"y" : y}) display(widgets.HBox([x, y])) done_button = widgets.Button(description="Done") done_button.on_click(self._disconnect_matplotlib) clear_button = widgets.Button(description='Clear') clear_button.on_click(self._clear) save_button = widgets.Button(description="Save") save_button.on_click(self._save) display(widgets.HBox([done_button, clear_button, save_button])) widgets.interact(self._file_name, fn = widgets.Text(description="Filename to save as: ", style={"description_width" : "initial"}), layout=widgets.Layout(width="50%")) def _on_click(self, event): if self.fig.canvas.manager.toolbar.mode != "": return if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) self.px_coords.append(centre_coord) circ1 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) circ2 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) circ3 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ1) self.ax2.add_patch(circ2) self.ax3.add_patch(circ3) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt_1 = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_2 = self.ax2.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_3 = self.ax3.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt_2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt_3.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) if self.eb: self.ax4.errorbar(self.inv.z, self.inv.ne[:,centre_coord[0], centre_coord[1]], yerr=self.inv.err[:,centre_coord[0],centre_coord[1],0], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5.errorbar(self.inv.z, self.inv.temp[:,centre_coord[0], centre_coord[1]], yerr=self.inv.err[:,centre_coord[0],centre_coord[1],1], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax6.errorbar(self.inv.z, self.inv.vel[:,centre_coord[0],centre_coord[1]], yerr=self.inv.err[:,centre_coord[0],centre_coord[1],2], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) else: self.ax4.plot(self.inv.z, self.inv.ne[:,centre_coord[0],centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5.plot(self.inv.z, self.inv.temp[:,centre_coord[0],centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax6.plot(self.inv.z, self.inv.vel[:,centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax4.legend() self.ax5.legend() self.ax6.legend() px = self.inv.to_lonlat(*centre_coord) << u.arcsec self.colour_idx += 1 self.coords.append(px) self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax1.patches] for p in self.ax1.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.inv.to_lonlat(*box_anchor) << u.arcsec) rect1 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) rect2 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) rect3 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect3.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect1) self.ax2.add_patch(rect2) self.ax3.add_patch(rect3) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt1 = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt2 = self.ax2.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt3 = self.ax3.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt3.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) if self.eb: self.ax4.errorbar(self.inv.z, np.mean(self.inv.ne[:,box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(0,1)), yerr=np.mean(self.inv.err[:,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx,0], axis=(0,1)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5.errorbar(self.inv.z, np.mean(self.inv.temp[:,box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(0,1)), yerr=np.mean(self.inv.err[box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx,1], axis=(0,1)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax6.errorbar(self.inv.z, np.mean(self.inv.vel[:,box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(0,1)), yerr=np.mean(self.inv.err[:,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx,2], axis=(0,1)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) else: self.ax4.plot(self.inv.z, np.mean(self.inv.ne[:,box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5.plot(self.inv.z, np.mean(self.inv.temp[:,box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax6.plot(self.inv.z, np.mean(self.inv.vel[:,box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax4.legend() self.ax5.legend() self.ax6.legend() self.colour_idx += 1 self.fig.canvas.draw() def _shape(self, opts): self.shape = opts def _boxx(self, x): self.boxx = x def _boxy(self, y): self.boxy = y def _disconnect_matplotlib(self, _): self.fig.canvas.mpl_disconnect(self.receiver) def _clear(self, _): self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax2.patches) > 0: for p in self.ax2.patches: p.remove() while len(self.ax3.patches) > 0: for p in self.ax3.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.texts: t.remove() while len(self.ax2.texts) > 0: for t in self.ax2.texts: t.remove() while len(self.ax3.texts) > 0: for t in self.ax3.texts: t.remove() self.ax4.clear() self.ax4.set_ylabel(r"log n$_{e}$ [cm$^{-3}$]") self.ax5.clear() self.ax5.set_ylabel(r"log T [K]") self.ax6.clear() self.ax6.set_ylabel(r"v [km s$^{-1}$]") self.ax6.set_xlabel(r"z [Mm]") self.fig.canvas.draw() self.fig.canvas.flush_events() def _save(self, _): self.fig.savefig(self.filename, dpi=300) def _file_name(self, fn): self.filename = fn def _img_plot(self, z): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar != None: self.ax1.images[-1].colorbar.remove() if self.ax2.images == []: pass elif self.ax2.images[-1].colorbar != None: self.ax2.images[-1].colorbar.remove() if self.ax3.images == []: pass elif self.ax3.images[-1].colorbar != None: self.ax3.images[-1].colorbar.remove() z_idx = int(np.where(np.round(self.inv.z, decimals=3) == np.round(z, decimals=3))[0]) im1 = self.ax1.imshow(self.inv.ne[z_idx], cmap="cividis") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label=r"log $n_{e}$ [cm$^{-3}$]") im2 = self.ax2.imshow(self.inv.temp[z_idx], cmap="hot") self.fig.colorbar(im2, ax=self.ax2, orientation="horizontal", label=r"log T [K]") im3 = self.ax3.imshow(self.inv.vel[z_idx], cmap="RdBu", clim=(-np.max(self.inv.vel[z_idx]), np.max(self.inv.vel[z_idx]))) self.fig.colorbar(im3, ax=self.ax3, orientation="horizontal", label=r"v [km s$^{-1}$]") class ImageViewer: """ This visualiser only views the images for data, not the spectra. For use when interested only in imaging data. Includes sliders to change the wavelength of the observation. :param data: The data to explore, this can be either one or two spectral lines (support for more than two can be added if required). This is the only required argument to view the data. :type data: str or list or CRISP or CRISPSequence or CRISPNonU or CRISPNonUSequence :param wcs: A prescribed world coordinate system. If None, the world coordinate system is derived from the data. Default is None. :type wcs: astropy.wcs.WCS or None, optional :param uncertainty: The uncertainty in the intensity values of the data. Default is None. :type uncertainty: numpy.ndarray or None, optional :param mask: A mask to be used on the data. Default is None. :type mask: numpy.ndarray or None, optional :param nonu: Whether or not the spectral axis is non-uniform. Default is False. :type nonu: bool, optional """ def __init__(self, data, wcs=None, uncertainty=None, mask=None, nonu=False): plt.style.use("bmh") self.aa = html.unescape("&#8491;") self.l = html.unescape("&lambda;") self.a = html.unescape("&alpha;") self.D = html.unescape("&Delta;") if not nonu: if type(data) == str: self.cube = CRISP(filename=data, wcs=wcs, uncertainty=uncertainty, mask=mask) if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == list: data = CRISP_sequence_constructor(data, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube = CRISPSequence(files=data) if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom elif type(data) == CRISP: self.cube = data if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == CRISPSequence: self.cube = data if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom else: if type(data) == str: self.cube = CRISPNonU(filename=data, wcs=wcs, uncertainty=uncertainty, mask=mask) if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == list: data = CRISP_sequence_constructor(data, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube = CRISPNonUSequence(files=data) if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom elif type(data) == CRISPNonU: self.cube = data if self.cube.file.data.ndim == 3: self.wvls = self.cube.wave(np.arange(self.cube.shape[0])) << u.Angstrom elif self.cube.file.data.ndim == 4: self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == CRISPNonUSequence: self.cube = data if self.cube.list[0].file.data.ndim == 3: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[0])) << u.Angstrom elif self.cube.list[0].file.data.ndim == 4: self.wvls1 = self.cube.list[0].wave(np.arange(self.cube.list[0].shape[1])) << u.Angstrom if self.cube.list[1].file.data.ndim == 3: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[0])) << u.Angstrom elif self.cube.list[1].file.data.ndim == 4: self.wvls2 = self.cube.list[1].wave(np.arange(self.cube.list[1].shape[1])) << u.Angstrom if type(self.cube) == CRISP or type(self.cube) == CRISPNonU: self.fig = plt.figure(figsize=(8,10)) try: self.ax1 = self.fig.add_subplot(1, 1, 1, projection=self.cube.wcs.dropaxis(-1)) except: self.ax1 = self.fig.add_subplot(1, 1, 1, projection=SlicedLowLevelWCS(self.cube[0].wcs.low_level_wcs, 0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") ll = widgets.SelectionSlider(options=[np.round(l - np.median(self.wvls), decimals=2).value for l in self.wvls], description = f"{self.D} {self.l} [{self.aa}]") out1 = widgets.interactive_output(self._img_plot1, {"ll" : ll}) display(widgets.HBox([ll])) elif type(self.cube) == CRISPSequence or type(self.cube) == CRISPNonUSequence: self.fig = plt.figure(figsize=(8,10)) try: self.ax1 = self.fig.add_subplot(1, 2, 1, projection=self.cube.list[0].wcs.dropaxis(-1)) except: self.ax1 = self.fig.add_subplot(1, 2, 1, projection=SlicedLowLevelWCS(self.cube.list[0][0].wcs.low_level_wcs, 0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") try: self.ax2 = self.fig.add_subplot(1, 2, 2, projection=self.cube.list[1].wcs.dropaxis(-1)) except: self.ax2 = self.fig.add_subplot(1, 2, 2, projection=SlicedLowLevelWCS(self.cube.list[1][0].wcs.low_level_wcs, 0)) self.ax2.set_ylabel("Helioprojective Latitude [arcsec]") self.ax2.set_xlabel("Helioprojective Longitude [arcsec]") ll1 = widgets.SelectionSlider( options=[np.round(l - np.median(self.wvls1), decimals=2).value for l in self.wvls1], description=fr"{self.D} {self.l}$_{1}$ [{self.aa}]", style={"description_width" : "initial"} ) ll2 = widgets.SelectionSlider( options=[np.round(l - np.median(self.wvls2), decimals=2).value for l in self.wvls2], description=fr"{self.D} {self.l}$_{2}$ [{self.aa}]", style={"description_width" : "initial"} ) out1 = widgets.interactive_output(self._img_plot2, {"ll1" : ll1, "ll2" : ll2}) display(widgets.HBox([widgets.VBox([ll1, ll2])])) done_button = widgets.Button(description="Done") done_button.on_click(self._disconnect_matplotlib) save_button = widgets.Button(description="Save") save_button.on_click(self._save) display(widgets.HBox([done_button, save_button])) widgets.interact(self._file_name, fn= widgets.Text(description="Filename to save as: ", style={"description_width" : "initial"}, layout=widgets.Layout(width="50%"))) def _disconnect_matplotlib(self, _): self.fig.canvas.mpl_disconnect(self.receiver) def _save(self, _): self.fig.savefig(self.filename, dpi=300) def _file_name(self, fn): self.filename = fn def _img_plot1(self, ll): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar is not None: self.ax1.images[-1].colorbar.remove() ll_idx = int(np.where(np.round(self.wvls, decimals=2).value == np.round(np.median(self.wvls).value + ll, decimals=2))[0]) try: data = self.cube.file.data[ll_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") except: data = self.cube.file.data[0, ll_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") try: el = self.cube.file.header["WDESC1"] except KeyError: el = self.cube.file.header["element"] self.ax1.set_title(fr"{el} {self.aa} {self.D} {self.l}$_{1}$ = {ll} {self.aa}") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="Intensity [DNs]") def _img_plot2(self, ll1, ll2): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar is not None: self.ax1.images[-1].colorbar.remove() if self.ax2.images == []: pass elif self.ax2.images[-1].colorbar is not None: self.ax2.images[-1].colorbar.remove() ll1_idx = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + ll1, decimals=2))[0]) ll2_idx = int(np.where(np.round(self.wvls2, decimals=2).value == np.round(np.median(self.wvls2).value + ll2, decimals=2))[0]) try: data = self.cube.list[0].file.data[ll1_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") except: data = self.cube.list[0].file.data[0, ll1_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") try: data = self.cube.list[1].file.data[ll2_idx].astype(np.float) data[data < 0] = np.nan im2 = self.ax2.imshow(data, cmap="Greys_r") except: data = self.cube.list[1].file.data[0, ll2_idx].astype(np.float) data[data < 0] = np.nan im2 = self.ax2.imshow(data, cmap="Greys_r") try: el1 = self.cube.list[0].file.header["WDESC1"] el2 = self.cube.list[1].file.header["WDESC1"] except KeyError: el1 = self.cube.list[0].file.header["element"] el2 = self.cube.list[1].file.header["element"] self.ax1.set_title(fr"{el1} {self.aa} {self.D} {self.l}$_{1}$ = {ll1} {self.aa}") self.ax2.set_title(fr"{el2} {self.aa} {self.D} {self.l}$_{2}$ = {ll2} {self.aa}") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="Intensity [DNs]") self.fig.colorbar(im2, ax=self.ax2, orientation="horizontal", label="Intensity [DNs]") class SpectralTimeViewer: """ Imaging spectroscopic viewer. SpectralTimeViewer should be used when one wants to click on points of an image and have the spectrum displayed for that point and the time series for a certain time range of observations. This works **exclusively** in Jupyter notebook but can be a nice data exploration tool. This viewer utilises the data structures defined in `crispy.crisp` and has many variable options. :param data1: The data to explore, this is one spectral line. This is the only required argument to view the data. :type data1: list or CRISPSequence or CRISPNonUSequence :param data2: If there is a second set of data to explore. :type data2: list or CRISPSequence or CRISPNonUSequence :param wcs: A prescribed world coordinate system. If None, the world coordinate system is derived from the data. Default is None. :type wcs: astropy.wcs.WCS or None, optional :param uncertainty: The uncertainty in the intensity values of the data. Default is None. :type uncertainty: numpy.ndarray or None, optional :param mask: A mask to be used on the data. Default is None. :type mask: numpy.ndarray or None, optional :param nonu: Whether or not the spectral axis is non-uniform. Default is False. :type nonu: bool, optional :cvar coords: The coordinates selected to produce spectra. :type coords: list[tuple] :cvar px_coords: The coordinates selected to produce spectra in pixel space. This is important for indexing the data later to get the correct spectra. :type px_coords: list[tuple] :cvar shape_type: The spectra can be selected for a single point or for a box with specified dimensions with top-left corner where the user clicks. This attribute tells the user which point is described by which shape. :type shape_type: list[str] """ def __init__(self, data1, data2=None, wcs=None, uncertainty=None, mask=None, nonu=False): plt.style.use("bmh") self.aa = html.unescape("&#8491;") self.l = html.unescape("&lambda;") self.a = html.unescape("&alpha;") self.D = html.unescape("&Delta;") shape = widgets.Dropdown(options=["point", "box"], value="point", description="Shape: ") if not nonu: if type(data1) == list: data1 = CRISP_sequence_constructor(data1, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube1 = CRISPSequence(files=data1) if self.cube1.list[0].file.data.ndim == 3: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[0])) << u.Angstrom elif self.cube1.list[0].file.data.ndim == 4: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[1])) << u.Angstrom elif type(data1) == CRISPSequence: self.cube1 = data1 if self.cube1.list[0].file.data.ndim == 3: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[0])) elif self.cube1.list[0].file.data.ndim == 4: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[1])) if data2 == None: pass elif type(data2) == list: data2 = CRISP_sequence_constructor(data2, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube2 = CRISPSequence(files=data2) if self.cube2.list[0].file.data.ndim == 3: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[0])) elif self.cube2.list[0].file.data.ndim == 4: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[1])) elif type(data2) == CRISPSequence: self.cube2 = data2 if self.cube2.list[0].file.data.ndim == 3: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[0])) elif self.cube2.list[0].file.data.ndim == 4: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[1])) else: if type(data1) == list: data1 = CRISP_sequence_constructor(data1, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube1 = CRISPNonUSequence(files=data1) if self.cube1.list[0].file.data.ndim == 3: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[0])) << u.Angstrom elif self.cube1.list[0].file.data.ndim == 4: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[1])) << u.Angstrom elif type(data1) == CRISPNonUSequence: self.cube1 = data if self.cube1.list[0].file.data.ndim == 3: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[0])) << u.Angstrom elif self.cube1.list[0].file.data.ndim == 4: self.wvls1 = self.cube1.list[0].wave(np.arange(self.cube1.list[0].shape[1])) << u.Angstrom if data2 == None: pass elif type(data2) == list: data2 = CRISP_sequence_constructor(data2, wcs=wcs, uncertainty=uncertainty, mask=mask, nonu=nonu) self.cube2 = CRISPNonUSequence(files=data2) if self.cube2.list[0].file.data.ndim == 3: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[0])) elif self.cube2.list[0].file.data.ndim == 4: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[1])) elif type(data2) == CRISPNonUSequence: self.cube2 = data2 if self.cube2.list[0].file.data.ndim == 3: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[0])) elif self.cube2.list[0].file.data.ndim == 4: self.wvls2 = self.cube2.list[0].wave(np.arange(self.cube2.list[0].shape[1])) if data2 == None: self.fig = plt.figure(figsize=(8,10)) self.gs = self.fig.add_gridspec(nrows=2, ncols=2) if self.cube1.list[0].file.data.ndim == 3: self.ax1 = self.fig.add_subplot(self.gs[0,0], projection=self.cube1.list[0].wcs.dropaxis(-1)) elif self.cube1.list[0].file.data.ndim == 4: self.ax1 = self.fig.add_subplot(self.gs[0,0], projection=SlicedLowLevelWCS(self.cube1.list[0][0].wcs.low_level_wcs, 0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax2 = self.fig.add_subplot(self.gs[0,1]) self.ax2.yaxis.set_label_position("right") self.ax2.yaxis.tick_right() self.ax2.set_ylabel("I [DNs]") self.ax2.set_xlabel(f"{self.l} [{self.aa}]") self.ax2.tick_params(direction="in") self.ax3 = self.fig.add_subplot(self.gs[1,:]) self.ax3.set_ylabel("I [DNs]") self.ax3.set_xlabel("Time [UTC]") self.ll = widgets.SelectionSlider(options=[np.round(l - np.median(self.wvls1), decimals=2).value for l in self.wvls1], description = f"{self.D} {self.l} [{self.aa}]") self.t = widgets.IntSlider(value=0, min=0, max=len(self.cube1.list)-1, step=1, description="Time index: ", disabled=False) try: self.times1 = [date2num(f.file.header["DATE-AVG"]) for f in self.cube1.list] except KeyError: self.times1 = [date2num(f.file.header["date_obs"]+" "+f.file.header["time_obs"]) for f in self.cube1.list] out1 = widgets.interactive_output(self._img_plot1, {"ll" : self.ll, "t" : self.t}) out2 = widgets.interactive_output(self._shape, {"opts" : shape}) display(widgets.HBox([widgets.VBox([self.ll,self.t]), shape])) else: self.fig = plt.figure(figsize=(8,10)) self.gs = self.fig.add_gridspec(nrows=3, ncols=2) try: self.ax1 = self.fig.add_subplot(self.gs[0,0], projection=self.cube1.list[0].wcs.dropaxis(-1)) except: self.ax1 = self.fig.add_subplot(self.gs[0,0], projection=SlicedLowLevelWCS(self.cube1.list[0][0].wcs.low_level_wcs, 0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax1.xaxis.set_label_position("top") self.ax1.xaxis.tick_top() try: self.ax2 = self.fig.add_subplot(self.gs[1,0], projection=self.cube2.list[0].wcs.dropaxis(-1)) except: self.ax2 = self.fig.add_subplot(self.gs[1,0], projection=SlicedLowLevelWCS(self.cube2.list[0][0].wcs.low_level_wcs, 0)) self.ax2.set_ylabel("Helioprojective Latitude [arcsec]") self.ax2.set_xlabel("Helioprojective Longitude [arcsec]") self.ax3 = self.fig.add_subplot(self.gs[0,1]) self.ax3.yaxis.set_label_position("right") self.ax3.yaxis.tick_right() self.ax3.set_ylabel("Intensity [DNs]") self.ax3.set_xlabel(f"{self.l} [{self.aa}]") self.ax3.xaxis.set_label_position("top") self.ax3.xaxis.tick_top() self.ax3.tick_params(direction="in") self.ax4 = self.fig.add_subplot(self.gs[1,1]) self.ax4.yaxis.set_label_position("right") self.ax4.yaxis.tick_right() self.ax4.set_ylabel("Intensity [DNs]") self.ax4.set_xlabel(f"{self.l} [{self.aa}]") self.ax4.tick_params(direction="in") self.ax5 = self.fig.add_subplot(self.gs[2,:]) self.ax5.set_ylabel("Intensity [DNs]") self.ax5.set_xlabel("Time [UTC]") self.ax5b = self.ax5.twinx() self.ax5b.set_ylabel("Intensity [DNs]") self.ll1 = widgets.SelectionSlider( options=[np.round(l - np.median(self.wvls1), decimals=2).value for l in self.wvls1], description=fr"{self.aa} {self.D} {self.l}$_{1}$ [{self.aa}]", style={"description_width" : "initial"} ) self.ll2 = widgets.SelectionSlider( options=[np.round(l - np.median(self.wvls2), decimals=2).value for l in self.wvls2], description=fr"{self.aa} {self.D} {self.l}$_{2}$ [{self.aa}]", style={"description_width" : "initial"} ) self.t1 = widgets.IntSlider(value=0, min=0, max=len(self.cube1.list)-1, step=1, disabled=False, description=r"t$_{1}$ index: ") self.t2 = widgets.IntSlider(value=0, min=0, max=len(self.cube2.list)-1, step=1, disabled=False, description=r"t$_{2}$ index: ") try: self.times1 = [date2num(f.file.header["DATE-AVG"]) for f in self.cube1.list] self.times2 = [date2num(f.file.header["DATE-AVG"]) for f in self.cube2.list] except KeyError: self.times1 = [date2num(f.file.header["date_obs"]+" "+f.file.header["time_obs"]) for f in self.cube1.list] self.times2 = [date2num(f.file.header["date_obs"]+" "+f.file.header["time_obs"]) for f in self.cube2.list] out1 = widgets.interactive_output(self._img_plot2, {"ll1" : self.ll1, "ll2" : self.ll2, "t1" : self.t1, "t2" : self.t2}) out2 = widgets.interactive_output(self._shape, {"opts" : shape}) display(widgets.HBox([widgets.VBox([widgets.HBox([self.ll1, self.ll2]),widgets.HBox([self.t1, self.t2])]), shape])) self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 self.receiver = self.fig.canvas.mpl_connect("button_press_event", self._on_click) x = widgets.IntText(value=1, min=1, max=self.cube1.list[0].shape[-1], description="x [pix]") y = widgets.IntText(value=1, min=1, max=self.cube1.list[0].shape[-2], description="y [pix]") outx = widgets.interactive_output(self._boxx, {"x" : x}) outy = widgets.interactive_output(self._boxy, {"y" : y}) display(widgets.HBox([x, y])) done_button = widgets.Button(description="Done") done_button.on_click(self._disconnect_matplotlib) clear_button = widgets.Button(description="Clear") clear_button.on_click(self._clear) save_button = widgets.Button(description="Save") save_button.on_click(self._save) display(widgets.HBox([done_button, clear_button, save_button])) widgets.interact(self._file_name, fn= widgets.Text(description="Filename to save as: ", style={"description_width" : "initial"}, layout=widgets.Layout(width="50%"))) def _on_click(self, event): if self.fig.canvas.manager.toolbar.mode != "": return if not hasattr(self, "cube2"): if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) self.px_coords.append(centre_coord) self.shape_type.append("point") circ = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) px = self.cube1.list[self.t.value].to_lonlat(*centre_coord) << u.arcsec if self.cube1.list[0].file.data.ndim == 3: self.ax2.plot(self.wvls1, self.cube1.list[self.t.value].file.data[:, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube1.list[0].file.data.ndim == 4: self.ax2.plot(self.wvls1, self.cube1.list[self.t.value].file.data[0, :, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax2.legend() ll_idx = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + self.ll.value, decimals=2))[0]) if self.cube1.list[0].file.data.ndim == 3: i_time1 = [f.file.data[ll_idx, centre_coord[0], centre_coord[1]] for f in self.cube1.list] self.ax3.plot(self.times1, i_time1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube1.list[0].file.data.ndim == 4: i_time1 = [f.file.data[0, ll_idx, centre_coord[0], centre_coord[1]] for f in self.cube1.list] self.ax3.plot(self.times1, i_time1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax3.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.coords.append(px) self.colour_idx += 1 self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax1.patches] for p in self.ax.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.cube1.list[0].to_lonlat(*box_anchor) << u.arcsec) rect = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) if self.cube1.list[0].file.data.ndim == 3: self.ax2.plot(self.wvls1, np.mean(self.cube1.list[self.t.value].file.data[:,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube1.list[0].file.data.ndim == 4: self.ax2.plot(self.wvls1, np.mean(self.cube1.list[self.t.value].file.data[0, :,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx],axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax2.legend() ll_idx = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + self.ll.value, decimals=2))[0]) if self.cube1.list[0].file.data.ndim == 3: i_time1 = [np.mean(f.file.data[ll_idx,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube1.list] self.ax3.plot(self.times1, i_time1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube1.list[0].file.data.ndim == 4: i_time1 = [np.mean(f.file.data[0, ll_idx,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube1.list] self.ax3.plot(self.times1, i_time1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax3.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.colour_idx += 1 self.fig.canvas.draw() else: if self.shape == "point": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 centre_coord = int(event.ydata), int(event.xdata) #with WCS, the event data is returned in pixels so we don't need to do the conversion from real world but rather to real world later on self.px_coords.append(centre_coord) circ1 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) circ2 = patches.Circle(centre_coord[::-1], radius=10, facecolor=list(pt_bright_cycler)[self.colour_idx]["color"], edgecolor="k", linewidth=1) self.ax1.add_patch(circ1) self.ax2.add_patch(circ2) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt_1 = self.ax1.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_2 = self.ax2.text(centre_coord[1]+20, centre_coord[0]+10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt_1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt_2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) px = self.cube1.list[0].to_lonlat(*centre_coord) << u.arcsec if self.cube1.list[0].file.data.ndim == 3: self.ax3.plot(self.wvls1, self.cube1.list[self.t1.value].file.data[:, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube1.list[0].file.data.ndim == 4: self.ax3.plot(self.wvls1, self.cube1.list[self.t1.value].file.data[0, :, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) if self.cube2.list[0].file.data.ndim == 3: self.ax4.plot(self.wvls2, self.cube2.list[self.t2.value].file.data[:, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube2.list[0].file.data.ndim == 4: self.ax4.plot(self.wvls2, self.cube2.list[self.t2.value].file.data[0, :, centre_coord[0], centre_coord[1]], marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.legend() self.ax4.legend() ll_idx1 = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + self.ll1.value, decimals=2))[0]) ll_idx2 = int(np.where(np.round(self.wvls2, decimals=2).value == np.round(np.median(self.wvls2).value + self.ll2.value, decimals=2))[0]) if self.cube1.list[0].file.data.ndim == 3: i_time1 = [f.file.data[ll_idx1, centre_coord[0], centre_coord[1]] for f in self.cube1.list] elif self.cube1.list[0].file.data.ndim == 4: i_time1 = [f.file.data[0, ll_idx1, centre_coord[0], centre_coord[1]] for f in self.cube1.list] if self.cube2.list[0].file.data.ndim == 3: i_time2 = [f.file.data[ll_idx2, centre_coord[0], centre_coord[1]] for f in self.cube2.list] elif self.cube2.list[0].file.data.ndim == 4: i_time2 = [f.file.data[0, ll_idx2, centre_coord[0], centre_coord[1]] for f in self.cube2.list] self.ax5.plot(self.times1, i_time1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5b.plot(self.times2, i_time2, linestyle="--", marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax5.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.coords.append(px) self.colour_idx += 1 self.fig.canvas.draw() elif self.shape == "box": if self.colour_idx > len(pt_bright_cycler)-1: self.colour_idx = 0 self.n += 1 box_anchor = int(event.ydata), int(event.xdata) self.px_coords.append(box_anchor) self.shape_type.append("box") # obtain the coordinates of the box on a grid with pixels the size of the box to make sure there is not copies of the same box box_coord = box_anchor[0] // self.boxy, box_anchor[1] // self.boxx if box_coord in self.box_coords: coords = [p.get_xy() for p in self.ax1.patches] for p in self.ax.patches: if p.get_xy() == box_anchor: p.remove() idx = self.box_coords.index(box_coord) del self.box_coords[idx] del self.px_coords[idx] del self.shape_type[idx] del self.coords[idx] return self.coords.append(self.cube1.list[0].to_lonlat(*box_anchor) << u.arcsec) rect1 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) rect2 = patches.Rectangle(box_anchor[::-1], self.boxx, self.boxy, linewidth=2, edgecolor=list(pt_bright_cycler)[self.colour_idx]["color"], facecolor="none") rect2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) self.ax1.add_patch(rect1) self.ax2.add_patch(rect2) font = { "size" : 12, "color" : list(pt_bright_cycler)[self.colour_idx]["color"] } txt1 = self.ax1.text(box_anchor[1]-50, box_anchor[0]-10, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt1.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) txt2 = self.ax2.text(box_anchor[1]-50, box_anchor[0]-1, s=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", fontdict=font) txt2.set_path_effects([PathEffects.withStroke(linewidth=3, foreground="k")]) if self.cube1.list[0].file.data.ndim == 3: self.ax3.plot(self.wvls1, np.mean(self.cube1.list[self.t1.value].file.data[:, box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube1.list[0].file.data.ndim == 4: self.ax3.plot(self.wvls1, np.mean(self.cube1.list[self.t1.value].file.data[0, :, box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) if self.cube2.list[0].file.data.ndim == 3: self.ax4.plot(self.wvls2, np.mean(self.cube2.list[self.t2.value].file.data[:, box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) elif self.cube2.list[0].file.data.ndim == 4: self.ax4.plot(self.wvls2, np.mean(self.cube2.list[self.t2.value].file.data[0, :, box_anchor[0]:box_anchor[0]+self.boxy, box_anchor[1]:box_anchor[1]+self.boxx], axis=(1,2)), marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax3.legend() self.ax4.legend() ll_idx1 = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + self.ll1.value, decimals=2))[0]) ll_idx2 = int(np.where(np.round(self.wvls2, decimals=2).value == np.round(np.median(self.wvls2).value + self.ll2.value, decimals=2))[0]) if self.cube1.list[0].file.data.ndim == 3: i_time1 = [np.mean(f.file.data[ll_idx1,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube1.list] elif self.cube1.list[0].file.data.ndim == 4: i_time1 = [np.mean(f.file.data[0, ll_idx1,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube1.list] if self.cube2.list[0].file.data.ndim == 3: i_time2 = [np.mean(f.file.data[ll_idx2,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube2.list] elif self.cube2.list[0].file.data.ndim == 4: i_time2 = [np.mean(f.file.data[0, ll_idx2,box_anchor[0]:box_anchor[0]+self.boxy,box_anchor[1]:box_anchor[1]+self.boxx]) for f in self.cube2.list] self.ax5.plot(self.times1, i_time1, marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5b.plot(self.times2, i_time2, linestyle="--", marker=Line2D.filled_markers[self.colour_idx+self.n*len(pt_bright_cycler)], label=f"{self.colour_idx+1+(self.n*len(pt_bright_cycler))}", c=list(pt_bright_cycler)[self.colour_idx]["color"]) self.ax5.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) for label in self.ax5.get_xticklabels(): label.set_rotation(40) label.set_horizontalalignment('right') self.colour_idx += 1 self.fig.canvas.draW() def _shape(self, opts): self.shape = opts def _boxx(self, x): self.boxx = x def _boxy(self, y): self.boxy = y def _disconnect_matplotlib(self, _): self.fig.canvas.mpl_disconnect(self.receiver) def _clear(self, _): self.coords = [] self.px_coords = [] self.shape_type = [] self.box_coords = [] self.colour_idx = 0 self.n = 0 if not hasattr(self, "cube2"): while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.texts: t.remove() self.ax2.clear() self.ax2.set_ylabel("Intensity [DNs]") self.ax2.set_xlabel(f"{self.l} [{self.aa}]") self.ax3.clear() self.ax3.set_ylabel("I [DNs]") self.ax3.set_xlabel("Time [UTC]") self.fig.canvas.draw() self.fig.canvas.flush_events() else: while len(self.ax1.patches) > 0: for p in self.ax1.patches: p.remove() while len(self.ax2.patches) > 0: for p in self.ax2.patches: p.remove() while len(self.ax1.texts) > 0: for t in self.ax1.texts: t.remove() while len(self.ax2.texts) > 0: for t in self.ax2.texts: t.remove() self.ax3.clear() self.ax3.set_ylabel("Intensity [DNs]") self.ax3.set_xlabel(f"{self.l} [{self.aa}]") self.ax4.clear() self.ax4.set_ylabel("Intensity [DNs]") self.ax4.set_xlabel(f"{self.l} [{self.aa}]") self.ax5.clear() self.ax5.set_ylabel("I [DNs]") self.ax5.set_xlabel("Time [UTC]") self.fig.canvas.draw() self.fig.canvas.flush_events() def _save(self, _): self.fig.savefig(self.filename, dpi=300) def _file_name(self, fn): self.filename = fn def _img_plot1(self, ll, t): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar != None: self.ax1.images[-1].colorbar.remove() ll_idx = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + ll, decimals=2))[0]) try: data = self.cube1.list[t].file.data[ll_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") except: data = self.cube1.list[t].file.data[0, ll_idx].astype(np.float) data[data < 0] = np.nan im1 = self.ax1.imshow(data, cmap="Greys_r") try: el = self.cube1.list[0].file.header["WDESC1"] except KeyError: el = self.cube1.list[0].file.header["element"] self.ax1.set_title(fr"{el} {self.aa} {self.D} {self.l}$_{1}$ = {ll} {self.aa}") self.fig.colorbar(im1, ax=self.ax1, orientation="horizontal", label="Intensity [DNs]") def _img_plot2(self, ll1, ll2, t1, t2): if self.ax1.images == []: pass elif self.ax1.images[-1].colorbar != None: self.ax1.images[-1].colorbar.remove() if self.ax2.images == []: pass elif self.ax2.images[-1].colorbar != None: self.ax2.images[-1].colorbar.remove() ll1_idx = int(np.where(np.round(self.wvls1, decimals=2).value == np.round(np.median(self.wvls1).value + ll1, decimals=2))[0]) ll2_idx = int(np.where(np.round(self.wvls2, decimals=2).value == np.round(np.median(self.wvls2).value + ll2, decimals=2))[0]) try: data1 = self.cube1.list[t1].file.data[ll1_idx].astype(np.float) data1[data1 < 0] = np.nan im1 = self.ax1.imshow(data1, cmap="Greys_r") except: data1 = self.cube1.list[t1].file.data[0, ll1_idx].astype(np.float) data1[data1 < 0] = np.nan im1 = self.ax1.imshow(data1, cmap="Greys_r") try: data2 = self.cube2.list[t2].file.data[ll2_idx].astype(np.float) data2[data2 < 0] = np.nan im2 = self.ax2.imshow(data2, cmap="Greys_r") except: data2 = self.cube2.list[t2].file.data[0, ll2_idx].astype(np.float) data2[data2 < 0] = np.nan im2 = self.ax2.imshow(data2, cmap="Greys_r") try: el1 = self.cube1.list[0].file.header["WDESC1"] el2 = self.cube2.list[0].file.header["WDESC1"] except KeyError: el1 = self.cube1.list[0].file.header["element"] el2 = self.cube2.list[0].file.header["element"] self.ax1.set_title(fr"{el1} {self.aa} {self.D} {self.l}$_{1}$ = {ll1} {self.aa}") self.ax2.set_title(fr"{el2} {self.aa} {self.D} {self.l}$_{2}$ = {ll2} {self.aa}") self.fig.colorbar(im1, ax=self.ax1, orientation="vertical", label="Intensity [DNs]") self.fig.colorbar(im2, ax=self.ax2, orientation="vertical", label="Intensity [DNs]") class PolarimetricViewer: """ This class defines the visualisation tool for exploring narrowband imaging spectropolarimetric data. This currently is only developed to look at one spectral line at a time. The functionality is similar to the ``SpectralViewer`` defines above but with an added Stokes parameter that can be changed. :param data: The data to explore, this is one spectral line. This is the only required argument to view the data. :type data: str or CRISP or CRISPNonU :param wcs: A prescribed world coordinate system. If None, the world coordinate system is derived from the data. Default is None. :type wcs: astropy.wcs.WCS or None, optional :param uncertainty: The uncertainty in the intensity values of the data. Default is None. :type uncertainty: numpy.ndarray or None, optional :param mask: A mask to be used on the data. Default is None. :type mask: numpy.ndarray or None, optional :param nonu: Whether or not the spectral axis is non-uniform. Default is False. :type nonu: bool, optional :cvar coords: The coordinates selected to produce spectra. :type coords: list[tuple] :cvar px_coords: The coordinates selected to produce spectra in pixel space. This is important for indexing the data later to get the correct spectra. :type px_coords: list[tuple] :cvar shape_type: The spectra can be selected for a single point or for a box with specified dimensions with top-left corner where the user clicks. This attribute tells the user which point is described by which shape. :type shape_type: list[str] """ def __init__(self, data, wcs=None, uncertainty=None, mask=None, nonu=False): plt.style.use("bmh") self.aa = html.unescape("&#8491;") self.l = html.unescape("&lambda;") self.a = html.unescape("&alpha;") self.D = html.unescape("&Delta;") shape = widgets.Dropdown(options=["point", "box"], value="point", description="Shape: ") if not nonu: if type(data) == str: self.cube = CRISP(filename=data, wcs=wcs, uncertainty=uncertainty, mask=mask) self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == CRISP: self.cube = data self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom else: if type(data) == str: self.cube = CRISPNonU(filename=data, wcs=wcs, uncertainty=uncertainty, mask=mask) self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom elif type(data) == CRISPNonU: self.cube = data self.wvls = self.cube.wave(np.arange(self.cube.shape[1])) << u.Angstrom self.fig = plt.figure(figsize=(12,10)) self.gs = self.fig.add_gridspec(nrows=2, ncols=6) self.ax1 = self.fig.add_subplot(self.gs[:,:2], projection=SlicedLowLevelWCS(self.cube[0].wcs.low_level_wcs,0)) self.ax1.set_ylabel("Helioprojective Latitude [arcsec]") self.ax1.set_xlabel("Helioprojective Longitude [arcsec]") self.ax2 = self.fig.add_subplot(self.gs[0,2:4]) self.ax2.set_ylabel("I [DNs]") self.ax2.set_xlabel(f"{self.l} [{self.aa}]") self.ax2.tick_params(direction="in") self.ax3 = self.fig.add_subplot(self.gs[0,4:]) self.ax3.yaxis.set_label_position("right") self.ax3.yaxis.tick_right() self.ax3.set_ylabel("Q [DNs]") self.ax3.set_xlabel(f"{self.l} [{self.aa}]") self.ax4 = self.fig.add_subplot(self.gs[1,2:4]) self.ax4.set_ylabel("U [DNs]") self.ax4.set_xlabel(f"{self.l} [{self.aa}]") self.ax5 = self.fig.add_subplot(self.gs[1,4:]) self.ax5.yaxis.set_label_position("right") self.ax5.yaxis.tick_right() self.ax5.set_ylabel("V [DNs]") self.ax5.set_xlabel(f"{self.l} [{self.aa}]") ll = widgets.SelectionSlider(options=[np.round(l -
np.median(self.wvls)
numpy.median
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 20 09:59:09 2017 @author: nsde """ #%% import numpy as np import matplotlib.pyplot as plt from scipy.linalg import expm as scipy_expm from ddtn.helper.utility import get_dir, load_obj, save_obj, make_hashable from ddtn.helper.math import null, create_grid #%% class setup_CPAB_transformer: def __init__(self, ncx = 2, ncy = 2, valid_outside = True, zero_trace = False, zero_boundary = False, name = 'cpab_basis', override = False): """ Main class for setting up cpab_transformer object. The main purpose of calling this class is to produce a file "cbap_basis.pkl" that contains all information needed for the transformation. Arguments: ncx: number of rectangular cells in x direction ncy: number of rectangular cells in y direction valid_outside: boolean, determines if transformation is valid outside the image region zero_trace: boolean, if true the transformation is area preserving <--> each affine transformation have zero trace zero_boundary: boolean, if true the velocity at the image boundary is constrained to be zero. NOTE: zero_boundary and valid_outside cannot both be True or False at the same time name: str, name for the created bases file. Default is 'cpab_basis', but can be used to create multiple basis files for easy switch between them override: if True, then a new basis will be saved to 'cbap_basis.pkl' even if it already exists """ # We cannot have zero boundary and valid_outside at the same time assert valid_outside != zero_boundary, '''valid_outside and zero_boundary cannot both be active or deactive at the same time, CHOOSE''' # Domain information self.valid_outside = valid_outside self.zero_trace = zero_trace self.zero_boundary = zero_boundary self.minbound = [-1, -1] self.maxbound = [1, 1] self.ncx = ncx self.ncy = ncy self.nC = 4*ncx*ncy self.inc_x = (self.maxbound[0] - self.minbound[0]) / self.ncx self.inc_y = (self.maxbound[1] - self.minbound[1]) / self.ncy self.Ashape = [2,3] self.Asize = np.prod(self.Ashape) dir_loc = get_dir(__file__) self.filename = dir_loc + '/../' + name # Try to load file with basis and vertices try: file = load_obj(self.filename) if override: raise print('File ' + name + '.pkl already exist, ' \ 'but override == True, ' \ 'so updating basis with new settings') # File found -> load information self.valid_outside = file['valid_outside'] self.zero_trace = file['zero_trace'] self.zero_boundary = file['zero_boundary'] self.B = file['B'] self.nConstrains = file['nConstrains'] self.cells_multiidx = file['cells_multiidx'] self.cells_verts = file['cells_verts'] self.ncx = file['ncx'] self.ncy = file['ncy'] self.nC = 4*self.ncx*self.ncy self.inc_x = (self.maxbound[0] - self.minbound[0]) / self.ncx self.inc_y = (self.maxbound[1] - self.minbound[1]) / self.ncy loaded = True except: # Else create it # Call tessalation and get vertices of cells self.cells_multiidx, self.cells_verts = self.tessalation() # Find shared vertices (edges) where a continuity constrain needs to hold self.shared_v, self.shared_v_idx = self.find_shared_verts() # If the transformation should be valid outside of the image domain, # calculate the auxiliary points and add them to the edges where a # continuity constrain should be if self.valid_outside: shared_v_outside, shared_v_idx_outside = self.find_shared_verts_outside() if shared_v_outside.size != 0: self.shared_v = np.concatenate((self.shared_v, shared_v_outside)) self.shared_v_idx = np.concatenate((self.shared_v_idx, shared_v_idx_outside)) # Create L L = self.create_continuity_constrains() # Update L with extra constrains if needed if self.zero_trace: Ltemp = self.create_zero_trace_constrains() L = np.vstack((L, Ltemp)) if self.zero_boundary: Ltemp = self.create_zero_boundary_constrains() L = np.vstack((L, Ltemp)) # Number of constrains self.nConstrains = L.shape[0] # Find the null space of L, which is the basis B self.B = null(L) # Save all information save_obj({ 'B': self.B, 'D': self.B.shape[0], 'd': self.B.shape[1], 'nConstrains': self.nConstrains, 'cells_multiidx': self.cells_multiidx, 'cells_verts': self.cells_verts, 'nC': self.nC, 'ncx': self.ncx, 'ncy': self.ncy, 'inc_x': self.inc_x, 'inc_y': self.inc_y, 'minbound': self.minbound, 'maxbound': self.maxbound, 'valid_outside': self.valid_outside, 'zero_trace': self.zero_trace, 'zero_boundary': self.zero_boundary }, self.filename) loaded = False # Get shapes of PA space and CPA space self.D, self.d = self.B.shape # Print information about basis print(70*'-') if loaded: print('Loaded file ' + name + '.pkl, ' \ 'containing tessalation with settings:') else: print('Creating file ' + name +'.pkl, ' \ 'containing tessalation with settings:') print(' nx = {0}, ny = {1}'.format(self.ncx, self.ncy)) print(' valid outside = {0}'.format(self.valid_outside)) print(' zero boundary = {0}'.format(self.zero_boundary)) print(' volume preserving = {0}'.format(self.zero_trace)) print('With these settings, theta.shape = {0}x1'.format(self.B.shape[1])) print(70*'-') def tessalation(self): """ Finds the coordinates of all cell vertices """ xmin, ymin = self.minbound xmax, ymax = self.maxbound Vx = np.linspace(xmin, xmax, self.ncx+1) Vy = np.linspace(ymin, ymax, self.ncy+1) cells_x = [ ] cells_x_verts = [ ] for i in range(self.ncy): for j in range(self.ncx): ul = tuple([Vx[j],Vy[i],1]) ur = tuple([Vx[j+1],Vy[i],1]) ll = tuple([Vx[j],Vy[i+1],1]) lr = tuple([Vx[j+1],Vy[i+1],1]) center = [(Vx[j]+Vx[j+1])/2,(Vy[i]+Vy[i+1])/2,1] center = tuple(center) cells_x_verts.append((center,ul,ur)) # order matters! cells_x_verts.append((center,ur,lr)) # order matters! cells_x_verts.append((center,lr,ll)) # order matters! cells_x_verts.append((center,ll,ul)) # order matters! cells_x.append((j,i,0)) cells_x.append((j,i,1)) cells_x.append((j,i,2)) cells_x.append((j,i,3)) return cells_x, np.asarray(cells_x_verts) def find_shared_verts(self): """ Find all pair of cells that share a vertices that encode continuity constrains inside the domain """ nC = self.nC shared_v = [ ] shared_v_idx = [ ] for i in range(nC): for j in range(nC): vi = make_hashable(self.cells_verts[i]) vj = make_hashable(self.cells_verts[j]) shared_verts = set(vi).intersection(vj) if len(shared_verts) == 2 and (j,i) not in shared_v_idx: shared_v.append(list(shared_verts)) shared_v_idx.append((i,j)) return np.array(shared_v), shared_v_idx def find_shared_verts_outside(self): """ Find all pair of cells that share a vertices that encode continuity constrains outside the domain """ shared_v = [ ] shared_v_idx = [ ] left = np.zeros((self.nC, self.nC), np.bool) right = np.zeros((self.nC, self.nC), np.bool) top = np.zeros((self.nC, self.nC), np.bool) bottom = np.zeros((self.nC, self.nC), np.bool) for i in range(self.nC): for j in range(self.nC): vi = make_hashable(self.cells_verts[i]) vj = make_hashable(self.cells_verts[j]) shared_verts = set(vi).intersection(vj) mi = self.cells_multiidx[i] mj = self.cells_multiidx[j] # leftmost col, left triangle, adjacent rows if mi[0]==mj[0]==0 and \ mi[2]==mj[2]==3 and \ np.abs(mi[1]-mj[1])==1: left[i,j]=True # rightmost col, right triangle, adjacent rows if mi[0]==mj[0]==self.ncx-1 and \ mi[2]==mj[2]==1 and \ np.abs(mi[1]-mj[1])==1: right[i,j]=True # uppermost row, upper triangle , adjacent cols if mi[1]==mj[1]==0 and \ mi[2]==mj[2]==0 and \ np.abs(mi[0]-mj[0])==1: top[i,j]=True # lowermost row, # lower triangle, # adjacent cols if mi[1]==mj[1]==self.ncy-1 and \ mi[2]==mj[2]==2 and \ np.abs(mi[0]-mj[0])==1: bottom[i,j]=True if len(shared_verts) == 1 and \ any([left[i,j],right[i,j],top[i,j],bottom[i,j]]) and \ (j,i) not in shared_v_idx: v_aux = list(shared_verts)[0] # v_aux is a tuple v_aux = list(v_aux) # Now v_aux is a list (i.e. mutable) if left[i,j] or right[i,j]: v_aux[0]-=10 # Create a new vertex with the same y elif top[i,j] or bottom[i,j]: v_aux[1]-=10 # Create a new vertex with the same x else: raise ValueError("WTF?") shared_verts = [tuple(shared_verts)[0], tuple(v_aux)] shared_v.append(shared_verts) shared_v_idx.append((i,j)) return np.array(shared_v), shared_v_idx def create_continuity_constrains(self): """ Based on the vertices found that are shared by cells, construct continuity constrains """ Ltemp = np.zeros(shape=(0,6*self.nC)) count = 0 for i,j in self.shared_v_idx: # Row 1 [x_a^T 0_{1x3} -x_a^T 0_{1x3}] row1 = np.zeros(shape=(6*self.nC)) row1[(6*i):(6*(i+1))] = np.append(np.array(self.shared_v[count][0]), np.zeros((1,3))) row1[(6*j):(6*(j+1))] = np.append(-np.array(self.shared_v[count][0]), np.zeros((1,3))) # Row 2 [0_{1x3} x_a^T 0_{1x3} -x_a^T] row2 = np.zeros(shape=(6*self.nC)) row2[(6*i):(6*(i+1))] = np.append(np.zeros((1,3)), np.array(self.shared_v[count][0])) row2[(6*j):(6*(j+1))] = np.append(np.zeros((1,3)), -np.array(self.shared_v[count][0])) # Row 3 [x_b^T 0_{1x3} -x_b^T 0_{1x3}] row3 = np.zeros(shape=(6*self.nC)) row3[(6*i):(6*(i+1))] = np.append(np.array(self.shared_v[count][1]), np.zeros((1,3))) row3[(6*j):(6*(j+1))] = np.append(-np.array(self.shared_v[count][1]), np.zeros((1,3))) # Row 4 [0_{1x3} x_b^T 0_{1x3} -x_b^T] row4 = np.zeros(shape=(6*self.nC)) row4[(6*i):(6*(i+1))] = np.append(np.zeros((1,3)), np.array(self.shared_v[count][1])) row4[(6*j):(6*(j+1))] = np.append(np.zeros((1,3)), -np.array(self.shared_v[count][1])) Ltemp = np.vstack((Ltemp, row1, row2, row3, row4)) count += 1 return Ltemp def create_zero_trace_constrains(self): """ Construct zero trace (volume perservation) constrains """ Ltemp = np.zeros(shape=(self.nC, 6*self.nC)) for c in range(self.nC): Ltemp[c,(6*c):(6*(c+1))] = np.array([1,0,0,0,1,0]) return Ltemp def create_zero_boundary_constrains(self): """ Construct zero boundary i.e. fixed boundary constrains. Note that points on the upper and lower bound can still move to the left and right and points on the left and right bound can still move up and down. Thus, they are only partial zero. """ xmin, ymin = self.minbound xmax, ymax = self.maxbound Ltemp = np.zeros(shape=(0,6*self.nC)) for c in range(self.nC): for v in self.cells_verts[c]: if(v[0] == xmin or v[0] == xmax): row = np.zeros(shape=(6*self.nC)) row[(6*c):(6*(c+1))] = np.append(np.zeros((1,3)),v) Ltemp = np.vstack((Ltemp, row)) if(v[1] == ymin or v[1] == ymax): row =
np.zeros(shape=(6*self.nC))
numpy.zeros
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # REP assert len(A._ID_dict['non-collapse']) == len(A._ID_dict['repairable']) assert len(A._ID_dict['irreparable']) == 0 # cost DV_COST = A._DV_dict['rec_cost'] # DS1 C_CDF = DV_COST.iloc[:, 0] C_CDF = np.around(C_CDF / 10., decimals=0) * 10. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 2500], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 C_CDF = DV_COST.iloc[:, 1] C_CDF = np.around(C_CDF / 100., decimals=0) * 100. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 25000], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 C_CDF = DV_COST.iloc[:, 2] C_CDF = np.around(C_CDF / 1000., decimals=0) * 1000. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 250000], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # time DV_TIME = A._DV_dict['rec_time'] # DS1 T_CDF = DV_TIME.iloc[:, 0] T_CDF = np.around(T_CDF, decimals=1) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 2.5], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 T_CDF = DV_TIME.iloc[:, 1] T_CDF = np.around(T_CDF, decimals=0) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 25], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 T_CDF = DV_TIME.iloc[:, 2] T_CDF = np.around(T_CDF / 10., decimals=0) * 10. vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 250], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert_allclose(S[('event time', 'month')], A._TIME['month'] + 1) assert_allclose(S[('event time', 'weekday?')], A._TIME['weekday?']) assert_allclose(S[('event time', 'hour')], A._TIME['hour']) assert_allclose(S[('inhabitants', '')], A._POP.iloc[:, 0]) assert SD.loc[('collapses', 'collapsed'), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('collapses', 'mode'), 'mean'] == 0. assert SD.loc[('collapses', 'mode'), 'count'] == pytest.approx(5000, rel=0.05) assert SD.loc[('red tagged', ''), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('red tagged', ''), 'count'] == pytest.approx(5000, rel=0.05) for col in ['irreparable', 'cost impractical', 'time impractical']: assert SD.loc[('reconstruction', col), 'mean'] == 0. assert SD.loc[('reconstruction', col), 'count'] == pytest.approx(5000, rel=0.05) RC = deepcopy(S.loc[:, ('reconstruction', 'cost')]) RC_CDF = np.around(RC / 1000., decimals=0) * 1000. vals, counts = np.unique(RC_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.]) * 1000.) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) RT = deepcopy(S.loc[:, ('reconstruction', 'time-parallel')]) RT_CDF = np.around(RT, decimals=0) vals, counts = np.unique(RT_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.])) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) assert_allclose(S.loc[:, ('reconstruction', 'time-parallel')], S.loc[:, ('reconstruction', 'time-sequential')]) CAS = deepcopy(S.loc[:, ('injuries', 'sev1')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.075, 0.15, 0.25, 0.3, 0.5, 1.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2, 2.5, 7, 5]) / 56., atol=0.01, rtol=0.1) CAS = deepcopy(S.loc[:, ('injuries', 'sev2')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.025, 0.05, 0.1, 2.25, 4.5, 9.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2.5, 2, 7, 5]) / 56., atol=0.01, rtol=0.1) def test_FEMA_P58_Assessment_EDP_uncertainty_basic(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_2.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_2.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T assert_allclose(thetas, [9.80665, 12.59198, 0.074081, 0.044932], rtol=0.02) assert_allclose(betas, [0.25, 0.25, 0.3, 0.4], rtol=0.02) rho = RV_EDP[0].RV_set.Rho() rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] assert_allclose(rho, rho_target, atol=0.05) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer( [0.3, 0.4], [0.3, 0.4]), upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[ 0] DMG_2_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[ 0] DMG_1_PFA = mvn_od(np.log([0.074081, 9.80665]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] DMG_2_PFA = mvn_od(np.log([0.074081, 12.59198]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert DMG_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert DMG_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert DMG_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 and 1022 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2011 and 2012 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 9.80665, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2021 and 2022 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 9.80665]), upper=np.log([0.1, 9.80665, np.inf]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert RED_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert RED_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert RED_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log([0.074081, 0.044932, 9.80665, 12.59198]), np.array( [[1.0, 0.7, 0.3, 0.3], [0.7, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.6], [0.3, 0.3, 0.6, 1.0]]) * np.outer( [0.3, 0.4, 0.25, 0.25], [0.3, 0.4, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [0.05488, 0.05488, 9.80665, 9.80665]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. def test_FEMA_P58_Assessment_EDP_uncertainty_detection_limit(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test differs from the basic case in having unreliable EDP values above a certain limit - a typical feature of interstory drifts in dynamic simulations. Such cases should not be a problem if the limits can be estimated and they are specified as detection limits in input file. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_3.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_3.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_failed_analyses(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. Here we use EDP results with unique values assigned to failed analyses. In particular, PID=1.0 and PFA=100.0 are used when an analysis fails. These values shall be handled by detection limits of 10 and 100 for PID and PFA, respectively. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_4.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_4.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=
np.log([9.80665, 1e-6, 1e-6, 1e-6])
numpy.log
""" Module for PypeIt extraction code .. include:: ../include/links.rst """ import copy import numpy as np import scipy from matplotlib import pyplot as plt from IPython import embed from astropy import stats from pypeit import msgs from pypeit import utils from pypeit import specobj from pypeit import specobjs from pypeit import tracepca from pypeit import bspline from pypeit.display import display from pypeit.core import pydl from pypeit.core import pixels from pypeit.core import arc from pypeit.core import fitting from pypeit.core import procimg from pypeit.core.trace import fit_trace from pypeit.core.moment import moment1d def extract_optimal(sciimg, ivar, mask, waveimg, skyimg, thismask, oprof, box_radius, spec, min_frac_use=0.05, base_var=None, count_scale=None, noise_floor=None): """ Calculate the spatial FWHM from an object profile. Utility routine for fit_profile The specobj object is changed in place with the boxcar and optimal dictionaries being filled with the extraction parameters. Parameters ---------- sciimg : float `numpy.ndarray`_, shape (nspec, nspat) Science frame ivar : float `numpy.ndarray`_, shape (nspec, nspat) Inverse variance of science frame. Can be a model or deduced from the image itself. mask : boolean `numpy.ndarray`_, shape (nspec, nspat) Good-pixel mask, indicating which pixels are should or should not be used. Good pixels = True, Bad Pixels = False waveimg : float `numpy.ndarray`_, shape (nspec, nspat) Wavelength image. skyimg : float `numpy.ndarray`_, shape (nspec, nspat) Image containing our model of the sky thismask : boolean `numpy.ndarray`_, shape (nspec, nspat) Image indicating which pixels are on the slit/order in question. True=Good. oprof : float `numpy.ndarray`_, shape (nspec, nspat) Image containing the profile of the object that we are extracting. box_radius : :obj:`float` Size of boxcar window in floating point pixels in the spatial direction. spec : :class:`~pypeit.specobj.SpecObj` This is the container that holds object, trace, and extraction information for the object in question. This routine operates one object at a time. **This object is altered in place!** min_frac_use : :obj:`float`, optional If the sum of object profile across the spatial direction are less than this value, the optimal extraction of this spectral pixel is masked because the majority of the object profile has been masked. base_var : `numpy.ndarray`_, shape is (nspec, nspat), optional The "base-level" variance in the data set by the detector properties and the image processing steps. See :func:`~pypeit.core.procimg.base_variance`. count_scale : :obj:`float`, `numpy.ndarray`_, optional A scale factor, :math:`s`, that *has already been applied* to the provided science image. For example, if the image has been flat-field corrected, this is the inverse of the flat-field counts. If None, set to 1. If a single float, assumed to be constant across the full image. If an array, the shape must match ``base_var``. The variance will be 0 wherever :math:`s \leq 0`, modulo the provided ``adderr``. This is one of the components needed to construct the model variance; see ``model_noise``. noise_floor : :obj:`float`, optional A fraction of the counts to add to the variance, which has the effect of ensuring that the S/N is never greater than ``1/noise_floor``; see :func:`~pypeit.core.procimg.variance_model`. If None, no noise floor is added. """ # Setup imgminsky = sciimg - skyimg nspat = imgminsky.shape[1] nspec = imgminsky.shape[0] spec_vec = np.arange(nspec) spat_vec = np.arange(nspat) # TODO This makes no sense for difference imaging? Not sure we need NIVAR anyway var_no = None if base_var is None \ else procimg.variance_model(base_var, counts=skyimg, count_scale=count_scale, noise_floor=noise_floor) ispec, ispat = np.where(oprof > 0.0) # Exit gracefully if we have no positive object profiles, since that means something was wrong with object fitting if not np.any(oprof > 0.0): msgs.warn('Object profile is zero everywhere. This aperture is junk.') return mincol = np.min(ispat) maxcol = np.max(ispat) + 1 nsub = maxcol - mincol mask_sub = mask[:,mincol:maxcol] thismask_sub = thismask[:, mincol:maxcol] wave_sub = waveimg[:,mincol:maxcol] ivar_sub = np.fmax(ivar[:,mincol:maxcol],0.0) # enforce positivity since these are used as weights vno_sub = None if var_no is None else np.fmax(var_no[:,mincol:maxcol],0.0) base_sub = None if base_var is None else base_var[:,mincol:maxcol] img_sub = imgminsky[:,mincol:maxcol] sky_sub = skyimg[:,mincol:maxcol] oprof_sub = oprof[:,mincol:maxcol] # enforce normalization and positivity of object profiles norm = np.nansum(oprof_sub,axis = 1) norm_oprof = np.outer(norm, np.ones(nsub)) oprof_sub = np.fmax(oprof_sub/norm_oprof, 0.0) ivar_denom = np.nansum(mask_sub*oprof_sub, axis=1) mivar_num = np.nansum(mask_sub*ivar_sub*oprof_sub**2, axis=1) mivar_opt = mivar_num/(ivar_denom + (ivar_denom == 0.0)) flux_opt = np.nansum(mask_sub*ivar_sub*img_sub*oprof_sub, axis=1)/(mivar_num + (mivar_num == 0.0)) # Optimally extracted noise variance (sky + read noise) only. Since # this variance is not the same as that used for the weights, we # don't get the usual cancellation. Additional denom factor is the # analog of the numerator in Horne's variance formula. Note that we # are only weighting by the profile (ivar_sub=1) because # otherwise the result depends on the signal (bad). nivar_num = np.nansum(mask_sub*oprof_sub**2, axis=1) # Uses unit weights if vno_sub is None: nivar_opt = None else: nvar_opt = ivar_denom * np.nansum(mask_sub * vno_sub * oprof_sub**2, axis=1) \ / (nivar_num**2 + (nivar_num**2 == 0.0)) nivar_opt = 1.0/(nvar_opt + (nvar_opt == 0.0)) # Optimally extract sky and (read noise)**2 in a similar way sky_opt = ivar_denom*(np.nansum(mask_sub*sky_sub*oprof_sub**2, axis=1))/(nivar_num**2 + (nivar_num**2 == 0.0)) if base_var is None: base_opt = None else: base_opt = ivar_denom * np.nansum(mask_sub * base_sub * oprof_sub**2, axis=1) \ / (nivar_num**2 + (nivar_num**2 == 0.0)) base_opt =
np.sqrt(base_opt)
numpy.sqrt
import sys import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from PIL import Image, ImageDraw from datetime import datetime import random from collections import OrderedDict from parser import Parser their_name: str = "" def main(): global their_name parser = Parser() name: str = sys.argv[2] # name of JSON file platform: str = sys.argv[1] # platform of messages if platform == "messenger": parser.parse_messenger(name) elif platform == "whatsapp": parser.parse_whatsapp(name) me_message_count: int = parser.me_message_count them_message_count: int = parser.them_message_count me_word_count: int = parser.me_word_count them_word_count: int = parser.them_word_count my_val: dict = parser.my_val their_val: dict = parser.their_val total: dict = parser.total messages: list = parser.messages their_name = parser.their_name ########################################################### ############# Plotting #################################### ########################################################### messages_per_person(me_message_count, them_message_count) words_per_person(me_word_count, them_word_count) # Exclusion list of basic words exclusions: list = ["the", "to", "so", "do", "can", "are", "of", "on", "is", "that", "on", "is", "just", "in", "it", "a", "it's", "and", "at", "for", "was", "but", "be", "as", "too", "this", "or", "did", "with", "its", "i", "you", "u", "have", "if", "me", "he", "her", "your", "not"] # Lists of all the keys within a certain range from the keys and values from the dict keys: list = [key for (key, value) in total.items() if value > 1000 and key not in exclusions] values: list = [value for (key, value) in total.items() if value > 1000 and key not in exclusions] # Sort the lists based on the values keys = [x for _, x in sorted(zip(values, keys), reverse=True)] values.sort(reverse=True) values = np.array(values) ##### Resize image ## fig_size = plt.rcParams["figure.figsize"] fig_size[0] = 15 fig_size[1] = 10 plt.rcParams["figure.figsize"] = fig_size ##################### my_values: list = [] their_values: list = [] for key in keys: if key in my_val: my_values.append(my_val[key]) else: my_values.append(0) if key in their_val: their_values.append(their_val[key]) else: their_values.append(0) if platform == "messenger": plot_bar_me(keys, my_values) plot_bar_them(keys, their_values) gen_start(messages[-1]["timestamp_ms"]) gen_wordcloud(total, exclusions) # Produces your bar graph of your frequency for most used words def plot_bar_me(keys: list, values: list): fig, ax = plt.subplots(facecolor="black") y_pos: list = np.arange(len(keys)) ax.barh(y_pos, values, align="center", color="blue") ax.set_yticks(y_pos) ax.set_yticklabels("") ax.invert_yaxis() ax.set_xlabel("Frequency") ax.set_clip_on(False) ax.spines['bottom'].set_color("white") ax.xaxis.label.set_color("white") ax.tick_params(axis='x', colors="white") plt.savefig("{}/me.svg".format(their_name), bbox_inches="tight", facecolor=fig.get_facecolor(), transparent=True) # Produces their bar graph of their frequency for most used words def plot_bar_them(keys: list, values: list): fig, ax = plt.subplots(facecolor="black") y_pos: list = np.arange(len(keys)) ax.barh(y_pos, values, align="center", color="deeppink") ax.set_yticks(y_pos) ax.set_yticklabels(keys) ax.invert_yaxis() ax.invert_xaxis() ax.set_xlabel("Frequency") ax.set_clip_on(False) ax.spines['bottom'].set_color("white") ax.spines['left'].set_color("white") ax.xaxis.label.set_color("white") ax.tick_params(axis='x', colors="white") ax.tick_params(axis='y', colors="white") plt.savefig("{}/them.svg".format(their_name), bbox_inches="tight", facecolor=fig.get_facecolor(), transparent=True) # Generate the wordcloud image from the input data def gen_wordcloud(total: dict, exclusions: list): cloud_dict: dict = OrderedDict() for (k, v) in total.items(): # if v > 100 and k not in exclusions: if v > 1 and k not in exclusions: cloud_dict[k] = v mask: np.array = np.array(Image.open("mother.png")) # mask: np.array = np.array(Image.open("mask.png")) # wordcloud = WordCloud(width=1000, height=500, relative_scaling=1, mask=mask).generate_from_frequencies(cloud_dict) wordcloud = WordCloud(width=2000, height=2000, relative_scaling=1, mask=mask, background_color="white").generate_from_frequencies(cloud_dict) wordcloud.recolor(color_func=recolour, random_state=3) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") wordcloud.to_file("{}/wordcloud.png".format(their_name)) # Recolour function to change the wordcloud text colours # I chose the RGB values between the values of two colours def recolour(word, font_size, position, orientation, random_state=None, **kwargs): # red: int = random.randint(0, 255) # green: int = random.randint(0, 20) # blue: int = random.randint(147, 255) red: int = random.randint(0, 32) green: int = random.randint(100, 178) blue: int = random.randint(0, 170) return "rgb({0}, {1}, {2})".format(red, green, blue) # Used as a helper function to calculate the pie chart def func(pct, allvals): absolute = int(pct / 100. *
np.sum(allvals)
numpy.sum
"""Various utilities""" from __future__ import annotations import os import pathlib import re import shutil from datetime import datetime, timedelta import geopandas as gpd import geoutils as gu import numpy as np import pandas as pd import xdem def get_satellite_type(dem_path): """Parse the satellite type from the filename""" basename = os.path.basename(dem_path) if re.match("DEM\S*", basename): sat_type = "ASTER" elif re.match("\S*dem_mcf\S*", basename) is not None: sat_type = "TDX" else: raise ValueError("Could not identify satellite type") return sat_type def decyear_to_date_time(decyear: float, leapyear=True, fannys_corr=False) -> datetime.datetime: """ Convert a decimal year to a datetime object. If leapyear set to True, use the actual number of days in the year, otherwise, use the average value of 365.25. """ # Get integer year and decimals year = int(np.trunc(decyear)) decimals = decyear - year # Convert to date and time base = datetime(year, 1, 1) ndays = base.replace(year=base.year + 1) - base # Calculate final date, taking into account leap years or average 365.25 days if leapyear: date_time = base + timedelta(seconds=ndays.total_seconds() * decimals) else: date_time = base + timedelta(seconds=365.25 * 24 * 3600 * decimals) # Apply a correction to correctly reverse Fanny's decyear which have ~1 day shift if fannys_corr: date_time -= timedelta(seconds=86399.975157) return date_time def date_time_to_decyear(date_time: float, leapyear=True) -> float: """ Convert a datetime object to a decimal year. If leapyear set to True, use the actual number of days in the year, otherwise, use the average value of 365.25. """ base = datetime(date_time.year, 1, 1) ddate = date_time - base if leapyear: ndays = (datetime(date_time.year + 1, 1, 1) - base).days else: ndays = 365.25 decyear = date_time.year + ddate.total_seconds() / (ndays * 24 * 3600) return decyear def fannys_convert_date_time_to_decimal_date(date_time): """ WARNING: this function is flawed, see https://github.com/adehecq/ragmac_xdem/pull/18. Function used by <NAME> for decimal year conversion, from ragmac_xdem/data/raw/convert_dates.py. Used only for checking that we're transforming the date back correctly. ---- This function converts a date and a time to a decimal date value Inputs: - date_time: datetime object Outputs: - decimal_date_float: float """ hourdec = (date_time.hour + date_time.minute / 60.0 + date_time.second / 3600.0) / 24.0 doy = date_time.timetuple().tm_yday decimal_date = date_time.year + (doy + hourdec) / 365.25 decimal_date = float("{:.8f}".format(decimal_date)) return decimal_date def get_aster_date(fname) -> datetime: """Parse the date of an ASTER DEM from the filename""" # Extract string containing decimal year basename = os.path.basename(fname) decyear = float(basename[4:17]) # Convert to datetime return decyear_to_date_time(decyear, leapyear=False, fannys_corr=True) def get_tdx_date(fname: str) -> datetime: """Parse the date of a TDX DEM from the filename""" # Extract string containing date and time basename = os.path.basename(fname) datetime_str = basename[:17] # Convert to datetime return datetime.strptime(datetime_str, "%Y-%m-%d_%H%M%S") def get_dems_date(dem_path_list: list[str]) -> list: """ Returns a list of dates from a list of DEM paths. :param dem_path_list: List of path to DEMs :returns: The list of dates in datetime format """ dates = [] for dem_path in dem_path_list: basename = os.path.basename(dem_path) sat_type = get_satellite_type(dem_path) # Get date if sat_type == "ASTER": dates.append(get_aster_date(dem_path)) elif sat_type == "TDX": dates.append(get_tdx_date(dem_path)) return np.asarray(dates) def select_dems_by_date(dem_path_list: list[str], date1: str, date2: str, sat_type: str) -> list: """ Returns the list of files which date falls within date1 and date 2 (included) :param dem_path_list: List of path to DEMs :param date1: Start date in ISO format YYYY-MM-DD :param date1: End date in ISO format YYYY-MM-DD :param sat_type: Either 'ASTER' or 'TDX' :returns: The list of indexes that match the criteria """ if sat_type == "ASTER": dates = np.asarray([get_aster_date(dem_file) for dem_file in dem_path_list]) elif sat_type == "TDX": dates = np.asarray([get_tdx_date(dem_file) for dem_file in dem_path_list]) else: raise ValueError("sat_type must be 'ASTER' or 'TDX'") date1 = datetime.fromisoformat(date1) date2 = datetime.fromisoformat(date2) return np.where((date1 <= dates) & (dates <= date2))[0] def best_dem_cover(dem_path_list: list, init_stats: pd.Series) -> list[str, float]: """ From a list of DEMs, returns the one with the best ROI coverage. :params dem_path_list: list of DEMs path to be considered :params init_stats: a pd.Series containing the statistics of all DEMs as returned by dem_postprocessing.calculate_init_stats_parallel. :returns: path to the best DEM, ROI coverage """ # Extract stats for selected DEMs stats_subset = init_stats.loc[np.isin(init_stats["dem_path"], dem_path_list)] # Select highest ROI coverage best = stats_subset.sort_values(by="roi_cover_orig").iloc[-1] return best.dem_path, best.roi_cover_orig def list_pairs(validation_dates): """ For a set of ndates dates, return a list of indexes and IDs for all possible unique pairs. For example, for ndates=3 -> [(0, 1), (0,2), (1,2)] """ ndates = len(validation_dates) indexes = [] pair_ids = [] for k1 in range(ndates): for k2 in range(k1 + 1, ndates): indexes.append((k1, k2)) date1 = validation_dates[k1] date2 = validation_dates[k2] pair_ids.append(f"{date1[:4]}_{date2[:4]}") # year1_year2) return indexes, pair_ids def dems_selection( dem_path_list: list[str], mode: str = None, validation_dates: list[str] = None, dt: float = -1, months: list[int] = np.arange(12) + 1, init_stats: pd.Series = None, ) -> list[list[str]]: """ Return a list of lists of DEMs path that fit the selection. Selection mode include None, 'close', 'best' or 'subperiod'. If None, return all DEMs. If any other mode is set, `dt` and `validation_dates` must be set. If 'close' is set, optionally `months` can be set. Returns all DEMs within dt days around each validation date, and within the selected months. If 'subperiod' is set, returns all DEMs within each possible subperiods from pairs of validation_dates, +/- dt days. If 'best' is set, 'init_stats' must be provided. Select DEMs based on the 'close' selection, but only returns a single DEM with the highest ROI coverage. :param dem_path_list: List containing path to all DEMs to be considered :param mode" Any of None, 'close', 'subperiod' or 'best'. :param validation_dates: List of validation dates for the experiment, dates expressed as 'yyyy-mm-dd' :param dt: Number of days allowed around each validation date :param months: A list of months to be selected (numbered 1 to 12). Default is all months. :params init_stats: a pd.Series containing the statistics of all DEMs as returned by dem_postprocessing.calculate_init_stats_parallel. :returns: List containing lists of DEM paths for each validation date. Same length as validation dates, or as the number of possible pair combinations for mode 'subperiod'. """ if mode is None: print(f"Found {len(dem_path_list)} DEMs") return [dem_path_list] elif mode == "close" or mode == "best" or mode == "subperiod": # check that optional arguments are set assert validation_dates is not None, "`validation_dates` must be set" assert dt >= 0, "dt must be set to >= 0 value" # Get input DEM dates dems_dates = get_dems_date(dem_path_list) dems_months = np.asarray([date.month for date in dems_dates]) output_list = [] # Extract DEMs within all subperiods +/- buffer if mode == "subperiod": pairs, pair_ids = list_pairs(validation_dates) for k1, k2 in pairs: date1 = datetime.fromisoformat(validation_dates[k1]) - timedelta(dt) date2 = datetime.fromisoformat(validation_dates[k2]) + timedelta(dt) matching_dates = np.where((date1 <= dems_dates) & (dems_dates <= date2) & np.isin(dems_months, months))[ 0 ] output_list.append(dem_path_list[matching_dates]) print(f"For period {validation_dates[k1]} - {validation_dates[k2]} found {len(matching_dates)} DEMs") return output_list # Compare to each validation date for date_str in validation_dates: date = datetime.fromisoformat(date_str) date1 = date - timedelta(dt) date2 = date + timedelta(dt) matching_dates = np.where((date1 <= dems_dates) & (dems_dates <= date2) & np.isin(dems_months, months))[0] output_list.append(dem_path_list[matching_dates]) if mode == "close": for date, group in zip(validation_dates, output_list): print(f"For date {date} found {len(group)} DEMs") return output_list else: assert init_stats is not None, "`init_stats` must be provided for mode 'best'" final_dem_list = [] for group in output_list: selected_dem, _ = best_dem_cover(group, init_stats) final_dem_list.append( [ selected_dem, ] ) return final_dem_list else: raise ValueError(f"Mode {mode} not recognized") def load_ref_and_masks(case_paths: dict) -> list: """ Loads the reference xdem, outlines and masks of ROI and stable terrin, from the dictionary provided by files.get_data_paths. :returns: - ref_dem (xdem.DEM object), all_outlines (gu.Vector object), roi_outlines (gu.Vector object), roi_mask (np.ndarray, stable_mask (np.ndarray) """ # Load reference DEM ref_dem = xdem.DEM(case_paths["raw_data"]["ref_dem_path"]) # Load all outlines all_outlines = gu.geovector.Vector(case_paths["raw_data"]["rgi_path"]) # Load selected glacier outline roi_outlines = gu.geovector.Vector(case_paths["raw_data"]["selected_path"]) # Create masks roi_mask = roi_outlines.create_mask(ref_dem) stable_mask = ~all_outlines.create_mask(ref_dem) return ref_dem, all_outlines, roi_outlines, roi_mask, stable_mask """ @author: friedrichknuth """ def OGGM_get_centerline(rgi_id, crs=None, return_longest_segment=False): from oggm import cfg, graphics, utils, workflow cfg.initialize(logging_level="CRITICAL") rgi_ids = [rgi_id] cfg.PATHS["working_dir"] = utils.gettempdir(dirname="OGGM-centerlines", reset=True) # We start from prepro level 3 with all data ready - note the url here base_url = ( "https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/L3-L5_files/CRU/centerlines/qc3/pcp2.5/no_match/" ) gdirs = workflow.init_glacier_directories(rgi_ids, from_prepro_level=3, prepro_border=40, prepro_base_url=base_url) gdir_cl = gdirs[0] center_lines = gdir_cl.read_pickle("centerlines") p = pathlib.Path("./rgi_tmp/") p.mkdir(parents=True, exist_ok=True) utils.write_centerlines_to_shape(gdir_cl, path="./rgi_tmp/tmp.shp") gdf = gpd.read_file("./rgi_tmp/tmp.shp") shutil.rmtree("./rgi_tmp/") if crs: gdf = gdf.to_crs(crs) if return_longest_segment: gdf[gdf["LE_SEGMENT"] == gdf["LE_SEGMENT"].max()] return gdf def get_largest_glacier_from_shapefile(shapefile, crs=None, get_longest_segment=False): gdf = gpd.read_file(shapefile) gdf = gdf[gdf["Area"] == gdf["Area"].max()] if crs: gdf = gdf.to_crs(crs) return gdf def extract_linestring_coords(linestring): """ Function to extract x, y coordinates from linestring object Input: shapely.geometry.linestring.LineString Returns: [x: np.array,y: np.array] """ x = [] y = [] for coords in linestring.coords: x.append(coords[0]) y.append(coords[1]) return [np.array(x),
np.array(y)
numpy.array
""" TODO: Break out these augmentations into submodules for easier reference. TODO: Rewrite this code to be briefer. Take advantage of common python class structures """ import numpy as np from scipy.sparse import csr_matrix from deepneuro.utilities.util import add_parameter class Augmentation(object): def __init__(self, **kwargs): # Instance Options add_parameter(self, kwargs, 'data_groups', []) # Repetition Options add_parameter(self, kwargs, 'multiplier', None) add_parameter(self, kwargs, 'total', None) # Derived Parameters self.output_shape = None self.initialization = False self.iteration = 0 self.data_groups = {data_group: None for data_group in self.data_groups} self.augmentation_string = '_copy_' self.load(kwargs) return def load(self, kwargs): return def set_multiplier(self, multiplier): self.multiplier = multiplier def augment(self, augmentation_num=0): for label, data_group in self.data_groups.items(): data_group.augmentation_cases[augmentation_num + 1] = data_group.augmentation_cases[augmentation_num] def initialize_augmentation(self): if not self.initialization: self.initialization = True def iterate(self): if self.multiplier is None: return self.iteration += 1 if self.iteration == self.multiplier: self.iteration = 0 def reset(self, augmentation_num): return def append_data_group(self, data_group): self.data_groups[data_group.label] = data_group # Aliasing Copy = Augmentation class Flip_Rotate_2D(Augmentation): """ TODO: extend to be more flexible and useful. Ponder about how best to apply to multiple dimensions """ def load(self, kwargs): # Flip and Rotate options add_parameter(self, kwargs, 'flip', True) add_parameter(self, kwargs, 'rotate', True) add_parameter(self, kwargs, 'flip_axis', 2) add_parameter(self, kwargs, 'rotate_axis', (1, 2)) # TODO: This is incredibly over-elaborate, return to fix. self.transforms_list = [] if self.flip: self.flip_list = [False, True] else: self.flip_list = [False] if self.rotate: self.rotations_90 = [0, 1, 2, 3] else: self.rotations_90 = [0] self.available_transforms = np.array(np.meshgrid(self.flip_list, self.rotations_90)).T.reshape(-1, 2) self.total_transforms = self.available_transforms.shape[0] self.augmentation_string = '_rotate2D_' def initialize_augmentation(self): if not self.initialization: for label, data_group in self.data_groups.items(): # Dealing with the time dimension. if len(data_group.get_shape()) < 5: self.flip_axis = 1 else: self.flip_axis = -4 self.initialization = True def augment(self, augmentation_num=0): for label, data_group in self.data_groups.items(): if self.available_transforms[self.iteration % self.total_transforms, 0]: data_group.augmentation_cases[augmentation_num + 1] = np.flip(data_group.augmentation_cases[augmentation_num], self.flip_axis) else: data_group.augmentation_cases[augmentation_num + 1] = data_group.augmentation_cases[augmentation_num] if self.available_transforms[self.iteration % self.total_transforms, 1]: data_group.augmentation_cases[augmentation_num + 1] = np.rot90(data_group.augmentation_cases[augmentation_num], self.available_transforms[self.iteration % self.total_transforms, self.flip_axis], axes=self.rotate_axis) class Shift_Squeeze_Intensities(Augmentation): """ TODO: extend to be more flexible and useful. Ponder about how best to apply to multiple dimensions """ def load(self, kwargs): # Flip and Rotate options add_parameter(self, kwargs, 'shift', True) add_parameter(self, kwargs, 'squeeze', True) add_parameter(self, kwargs, 'shift_amount', [-.5, .5]) add_parameter(self, kwargs, 'squeeze_factor', [.7, 1.3]) # TODO: This is incredibly over-elaborate, return to fix. self.transforms_list = [] if self.shift: self.shift_list = [False, True] else: self.shift_list = [False] if self.squeeze: self.squeeze_list = [False, True] else: self.squeeze_list = [False] self.available_transforms = np.array(np.meshgrid(self.shift_list, self.squeeze_list)).T.reshape(-1, 2) self.total_transforms = self.available_transforms.shape[0] self.augmentation_string = '_shift_squeeze_' def augment(self, augmentation_num=0): for label, data_group in self.data_groups.items(): if self.available_transforms[self.iteration % self.total_transforms, 0]: data_group.augmentation_cases[augmentation_num + 1] = data_group.augmentation_cases[augmentation_num] + np.random.uniform(self.shift_amount[0], self.shift_amount[1]) else: data_group.augmentation_cases[augmentation_num + 1] = data_group.augmentation_cases[augmentation_num] if self.available_transforms[self.iteration % self.total_transforms, 0]: data_group.augmentation_cases[augmentation_num + 1] = data_group.augmentation_cases[augmentation_num] * np.random.uniform(self.squeeze_factor[0], self.squeeze_factor[1]) else: data_group.augmentation_cases[augmentation_num + 1] = data_group.augmentation_cases[augmentation_num] class Flip_Rotate_3D(Augmentation): def load(self, kwargs): """ """ # Flip and Rotate options add_parameter(self, kwargs, 'rotation_axes', [1, 2, 3]) # Derived Parameters self.rotation_generator = {} self.augmentation_num = 0 def initialize_augmentation(self): if not self.initialization: for label, data_group in self.data_groups.items(): self.rotation_generator[label] = self.rotations24(data_group.augmentation_cases[0]) self.initialization = True def rotations24(self, array): while True: # imagine shape is pointing in axis 0 (up) # 4 rotations about axis 0 for i in range(4): yield self.rot90_3d(array, i, self.rotation_axes[0]) # rotate 180 about axis 1, now shape is pointing down in axis 0 # 4 rotations about axis 0 rotated_array = self.rot90_3d(array, 2, axis=self.rotation_axes[1]) for i in range(4): yield self.rot90_3d(rotated_array, i, self.rotation_axes[0]) # rotate 90 or 270 about axis 1, now shape is pointing in axis 2 # 8 rotations about axis 2 rotated_array = self.rot90_3d(array, axis=self.rotation_axes[1]) for i in range(4): yield self.rot90_3d(rotated_array, i, self.rotation_axes[2]) rotated_array = self.rot90_3d(array, -1, axis=self.rotation_axes[1]) for i in range(4): yield self.rot90_3d(rotated_array, i, self.rotation_axes[2]) # rotate about axis 2, now shape is pointing in axis 1 # 8 rotations about axis 1 rotated_array = self.rot90_3d(array, axis=self.rotation_axes[2]) for i in range(4): yield self.rot90_3d(rotated_array, i, self.rotation_axes[1]) rotated_array = self.rot90_3d(array, -1, axis=self.rotation_axes[2]) for i in range(4): yield self.rot90_3d(rotated_array, i, self.rotation_axes[1]) def rot90_3d(self, m, k=1, axis=2): """Rotate an array by 90 degrees in the counter-clockwise direction around the given axis""" m = np.swapaxes(m, 2, axis) m = np.rot90(m, k) m = np.swapaxes(m, 2, axis) return m def augment(self, augmentation_num=0): # Hacky -- the rotation generator is weird here. if augmentation_num != self.augmentation_num: self.augmentation_num = augmentation_num for label, data_group in self.data_groups.items(): self.rotation_generator[label] = self.rotations24(data_group.augmentation_cases[self.augmentation_num]) for label, data_group in self.data_groups.items(): data_group.augmentation_cases[augmentation_num + 1] = next(self.rotation_generator[label]) class ExtractPatches(Augmentation): def load(self, kwargs): # Patch Parameters add_parameter(self, kwargs, 'patch_shape', None) add_parameter(self, kwargs, 'patch_extraction_conditions', None) add_parameter(self, kwargs, 'patch_region_conditions', None) add_parameter(self, kwargs, 'patch_dimensions', {}) # Derived Parameters self.patch_regions = [] self.patches = None self.patch_corner = None self.patch_slice = None self.leading_dims = {} self.input_shape = {} self.output_shape = {} # Redundant self.augmentation_string = '_patch_' def initialize_augmentation(self): """ There are some batch dimension problems with output_shape here. Hacky fixes for now, but revisit. TODO """ if not self.initialization: # A weird way to proportionally divvy up patch conditions. # TODO: Rewrite self.condition_list = [None] * (self.multiplier) self.region_list = [None] * (self.multiplier) if self.patch_extraction_conditions is not None: start_idx = 0 for condition_idx, patch_extraction_condition in enumerate(self.patch_extraction_conditions): end_idx = start_idx + int(np.ceil(patch_extraction_condition[1] * self.multiplier)) self.condition_list[start_idx:end_idx] = [condition_idx] * (end_idx - start_idx) start_idx = end_idx if self.patch_region_conditions is not None: start_idx = 0 for condition_idx, patch_region_condition in enumerate(self.patch_region_conditions): end_idx = start_idx + int(np.ceil(patch_region_condition[1] * self.multiplier)) self.region_list[start_idx:end_idx] = [condition_idx] * (end_idx - start_idx) start_idx = end_idx for label, data_group in self.data_groups.items(): self.input_shape[label] = data_group.get_shape() if label not in list(self.patch_dimensions.keys()): # If no provided patch dimensions, just presume the format is [batch, patch_dimensions, channel] # self.patch_dimensions[label] = [-4 + x for x in xrange(len(self.input_shape[label]) - 1)] self.patch_dimensions[label] = [x + 1 for x in range(len(self.input_shape[label]) - 1)] # This is a little goofy. self.output_shape[label] = np.array(self.input_shape[label]) # self.output_shape[label][self.patch_dimensions[label]] = list(self.patch_shape) self.output_shape[label][[x - 1 for x in self.patch_dimensions[label]]] = list(self.patch_shape) self.output_shape[label] = tuple(self.output_shape[label]) # Batch dimension correction, revisit # self.patch_dimensions[label] = [x + 1 for x in self.patch_dimensions[label]] self.initialization = True def iterate(self): super(ExtractPatches, self).iterate() self.generate_patch_corner() def reset(self, augmentation_num=0): self.patch_regions = [] region_input_data = {label: self.data_groups[label].augmentation_cases[augmentation_num] for label in list(self.data_groups.keys())} if self.patch_region_conditions is not None: for region_condition in self.patch_region_conditions: # self.patch_regions += [np.where(region_condition[0](region_input_data))] self.patch_regions += self.get_indices_sparse(region_condition[0](region_input_data)) return def augment(self, augmentation_num=0): # Any more sensible way to deal with this case? if self.patches is None: self.generate_patch_corner(augmentation_num) for label, data_group in self.data_groups.items(): # A bit lengthy. Also unnecessarily rebuffers patches data_group.augmentation_cases[augmentation_num + 1] = self.patches[label] def generate_patch_corner(self, augmentation_num=0): """ Think about how one could to this, say, with 3D and 4D volumes at the same time. Also, patching across the modality dimension..? Interesting.. """ # TODO: Escape clause in case acceptable patches cannot be found. # acceptable_patch = False if self.patch_region_conditions is None: corner_idx = None else: region = self.patch_regions[self.region_list[self.iteration]] # TODO: Make errors like these more ubiquitous. if len(region[0]) == 0: # raise ValueError('The region ' + str(self.patch_region_conditions[self.region_list[self.iteration]][0]) + ' has no voxels to select patches from. Please modify your patch-sampling region') # Tempfix -- Eek region = self.patch_regions[self.region_list[1]] if len(region[0]) == 0: print('emergency brain region..') region = np.where(self.data_groups['input_data'].augmentation_cases[augmentation_num] != 0) self.patch_regions[self.region_list[0]] = region corner_idx = np.random.randint(len(region[0])) self.patches = {} # Pad edge patches. for label, data_group in self.data_groups.items(): # TODO: Some redundancy here if corner_idx is None: corner = np.array([np.random.randint(0, self.input_shape[label][i]) for i in range(len(self.input_shape[label]))])[self.patch_dimensions[label]] else: corner = np.array([d[corner_idx] for d in region])[self.patch_dimensions[label]] patch_slice = [slice(None)] * (len(self.input_shape[label]) + 1) # Will run into problems with odd-shaped patches. for idx, patch_dim in enumerate(self.patch_dimensions[label]): patch_slice[patch_dim] = slice(max(0, corner[idx] - self.patch_shape[idx] / 2), corner[idx] + self.patch_shape[idx] / 2, 1) input_shape = self.data_groups[label].augmentation_cases[augmentation_num].shape self.patches[label] = self.data_groups[label].augmentation_cases[augmentation_num][tuple(patch_slice)] # More complicated padding needed for center-voxel based patches. pad_dims = [(0, 0)] * len(self.patches[label].shape) for idx, patch_dim in enumerate(self.patch_dimensions[label]): pad = [0, 0] if corner[idx] > input_shape[patch_dim] - self.patch_shape[idx] / 2: pad[1] = self.patch_shape[idx] / 2 - (input_shape[patch_dim] - corner[idx]) if corner[idx] < self.patch_shape[idx] / 2: pad[0] = self.patch_shape[idx] / 2 - corner[idx] pad_dims[patch_dim] = tuple(pad) self.patches[label] = np.lib.pad(self.patches[label], tuple(pad_dims), 'edge') return def compute_M(self, data): # Magic, vectorized sparse matrix calculation method to replace np.where # https://stackoverflow.com/questions/33281957/faster-alternative-to-numpy-where cols = np.arange(data.size) return csr_matrix((cols, (data.ravel(), cols)), shape=(data.max() + 1, data.size)) def get_indices_sparse(self, data): # Magic, vectorized sparse matrix calculation method to replace np.where # https://stackoverflow.com/questions/33281957/faster-alternative-to-numpy-where M = self.compute_M(data) return [np.unravel_index(row.data, data.shape) for row in M] class MaskData(Augmentation): def load(self, kwargs): # Add functionality for masking multiples axes. # Mask Parameters add_parameter(self, kwargs, 'mask_channels', {}) add_parameter(self, kwargs, 'num_masked', 1) add_parameter(self, kwargs, 'masked_value', -10) add_parameter(self, kwargs, 'random_sample', True) # Derived Parameters self.input_shape = {} self.augmentation_string = '_mask_' def initialize_augmentation(self): if not self.initialization: for label, data_group in self.data_groups.items(): self.mask_channels[label] = np.array(self.mask_channels[label]) # self.input_shape[label] = data_group.get_shape() # if label not in self.mask_channels.keys(): # self.mask_channels[label] = np.arange(self.input_shape[label][-1]) # else: # self.mask_channels[label] = np.arange(self.input_shape[label][self.mask_channels[label] + 1]) self.initialization = True def iterate(self): super(MaskData, self).iterate() def augment(self, augmentation_num=0): for label, data_group in self.data_groups.items(): if self.random_sample: channels = np.random.choice(self.mask_channels[label], self.num_masked, replace=False) else: idx = [x % len(self.mask_channels[label]) for x in range(self.iteration, self.iteration + self.num_masked)] channels = self.mask_channels[label][idx] # Currently only works if applied to channels; revisit masked_data = np.copy(data_group.augmentation_cases[augmentation_num]) # for channel in channels: masked_data[..., channels] = self.masked_value data_group.augmentation_cases[augmentation_num + 1] = masked_data data_group.augmentation_strings[augmentation_num + 1] = data_group.augmentation_strings[augmentation_num] + self.augmentation_string + str(channels).strip('[]').replace(' ', '') class ChooseData(Augmentation): def load(self, kwargs): # Add functionality for choosing multiple axes # Choose Parameters add_parameter(self, kwargs, 'axis', {}) add_parameter(self, kwargs, 'choices', None) add_parameter(self, kwargs, 'num_chosen', 1) add_parameter(self, kwargs, 'random_sample', True) # Derived Parameters self.input_shape = {} self.augmentation_string = '_choose_' def initialize_augmentation(self): if not self.initialization: self.choices = np.array(self.choices) for label, data_group in self.data_groups.items(): input_shape = data_group.get_shape() self.output_shape[label] = np.array(input_shape) self.output_shape[label][self.axis[label]] = self.num_chosen self.output_shape[label] = tuple(self.output_shape[label]) self.initialization = True def iterate(self): super(ChooseData, self).iterate() def augment(self, augmentation_num=0): choice = None # This is messed up for label, data_group in self.data_groups.items(): # Wrote this function while half-asleep; revisit input_data = data_group.augmentation_cases[augmentation_num] if self.choices is None: choices = np.arange(input_data.shape[self.axis[label]]) else: choices = self.choices if choice is None: if self.random_sample: choice = np.random.choice(choices, self.num_chosen, replace=False) else: idx = [x % len(choices) for x in range(self.iteration, self.iteration + self.num_chosen)] choice = choices[idx] # Temporary if input_data.shape[-1] == 6: choice = choice.tolist() choice = list(range(4)) + choice choice_slice = [slice(None)] * (len(input_data.shape)) choice_slice[self.axis[label]] = choice # Currently only works if applied to channels; revisit data_group.augmentation_cases[augmentation_num + 1] = input_data[choice_slice] data_group.augmentation_strings[augmentation_num + 1] = data_group.augmentation_strings[augmentation_num] + self.augmentation_string + str(choice).strip('[]').replace(' ', '') class Downsample(Augmentation): def load(self, kwargs): # A lot of this functionality is vague and messy, revisit # Downsample Parameters add_parameter(self, kwargs, 'channel', 0) add_parameter(self, kwargs, 'axes', {}) add_parameter(self, kwargs, 'factor', 2) add_parameter(self, kwargs, 'random_sample', True) add_parameter(self, kwargs, 'num_downsampled', 1) self.input_shape = {} self.augmentation_string = '_resample_' def initialize_augmentation(self): if not self.initialization: for label, data_group in self.data_groups.items(): self.input_shape[label] = data_group.get_shape() self.initialization = True def iterate(self): super(Downsample, self).iterate() def augment(self, augmentation_num=0): for label, data_group in self.data_groups.items(): if self.random_sample: axes = np.random.choice(self.axes[label], self.num_downsampled, replace=False) else: idx = [x % len(self.axes[label]) for x in range(self.iteration, self.iteration + self.num_downsampled)] axes = np.array(self.axes[label])[idx] resampled_data =
np.copy(data_group.augmentation_cases[augmentation_num])
numpy.copy
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den =
N.array([2,2,2])
numpy.array
from __future__ import division import math import time import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from skimage.transform import resize import matplotlib.pyplot as plt import matplotlib.patches as patches import visdom class Visualizer(): """ 封装了visdom的基本操作,但是你仍然可以通过`self.vis.function` 调用原生的visdom接口 """ def __init__(self, env='default', **kwargs): import visdom self.vis = visdom.Visdom(env=env, use_incoming_socket=False, **kwargs) # 画的第几个数,相当于横座标 # 保存(’loss',23) 即loss的第23个点 self.index = {} self.log_text = '' def reinit(self, env='default', **kwargs): """ 修改visdom的配置 """ self.vis = visdom.Visdom(env=env,use_incoming_socket=False, **kwargs) return self def plot_many(self, d): """ 一次plot多个 @params d: dict (name,value) i.e. ('loss',0.11) """ for k, v in d.items(): self.plot(k, v) def img_many(self, d): for k, v in d.items(): self.img(k, v) def plot(self, name, y): """ self.plot('loss',1.00) """ x = self.index.get(name, 0) self.vis.line(Y=np.array([y]), X=
np.array([x])
numpy.array
import os import subprocess import pickle import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as sc import pathlib import threading import concurrent.futures as cf from scipy.signal import medfilt import csv import tikzplotlib import encoders_comparison_tool as enc import video_info as vi from bj_delta import bj_delta, bj_delta_akima # Colors in terminal class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' useage_log_suffix = "_useage.log" psnr_log_suffix = "-psnr_logfile.txt" ssim_log_suffix = "-ssim_logfile.txt" vmaf_log_suffix = "-vmaf_logfile.txt" videofiles = [] codecs = ["av1", "svtav1", "vp9", "x264", "x265", "vvc"] codecs_short = {"av1": "AV1", "svtav1": "SVT-AV1", "vp9": "VP9", "x264": "x264", "x265": "x265", "vvc": "VVenC",} sequences = ["Netflix Aerial yuv420p10le 60fps", "ShakeNDry yuv420p 30fps", "SunBath yuv420p10le 50fps", "Tree Shade yuv420p10le 30fps", "Sintel2 yuv420p10le 24fps", ] preset = ["preset"] top_dir = "/run/media/ondra/video/test2/" # top_dir = "/run/media/ondra/61597e72-9c9f-4edd-afab-110602521f55/test2/" graphics_dir = "graphs/" sequences_short = { "Netflix Aerial yuv420p10le 60fps": "Aerial", "ShakeNDry yuv420p 30fps": "ShakeNDry", "SunBath yuv420p10le 50fps": "SunBath", "Tree Shade yuv420p10le 30fps": "Tree Shade", "Sintel2 yuv420p10le 24fps": "Sintel2", } series_labels = { 'av1-cpu-used_3-': "AV1 cpu-used 3", 'av1-cpu-used_4-': "AV1 cpu-used 4", 'av1-cpu-used_5-': "AV1 cpu-used 5", 'av1-cpu-used_6-': "AV1 cpu-used 6", 'svtav1-preset_3-': "SVT-AV1 preset 3", 'svtav1-preset_5-': "SVT-AV1 preset 5", 'svtav1-preset_7-': "SVT-AV1 preset 7", 'svtav1-preset_9-': "SVT-AV1 preset 9", 'svtav1-preset_11-': "SVT-AV1 preset 11", 'svtav1-preset_13-': "SVT-AV1 preset 13", 'vp9-rc_0-': "VP9 RC 0", 'vp9-cpu-used_0-': "VP9 cpu-used 0", 'vp9-cpu-used_2-': "VP9 cpu-used 2", 'vp9-cpu-used_4-': "VP9 cpu-used 4", # 'x264-preset_ultrafast-': "x264 ultrafast", 'x264-preset_fast-': "x264 fast", 'x264-preset_medium-': "x264 medium", 'x264-preset_slow-': "x264 slow", 'x264-preset_veryslow-': "x264 veryslow", 'x264-preset_placebo-': "x264 placebo", 'x265-preset_ultrafast-': "x265 ultrafast", 'x265-preset_fast-': "x265 fast", 'x265-preset_medium-': "x265 medium", 'x265-preset_slow-': "x265 slow", 'x265-preset_veryslow-': "x265 veryslow", 'vvc-preset_faster-': "VVenC faster", 'vvc-preset_fast-': "VVenC fast", 'vvc-preset_medium-': "VVenC medium", } psnr_lim = { "Netflix Aerial yuv420p10le 60fps": (33, 47), "ShakeNDry yuv420p 30fps": (33, 44), "Sintel2 yuv420p10le 24fps": (40, 60), "SunBath yuv420p10le 50fps": (35, 55), "Tree Shade yuv420p10le 30fps": (35, 45), } ssim_lim = { "Netflix Aerial yuv420p10le 60fps": (0.9, 1), "ShakeNDry yuv420p 30fps": (0.9, 0.98), "Sintel2 yuv420p10le 24fps": (0.98, 1), "SunBath yuv420p10le 50fps": (0.94, 1), "Tree Shade yuv420p10le 30fps": (0.92, 0.99), } msssim_lim = { "Netflix Aerial yuv420p10le 60fps": (0.9, 1), "ShakeNDry yuv420p 30fps": (0.92, 1), "Sintel2 yuv420p10le 24fps": (0.98, 1), "SunBath yuv420p10le 50fps": (0.94, 1), "Tree Shade yuv420p10le 30fps": (0.96, 1), } vmaf_lim = { "Netflix Aerial yuv420p10le 60fps": (60, 100), "ShakeNDry yuv420p 30fps": (70, 100), "Sintel2 yuv420p10le 24fps": (70, 100), "SunBath yuv420p10le 50fps": (70, 100), "Tree Shade yuv420p10le 30fps": (80, 100), } bitrate_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 150), "ShakeNDry yuv420p 30fps": (0, 200), "Sintel2 yuv420p10le 24fps": (0, 45), "SunBath yuv420p10le 50fps": (0, 150), "Tree Shade yuv420p10le 30fps": (0, 200), } bitrate_lim_log = { "Netflix Aerial yuv420p10le 60fps": (0.1, 1000), "ShakeNDry yuv420p 30fps": (0.1, 1000), "SunBath yuv420p10le 50fps": (0.1, 1000), "Tree Shade yuv420p10le 30fps": (0.1, 1000), "Sintel2 yuv420p10le 24fps": (0.1, 100), } processing_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 50000), "ShakeNDry yuv420p 30fps": (0, 8000), "SunBath yuv420p10le 50fps": (0, 5000), "Tree Shade yuv420p10le 30fps": (0, 12000), "Sintel2 yuv420p10le 24fps": (0, 12000), } processing_lim_log = { "Netflix Aerial yuv420p10le 60fps": (1, 1000), "ShakeNDry yuv420p 30fps": (1, 10000), "SunBath yuv420p10le 50fps": (1, 1000), "Tree Shade yuv420p10le 30fps": (1, 1000), "Sintel2 yuv420p10le 24fps": (1, 1000), } cpu_time_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 200000), "ShakeNDry yuv420p 30fps": (0, 60000), "SunBath yuv420p10le 50fps": (0, 35000), "Tree Shade yuv420p10le 30fps": (0, 70000), "Sintel2 yuv420p10le 24fps": (0, 70000), } cpu_time_lim_log = { "Netflix Aerial yuv420p10le 60fps": (0.1, 1000), "ShakeNDry yuv420p 30fps": (0.1, 10000), "SunBath yuv420p10le 50fps": (0.1, 1000), "Tree Shade yuv420p10le 30fps": (0.1, 1000), "Sintel2 yuv420p10le 24fps": (0.1, 1000), } cpu_fps_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 200), "ShakeNDry yuv420p 30fps": (0, 200), "SunBath yuv420p10le 50fps": (0, 200), "Tree Shade yuv420p10le 30fps": (0, 200), "Sintel2 yuv420p10le 24fps": (0, 200), } decode_fps_lim = { "Netflix Aerial yuv420p10le 60fps": (0, None), "ShakeNDry yuv420p 30fps": (0, 60), "SunBath yuv420p10le 50fps": (0, 60), "Tree Shade yuv420p10le 30fps": (0, 60), "Sintel2 yuv420p10le 24fps": (0, 60), } BJ1_serie = "x264-preset_placebo-" BD_xname = "avg_bitrate_mb" BD_ynames = ["psnr_avg", "ssim_avg", "msssim_avg", "vmaf_avg"] BD_names = [] for n in BD_ynames: # BD_names.append("bd_" + n) BD_names.append("bd_rate_" + n) encode_excluded_states = ["measuring decode"] speeds_table = { "placebo": 0, "slow": 3, "slower": 2, "veryslow": 1, "medium": 4, "fast": 5, "faster": 6, "veryfast": 7, "superfast": 8, "ultrafast": 9, } binaries = { "ffprobe": "/usr/bin/ffprobe", "ffmpeg": "/usr/bin/ffmpeg" } vi.set_defaults(binaries) def video_stream_size(videofile_path): if videofile_path.endswith(".266"): return os.path.getsize(videofile_path[0:-4] + ".266") / 1024 #in KiB log = videofile_path + ".stream_size" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream size hit!") return float(s) result = subprocess.run( [ "ffmpeg", "-hide_banner", "-i", videofile_path, "-map", "0:v:0", "-c", "copy", "-f", "null", "-" ], capture_output=True, text=True, ) try: size = (result.stderr.rsplit("\n")[-2].rsplit(" ")[0].rsplit(":")[1][0: -2]) s = float(size) # in KiB with open(log, "w") as f: f.write(str(s)) return s except ValueError: raise ValueError(result.stderr.rstrip("\n")) def video_stream_length(videofile_path): if videofile_path.endswith(".266"): videofile = videofile_path[:-4] + ".mkv" else: videofile = videofile_path log = videofile + ".stream_length" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream length hit!") return float(s) result = vi.video_length_seconds(videofile) with open(log, "w") as f: f.write(str(result)) return result def video_stream_frames(videofile_path): if videofile_path.endswith(".266"): videofile = videofile_path[:-4] + ".mkv" else: videofile = videofile_path log = videofile + ".stream_frames" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream framenum hit!") return int(s) result = vi.video_frames(videofile) with open(log, "w") as f: f.write(str(result)) return result def series_label(key, sequence=None): if sequence is None or sequence in key: k = series_labels.keys() for s in (s for s in k if s in key): return series_labels[s] raise KeyError ''' def simple_plot(x, y, xlabel, ylabel, savefile, minxlim=True): i1, ax1 = plt.subplots() plt.plot(x, y) ax1.set(xlabel=xlabel, ylabel=ylabel) if minxlim: ax1.set_xlim(left=min(x), right=max(x)) ax1.grid() plt.savefig(f"{savefile}.svg") plt.savefig(f"{savefile}.pgf") tikzplotlib.save(f"{savefile}.tex") plt.close(i1) def composite_plot(mxy, mlegend, xlabel, ylabel, savefile, xlim=None, ylim=None): i1, ax1 = plt.subplots() i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] plt.plot(x, y, label=mlegend[next(i)], marker="+") ax1.set(xlabel=xlabel, ylabel=ylabel) plt.legend() if xlim is True: ax1.set_xlim(left=min(x), right=max(x)) elif xlim is not None: ax1.set_xlim(left=xlim[0], right=xlim[1]) if ylim is True: ax1.set_ylim(bottom=min(y), top=max(y)) elif ylim is not None: ax1.set_ylim(bottom=ylim[0], top=ylim[1]) ax1.grid() p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close(i1) def composite_plot_smooth(mxy, mlegend, xlabel, ylabel, savefile, xlim=None, ylim=None): i1, ax1 = plt.subplots() i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] c = plt.scatter(x, y, label=mlegend[next(i)], marker="+") colr = c.get_facecolor()[0] lx = np.log(x) p = sc.interpolate.Akima1DInterpolator(lx, y) x_smooth = np.linspace(min(x), max(x), 1000) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) ax1.set(xlabel=xlabel, ylabel=ylabel) plt.legend() if xlim is True: ax1.set_xlim(left=x.min(), right=x.max()) elif xlim is not None: ax1.set_xlim(left=xlim[0], right=xlim[1]) if ylim is True: ax1.set_ylim(bottom=y.min(), top=y.max()) elif ylim is not None: ax1.set_ylim(bottom=ylim[0], top=ylim[1]) ax1.grid() p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close(i1) ''' def plot_graphs(data, sequence=None, codec=None): if sequence is None and codec is None: out = graphics_dir elif sequence is None: out = graphics_dir + codec + "/" elif codec is None: out = graphics_dir + sequences_short[sequence] + "/" else: out = graphics_dir + sequences_short[sequence] + "/" + codec + "/" lower_right = 4 d = df_to_plot(data, "avg_bitrate_mb", "psnr_avg") composite_plot(d, "Bitrate [Mbit/s]", "PSNR (YUV) [dB]", out + "psnr", xlim=bitrate_lim[sequence], ylim=psnr_lim[sequence], legend_loc=lower_right) composite_plot(d, "Bitrate [Mbit/s]", "PSNR (YUV) [dB]", out + "psnr_log", ylim=psnr_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "ssim_avg") composite_plot(d, "Bitrate [Mbit/s]", "SSIM", out + "ssim", xlim=bitrate_lim[sequence], ylim=ssim_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "SSIM", out + "ssim_log", ylim=ssim_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "msssim_avg") composite_plot(d, "Bitrate [Mbit/s]", "MS-SSIM", out + "msssim", xlim=bitrate_lim[sequence], ylim=msssim_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "MS-SSIM", out + "msssim_log", ylim=msssim_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "vmaf_avg") composite_plot(d, "Bitrate [Mbit/s]", "VMAF", out + "vmaf", xlim=bitrate_lim[sequence], ylim=vmaf_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "VMAF", out + "vmaf_log", ylim=vmaf_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "decode_time_fps") composite_plot(d, "Bitrate [Mbit/s]", "Rychlost dekódování [frame/s]", out + "decode", ylim=(0, None), xlim=bitrate_lim_log[sequence], xlog=True) d = df_to_plot(data, "avg_bitrate_mb", "total_time_fps") composite_plot(d, "Bitrate [Mbit/s]", "Procesorový čas [s/frame]", out + "encode", ylim=(0.1, None), xlim=bitrate_lim_log[sequence], xlog=True, ylog=True) def df_to_plot(data, x_name, y_name): tables = [t[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") for t in list(data["table"])] l = list(data["label"]) s = list(data["speed"]) lt = zip(l, tables, s) for m in lt: setattr(m[1], "label", m[0]) setattr(m[1], "speed", m[2]) return tables def df_to_plot2(data, x_name, y_name): tables = [data[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).loc[data["codec"] == s].sort_values(by="x") for s in codecs] lt = zip(codecs, tables) for m in lt: setattr(m[1], "label", codecs_short[m[0]]) return tables #def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): #i1, ax1 = plt.subplots() #if not (xlog or ylog): #tikz_before = False #if xlog: #ax1.set_xscale('log') #ax1.grid(True, which="both") #if xlogscalar: #ax1.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_xscale('linear') #ax1.grid(True) #if ylog: #ax1.set_yscale('log') #ax1.grid(True, which="both") #if ylogscalar: #ax1.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_yscale('linear') #ax1.grid(True) #for table in data: #if smooth: #c = plt.scatter(table.x, table.y, label=table.label, marker="+") #colr = c.get_facecolor()[0] #if log_inter: #lx = np.log(table.x) #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) #else: #lx = table.x #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.linspace(min(table.x), max(table.x), 200) #y_smooth = p(np.log(x_smooth)) #plt.plot(x_smooth, y_smooth, color=colr) #else: #plt.plot(table.x, table.y, label=table.label, marker="+") #ax1.set(xlabel=xlabel, ylabel=ylabel) #if legend_loc is None: #ax1.legend() #else: #ax1.legend(loc=legend_loc) #if xlim is True: #ax1.set_xlim(left=table.x.min(), right=table.x.max()) #elif xlim is not None: #ax1.set_xlim(left=xlim[0], right=xlim[1]) #if ylim is True: #ax1.set_ylim(bottom=table.y.min(), top=table.y.max()) #elif ylim is not None: #ax1.set_ylim(bottom=ylim[0], top=ylim[1]) #p = os.path.split(savefile) #enc.create_dir(p[0] + '/svg/') #enc.create_dir(p[0] + '/png/') #enc.create_dir(p[0] + '/tex/') #if tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") #plt.savefig(f"{p[0] + '/png/' + p[1]}.png") #if not tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.close(i1) def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): plt.figure() plt.axis() if not (xlog or ylog): tikz_before = False if xlog: plt.xscale('log') plt.grid(True, which="both") # if xlogscalar: # plt.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.xscale('linear') plt.grid(True) if ylog: plt.yscale('log') plt.grid(True, which="both") # if ylogscalar: # plt.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.yscale('linear') plt.grid(True) for table in data: if smooth: c = plt.scatter(table.x, table.y, label=table.label, marker="+") colr = c.get_facecolor()[0] if log_inter: lx = np.log(table.x) p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) else: lx = table.x p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.linspace(min(table.x), max(table.x), 200) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) else: plt.plot(table.x, table.y, label=table.label, marker="+") plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend(loc=legend_loc) if xlim is True: plt.xlim(left=table.x.min(), right=table.x.max()) elif xlim is not None: plt.xlim(left=xlim[0], right=xlim[1]) if ylim is True: plt.ylim(bottom=table.y.min(), top=table.y.max()) elif ylim is not None: plt.ylim(bottom=ylim[0], top=ylim[1]) p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') if tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") if not tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close() def df_to_latex_table(values, save_path): pass def calc_bj(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") def formatter1(x): s = ('%1.2f' % x).replace(".",",") + "\,\%" return s def formatter2(x): s = ('%1.2f' % x).replace(".",",") + "\%" if x > 0: s = "\cellcolor{red!25}" + s elif x < 0: s = "\cellcolor{green!25}" + s return s def calc_bj_cross_to_table(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): table_metric = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) table_rate = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) for mleg in mlegend_o: mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(mleg)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(mleg) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] table_metric.loc[l, mleg] = bd_metric table_rate.loc[l, mleg] = bd_rate # print(table_metric.to_latex(float_format="%.2f", decimal=",")) # print(table_rate.to_latex(float_format="%.2f")) return table_metric, table_rate ''' def calc_bj_akima(dftable, x_name, y_name, bd_metric_legend, bd_rate_legend): xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") ''' def calc_bj_akima(data, x_name, y_name, bd_metric_legend, bd_rate_legend): df = data.copy() for t in df.itertuples(): t.table.rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") df bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) def read_table_kcolv(logpath): with open(logpath, "r") as f: firstline = next(f).rstrip(" \n") columns = [] for x in firstline.rsplit(" "): columns.append(x.rsplit(":")[0]) r = range(len(columns)) table = pd.read_table(logpath, names=columns, usecols=list(r), sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in r}) return table.apply(pd.to_numeric) class PSNR_values: def __init__(self, logpath): self.logpath = logpath table = read_table_kcolv(self.logpath) self.n = table.n self.mse_avg = table.mse_avg self.mse_y = table.mse_y self.mse_u = table.mse_u self.mse_v = table.mse_v self.psnr_avg = table.psnr_avg self.psnr_y = table.psnr_y self.psnr_u = table.psnr_u self.psnr_v = table.psnr_v self.mse_avg_avg = np.average(self.mse_avg) self.mse_y_avg = np.average(self.mse_y) self.mse_u_avg = np.average(self.mse_u) self.mse_v_avg = np.average(self.mse_v) self.psnr_avg_avg = np.average(self.psnr_avg) self.psnr_y_avg = np.average(self.psnr_y) self.psnr_u_avg = np.average(self.psnr_u) self.psnr_v_avg = np.average(self.psnr_v) class SSIM_values: def __init__(self, logpath): self.logpath = logpath names = ("n", "Y", "U", "V", "All", "unnorm") table = pd.read_table(self.logpath, names=names, sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in range(5)}) table.unnorm = table.unnorm.str.slice(start=1, stop=-1) table = table.apply(pd.to_numeric) self.n = table.n self.Y = table.Y self.U = table.U self.V = table.V self.All = table.All self.unnorm = table.unnorm # unnorm = 10*log10(1-All) self.Y_avg = np.average(self.Y) self.U_avg = np.average(self.U) self.V_avg = np.average(self.V) self.All_avg = np.average(self.All) self.unnorm_avg = np.average(self.unnorm) class VMAF_values: def __init__(self, logpath): self.logpath = logpath table = pd.read_table(logpath, sep=",") table = table.loc[:, ~table.columns.str.contains('^Unnamed')] self.table = table self.vmaf_avg = table.vmaf.mean() class Useage_values: def __init__(self, logpath): self.logpath = logpath with open(logpath, "r") as log: firstline = next(log) self.row_names = firstline.rsplit(",")[0:-1] table = pd.read_csv(self.logpath) self.table = table self.state_names = list(table.state.unique()) total_time = 0 total_cpu_time = 0 for state in [x for x in self.state_names if x not in encode_excluded_states]: for row in self.row_names: if row == "state": pass else: arr = np.array(table[row][table.index[table['state'] == state]]) setattr(self, state + "_" + row, arr) cpu_time_user = getattr(self, state + "_cpu_time_user") cpu_time_user = np.append(np.array([0]), cpu_time_user) cpu_time_system = getattr(self, state + "_cpu_time_system") cpu_time_system = np.append(np.array([0]), cpu_time_system) cpu_time_total = cpu_time_user + cpu_time_system setattr(self, state + "_cpu_time_total", cpu_time_total) cpu_time_diff = np.ediff1d(cpu_time_total) time = np.append(np.array([0]), getattr(self, state + "_time")) time_diff = np.ediff1d(time) cpu_percent_calc = cpu_time_diff / time_diff setattr(self, state + "_cpu_percent_calc", cpu_percent_calc) total_time += time[-1] total_cpu_time += cpu_time_total[-1] self.total_time = total_time self.total_cpu_time = total_cpu_time cpu_time_diff = np.ediff1d(np.append(
np.array([0])
numpy.array
"""Implementation of unuspervised and supervised Fourier feature selection algorithms """ from sklearn.base import BaseEstimator, ClassifierMixin import numpy as np from itertools import chain, combinations import sys import compute_fourier_coeff_supervised import compute_norms_features_unsupervised import math # Generates the set of all subsets with the size of each subset as maximum k def powerset(iterable, k): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(1, k + 1)) class OptionsUnsupervisedFourierFS: def __init__(self, max_depth, cluster_sizes, selection_thresholds, norm_epsilon, shuffle, preranking): self.max_depth = max_depth self.cluster_sizes = cluster_sizes self.selection_thresholds = selection_thresholds # same as n_redundant_threshold self.norm_epsilon = norm_epsilon self.shuffle = shuffle self.preranking = preranking def UnsupervisedFourierFS_helper(X_nmlzd, depth, input_features, options): X_nmlzd_depth = X_nmlzd[:, input_features] d = len(input_features) n_clusters = math.ceil(d / options.cluster_sizes[depth]) if n_clusters == 0: print("Error : n_clusters is zero!") sys.exit(2) clusters = np.linspace(0, d, n_clusters + 1, dtype=np.int) nonredundant_Features = [] for i in range(1, len(clusters)): features_cluster = np.arange(clusters[i - 1], clusters[i]) X_cluster = X_nmlzd_depth[:, features_cluster] sel_feats_norm2 = compute_norms_features_unsupervised.estimate_A(X_cluster, depth+1, options.norm_epsilon[depth]) # import pdb; pdb.set_trace() sel_feats_norm2 = np.array(sel_feats_norm2) sel_feats_norm2 = sel_feats_norm2 ** 2 Sorted_Feature_Indx = (-sel_feats_norm2).argsort() sel_feats_norm2_sorted = sel_feats_norm2[Sorted_Feature_Indx] cum_orthogonalization = np.cumsum(sel_feats_norm2_sorted) / sum(sel_feats_norm2_sorted) nonredundant_Orth = sum(cum_orthogonalization < options.selection_thresholds[depth]) sel_feats_indices_local = Sorted_Feature_Indx[:nonredundant_Orth] nonredundant_Features.extend(features_cluster[sel_feats_indices_local]) return nonredundant_Features def UnsupervisedFourierFS(X, options): ''' The main function for unsupervised Fourier feature selection algorithm (UFFS) Arguments: X: the input data with columns as features and rows correspond to data samples mean_emp: vector of empirical mean of each features std_emp: vector of empirical standard deviation of each features output_all_depth: if it's set to false, only output UFFS selected features for t=3 Otherwise, output selected features for t=1, t=2, and t=3 ''' # mask = (np.std(X, ddof=1, axis=0) > 1e-5) # orig_features = np.arange(X.shape[1]) # valid_features = orig_features[mask] # X = X[:, valid_features] mean_emp = np.mean(X, axis=0) std_emp =
np.std(X, ddof=1, axis=0)
numpy.std
import casadi as ca import numpy as np import sys sys.path.insert(0, '../../../../../python/pyecca') import matplotlib.pyplot as plt import pyecca.lie.so3 as so3 from pyecca.util import rk4 def u_to_fin(u): ail = u[1] elv = u[2] rdr = u[3] # top, left, down right return ca.vertcat(ail - rdr, ail - elv, ail + rdr, ail + elv) def rocket_equations(jit=True): x = ca.SX.sym('x', 14) u = ca.SX.sym('u', 4) p = ca.SX.sym('p', 16) t = ca.SX.sym('t') dt = ca.SX.sym('dt') # State: x # body frame: Forward, Right, Down omega_b = x[0:3] # inertial angular velocity expressed in body frame r_nb = x[3:7] # modified rodrigues parameters v_b = x[7:10] # inertial velocity expressed in body components p_n = x[10:13] # positon in nav frame m_fuel = x[13] # mass # Input: u m_dot = ca.if_else(m_fuel > 0, u[0], 0) fin = u_to_fin(u) # Parameters: p g = p[0] # gravity Jx = p[1] # moment of inertia Jy = p[2] Jz = p[3] Jxz = p[4] ve = p[5] l_fin = p[6] w_fin = p[7] CL_alpha = p[8] CL0 = p[9] CD0 = p[10] K = p[11] s_fin = p[12] rho = p[13] m_empty = p[14] l_motor = p[15] # Calculations m = m_empty + m_fuel J_b = ca.SX.zeros(3, 3) J_b[0, 0] = Jx + m_fuel*l_motor**2 J_b[1, 1] = Jy + m_fuel*l_motor**2 J_b[2, 2] = Jz J_b[0, 2] = J_b[2, 0] = Jxz C_nb = so3.Dcm.from_mrp(r_nb) g_n = ca.vertcat(0, 0, g) v_n = ca.mtimes(C_nb, v_b) # aerodynamics VT = ca.norm_2(v_b) q = 0.5*rho*ca.dot(v_b, v_b) fins = { 'top': { 'fwd': [1, 0, 0], 'up': [0, 1, 0], 'angle': fin[0] }, 'left': { 'fwd': [1, 0, 0], 'up': [0, 0, -1], 'angle': fin[1] }, 'down': { 'fwd': [1, 0, 0], 'up': [0, -1, 0], 'angle': fin[2] }, 'right': { 'fwd': [1, 0, 0], 'up': [0, 0, 1], 'angle': fin[3] }, } rel_wind_dir = v_b/VT # build fin lift/drag forces vel_tol = 1e-3 FA_b = ca.vertcat(0, 0, 0) MA_b = ca.vertcat(0, 0, 0) for key, data in fins.items(): fwd = data['fwd'] up = data['up'] angle = data['angle'] U = ca.dot(fwd, v_b) W = ca.dot(up, v_b) side = ca.cross(fwd, up) alpha = ca.if_else(ca.fabs(U) > vel_tol, -ca.atan(W/U), 0) perp_wind_dir = ca.cross(side, rel_wind_dir) norm_perp = ca.norm_2(perp_wind_dir) perp_wind_dir = ca.if_else(ca.fabs(norm_perp) > vel_tol, perp_wind_dir/norm_perp, up) CL = CL0 + CL_alpha*(alpha + angle) CD = CD0 + K*(CL - CL0)**2 # model stall as no lift if above 23 deg. L = ca.if_else(ca.fabs(alpha)<0.4, CL*q*s_fin, 0) D = CD*q*s_fin FAi_b = L*perp_wind_dir - D*rel_wind_dir FA_b += FAi_b MA_b += ca.cross(-l_fin*fwd - w_fin*side, FAi_b) FA_b = ca.if_else(ca.fabs(VT) > vel_tol, FA_b, ca.SX.zeros(3)) MA_b = ca.if_else(ca.fabs(VT) > vel_tol, MA_b, ca.SX.zeros(3)) # propulsion FP_b = ca.vertcat(m_dot*ve, 0, 0) # force and momental total F_b = FA_b + FP_b + ca.mtimes(C_nb.T, m*g_n) M_b = MA_b force_moment = ca.Function( 'force_moment', [x, u, p], [F_b, M_b], ['x', 'u', 'p'], ['F_b', 'M_b']) # right hand side rhs = ca.Function('rhs', [x, u, p], [ca.vertcat( ca.mtimes(ca.inv(J_b), M_b - ca.cross(omega_b, ca.mtimes(J_b, omega_b))), so3.Mrp.kinematics(r_nb, omega_b), F_b/m - ca.cross(omega_b, v_b), ca.mtimes(C_nb, v_b), -m_dot)], ['x', 'u', 'p'], ['rhs'], {'jit': jit}) # prediction t0 = ca.SX.sym('t0') h = ca.SX.sym('h') x0 = ca.SX.sym('x', 14) x1 = rk4(lambda t, x: rhs(x, u, p), t0, x0, h) x1[3:7] = so3.Mrp.shadow_if_necessary(x1[3:7]) predict = ca.Function('predict', [x0, u, p, t0, h], [x1], {'jit': jit}) def schedule(t, start, ty_pairs): val = start for ti, yi in ty_pairs: val = ca.if_else(t > ti, yi, val) return val # reference trajectory pitch_d = 1.0 euler = so3.Euler.from_mrp(r_nb) # roll, pitch, yaw pitch = euler[1] # control u_control = ca.SX.zeros(4) # these controls are just test controls to make sure the fins are working u_control[0] = 0.1 # mass flow rate u_control[1] = 0 u_control[2] = (pitch - 1) u_control[3] = 0 control = ca.Function('control', [x, p, t, dt], [u_control], ['x', 'p', 't', 'dt'], ['u']) # initialize pitch_deg = ca.SX.sym('pitch_deg') omega0_b = ca.vertcat(0, 0, 0) r0_nb = so3.Mrp.from_euler(ca.vertcat(0, pitch_deg*ca.pi/180, 0)) v0_b = ca.vertcat(0, 0, 0) p0_n = ca.vertcat(0, 0, 0) m0_fuel = 0.8 # x: omega_b, r_nb, v_b, p_n, m_fuel x0 = ca.vertcat(omega0_b, r0_nb, v0_b, p0_n, m0_fuel) # g, Jx, Jy, Jz, Jxz, ve, l_fin, w_fin, CL_alpha, CL0, CD0, K, s, rho, m_emptpy, l_motor p0 = [9.8, 0.05, 1.0, 1.0, 0.0, 350, 1.0, 0.05, 2*np.pi, 0, 0.01, 0.01, 0.05, 1.225, 0.2, 1.0] initialize = ca.Function('initialize', [pitch_deg], [x0, p0]) return { 'rhs': rhs, 'predict': predict, 'control': control, 'initialize': initialize, 'force_moment': force_moment, 'x': x, 'u': u, 'p': p } return rhs, x, u, p def analyze_data(data): plt.figure(figsize=(20, 20)) plt.subplot(331) plt.title('fuel') plt.plot(data['t'], data['x'][:, 13]) plt.xlabel('t, sec') plt.ylabel('mass, kg') plt.grid() plt.subplot(332) #plt.title('velocity') plt.plot(data['t'], data['x'][:, 7], label='x') plt.plot(data['t'], data['x'][:, 8], label='y') plt.plot(data['t'], data['x'][:, 9], label='z') plt.xlabel('t, sec') plt.ylabel('body velocity, m/s') plt.grid() plt.legend() plt.subplot(333) euler = np.array( [np.array(ca.DM(so3.Euler.from_mrp(x))).reshape(-1) for x in data['x'][:, 3:7]]) plt.plot(data['t'], np.rad2deg(euler[:, 0]), label='roll') plt.plot(data['t'], np.rad2deg(euler[:, 1]), label='pitch') plt.plot(data['t'], np.rad2deg(euler[:, 2]), label='yaw') plt.legend() plt.grid() plt.xlabel('t, sec') plt.ylabel('euler angles, deg') #plt.title('euler') plt.subplot(334) #plt.title('angular velocity') plt.plot(data['t'], data['x'][:, 0], label='x') plt.plot(data['t'], data['x'][:, 1], label='y') plt.plot(data['t'], data['x'][:, 2], label='z') plt.xlabel('t, sec') plt.ylabel('angular velocity, rad/s') plt.grid() plt.legend() plt.subplot(335) #plt.title('trajectory [side]') plt.plot(data['x'][:, 10], -data['x'][:, 12]) plt.xlabel('North, m') plt.ylabel('Altitude, m') plt.axis('equal') plt.grid() plt.subplot(336) #plt.title('trajectory [top]') plt.plot(data['x'][:, 11], data['x'][:, 10]) plt.xlabel('East, m') plt.ylabel('North, m') plt.axis('equal') plt.grid() plt.subplot(337) #plt.title('control input') plt.plot(data['t'], data['u'][:, 0], label='mdot') plt.plot(data['t'], data['u'][:, 1], label='aileron') plt.plot(data['t'], data['u'][:, 2], label='elevator') plt.plot(data['t'], data['u'][:, 3], label='rudder') plt.xlabel('t, sec') plt.ylabel('control') plt.legend() plt.grid() def simulate(rocket, x0, p0, dt=0.005, t0=0, tf=5): """ An integrator using a fixed step runge-kutta approach. """ x = x0 u = rocket['control'](x0, p0, t0, dt) data = { 't': [], 'x': [], 'u': [] } for t in
np.arange(t0, tf, dt)
numpy.arange
from csbdeep.data import PadAndCropResizer, PercentileNormalizer, NoResizer from csbdeep.internals.predict import Progress, total_n_tiles, tile_iterator_1d, to_tensor, from_tensor from csbdeep.models import CARE from csbdeep.utils import _raise, axes_check_and_normalize, axes_dict import warnings import numpy as np import tensorflow as tf class CryoCARE(CARE): def train(self, train_dataset, val_dataset, epochs=None, steps_per_epoch=None): """Train the neural network with the given data. Parameters ---------- X : :class:`numpy.ndarray` Array of source images. Y : :class:`numpy.ndarray` Array of target images. validation_data : tuple(:class:`numpy.ndarray`, :class:`numpy.ndarray`) Tuple of arrays for source and target validation images. epochs : int Optional argument to use instead of the value from ``config``. steps_per_epoch : int Optional argument to use instead of the value from ``config``. Returns ------- ``History`` object See `Keras training history <https://keras.io/models/model/#fit>`_. """ axes = axes_check_and_normalize('S' + self.config.axes, len(train_dataset.element_spec[0].shape) + 1) ax = axes_dict(axes) train_shape = (1,) + train_dataset.element_spec[0].shape for a, div_by in zip(axes, self._axes_div_by(axes)): n = train_shape[ax[a]] print(ax[a], n) if n % div_by != 0: raise ValueError( "training images must be evenly divisible by %d along axis %s" " (which has incompatible size %d)" % (div_by, a, n) ) if epochs is None: epochs = self.config.train_epochs if steps_per_epoch is None: steps_per_epoch = self.config.train_steps_per_epoch if not self._model_prepared: self.prepare_for_training() history = self.keras_model.fit(train_dataset.batch(self.config.train_batch_size), validation_data=val_dataset.batch(self.config.train_batch_size), epochs=epochs, steps_per_epoch=steps_per_epoch, callbacks=self.callbacks, verbose=1) if self.basedir is not None: self.keras_model.save_weights(str(self.logdir / 'weights_last.h5')) if self.config.train_checkpoint is not None: print() self._find_and_load_weights(self.config.train_checkpoint) try: # remove temporary weights (self.logdir / 'weights_now.h5').unlink() except FileNotFoundError: pass return history def predict(self, even, odd, output, axes, normalizer=PercentileNormalizer(), resizer=PadAndCropResizer(), mean=0, std=1, n_tiles=None): """Apply neural network to raw image to predict restored image. Parameters ---------- img : :class:`numpy.ndarray` Raw input image axes : str Axes of the input ``img``. normalizer : :class:`csbdeep.data.Normalizer` or None Normalization of input image before prediction and (potentially) transformation back after prediction. resizer : :class:`csbdeep.data.Resizer` or None If necessary, input image is resized to enable neural network prediction and result is (possibly) resized to yield original image size. n_tiles : iterable or None Out of memory (OOM) errors can occur if the input image is too large. To avoid this problem, the input image is broken up into (overlapping) tiles that can then be processed independently and re-assembled to yield the restored image. This parameter denotes a tuple of the number of tiles for every image axis. Note that if the number of tiles is too low, it is adaptively increased until OOM errors are avoided, albeit at the expense of runtime. A value of ``None`` denotes that no tiling should initially be used. Returns ------- :class:`numpy.ndarray` Returns the restored image. If the model is probabilistic, this denotes the `mean` parameter of the predicted per-pixel Laplace distributions (i.e., the expected restored image). Axes semantics are the same as in the input image. Only if the output is multi-channel and the input image didn't have a channel axis, then output channels are appended at the end. """ self._predict_mean_and_scale(self._crop(even), self._crop(odd), self._crop(output), axes, normalizer, resizer=NoResizer(), mean=mean, std=std, n_tiles=n_tiles) def _crop(self, data): div_by = self._axes_div_by('XYZ') data_shape = data.shape slices = () for i in range(3): if data_shape[i] % div_by[i] == 0: slices += (slice(None),) else: slices += (slice(0, -(data_shape[i]%div_by[i])),) return data[slices] def _predict_mean_and_scale(self, even, odd, output, axes, normalizer, resizer, mean, std, n_tiles=None): """Apply neural network to raw image to predict restored image. See :func:`predict` for parameter explanations. Returns ------- tuple(:class:`numpy.ndarray`, :class:`numpy.ndarray` or None) If model is probabilistic, returns a tuple `(mean, scale)` that defines the parameters of per-pixel Laplace distributions. Otherwise, returns the restored image via a tuple `(restored,None)` """ print(even.shape) normalizer, resizer = self._check_normalizer_resizer(normalizer, resizer) # axes = axes_check_and_normalize(axes,img.ndim) # different kinds of axes # -> typical case: net_axes_in = net_axes_out, img_axes_in = img_axes_out img_axes_in = axes_check_and_normalize(axes, even.ndim) net_axes_in = self.config.axes net_axes_out = axes_check_and_normalize(self._axes_out) set(net_axes_out).issubset(set(net_axes_in)) or _raise(ValueError("different kinds of output than input axes")) net_axes_lost = set(net_axes_in).difference(set(net_axes_out)) img_axes_out = ''.join(a for a in img_axes_in if a not in net_axes_lost) # print(' -> '.join((img_axes_in, net_axes_in, net_axes_out, img_axes_out))) tiling_axes = net_axes_out.replace('C', '') # axes eligible for tiling _permute_axes = self._make_permute_axes(img_axes_in, net_axes_in, net_axes_out, img_axes_out) # _permute_axes: (img_axes_in -> net_axes_in), undo: (net_axes_out -> img_axes_out) even = _permute_axes(even) odd = _permute_axes(odd) # x has net_axes_in semantics x_tiling_axis = tuple(axes_dict(net_axes_in)[a] for a in tiling_axes) # numerical axis ids for x channel_in = axes_dict(net_axes_in)['C'] channel_out = axes_dict(net_axes_out)['C'] net_axes_in_div_by = self._axes_div_by(net_axes_in) net_axes_in_overlaps = self._axes_tile_overlap(net_axes_in) self.config.n_channel_in == even.shape[channel_in] or _raise(ValueError()) # TODO: refactor tiling stuff to make code more readable def _total_n_tiles(n_tiles): n_block_overlaps = [int(np.ceil(1. * tile_overlap / block_size)) for tile_overlap, block_size in zip(net_axes_in_overlaps, net_axes_in_div_by)] return total_n_tiles(even, n_tiles=n_tiles, block_sizes=net_axes_in_div_by, n_block_overlaps=n_block_overlaps, guarantee='size') _permute_axes_n_tiles = self._make_permute_axes(img_axes_in, net_axes_in) # _permute_axes_n_tiles: (img_axes_in <-> net_axes_in) to convert n_tiles between img and net axes def _permute_n_tiles(n, undo=False): # hack: move tiling axis around in the same way as the image was permuted by creating an array return _permute_axes_n_tiles(np.empty(n, np.bool), undo=undo).shape # to support old api: set scalar n_tiles value for the largest tiling axis if np.isscalar(n_tiles) and int(n_tiles) == n_tiles and 1 <= n_tiles: largest_tiling_axis = [i for i in np.argsort(even.shape) if i in x_tiling_axis][-1] _n_tiles = [n_tiles if i == largest_tiling_axis else 1 for i in range(x.ndim)] n_tiles = _permute_n_tiles(_n_tiles, undo=True) warnings.warn("n_tiles should be a tuple with an entry for each image axis") print("Changing n_tiles to %s" % str(n_tiles)) if n_tiles is None: n_tiles = [1] * even.ndim try: n_tiles = tuple(n_tiles) even.ndim == len(n_tiles) or _raise(TypeError()) except TypeError: raise ValueError("n_tiles must be an iterable of length %d" % even.ndim) all(np.isscalar(t) and 1 <= t and int(t) == t for t in n_tiles) or _raise( ValueError("all values of n_tiles must be integer values >= 1")) n_tiles = tuple(map(int, n_tiles)) n_tiles = _permute_n_tiles(n_tiles) (all(n_tiles[i] == 1 for i in range(even.ndim) if i not in x_tiling_axis) or _raise(ValueError("entry of n_tiles > 1 only allowed for axes '%s'" % tiling_axes))) # n_tiles_limited = self._limit_tiling(x.shape,n_tiles,net_axes_in_div_by) # if any(np.array(n_tiles) != np.array(n_tiles_limited)): # print("Limiting n_tiles to %s" % str(_permute_n_tiles(n_tiles_limited,undo=True))) # n_tiles = n_tiles_limited n_tiles = list(n_tiles) # normalize & resize even = resizer.before(even, net_axes_in, net_axes_in_div_by) odd = resizer.before(odd, net_axes_in, net_axes_in_div_by) done = False progress = Progress(_total_n_tiles(n_tiles), 1) c = 0 while not done: try: # raise tf.errors.ResourceExhaustedError(None,None,None) # tmp pred = predict_tiled(self.keras_model, even, odd, output, [4 * (slice(None),)], 4 * (slice(None),), mean=mean, std=std, axes_in=net_axes_in, axes_out=net_axes_out, n_tiles=n_tiles, block_sizes=net_axes_in_div_by, tile_overlaps=net_axes_in_overlaps, pbar=progress) output = pred # x has net_axes_out semantics done = True progress.close() except tf.errors.ResourceExhaustedError: # TODO: how to test this code? # n_tiles_prev = list(n_tiles) # make a copy tile_sizes_approx =
np.array(even.shape)
numpy.array
from typing import List import cv2 import torch from albumentations import BasicTransform from torch.nn import Module import numpy as np from pietoolbelt.tta import AbstractTTA from pietoolbelt.viz import ColormapVisualizer class SegmentationInference: def __init__(self, model: Module): self._model = model self._transform = None self._target_transform = None self._tta = None self._threshold = 0.5 self._vis = ColormapVisualizer([0.5, 0.5]) self._device = None def set_device(self, device: str) -> 'SegmentationInference': self._model = self._model.to(device) self._device = device return self def set_data_transform(self, transform: BasicTransform) -> 'SegmentationInference': self._transform = transform return self def set_target_transform(self, transform: BasicTransform) -> 'SegmentationInference': self._target_transform = transform return self def set_tta(self, tta: List[AbstractTTA]) -> 'SegmentationInference': self._tta = tta return self def _process_imag(self, image) -> np.ndarray: data = np.swapaxes(image, 0, -1).astype(np.float32) / 128 - 1 data = torch.from_numpy(
np.expand_dims(data, axis=0)
numpy.expand_dims
import numpy as np def istri_1(ppos, tri1): """ ISTRI-1 TRUE if (PPOS, TRIA) is 1-simplex triangulation. """ okay = True #--------------------------------------- some simple checks! if (not isinstance(ppos, np.ndarray)): raise Exception("Invalid type: PPOS.") if (not isinstance(tri1, np.ndarray)): raise Exception("Invalid type: TRIA.") if (ppos.ndim != +2): raise Exception("Invalid PPOS ndims.") if (ppos.shape[1] < +2): raise Exception("Invalid PPOS shape.") nump = ppos.shape[0] if (tri1.ndim != +2): raise Exception("Invalid TRIA ndims.") if (tri1.shape[1] < +2): raise Exception("Invalid TRIA shape.") if (np.min(tri1[:, 0:1]) < +0 or np.max(tri1[:, 0:1]) >= nump): raise Exception("Invalid TRIA index.") return okay def istri_2(ppos, tri2): """ ISTRI-2 TRUE if (PPOS, TRIA) is 2-simplex triangulation. """ okay = True #--------------------------------------- some simple checks! if (not isinstance(ppos, np.ndarray)): raise Exception("Invalid type: PPOS.") if (not isinstance(tri2, np.ndarray)): raise Exception("Invalid type: TRIA.") if (ppos.ndim != +2): raise Exception("Invalid PPOS ndims.") if (ppos.shape[1] < +2): raise Exception("Invalid PPOS shape.") nump = ppos.shape[0] if (tri2.ndim != +2): raise Exception("Invalid TRIA ndims.") if (tri2.shape[1] < +3): raise Exception("Invalid TRIA shape.") if (
np.min(tri2[:, 0:2])
numpy.min
""" Module for neural analysis """ import numpy as np from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple def get_isi(spk_ts_list: list): """ Get inter-analysis interval of spikes Parameters ---------- spk_ts_list : list Returns ------- isi : class object class object for inter-spike intervals """ isi = np.array([], dtype=np.float64) for spk in spk_ts_list: isi = np.append(isi, np.diff(spk)) isi = ISI(isi) # return the class object return isi def get_peth(evt_ts_list: list, spk_ts_list: list, pre_evt_buffer=None, duration=None, bin_size=None, nb_bins=None ): """ Get peri-event histogram & firing rates Parameters ---------- evt_ts_list : list Timestamps for behavioral events (e.g., syllable onset/offsets) spk_ts_list : list Spike timestamps pre_evt_buffer : int, default=None Size of buffer window prior to the first event (in ms) duration : int, optional Duration of the peth (in ms). Truncate the bin_size : int, default=None Time bin size nb_bins : int, default=None Number of bins Returns ------- peth : np.ndarray Peri-event time histograms time_bin : np.ndarray Time bin vector parameter : dict Parameters for draw peth Notes ----- If pre_evt_buffer, bin_size, nb_bins not specified, take values from analysis ..analysis.parameters """ from ..analysis.parameters import peth_parm import copy import math parameter = peth_parm.copy() if pre_evt_buffer is None: pre_evt_buffer = parameter['buffer'] if bin_size is None: bin_size = parameter['bin_size'] if nb_bins is None: nb_bins = parameter['nb_bins'] time_bin = np.arange(0, nb_bins, bin_size) - pre_evt_buffer peth = np.zeros((len(evt_ts_list), nb_bins)) # nb of trials x nb of time bins for trial_ind, (evt_ts, spk_ts) in enumerate(zip(evt_ts_list, spk_ts_list)): spk_ts_new = copy.deepcopy(spk_ts) if not isinstance(evt_ts, np.float64): # evt_ts = np.asarray(list(map(float, evt_ts))) + pre_evt_buffer # spk_ts_new -= evt_ts[0] evt_ts = np.asarray(list(map(float, evt_ts))) spk_ts_new -= evt_ts[0] spk_ts_new += pre_evt_buffer else: spk_ts_new -= evt_ts spk_ts_new += pre_evt_buffer for spk in spk_ts_new: ind = math.ceil(spk / bin_size) # print("spk = {}, bin index = {}".format(spk, ind)) # for debugging if ind < 0: raise Exception("Index out of bound") peth[trial_ind, ind] += 1 # Truncate the array leaving out only the portion of our interest if duration: ind = np.where(((0 - pre_evt_buffer) <= time_bin) & (time_bin < duration))[0] peth = peth[:, ind[0]:ind[-1]+1] time_bin = time_bin[ind[0]:ind[-1]+1] return peth, time_bin, parameter def get_pcc(fr_array: np.ndarray) -> dict: """ Get pairwise cross-correlation Parameters ---------- fr_array : np.ndarray (trial x time_bin) Returns ------- pcc_dict : dict """ pcc_dict = {} pcc_arr = np.array([]) for ind1, fr1 in enumerate(fr_array): for ind2, fr2 in enumerate(fr_array): if ind2 > ind1: if np.linalg.norm((fr1 - fr1.mean()), ord=1) * np.linalg.norm((fr2 - fr2.mean()), ord=1): if not np.isnan(np.corrcoef(fr1, fr2)[0, 1]): pcc_arr = np.append(pcc_arr, np.corrcoef(fr1, fr2)[0, 1]) # get correlation coefficient pcc_dict['array'] = pcc_arr pcc_dict['mean'] = round(pcc_arr.mean(), 3) return pcc_dict def jitter_spk_ts(spk_ts_list, shuffle_limit, reproducible=True): """ Add a random temporal jitter to the spike Parameters ---------- reproducible : bool Make the results reproducible by setting the seed as equal to index """ spk_ts_jittered_list = [] for ind, spk_ts in enumerate(spk_ts_list): np.random.seed() if reproducible: # randomization seed seed = ind np.random.seed(seed) # make random jitter reproducible else: seed = np.random.randint(len(spk_ts_list), size=1) np.random.seed(seed) # make random jitter reproducible nb_spk = spk_ts.shape[0] jitter = np.random.uniform(-shuffle_limit, shuffle_limit, nb_spk) spk_ts_jittered_list.append(spk_ts + jitter) return spk_ts_jittered_list def pcc_shuffle_test(ClassObject, PethInfo, plot_hist=False, alpha=0.05): """ Run statistical test to see if baseline pairwise cross-correlation obtained by spike time shuffling is significant Parameters ---------- ClassObject : class object (e.g., NoteInfo, MotifInfo) PethInfo : peth info class object plot_hist : bool Plot histogram of bootstrapped pcc values (False by default) Returns ------- p_sig : dict True if the pcc is significantly above the baseline """ from ..analysis.parameters import peth_shuffle from collections import defaultdict from functools import partial import scipy.stats as stats import matplotlib.pyplot as plt pcc_shuffle = defaultdict(partial(np.ndarray, 0)) for i in range(peth_shuffle['shuffle_iter']): ClassObject.jitter_spk_ts(peth_shuffle['shuffle_limit']) pi_shuffle = ClassObject.get_note_peth(shuffle=True) # peth object pi_shuffle.get_fr() # get firing rates pi_shuffle.get_pcc() # get pcc for context, pcc in pi_shuffle.pcc.items(): pcc_shuffle[context] = np.append(pcc_shuffle[context], pcc['mean']) # One-sample t-test (one-sided) p_val = {} p_sig = {} for context in pcc_shuffle.keys(): (_, p_val[context]) = stats.ttest_1samp(a=pcc_shuffle[context], popmean=PethInfo.pcc[context]['mean'], nan_policy='omit', alternative='less') # one-tailed t-test for context, value in p_val.items(): p_sig[context] = value < alpha # Plot histogram if plot_hist: from ..utils.draw import remove_right_top fig, axes = plt.subplots(1, 2, figsize=(6, 3)) plt.suptitle('PCC shuffle distribution', y=.98, fontsize=10) for axis, context in zip(axes, pcc_shuffle.keys()): axis.set_title(context) axis.hist(pcc_shuffle[context], color='k') axis.set_xlim([-0.1, 0.6]) axis.set_xlabel('PCC'), axis.set_ylabel('Count') if p_sig[context]: axis.axvline(x=PethInfo.pcc[context]['mean'], color='r', linewidth=1, ls='--') else: axis.axvline(x=PethInfo.pcc[context]['mean'], color='k', linewidth=1, ls='--') remove_right_top(axis) plt.tight_layout() plt.show() return p_sig class ClusterInfo: def __init__(self, path, channel_nb, unit_nb, format='rhd', *name, update=False, time_unit='ms'): """ Load information about cluster Parameters ---------- path : path path that contains recording files for the cluster channel_nb : int number of the channel that recorded the cluster unit_nb : int number id of the cluster (needed because multiple neurons could have been recorded in the same session & channel) format : str 'rhd' by default (Intan) name : name of the cluster e.g., ('096-g70r40-Predeafening-D07(20191106)-S03-Ch17-Cluster01') update : bool If not exists, create a .npz cache file in the same folder so that it doesn't read from the raw data every time the class is called. time_unit : str 'ms' by default """ from ..analysis.load import load_song self.path = path if channel_nb: # if a neuron was recorded if len(str(channel_nb)) == 1: self.channel_nb = 'Ch0' + str(channel_nb) elif len(str(channel_nb)) == 2: self.channel_nb = 'Ch' + str(channel_nb) else: self.channel_nb = 'Ch' self.unit_nb = unit_nb self.format = format if name: self.name = name[0] else: self.name = self.path self._print_name() # Load events file_name = self.path / "ClusterInfo_{}_Cluster{}.npy".format(self.channel_nb, self.unit_nb) if update or not file_name.exists(): # if .npy doesn't exist or want to update the file song_info = load_song(self.path) # Save cluster_info as a numpy object np.save(file_name, song_info) else: song_info = np.load(file_name, allow_pickle=True).item() # Set the dictionary values to class attributes for key in song_info: setattr(self, key, song_info[key]) # Load spike if channel_nb and unit_nb: self._load_spk(time_unit) def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) def _print_name(self) -> None: print('') print('Load cluster {self.name}'.format(self=self)) def list_files(self, ext: str): from ..utils.functions import list_files return list_files(self.path, ext) def _load_spk(self, time_unit, delimiter='\t') -> None: """ Load spike information Parameters ---------- time_unit : str time unit (e.g., 'ms') delimiter : str delimiter of the cluster file (tab (\t) by default) Returns ------- sets spk_wf, spk_ts, nb_spk as attributes """ spk_txt_file = list(self.path.glob('*' + self.channel_nb + '(merged).txt')) if not spk_txt_file: print("spk text file doesn't exist !") return spk_txt_file = spk_txt_file[0] spk_info = np.loadtxt(spk_txt_file, delimiter=delimiter, skiprows=1) # skip header # Select only the unit (there could be multiple isolated units in the same file) if self.unit_nb: # if the unit number is specified spk_info = spk_info[spk_info[:, 1] == self.unit_nb, :] spk_ts = spk_info[:, 2] # analysis time stamps spk_wf = spk_info[:, 3:] # analysis waveform nb_spk = spk_wf.shape[0] # total number of spikes self.spk_wf = spk_wf # individual waveforms self.nb_spk = nb_spk # the number of spikes # Units are in second by default, but convert to millisecond with the argument if time_unit == 'ms': spk_ts *= 1E3 # Output analysis timestamps per file in a list spk_list = [] for file_start, file_end in zip(self.file_start, self.file_end): spk_list.append(spk_ts[np.where((spk_ts >= file_start) & (spk_ts <= file_end))]) self.spk_ts = spk_list # analysis timestamps in ms # print("spk_ts, spk_wf, nb_spk attributes added") def analyze_waveform(self, align_wf=True, interpolate=True, interp_factor=None ): """ Perform waveform analysis Parameters ---------- align_wf : bool align all spike waveforms relative to the max location interpolate : bool Set to true if waveform interpolation is needed interp_factor : int Factor by which to increase the sampling frequency of the waveform e.g., 100 if you want to increase the data points by 100 fold """ from ..analysis.functions import align_waveform, get_half_width from ..analysis.parameters import sample_rate if align_wf: self.spk_wf = align_waveform(self.spk_wf) def _get_spk_profile(wf_ts, avg_wf, interpolate=interpolate): spk_height = np.abs(np.max(avg_wf) - np.min(avg_wf)) # in microseconds if interpolate: spk_width = abs(((np.argmax(avg_wf) - np.argmin(avg_wf)) + 1)) * ( (1 / sample_rate[self.format]) / interp_factor) * 1E6 # in microseconds else: spk_width = abs(((np.argmax(avg_wf) - np.argmin(avg_wf)) + 1)) * ( 1 / sample_rate[self.format]) * 1E6 # in microseconds deflection_range, half_width = get_half_width(wf_ts, avg_wf) # get the half width from the peak deflection return spk_height, spk_width, half_width, deflection_range if not interp_factor: from ..analysis.parameters import interp_factor interp_factor = interp_factor self.avg_wf = np.nanmean(self.spk_wf, axis=0) self.wf_ts = np.arange(0, self.avg_wf.shape[0]) / sample_rate[self.format] * 1E3 # x-axis in ms if interpolate: # interpolate the waveform to increase sampling frequency from scipy import interpolate f = interpolate.interp1d(self.wf_ts, self.avg_wf) wf_ts_interp = np.arange(0, self.wf_ts[-1], ((self.wf_ts[1] - self.wf_ts[0]) * (1 / interp_factor))) assert (np.diff(wf_ts_interp)[0] * interp_factor) == np.diff(self.wf_ts)[0] avg_wf_interp = f(wf_ts_interp) # use interpolation function returned by `interp1d` # Replace the original value with interpolated ones self.wf_ts_interp = wf_ts_interp self.avg_wf_interp = avg_wf_interp spk_height, spk_width, half_width, deflection_range = _get_spk_profile(wf_ts_interp, avg_wf_interp) else: spk_height, spk_width, half_width, deflection_range = _get_spk_profile(self.wf_ts, self.avg_wf) self.spk_height = round(spk_height, 3) # in microvolts self.spk_width = round(spk_width, 3) # in microseconds self.half_width = half_width self.deflection_range = deflection_range # the range where half width was calculated # print("avg_wf, spk_height (uv), spk_width (us), wf_ts (ms) added") def get_conditional_spk(self) -> dict: """Get spike timestamps from different contexts""" conditional_spk = {} conditional_spk['U'] = [spk_ts for spk_ts, context in zip(self.spk_ts, self.contexts) if context == 'U'] conditional_spk['D'] = [spk_ts for spk_ts, context in zip(self.spk_ts, self.contexts) if context == 'D'] return conditional_spk def get_correlogram(self, ref_spk_list, target_spk_list, normalize=False) -> dict: """Get auto- or cross-correlogram""" from ..analysis.parameters import spk_corr_parm import math correlogram = {} for social_context in set(self.contexts): # Compute spk correlogram corr_temp = np.zeros(len(spk_corr_parm['time_bin'])) for ref_spks, target_spks, context in zip(ref_spk_list, target_spk_list, self.contexts): if context == social_context: for ref_spk in ref_spks: for target_spk in target_spks: diff = target_spk - ref_spk # time difference between two spikes if (diff) and (diff <= spk_corr_parm['lag'] and diff >= -spk_corr_parm['lag']): if diff < 0: ind = np.where(spk_corr_parm['time_bin'] <= -math.ceil(abs(diff)))[0][-1] elif diff > 0: ind = np.where(spk_corr_parm['time_bin'] >= math.ceil(diff))[0][0] # print("diff = {}, bin index = {}".format(diff, spk_corr_parm['time_bin'][ind])) # for debugging corr_temp[ind] += 1 # Make sure the array is symmetrical first_half = np.fliplr([corr_temp[:int((spk_corr_parm['lag'] / spk_corr_parm['bin_size']))]])[0] second_half = corr_temp[int((spk_corr_parm['lag'] / spk_corr_parm['bin_size'])) + 1:] assert np.sum(first_half - second_half) == 0 # Normalize correlogram by the total sum (convert to probability density ) if normalize: corr_temp /= np.sum(correlogram) correlogram[social_context] = corr_temp correlogram['parameter'] = spk_corr_parm # store parameters in the dictionary return correlogram def jitter_spk_ts(self, shuffle_limit, reproducible=True): """ Add a random temporal jitter to the spike Parameters ---------- shuffle_limit : int shuffling limit (in ms) e.g., If set to 5, any integer values between -5 to 5 drawn from uniform distribution will be added to the spike timestamp reproducible : bool make the results reproducible by setting the seed as equal to index """ spk_ts_jittered_list = [] for ind, spk_ts in enumerate(self.spk_ts): np.random.seed() if reproducible: # randomization seed seed = ind np.random.seed(seed) # make random jitter reproducible else: seed = np.random.randint(len(self.spk_ts), size=1) np.random.seed(seed) # make random jitter reproducible nb_spk = spk_ts.shape[0] jitter = np.random.uniform(-shuffle_limit, shuffle_limit, nb_spk) spk_ts_jittered_list.append(spk_ts + jitter) self.spk_ts_jittered = spk_ts_jittered_list def get_jittered_corr(self) -> dict: """Get spike correlogram from time-jittered spikes""" from ..analysis.parameters import corr_shuffle from collections import defaultdict correlogram_jitter = defaultdict(list) for iter in range(corr_shuffle['shuffle_iter']): self.jitter_spk_ts(corr_shuffle['shuffle_limit']) corr_temp = self.get_correlogram(self.spk_ts_jittered, self.spk_ts_jittered) # Combine correlogram from two contexts for key, value in corr_temp.items(): if key != 'parameter': try: correlogram_jitter[key].append(value) except: correlogram_jitter[key] = value # Convert to array for key, value in correlogram_jitter.items(): correlogram_jitter[key] = (np.array(value)) return correlogram_jitter def get_isi(self, add_premotor_spk=False): """ Get inter-spike interval Parameters ---------- add_premotor_spk : bool Add spikes from the premotor window for calculation """ isi_dict = {} list_zip = zip(self.onsets, self.offsets, self.spk_ts) if not add_premotor_spk: # Include spikes from the pre-motif buffer for calculation # Pre-motor spikes are included in spk_list by default spk_list = [] for onset, offset, spks in list_zip: onset = np.asarray(list(map(float, onset))) offset = np.asarray(list(map(float, offset))) spk_list.append(spks[np.where((spks >= onset[0]) & (spks <= offset[-1]))]) for context1 in set(self.contexts): if not add_premotor_spk: spk_list_context = [spk_ts for spk_ts, context2 in zip(spk_list, self.contexts) if context2 == context1] else: spk_list_context = [spk_ts for spk_ts, context2 in zip(self.spk_ts, self.contexts) if context2 == context1] isi_dict[context1] = get_isi(spk_list_context) return isi_dict @property def nb_files(self) -> dict: """ Return the number of files per context Returns ------- nb_files : dict Number of files per context ('U', 'D', 'All') """ nb_files = {} nb_files['U'] = len([context for context in self.contexts if context == 'U']) nb_files['D'] = len([context for context in self.contexts if context == 'D']) nb_files['All'] = nb_files['U'] + nb_files['D'] return nb_files def nb_bouts(self, song_note: str) -> dict: """ Return the number of bouts per context Parameters ---------- song_note : str song motif syllables Returns ------- nb_bouts : dict """ from ..analysis.functions import get_nb_bouts nb_bouts = {} syllable_list = [syllable for syllable, context in zip(self.syllables, self.contexts) if context == 'U'] syllables = ''.join(syllable_list) nb_bouts['U'] = get_nb_bouts(song_note, syllables) syllable_list = [syllable for syllable, context in zip(self.syllables, self.contexts) if context == 'D'] syllables = ''.join(syllable_list) nb_bouts['D'] = get_nb_bouts(song_note, syllables) nb_bouts['All'] = nb_bouts['U'] + nb_bouts['D'] return nb_bouts def nb_motifs(self, motif: str) -> dict: """ Return the number of motifs per context Parameters ---------- motf : str Song motif (e.g., 'abcd') Returns ------- nb_motifs : dict """ from ..utils.functions import find_str nb_motifs = {} syllable_list = [syllable for syllable, context in zip(self.syllables, self.contexts) if context == 'U'] syllables = ''.join(syllable_list) nb_motifs['U'] = len(find_str(syllables, motif)) syllable_list = [syllable for syllable, context in zip(self.syllables, self.contexts) if context == 'D'] syllables = ''.join(syllable_list) nb_motifs['D'] = len(find_str(syllables, motif)) nb_motifs['All'] = nb_motifs['U'] + nb_motifs['D'] return nb_motifs def get_note_info(self, target_note, pre_buffer=0, post_buffer=0 ): """ Obtain a class object (NoteInfo) for individual note spikes will be collected from note onset (+- pre_buffer) to offset (+- post_buffer) Parameters ---------- target_note : str Get information from this note pre_buffer : int Amount of time buffer relative to the event onset (e.g., syllable onset) post_buffer : int Amount of time buffer relative to the event offset (e.g., syllable onset) Returns ------- NoteInfo : class object """ from ..utils.functions import find_str syllables = ''.join(self.syllables) onsets = np.hstack(self.onsets) offsets = np.hstack(self.offsets) durations = np.hstack(self.durations) contexts = '' for i in range(len(self.contexts)): # concatenate contexts contexts += self.contexts[i] * len(self.syllables[i]) ind = np.array(find_str(syllables, target_note)) # get note indices if not ind.any(): # skil if the note does not exist return note_onsets = np.asarray(list(map(float, onsets[ind]))) note_offsets = np.asarray(list(map(float, offsets[ind]))) note_durations = np.asarray(list(map(float, durations[ind]))) note_contexts = ''.join(np.asarray(list(contexts))[ind]) # Get the note that immeidately follows next_notes = '' for i in ind: next_notes += syllables[i + 1] # Get spike info spk_ts = np.hstack(self.spk_ts) note_spk_ts_list = [] for onset, offset in zip(note_onsets, note_offsets): note_spk_ts_list.append( spk_ts[np.where((spk_ts >= onset - pre_buffer) & (spk_ts <= offset + post_buffer))]) # Organize data into a dictionary note_info = { 'note': target_note, 'next_notes' : next_notes, 'onsets': note_onsets, 'offsets': note_offsets, 'durations': note_durations, 'contexts': note_contexts, 'median_dur': np.median(note_durations, axis=0), 'spk_ts': note_spk_ts_list, 'path': self.path, # directory where the data exists 'pre_buffer' : pre_buffer, 'post_buffer' : post_buffer } return NoteInfo(note_info) # return note info @property def open_folder(self) -> None: """Open the data folder""" from ..utils.functions import open_folder open_folder(self.path) class NoteInfo: """ Class for storing information about a single note syllable and its associated spikes """ def __init__(self, note_dict): # Set the dictionary values to class attributes for key in note_dict: setattr(self, key, note_dict[key]) # Perform PLW (piecewise linear warping) self.spk_ts_warp = self._piecewise_linear_warping() def __repr__(self): return str([key for key in self.__dict__.keys()]) def select_index(self, index) -> None: """ Select only the notes with the matching index Parameters ---------- index : np.array or list Note indices to keep """ if isinstance(index, list): index = np.array(index) self.contexts = ''.join(np.array(list(self.contexts))[index]) self.onsets, self.offsets, self.durations, self.spk_ts, self.spk_ts_warp \ = self.onsets[index], self.offsets[index], self.durations[index], self.spk_ts[index], self.spk_ts_warp[index] def select_context(self, target_context : str, keep_median_duration=True ) -> None: """ Select one context Parameters ---------- target_context : str 'U' or 'D' keep_median_duration : bool Normally medial note duration is calculated using all syllables regardless of the context one may prefer to use this median to reduce variability when calculating pcc if set False, new median duration will be calculated using the selected notes """ zipped_list = \ list(zip(self.contexts, self.next_notes, self.onsets, self.offsets, self.durations, self.spk_ts, self.spk_ts_warp)) zipped_list = list(filter(lambda x: x[0] == target_context, zipped_list)) # filter context unzipped_object = zip(*zipped_list) self.contexts, self.next_notes, self.onsets, self.offsets, self.durations, self.spk_ts, self.spk_ts_warp = \ list(unzipped_object) self.contexts = ''.join(self.contexts) self.next_notes = ''.join(self.next_notes) self.onsets = np.array(self.onsets) self.offsets = np.array(self.offsets) self.durations = np.array(self.durations) self.spk_ts = np.array(self.spk_ts) self.spk_ts_warp = np.array(self.spk_ts_warp) if not keep_median_duration: self.median_dur = np.median(self.median_dur, axis=0) def get_entropy(self, normalize=True, mode='spectral'): """ Calculate syllable entropy from all renditions and get the average Two versions : spectro-temporal entropy & spectral entropy """ from ..analysis.parameters import nb_note_crit from ..analysis.functions import get_spectral_entropy, get_spectrogram from ..utils.functions import find_str entropy_mean = {} entropy_var = {} audio = AudioData(self.path) for context in ['U', 'D']: se_mean_arr = np.array([], dtype=np.float32) se_var_arr = np.array([], dtype=np.float32) ind = np.array(find_str(self.contexts, context)) if ind.shape[0] >= nb_note_crit: for (start, end) in zip(self.onsets[ind], self.offsets[ind]): timestamp, data = audio.extract([start, end]) # audio object _, spect, _ = get_spectrogram(timestamp, data, audio.sample_rate) se = get_spectral_entropy(spect, normalize=normalize, mode=mode) if isinstance(se, dict): se_mean_arr = np.append(se_mean_arr, se['mean']) # spectral entropy averaged over time bins per rendition se_var_arr = np.append(se_var_arr, se['var']) # spectral entropy variance per rendition else: se_mean_arr = np.append(se_mean_arr, se) # spectral entropy time-resolved entropy_mean[context] = round(se_mean_arr.mean(), 3) entropy_var[context] = round(se_var_arr.mean(), 5) if mode == 'spectro_temporal': return entropy_mean, entropy_var else: # spectral entropy (does not have entropy variance) return entropy_mean def _piecewise_linear_warping(self): """Perform piecewise linear warping per note""" import copy note_spk_ts_warp_list = [] for onset, duration, spk_ts in zip(self.onsets, self.durations, self.spk_ts): spk_ts_new = copy.deepcopy(spk_ts) ratio = self.median_dur / duration origin = 0 spk_ts_temp, ind = spk_ts[spk_ts >= onset], np.where(spk_ts >= onset) spk_ts_temp = ((ratio * ((spk_ts_temp - onset))) + origin) + onset np.put(spk_ts_new, ind, spk_ts_temp) # replace original spk timestamps with warped timestamps note_spk_ts_warp_list.append(spk_ts_new) return note_spk_ts_warp_list def get_note_peth(self, time_warp=True, shuffle=False, pre_evt_buffer=None, duration=None, bin_size=None, nb_bins=None ): """ Get peri-event time histograms for single syllable Parameters ---------- time_warp : perform piecewise linear transform shuffle : add jitter to spike timestamps duration : duration of the peth bin_size : size of single bin (in ms) (take values from peth_parm by default) nb_bins : number of time bins (take values from peth_parm by default) Returns ------- PethInfo : class object """ peth_dict = {} if shuffle: peth, time_bin, peth_parm = \ get_peth(self.onsets, self.spk_ts_jittered, pre_evt_buffer=pre_evt_buffer, duration=duration, bin_size=bin_size, nb_bins=nb_bins ) else: if time_warp: # peth calculated from time-warped spikes by default # peth, time_bin = get_note_peth(self.onsets, self.spk_ts_warp, self.median_durations.sum()) # truncated version to fit the motif duration peth, time_bin, peth_parm = \ get_peth(self.onsets, self.spk_ts_warp, pre_evt_buffer=pre_evt_buffer, duration=duration, bin_size = bin_size, nb_bins = nb_bins ) else: peth, time_bin, peth_parm = \ get_peth(self.onsets, self.spk_ts, pre_evt_buffer=pre_evt_buffer, duration=duration, bin_size=bin_size, nb_bins=nb_bins ) peth_dict['peth'] = peth peth_dict['time_bin'] = time_bin peth_dict['parameters'] = peth_parm peth_dict['contexts'] = self.contexts peth_dict['median_duration'] = self.median_dur return PethInfo(peth_dict) # return peth class object for further analysis def jitter_spk_ts(self, shuffle_limit): """ Add a random temporal jitter to the spike This version limit the jittered timestamp within the motif window """ from ..analysis.parameters import pre_motor_win_size spk_ts_jittered_list = [] list_zip = zip(self.onsets, self.offsets, self.spk_ts) for ind, (onset, offset, spk_ts) in enumerate(list_zip): # Find motif onset & offset onset = float(onset) - pre_motor_win_size # start from the premotor window jittered_spk = np.array([], dtype=np.float32) for spk_ind, spk in enumerate(spk_ts): while True: jitter = np.random.uniform(-shuffle_limit, shuffle_limit, 1) new_spk = spk + jitter if onset < new_spk < offset: jittered_spk = np.append(jittered_spk, spk + jitter) break spk_ts_jittered_list.append(jittered_spk) self.spk_ts_jittered = spk_ts_jittered_list @property def nb_note(self) -> dict: """Return number of notes per context""" from ..utils.functions import find_str nb_note = {} for context in ['U', 'D']: nb_note[context] = len(find_str(self.contexts, context)) return nb_note @property def mean_fr(self) -> dict: """Return mean firing rates for the note (includes pre-motor window) per context""" from ..analysis.parameters import nb_note_crit, pre_motor_win_size from ..utils.functions import find_str note_spk = {} note_fr = {} for context1 in ['U', 'D']: if self.nb_note[context1] >= nb_note_crit: note_spk[context1] = \ sum([len(spk) for context2, spk in zip(self.contexts, self.spk_ts) if context2 == context1]) note_fr[context1] = \ round(note_spk[context1] / ((self.durations[find_str(self.contexts, context1)] + pre_motor_win_size).sum() / 1E3), 3) else: note_fr[context1] = np.nan return note_fr # @property # def open_folder(self) -> None: # """Open the data folder""" # from ..utils.functions import open_folder # # open_folder(self.path) class MotifInfo(ClusterInfo): """ Class object for motif information child class of ClusterInfo """ def __init__(self, path, channel_nb, unit_nb, motif, format='rhd', *name, update=False): super().__init__(path, channel_nb, unit_nb, format, *name, update=False) self.motif = motif if name: self.name = name[0] else: self.name = str(self.path) # Load motif info file_name = self.path / "MotifInfo_{}_Cluster{}.npy".format(self.channel_nb, self.unit_nb) if update or not file_name.exists(): # if .npy doesn't exist or want to update the file motif_info = self._load_motif() # Save info dict as a numpy object np.save(file_name, motif_info) else: motif_info = np.load(file_name, allow_pickle=True).item() # Set the dictionary values to class attributes for key in motif_info: setattr(self, key, motif_info[key]) # Delete un-used attributes self._delete_attr() def _delete_attr(self): """Delete un-used attributes/methods inheritied from the parent class """ delattr(self, 'spk_wf') delattr(self, 'nb_spk') delattr(self, 'file_start') delattr(self, 'file_end') def _load_motif(self): """Load motif info""" from ..analysis.parameters import peth_parm from ..utils.functions import find_str # Store values here file_list = [] spk_list = [] onset_list = [] offset_list = [] syllable_list = [] duration_list = [] context_list = [] list_zip = zip(self.files, self.spk_ts, self.onsets, self.offsets, self.syllables, self.contexts) for file, spks, onsets, offsets, syllables, context in list_zip: print('Loading... ' + file) onsets = onsets.tolist() offsets = offsets.tolist() # Find motifs motif_ind = find_str(syllables, self.motif) # Get syllable, analysis time stamps for ind in motif_ind: # start (first syllable) and stop (last syllable) index of a motif start_ind = ind stop_ind = ind + len(self.motif) - 1 motif_onset = float(onsets[start_ind]) motif_offset = float(offsets[stop_ind]) # Includes pre-motor spikes motif_spk = spks[np.where((spks >= motif_onset - peth_parm['buffer']) & (spks <= motif_offset))] onsets_in_motif = onsets[start_ind:stop_ind + 1] # list of motif onset timestamps offsets_in_motif = offsets[start_ind:stop_ind + 1] # list of motif offset timestamps file_list.append(file) spk_list.append(motif_spk) duration_list.append(motif_offset - motif_onset) onset_list.append(onsets_in_motif) offset_list.append(offsets_in_motif) syllable_list.append(syllables[start_ind:stop_ind + 1]) context_list.append(context) # Organize event-related info into a single dictionary object motif_info = { 'files': file_list, 'spk_ts': spk_list, 'onsets': onset_list, 'offsets': offset_list, 'durations': duration_list, # this is motif durations 'syllables': syllable_list, 'contexts': context_list, 'parameter': peth_parm } # Set the dictionary values to class attributes for key in motif_info: setattr(self, key, motif_info[key]) # Get duration note_duration_list, median_duration_list = self.get_note_duration() self.note_durations = note_duration_list self.median_durations = median_duration_list motif_info['note_durations'] = note_duration_list motif_info['median_durations'] = median_duration_list # Get PLW (piecewise linear warping) spk_ts_warp_list = self.piecewise_linear_warping() # self.spk_ts_warp = spk_ts_warp_list motif_info['spk_ts_warp'] = spk_ts_warp_list return motif_info def select_context(self, target_context : str, keep_median_duration=True ) -> None: """ Select one context Parameters ---------- target_context : str 'U' or 'D' keep_median_duration : bool Normally medial note duration is calculated using all syllables regardless of the context. One may prefer to use this median to reduce variability when calculating pcc. IF set False, new median duration will be calculated using the selected notes. """ zipped_list = \ list(zip(self.contexts, self.files, self.onsets, self.offsets, self.durations, self.spk_ts, self.spk_ts_warp, self.note_durations)) zipped_list = list(filter(lambda x: x[0] == target_context, zipped_list)) # filter context unzipped_object = zip(*zipped_list) self.contexts, self.files, self.onsets, self.offsets, self.durations, self.spk_ts, self.spk_ts_warp, self.note_durations = \ list(unzipped_object) if not keep_median_duration: _, self.median_durations = self.get_note_duration() def get_note_duration(self): """ Calculate note & gap duration per motif """ note_durations = np.empty((len(self), len(self.motif) * 2 - 1)) list_zip = zip(self.onsets, self.offsets) for motif_ind, (onset, offset) in enumerate(list_zip): # Convert from string to array of floats onset = np.asarray(list(map(float, onset))) offset = np.asarray(list(map(float, offset))) # Calculate note & interval duration timestamp = [[onset, offset] for onset, offset in zip(onset, offset)] timestamp = sum(timestamp, []) for i in range(len(timestamp) - 1): note_durations[motif_ind, i] = timestamp[i + 1] - timestamp[i] # Get median duration median_durations = np.median(note_durations, axis=0) return note_durations, median_durations def piecewise_linear_warping(self): """ Performs piecewise linear warping on raw analysis timestamps Based on each median note and gap durations """ import copy from ..utils.functions import extract_ind spk_ts_warped_list = [] list_zip = zip(self.note_durations, self.onsets, self.offsets, self.spk_ts) for motif_ind, (durations, onset, offset, spk_ts) in enumerate(list_zip): # per motif onset = np.asarray(list(map(float, onset))) offset = np.asarray(list(map(float, offset))) # Make a deep copy of spk_ts so as to make it modification won't affect the original spk_ts_new = copy.deepcopy(spk_ts) # Calculate note & interval duration timestamp = [[onset, offset] for onset, offset in zip(onset, offset)] timestamp = sum(timestamp, []) for i in range(0, len(self.median_durations)): ratio = self.median_durations[i] / durations[i] diff = timestamp[i] - timestamp[0] if i == 0: origin = 0 else: origin = sum(self.median_durations[:i]) # Add spikes from motif ind, spk_ts_temp = extract_ind(spk_ts, [timestamp[i], timestamp[i + 1]]) spk_ts_temp = ((ratio * ((spk_ts_temp - timestamp[0]) - diff)) + origin) + timestamp[0] # spk_ts_new = np.append(spk_ts_new, spk_ts_temp) np.put(spk_ts_new, ind, spk_ts_temp) # replace original spk timestamps with warped timestamps spk_ts_warped_list.append(spk_ts_new) return spk_ts_warped_list def get_mean_fr(self, add_pre_motor=False): """ Calculate mean firing rates during motif Parameters ---------- add_pre_motor : bool Set True if you want to include spikes from the pre-motor window for calculating firing rates (False by default) """ from ..analysis.parameters import peth_parm fr_dict = {} motif_spk_list = [] list_zip = zip(self.onsets, self.offsets, self.spk_ts) # Make sure spikes from the pre-motif buffer is not included in calculation for onset, offset, spks in list_zip: onset = np.asarray(list(map(float, onset))) offset = np.asarray(list(map(float, offset))) if add_pre_motor: motif_spk_list.append(spks[np.where((spks >= (onset[0] - peth_parm['buffer'])) & (spks <= offset[-1]))]) else: motif_spk_list.append(spks[np.where((spks >= onset[0]) & (spks <= offset[-1]))]) for context1 in set(self.contexts): nb_spk = sum([len(spk) for spk, context2 in zip(motif_spk_list, self.contexts) if context2 == context1]) if add_pre_motor: total_duration = sum([duration + peth_parm['buffer'] for duration, context2 in zip(self.durations, self.contexts) if context2 == context1]) else: total_duration = sum([duration for duration, context2 in zip(self.durations, self.contexts) if context2 == context1]) mean_fr = nb_spk / (total_duration / 1E3) fr_dict[context1] = round(mean_fr, 3) # print("mean_fr added") self.mean_fr = fr_dict def jitter_spk_ts(self, shuffle_limit: int, **kwargs): """ Add a random temporal jitter to the spike This version limit the jittered timestamp within the motif window """ from ..analysis.parameters import pre_motor_win_size spk_ts_jittered_list = [] list_zip = zip(self.onsets, self.offsets, self.spk_ts) for ind, (onset, offset, spk_ts) in enumerate(list_zip): # Find motif onset & offset onset = float(onset[0]) - pre_motor_win_size # start from the premotor window offset = float(offset[-1]) jittered_spk = np.array([], dtype=np.float32) for spk_ind, spk in enumerate(spk_ts): while True: jitter = np.random.uniform(-shuffle_limit, shuffle_limit, 1) new_spk = spk + jitter if onset < new_spk < offset: jittered_spk = np.append(jittered_spk, spk + jitter) break spk_ts_jittered_list.append(jittered_spk) self.spk_ts_jittered = spk_ts_jittered_list def get_peth(self, time_warp=True, shuffle=False): """ Get peri-event time histogram & raster during song motif Parameters ---------- time_warp : bool perform piecewise linear transform shuffle : bool add jitter to spike timestamps Returns ------- PethInfo : class object """ peth_dict = {} if shuffle: # Get peth with shuffled (jittered) spikes peth, time_bin, peth_parm = get_peth(self.onsets, self.spk_ts_jittered) else: if time_warp: # peth calculated from time-warped spikes by default # peth, time_bin = get_note_peth(self.onsets, self.spk_ts_warp, self.median_durations.sum()) # truncated version to fit the motif duration peth, time_bin, peth_parm = get_peth(self.onsets, self.spk_ts_warp) else: peth, time_bin, peth_parm = get_peth(self.onsets, self.spk_ts) peth_parm.pop('time_bin'); peth_parm.pop('nb_bins') peth_dict['peth'] = peth peth_dict['time_bin'] = time_bin peth_dict['parameters'] = peth_parm peth_dict['contexts'] = self.contexts peth_dict['median_duration'] = self.median_durations.sum() return PethInfo(peth_dict) # return peth class object for further analysis def __len__(self): return len(self.files) def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) @property def open_folder(self): """Open the data folder""" from ..utils.functions import open_folder open_folder(self.path) def _print_name(self): print('') print('Load motif {self.name}'.format(self=self)) class PethInfo(): def __init__(self, peth_dict: dict): """ Class object for peri-event time histogram (PETH) Parameters ---------- peth_dict : dict "peth" : array (nb of trials (motifs) x time bins), numbers indicate analysis counts in that bin "contexts" : list of strings, social contexts """ # Set the dictionary values to class attributes for key in peth_dict: setattr(self, key, peth_dict[key]) # Get conditional peth, fr, spike counts peth_dict = {} peth_dict['All'] = self.peth for context in set(self.contexts): if type(self.contexts) == str: self.contexts = list(self.contexts) ind = np.array(self.contexts) == context peth_dict[context] = self.peth[ind, :] self.peth = peth_dict def get_fr(self, gaussian_std=None, smoothing=True): """ Get trials-by-trial firing rates by default Parameters ---------- gaussian_std : int gaussian smoothing parameter. If not specified, read from analysis.parameters smoothing : bool performs gaussian smoothing on the firing rates """ # if duration: # ind = (((0 - peth_parm['buffer']) <= time_bin) & (time_bin <= duration)) # peth = peth[:, ind] # time_bin = time_bin[ind] from ..analysis.parameters import peth_parm, gauss_std, nb_note_crit from scipy.ndimage import gaussian_filter1d if not gaussian_std: # if not specified, get the value fromm analysis.parameters gaussian_std = gauss_std # Get trial-by-trial firing rates fr_dict = {} for k, v in self.peth.items(): # loop through different conditions in peth dict if v.shape[0] >= nb_note_crit: fr = v / (peth_parm['bin_size'] / 1E3) # in Hz if smoothing: # Gaussian smoothing fr = gaussian_filter1d(fr, gaussian_std) # Truncate values outside the range ind = (((0 - peth_parm['buffer']) <= self.time_bin) & (self.time_bin <= self.median_duration)) fr = fr[:, ind] fr_dict[k] = fr self.fr = fr_dict self.time_bin = self.time_bin[ind] # Get mean firing rates mean_fr_dict = {} for context, fr in self.fr.items(): fr = np.mean(fr, axis=0) mean_fr_dict[context] = fr if smoothing: mean_fr_dict['gauss_std'] = gauss_std self.mean_fr = mean_fr_dict def get_pcc(self): """Get pairwise cross-correlation""" from ..analysis.parameters import nb_note_crit pcc_dict = {} for k, v in self.fr.items(): # loop through different conditions in peth dict if k != 'All': if v.shape[0] >= nb_note_crit: pcc = get_pcc(v) pcc_dict[k] = pcc self.pcc = pcc_dict def get_fr_cv(self): """Get coefficient of variation (CV) of firing rates""" if not self.mean_fr: self.get_fr() fr_cv = {} for context, fr in self.mean_fr.items(): # loop through different conditions in peth dict if context in ['U', 'D']: fr_cv[context] = round(fr.std(axis=0) / fr.mean(axis=0), 3) return fr_cv def get_sparseness(self, bin_size=None): """ Get sparseness index Parameters ---------- bin_size : int By default, it uses the same time bin size used in peth calculation (in ms) Returns ------- sparseness : dict """ from ..analysis.parameters import gauss_std, nb_note_crit import math mean_fr = dict() sparseness = dict() if bin_size != None and bin_size != self.parameters['bin_size']: for context, peth in self.peth.items(): if context == 'All': continue new_peth = np.empty([peth.shape[0], 0]) nb_bins = math.ceil(peth.shape[1] / bin_size) bin_ind = 0 start_ind = 0 end_ind = 0 + bin_size while bin_ind < nb_bins: if end_ind > peth.shape[1]: end_ind = peth.shape[1] # print(start_ind, end_ind) peth_bin = peth[:, start_ind: end_ind].sum(axis=1).reshape(peth.shape[0], 1) new_peth = np.append(new_peth, peth_bin, axis=1) start_ind += bin_size end_ind += bin_size bin_ind += 1 fr = new_peth / (bin_size / 1E3) # in Hz mean_fr[context] = np.mean(fr, axis=0) else: mean_fr = self.mean_fr # Calculate sparseness for context, fr in mean_fr.items(): if context not in ['U', 'D']: continue norm_fr = fr / np.sum(fr) sparseness[context] = round(1 + (np.nansum(norm_fr * np.log10(norm_fr)) / np.log10(len(norm_fr))), 3) return sparseness def get_spk_count(self): """ Calculate the number of spikes within a specified time window """ from ..analysis.parameters import peth_parm, spk_count_parm win_size = spk_count_parm['win_size'] spk_count_dict = {} fano_factor_dict = {} spk_count_cv_dict = {} for k, v in self.peth.items(): # loop through different conditions in peth dict spk_arr = np.empty((v.shape[0], 0), int) # (renditions x time bins) if k != 'All': # skip all trials win_inc = 0 for i in range(v.shape[1] - win_size): count = v[:, i: win_size + win_inc].sum(axis=1) # print(f"from {i} to {win_size + win_inc}, count = {count}") spk_arr = np.append(spk_arr, np.array([count]).transpose(), axis=1) win_inc += 1 # Truncate values outside the range ind = (((0 - peth_parm['buffer']) <= self.time_bin) & (self.time_bin <= self.median_duration)) spk_arr = spk_arr[:, :ind.shape[0]] spk_count = spk_arr.sum(axis=0) fano_factor = spk_arr.var(axis=0) / spk_arr.mean( axis=0) # per time window (across renditions) (renditions x time window) spk_count_cv = spk_count.std(axis=0) / spk_count.mean(axis=0) # cv across time (single value) # store values in a dictionary spk_count_dict[k] = spk_count fano_factor_dict[k] = fano_factor spk_count_cv_dict[k] = round(spk_count_cv, 3) self.spk_count = spk_count_dict self.fano_factor = fano_factor_dict self.spk_count_cv = spk_count_cv_dict def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) class BoutInfo(ClusterInfo): """ Get song & spike information for a song bout Child class of ClusterInfo """ def __init__(self, path, channel_nb, unit_nb, song_note, format='rhd', *name, update=False): super().__init__(path, channel_nb, unit_nb, format, *name, update=False) self.song_note = song_note if name: self.name = name[0] else: self.name = str(self.path) # Load bout info file_name = self.path / "BoutInfo_{}_Cluster{}.npy".format(self.channel_nb, self.unit_nb) if update or not file_name.exists(): # if .npy doesn't exist or want to update the file bout_info = self._load_bouts() # Save info dict as a numpy object np.save(file_name, bout_info) else: bout_info = np.load(file_name, allow_pickle=True).item() # Set the dictionary values to class attributes for key in bout_info: setattr(self, key, bout_info[key]) def _print_name(self): print('') print('Load bout {self.name}'.format(self=self)) def __len__(self): return len(self.files) def _load_bouts(self): # Store values here from ..utils.functions import find_str file_list = [] spk_list = [] onset_list = [] offset_list = [] syllable_list = [] duration_list = [] context_list = [] list_zip = zip(self.files, self.spk_ts, self.onsets, self.offsets, self.syllables, self.contexts) for file, spks, onsets, offsets, syllables, context in list_zip: bout_ind = find_str(syllables, '*') for ind in range(len(bout_ind)): if ind == 0: start_ind = 0 else: start_ind = bout_ind[ind - 1] + 1 stop_ind = bout_ind[ind] - 1 # breakpoint() bout_onset = float(onsets[start_ind]) bout_offset = float(offsets[stop_ind]) bout_spk = spks[np.where((spks >= bout_onset) & (spks <= bout_offset))] onsets_in_bout = onsets[start_ind:stop_ind + 1] # list of bout onset timestamps offsets_in_bout = offsets[start_ind:stop_ind + 1] # list of bout offset timestamps file_list.append(file) spk_list.append(bout_spk) duration_list.append(bout_offset - bout_onset) onset_list.append(onsets_in_bout) offset_list.append(offsets_in_bout) syllable_list.append(syllables[start_ind:stop_ind + 1]) context_list.append(context) # Organize event-related info into a single dictionary object bout_info = { 'files': file_list, 'spk_ts': spk_list, 'onsets': onset_list, 'offsets': offset_list, 'durations': duration_list, # this is bout durations 'syllables': syllable_list, 'contexts': context_list, } return bout_info def plot(self): #TODO: this function needs revision from ..analysis.parameters import bout_buffer, freq_range, bout_color from ..utils import save from ..utils.draw import remove_right_top import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np from ..database.load import ProjectLoader, DBInfo from scipy import stats import warnings warnings.filterwarnings('ignore') # Parameters save_fig = False update = False dir_name = 'RasterBouts' fig_ext = '.png' # .png or .pdf font_size = 12 # figure font size rec_yloc = 0.05 rect_height = 0.2 text_yloc = 1 # text height nb_row = 13 nb_col = 1 tick_length = 1 tick_width = 1 # Load database db = ProjectLoader().load_db() # SQL statementwa # query = "SELECT * FROM cluster" # query = "SELECT * FROM cluster WHERE ephysOK" query = "SELECT * FROM cluster WHERE id = 12" db.execute(query) # Loop through db for row in db.cur.fetchall(): # Load cluster info from db cluster_db = DBInfo(row) name, path = cluster_db.load_cluster_db() unit_nb = int(cluster_db.unit[-2:]) channel_nb = int(cluster_db.channel[-2:]) format = cluster_db.format ci = ClusterInfo(path, channel_nb, unit_nb, format, name, update=update) # cluster object bi = BoutInfo(path, channel_nb, unit_nb, cluster_db.songNote, format, name, update=update) # bout object list_zip = zip(bi.files, bi.spk_ts, bi.onsets, bi.offsets, bi.syllables, bi.contexts) for bout_ind, (file, spks, onsets, offsets, syllables, context) in enumerate(list_zip): # Convert from string to array of floats onsets = np.asarray(list(map(float, onsets))) offsets = np.asarray(list(map(float, offsets))) spks = spks - onsets[0] # bout start and end start = onsets[0] - bout_buffer end = offsets[-1] + bout_buffer duration = offsets[-1] - onsets[0] # Get spectrogram audio = AudioData(path, update=update).extract([start, end]) # audio object audio.spectrogram() audio.spect_time = audio.spect_time - audio.spect_time[0] - bout_buffer # Plot figure fig = plt.figure(figsize=(8, 7)) fig.tight_layout() fig_name = f"{file} - Bout # {bout_ind}" print("Processing... " + fig_name) fig.suptitle(fig_name, y=0.95) # Plot spectrogram ax_spect = plt.subplot2grid((nb_row, nb_col), (2, 0), rowspan=2, colspan=1) ax_spect.pcolormesh(audio.spect_time, audio.spect_freq, audio.spect, # data cmap='hot_r', norm=colors.SymLogNorm(linthresh=0.05, linscale=0.03, vmin=0.5, vmax=100 )) remove_right_top(ax_spect) ax_spect.set_ylim(freq_range[0], freq_range[1]) ax_spect.set_ylabel('Frequency (Hz)', fontsize=font_size) plt.yticks(freq_range, [str(freq_range[0]), str(freq_range[1])]) plt.setp(ax_spect.get_xticklabels(), visible=False) plt.xlim([audio.spect_time[0] - 100, audio.spect_time[-1] + 100]) # Plot syllable duration ax_syl = plt.subplot2grid((nb_row, nb_col), (1, 0), rowspan=1, colspan=1, sharex=ax_spect) note_dur = offsets - onsets # syllable duration onsets -= onsets[0] # start from 0 offsets = onsets + note_dur # Mark syllables for i, syl in enumerate(syllables): rectangle = plt.Rectangle((onsets[i], rec_yloc), note_dur[i], rect_height, linewidth=1, alpha=0.5, edgecolor='k', facecolor=bout_color[syl]) ax_syl.add_patch(rectangle) ax_syl.text((onsets[i] + (offsets[i] - onsets[i]) / 2), text_yloc, syl, size=font_size) ax_syl.axis('off') # Plot song amplitude audio.data = stats.zscore(audio.data) audio.timestamp = audio.timestamp - audio.timestamp[0] - bout_buffer ax_amp = plt.subplot2grid((nb_row, nb_col), (4, 0), rowspan=2, colspan=1, sharex=ax_spect) ax_amp.plot(audio.timestamp, audio.data, 'k', lw=0.1) ax_amp.axis('off') # Plot rasters ax_raster = plt.subplot2grid((nb_row, nb_col), (6, 0), rowspan=2, colspan=1, sharex=ax_spect) # spks2 = spks - start -peth_parm['buffer'] -peth_parm['buffer'] ax_raster.eventplot(spks, colors='k', lineoffsets=0.5, linelengths=tick_length, linewidths=tick_width, orientation='horizontal') ax_raster.axis('off') # Plot raw neural data nd = NeuralData(path, channel_nb, format, update=update).extract([start, end]) # raw neural data nd.timestamp = nd.timestamp - nd.timestamp[0] - bout_buffer ax_nd = plt.subplot2grid((nb_row, nb_col), (8, 0), rowspan=2, colspan=1, sharex=ax_spect) ax_nd.plot(nd.timestamp, nd.data, 'k', lw=0.5) # Add a scale bar plt.plot([ax_nd.get_xlim()[0] + 50, ax_nd.get_xlim()[0] + 50], [-250, 250], 'k', lw=3) # for amplitude plt.text(ax_nd.get_xlim()[0] - (bout_buffer / 2), -200, '500 µV', rotation=90) plt.subplots_adjust(wspace=0, hspace=0) remove_right_top(ax_nd) ax_nd.spines['left'].set_visible(False) plt.yticks([], []) ax_nd.set_xlabel('Time (ms)') # Save results if save_fig: save_path = save.make_dir(ProjectLoader().path / 'Analysis', 'RasterBouts') save.save_fig(fig, save_path, fig_name, fig_ext=fig_ext) else: plt.show() print('Done!') class BaselineInfo(ClusterInfo): def __init__(self, path, channel_nb, unit_nb, format='rhd', *name, update=False): super().__init__(path, channel_nb, unit_nb, format, *name, update=False) from ..analysis.parameters import baseline from ..utils.functions import find_str if name: self.name = name[0] else: self.name = str(self.path) # Load baseline info file_name = self.path / "BaselineInfo_{}_Cluster{}.npy".format(self.channel_nb, self.unit_nb) if update or not file_name.exists(): # if .npy doesn't exist or want to update the file # Store values in here file_list = [] spk_list = [] nb_spk_list = [] duration_list = [] context_list = [] baseline_info = {} list_zip = zip(self.files, self.spk_ts, self.file_start, self.onsets, self.offsets, self.syllables, self.contexts) for file, spks, file_start, onsets, offsets, syllables, context in list_zip: bout_ind_list = find_str(syllables, '*') bout_ind_list.insert(0, -1) # start from the first index for bout_ind in bout_ind_list: # print(bout_ind) if bout_ind == len(syllables) - 1: # skip if * indicates the end syllable continue baseline_onset = float(onsets[bout_ind + 1]) - baseline['time_buffer'] - baseline['time_win'] if bout_ind > 0 and baseline_onset < float(offsets[ bout_ind - 1]): # skip if the baseline starts before the offset of the previous syllable continue if baseline_onset < file_start: baseline_onset = file_start baseline_offset = float(onsets[bout_ind + 1]) - baseline['time_buffer'] if baseline_offset - baseline_onset < 0: # skip if there's not enough baseline period at the start of a file continue if baseline_onset > baseline_offset: print('start time ={} to end time = {}'.format(baseline_onset, baseline_offset)) baseline_spk = spks[np.where((spks >= baseline_onset) & (spks <= baseline_offset))] file_list.append(file) spk_list.append(baseline_spk) nb_spk_list.append(len(baseline_spk)) duration_list.append( (baseline_offset - baseline_onset)) # convert to seconds for calculating in Hz context_list.append(context) baseline_info = { 'files': file_list, 'spk_ts': spk_list, 'nb_spk': nb_spk_list, 'durations': duration_list, 'contexts': context_list, 'parameter': baseline } # Save baseline_info as a numpy object np.save(file_name, baseline_info) else: baseline_info = np.load(file_name, allow_pickle=True).item() # Set the dictionary values to class attributes for key in baseline_info: setattr(self, key, baseline_info[key]) def _print_name(self): print('') print('Load baseline {self.name}'.format(self=self)) def get_correlogram(self, ref_spk_list, target_spk_list, normalize=False): """ Override the parent method Combine correlogram from undir and dir since no contextual differentiation is needed in baseline """ from ..analysis.parameters import spk_corr_parm correlogram_all = super().get_correlogram(ref_spk_list, target_spk_list, normalize=False) correlogram = np.zeros(len(spk_corr_parm['time_bin'])) # Combine correlogram from two contexts for key, value in correlogram_all.items(): if key in ['U', 'D']: correlogram += value return correlogram # return class object for further analysis def get_jittered_corr(self) -> np.ndarray: """Get spike correlogram from time-jittered spikes""" from ..analysis.parameters import corr_shuffle correlogram_jitter = [] for iter in range(corr_shuffle['shuffle_iter']): self.jitter_spk_ts(corr_shuffle['shuffle_limit']) corr_temp = self.get_correlogram(self.spk_ts_jittered, self.spk_ts_jittered) correlogram_jitter.append(corr_temp) return np.array(correlogram_jitter) def get_isi(self): """Get inter-spike interval""" return get_isi(self.spk_ts) @property def mean_fr(self): """Mean firing rates""" nb_spk = sum([len(spk_ts) for spk_ts in self.spk_ts]) total_duration = sum(self.durations) mean_fr = nb_spk / (total_duration / 1E3) return round(mean_fr, 3) def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) class AudioData: """ Create an object that has concatenated audio signal and its timestamps Get all data by default; specify time range if needed """ def __init__(self, path, format='.wav', update=False): from ..analysis.load import load_audio self.path = path self.format = format file_name = self.path / "AudioData.npy" if update or not file_name.exists(): # if .npy doesn't exist or want to update the file audio_info = load_audio(self.path, self.format) else: audio_info = np.load(file_name, allow_pickle=True).item() # Set the dictionary values to class attributes for key in audio_info: setattr(self, key, audio_info[key]) def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) @property def open_folder(self): """Open the data folder""" from ..utils.functions import open_folder open_folder(self.path) def extract(self, time_range: list): """ Extracts data from the specified range Parameters ---------- time_range : list """ start = time_range[0] end = time_range[-1] ind = np.where((self.timestamp >= start) & (self.timestamp <= end)) return self.timestamp[ind], self.data[ind] def spectrogram(self, timestamp, data, freq_range=[300, 8000]): """Calculate spectrogram""" from ..utils.spect import spectrogram spect, spect_freq, _ = spectrogram(data, self.sample_rate, freq_range=freq_range) spect_time = np.linspace(timestamp[0], timestamp[-1], spect.shape[1]) # timestamp for spectrogram return spect_time, spect, spect_freq def get_spectral_entropy(self, spect, normalize=True, mode=None): """ Calculate spectral entropy Parameters ---------- normalize : bool Get normalized spectral entropy mode : {'spectral', ''spectro_temporal'} Returns ------- array of spectral entropy """ from ..analysis.functions import get_spectral_entropy return get_spectral_entropy(spect, normalize=normalize, mode=mode) class NeuralData: def __init__(self, path, channel_nb, format='rhd', update=False): self.path = path self.channel_nb = str(channel_nb).zfill(2) self.format = format # format of the file (e.g., rhd), this info should be in the database file_name = self.path / f"NeuralData_Ch{self.channel_nb}.npy" if update or not file_name.exists(): # if .npy doesn't exist or want to update the file data_info = self.load_neural_data() # Save event_info as a numpy object else: data_info = np.load(file_name, allow_pickle=True).item() # Set the dictionary values to class attributes for key in data_info: setattr(self, key, data_info[key]) def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) def load_neural_data(self): """ Load and concatenate all neural data files (e.g., .rhd) in the input dir (path) """ from ..analysis.load import read_rhd from ..analysis.parameters import sample_rate print("") print("Load neural data") # List .rhd files files = list(self.path.glob(f'*.{self.format}')) # Initialize timestamp_concat = np.array([], dtype=np.float64) amplifier_data_concat = np.array([], dtype=np.float64) # Store values in these lists file_list = [] if self.format == 'cbin': # if the neural data is in .cbin format, read from .mat files that has contains concatenated data # currently does not have files to extract data from .cbin files in python import scipy.io mat_file = list(self.path.glob(f'*Ch{self.channel_nb}(merged).mat'))[0] timestamp_concat = scipy.io.loadmat(mat_file)['t_amplifier'][0].astype(np.float64) amplifier_data_concat = scipy.io.loadmat(mat_file)['amplifier_data'][0].astype(np.float64) else: # Loop through Intan .rhd files for file in files: # Load data file print('Loading... ' + file.stem) file_list.append(file.name) intan = read_rhd(file) # note that the timestamp is in second # Concatenate timestamps intan['t_amplifier'] -= intan['t_amplifier'][0] # start from t = 0 if timestamp_concat.size == 0: timestamp_concat = np.append(timestamp_concat, intan['t_amplifier']) else: intan['t_amplifier'] += (timestamp_concat[-1] + (1 / sample_rate[self.format])) timestamp_concat = np.append(timestamp_concat, intan['t_amplifier']) # Concatenate neural data for ind, ch in enumerate(intan['amplifier_channels']): if int(self.channel_nb) == int(ch['native_channel_name'][-2:]): amplifier_data_concat = np.append(amplifier_data_concat, intan['amplifier_data'][ind, :]) timestamp_concat *= 1E3 # convert to microsecond # Organize data into a dictionary data_info = { 'files': file_list, 'timestamp': timestamp_concat, 'data': amplifier_data_concat, 'sample_rate': sample_rate[self.format] } file_name = self.path / f"NeuralData_Ch{self.channel_nb}.npy" np.save(file_name, data_info) return data_info def extract(self, time_range: list): """ Extracts data from the specified range Parameters ---------- time_range : list list of time stamps [start, end] Returns ------- timestamp : arr data : arr """ start = time_range[0] end = time_range[-1] ind = np.where((self.timestamp >= start) & (self.timestamp <= end)) return self.timestamp[ind], self.data[ind] @property def open_folder(self): """Open the data folder""" from ..utils.functions import open_folder open_folder(self.path) class Correlogram(): """ Class for correlogram analysis """ def __init__(self, correlogram): from ..analysis.parameters import spk_corr_parm, burst_hz corr_center = round(correlogram.shape[0] / 2) + 1 # center of the correlogram self.data = correlogram self.time_bin = np.arange(-spk_corr_parm['lag'], spk_corr_parm['lag'] + spk_corr_parm['bin_size'], spk_corr_parm['bin_size']) if self.data.sum(): self.peak_ind = np.min( np.abs(np.argwhere(correlogram == np.amax(correlogram)) - corr_center)) + corr_center # index of the peak self.peak_latency = self.time_bin[self.peak_ind] - 1 self.peak_value = self.data[self.peak_ind] burst_range = np.arange(corr_center - (1000 / burst_hz) - 1, corr_center + (1000 / burst_hz), dtype='int') # burst range in the correlogram self.burst_index = round(self.data[burst_range].sum() / self.data.sum(), 3) else: self.peak_ind = self.peak_latency = self.peak_value = self.burst_index = np.nan def __repr__(self): # print attributes return str([key for key in self.__dict__.keys()]) def category(self, correlogram_jitter: np.ndarray) -> str: """ Get bursting category of a neuron based on autocorrelogram Parameters ---------- correlogram_jitter : np.ndarray Random time-jittered correlogram for baseline setting Returns ------- Category of a neuron ('Bursting' or 'Nonbursting') """ from ..analysis.parameters import corr_burst_crit corr_mean = correlogram_jitter.mean(axis=0) if corr_mean.sum(): corr_std = correlogram_jitter.std(axis=0) upper_lim = corr_mean + (corr_std * 2) lower_lim = corr_mean - (corr_std * 2) self.baseline = upper_lim # Check peak significance if self.peak_value > upper_lim[self.peak_ind] and self.peak_latency <= corr_burst_crit: self.category = 'Bursting' else: self.category = 'NonBursting' else: self.baseline = self.category = np.array(np.nan) return self.category def plot_corr(self, ax, time_bin, correlogram, title, xlabel=None, ylabel=None, font_size=10, peak_line_width=0.8, normalize=False, peak_line=True, baseline=True): """ Plot correlogram Parameters ---------- ax : axis object axis to plot the figure time_bin : np.ndarray correlogram : np.ndarray title : str font_size : int title font size normalize : bool normalize the correlogram """ import matplotlib.pyplot as plt from ..utils.draw import remove_right_top from ..utils.functions import myround if correlogram.sum(): ax.bar(time_bin, correlogram, color='k', rasterized=True) ymax = max([self.baseline.max(), correlogram.max()]) round(ymax / 10) * 10 ax.set_ylim(0, ymax) plt.yticks([0, ax.get_ylim()[1]], [str(0), str(int(ymax))]) ax.set_title(title, size=font_size) ax.set_xlabel(xlabel) if normalize: ax.set_ylabel(ylabel) else: ax.set_ylabel(ylabel) remove_right_top(ax) if peak_line and not np.isnan(self.peak_ind): # peak_time_ind = np.where(self.time_bin == self.peak_latency) ax.axvline(x=self.time_bin[self.peak_ind], color='r', linewidth=peak_line_width, ls='--') if baseline and not np.isnan(self.baseline.mean()): ax.plot(self.time_bin, self.baseline, 'm', lw=0.5, ls='--') else: ax.axis('off') ax.set_title(title, size=font_size) class BurstingInfo: def __init__(self, ClassInfo, *input_context): from ..analysis.parameters import burst_hz # ClassInfo can be BaselineInfo, MotifInfo etc if input_context: # select data based on social context spk_list = [spk_ts for spk_ts, context in zip(ClassInfo.spk_ts, ClassInfo.contexts) if context == input_context[0]] duration_list = [duration for duration, context in zip(ClassInfo.durations, ClassInfo.contexts) if context == input_context[0]] self.context = input_context else: spk_list = ClassInfo.spk_ts duration_list = ClassInfo.durations # Bursting analysis burst_spk_list = [] burst_duration_arr = [] nb_bursts = [] nb_burst_spk_list = [] for ind, spks in enumerate(spk_list): # spk = bi.spk_ts[8] isi = np.diff(spks) # inter-spike interval inst_fr = 1E3 / np.diff(spks) # instantaneous firing rates (Hz) bursts = np.where(inst_fr >= burst_hz)[0] # burst index # Skip if no bursting detected if not bursts.size: continue # Get the number of bursts temp =
np.diff(bursts)
numpy.diff
# -*- coding: utf-8 -*- # """Tests for functions in sji.py""" import datetime import pytest import numpy as np from astropy import units as u from ndcube.utils.wcs import WCS from irispy import iris_tools from irispy.sji import IRISMapCube, IRISMapCubeSequence # Sample data for IRISMapCube tests data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, 1, 2, 3]], [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]]) data_2D = np.array([[1, 2, 3, 4], [2, 4, 5, 3]]) data_1D = np.array([1, 2]) data_4D = np.array([[[[1, 2, 3, 4], [2, 4, 5, 3], [0, 1, 2, 3]], [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]], [[[1, 2, 3, 4], [2, 4, 5, 3], [0, 1, 2, 3]], [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]]]) header = {'CTYPE1': 'HPLN-TAN', 'CUNIT1': 'arcsec', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4, 'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5, 'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 3, 'CTYPE3': 'Time ', 'CUNIT3': 'seconds', 'CDELT3': 0.3, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2} wcs = WCS(header=header, naxis=3) header_2D = {'CTYPE1': 'Time ', 'CUNIT1': 'seconds', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4, 'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5, 'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 2} wcs_2D = WCS(header=header_2D, naxis=2) header_4D = {'CTYPE1': 'Time ', 'CUNIT1': 'seconds', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4, 'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5, 'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 3, 'CTYPE3': 'Time ', 'CUNIT3': 'seconds', 'CDELT3': 0.4, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2, 'CTYPE4': 'HPLN-TAN', 'CUNIT4': 'arcsec', 'CDELT4': 0.5, 'CRPIX4': 0, 'CRVAL4': 0, 'NAXIS4': 2} wcs_4D = WCS(header=header_4D, naxis=4) header_1D = {'CTYPE1': 'Time ', 'CUNIT1': 'seconds', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 2} wcs_1D = WCS(header=header_1D, naxis=1) unit = iris_tools.DN_UNIT["SJI"] mask_cube = data >= 0 mask_4D = data_4D >= 0 uncertainty = np.sqrt(data) uncertainty_2D = np.sqrt(data_2D) uncertainty_1D = np.sqrt(data_1D) uncertainty_4D =
np.sqrt(data_4D)
numpy.sqrt
import numpy as np from PIL import Image, ImageDraw, ImageFont, ImageMath from pyray.shapes.solid.polyhedron import * from pyray.axes import * from pyray.rotation import * import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ############################################################################# ## Scene 1 - Platonic solids popping up. basedir = '..\\images\\RotatingCube\\' txt = "This is a Tetrahedron" tt = Tetartoid(0.33,0) for i in range(0, 31): r = general_rotation(np.array([0.5,0.5,0.5]),2*np.pi*i/30) #r = rotation(3,np.pi/15*i) im = Image.new("RGB", (2048, 2048), (1,1,1)) draw = ImageDraw.Draw(im,'RGBA') tt.render_solid_planes(draw, r, shift=np.array([1000, 1000, 0]), scale=150*i/10.0) writeStaggeredText(txt, draw, i, speed=2) im.save(basedir + "im" + str(i) + ".png") ############################################################################# ## Scene 2 - It has 12 symmetries. basedir = '..\\images\\RotatingCube\\' txt = "It can be slowly converted to this solid" for i in range(0, 31): tt = Tetartoid(0.4,0.1*i/30) r = general_rotation(np.array([0.5,0.5,0.5]),2*np.pi*i/30) #r = rotation(3,np.pi/15*i) im = Image.new("RGB", (2048, 2048), (1,1,1)) draw = ImageDraw.Draw(im,'RGBA') tt.render_solid_planes(draw, r, shift=np.array([1000, 1000, 0]), scale=450*(1+i/60)) writeStaggeredText(txt, draw, i, speed=2) im.save(basedir + "im" + str(i) + ".png") ############################################################################# ## Scene a - Step by step tetartoid face ## Confirms that the tetartoid face given by wikipedia traces out a pentagon. basedir = '..\\images\\RotatingCube\\' pts = tetartoid_face(1,2,3) w=10 im = Image.new("RGB", (2048, 2048), (1,1,1)) draw = ImageDraw.Draw(im,'RGBA') for i in range(5): j1 = pts[i] j = j1*30+1000 draw.ellipse((j[0]-w,j[1]-w,j[0]+w,j[1]+w),fill=(255,255,255)) render_solid_planes(faces,draw,r,scale=150) im.save(basedir + "im" + str(i) + ".png") ############################################################################# ## Scene b - Draws out tetartoid faces via tetrahedral rotations. ## Confirms that once we draw a face, we can rotate it by the tetrahedral ## rotation group to form a tetartoid. basedir = '..\\images\\RotatingCube\\' pts = tetartoid_face(1,2,3) rots = tetrahedral_rotations() r = general_rotation(np.array([0.5,0.5,0.5]),2*np.pi*10/30) w=10 faces = [] faces.append(pts) for i in range(len(rots)): faces.append(np.dot(pts,rots[i])) #render_solid_planes(faces,draw,r,scale=150) #im.save(basedir + "im" + str(i) + ".png") for i in range(31): im = Image.new("RGB", (2048, 2048), (1,1,1)) draw = ImageDraw.Draw(im,'RGBA') r = general_rotation(
np.array([0.5,0.5,0.5])
numpy.array
##### May 6, 2018 ##### # The goal of this effort is to re-generalize things. In particular, I want only one function, that will generate x disks, based on x scattering phase functions. # Note on 2021.06.30: Download by <NAME> from https://github.com/maxwellmb/anadisk_model/blob/master/anadisk_model/anadisk_sum_mask.py # Analytic disk model # This version is being developed to create a version that is 3D and can be summed along the line of sight instead of intergrated. import matplotlib.pyplot as plt import numpy as np import math as mt from datetime import datetime from numba import jit from numba import vectorize,float64 from scipy.interpolate import interp1d import scipy.ndimage.filters as snf import copy ################################################################################### ####################### Some Built-In Scattering Functions ######################## ################################################################################### @jit def hgg_phase_function(phi,g): #Inputs: # g - the g # phi - the scattering angle in radians g = g[0] cos_phi = np.cos(phi) g2p1 = g**2 + 1 gg = 2*g k = 1./(4*np.pi)*(1-g*g) return k/(g2p1 - (gg*cos_phi))**1.5 # This function will accept a vector of scattering angles, and a vector of scattering efficiencies # and then compute a cubic spline that fits through them all. @jit def phase_function_spline(angles, efficiency): #Input arguments: # angles - in radians # efficiencies - from 0 to 1 return interp1d(angles, efficiency, kind='cubic') @jit def rayleigh(phi, args): #Using Rayleigh scattering (e.g. Eq 9 in Graham2007+) pmax = args[0] return pmax*np.sin(phi)**2/(1+np.cos(phi)**2) @jit def modified_rayleigh(phi, args): #Using a Rayleigh scattering function where the peak is shifted by args[1] pmax = args[0] #The maximum scattering phase function return pmax*np.sin(phi-np.pi/2+args[1])**2/(1+np.cos(phi-np.pi/2+args[1])**2) ########################################################################################## ############ Gen disk and integrand for a 1 scattering function disk ##################### ########################################################################################## @jit def calculate_disk(xci,zpsi_dx,yy_dy2,x2,z2,x,zpci,xsi,a_r,R1, Rc, R2, beta_in, beta_out,scattering_function_list): ''' # compute the brightness in each pixel # see analytic-disk.nb - originally by <NAME> ''' #The 'x' distance in the disk plane xx=(xci + zpsi_dx) #Distance in the disk plane # d1 = np.sqrt(yy_dy2 + np.square(xx)) # d1 = np.sqrt(yy_dy2 + xx*xx) d1_2 = yy_dy2 + xx*xx d1 = np.sqrt(d1_2) #Total distance from the center d2 = x2 + yy_dy2 + z2 #The line of sight scattering angle cos_phi=x/np.sqrt(d2) phi = np.arccos(cos_phi) #The scale height exponent zz = (zpci - xsi) # hh = (a_r*d1) # expo = np.square(zz)/np.square(hh) # expo = (zz*zz)/(hh*hh) expo = (zz*zz)/(d1_2) # expo = zz/hh #The power law here has been moved from previous versions of anadisk so that we only calculate it once # int2 = np.exp(0.5*expo) / np.power((R1/d1),beta) # int1 = np.piecewise(d1,[(d1 < R1),(d1 >=R1),(d1 > R2)],[(R1/d1)**-7,(R1/d1)**beta, 0.]) # int1 = (R1/d1)**beta # int1 = np.piecewise(d1,[ d1 < R1, d1 >=R1, d1 > R2],[lambda d1:(R1/d1)**(-7.5),lambda d1:(R1/d1)**beta, 0.]) # 3 lines below commented out by <NAME> int1 = (R1/d1)**beta_in int1[d1 < R1] = 0. int1[d1 > R2] = 0. #Get rid of some problematic pixels d2_no = d2 == 0. int1[d2_no] = 0. int2 = np.exp( (0.5/a_r**2)*expo) / int1 int3 = int2 * d2 #This version is faster than the integration version because of the vectorized nature of the # #scattering functions. # if sf1_args is not None: # sf1 = scattering_function1(phi,sf1_args) # else: # sf1 = scattering_function1(phi) # if sf2_args is not None: # sf2 = scattering_function2(phi,sf2_args) # else: # sf2 = scattering_function2(phi) out = [] for scattering_function in scattering_function_list: sf = scattering_function(phi) out.append(sf/int3) out = np.array(out) # print(out.shape) # out = np.rollaxis(np.array(out),0,5) return out.T @jit def generate_disk(scattering_function_list, scattering_function_args_list=None, R1=74.42, Rc = 80, R2=82.45, beta_in=-7.5,beta_out=1.0, aspect_ratio=0.1, inc=76.49, pa=30, distance=72.8, psfcenx=140,psfceny=140, sampling=1, mask=None, dx=0, dy=0., los_factor = 4, dim = 281.,pixscale=0.01414): ''' Keyword Arguments: pixscale - The pixelscale to be used in "/pixel. Defaults to GPI's pixel scale (0.01414) dim - The final image will be dim/sampling x dim/sampling pixels. Defaults to GPI datacube size. ''' #The number of input scattering phase functions and hence the number of disks to generate n_sf = len(scattering_function_list) ########################################### ### Setup the initial coordinate system ### ########################################### npts=int(np.floor(dim/sampling)) #The number of pixels to use in the final image directions npts_los = int(los_factor*npts) #The number of points along the line of sight factor = (pixscale*distance)*sampling # A multiplicative factor determined by the sampling. # In all of the following we only want to do calculations in part of the non-masked part of the array # So we need to replicate the mask along the line of sight. if mask is not None: mask = np.dstack([~mask]*npts_los) else: mask = np.ones([npts,npts]) mask = np.dstack([~mask]*npts_los) #Set up the coordiname arrays #The coordinate system here [x,y,z] is defined : # +ve x is the line of sight # +ve y is going right from the center # +ve z is going up from the center z,y,x = np.indices([npts,npts,npts_los]) #Center the line-of-sight coordinates on the disk center. ## THIS WAY DOESN'T WORK. IT CREATES INCONCISTENT RESULTS. # x[mask] = x[mask]/(npts_los/(2*R2)) - R2 #We only need to calculate this where things aren't masked. #THIS WAY IS A BIT SLOWER, BUT IT WORKS. #Here we'll try just a set pixel scale equal to the y/z pixel scale divided by the los_factor x = x.astype('float') x[mask] = x[mask] - npts_los/2. #We only need to calculate this where things aren't masked. x[mask] *=factor/los_factor #Setting up the output array threeD_disk = np.zeros([npts,npts,npts_los,n_sf]) + np.nan ##################################### ### Set up the coordinate system #### ##################################### #Inclination Calculations incl = np.radians(90-inc) ci = mt.cos(incl) #Cosine of inclination si = mt.sin(incl) #Sine of inclination # x*cosine i and x*sin i xci = x[mask] * ci xsi = x[mask] * si #Position angle calculations pa_rad=np.radians(90-pa) #The position angle in radians cos_pa=mt.cos(pa_rad) #Calculate these ahead of time sin_pa=mt.sin(pa_rad) a_r=aspect_ratio # Rotate the coordinates in the image frame for the position angle # yy=y[mask]*(cos_pa*factor) - z[mask] * (sin_pa*factor) - ((cos_pa*npts/2*factor)-sin_pa*npts/2*factor) #Rotate the y coordinate by the PA # zz=y[mask]*(sin_pa*factor) + z[mask] * (cos_pa*factor) - ((cos_pa*npts/2*factor)+sin_pa*npts/2*factor) #Rotate the z coordinate by the PA yy=y[mask]*(cos_pa*factor) - z[mask] * (sin_pa*factor) - ((cos_pa*psfcenx*factor)-sin_pa*psfceny*factor) #Rotate the y coordinate by the PA zz=y[mask]*(sin_pa*factor) + z[mask] * (cos_pa*factor) - ((cos_pa*psfceny*factor)+sin_pa*psfcenx*factor) #Rotate the z coordinate by the PA #The distance from the center in each coordiate squared y2 = np.square(yy) z2 = np.square(zz) x2 = np.square(x[mask]) #This rotates the coordinates in and out of the sky zpci=zz*ci #Rotate the z coordinate by the inclination. zpsi=zz*si #Subtract the stellocentric offset zpsi_dx = zpsi - dx yy_dy = yy - dy #The distance from the stellocentric offset squared yy_dy2=np.square(yy_dy) # ######################################################## # ### Now calculate the actual brightness in each bin #### # ######################################################## threeD_disk[:,:,:][mask] = calculate_disk(xci,zpsi_dx,yy_dy2,x2,z2,x[mask],zpci,xsi,aspect_ratio,R1, Rc, R2,beta_in,beta_out,scattering_function_list) return np.sum(threeD_disk,axis=2) ######################################################################################## ######################################################################################## ######################################################################################## if __name__ == "__main__": sampling = 1 #With two HG functions # sf1 = hgg_phase_function # sf1_args = [0.8] # sf2 = hgg_phase_function # sf2_args = [0.3] # im = gen_disk_dxdy_2disk(sf1, sf2,sf1_args=sf1_args, sf2_args=sf2_args, sampling=2) #With splines fit to HG function + rayleigh n_points = 20 angles = np.linspace(0,np.pi,n_points) g = 0.8 pmax = 0.3 hg = hgg_phase_function(angles,[g]) f = phase_function_spline(angles,hg) pol = hg*rayleigh(angles, [pmax]) f_pol = phase_function_spline(angles,pol) y,x = np.indices([281,281]) rads =
np.sqrt((x-140)**2+(y-140)**2)
numpy.sqrt
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data =
np.array([])
numpy.array
#!/usr/bin/env python # coding: utf8 """MMM-Facial-Recognition - MagicMirror Module Face Recognition Training Script The MIT License (MIT) Copyright (c) 2016 <NAME> (MIT License) Based on work by <NAME> (Copyright 2013) (MIT License) Run this script to train the face recognition system with training images from multiple people. The face recognition model is based on the eigen faces algorithm implemented in OpenCV. You can find more details on the algorithm and face recognition here: http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import fnmatch import os # to install builtins run `pip install future` from builtins import input import cv2 import numpy as np import lib.config as config import lib.face as face print("Which algorithm do you want to use?") print("[1] LBPHF (recommended)") print("[2] Fisherfaces") print("[3] Eigenfaces") algorithm_choice = int(input("--> ")) print('') def walk_files(directory, match='*'): """Generator function to iterate through all files in a directory recursively which match the given filename match parameter. """ for root, dirs, files in os.walk(directory): for filename in fnmatch.filter(files, match): yield os.path.join(root, filename) def prepare_image(filename): """Read an image as grayscale and resize it to the appropriate size for training the face recognition model. """ return face.resize(cv2.imread(filename, cv2.IMREAD_GRAYSCALE)) def normalize(X, low, high, dtype=None): """Normalizes a given array in X to a value between low and high. Adapted from python OpenCV face recognition example at: https://github.com/Itseez/opencv/blob/2.4/samples/python2/facerec_demo.py """ X = np.asarray(X) minX, maxX = np.min(X), np.max(X) # normalize to [0...1]. X = X - float(minX) X = X / float((maxX - minX)) # scale to [low...high]. X = X * (high - low) X = X + low if dtype is None: return np.asarray(X) return np.asarray(X, dtype=dtype) if __name__ == '__main__': print("Reading training images...") print('-' * 20) faces = [] labels = [] IMAGE_DIRS_WITH_LABEL = [[0, "negative"]] IMAGE_DIRS = os.listdir(config.TRAINING_DIR) IMAGE_DIRS = [x for x in IMAGE_DIRS if not x.startswith('.') and not x.startswith('negative')] pos_count = 0 for i in range(len(IMAGE_DIRS)): print("Assign label " + str(i + 1) + " to " + IMAGE_DIRS[i]) IMAGE_DIRS_WITH_LABEL.append([i + 1, IMAGE_DIRS[i]]) print('-' * 20) print('') # Für jedes Label/Namen Paar: # for every label/name pair: for j in range(0, len(IMAGE_DIRS_WITH_LABEL)): # Label zu den Labels hinzufügen / Bilder zu den Gesichtern for filename in walk_files(config.TRAINING_DIR + str(IMAGE_DIRS_WITH_LABEL[j][1]), '*.pgm'): faces.append(prepare_image(filename)) labels.append(IMAGE_DIRS_WITH_LABEL[j][0]) if IMAGE_DIRS_WITH_LABEL[j][0] != 0: pos_count += 1 # Print statistic on how many pictures per person we have collected print('Read', pos_count, 'positive images and', labels.count(0), 'negative images.') print('') for j in range(1, max(labels) + 1): print(str(labels.count(j)) + " images from subject " + IMAGE_DIRS[j - 1]) # Train model print('-' * 20) print('') print('Training model type {0} with threshold {1}' .format(config.RECOGNITION_ALGORITHM, config.POSITIVE_THRESHOLD)) model = config.model(config.RECOGNITION_ALGORITHM, config.POSITIVE_THRESHOLD) model.train(np.asarray(faces),
np.asarray(labels)
numpy.asarray
import deeplift import numpy as np def deeplift_zero_ref(X,score_func,batch_size=200,task_idx=0): # use a 40% GC reference input_references = [np.array([0.0, 0.0, 0.0, 0.0])[None, None, None, :]] # get deeplift scores deeplift_scores = score_func( task_idx=task_idx, input_data_list=[X], batch_size=batch_size, progress_update=None, input_references_list=input_references) return deeplift_scores def deeplift_gc_ref(X,score_func,batch_size=200,task_idx=0): # use a 40% GC reference input_references = [np.array([0.3, 0.2, 0.2, 0.3])[None, None, None, :]] # get deeplift scores deeplift_scores = score_func( task_idx=task_idx, input_data_list=[X], batch_size=batch_size, progress_update=None, input_references_list=input_references) return deeplift_scores def deeplift_shuffled_ref(X,score_func,batch_size=200,task_idx=0,num_refs_per_seq=10): deeplift_scores=score_func( task_idx=task_idx, input_data_sequences=X, num_refs_per_seq=num_refs_per_seq, batch_size=batch_size) return deeplift_scores def get_deeplift_scoring_function(model,target_layer_idx=-2,task_idx=0, num_refs_per_seq=10,reference="shuffled_ref",one_hot_func=None): """ Arguments: model -- a string containing the path to the hdf5 exported model target_layer_idx -- Layer in the model whose outputs will be interpreted. For classification models we \ interpret the logit (input to the sigmoid), which is the output of layer -2. For regression models we intepret the model output, which is the output of layer -1. reference -- one of 'shuffled_ref','gc_ref','zero_ref' one_hot_func -- one hot function to use for encoding FASTA string inputs; if the inputs are already one-hot-encoded, use the default of None Returns: deepLIFT scoring function """ assert reference in ["shuffled_ref","gc_ref","zero_ref"] from deeplift.conversion import kerasapi_conversion as kc deeplift_model = kc.convert_model_from_saved_files(model,verbose=False) #get the deeplift score with respect to the logit score_func = deeplift_model.get_target_contribs_func( find_scores_layer_idx=0, target_layer_idx=target_layer_idx) if reference=="shuffled_ref": from deeplift.util import get_shuffle_seq_ref_function from deeplift.dinuc_shuffle import dinuc_shuffle score_func=get_shuffle_seq_ref_function( score_computation_function=score_func, shuffle_func=dinuc_shuffle, one_hot_func=one_hot_func) return score_func def deeplift(score_func, X, batch_size=200,task_idx=0, num_refs_per_seq=10,reference="shuffled_ref",one_hot_func=None): """ Arguments: score_func -- deepLIFT scoring function X -- numpy array with shape (n_samples, 1, n_bases_in_sample,4) or list of FASTA sequences batch_size -- number of samples to interpret at once task_idx -- index indicating which task to perform interpretation on reference -- one of 'shuffled_ref','gc_ref','zero_ref' num_refs_per_seq -- integer indicating number of references to use for each input sequence if the reference is set to 'shuffled_ref';if 'zero_ref' or 'gc_ref' is used, this argument is ignored. one_hot_func -- one hot function to use for encoding FASTA string inputs; if the inputs are already one-hot-encoded, use the default of None Returns: (num_task, num_samples, 1, num_bases, sequence_length) deeplift score array. """ assert reference in ["shuffled_ref","gc_ref","zero_ref"] if one_hot_func==None: #check that dataset has been one-hot-encoded assert len(np.shape(X)) == 4 and
np.shape(X)
numpy.shape
import numpy as np import cmath from math import sqrt def pau_x(): p_x=
np.array([[0,1],[1,0]])
numpy.array
# pylint: disable-msg=W0611, W0612, W0511,R0201 """Tests suite for MaskedArray. Adapted from the original test_ma by <NAME> :author: <NAME> & <NAME> :contact: pierregm_at_uga_dot_edu & mattknox_ca_at_hotmail_dot_com :version: $Id: test_timeseries.py 3836 2008-01-15 13:09:03Z <EMAIL> $ """ __author__ = "<NAME> & <NAME> ($Author: <EMAIL> $)" __revision__ = "$Revision: 3836 $" __date__ = '$Date: 2008-01-15 08:09:03 -0500 (Tue, 15 Jan 2008) $' import numpy as np from numpy import bool_, complex_, float_, int_, object_ from numpy.testing import * import numpy.ma as ma from numpy.ma import MaskedArray, masked, nomask from numpy.ma.testutils import * import scikits.timeseries as ts from scikits.timeseries import \ TimeSeries, TimeSeriesError, TimeSeriesCompatibilityError, \ tseries, Date, date_array, now, time_series, \ adjust_endpoints, align_series, align_with, \ concatenate, fill_missing_dates, find_duplicated_dates, \ remove_duplicated_dates, split, stack get_varshape = tseries.get_varshape _timeseriescompat_multiple = tseries._timeseriescompat_multiple #------------------------------------------------------------------------------ class TestCreation(TestCase): "Base test class for MaskedArrays." def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) dlist = ['2007-01-%02i' % i for i in range(1, 16)] dates = date_array(dlist, freq='D') data = ma.array(np.arange(15), mask=[1, 0, 0, 0, 0] * 3) self.d = (dlist, dates, data) def test_fromlist (self): "Test the creation of a TimeSeries w/ a list of dates as input dates." (dlist, dates, data) = self.d series = time_series(data, dlist, freq='D') self.failUnless(isinstance(series, TimeSeries)) assert_equal(series.mask, [1, 0, 0, 0, 0] * 3) assert_equal(series.series, data) assert_equal(series.dates, dates) assert_equal(series.freqstr, 'D') def test_fromrange (self): "Test the creation of a TimeSeries w/ a starting date." (dlist, dates, data) = self.d series = time_series(data, start_date=dates[0]) self.failUnless(isinstance(series, TimeSeries)) assert_equal(series.mask, [1, 0, 0, 0, 0] * 3) assert_equal(series.series, data) assert_equal(series.dates, dates) assert_equal(series.freqstr, 'D') def test_fromseries (self): "Test the creation of a TimeSeries w/ a time series as input data." (dlist, dates, data) = self.d series = time_series(data, dlist, freq='D') dates = dates + 15 series = time_series(series, dates) self.failUnless(isinstance(series, TimeSeries)) assert_equal(series.mask, [1, 0, 0, 0, 0] * 3) assert_equal(series.series, data) assert_equal(series.dates, dates) assert_equal(series.freqstr, 'D') def test_fromdatearray(self): "Tests the creation of a series with a DateArray as input data." (_, dates, _) = self.d data = dates # series = time_series(data, dates) self.failUnless(isinstance(series, TimeSeries)) assert_equal(series.dates, dates) assert_equal(series.data, data) assert_equal(series.freqstr, 'D') # series[5] = masked # ensure that series can be represented by a string after masking a value # (there was a bug before that prevented this from working when using a # DateArray for the data) strrep = str(series) def test_datafromlist(self): "Test the creation of a series w/ a list as input data." (_, dates, _) = self.d data = list(range(15)) series = time_series(data, dates) assert_equal(series._data.size, 15) def test_unsorted(self): "Tests that the data are properly sorted along the dates." dlist = ['2007-01-%02i' % i for i in (3, 2, 1)] data = [10, 20, 30] series = time_series(data, dlist, freq='D') assert_equal(series.data, [30, 20, 10]) # dates = date_array(dlist, freq='D') series = TimeSeries(data, dates) assert_equal(series.data, [30, 20, 10]) # series = time_series(data, dlist, freq='D', mask=[1, 0, 0]) assert_equal(series.mask, [0, 0, 1]) # data = ma.array([10, 20, 30], mask=[1, 0, 0]) series = time_series(data, dlist, freq='D') assert_equal(series._mask, [0, 0, 1]) def test_unsorted_w_datearray(self): "Tests that the data are properly sorted along the dates." dlist = ['2007-01-%02i' % i for i in (3, 2, 1)] data = [10, 20, 30] dates = date_array(dlist, freq='D') self.failUnless(dates._unsorted is not None) # series = time_series(data, dates=dates) assert_equal(series.data, [30, 20, 10]) self.failUnless(dates._unsorted is not None) self.failUnless(series.dates._unsorted is None) # series = time_series(data, dates=dates) assert_equal(series.data, [30, 20, 10]) self.failUnless(series.dates._unsorted is None) def test_setdates(self): "Tests setting the dates of a series." (dlist, dates, data) = self.d reference = time_series(data, dates=dates) # Set with a DateArray: that should work test_series = data.view(TimeSeries) test_series.dates = dates assert_equal(test_series.dates, reference.dates) def test_setdates_asndarray(self): "Tests setting the dates as a ndarray." (dlist, dates, data) = self.d test_series = data.view(TimeSeries) # Set with a ndarray: that shouldn't work test_dates = np.array(dates, copy=False, subok=False) try: test_series._dates = test_dates except TypeError: pass else: err_msg = "Dates shouldn't be set as basic ndarrays." raise TimeSeriesError(err_msg) def test_setdates_asdate(self): "Tests setting the dates as a Date" (dlist, dates, data) = self.d series = data.view(TimeSeries) try: series.dates = ts.now('D') except TypeError: pass else: err_msg = "Dates shouldn't be set as a Date objects." raise TimeSeriesError(err_msg) def test_setdates_with_incompatible_size(self): "Tests setting the dates w/ a DateArray of incompatible size" (dlist, dates, data) = self.d series = data.view(TimeSeries) try: series.dates = dates[:len(dates) // 2] except ts.TimeSeriesCompatibilityError: pass else: err_msg = "Dates size should match the input." raise TimeSeriesError(err_msg) def test_setdates_with_autoreshape(self): "Tests the automatic reshaping of dates." (dlist, dates, data) = self.d reference = time_series(data, dates=dates) test_series = data.view(TimeSeries) # Set with a datearray w/ a different size than expected: should fail test_dates = dates[:-1] try: test_series.dates = test_dates except TimeSeriesCompatibilityError: pass else: err_msg = "Dates should have a size compatible with data" raise TimeSeriesError(err_msg) # Set w/ a date of a different shape: should work, but the shape changes test_dates = dates.reshape(-1, 1) test_series._dates = test_dates assert_equal(test_series.dates, reference.dates) assert_equal(test_series.dates.shape, test_series.shape) test_dates = np.array(dates, copy=False, subok=True, ndmin=2) test_series._dates = test_dates assert_equal(test_series.dates, reference.dates) assert_equal(test_series.dates.shape, test_series.shape) def test_setdates_unsorted_basic(self): "Test automatic sorting when setting dates - 1D case." dates = date_array([ts.Date('D', '2001-01-%02i' % _) for _ in (4, 3, 2, 1)]) a = np.array((4, 3, 2, 1), dtype=float) series = a.view(ts.TimeSeries) assert_equal(series.dates, []) assert_equal(series, (4, 3, 2, 1)) # series._dates = dates series.sort_chronologically() assert_equal(series, (1, 2, 3, 4)) def test_setdates_unsorted_reshaped(self): "Test automatic sorting when setting dates - 1D case reshaped to nD." dates = date_array([ts.Date('D', '2001-01-%02i' % _) for _ in (4, 3, 2, 1)]) a = np.array([[4., 3.], [2., 1.]], dtype=float) series = a.view(TimeSeries) series._dates = dates series.sort_chronologically() assert_equal(series, [[1., 2.], [3., 4.]]) def test_setdates_unsorted_2D(self): "Test automatic sorting when setting dates - 1D case reshaped to nD." dates = date_array([ts.Date('D', '2001-01-%02i' % _) for _ in (4, 3, 2, 1)]) a = np.arange(12).reshape(4, 3) series = a.view(TimeSeries) series._dates = dates series.sort_chronologically() assert_equal(series, [[ 9., 10., 11.], [ 6., 7., 8.], [ 3., 4., 5.], [ 0., 1., 2.]]) def test_copy(self): "Tests the creation of a timeseries with copy=True" dlist = ['2007-01-%02i' % i for i in range(1, 16)] dates = date_array(dlist, freq='D') data = ma.array(np.arange(15), mask=[1, 0, 0, 0, 0] * 3) series = time_series(data, dates) assert_equal(series.dates.ctypes.data, dates.ctypes.data) assert_equal(series.data.ctypes.data, data.data.ctypes.data) assert_equal(series.mask.ctypes.data, data.mask.ctypes.data) # series = time_series(data, dates, copy=True) assert_not_equal(series.dates.ctypes.data, dates.ctypes.data) assert_not_equal(series.data.ctypes.data, data.data.ctypes.data) assert_not_equal(series.mask.ctypes.data, data.mask.ctypes.data) def test_using_length(self): "Test using the `length` parameter of time_series." start = ts.Date('M', '1955-01') data = np.random.uniform(0, 1, 50 * 12).reshape(50, 12) # Default : the dates should be (50,) series = ts.time_series(data, start_date=start) assert_equal(series.shape, (50, 12)) assert_equal(series.dates.shape, (50,)) assert_equal(series.varshape, (12,)) # Forcing dates to be 2D series = ts.time_series(data, start_date=start, length=600) assert_equal(series.shape, (50, 12)) assert_equal(series.dates.shape, (50, 12)) assert_equal(series.varshape, ()) # Forcing dates to 1D series = ts.time_series(data, start_date=start, length=50) assert_equal(series.shape, (50, 12)) assert_equal(series.dates.shape, (50,)) assert_equal(series.varshape, (12,)) # Make sure we raise an exception if something goes wrong.... try: series = ts.time_series(data, start_date=start, length=100) except ts.TimeSeriesCompatibilityError: pass else: errmsg = "The should not be dates/data compatibility in this case." raise TimeSeriesCompatibilityError(errmsg) def test_varshape(self): "Test some corner case of varshape" test = ts.time_series(np.ones((10, 2)), start_date=ts.now('d')) assert_equal(test.varshape, (2,)) # test = ts.time_series(np.ones((10, 1)), start_date=ts.now('d')) assert_equal(test.varshape, (1,)) # test = ts.time_series(np.ones((10,)), start_date=ts.now('d')) assert_equal(test.varshape, ()) #------------------------------------------------------------------------------ class TestArithmetics(TestCase): "Some basic arithmetic tests" def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) dlist = ['2007-01-%02i' % i for i in range(1, 16)] dates = date_array(dlist, freq='D') data = ma.array(np.arange(15), mask=[1, 0, 0, 0, 0] * 3) self.d = (time_series(data, dlist, freq='D'), data) def test_intfloat(self): "Test arithmetic timeseries/integers" (series, data) = self.d # nseries = series + 1 self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data + 1) assert_equal(nseries.dates, series.dates) # nseries = series - 1 self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data - 1) assert_equal(nseries.dates, series.dates) # nseries = series * 1 self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data * 1) assert_equal(nseries.dates, series.dates) # nseries = series / 1. self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data / 1.) assert_equal(nseries.dates, series.dates) def test_intfloat_inplace(self): "Test int/float arithmetics in place." (series, data) = self.d nseries = series.astype(float_) idini = id(nseries) data = data.astype(float_) # nseries += 1. self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data + 1.) assert_equal(nseries.dates, series.dates) assert_equal(id(nseries), idini) # nseries -= 1. self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data) assert_equal(nseries.dates, series.dates) assert_equal(id(nseries), idini) # nseries *= 2. self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data * 2.) assert_equal(nseries.dates, series.dates) assert_equal(id(nseries), idini) # nseries /= 2. self.failUnless(isinstance(nseries, TimeSeries)) assert_equal(nseries.mask, [1, 0, 0, 0, 0] * 3) assert_equal(nseries.series, data) assert_equal(nseries.dates, series.dates) assert_equal(id(nseries), idini) def test_updatemask(self): "Checks modification of mask." (series, data) = self.d assert_equal(series.mask, [1, 0, 0, 0, 0] * 3) series.mask = nomask self.failUnless(not series.mask.any()) self.failUnless(not series.series.mask.any()) #series._series.mask = [1,0,0]*5 series.mask = [1, 0, 0] * 5 assert_equal(series.mask, [1, 0, 0] * 5) assert_equal(series.series.mask, [1, 0, 0] * 5) series[2] = masked assert_equal(series.mask, [1, 0, 1] + [1, 0, 0] * 4) assert_equal(series.series.mask, [1, 0, 1] + [1, 0, 0] * 4) def test_ismasked(self): "Checks checks on masked" (series, data) = self.d self.failUnless(series._series[0] is masked) #!!!:... and of course, masked doesn't have a _series attribute # self.failUnless(series[0]._series is masked) def test_incompatible_dates(self): """ Test operations on two series with same dimensions but incompatible dates """ (series, data) = self.d a, b = series[1:], series[:-1] result = a + b self.failUnless(not isinstance(result, TimeSeries)) assert_equal(result.ndim, a.ndim) assert_equal(result.size, a.size) #------------------------------------------------------------------------------ class TestGetitem(TestCase): "Some getitem tests" def setUp(self): dates = date_array(['2007-01-%02i' % i for i in range(1, 16)], freq='D') data1D = ma.array(np.arange(15), mask=[1, 0, 0, 0, 0] * 3, dtype=float_) data3V = ma.array([[10, 11, 12], [20, 21, 22], [30, 31, 32]], mask=[[1, 0, 0, ], [0, 0, 0], [0, 0, 1]]) data2D = ma.array(np.random.rand(60).reshape(3, 4, 5)) for i in range(3): data2D[i, i, i] = masked #......................... series1D = time_series(data1D, dates, freq='D') series3V = time_series(data3V, dates[:len(data3V)], freq='D') series2D = time_series(data2D, dates[:len(data2D)], freq='D') self.info = locals() del(self.info['i']) self.__dict__.update(self.info) return def test_with_integers(self): # 1D series .............. (series1D, data1D) = (self.series1D, self.data1D) self.failUnless(series1D[0] is masked) test = series1D[-1] assert_equal(test, data1D[-1]) self.failUnless(not isinstance(test, TimeSeries)) # nV series .............. (series3V, data3V) = (self.series3V, self.data3V) test = series3V[-1] assert_equal(test, data3V[-1]) assert_equal(test.mask, [0, 0, 1]) self.failUnless(not isinstance(test, TimeSeries)) # 2D series .............. (series2D, data2D) = (self.series2D, self.data2D) test = series2D[-1] assert_equal(test, data2D[-1].squeeze()) self.failUnless(not isinstance(test, TimeSeries)) def test_with_slices(self): "Tests __getitem__ w/ slices." def _wslice(series, data, dates): test = series[1:2] self.failUnless(isinstance(test, TimeSeries)) assert_equal(test._varshape, series._varshape) assert_equal(test.series, data[1:2]) assert_equal(test.dates, dates[1:2]) assert_equal(test.mask, data.mask[1:2]) assert_equal(test.freq, dates.freq) # test = series[:3] self.failUnless(isinstance(test, TimeSeries)) test_series = test.series assert_equal(test_series.data, data[:3].data) assert_equal(test_series.mask, data[:3].mask) assert_equal(test.dates, dates[:3]) #..... dates = self.dates (series1D, data1D) = (self.series1D, self.data1D) _wslice(series1D, data1D, dates) (series3V, data3V) = (self.series3V, self.data3V) _wslice(series3V, data3V, dates) (series2D, data2D) = (self.series2D, self.data2D) _wslice(series2D, data2D, dates) def test_with_slices_on_nD(self): (series3V, data3V) = (self.series3V, self.data3V) # test = series3V[0, :] self.failUnless(not isinstance(test, TimeSeries)) assert_equal(test, data3V[0, :]) assert_equal(test.mask, data3V[0, :].mask) # test = series3V[:, 0] self.failUnless(isinstance(test, TimeSeries)) assert_equal(test, data3V[:, 0]) assert_equal(test.mask, data3V[:, 0].mask) assert_equal(test._varshape, ()) assert_equal(test.dates, series3V.dates) # (series2D, data2D) = (self.series2D, self.data2D) test = series2D[0] self.failUnless(not isinstance(test, TimeSeries)) assert_equal(test.shape, (4, 5)) assert_equal(test, data2D[0]) # test = series2D[:, :, 0] self.failUnless(isinstance(test, TimeSeries)) assert_equal(test, series2D.data[:, :, 0]) assert_equal(test.dates, series2D.dates) def test_with_list(self): "Tests __getitem__ w/ list." def _wlist(series, data, dates): test = series[[0, 1, -1]] control = data[[0, 1, -1]] self.failUnless(isinstance(test, TimeSeries)) assert_equal(test.series, control) assert_equal(test.mask, control.mask) assert_equal(test.dates, dates[[0, 1, -1]]) #..... dates = self.dates (series1D, data1D) = (self.series1D, self.data1D) _wlist(series1D, data1D, dates) (series3V, data3V) = (self.series3V, self.data3V) _wlist(series3V, data3V, dates[:3]) (series2D, data2D) = (self.series2D, self.data2D) _wlist(series2D, data2D, dates[:3]) def test_with_dates(self): "Tests __getitem__ w/ dates." def _wdates(series, data, dates): # Single date test = series[dates[0]] assert_equal(test, data[0]) assert_equal(test.mask, data[0].mask) self.failUnless(not isinstance(test, TimeSeries)) # Multiple dates as a date_array test = series[dates[[0, -1]]] assert_equal(test, data[[0, -1]]) self.failUnless(isinstance(test, TimeSeries)) assert_equal(test.dates, dates[[0, -1]]) # Multiple dates as a list test = series[[dates[0], dates[-1]]] assert_equal(test, data[[0, -1]]) self.failUnless(isinstance(test, TimeSeries)) # Multiple dates as a slice dslice = slice(dates[1], None, None) test = series[dslice] assert_equal(test, data[1:]) self.failUnless(isinstance(test, TimeSeries)) #..... dates = self.dates (series1D, data1D) = (self.series1D, self.data1D) _wdates(series1D, data1D, dates) (series3V, data3V) = (self.series3V, self.data3V) _wdates(series3V, data3V, dates[:3]) (series2D, data2D) = (self.series2D, self.data2D) _wdates(series2D, data2D, dates[:3]) def test_slicing_with_dates(self): "Tests __getitem__ w/ date based slices" def _testslice(series): sd, ed = series.start_date, series.end_date # full range of series assert_equal(series, series[sd:ed + 1]) # exclude first and last point of series assert_equal(series[1:-1], series[sd + 1:ed]) # slice with dates beyond the start and end dates assert_equal(series, series[sd - 10:ed + 10]) # slice with dates before the series start date assert_equal(series[0:0], series[sd - 10:sd - 5]) #..... series = self.series1D _testslice(series) # Now try slicing on a series with missing dates series = series[::2] _testslice(series) def test_with_dates_as_str(self): "Test using a string corresponding to a date as index." def _wdates(series, data): date = self.dates[0].strfmt("%Y-%m-%d") # Single date test = series[date] assert_equal(test, data[0]) assert_equal(test.mask, data[0].mask) self.failUnless(not isinstance(test, TimeSeries)) #..... (series1D, data1D) = (self.series1D, self.data1D) _wdates(series1D, data1D) (series3V, data3V) = (self.series3V, self.data3V) _wdates(series3V, data3V) (series2D, data2D) = (self.series2D, self.data2D) _wdates(series2D, data2D) # test = series1D[['2007-01-01', '2007-01-15']] control = series1D[[0, -1]] assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.dates, control.dates) def test_on1D_reshaped(self): trick = time_series(self.data1D.reshape(3, 5), dates=self.dates.reshape(3, 5), freq='D') test = trick[0, 0] self.failUnless(not isinstance(test, TimeSeries)) self.failUnless(test is masked) # test = trick[-1, -1] self.failUnless(not isinstance(test, TimeSeries)) assert_equal(test, 14) # test = trick[0] self.failUnless(isinstance(test, TimeSeries)) assert_equal(test._varshape, ()) assert_equal(test, trick.series[0]) assert_equal(test.dates, trick.dates[0]) def test_wtimeseries(self): "Tests getitem w/ TimeSeries as index" series1D = self.series1D # Testing a basic condition on data cond = (series1D < 8).filled(False) dseries = series1D[cond] assert_equal(dseries.data, [1, 2, 3, 4, 6, 7]) assert_equal(dseries.dates, series1D.dates[[1, 2, 3, 4, 6, 7]]) assert_equal(dseries.mask, nomask) # Testing a basic condition on dates series1D[series1D.dates < Date('D', string='2007-01-06')] = masked assert_equal(series1D[:5].series.mask, [1, 1, 1, 1, 1]) def test_on2d(self): "Tests getitem on a 2D series" (a, b, d) = ([1, 2, 3], [3, 2, 1], date_array(now('M'), length=3)) ser_x = time_series(np.column_stack((a, b)), dates=d) assert_equal(ser_x[0, 0], time_series(a[0], d[0])) assert_equal(ser_x[0, :], (a[0], b[0])) assert_equal(ser_x[:, 0], time_series(a, d)) assert_equal(ser_x[:, :], ser_x) def test_slicing_and_keeping_additional_attributes(self): series1D = self.series1D series1D.fill_value = -9999 series1D._basedict['info'] = '???' piece = series1D[:5] assert_equal(piece._fill_value, -9999) assert_equal(piece[:5]._basedict['info'], '???') #------------------------------------------------------------------------------ class TestSetItem(TestCase): # def setUp(self): dlist = ['2007-01-%02i' % i for i in range(1, 6)] dates = date_array(dlist, freq='D') data = ma.array(np.arange(5), mask=[1, 0, 0, 0, 0], dtype=float) self.series = time_series(data, dates) self.dates = dates # def test_with_integers(self): "Tests setitem with integers" series = self.series series[0] = 1 assert_equal(series.data, [1, 1, 2, 3, 4]) assert_equal(series.mask, [0, 0, 0, 0, 0]) series[0] = masked assert_equal(series.data, [1, 1, 2, 3, 4]) assert_equal(series.mask, [1, 0, 0, 0, 0]) try: series[10] = -999 except IndexError: pass # def test_with_dates(self): "Test setitem w/ dates" (series, dates) = (self.series, self.dates) # last_date = dates[-1] series[last_date] = 5 assert_equal(series.data, [0, 1, 2, 3, 5]) assert_equal(series.mask, [1, 0, 0, 0, 0]) # last_date += 10 try: series[last_date] = -999 except IndexError: pass # With dates as string series['2007-01-01'] = 5 assert_equal(series.data, [5, 1, 2, 3, 5]) assert_equal(series.mask, [0, 0, 0, 0, 0]) # test for bug fixed in r1203 x, y = ts.now('b'), ts.now('b') + 1 a = ts.time_series([1], start_date=x) b = ts.time_series([4, 5], start_date=x) b[x:y] = a[x:y] assert_equal(b[0], 1) def test_with_datearray(self): "Test setitem w/ a date_array" (series, dates) = (self.series, self.dates) # Test with date array series[dates[[0, -1]]] = 0 assert_equal(series.data, [0, 1, 2, 3, 0]) assert_equal(series.mask, [0, 0, 0, 0, 0]) # Test with date as list ofstring series[['2007-01-01', '2007-01-02']] = 10 assert_equal(series.data, [10, 10, 2, 3, 0]) assert_equal(series.mask, [ 0, 0, 0, 0, 0]) #------------------------------------------------------------------------------ class TestTimeSeriesMethods(TestCase): def setUp(self): dates = date_array(['2007-01-%02i' % i for i in (1, 2, 3)], freq='D') data1D = ma.array([1, 2, 3], mask=[1, 0, 0, ]) data3V = ma.array([[10, 11, 12], [20, 21, 22], [30, 31, 32]], mask=[[1, 0, 0, ], [0, 0, 0], [0, 0, 1]]) data2D = np.random.rand(60).reshape(3, 4, 5) series1D = time_series(data1D, dates, freq='D') series3V = time_series(data3V, dates, freq='D') series2D = time_series(data2D, dates, freq='D') self.info = locals() del(self.info['i']) return def test_torecords_1D(self): "Test conversion to records on 1D series" series = ts.time_series([1, 2, 3], start_date=ts.Date('M', '2001-01-01'), mask=[0, 1, 0]) ndtype = [('_dates', int), ('_data', int), ('_mask', bool)] control = np.array([(24001, 1, False), (24002, 2, True), (24003, 3, False)], dtype=ndtype) test = series.torecords() assert_equal(test, control) def test_torecords_2D(self): "Test torecords on 2D series" series = ts.time_series([[1, 1], [2, 2], [3, 3]], start_date=ts.Date('M', '2001-01-01'), mask=[[0, 1], [0, 0], [1, 0]]) ndtype = [('_dates', int), ('_data', (int, (2,))), ('_mask', (bool, (2,)))] control = np.array([(24001, [1, 1], [False, True]), (24002, [2, 2], [False, False]), (24003, [3, 3], [True, False])], dtype=ndtype) test = series.torecords() assert_equal_records(test, control) def test_torecords_structured(self): "Test torecords on structured array" series = ts.time_series([(1, 1), (2, 2), (3, 3)], start_date=ts.Date('M', '2001-01-01'), mask=[(0, 1), (0, 0), (1, 0)], dtype=[('a', int), ('b', float)]) ndtype = [('_dates', int), ('_data', [('a', int), ('b', float)]), ('_mask', [('a', bool), ('b', bool)])] control = np.array([(24001, (1, 1), (False, True)), (24002, (2, 2), (False, False)), (24003, (3, 3), (True, False))], dtype=ndtype) test = series.torecords() assert_equal_records(test, control) def test_reshape_1D(self): "Test reshape on data w/ 1 variables" start = ts.Date('M', '2001-01') series = ts.time_series([1, 2, 3, 4], mask=[0, 0, 1, 0], start_date=start) test = series.reshape(2, 2) control = ts.time_series([[1, 2], [3, 4]], mask=[[0, 0], [1, 0]], dates=ts.date_array(start_date=start, length=4).reshape(2, 2)) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.dates, control.dates) assert_equal(test.varshape, series.varshape) # test = series.copy() test.shape = (2, 2) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.dates, control.dates) assert_equal(test.varshape, series.varshape) def test_reshape_1V(self): "Test reshape on series w/ 2 variables" series = ts.time_series([[1, 2], [3, 4]], mask=[[0, 0], [1, 0]], start_date=ts.Date('M', '2001-01')) test = series.reshape((-1, 1)) control = ts.time_series([[[1, 2]], [[3, 4]]], mask=[[[0, 0]], [[1, 0]]], dates=series.dates.reshape((-1, 1))) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.dates, control.dates) assert_equal(test.varshape, control.varshape) # test = series.reshape((1, -1, 1)) control = ts.time_series([[[[1, 2]], [[3, 4]]]], mask=[[[[0, 0]], [[1, 0]]]], dates=series.dates.reshape((1, -1, 1))) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.dates, control.dates) def test_reshaping_1D(self): "Tests the reshaping of a 1D series." series1D = self.info['series1D'] newshape = (3, 1) test1D = series1D.reshape(newshape) assert_equal(test1D.shape, newshape) assert_equal(test1D.series.shape, newshape) assert_equal(test1D.dates.shape, newshape) assert_equal(test1D.varshape, series1D.varshape) # Make sure we haven't propagated the new shape self.failUnless(test1D.shape != series1D.shape) self.failUnless(test1D.dates.shape != series1D.dates.shape) # Using .shape test1D = series1D.copy() test1D.shape = newshape assert_equal(test1D.shape, newshape) assert_equal(test1D.series.shape, newshape) assert_equal(test1D.dates.shape, newshape) self.failUnless(series1D.dates.shape != newshape) assert_equal(test1D.varshape, series1D.varshape) # Using multiple args test1D = series1D.reshape(*newshape) assert_equal(test1D.shape, newshape) assert_equal(test1D.varshape, series1D.varshape) def test_reshape_batch(self): "Test a succession of reshape" a = ts.time_series([1, 2, 3], start_date=ts.now('D')) test = a.reshape(-1, 1) assert_equal(test.shape, (3, 1)) assert_equal(test.varshape, ()) test = a.reshape(-1, 1).reshape(-1) assert_equal(test.shape, (3,)) assert_equal(test.varshape, ()) def test_reshaping_2D(self): "Tests the reshaping of a nV/nD series." series3V = self.info['series3V'] newshape = (1, 3, 3) try: test3V = series3V.reshape(newshape) assert_equal(test3V.shape, newshape) assert_equal(test3V.series.shape, newshape) assert_equal(test3V.dates.shape, (1, 3)) assert_equal(test3V.varshape, series3V.varshape) except NotImplementedError: pass else: raise Exception("Reshaping nV/nD series should be implemented!") # Using .shape try: test3V = series3V.copy() test3V.shape = newshape assert_equal(test3V.shape, newshape) assert_equal(test3V.series.shape, newshape) assert_equal(test3V.dates.shape, (1, 3)) assert_equal(test3V.varshape, series3V.varshape) except NotImplementedError: pass else: raise Exception("Reshaping nV/nD series should be implemented!") def test_ravel_1D(self): "Test .ravel on 1D data" series = ts.time_series([1, 2, 3, 4], mask=[0, 0, 1, 0], start_date=ts.Date('M', '2009-01')) test = series.ravel() assert_equal(test, series) assert_equal(test.mask, series.mask) assert_equal(test.dates, series.dates) assert_equal(test.varshape, series.varshape) def test_ravel_1V(self): "Test .ravel on nD/1V data" dates = ts.date_array(start_date=ts.Date('M', '2009-01'), length=4) series = ts.time_series([[1, 2], [3, 4]], mask=[[0, 0], [1, 0]], dates=dates) test = series.ravel() assert_equal(test.data, series.data.ravel()) assert_equal(test.mask, series.mask.ravel()) assert_equal(test.dates, series.dates.ravel()) assert_equal(test.varshape, series.varshape) assert_equal(test.varshape, ()) def test_ravel_2V(self): "Test .ravel on 2V data" series = ts.time_series([[1, 2], [3, 4]], mask=[[0, 0], [1, 0]], start_date=ts.Date('M', '2009-01'),) test = series.ravel() assert_equal(test.data, series.data) assert_equal(test.mask, series.mask) assert_equal(test.dates, series.dates) assert_equal(test.varshape, series.varshape) # dates = ts.date_array(start_date=ts.Date('M', '2009-01'), length=2) series = ts.time_series([[[1, 2]], [[3, 4]]], mask=[[[0, 0]], [[1, 0]]], dates=dates.reshape(1, 2)) test = series.ravel() assert_equal(test.data, [[1, 2], [3, 4]]) assert_equal(test.mask, [[0, 0], [1, 0]]) assert_equal(test.dates, series.dates.ravel()) assert_equal(test.varshape, (2,)) #------------------------------------------------------------------------------ class TestFunctions(TestCase): "Some getitem tests" def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) dlist = ['2007-01-%02i' % i for i in range(1, 16)] dates = date_array(dlist, freq='D') data = ma.array(np.arange(15), mask=[1, 0, 0, 0, 0] * 3) self.d = (time_series(data, dates), data, dates) # def test_adjustendpoints(self): "Tests adjust_endpoints" (series, data, dates) = self.d dseries = adjust_endpoints(series, series.dates[0], series.dates[-1]) assert_equal(dseries, series) dseries = adjust_endpoints(series, series.dates[3], series.dates[-3]) assert_equal(dseries, series[3:-2]) dseries = adjust_endpoints(series, end_date=Date('D', string='2007-01-31')) assert_equal(dseries.size, 31) assert_equal(dseries._mask, np.r_[series.mask, [1] * 16]) dseries = adjust_endpoints(series, end_date=Date('D', string='2007-01-06')) assert_equal(dseries.size, 6) assert_equal(dseries, series[:6]) dseries = adjust_endpoints(series, start_date=Date('D', string='2007-01-06'), end_date=Date('D', string='2007-01-31')) assert_equal(dseries.size, 26) assert_equal(dseries._mask, np.r_[series.mask[5:], [1] * 16]) # def test_adjustendpoints_withdatestrings(self): "Tests adjust_endpoints w/ string dates" (series, data, dates) = self.d dseries = adjust_endpoints(series, end_date='2007-01-31') assert_equal(dseries.size, 31) assert_equal(dseries._mask, np.r_[series.mask, [1] * 16]) dseries = adjust_endpoints(series, end_date='2007-01-06') assert_equal(dseries.size, 6) assert_equal(dseries, series[:6]) dseries = adjust_endpoints(series, start_date='2007-01-06', end_date='2007-01-31') assert_equal(dseries.size, 26) assert_equal(dseries._mask, np.r_[series.mask[5:], [1] * 16]) # def test_alignseries(self): "Tests align_series & align_with" (series, data, dates) = self.d # empty_series = time_series([], freq='d') a, b = align_series(series, empty_series) assert_equal(a.start_date, b.start_date) assert_equal(a.end_date, b.end_date) # aseries = time_series(data, dates + 10) bseries = time_series(data, dates - 10) (a, b) = align_with(series, aseries, bseries) assert_equal(a.dates, series.dates) assert_equal(b.dates, series.dates) assert_equal(a[-5:], series[:5]) assert_equal(b[:5], series[-5:]) # def test_tshift(self): "Test tshift function" series = self.d[0] shift_negative = series.tshift(-1) result_data = [999] + [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] result_mask = [ 1] + [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0] shift_negative_result = time_series(result_data, dates=series.dates, mask=result_mask) shift_positive = series.tshift(1) result_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] + [999] result_mask = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] + [ 1] shift_positive_result = time_series(result_data, dates=series.dates, mask=result_mask) assert_array_equal(shift_negative, shift_negative_result) assert_array_equal(shift_positive, shift_positive_result) # def test_split(self): """Test the split function.""" ms = time_series(np.arange(62).reshape(31, 2), start_date=Date(freq='d', year=2005, month=7, day=1)) d1, d2 = split(ms) assert_array_equal(d1.data, ms.data[:, 0]) assert_array_equal(d1.dates, ms.dates) assert_array_equal(d2.data, ms.data[:, 1]) series = self.d[0] ss = split(series)[0] assert_array_equal(series, ss) def test_convert(self): """Test convert function Just check basic functionality. The details of the actual date conversion algorithms already tested by asfreq in the test_dates test suite. """ June2005M = Date(freq='M', year=2005, month=6) lowFreqSeries = time_series(np.arange(10), start_date=June2005M) # Conversion to same frequency assert_array_equal(lowFreqSeries, lowFreqSeries.convert("M")) # Conversion to higher frequency - position=START lowToHigh_start = lowFreqSeries.convert('B', position='START') assert_equal(lowToHigh_start.start_date, June2005M.asfreq("B", relation="START")) assert_equal(lowToHigh_start.end_date, (June2005M + 9).asfreq("B", relation="END")) assert_equal(lowToHigh_start.mask[0], False) assert_equal(lowToHigh_start.mask[-1], True) # Conversion to higher frequencyt - position=END lowToHigh_end = lowFreqSeries.convert('B', position='END') assert_equal(lowToHigh_end.start_date, June2005M.asfreq("B", relation="START")) assert_equal(lowToHigh_end.end_date, (June2005M + 9).asfreq("B", relation="END")) assert_equal(lowToHigh_end.mask[0], True) assert_equal(lowToHigh_end.mask[-1], False) # ensure that position argument is not case sensitive lowToHigh_start_lowercase = lowFreqSeries.convert('B', position='start') assert_array_equal(lowToHigh_start, lowToHigh_start_lowercase) # # Conversion to lower frequency June2005B = Date(freq='b', year=2005, month=6, day=1) highFreqSeries = time_series(np.arange(100), start_date=June2005B) highToLow = highFreqSeries.convert('M', func=None) assert_equal(highToLow.ndim, 2) assert_equal(highToLow.shape[1], 23) assert_equal(highToLow.start_date, June2005B.asfreq('M')) assert_equal(highToLow.end_date, (June2005B + 99).asfreq('M')) def test_convert_with_func(self): "Test convert w/ function on 1D series" mdata = ts.time_series(np.arange(24), mask=[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1], start_date=ts.Date('M', '2001-01')) test = mdata.convert('A', func=ts.last_unmasked_val) control = ts.time_series([7, 22], start_date=ts.Date('A', '2001')) assert_equal(test, control) def test_convert_nd_with_func(self): "Test convert w/ function on nD series" ndseries = time_series(np.arange(124).reshape(62, 2), start_date=Date(freq='D', string='2005-07-01')) assert_equal(ndseries.convert('M', sum), [[930, 961], [2852, 2883]]) def test_fill_missing_dates(self): """Test fill_missing_dates function""" _start = Date(freq='m', year=2005, month=1) _end = Date(freq='m', year=2005, month=4) # dates = date_array([_start, _end], freq='M') series = time_series([1, 2], dates) filled_ser = fill_missing_dates(series) # assert_equal(filled_ser.start_date, _start) assert_equal(filled_ser.end_date, _end) self.failUnless(filled_ser.is_full()) self.failUnless(not filled_ser.has_duplicated_dates()) assert_equal(filled_ser.size, _end - _start + 1) # data = np.arange(5 * 24).reshape(5, 24) datelist = ['2007-07-0%i' % i for i in (1, 2, 3, 5, 6)] dates = date_array(datelist, freq='D') dseries = time_series(data, dates) ndates = date_array(start_date=dates[0], end_date=dates[-2]) # fseries = fill_missing_dates(dseries) assert_equal(fseries.shape, (6, 24)) assert_equal(fseries.mask[:, 0], [0, 0, 0, 1, 0, 0]) # fseries = fill_missing_dates(dseries[:, 0]) assert_equal(fseries.shape, (6,)) assert_equal(fseries.mask, [0, 0, 0, 1, 0, 0]) # series = time_series(data.ravel()[:4].reshape(2, 2), dates=dates[:-1]) fseries = fill_missing_dates(series) assert_equal(fseries.shape, (5,)) assert_equal(fseries.mask, [0, 0, 0, 1, 0, ]) def test_fill_missing_dates_structured_arrays(self): "Test fill_missing_dates on structured arrays" ndtype = [('a', float), ('b', float)] series = ts.time_series([(1, 1), (2, 2), (3, 3), ], dtype=ndtype, dates=['2001-%02i' % i for i in (1, 2, 6)], freq='M') test = series.fill_missing_dates() control = ts.time_series([(1, 1), (2, 2), (0, 0), (0, 0), (0, 0), (3, 3), ], mask=[False, False, True, True, True, False], dtype=ndtype, start_date=ts.Date('M', '2001-01')) assert_equal(test, control) # def test_fill_missing_dates_undefined(self): "Test fill_missing_dates on undefined frequencies." ndtype = [('a', float), ('b', float)] series = ts.time_series([(1, 1), (2, 2), (3, 3), ], dtype=ndtype, dates=[1, 2, 6], freq='U') test = series.fill_missing_dates() control = ts.time_series([(1, 1), (2, 2), (0, 0), (0, 0), (0, 0), (3, 3), ], mask=[False, False, True, True, True, False], dtype=ndtype, start_date=ts.Date('U', 1)) assert_equal(test, control) def test_pickling(self): "Tests pickling/unpickling" (series, data, dates) = self.d import cPickle series_pickled = cPickle.loads(series.dumps()) assert_equal(series_pickled.dates, series.dates) assert_equal(series_pickled.data, series.data) assert_equal(series_pickled.mask, series.mask) # data = ma.array(np.matrix(range(10)).T, mask=[1, 0, 0, 0, 0] * 2) dates = date_array(start_date=now('D'), length=10) series = time_series(data, dates=dates) series_pickled = cPickle.loads(series.dumps()) assert_equal(series_pickled.dates, series.dates) assert_equal(series_pickled.data, series.data) assert_equal(series_pickled.mask, series.mask) self.failUnless(isinstance(series_pickled._data, np.matrix)) # def test_pickling_memo(self): "Test the conservation of _optinfo" import cPickle control = ts.time_series(np.arange(10), start_date=ts.Date('A', 2001)) control._optinfo['memo'] = "Control information" test = cPickle.loads(cPickle.dumps(control)) assert_equal(test._dates, control._dates) assert_equal(test, control) assert_equal(test._optinfo, control._optinfo) # # def test_pickling_oddity(self): # "Test some pickling oddity (bug #97)" # import cPickle # control = ts.time_series([{'a':1}], start_date=ts.Date('A', 2001)) # if tuple(map(int, np.version.version.split('.')[:2])) > (1, 4): # test = cPickle.loads(cPickle.dumps(control)) # assert_equal(test, control) # assert_equal(test.dates, control.dates) def test_empty_timeseries(self): "Tests that empty TimeSeries are handled properly" empty_ts = time_series([], freq='b') assert_array_equal(empty_ts, empty_ts + 1) assert_array_equal(empty_ts, empty_ts + empty_ts) assert_equal(empty_ts.start_date, None) assert_equal(empty_ts.end_date, None) def test__timeseriescompat_multiple(self): "Tests the compatibility of multiple time series." newyearsday = Date('D', '2005-01-01') aprilsfool = Date('D', '2005-04-01') seriesM_10 = time_series(np.arange(10), date_array(start_date=newyearsday.asfreq('M'), length=10)) seriesD_10 = time_series(np.arange(10), date_array(start_date=newyearsday, length=10)) seriesD_5 = time_series(np.arange(5), date_array(start_date=newyearsday, length=5)) seriesD_5_apr = time_series(np.arange(5), date_array(start_date=aprilsfool, length=5)) self.failUnless(tseries._timeseriescompat_multiple(seriesM_10, seriesM_10, seriesM_10)) exception = False try: tseries._timeseriescompat_multiple(seriesM_10, seriesD_10) except ts.TimeSeriesCompatibilityError: exception = True self.failUnless(exception) exception = False try: tseries._timeseriescompat_multiple(seriesD_5, seriesD_10) except ts.TimeSeriesCompatibilityError: exception = True self.failUnless(exception) exception = False try: tseries._timeseriescompat_multiple(seriesD_5, seriesD_5_apr) except ts.TimeSeriesCompatibilityError: exception = True self.failUnless(exception) def test_compressed(self): "Tests compress" dlist = ['2007-01-%02i' % i for i in range(1, 16)] dates = date_array(dlist, freq='D') data = ma.array(np.arange(15), mask=[1, 0, 0, 0, 0] * 3, dtype=float_) series = time_series(data, dlist, freq='D') # keeper = np.array([0, 1, 1, 1, 1] * 3, dtype=bool_) c_series = series.compressed() assert_equal(c_series.data, [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]) assert_equal(c_series.mask, nomask) assert_equal(c_series.dates, dates[keeper]) # series_st = time_series(ma.column_stack((data, data[::-1])), dates=dates) c_series = series_st.compressed() d = [1, 2, 3, 6, 7, 8, 11, 12, 13] assert_equal(c_series.data, np.c_[(d, list(reversed(d)))]) assert_equal(c_series.mask, nomask) assert_equal(c_series.dates, dates[d]) def test_concatenate(self): "Tests concatenate" dlist = ['2007-%02i' % i for i in range(1, 6)] _dates = date_array(dlist, freq='M') data = ma.array(np.arange(5), mask=[1, 0, 0, 0, 0], dtype=float_) # ser_1 = time_series(data, _dates) ser_2 = time_series(data, dates=_dates + 10) newseries = concatenate((ser_1, ser_2), fill_missing=True) assert_equal(newseries._series, [0, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]) assert_equal(newseries._mask, [1, 0, 0, 0, 0] + [1] * 5 + [1, 0, 0, 0, 0]) assert ~ (newseries.has_missing_dates()) # ser_1 = time_series(data, _dates) ser_2 = time_series(data, dates=_dates + 10) newseries = concatenate((ser_1, ser_2)) assert_equal(newseries._data, [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]) assert_equal(newseries._mask, [1, 0, 0, 0, 0] + [1, 0, 0, 0, 0]) assert newseries.has_missing_dates() # ser_2 = time_series(data, dates=_dates + 3) newseries = concatenate((ser_1, ser_2)) assert_equal(newseries._data, [0, 1, 2, 3, 4, 2, 3, 4]) assert_equal(newseries._mask, [1, 0, 0, 0, 0, 0, 0, 0]) # newseries = concatenate((ser_1, ser_1[::-1])) assert_equal(newseries, ser_1) # def test_concatenate_remove_duplicates(self): "Test concatenate w/ remove_duplicates" first = Date("D", "2009-01-01") a = time_series([1, 2, 3, ], start_date=first) b = time_series([10, 20, 30, 40, 50], start_date=first) # test = ts.concatenate((a, b), remove_duplicates=True) ctrl = time_series([1, 2, 3, 40, 50], start_date=first) assert_equal(test, ctrl) assert_equal(test.dates, ctrl.dates) # test = ts.concatenate((b, a), remove_duplicates=True) ctrl = time_series([10, 20, 30, 40, 50], start_date=first) assert_equal(test, ctrl) assert_equal(test.dates, ctrl.dates) # c = time_series(100 * np.arange(1, 8), start_date=first + 2) test = ts.concatenate((a, b, c), remove_duplicates=True) ctrl = time_series([1, 2, 3, 40, 50, 400, 500, 600, 700], start_date=first) assert_equal(test, ctrl) assert_equal(test.dates, ctrl.dates) test = ts.concatenate((c, a, b), remove_duplicates=True) ctrl = time_series([1, 2, 100, 200, 300, 400, 500, 600, 700], start_date=first) assert_equal(test, ctrl) assert_equal(test.dates, ctrl.dates) def test_concatenate_2D(self): "Test concatenate on 2D" adata = ma.array([[1, 2], [2, 4], [3, 8]], mask=[[0, 0], [1, 0], [0, 1]]) bdata = ma.array([[10, 20], [30, 40], [50, 60], [70, 80]]) a = time_series(adata, start_date=ts.Date('D', '01-Jan-2009')) b = time_series(bdata, start_date=ts.Date('D', '05-Jan-2009')) # test = ts.concatenate([a, b], axis=0, remove_duplicates=True) ctrl = ma.array([[1, 2], [2, 4], [3, 8], [10, 20], [30, 40], [50, 60], [70, 80]], mask=[[0, 0], [1, 0], [0, 1], [0, 0], [0, 0], [0, 0], [0, 0]]) assert_equal(test.series, ctrl) assert_equal(test.dates, np.concatenate((a.dates, b.dates))) # test = ts.concatenate([a, b], axis=0, remove_duplicates=False) assert_equal(test.series, ctrl) assert_equal(test.dates, np.concatenate((a.dates, b.dates))) # b.dates -= 2 test = ts.concatenate([a, b], axis=0, remove_duplicates=False) ctrl = ts.time_series([[1, 2], [2, 4], [3, 8], [10, 20], [30, 40], [50, 60], [70, 80]], mask=[[0, 0], [1, 0], [0, 1], [0, 0], [0, 0], [0, 0], [0, 0]], dates=np.concatenate((a.dates, b.dates)), freq='D') assert_equal(test.series, ctrl) assert_equal(test.dates, ctrl.dates) test = ts.concatenate([a, b], axis=0, remove_duplicates=True) ctrl = ts.time_series([[1, 2], [2, 4], [3, 8], [30, 40], [50, 60], [70, 80]], mask=[[0, 0], [1, 0], [0, 1], [0, 0], [0, 0], [0, 0]], start_date=a.dates[0]) assert_equal(test.series, ctrl) assert_equal(test.dates, ctrl.dates) # def test_maxmin(self): "Test min/max" series = time_series(np.arange(10), start_date=now('D')) smax = series.max() #!!!: Used to be a TimeSeries, now is only a scalar # self.failUnless(isinstance(smax, TimeSeries)) # assert_equal(smax._dates, date_array(series._dates[-1])) self.failUnless(not isinstance(smax, TimeSeries)) assert_equal(smax, 9) # smin = series.min() #!!!: Used to be a TimeSeries, now is only a scalar # self.failUnless(isinstance(smin, TimeSeries)) # assert_equal(smin._dates, date_array(series._dates[0])) assert_equal(smin, 0) # series = time_series([[0, 1, 2, 3, 4], [9, 8, 7, 6, 5]], start_date=now('D')) smax = series.max(0) assert_equal(smax.series, [9, 8, 7, 6, 5]) assert_equal(smax.dates, date_array([series.dates[1]] * 5)) smax = series.max(1) assert_equal(smax.series, [4, 9]) assert_equal(smax.dates, series.dates) smax = series.max() assert_equal(smax.series, [9]) assert_equal(smax.dates, date_array(series.dates[1])) ser_m = ts.time_series(range(10), freq='M', start_date='2008-01-01') ser_q = ser_m.convert(freq='Q') mx = ser_q.max(-1) assert_equal(mx, ma.array([2, 5, 8, 9])) self.failUnless(isinstance(mx, TimeSeries)) # def test_pct(self): series = time_series(np.arange(1, 10), start_date=now('D')) _pct = series.pct() assert_equal(_pct.dtype, np.dtype('d')) assert_equal(series.start_date, _pct.start_date) assert_equal(series.end_date, _pct.end_date) self.failUnless(_pct[0] is masked) assert_equal(_pct[1], 1.0) assert_equal(_pct[2], 0.5) series = ts.time_series([2., 1., 2., 3.], start_date=ts.Date(freq='A', year=2005)) # standard pct result = series.pct() assert_almost_equal(result, ma.array([999, -0.5, 1.0, 0.5], mask=[1, 0, 0, 0]) ) result = series.pct(2) assert_almost_equal( result, ma.array([999, 999, 0.0, 2.0], mask=[1, 1, 0, 0]) ) # log pct result = series.pct_log() assert_almost_equal( result, ma.array( [999, -0.69314718056, 0.69314718056, 0.405465108108], mask=[1, 0, 0, 0]) ) result = series.pct_log(2) assert_almost_equal( result, ma.array([999, 999, 0.0, 1.09861228867], mask=[1, 1, 0, 0]) ) # symmetric pct result = series.pct_symmetric() assert_almost_equal( result, ma.array( [999, -0.666666666667, 0.666666666667, 0.4], mask=[1, 0, 0, 0]) ) result = series.pct_symmetric(2) assert_almost_equal( result, ma.array([999, 999, 0.0, 1.0], mask=[1, 1, 0, 0]) ) def test_find_duplicated_dates(self): "Test find_duplicated_dates" years = ['2000', '2001', '2002', '2003', '2003', '2003', '2004', '2005', '2005', '2006'] series = time_series(np.arange(len(years)), dates=years, freq='A') test = find_duplicated_dates(series) control = {Date('A', '2003'): (np.array([3, 4, 5]),), Date('A', '2005'): (np.array([7, 8]),), } assert_equal(test, control) # def test_find_duplicated_dates_allduplicated(self): "Test find_duplicated_dates w/all duplicates" series = time_series([0, 1, 2, 3, 4], dates=[2000, 2000, 2000, 2000, 2000], freq='A') test = find_duplicated_dates(series) control = {Date('A', '2000'): (np.array([0, 1, 2, 3, 4]),), } assert_equal(test, control) # def test_find_duplicated_dates_noduplicates(self): "Test find_duplicated_dates w/o duplicates" series = time_series(np.arange(5), start_date=Date('A', '2001')) test = find_duplicated_dates(series) assert_equal(test, {}) def test_remove_duplicated_dates(self): "Test remove_duplicated_dates" years = ['2000', '2001', '2002', '2003', '2003', '2003', '2004', '2005', '2005', '2006'] series = time_series(np.arange(len(years)), dates=years, freq='A') test = remove_duplicated_dates(series) control = time_series([0, 1, 2, 3, 6, 7, 9], start_date=Date('A', '2000')) assert_equal(test, control) assert_equal(test._dates, control._dates) # def test_remove_duplicated_dates_allduplicates(self): "Test remove_duplicated_dates w/ all duplicates" years = ['2000', '2000', '2000', '2000', '2000'] series = time_series(np.arange(len(years)), dates=years, freq='A') test = remove_duplicated_dates(series) control = time_series([0, ], start_date=Date('A', '2000')) assert_equal(test, control) assert_equal(test._dates, control._dates) # def test_remove_duplicated_dates_noduplicates(self): "Test remove_duplicated_dates w/o duplicates" series = time_series(np.arange(5), start_date=Date('A', '2001')) test = remove_duplicated_dates(series) assert_equal(test, series) assert_equal(test._dates, series._dates) # def test_remove_duplicated_dates_nonchrono(self): "Test remove_duplicated_dates on non-chronological series" series = time_series([0, 1, 2, 3, 4, 5, 6], dates=[2005, 2005, 2004, 2003, 2002, 2002, 2002], freq='A', autosort=False) test = remove_duplicated_dates(series) control = time_series([0, 2, 3, 4], dates=[2005, 2004, 2003, 2002], freq='A', autosort=True) assert_equal(test, control) assert_equal(test._dates, control._dates) #------------------------------------------------------------------------------ class TestMisc(TestCase): def test_ma_ufuncs(self): a = time_series([-2, -1, 0, 1, 2], start_date=now('D')) z = ma.sqrt(a) self.failUnless(isinstance(z, TimeSeries)) assert_equal(z, [1, 1, 0, 1, np.sqrt(2)]) assert_equal(z.mask, [1, 1, 0, 0, 0]) assert_equal(z.dates, a.dates) def test_emptylike(self): x = time_series([1, 2, 3, 4, 5], mask=[1, 0, 0, 0, 0], start_date=now('D')) y = ts.empty_like(x) # Basic checks assert_equal(x.dtype, y.dtype) assert_equal(x.shape, y.shape) # y.flat = 0 assert_equal(x.mask, [1, 0, 0, 0, 0]) assert_equal(y.mask, nomask) # x.mask = nomask y = ts.empty_like(x) assert_equal(y.mask, nomask) def test_compatibility_shape(self): "Tests shape compatibility." data = np.arange(2 * 3 * 4 * 5,) dates = np.empty((2 * 3 * 4 * 5,)) assert_equal(get_varshape(data, dates), ()) # dates.shape = (2, 3, 4, 5) assert_equal(get_varshape(data, dates), ()) # dates = np.empty((2 * 3 * 4,)) try: assert_equal(get_varshape(data, dates), None) except TimeSeriesCompatibilityError: pass # dates = np.empty((3 * 3 * 5,)) try: assert_equal(get_varshape(data, dates), None) except TimeSeriesCompatibilityError: pass # data.shape = (2 * 3 * 4, 5) dates = np.empty((2 * 3 * 4,)) assert_equal(get_varshape(data, dates), (5,)) data.shape = (2 * 3, 4 * 5) dates =
np.empty((2 * 3 * 4,))
numpy.empty
#!/usr/bin/env python # encoding: utf-8 # # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' Write ONNX model ''' from onnx import defs from onnx import helper, numpy_helper from onnx import TensorProto import numpy as np class OnnxWriteError(ValueError): ''' Used to indicate an error in parsing ONNX model definition ''' def sas_to_onnx(layers, model_table, model_weights): ''' Convert DLPy model to ONNX Parameters ---------- layers : iter-of-Layers Specifies the layers defining the model. model_table : :class:`CASTable` Specifies the CASTable of the model. model_weights : :class:`pandas.DataFrame` or :class:`CASTable` DataFrame or CASTable containing the model weights. If this is a CASTable, the weights will be fetched from the CAS server. This may take a long time if the model has many weights. Returns ------- Loaded in-memory ModelProto ''' nodes = [] inputs = [] outputs = [] initializer = [] import pandas as pd if isinstance(model_weights, pd.DataFrame): fetch = False else: fetch = True model_name = model_table.query('_DLKey1_ = "modeltype"') \ .fetch()['Fetch']['_DLKey0_'][0] for layer in layers: if layer.type == 'input': H = int(layer.config['height']) W = int(layer.config['width']) C = int(layer.config['n_channels']) value_info = helper.make_tensor_value_info(name=layer.name, elem_type=TensorProto.FLOAT, shape=[1, C, H, W]) inputs.append(value_info) elif layer.type == 'convo' or layer.type == 'groupconvo': H = int(layer.config['height']) W = int(layer.config['width']) M = int(layer.config['n_filters']) # get group group = 1 if 'n_groups' in layer.config: group = layer.config['n_groups'] # set stride S_h, S_w = get_strides(layer) # set padding padding = get_padding(layer) bias = layer.config['include_bias'] if bias is None: bias = True dropout = layer.config['dropout'] act = layer.config['act'] if act in [None, 'AUTO']: act = 'RECTIFIER' # inputs to conv op conv_input = [l.name for l in layer.src_layers] conv_input.append(layer.name + '_w') if bias: conv_input.append(layer.name + '_b') # create names of node input/output if not dropout and act.lower() == 'identity': conv_output = [layer.name] elif not dropout: conv_output = [layer.name + '_conv_out'] act_input = conv_output act_output = [layer.name] elif dropout and act.lower() == 'identity': conv_output = [layer.name + '_conv_out'] dropout_input = conv_output dropout_output = [layer.name] else: conv_output = [layer.name + '_conv_out'] act_input = conv_output act_output = [layer.name + '_act_out'] dropout_input = act_output dropout_output = [layer.name] conv_op = helper.make_node(op_type='Conv', inputs=conv_input, outputs=conv_output, pads=padding, kernel_shape=[H, W], strides=[S_h, S_w], group=group) nodes.append(conv_op) # activation op if act.lower() != 'identity': act_op = make_onnx_activation(act, act_input, act_output) nodes.append(act_op) # dropout op if dropout: dropout_op = helper.make_node(op_type='Dropout', inputs=dropout_input, outputs=dropout_output, ratio=dropout) nodes.append(dropout_op) # create weight tensors layer_id = get_layer_id(model_table, layer.name) if fetch: weights = fetch_weights(model_weights, layer_id) else: weights = get_weights_from_dataframe(model_weights, layer_id) if bias: conv_weights = np.array(weights[:-M], dtype=np.float32) bias_weights =
np.array(weights[-M:], dtype=np.float32)
numpy.array
import numpy as np import matplotlib.pyplot as plt def plothist(hist, bin_edges, baseline=None, histtype="bar", axis=None, **kwargs): """Plot a histogram from the hist and bin edges as returned by numpy.histogram. """ if axis is None: axis = plt.gca() if not histtype == "bar": raise NotImplementedError zero = np.zeros(1, dtype=hist.dtype) x =
np.concatenate([bin_edges, [bin_edges[-1]]])
numpy.concatenate
""" Tests for :mod:`numpy.core.numeric`. Does not include tests which fall under ``array_constructors``. """ from typing import List import numpy as np class SubClass(np.ndarray): ... i8: np.int64 A: np.ndarray B: List[int] C: SubClass reveal_type(np.count_nonzero(i8)) # E: int reveal_type(np.count_nonzero(A)) # E: int reveal_type(np.count_nonzero(B)) # E: int reveal_type(np.count_nonzero(A, keepdims=True)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]] reveal_type(np.count_nonzero(A, axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]] reveal_type(np.isfortran(i8)) # E: bool reveal_type(np.isfortran(A)) # E: bool reveal_type(np.argwhere(i8)) # E: numpy.ndarray[Any, Any] reveal_type(np.argwhere(A)) # E: numpy.ndarray[Any, Any] reveal_type(np.flatnonzero(i8)) # E: numpy.ndarray[Any, Any] reveal_type(np.flatnonzero(A)) # E: numpy.ndarray[Any, Any] reveal_type(np.correlate(B, A, mode="valid")) # E: numpy.ndarray[Any, Any] reveal_type(np.correlate(A, A, mode="same")) # E: numpy.ndarray[Any, Any] reveal_type(np.convolve(B, A, mode="valid")) # E: numpy.ndarray[Any, Any] reveal_type(np.convolve(A, A, mode="same")) # E: numpy.ndarray[Any, Any] reveal_type(np.outer(i8, A)) # E: numpy.ndarray[Any, Any] reveal_type(np.outer(B, A)) # E: numpy.ndarray[Any, Any] reveal_type(np.outer(A, A)) # E: numpy.ndarray[Any, Any] reveal_type(np.outer(A, A, out=C)) # E: SubClass reveal_type(np.tensordot(B, A)) # E: numpy.ndarray[Any, Any] reveal_type(np.tensordot(A, A)) # E: numpy.ndarray[Any, Any] reveal_type(np.tensordot(A, A, axes=0)) # E: numpy.ndarray[Any, Any] reveal_type(np.tensordot(A, A, axes=(0, 1))) # E: numpy.ndarray[Any, Any] reveal_type(np.isscalar(i8)) # E: bool reveal_type(np.isscalar(A)) # E: bool reveal_type(np.isscalar(B)) # E: bool reveal_type(np.roll(A, 1)) # E: numpy.ndarray[Any, Any] reveal_type(np.roll(A, (1, 2))) # E: numpy.ndarray[Any, Any] reveal_type(
np.roll(B, 1)
numpy.roll
import os, sys import argparse import numpy as np import cv2 from skimage import filters import torch import torch.nn.functional as F import torchvision.transforms as transforms from linefiller.thinning import thinning from linefiller.trappedball_fill import trapped_ball_fill_multi, flood_fill_multi, mark_fill, build_fill_map, merge_fill, \ show_fill_map, my_merge_fill # for super pixelpooling from torch_scatter import scatter_mean from torch_scatter import scatter_add import softsplat from forward_warp2 import ForwardWarp from my_models import create_VGGFeatNet from vis_flow import flow_to_color def dline_of(x, low_thr=1, high_thr=20, bf_args=[30,40,30]): xm = cv2.medianBlur(x, 5) # xga = cv2.GaussianBlur(x,(5, 5),cv2.BORDER_DEFAULT) xb = cv2.bilateralFilter(x, bf_args[0], bf_args[1], bf_args[2]) # xb = cv2.bilateralFilter(xb, 20, 60, 10 ) xg = cv2.cvtColor(xb, cv2.COLOR_RGB2GRAY) xl = cv2.Laplacian(xb, ddepth = cv2.CV_32F, ksize=5) xgg = xl xgg = xgg.astype(np.float32) * (255. / (xgg.astype(np.float32).max() * 1.0)) xh = filters.apply_hysteresis_threshold(xgg, low_thr, high_thr) xgg[xh == False] = 0 # xgg[xh == True] = 255 xgg1 = xgg.copy() * 20 xgg1 = np.max(xgg1, axis=2) return np.clip(255 - xgg1, 0, 255) def squeeze_label_map(label_map): ret_label_map = label_map.copy() labels, counts = np.unique(ret_label_map, return_counts=True) label_orders = np.argsort(counts) for ord_id, ord_val in enumerate(label_orders): mask = (label_map == labels[ord_val]) ret_label_map[mask] = ord_id return ret_label_map def trapped_ball_processed(binary, in_image=None, do_merge=True): fills = [] result = binary fill = trapped_ball_fill_multi(result, 3, method='max') fills += fill result = mark_fill(result, fill) print('result num 3: ', len(fills)) fill = trapped_ball_fill_multi(result, 2, method=None) fills += fill result = mark_fill(result, fill) print('result num 2: ', len(fills)) fill = trapped_ball_fill_multi(result, 1, method=None) fills += fill result = mark_fill(result, fill) print('result num 1: ', len(fills)) fill = flood_fill_multi(result) fills += fill print('flood_fill_multi num 1: ', len(fills)) fillmap = build_fill_map(result, fills) # print('fillmap num: ', len(np.unique(fillmap))) if do_merge: if in_image is None: fillmap = merge_fill(fillmap, max_iter=10) else: fillmap = my_merge_fill(in_image, fillmap) fillmap = thinning(fillmap) return fillmap def superpixel_count(label_map): _, pixelCounts = np.unique(label_map, return_counts=True) return pixelCounts def mutual_matching(corrMap, descending = True): sortedCorrMap_1, ranks_1 = corrMap.sort(dim=1, descending=descending) sortedCorrMap_2, ranks_2 = corrMap.sort(dim=0, descending=descending) _, idxRanks_1 = ranks_1.sort(dim=1, descending=False) _, idxRanks_2 = ranks_2.sort(dim=0, descending=False) # print(idxRanks_1.shape) # print(idxRanks_2.shape) mutualRanks = idxRanks_1 + idxRanks_2 rankSum_1to2, matching_1to2 = mutualRanks.min(dim=1) rankSum_2to1, matching_2to1 = mutualRanks.min(dim=0) return (rankSum_1to2, matching_1to2, sortedCorrMap_1, rankSum_2to1, matching_2to1, sortedCorrMap_2) def superpixel_pooling(feat_map, label_map, use_gpu=False): fC,fH,fW = feat_map.shape lH,lW = label_map.shape if fH != lH or fW != lW: print('feature map and label map do not match') return feat_flat = feat_map.reshape([fC,fH*fW]) label_flat = torch.tensor(label_map.reshape(fH*fW)).long() # print('max label: ', torch.max(label_flat).item()) # print('superpxiel num: ', len(torch.unique(label_flat))) if use_gpu: feat_flat = feat_flat.cuda() label_flat = label_flat.cuda() poolMean = scatter_mean(feat_flat, label_flat, dim=1) return poolMean def get_bounding_rect(points): """Get a bounding rect of points. # Arguments points: array of points. # Returns rect coord """ x1, y1, x2, y2 = np.min(points[1]), np.min(points[0]), np.max(points[1]), np.max(points[0]) return x1, y1, x2, y2 def get_deformable_flow(flowObj, img1, mask_1, box_1, img2, mask_2, box_2, warp_func=None, use_gpu=False): mask1_patch = mask_1[box_1[1]:box_1[3]+1, box_1[0]:box_1[2] +1] mask2_patch = mask_2[box_2[1]:box_2[3]+1, box_2[0]:box_2[2]+1 ] gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) img1_patch = gray1[box_1[1]:box_1[3]+1, box_1[0]:box_1[2]+1] img1_patch[np.invert(mask1_patch)] = 0 if np.mean(img1_patch[mask1_patch]) < 20: img1_patch[mask1_patch] = 0.8*img1_patch[mask1_patch] + 0.2*200 gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) img2_patch = gray2[box_2[1]:box_2[3]+1, box_2[0]:box_2[2]+1 ] img2_patch[np.invert(mask2_patch)] = 0 if np.mean(img2_patch[mask2_patch]) < 20: img2_patch[mask2_patch] = 0.8*img2_patch[mask2_patch] + 0.2*200 # the black border should be larger than 8 required by DIS tarH = max(img1_patch.shape[0], img2_patch.shape[0], 16) + 10 tarW = max(img1_patch.shape[1], img2_patch.shape[1], 16) + 10 H_front_pad = int((tarH - img1_patch.shape[0])//2) H_back_pad = tarH - H_front_pad -img1_patch.shape[0] W_front_pad = int((tarW - img1_patch.shape[1])//2) W_back_pad = tarW - W_front_pad - img1_patch.shape[1] img1_patch_pad = np.pad(img1_patch, ([H_front_pad, H_back_pad], [W_front_pad, W_back_pad]), mode='constant') mask1_patch_pad = np.pad(mask1_patch.astype(np.uint8), ([H_front_pad, H_back_pad], [W_front_pad, W_back_pad]), mode='constant') H_front_pad2 = int((tarH - img2_patch.shape[0])//2) H_back_pad2 = tarH - H_front_pad2 -img2_patch.shape[0] W_front_pad2 = int((tarW - img2_patch.shape[1])//2) W_back_pad2 = tarW - W_front_pad2 - img2_patch.shape[1] img2_patch_pad = np.pad(img2_patch, ([H_front_pad2, H_back_pad2], [W_front_pad2, W_back_pad2]), mode='constant') mask2_patch_pad = np.pad(mask2_patch.astype(np.uint8), ([H_front_pad2, H_back_pad2], [W_front_pad2, W_back_pad2]), mode='constant') # compute flow between patches patch_flow = flowObj.calc(img1_patch_pad, img2_patch_pad, None) union_rate = 1 if warp_func is not None: patch_flow_tensor = torch.Tensor(patch_flow.transpose([2,0,1])).unsqueeze(0) fwarp_mask_tensor = torch.Tensor(mask1_patch_pad).unsqueeze(0).unsqueeze(0) if use_gpu: # use softsplat forward warp fwarp_mask_tensor = warp_func(fwarp_mask_tensor.cuda(), patch_flow_tensor.cuda()) else: fwarp_mask_tensor, norm = warp_func(fwarp_mask_tensor, patch_flow_tensor) fwarp_mask_tensor[norm > 0] = fwarp_mask_tensor[norm > 0] / norm[norm > 0] fwarp_mask = fwarp_mask_tensor[0][0].cpu().numpy() kernel = np.ones((5,5), np.uint8) # fwarp_mask_close = cv2.morphologyEx(fwarp_mask, cv2.MORPH_CLOSE, kernel) fwarp_mask_close = fwarp_mask fwarp_mask_close[fwarp_mask_close<0.05] = 0 union_region = np.logical_and(fwarp_mask_close.astype(np.bool), mask2_patch_pad.astype(np.bool)) union_rate = np.sum(union_region.astype(np.bool))/np.sum(fwarp_mask_close.astype(np.bool)) ### mask1_patch_pad = np.pad(mask1_patch, ([H_front_pad, H_back_pad], [W_front_pad, W_back_pad]), mode='constant') mask_tmp = np.repeat(mask1_patch_pad[:,:,np.newaxis], 2, axis=2) points_in_patch = np.where(mask1_patch_pad) return patch_flow, points_in_patch, union_rate def get_guidance_flow(label_map1, label_map2, img1, img2, rank_sum, matching, sorted_corrMap, mean_X_A, mean_Y_A, mean_X_B, mean_Y_B, rank_sum_thr=0, use_gpu=False): lH, lW = label_map1.shape labelNum = len(np.unique(label_map1)) pixelCounts = superpixel_count(label_map1) pixelCounts_2 = superpixel_count(label_map2) guideflow_X = np.zeros([lH, lW]) guideflow_Y = np.zeros([lH, lW]) color_patch1 = show_fill_map(label_map1) color_patch2 = show_fill_map(label_map2) flowObj = cv2.optflow.createOptFlow_DIS(cv2.optflow.DISOpticalFlow_PRESET_MEDIUM) # flowObj.setUseMeanNormalization(False) # flowObj.setUseSpatialPropagation(False) flowObj.setVariationalRefinementIterations(25) # flowObj.setPatchSize(8) # flowObj.setPatchStride(8) flowObj.setFinestScale(0) # max 6 flowObj.setGradientDescentIterations(50) if use_gpu: func_fwarp2 = softsplat.ModuleSoftsplat('average') else: func_fwarp2 = ForwardWarp() for l_id_1 in range(labelNum): # labelMask = (label_map1 == l_id_1) pixelNum = pixelCounts[l_id_1] l_id_2 = matching[l_id_1].item() curFlowX = mean_X_B[l_id_2] - mean_X_A[l_id_1] curFlowY = mean_Y_B[l_id_2] - mean_Y_A[l_id_1] flowLen = np.linalg.norm([curFlowX, curFlowY]) labelMask = (label_map1 == l_id_1) labelMask2 = (label_map2 == l_id_2) pixelNum_2 = pixelCounts_2[l_id_2] isAreaValid = (max(pixelNum/pixelNum_2, pixelNum_2/pixelNum) < 3) isValidPatch = (rank_sum[l_id_1] <= rank_sum_thr and flowLen <= 250 and pixelNum < maxPixNum*0.12 and pixelNum > 50 and isAreaValid) if not isValidPatch: guideflow_X[labelMask] = 0 guideflow_Y[labelMask] = 0 for cc in range(3): color_patch1[:, :, cc][labelMask] = 255 else: points_1 = np.where(labelMask) points_2 = np.where(labelMask2) box_1 = get_bounding_rect(points_1) box_2 = get_bounding_rect(points_2) patch_flow, points_in_patch, union_rate = get_deformable_flow(flowObj, img1, labelMask, box_1, img2, labelMask2, box_2, warp_func=func_fwarp2, use_gpu=use_gpu) if union_rate > 0.8: patch_flow_X = patch_flow[:,:,0] patch_flow_Y = patch_flow[:,:,1] guideflow_X[points_1] = (box_2[0] + box_2[2] - box_1[0] - box_1[2])/2 + patch_flow_X[points_in_patch] guideflow_Y[points_1] = (box_2[1] + box_2[3] - box_1[1] - box_1[3])/2 + patch_flow_Y[points_in_patch] for cc in range(3): color_patch1[:, :, cc][labelMask] = color_patch2[:, :, cc][labelMask2][0] else: guideflow_X[labelMask] = 0 guideflow_Y[labelMask] = 0 for cc in range(3): color_patch1[:, :, cc][labelMask] = 255 guideflow = np.concatenate((guideflow_X[np.newaxis,:,:], guideflow_Y[np.newaxis,:,:]), axis=0) matching_color_patch = np.hstack((color_patch1, color_patch2)).astype(np.uint8) return guideflow, matching_color_patch def get_ctx_feature(label_map, featx1, featx2, featx4, featx8): labelNum = len(np.unique(label_map)) featx1_pad = F.pad(featx1, [64, 64, 64, 64]) featx2_pad = F.pad(featx2, [32, 32, 32, 32]) featx4_pad = F.pad(featx4, [16, 16, 16, 16]) # featx8_pad = F.pad(featx8, [8, 8, 8, 8]) for l_idx in range(labelNum): mask = (label_map == l_idx) points = np.where(mask) box = get_bounding_rect(points) # same recepetive field box_h = box[3] - box[1] + 64 box_w = box[2] - box[0] + 64 featx1_patch = featx1_pad[:,:,box[1]:box[1]+box_h+1, box[0]:box[0]+box_w+1] featx2_patch = featx2_pad[:,:,box[1]//2:(box[1]+box_h)//2+1, box[0]//2:(box[0]+box_w)//2+1] featx4_patch = featx4_pad[:,:,box[1]//4:(box[1]+box_h)//4+1, box[0]//4:(box[0]+box_w)//4+1] # featx8_patch = featx8_pad[:,:,box[1]//8:(box[1]+box_h)//8+1, box[0]//8:(box[0]+box_w)//8+1] # average whole patch featx1_patch_flat = featx1_patch.flatten(start_dim=2, end_dim=-1).mean(dim=-1) featx2_patch_flat = featx2_patch.flatten(start_dim=2, end_dim=-1).mean(dim=-1) featx4_patch_flat = featx4_patch.flatten(start_dim=2, end_dim=-1).mean(dim=-1) # featx8_patch7x7 = featx8_patch.flatten(start_dim=2, end_dim=-1).mean(dim=-1) feat_patch_flat = torch.cat([featx1_patch_flat, featx2_patch_flat, featx4_patch_flat], dim=1) if l_idx == 0: ctxFeat = feat_patch_flat else: ctxFeat = torch.cat([ctxFeat, feat_patch_flat],dim=0) return ctxFeat if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('input_root') parser.add_argument('output_root') parser.add_argument('--label_root', default=None, help='root for label maps') parser.add_argument('--start_idx', default=0, help='threshold to differ motion regions from static') parser.add_argument('--end_idx', default=None, help='threshold to differ motion regions from static') parser.add_argument('--rank_sum_thr', default=0, help='threshold for rank sum') parser.add_argument('--height', default=960, help='height of the generated flow, default: 960') parser.add_argument('--width', default=540, help='width of the generated flow, default: 540') parser.add_argument('--use_gpu', action='store_true') args = parser.parse_args() ###### folder_root = args.input_root save_root = args.output_root label_root = args.label_root start_idx = int(args.start_idx) end_idx = None if args.end_idx is None else int(args.end_idx) use_gpu = args.use_gpu # tar_size = (1280, 720) tar_size = (args.height, args.width) # tar_size = (640, 360) rankSumThr = int(args.rank_sum_thr) ###### print('use label maps from %s'%label_root) print('use gpu: ', use_gpu) sys.stdout.flush() if not os.path.exists(save_root): os.makedirs(save_root) ## make models vggNet = create_VGGFeatNet() if use_gpu: vggNet = vggNet.cuda() toTensor = transforms.ToTensor() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) totalMatchCount = 0 folderList = sorted(os.listdir(folder_root)) if end_idx is None: end_idx = len(folderList) for f_idx, folder in enumerate(folderList[start_idx:end_idx]): f_idx += start_idx # if f_idx > 1 + start_idx: # break input_subfolder = os.path.join(folder_root, folder) imgFileNames = sorted(os.listdir(input_subfolder)) print('-- [%d/%d] %s'%(f_idx, end_idx-1, folder)) print(imgFileNames) sys.stdout.flush() img1 = cv2.imread(os.path.join(input_subfolder, imgFileNames[0])) img3 = cv2.imread(os.path.join(input_subfolder, imgFileNames[-1])) # segmentation img1_rs = cv2.resize(img1, tar_size) img3_rs = cv2.resize(img3, tar_size) if label_root is None: if 'Japan' in folder: boundImg1 = dline_of(img1_rs, 2, 20, [10,10,10]).astype(np.uint8) boundImg3 = dline_of(img3_rs, 2, 20, [10,10,10]).astype(np.uint8) else: boundImg1 = dline_of(img1_rs, 1, 20, [30,40,30]).astype(np.uint8) boundImg3 = dline_of(img3_rs, 1, 20, [30,40,30]).astype(np.uint8) ret, binMap1 = cv2.threshold(boundImg1, 220, 255, cv2.THRESH_BINARY) ret, binMap3 = cv2.threshold(boundImg3, 220, 255, cv2.THRESH_BINARY) print('- trapped_ball_processed()') sys.stdout.flush() fillMap1 = trapped_ball_processed(binMap1, img1_rs) fillMap3 = trapped_ball_processed(binMap3, img3_rs) labelMap1 = squeeze_label_map(fillMap1) labelMap3 = squeeze_label_map(fillMap3) else: print('- load labelmap') sys.stdout.flush() print(os.path.join(label_root, folder, 'labelmap_1.npy')) print(os.path.join(label_root, folder, 'labelmap_3.npy')) labelMap1 = np.load(os.path.join(label_root, folder, 'labelmap_1.npy')) print(labelMap1.shape) labelMap3 = np.load(os.path.join(label_root, folder, 'labelmap_3.npy')) print(labelMap3.shape) # VGG features img1_rgb = cv2.cvtColor(img1_rs, cv2.COLOR_BGR2RGB) img3_rgb = cv2.cvtColor(img3_rs, cv2.COLOR_BGR2RGB) img1_tensor = normalize(toTensor(img1_rgb/255.).float()) img1_tensor = img1_tensor.unsqueeze(dim=0) img3_tensor = normalize(toTensor(img3_rgb/255.).float()) img3_tensor = img3_tensor.unsqueeze(dim=0) if use_gpu: img1_tensor = img1_tensor.cuda() img3_tensor = img3_tensor.cuda() # featx1_1 = vggNet.slice1(img1_tensor) # featx1_3 = vggNet.slice1(img3_tensor) featx1_1, featx2_1, featx4_1, featx8_1, featx16_1 = vggNet(img1_tensor) featx1_3, featx2_3, featx4_3, featx8_3, featx16_3 = vggNet(img3_tensor) print('- compute correlation map') sys.stdout.flush() # superpixel pooling labelMap1_x2 = labelMap1[1::2,1::2] labelMap1_x4 = labelMap1_x2[1::2,1::2] labelMap1_x8 = labelMap1_x4[1::2,1::2] # labelMap1_x16 = labelMap1_x8[fc00:e968:6179::de52:7100,1::2] labelMap3_x2 = labelMap3[1::2,1::2] labelMap3_x4 = labelMap3_x2[1::2,1::2] labelMap3_x8 = labelMap3_x4[1::2,1::2] # labelMap3_x16 = labelMap3_x8[1::2,1::2] featx1_pool_1 = superpixel_pooling(featx1_1[0], labelMap1, use_gpu) featx2_pool_1 = superpixel_pooling(featx2_1[0], labelMap1_x2, use_gpu) featx4_pool_1 = superpixel_pooling(featx4_1[0], labelMap1_x4, use_gpu) featx8_pool_1 = superpixel_pooling(featx8_1[0], labelMap1_x8, use_gpu) # featx16_pool_1 = superpixel_pooling(featx16_1[0], labelMap1_x16, use_gpu) featx1_pool_3 = superpixel_pooling(featx1_3[0], labelMap3, use_gpu) featx2_pool_3 = superpixel_pooling(featx2_3[0], labelMap3_x2, use_gpu) featx4_pool_3 = superpixel_pooling(featx4_3[0], labelMap3_x4, use_gpu) featx8_pool_3 = superpixel_pooling(featx8_3[0], labelMap3_x8, use_gpu) # featx16_pool_3 = superpixel_pooling(featx16_3[0], labelMap3_x16, use_gpu) feat_pool_1 = torch.cat([featx1_pool_1, featx2_pool_1, featx4_pool_1, featx8_pool_1], dim=0) feat_pool_3 = torch.cat([featx1_pool_3, featx2_pool_3, featx4_pool_3, featx8_pool_3], dim=0) # normalization feat_p1_tmp = feat_pool_1 - feat_pool_1.min(dim=0)[0] feat_p1_norm = feat_p1_tmp/feat_p1_tmp.sum(dim=0) feat_p3_tmp = feat_pool_3 - feat_pool_3.min(dim=0)[0] feat_p3_norm = feat_p3_tmp/feat_p3_tmp.sum(dim=0) # for pixel distance lH, lW = labelMap1.shape gridX, gridY = np.meshgrid(np.arange(lW),
np.arange(lH)
numpy.arange
from abc import ABC, abstractmethod from autofit.graphical.utils import numerical_jacobian from autofit.mapper.operator import MultiVecOuterProduct from functools import wraps from typing import Type, Union, Tuple import numpy as np from scipy.special import ndtr, ndtri from scipy.stats._continuous_distns import _norm_pdf from ...mapper.operator import ( DiagonalMatrix, LinearOperator, ShermanMorrison ) from ..factor_graphs import transform class AbstractDensityTransform(ABC): """ This class allows the transformation of a probability density function, p(x) whilst preserving the measure of the distribution, i.e. \int p(x) dx = 1 p'(f) = p(f(x)) * |df/dx| \inf p'(f) df = 1 Methods ------- transform calculates f(x) inv_transform calculates f^{-1}(y) jacobian calculates df/dx log_det calculates log |df/dx| log_det_grad calculates |df/dx|, d log_det/dx transform_det calculates f(x), |df/dx| transform_jac calculates f(x), df/dx transform_det_jac calculates f(x), log_det, d log_det/dx, df/dx These final 3 functions are defined so that child classes can define custom methods that avoid recalculation of intermediate values that are needed to calculate multiple versions of the quantities """ @abstractmethod def transform(self, x): pass @abstractmethod def inv_transform(self, x): pass @abstractmethod def jacobian(self, x: np.ndarray) -> LinearOperator: pass @abstractmethod def log_det(self, x: np.ndarray) -> np.ndarray: pass @abstractmethod def log_det_grad(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: pass def log_det_hess(self, x: np.ndarray) -> np.ndarray: return numerical_jacobian( x, lambda x: self.log_det_grad(x)[1].sum(0) ) def transform_det(self, x) -> Tuple[np.ndarray, np.ndarray]: return self.transform(x), self.log_det(x) def transform_jac(self, x) -> Tuple[np.ndarray, LinearOperator]: return self.transform(x), self.jacobian(x) def transform_det_jac( self, x ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, LinearOperator]: return ( self.transform(x), *self.log_det_grad(x), self.jacobian(x) ) def transform_func(self, func): @wraps(func) def transformed_func(*args, **kwargs): x, *args = args x = self.transform(x) return func(x, *args, **kwargs) transformed_func.transform = self return transformed_func def transform_func_grad(self, func_grad): @wraps(func_grad) def transformed_func_grad(*args, **kwargs): x, *args = args x, jac = self.transform_jac(x) val, grad = func_grad(x, *args, **kwargs) return x, grad * jac transformed_func_grad.transform = self return transformed_func_grad def transform_func_grad_hess(self, func_grad_hess): @wraps(func_grad_hess) def transformed_func_grad_hess(*args, **kwargs): x, *args = args x, jac = self.transform_jac(x) val, grad, hess = func_grad_hess(x, *args, **kwargs) return val, grad * jac, jac.quad(hess) transformed_func_grad_hess.transform = self return transformed_func_grad_hess class LinearTransform(AbstractDensityTransform): def __init__(self, linear: LinearOperator): self.linear = linear def transform(self, x: np.ndarray) -> np.ndarray: return self.linear * x def inv_transform(self, x: np.ndarray) -> np.ndarray: return self.linear.ldiv(x) def jacobian(self, x: np.ndarray) -> np.ndarray: return self.linear def log_det(self, x: np.ndarray) -> np.ndarray: return self.linear.log_det def log_det_grad(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: return self.log_det(x), 0 class LinearShiftTransform(LinearTransform): def __init__(self, shift: float = 0, scale: float = 1): self.shift = shift self.scale = scale self.linear = DiagonalMatrix(np.reciprocal(self.scale)) def inv_transform(self, x: np.ndarray) -> np.ndarray: return x * self.scale + self.shift def transform(self, x: np.ndarray) -> np.ndarray: return (x - self.shift) / self.scale def log_det(self, x: np.ndarray) -> np.ndarray: return - np.log(self.scale) * np.ones_like(x) class FunctionTransform(AbstractDensityTransform): def __init__(self, func, inv_func, grad, hess=None, args=(), func_grad_hess=None): self.func = func self.inv_func = inv_func self.grad = grad self.hess = hess self.args = args self.func_grad_hess = func_grad_hess def transform(self, x): return self.func(x, *self.args) def inv_transform(self, x): return self.inv_func(x, *self.args) def jacobian(self, x): return DiagonalMatrix(self.grad(x, *self.args)) def log_det(self, x: np.ndarray) -> np.ndarray: gs = self.grad(x, *self.args) return np.log(gs) def log_det_grad(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: if self.func_grad_hess: x0, gs, hs = self.func_grad_hess(x, *self.args) else: x0 = self.func(x, *self.args) gs = self.grad(x, *self.args) hs = self.hess(x, *self.args) return np.log(gs), hs/gs def transform_det_jac( self, x ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, LinearOperator]: if self.func_grad_hess: x0, gs, hs = self.func_grad_hess(x, *self.args) else: x0 = self.func(x, *self.args) gs = self.grad(x, *self.args) hs = self.hess(x, *self.args) return x0, np.log(gs), hs/gs, DiagonalMatrix(gs) def exp3(x): expx = np.exp(x) return (expx, ) * 3 exp_transform = FunctionTransform(np.exp, np.log, np.exp, func_grad_hess=exp3) def log3(x): ix = np.reciprocal(x) return np.log(x), ix, -np.square(ix) log_transform = FunctionTransform( np.log, np.exp, np.reciprocal, func_grad_hess=log3) def sigmoid(x, scale=1, shift=0): return scale / (1 + np.exp(-x)) + shift def logit(x, scale=1, shift=0): x = (x - shift) / scale return np.log(x) - np.log1p(-x) def sigmoid_grad(x, scale=1, shift=0): expx = np.exp(-x) return scale * expx / np.square(1 + expx) def logit_grad(x, scale=1, shift=0): x = (x - shift) / scale return (np.reciprocal(x) + np.reciprocal(1 - x)) / scale def logit_hess(x, scale=1, shift=0): x = (x - shift) / scale return np.reciprocal(1-x) - np.reciprocal(x) def logit_grad_hess(x, scale=1, shift=0): x = (x - shift) / scale ix = np.reciprocal(x) ix1 = np.reciprocal(1 - x) ix2 = np.square(ix) ix12 = np.square(ix1) return (np.log(x) - np.log1p(-x), (ix + ix1)/scale, (ix12 - ix2)/scale**2) logistic_transform = FunctionTransform( logit, sigmoid, logit_grad, func_grad_hess=logit_grad_hess) def shifted_logistic(shift=0, scale=1): return FunctionTransform(logit, sigmoid, logit_grad, func_grad_hess=logit_grad_hess, args=(scale, shift)) def ndtri_grad(x): return np.reciprocal(_norm_pdf(ndtri(x))) def ndtri_grad_hess(x): f = ndtri(x) phi = _norm_pdf(f) grad = np.reciprocal(phi) hess = grad**2 * f return f, grad, hess phi_transform = FunctionTransform( ndtri, ndtr, ndtri_grad, func_grad_hess=ndtri_grad_hess) class MultinomialLogitTransform(AbstractDensityTransform): """ makes multinomial logististic transform from the p to x, where, x_i = log(p_i / (1 - sum(p))) p_i = exp(x_i) / (sum(exp(x_j) for x_j in x) + 1) When p's n-simplex is defined by, all(0 <= p_i <= 1 for p_i in p) and sum(p) < 1 """ def __init__(self, axis=-1): self.axis = axis def _validate(self, p): p = np.asanyarray(p) keepdims = np.ndim(p) == self.ndim + 1 if not (keepdims or np.ndim(p) == self.ndim): raise ValueError( f"dimension of input must be {self.ndim} or {self.ndim + 1}") return p, keepdims def transform(self, p): p = np.asanyarray(p) lnp1 = np.log(1 - np.sum(p, axis=self.axis, keepdims=True)) lnp = np.log(p) return lnp - lnp1 def inv_transform(self, x): expx = np.exp(x) return expx / (expx.sum(axis=self.axis, keepdims=True) + 1) def jacobian(self, p): p = np.asanyarray(p) pn1 = 1 - np.sum(p, axis=-1, keepdims=True) ln1p = np.log(pn1) lnp = np.log(p) jac = ShermanMorrison( DiagonalMatrix(1/p), 1/np.sqrt(pn1) * np.ones_like(p) ) def log_det(self, p): p = np.asanyarray(p) p1 = 1 - np.sum(p, axis=self.axis, keepdims=True) # Hack to make sure summation broadcasting works correctly log_d = ( - np.log(p).sum(axis=self.axis, keepdims=True) - np.log(p1) ) * np.full_like(p, p1.size/p.size) return log_d def log_det_grad(self, p): p = np.asanyarray(p) p1 = 1 - np.sum(p, axis=self.axis, keepdims=True) # Hack to make sure summation broadcasting works correctly log_d = ( - np.log(p).sum(axis=self.axis, keepdims=True) - np.log(p1) ) * np.full_like(p, p1.size/p.size) return log_d, 1/p1 - 1/p def transform_det_jac( self, p ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, LinearOperator]: p = np.asanyarray(p) pn1 = 1 - np.sum(p, axis=self.axis, keepdims=True) ln1p = np.log(pn1) lnp =
np.log(p)
numpy.log
import numpy as np import pdb import h5py import os import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from recursive_planning.infra.datasets.save_util.record_saver import HDF5SaverBase from utils import AttrDict def pad_traj_timesteps(traj, max_num_actions): """ pad images and actions with zeros :param traj: :param max_num_actions: :return: """ im_shape = traj.images.shape ac_shape = traj.actions.shape if ac_shape[0] < max_num_actions: zeros = np.zeros([max_num_actions - im_shape[0] + 1, im_shape[1], im_shape[2], im_shape[3], im_shape[4]], dtype=np.uint8) traj.images = np.concatenate([traj.images, zeros]) if len(ac_shape) > 1: zeros = np.zeros([max_num_actions - ac_shape[0], ac_shape[1]]) else: zeros = np.zeros([max_num_actions - ac_shape[0]]) traj.actions =
np.concatenate([traj.actions, zeros])
numpy.concatenate
# Authors: <NAME> <<EMAIL>> # <NAME> # # License: BSD (3-clause) import logging import warnings import numpy as np from scipy import linalg from numpy.linalg import pinv from .asr_utils import (geometric_median, fit_eeg_distribution, yulewalk, yulewalk_filter, ma_filter, block_covariance) class ASR(): """Artifact Subspace Reconstruction. Artifact subspace reconstruction (ASR) is an automated, online, component-based artifact removal method for removing transient or large-amplitude artifacts in multi-channel EEG recordings [1]_. Parameters ---------- sfreq : float Sampling rate of the data, in Hz. cutoff: float Standard deviation cutoff for rejection. X portions whose variance is larger than this threshold relative to the calibration data are considered missing data and will be removed. The most aggressive value that can be used without losing too much EEG is 2.5. Recommended to use with more conservative values ranging from 20 - 30. Defaults to 20. blocksize : int Block size for calculating the robust data covariance and thresholds, in samples; allows to reduce the memory and time requirements of the robust estimators by this factor (down to Channels x Channels x Samples x 16 / Blocksize bytes) (default=100). win_len : float Window length (s) that is used to check the data for artifact content. This is ideally as long as the expected time scale of the artifacts but not shorter than half a cycle of the high-pass filter that was used (default=0.5). win_overlap : float Window overlap fraction. The fraction of two successive windows that overlaps. Higher overlap ensures that fewer artifact portions are going to be missed, but is slower (default=0.66). max_dropout_fraction : float Maximum fraction of windows that can be subject to signal dropouts (e.g., sensor unplugged), used for threshold estimation (default=0.1). min_clean_fraction : float Minimum fraction of windows that need to be clean, used for threshold estimation (default=0.25). ab : 2-tuple | None Coefficients (A, B) of an IIR filter that is used to shape the spectrum of the signal when calculating artifact statistics. The output signal does not go through this filter. This is an optional way to tune the sensitivity of the algorithm to each frequency component of the signal. The default filter is less sensitive at alpha and beta frequencies and more sensitive at delta (blinks) and gamma (muscle) frequencies. Defaults to None. max_bad_chans : float The maximum number or fraction of bad channels that a retained window may still contain (more than this and it is removed). Reasonable range is 0.05 (very clean output) to 0.3 (very lax cleaning of only coarse artifacts) (default=0.2). method : {'riemann', 'euclid'} Method to use. If riemann, use the riemannian-modified version of ASR [2]_. Currently, only euclidean ASR is supported. Defaults to "euclid". Attributes ---------- sfreq: array, shape=(n_channels, filter_order) Filter initial conditions. cutoff: float Standard deviation cutoff for rejection. blocksize : int Block size for calculating the robust data covariance and thresholds. win_len : float Window length (s) that is used to check the data for artifact content. win_overlap : float Window overlap fraction. max_dropout_fraction : float Maximum fraction of windows that can be subject to signal dropouts. min_clean_fraction : float Minimum fraction of windows. max_bad_chans : float The maximum fraction of bad channels. method : {'riemann', 'euclid'} Method to use. A, B: arrays Coefficients of an IIR filter that is used to shape the spectrum of the signal when calculating artifact statistics. The output signal does not go through this filter. This is an optional way to tune the sensitivity of the algorithm to each frequency component of the signal. The default filter is less sensitive at alpha and beta frequencies and more sensitive at delta (blinks) and gamma (muscle) frequencies. M : array, shape=(channels, channels) The mixing matrix to fit ASR data. T : array, shape=(channels, channels) The mixing matrix to fit ASR data. References ---------- .. [1] <NAME>., & <NAME>. (2016). U.S. Patent Application No. 14/895,440. https://patents.google.com/patent/US20160113587A1/en .. [2] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). A Riemannian Modification of Artifact Subspace Reconstruction for EEG Artifact Handling. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00141 """ def __init__(self, sfreq, cutoff=20, blocksize=100, win_len=0.5, win_overlap=0.66, max_dropout_fraction=0.1, min_clean_fraction=0.25, ab=None, max_bad_chans=0.1, method="euclid"): # set attributes self.sfreq = sfreq self.cutoff = cutoff self.blocksize = blocksize self.win_len = win_len self.win_overlap = win_overlap self.max_dropout_fraction = max_dropout_fraction self.min_clean_fraction = min_clean_fraction self.max_bad_chans = max_bad_chans self.method = "euclid" # NOTE: riemann is not yet available self._fitted = False # set default yule-walker filter if ab is None: yw_f = np.array([0, 2, 3, 13, 16, 40, np.minimum(80.0, (self.sfreq / 2.0) - 1.0), self.sfreq / 2.0]) * 2.0 / self.sfreq yw_m =
np.array([3, 0.75, 0.33, 0.33, 1, 1, 3, 3])
numpy.array
import torch import torchvision import torchvision.transforms as tvt import torch.nn as nn import matplotlib.pyplot as plt import numpy as np from torch import optim import torch.nn.functional as F import math as m import time import os #from google.colab import drive import random from PIL import Image from torch.autograd import Variable, variable from PIL import Image import numpy import tensorflow as tf from pathlib import Path import pickle import numpy as np import torch import torchvision import torch.nn.functional as F import text_model import test_retrieval import torch_functions #import datasets from tqdm import tqdm as tqdm import PIL import argparse import datasets import img_text_composition_models Path1=r"C:\MMaster\Files" Path1=r"D:\personal\master\MyCode\files" #Path1=r"C:\MMaster\Files" ################# Support Functions Section ################# def dataset(batch_size_all): trainset = Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size_all, shuffle=False, num_workers=2) return trainset,trainloader def euclideandistance(signature,signatureimg): from scipy.spatial import distance return distance.euclidean(signature, signatureimg) #.detach().numpy() def testvaluessame(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() query='women/tops/blouses/91422080/91422080_0.jpeg' qttext='replace sunrise with pleat-neck' target='women/tops/sleeveless_and_tank_tops/90068628/90068628_0.jpeg' text=[] text.append(qttext) text.append(qttext) img = Image.open(Path1+'/'+query) img = img.convert('RGB') img=transform(img) img2 = Image.open(Path1+'/'+target) img2 = img2.convert('RGB') img2=transform(img2) img=img.unsqueeze_(0) img2=img2.unsqueeze_(0) images=torch.cat([img, img2], dim=0) trigdataQ=trig.compose_img_text(images,text) trigdataQ1=trig.compose_img_text(images,text) print('...........') print(trigdataQ) print(trigdataQ1) def getbetatrainNot(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] for Data in tqdm(train): imgs += [Data['source_img_data']] mods += [Data['mod']['str']] target +=[Data['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] trigdata=np.array(trigdata) imgdata=np.array(imgdata) Ntrigdata=trigdata Nimgdata=imgdata Ntrig2=[] for i in range(Ntrigdata.shape[0]): Ntrigdata[i, :] /= np.linalg.norm(Ntrigdata[i, :]) for i in range(Nimgdata.shape[0]): Nimgdata[i, :] /= np.linalg.norm(Nimgdata[i, :]) for i in range(Ntrigdata.shape[0]): Ntrig2.append(np.insert(Ntrigdata[i],0, 1)) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=np.matmul(Ntrigdata1,Ntrig2) X2=np.linalg.inv(X1) X3=np.matmul(X2,Ntrigdata1) Nbeta=np.matmul(X3,Nimgdata) with open(Path1+r"/"+'BetaNot.txt', 'wb') as fp: pickle.dump(Nbeta, fp) def GetValuestrain15time(): with open (Path1+"/trainBetaNormalized.txt", 'rb') as fp: BetaNormalize = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trainloader = trainset.get_loader( batch_size=2, shuffle=True, drop_last=True, num_workers=0) testset = TestFashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\checkpoint_fashion200k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' Results=[] for i in range(15): for name, dataset in [ ('train', trainset)]: #,('test', testset)]: # betaNor="['1 ---> 5.27', '5 ---> 14.39', '10 ---> 21.6', '50 ---> 43.830000000000005', '100 ---> 55.33']" # Results.append('No.'+str(i)+' DataSet='+name+' Type= BetaNormalized '+' Result=' +betaNor) try: betaNor = test_retrieval.testbetanormalizednot(opt, trig, dataset,BetaNormalize) print(name,' BetaNormalized: ',betaNor) Results.append('No.'+str(i)+' DataSet='+name+' Type= BetaNormalized '+' Result=' +betaNor) except: print('ERROR') try: asbook = test_retrieval.test(opt, trig, dataset) print(name,' As PaPer: ',asbook) Results.append('No.'+str(i)+' DataSet='+name+' Type= As PaPer '+' Result=' +betaNor) except: print('ERROR') with open(Path1+r"/"+'Results15time.txt', 'wb') as fp: pickle.dump(Results, fp) def distanceBetaand(): with open (Path1+"/Beta.txt", 'rb') as fp: Beta = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] target = [] batchsize=2 Distance=[] sourceid=[] targetid=[] countbeta=0 counttrig=0 for Data in tqdm(trainset): imgs += [Data['source_img_data']] mods += [Data['mod']['str']] target +=[Data['target_img_data']] sourceid.append(Data['source_img_id']) targetid.append(Data['target_img_id']) imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata=f[0] trigbeta = np.insert(trigdata,0, 1) trigbeta=np.matmul(trigbeta,Beta) Targetdata = f2[0] SourceTarget=euclideandistance(trigdata,Targetdata) betaTarget=euclideandistance(trigbeta,Targetdata) if(SourceTarget > betaTarget): countbeta= countbeta+1 else: counttrig=counttrig+1 # opsig={'source':sourceid[0],'target':targetid[0],'disbeta':betaTarget,'disorig':SourceTarget} # Distance.append(opsig ) imgs = [] mods = [] target = [] sourceid=[] targetid=[] with open(Path1+r"/"+'Distance.txt', 'wb') as fp: pickle.dump(Distance, fp) print('Train Data :Count beta less:',countbeta , ' ,countbeta bigger:',counttrig) imgs = [] mods = [] target = [] batchsize=2 Distance=[] sourceid=[] targetid=[] countbeta=0 counttrig=0 for Data in tqdm(test.get_test_queries()): imgs += [test.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[test.get_img(Data['target_id'])] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata=f[0] trigbeta = np.insert(trigdata,0, 1) trigbeta=np.matmul(trigbeta,Beta) Targetdata = f2[0] SourceTarget=euclideandistance(trigdata,Targetdata) betaTarget=euclideandistance(trigbeta,Targetdata) if(SourceTarget > betaTarget): countbeta= countbeta+1 else: counttrig=counttrig+1 imgs = [] mods = [] target = [] sourceid=[] targetid=[] print('Test Data :Count beta less:',countbeta , ' ,countbeta bigger:',counttrig) ################# Beta From Test Set Section ################# def getbeta(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] all_source_captions=[] all_target_captions=[] for Data in tqdm(test.get_test_queries()): imgs += [test.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[test.get_img(Data['target_id'])] all_source_captions +=Data['source_caption'] all_target_captions +=Data['target_caption'] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] with open(Path1+r"/"+'test_all_source_captionsG.pkl', 'wb') as fp: pickle.dump(all_source_captions, fp) with open(Path1+r"/"+'test_all_target_captionsG.pkl', 'wb') as fp: pickle.dump(all_target_captions, fp) trigdata=np.array(trigdata) imgdata=np.array(imgdata) with open(Path1+r"/"+'test_all_queriesG.pkl', 'wb') as fp: pickle.dump(trigdata, fp) with open(Path1+r"/"+'test_all_imgsG.pkl', 'wb') as fp: pickle.dump(imgdata, fp) Ntrigdata=trigdata Nimgdata=imgdata Ntrig2=[] trigdata2=[] for i in range(Ntrigdata.shape[0]): Ntrigdata[i, :] /= np.linalg.norm(Ntrigdata[i, :]) for i in range(Nimgdata.shape[0]): Nimgdata[i, :] /= np.linalg.norm(Nimgdata[i, :]) for i in range(Ntrigdata.shape[0]): Ntrig2.append(np.insert(Ntrigdata[i],0, 1)) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=np.matmul(Ntrigdata1,Ntrig2) X2=np.linalg.inv(X1) X3=np.matmul(X2,Ntrigdata1) Nbeta=np.matmul(X3,Nimgdata) with open(Path1+r"/"+'testBetaNormalizedG.txt', 'wb') as fp: pickle.dump(Nbeta, fp) def GetValues(): with open (Path1+"/testBetaNormalized.txt", 'rb') as fp: Nbeta = pickle.load(fp) train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', train),('test', test)]: #('train', trainset), betaNor = test_retrieval.testWbeta(opt, trig, dataset,Nbeta) print(name,' BetaNormalized: ',betaNor) asbook = test_retrieval.test(opt, trig, dataset) print(name,' As PaPer: ',asbook) ################# Beta From Train Set Section ################# def getbetatrain(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] #m = nn.ReLU() for i in range(172048): #172048 print('get images=',i,end='\r') item = train[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] target += [item['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] trigdata=np.array(trigdata) imgdata=np.array(imgdata) Ntrig2=[] for i in range(trigdata.shape[0]): trigdata[i, :] /= np.linalg.norm(trigdata[i, :]) for i in range(imgdata.shape[0]): imgdata[i, :] /= np.linalg.norm(imgdata[i, :]) for i in range(trigdata.shape[0]): Ntrig2.append(np.insert(trigdata[i],0, 1)) print("Ntrig2 shape %d first elemnt %d",Ntrig2[0] ) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=
np.matmul(Ntrigdata1,Ntrig2)
numpy.matmul
from tqdm import tqdm from src import simulation, var_iv import pandas as pd import numpy as np from multiprocessing import Pool, cpu_count MSE = lambda x: (x**2).sum() # Set dimensions dI = 3 dX = 2 dH = 1 dY = 1 d = dI + dX + dH + dY tol = 0.1 # Get indices for data id_I, id_X, id_H, id_Y = np.split(np.arange(d), np.cumsum([dI, dX, dH, dY]))[:4] # Get skeleton of matrix A skel = simulation.get_skeleton(id_I, id_X, id_H, id_Y) def sample_alphas(skel): return skel *
np.random.uniform(0.1, 0.9, size=skel.shape)
numpy.random.uniform
import os import shutil import zipfile import urllib.request import keras import skimage import numpy as np import skimage.io as ski_io from pycocotools_m.coco import COCO from pycocotools_m import mask as maskUtils from mrcnn import utils DEFAULT_DATASET_YEAR = "2017" class CocoDataset(utils.Dataset): def load_coco(self, dataset_dir, subset, year=DEFAULT_DATASET_YEAR, class_ids=None, cat_nms=None, return_coco=False, auto_download=False): """Load a subset of the COCO dataset. dataset_dir: The root directory of the COCO dataset. subset: What to load (train, val, minival, valminusminival) year: What dataset year to load (2014, 2017) as a string, not an integer class_ids: If provided, only loads images that have the given classes. class_map: TODO: Not implemented yet. Supports maping classes from different datasets to the same class ID. return_coco: If True, returns the COCO object. auto_download: Automatically download and unzip MS-COCO images and annotations """ if auto_download is True: self.auto_download(dataset_dir, subset, year) coco = COCO( "{}/annotations/instances_{}{}.json".format(dataset_dir, subset, year)) if subset == "minival" or subset == "valminusminival": subset = "val" image_dir = "{}/{}{}".format(dataset_dir, subset, year) if cat_nms: class_ids = coco.getCatIds(catNms=cat_nms) # Load all classes or a subset? if not class_ids: # All classes class_ids = sorted(coco.getCatIds()) self.class_ids = class_ids # All images or a subset? if class_ids: image_ids = [] for _id in class_ids: image_ids.extend(list(coco.getImgIds(catIds=[_id]))) # Remove duplicates image_ids = list(set(image_ids)) else: # All images image_ids = list(coco.imgs.keys()) # Add classes for i in class_ids: self.add_class("coco", i, coco.loadCats(i)[0]["name"]) # Add images for i in image_ids: self.add_image( "coco", image_id=i, path=os.path.join(image_dir, coco.imgs[i]['file_name']), url=coco.imgs[i]['coco_url'], width=coco.imgs[i]["width"], height=coco.imgs[i]["height"], annotations=coco.loadAnns(coco.getAnnIds( imgIds=[i], catIds=class_ids, iscrowd=None))) if return_coco: return coco def auto_download_annotations(self, dataDir, dataType, dataYear): """Download the COCO annotations if requested. dataDir: The root directory of the COCO dataset. dataType: What to load (train, val, minival, valminusminival) dataYear: What dataset year to load (2014, 2017) as a string, not an integer Note: For 2014, use "train", "val", "minival", or "valminusminival" For 2017, only "train" and "val" annotations are available """ # Create main folder if it doesn't exist yet if not os.path.exists(dataDir): os.makedirs(dataDir) # Setup annotations data paths annDir = "{}/annotations".format(dataDir) if dataType == "minival": annZipFile = "{}/instances_minival2014.json.zip".format(dataDir) annFile = "{}/instances_minival2014.json".format(annDir) annURL = "https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0" unZipDir = annDir elif dataType == "valminusminival": annZipFile = "{}/instances_valminusminival2014.json.zip".format( dataDir) annFile = "{}/instances_valminusminival2014.json".format(annDir) annURL = "https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0" unZipDir = annDir else: annZipFile = "{}/annotations_trainval{}.zip".format( dataDir, dataYear) annFile = "{}/instances_{}{}.json".format( annDir, dataType, dataYear) annURL = "http://images.cocodataset.org/annotations/annotations_trainval{}.zip".format( dataYear) unZipDir = dataDir # print("Annotations paths:"); print(annDir); print(annFile); print(annZipFile); print(annURL) # Download annotations if not available locally if not os.path.exists(annDir): os.makedirs(annDir) if not os.path.exists(annFile): if not os.path.exists(annZipFile): print("Downloading zipped annotations to " + annZipFile + " ...") with urllib.request.urlopen(annURL) as resp, open(annZipFile, 'wb') as out: shutil.copyfileobj(resp, out) print("... done downloading.") print("Unzipping " + annZipFile) with zipfile.ZipFile(annZipFile, "r") as zip_ref: zip_ref.extractall(unZipDir) print("... done unzipping") print("Will use annotations in " + annFile) def auto_download(self, dataDir, dataType, dataYear): """Download the COCO dataset/annotations if requested. dataDir: The root directory of the COCO dataset. dataType: What to load (train, val, minival, valminusminival) dataYear: What dataset year to load (2014, 2017) as a string, not an integer Note: For 2014, use "train", "val", "minival", or "valminusminival" For 2017, only "train" and "val" annotations are available """ # Setup paths and file names if dataType == "minival" or dataType == "valminusminival": imgDir = "{}/{}{}".format(dataDir, "val", dataYear) imgZipFile = "{}/{}{}.zip".format(dataDir, "val", dataYear) imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format( "val", dataYear) else: imgDir = "{}/{}{}".format(dataDir, dataType, dataYear) imgZipFile = "{}/{}{}.zip".format(dataDir, dataType, dataYear) imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format( dataType, dataYear) # print("Image paths:"); print(imgDir); print(imgZipFile); print(imgURL) # Create main folder if it doesn't exist yet if not os.path.exists(dataDir): os.makedirs(dataDir) # Download images if not available locally if not os.path.exists(imgDir): os.makedirs(imgDir) print("Downloading images to " + imgZipFile + " ...") with urllib.request.urlopen(imgURL) as resp, open(imgZipFile, 'wb') as out: shutil.copyfileobj(resp, out) print("... done downloading.") print("Unzipping " + imgZipFile) with zipfile.ZipFile(imgZipFile, "r") as zip_ref: zip_ref.extractall(dataDir) print("... done unzipping") print("Will use images in " + imgDir) # Setup annotations data paths annDir = "{}/annotations".format(dataDir) if dataType == "minival": annZipFile = "{}/instances_minival2014.json.zip".format(dataDir) annFile = "{}/instances_minival2014.json".format(annDir) annURL = "https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0" unZipDir = annDir elif dataType == "valminusminival": annZipFile = "{}/instances_valminusminival2014.json.zip".format( dataDir) annFile = "{}/instances_valminusminival2014.json".format(annDir) annURL = "https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0" unZipDir = annDir else: annZipFile = "{}/annotations_trainval{}.zip".format( dataDir, dataYear) annFile = "{}/instances_{}{}.json".format( annDir, dataType, dataYear) annURL = "http://images.cocodataset.org/annotations/annotations_trainval{}.zip".format( dataYear) unZipDir = dataDir # print("Annotations paths:"); print(annDir); print(annFile); print(annZipFile); print(annURL) # Download annotations if not available locally if not os.path.exists(annDir): os.makedirs(annDir) if not os.path.exists(annFile): if not os.path.exists(annZipFile): print("Downloading zipped annotations to " + annZipFile + " ...") with urllib.request.urlopen(annURL) as resp, open(annZipFile, 'wb') as out: shutil.copyfileobj(resp, out) print("... done downloading.") print("Unzipping " + annZipFile) with zipfile.ZipFile(annZipFile, "r") as zip_ref: zip_ref.extractall(unZipDir) print("... done unzipping") print("Will use annotations in " + annFile) def load_mask_one_hot(self, image_id): mask, class_ids = self.load_mask(image_id) output = np.zeros([len(self.class_ids), mask.shape[0], mask.shape[1]], dtype=np.float32) mask = np.moveaxis(mask, -1, 0) for det in range(len(mask)): detection = np.array(mask[det]) cl = class_ids[det] output[cl] = output[cl] + detection output = np.ceil(output / np.max(output)) return np.moveaxis(output, 0, -1) def load_mask(self, image_id): """Load instance masks for the given image. Different datasets use different ways to store masks. This function converts the different mask format to one format in the form of a bitmap [height, width, instances]. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # If not a COCO image, delegate to parent class. image_info = self.image_info[image_id] if image_info["source"] != "coco": return super(CocoDataset, self).load_mask(image_id) instance_masks = [] class_ids = [] annotations = self.image_info[image_id]["annotations"] # Build mask of shape [height, width, instance_count] and list # of class IDs that correspond to each channel of the mask. for annotation in annotations: class_id = self.map_source_class_id( "coco.{}".format(annotation['category_id'])) if class_id: m = self.annToMask(annotation, image_info["height"], image_info["width"]) # Some objects are so small that they're less than 1 pixel area # and end up rounded out. Skip those objects. if m.max() < 1: continue # Is it a crowd? If so, use a negative class ID. if annotation['iscrowd']: # Use negative class ID for crowds class_id *= -1 # For crowd masks, annToMask() sometimes returns a mask # smaller than the given dimensions. If so, resize it. if m.shape[0] != image_info["height"] or m.shape[1] != image_info["width"]: m = np.ones( [image_info["height"], image_info["width"]], dtype=bool) instance_masks.append(m) class_ids.append(class_id) # Pack instance masks into an array if class_ids: mask = np.stack(instance_masks, axis=2).astype(np.bool) class_ids = np.array(class_ids, dtype=np.int32) return mask, class_ids else: # Call super class to return an empty mask return super(CocoDataset, self).load_mask(image_id) def load_image_url(self, image_id): return ski_io.imread(self.image_info[image_id]['url']) def image_reference(self, image_id): """Return a link to the image in the COCO Website.""" info = self.image_info[image_id] if info["source"] == "coco": return "http://cocodataset.org/#explore?id={}".format(info["id"]) else: super(CocoDataset, self).image_reference(image_id) # The following two functions are from pycocotools with a few changes. def annToRLE(self, ann, height, width): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ segm = ann['segmentation'] if isinstance(segm, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, height, width) rle = maskUtils.merge(rles) elif isinstance(segm['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(segm, height, width) else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann, height, width): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann, height, width) m = maskUtils.decode(rle) return m class DataGenerator(keras.utils.Sequence): 'Generates data for Keras' def __init__(self, cat_nms, path='./data/coco', subset='train', batch_size=32, dim=(224, 224), shuffle=True, n_channels=3): 'Initialization' self.dim = dim self.batch_size = batch_size self.cat_nms = cat_nms self.subset = subset self.n_classes = len(cat_nms) + 1 self.shuffle = shuffle self.n_channels = n_channels coco_dataset = CocoDataset() coco_dataset.load_coco(path, subset, year='2017', auto_download=True, cat_nms=cat_nms) coco_dataset.prepare() self.coco_dataset = coco_dataset self.image_ids = coco_dataset.image_ids self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.floor(len(self.image_ids) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size] # Find list of IDs image_ids_temp = [self.image_ids[k] for k in indexes] # Generate data X, y = self.__data_generation(image_ids_temp) return X, y def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.image_ids)) if self.shuffle == True:
np.random.shuffle(self.indexes)
numpy.random.shuffle
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats from scipy.optimize import root, brentq from scipy.interpolate import interp1d __all__ = ['estimate_quantile'] def estimate_quantile(data, q, alpha=0.05, method='exact', weights=None, nsamples=10000): """Calculate lower and upper CI of a given quantile using exact method, based on beta distribution <NAME> (1999) Calculating nonparametric confidence intervals for quantiles using fractional order statistics, Journal of Applied Statistics, 26:3, 343-353, DOI: 10.1080/02664769922458 <NAME>, <NAME>, <NAME>. An Investigation of Quantile Function Estimators Relative to Quantile Confidence Interval Coverage. Commun Stat Theory Methods. 2015;44(10):2107-2135. doi: 10.1080/03610926.2013.775304. PMID: 26924881; PMCID: PMC4768491. Parameters ---------- data : np.array Data q : float, [0, 1] Quantile alpha : float Desired significance level method :str "exact" or "approximate" Returns ------- Lower and upper bound of the quantile """ def _est_bound(n, q, b): """Function to estimate the upper and lower bound b is targeted lower or upper CI bound""" return brentq(lambda x: stats.beta.cdf(q, (n+1)*x, (n+1)*(1-x)) - b, 1e-8, 1-1e-8) if not weights is None: if method != 'bootstrap': print('Using bootstrap method to accomodate weights!') method = 'bootstrap' n = len(data) if q > (1 - 1e-7): q = 1 - 1e-7 if q < 1e-7: q = 1e-7 if method == 'exact': lb = _est_bound(n, q, 1 - (alpha/2)) ub = _est_bound(n, q, alpha/2) estx, lx, ux = np.quantile(data, [q, lb, ub], interpolation='linear') elif method == 'approximate': pn = (n+1) * q qn = (n+1) * (1-q) lb = stats.beta.ppf(alpha/2, pn, qn) ub = stats.beta.ppf(1 - alpha/2, pn, qn) estx, lx, ux = np.quantile(data, [q, lb, ub], interpolation='linear') elif method == 'bootstrap': bsamp = np.zeros(nsamples) ndata = len(data) if weights is None: for i in range(nsamples): bsamp[i] = np.quantile(np.random.choice(data, size=ndata, replace=True), q) estx = np.quantile(data, q, interpolation='linear') else: w = weights / weights.sum() for i in range(nsamples): rind = np.random.choice(np.arange(ndata), size=ndata, replace=True) bsamp[i] = weighted_quantile(data[rind], q, weights=w[rind]) estx = weighted_quantile(data, q, weights=w) lx, ux = np.quantile(bsamp, [alpha/2, 1 - alpha/2]) lb, ub = np.nan, np.nan return estx, lx, ux, q, lb, ub def ecdf(x, weights=None, reverse=True, make_step=False): """ For reverse = True: Y is proportion of samples >= X or Pr(X>=x) For reverse = False: Y is proportion of samples <= X or Pr(X<=x) """ if weights is None: weights = np.zeros(len(x)) x = np.array(x, copy=True) x.sort() if reverse: x = x[::-1] nobs = len(x) y = np.linspace(1./nobs, 1, nobs) if make_step: x = np.concatenate(([x[0]], np.repeat(x[1:].ravel(), 2))) y = np.repeat(y.ravel(), 2)[:-1] return x, y def weighted_quantile(data, q, inverse=False, weights=None, reverse=False): """ q : quantile in [0-1]! weights inverse : bool If True then q is treated as a new data point and its corresponding quantile will be returned. https://stackoverflow.com/questions/21844024/weighted-percentile-using-numpy """ if weights is None: weights = np.ones(len(data)) ix = np.argsort(data) if reverse: ix = ix[::-1] data = data[ix] # sort data weights = weights[ix] # sort weights cdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights) # 'like' a CDF function if not inverse: out = np.interp(q, cdf, data) else: out = np.interp(q, data, cdf, left=np.min(cdf)/2, right=1 - np.min(cdf)/2) return out def plot_recdfs(data, quantiles=None, keys=None, logscale=True, make_step=False, alpha=0.05, method='exact', palette=None): """ SLOW for large datasets because it computes the CI at every data point. Could easily speed this up if needed. """ if keys is None: keys = data.keys() if palette is None: palette = mpl.cm.Set3.colors figh = plt.figure(figsize=(9, 7)) axh = figh.add_axes([0.1, 0.1, 0.7, 0.8], xscale='log' if logscale else 'linear') for k, color in zip(keys, palette): dat = data[k] dat = dat[~np.isnan(dat)] x, y = ecdf(dat) if quantiles is None: qvec = y else: qvec = quantiles n = len(qvec) estx = np.zeros(n) lq = np.zeros(n) uq = np.zeros(n) for yi, yy in enumerate(qvec): estx[yi], lx, ux, estq, lq[yi], uq[yi] = estimate_quantile(dat, 1 - yy, alpha=alpha, method=method) plt.fill_between(estx, y1=1 - lq, y2=1 - uq, color=color, alpha=0.3) plt.plot(x, y, '-', color=color, label=k) plt.ylabel('Pr(X\u2265x)') plt.ylim((0, 1)) plt.yticks(np.arange(11)/10) plt.legend(loc='upper left', bbox_to_anchor=[1, 1]) return figh def test_plot(n1=20, n2=10000): data = {'A1':np.random.normal(40, 5, size=n1), 'A2':np.random.normal(40, 5, size=n2), 'B1':np.random.lognormal(0.5, 0, size=n1), 'B2':np.random.lognormal(0.5, 0, size=n2)} """Plot AVG of 10 ECDFs based on n1 and see if it looks like n2 ECDF to check for bias""" xmat = [] for i in range(5000): x, y = ecdf(np.random.normal(40, 5, size=n1)) xmat.append(x[:,None]) x1 = np.mean(np.concatenate(xmat, axis=1), axis=1) plt.figure(figsize=(10,10)) plt.plot(x1, y) x2, y2 = ecdf(np.random.normal(40, 5, size=n2)) plt.plot(x2, y2, '-r') plt.grid('both') plt.yticks(
np.arange(21)
numpy.arange
from __future__ import print_function import argparse from collections import OrderedDict import json import os import logging from keras.callbacks import EarlyStopping from sklearn.preprocessing import normalize from sklearn.metrics import roc_curve, auc, roc_auc_score, precision_score, recall_score, f1_score, accuracy_score, average_precision_score from scipy.sparse import csr_matrix from keras.utils.io_utils import HDF5Matrix #from keras.utils.visualize_util import plot from keras.optimizers import SGD, Adam from sklearn.metrics import r2_score import numpy as np import theano.tensor as tt import pandas as pd import random import common import models from predict import obtain_predictions from eval import do_eval import h5py class Config(object): """Configuration for the training process.""" def __init__(self, params, normalize=False, whiten=True): self.model_id = common.get_next_model_id() self.norm = normalize self.whiten = whiten self.x_path = '%s_%sx%s' % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) self.y_path = '%s_%s_%s' % (params['dataset']['fact'],params['dataset']['dim'],params['dataset']['dataset']) self.dataset_settings = params['dataset'] self.training_params = params['training'] self.model_arch = params['cnn'] self.predicting_params = params['predicting'] def get_dict(self): object_dict = self.__dict__ first_key = "model_id" conf_dict = OrderedDict({first_key: object_dict[first_key]}) conf_dict.update(object_dict) return conf_dict def _squared_magnitude(x): return tt.sqr(x).sum(axis=-1) def _magnitude(x): return tt.sqrt(tt.maximum(_squared_magnitude(x), np.finfo(x.dtype).tiny)) def cosine(x, y): return tt.clip((1 - (x * y).sum(axis=-1) / (_magnitude(x) * _magnitude(y))) / 2, 0, 1) def load_sparse_csr(filename): loader = np.load(filename) return csr_matrix(( loader['data'], loader['indices'], loader['indptr']), shape = loader['shape']) def build_model(config): """Builds the cnn.""" params = config.model_arch get_model = getattr(models, 'get_model_'+str(params['architecture'])) model = get_model(params) #model = model_kenun.build_convnet_model(params) # Learning setup t_params = config.training_params sgd = SGD(lr=t_params["learning_rate"], decay=t_params["decay"], momentum=t_params["momentum"], nesterov=t_params["nesterov"]) adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08) optimizer = eval(t_params['optimizer']) metrics = ['mean_squared_error'] if config.model_arch["final_activation"] == 'softmax': metrics.append('categorical_accuracy') if t_params['loss_func'] == 'cosine': loss_func = eval(t_params['loss_func']) else: loss_func = t_params['loss_func'] model.compile(loss=loss_func, optimizer=optimizer,metrics=metrics) return model def load_data_preprocesed(params, X_path, Y_path, dataset, val_percent, test_percent, n_samples, with_metadata=False, only_metadata=False, metadata_source='rovi'): factors = np.load(common.DATASETS_DIR+'/y_train_'+Y_path+'.npy') # OJO remove S index_factors = open(common.DATASETS_DIR+'/items_index_train_'+dataset+'.tsv').read().splitlines() if not only_metadata: all_X = np.load(common.TRAINDATA_DIR+'/X_train_'+X_path+'.npy') index_train = open(common.TRAINDATA_DIR+'/index_train_%s.tsv' % (X_path)).read().splitlines() all_Y = np.zeros((len(index_train),factors.shape[1])) index_factors_inv = dict() for i,item in enumerate(index_factors): index_factors_inv[item] = i for i,item in enumerate(index_train): all_Y[i,:] = factors[index_factors_inv[item]] else: all_Y = factors if with_metadata: if 'w2v' in metadata_source: all_X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,dataset))[:,:int(params['cnn']['sequence_length'])] elif 'model' in metadata_source or not params['dataset']['sparse']: all_X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,dataset)) else: all_X_meta = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (metadata_source,dataset)).todense() all_X_in_meta = all_X = all_X_meta print(all_X.shape) print(all_Y.shape) if n_samples != 'all': n_samples = int(n_samples) all_X = all_X[:n_samples] all_Y = all_Y[:n_samples] if with_metadata: all_X_in_meta = all_X_in_meta[:n_samples] if params['training']['normalize_y'] == True: normalize(all_Y,copy=False) if params['training']["val_from_file"]: Y_val = np.load(common.DATASETS_DIR+'/y_val_'+Y_path+'.npy') Y_test = np.load(common.DATASETS_DIR+'/y_test_'+Y_path+'.npy') #!!! OJO remove S from trainS if params['dataset']['sparse']: X_val = load_sparse_csr(common.TRAINDATA_DIR+'/X_val_%s_%s.npz' % (metadata_source,dataset)).todense() X_test = load_sparse_csr(common.TRAINDATA_DIR+'/X_test_%s_%s.npz' % (metadata_source,dataset)).todense() else: X_val = np.load(common.TRAINDATA_DIR+'/X_val_%s_%s.npy' % (metadata_source,dataset)) X_test = np.load(common.TRAINDATA_DIR+'/X_test_%s_%s.npy' % (metadata_source,dataset)) X_train = all_X Y_train = all_Y else: N = all_Y.shape[0] train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) logging.debug("Training data points: %d" % N_train) logging.debug("Validation data points: %d" % N_val) logging.debug("Test data points: %d" % (N - N_train - N_val)) if not only_metadata: # Slice data X_train = all_X[:N_train] X_val = all_X[N_train:N_train + N_val] X_test = all_X[N_train + N_val:] Y_train = all_Y[:N_train] Y_val = all_Y[N_train:N_train + N_val] Y_test = all_Y[N_train + N_val:] if with_metadata: if only_metadata: X_train = all_X_in_meta[:N_train] X_val = all_X_in_meta[N_train:N_train + N_val] X_test = all_X_in_meta[N_train + N_val:] else: X_train = [X_train,all_X_in_meta[:N_train]] X_val = [X_val,all_X_in_meta[N_train:N_train + N_val]] X_test = [X_test,all_X_in_meta[N_train + N_val:]] return X_train, Y_train, X_val, Y_val, X_test, Y_test def load_data_hf5(params,val_percent, test_percent): hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%s.hdf5" % (params['dataset']['dataset'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") N = f["targets"].shape[0] f.close() train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) X_train = HDF5Matrix(hdf5_file, 'features', start=0, end=N_train) Y_train = HDF5Matrix(hdf5_file, 'targets', start=0, end=N_train) X_val = HDF5Matrix(hdf5_file, 'features', start=N_train, end=N_train+N_val) Y_val = HDF5Matrix(hdf5_file, 'targets', start=N_train, end=N_train+N_val) X_test = HDF5Matrix(hdf5_file, 'features', start=N_train+N_val, end=N) Y_test = HDF5Matrix(hdf5_file, 'targets', start=N_train+N_val, end=N) return X_train, Y_train, X_val, Y_val, X_test, Y_test, N_train def load_data_hf5_memory(params,val_percent, test_percent, y_path, id2gt, X_meta = None, val_from_file = False): if val_from_file: hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") index_train = f["index"][:] index_train = np.delete(index_train, np.where(index_train == "")) N_train = index_train.shape[0] val_hdf5_file = common.PATCHES_DIR+"/patches_val_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f_val = h5py.File(val_hdf5_file,"r") X_val = f_val['features'][:] #Y_val = f_val['targets'][:] factors_val = np.load(common.DATASETS_DIR+'/y_val_'+y_path+'.npy') index_factors_val = open(common.DATASETS_DIR+'/items_index_val_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt_val = dict((index,factor) for (index,factor) in zip(index_factors_val,factors_val)) index_val = [i for i in f_val['index'][:] if i in id2gt_val] X_val = np.delete(X_val, np.where(index_val == ""), axis=0) index_val = np.delete(index_val, np.where(index_val == "")) Y_val = np.asarray([id2gt_val[id] for id in index_val]) test_hdf5_file = common.PATCHES_DIR+"/patches_test_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f_test = h5py.File(test_hdf5_file,"r") X_test = f_test['features'][:] #Y_test = f_test['targets'][:] factors_test = np.load(common.DATASETS_DIR+'/y_test_'+y_path+'.npy') index_factors_test = open(common.DATASETS_DIR+'/items_index_test_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt_test = dict((index,factor) for (index,factor) in zip(index_factors_test,factors_test)) index_test = [i for i in f_test['index'][:] if i in id2gt_test] X_test = np.delete(X_test, np.where(index_test == ""), axis=0) index_test = np.delete(index_test,
np.where(index_test == "")
numpy.where
import json import numpy as np from keras.models import Sequential from keras.layers.core import Dense from keras.optimizers import sgd from catch import * class ExperienceReplay(object): def __init__(self, max_memory=500): self.max_memory = max_memory self.memory = list() def add(self, sars_d): # memory[i] = [state_t, action_t, reward_t, state_t+1, game_over?] self.memory.append(sars_d) if len(self.memory) > self.max_memory: del self.memory[0] def sample_batch(self, batch_size=50): len_memory = len(self.memory) return_batch_size = min(len_memory, batch_size) batch = [] for i, idx in enumerate(
np.random.randint(0, len_memory, size=return_batch_size)
numpy.random.randint
''' This code was written primarily by <NAME> with inspiration from previous code by <NAME> and <NAME>. Additions were made by <NAME> ''' import math import numpy as np #from matplotlib import pyplot as plt from ctypes import * from numpy import random as nrm import random as rnd from scipy.integrate import odeint from scipy.interpolate import interp1d from scipy.optimize import minimize import networkx # for regular graphs import os import subprocess Jij = False ############################################ # Functions to generate graph connectivity ############################################ def generate_Jij_LR(n, Zcoeff, alpha): '''Generates a Jij matrix for the long range Ising model''' global Jij Jij = np.zeros((n,n)) for i in range(n): for j in range(i+1,n): if (i!=j): dist2 = (i-j)*(i-j); Jij[i,j] = Zcoeff/(dist2**(0.5*alpha)); Jij[j,i] = Jij[i,j] def generate_Jij_MC(n, d, seed=None): '''Generates a Jij matrix for n bits of MaxCut on a d-regular graph''' global Jij Jij = np.zeros((n,n)) graph = networkx.random_regular_graph(d,n,seed=seed) edges=graph.edges() #edges = [(0, 2), (0, 3), (0, 5), (1, 4), (1, 6), (1, 7), (2, 5), (2, 7), (3, 5), (3, 6), (4, 6), (4, 7)] print(edges) for edge in edges: (i,j)=edge Jij[i,j] = 1 Jij[j,i] = 1 return edges def generate_Jij(n): '''Generates a randomized Jij matrix and stores it in a global variable''' global Jij Jij = np.zeros((n,n)) for i in range(n): for j in range(i+1,n): nrm.seed(i*n*10+j*10) Jij[i,j] = 2*nrm.rand() - 1 Jij[j,i] = Jij[i,j] #################################### # Functions to generate Hamiltonian #################################### def get_energy(x): global Jij n = len(Jij) val = 0 for i in range(n): biti = int(x/(2**i))&1 for j in range(i+1, n): bitj = int(x/(2**j))&1 val = val + (Jij[i][j]*(1-(biti^bitj)*(2**1))) return val def get_diag(): '''Gets the diagonal of the cost function Hamiltonian. This assumes you have already initialzed Jij''' global Jij #H = ham() n = len(Jij) #qc.allocateH(byref(H),n) diag = [] for i in range(2**n): diag += [get_energy(i)] return diag def flip_index (i, j, n): '''If i is the decimal version of a bit string of length n, this outputs the decimal version of the bit string that is that one but with bit j flipped''' rem = i one = +1 for k in range(j+1): temp = rem - 2**(n-k-1) if (temp>=0): rem =temp one = -1 else: one = +1 return i + one*2**(n-j-1) def display_ham(n,want): '''Prints out the Hamiltonian. n=number of qubits want=boolean with True = C and False = B ''' mat = get_ham(n,want) output="" for c in mat: for el in c: if np.abs(np.imag(el))<0.000001: output+=str(np.real(el))+"\t" else: output+=str(el)+"\t" output+="\n" print(output) def get_ham(n,want): '''Gets the Hamiltonian in a numpy format n=number of qubits want=boolean with True = C and False = B ''' N = 2**n diag = get_diag() mat = [] for i in range(N): unit = [0 for k in range(2*N)] unit[i] = 1 if want: col=applyC_sing(unit,diag) else: col=applyB_sing(n, unit) mat += [[col[j]+1j*col[j+N] for j in range(N)]] return np.array(mat) # works def applyC_sing(y,diag): '''Applies the diagonal part of the Hamiltonian (i.e. C) to the vector y''' N = int(len(y)/2) output=[0 for i in range(2*N)] for i in range(N): output[i] = diag[i]*y[i] output[i+N] = diag[i]*y[i+N] return output # works def applyB_sing(n, y): '''Applies the transverse field (i.e. B) to the vector y''' N = int(len(y)/2) output=[0 for i in range(2*N)] for i in range(N): for j in range(n): index = flip_index(i,j,n) output[i] += -y[index] # real output[i+N] += -y[index+N] # imaginary return output ###################################################### # Generate Initial State # The format is a 2*2**n list all with real elements # followed by all imaginary elements ###################################################### def uniform(n): '''returns a list of length 2*2^n where the first 2^n entries are all sqrt(1/2^n) and the last ones are all 0 This is usually the initial state''' N=2**n y = [1/math.sqrt(N) for i in range(N)] y += [0 for i in range(N)] return y ###################################### # Utility Functions ###################################### def get_u (t,uN,tf,ulist): '''interpolates the values of u stored in ulist to get the current value of u at t, there are uN values in ulist, in the order [u(0), u(tf/(uN-1)), ..., u(tf)] this function just does a linear interpolation''' if t>tf: t=tf lower = min(int(math.floor((uN)*(t/tf))), uN - 1); # upper = int(math.ceil((uN-1)*(t/tf))); # amount = (uN-1)*(t-tf*lower/(uN-1))/tf; # # # return (ulist[upper])*amount+(ulist[lower])*(1-amount); return ulist[lower] def norm(y): '''returns the norm of the vector y where y has all the real components in the first half and all the imaginary components in the second half''' output=0; N = len(y)/2 for i in range(N): output+=y[i]**2+y[i+N]**2 return output def cdot(y1,y2): '''returns the complex inner product <y1|y2>, assumes the vectors have real components in the first half and imaginary components in the second half''' output=0; N = int(len(y1)/2) for i in range(N): output+=(y1[i]-1j*y1[i+N])*(y2[i]+1j*y2[i+N]) return output ################################################# # ODE Solving of the Schrodinger equation ################################################# def func_schro (y, t, n, uN, tf, ulist,diag) : '''This is the function f such that dy/dt = f(y,t), so this is essentially our differential equation or Schrodinger equation put into standard form. t is the time variable y[] are the vector elements, all real parts first then all imaginaries f[] is the function f, and this will be the output *params is a pointer to an array of andy number of parameters we want This function assumes the form of B = -\sum \sigma_x and C is the Ising model with the defined Jij matrix''' N = 2**n u = get_u(t, uN, tf, ulist) dydt = [0 for i in range(2*N)] dydtC = applyC_sing(y,diag) dydtB = applyB_sing(n,y) for i in range(N): dydt[i] += u*dydtB[i+N] + (1-u)*dydtC[i+N] dydt[i+N] += -u*dydtB[i] - (1-u)*dydtC[i] """ for i in range(N): # APPLY C dydt[i] = y[i+N]*diag[i]*(1-u); # real dydt[i+N] = -y[i]*diag[i]*(1-u);# imaginary # iterate over all "adjacent" states, i.e. one bit flip away for j in range(n): # off-diagonal # APPLY B index = flip_index(i,j,n) dydt[i] += -u*y[index+N] # real dydt[i+N] += u*y[index] # imaginary """ return dydt; def func_schroN (y, t, n, uN, tf, ulist,diag) : '''This is the function f such that dy/dt = f(y,t), so this is essentially our differential equation put into standard form, running time in t is the time variable y[] are the vector elements, all real parts first then all imaginaries f[] is the function f, and this will be the output *params is a pointer to an array of andy number of parameters we want This function assumes the form of B = -\sum \sigma_x and C is the Ising model with the defined Jij matrix This version is the negative and is used for reverse time evolution Note that we assume in this function that ulist has already been reversed for the purposes of reverse evolution.''' N = 2**n u = get_u(t, uN, tf, ulist) dydt = [0 for i in range(2*N)] dydtC = applyC_sing(y,diag) dydtB = applyB_sing(n, y) for i in range(N): dydt[i] += -u*dydtB[i+N] - (1-u)*dydtC[i+N] dydt[i+N] += u*dydtB[i] + (1-u)*dydtC[i] """ for i in range(N): dydt[i] = -y[i+N]*diag[i]*(1-u); # real dydt[i+N] = y[i]*diag[i]*(1-u);# imaginary # iterate over all "adjacent" states, i.e. one bit flip away for j in range(n): # off-diagonal index = flip_index(i,j,n) dydt[i] += u*y[index+N] # real dydt[i+N] += -u*y[index] # imaginary """ return dydt; ##################################################### # Functions to generate the analytic gradient ##################################################### def avg_energy(y,diag): '''Tells us the energy expectation value of the state y At the moment, this just calculates the diagonal portion of the energy''' k = applyC_sing(y,diag) return cdot(y,k) def get_k(yf, tlist, n, uN, tf, ulist, diag): '''Takes in the final value of the state yf and outputs the state k at all the time intervals given in tlist. This uses our custom real first then imaginary in the second half vector form''' kf = applyC_sing(yf,diag) nulist = ulist[-1::-1] ntlist = tlist sol = odeint(func_schroN, kf, ntlist , args=(n,uN,tf,nulist,diag)) return sol[-1::-1] def get_Philist (tlist,n,tf,ulist,diag): '''Takes in a specific procedure, notably including the annealing path ulist and returns what the values of Phi are for that path at the times given by tlist Also returns the final energy of the procedure''' uN = len(ulist) y0 = uniform(n) all_y = odeint(func_schro, y0, tlist , args=(n,uN,tf,ulist,diag)) #print "Figure of Merit: "+str(avg_energy(all_y[-1],diag)) all_k = get_k(all_y[-1],tlist,n,uN,tf,ulist,diag) Philist=[] for i in range(uN): Philist += [calc_Phi(all_y[i],all_k[i],n,diag)] #print(cdot(all_y[-1],all_y[-1])) return [Philist,np.real(avg_energy(all_y[-1],diag)),all_y] def get_Philist_admm(tlist, n, tf, ulist, vlist, lambdalist, rho, diag): uN = len(ulist) y0 = uniform(n) all_y = odeint(func_schro, y0, tlist, args=(n, uN, tf, ulist, diag)) # print "Figure of Merit: "+str(avg_energy(all_y[-1],diag)) all_k = get_k(all_y[-1], tlist, n, uN, tf, ulist, diag) Philist = [] norm_grad = np.zeros(uN) norm_grad[0] = rho * (ulist[1] - ulist[0] - vlist[0] + lambdalist[0]) norm_grad[uN - 1] = rho * (ulist[uN - 1] - ulist[uN - 2] - vlist[uN - 2] + lambdalist[uN - 2]) for t in range(1, uN - 1): norm_grad[t] = rho * (ulist[t] - ulist[t - 1] - vlist[t - 1] + lambdalist[t - 1]) for i in range(uN): Philist += [calc_Phi(all_y[i], all_k[i], n, diag) + norm_grad[i]] # print(cdot(all_y[-1],all_y[-1])) return [Philist, np.real(avg_energy(all_y[-1], diag)), all_y] def calc_Phi(y,k,n,diag): '''Calculates the value of Phi for the given y and k vectors This function assumes those vectors are for the same time and does not need any information about the time''' output = 0 output += cdot(y,applyB_sing(n,k)) output += -cdot(y,applyC_sing(k,diag)) output = 2*np.imag(output) return output def compute_energy_u(tlist, tf, ulist): global Jij n = len(Jij) diag = get_diag() return get_Energy_u(tlist, n, tf, ulist, diag) def get_Energy_u (tlist,n,tf,ulist,diag): '''Takes in a specific procedure, notably including the annealing path ulist and returns what the value of the energy is for that path at the final time''' uN = len(ulist) y0 = uniform(n) all_y = odeint(func_schro, y0, tlist , args=(n,uN,tf,ulist,diag)) return np.real(avg_energy(all_y[-1],diag)) ####################################################### # Carries out the gradient descent on the u(t) function ####################################################### def compute_gradient(tlist, tf, ulist): global Jij n = len(Jij) diag = get_diag() [Philist, Energy, state] = get_Philist(tlist, n, tf, ulist, diag) return Philist def gradient_descent_opt(n, uN, tf, iterations, min_grad, ulist_in=[], type="normal", v=None, _lambda=None, rho=None): '''Carries out the gradient descent and outputs the ulist from the end of the procedure. n = number of qubits uN = number of points that u(t) is discretized into tf = the total time of the procedure iterations = how many times to do the gradient descent step ulist_in = intial guess for function, working on making a default, delete and use internal code if you want something different Outputs: The final ulist Philist Final Energy''' diag = get_diag() # Diagonal part of the Hamiltonian #diag = map(lambda x: diag[x],range(2**n)) Etrue = min(diag) beta=250. # might need to up this number for more complicated procedures # could lower it for smaller systems to speed up convergence at the cost # of accuracy lambdas= 0 if len(ulist_in)==0: # Use these as alternatives if you don' have an initial guess for ulist #ulist = map(lambda x: 1-x/(uN-1.), range(0,uN)) ulist = list(map(lambda x: 0.5, range(0,uN))) # this one works just fine #ulist = [nrm.rand() for i in range(uN)] else: ulist=ulist_in tlist = list(map(lambda x: tf*x, map(lambda x: x/(uN-1.), range(0, uN)))) ylist = ulist for i in range(iterations): lambdap = (1.+math.sqrt(1.+4.*lambdas**2))/2. gamma = (1-lambdas)/lambdap lambdas = lambdap if type == "admm": [Philist, Energy, state] = get_Philist_admm(tlist, n, tf, ulist, v, _lambda, rho, diag) if type == "normal": [Philist, Energy, state] = get_Philist(tlist, n, tf, ulist, diag) ylistnew = [max([0, min([1, ulist[j] + Philist[j]/(beta)])]) for j in range(uN)] ulist = [max([0, min([1, (1-gamma)*ylistnew[j]+gamma*ylist[j]])]) for j in range(uN)] ylist = ylistnew # print(str(tf)+" "+str(i)+"/"+str(iterations)+": "+str([0+Energy,Etrue])) # print(np.linalg.norm(np.array(Philist), 2)) # print(Philist) if np.linalg.norm(np.array(Philist), 2) < min_grad: break num_it = i return [ulist, Philist, Energy, state, num_it] ############################################## # IO Utility functions ############################################## def import_u(): '''Imports a previously found u(t). I am mostly using this to improve previously found results and improve their quality''' infile=open("maxcut_ver2.tsv",'r') # change to your favorite file full = infile.read() infile.close() lines = full.split("\n") splitlines = map(lambda x: x.split("\t"), lines[:-1]) numbers = [map(float,line) for line in splitlines] ulist = map(lambda x: x[2], numbers) qaoalist = map(lambda x: x[3], numbers) return [ulist,qaoalist] def print_to_file(n,tf,tlist,ulist,Philist,Energy,edges): outstring = "B and C, n="+str(n)+", tf = "+str(tf)+"\n" outstring+= "Energy = "+str(Energy)+"\n" outstring+= str(edges) for i in range(len(ulist)): outstring+="\n"+str(tlist[i])+"\t"+str(ulist[i])+"\t"+str(Philist[i]) outfile = open("B_and_C_tf="+str(tf)+"_n="+str(n)+".tsv",'w') outfile.write(outstring) print(ulist, outfile) outfile.close() ######################################## # What the program actually does ######################################## import sys if __name__=="__main__": n = 4 # number of qubits edges = generate_Jij_MC(n,3) # Generates the connectivity graph # sets a global variable uN = 41 # number of discrete steps in u(t) #generate_Jij_MC(n, 3) # generate the problem of MaxCut on a 3-regular graph #generate_Jij_LR(n,1.0,0.5) # generate the long range Ising problem tstep = 2.0 # The step in the tf, total time for the procedure tsteps = 1 # how many tf steps to take iterations = 200 # number of iterations of gradient descent display_ham(n,False) display_ham(n,True) C_mat = get_ham(n,True) np.savetxt('C_mat_' + str(n) + '.csv', C_mat) B_mat = get_ham(n,False) np.savetxt('B_mat_' + str(n) + '.csv', B_mat) ###################################################### # ... Sven's additions RealB = B_mat.real; ImagB = B_mat.imag; Brows, Bcols = np.nonzero(RealB) print("#nonzero REAL elements of B") for ii in range(len(Brows)): print("let RealB[",Brows[ii]+1,",",Bcols[ii]+1,"] := ",RealB[Brows[ii],Bcols[ii]],";") Brows, Bcols = np.nonzero(ImagB) print("#nonzero IMAGINARY elements of B") for ii in range(len(Brows)): print("let ImagB[",Brows[ii]+1,",",Bcols[ii]+1,"] := ",ImagB[Brows[ii],Bcols[ii]],";") RealC = C_mat.real; ImagC = C_mat.imag; Crows, Ccols =
np.nonzero(RealC)
numpy.nonzero
#coding=utf-8 import numpy as np import codecs import os import sys import time from functools import reduce ''' load dict data which generated by trans_fastText ''' def load_fastText_dict(dict_path): dict = np.load(dict_path) return dict ''' load word embedding data which generated by trans_fastText ''' def load_fastText_word_embeadding(path,index=None): we = np.load(path) if index is not None: d = we[index] we = np.concatenate((we,d,d,d,np.zeros(shape=[1,300]))) return we ''' load the dict file and word embedding data file, which generated by trans_fastText ''' def load_fastTextByFile(dict_path,word_embeadding_path): dict,index = load_fastText_dict(dict_path) we = load_fastText_word_embeadding(word_embeadding_path,index) assert np.shape(dict)[0]==np.shape(we)[0] return dict,we ''' load the dict file and word embedding data file, which generated by trans_fastText ''' def load_fastTextByDir(dir_path): return load_fastTextByFile(os.path.join(dir_path,"dict.bin.npy"),os.path.join(dir_path,"wordembeadding.bin.npy")) ''' Trans fast text word embedding data to two binary file: word embedding data and dict data ''' def trans_fastText(file_path,save_dir="./"): file = codecs.open(file_path, "r", "utf-8") dict = [] file.readline() we = [] nr = 332647 tmp = range(300) count = 0 begin_t = time.time() while True: line = file.readline() if not line: break data = line.split(u" ") if len(data) == 300: data = [' '] + data elif len(data) < 300: continue dict.append(data[0]) if count == 73144: print("A") for i in range(300): tmp[i] = (float(data[i + 1])) we.append(np.array([tmp], dtype=np.float32)) if count % 100 == 0: sys.stdout.write('\r>> Converting image %d/%d' % (len(dict), nr)) sys.stdout.flush() count = count + 1 print("\n") print("total time=%f" % (time.time() - begin_t)) # index = dict.index(u"甲肝") # index = dict.index(u"乙肝") # index = dict.index(u"丙炎") # index = dict.index(u"") we = np.concatenate(we) # we = np.concatenate([we,[we[0]],[we[0]],[we[0]]]) np_dict = np.array(dict) np.save(os.path.join(save_dir,"wordembeadding.bin"), we) np.save(os.path.join(save_dir,"dict.bin"), np_dict) ''' 将文本进行分词并返回在词典中的索引 ''' def tokenize(text,thul,dict): text = text.encode("utf-8") thul_token = thul.cut(text) res = [] token=[] for t in thul_token: word = t[0] u_word = word.decode("utf-8") index = np.where(dict == u_word) shape = np.shape(index[0]) if shape[0] == 0: words = tokenize_word(u_word,dict) token.extend(words) res.extend(indexs_of_words(words,dict)) else: res.append(index[0][0]) token.append(u_word) return res,token def tokenize_word(word,dict): if len(word)<=1: return [word] if len(word)==2: return [word[0],word[1]] begin_word = word[:2] index = np.where(dict==begin_word) if np.shape(index[0])[0] ==0: return [begin_word[0],begin_word[1]]+tokenize_word(word[2:],dict) else: return [begin_word]+tokenize_word(word[2:],dict) def indexs_of_words(words,dict): res = [] for word in words: index = np.where(dict == word) shape =
np.shape(index[0])
numpy.shape
import os import ee import geemap import json import requests import numpy as np import pandas as pd import matplotlib.pylab as plt from datetime import datetime from datetime import timedelta import rasterio as rio from rasterio import plot from rasterio import warp try: ee.Initialize() except: ee.Authenticate() ee.Initialize() class dataCollector: def __init__(self, beam=None, oaurl=None, track=None, date=None, latlims=None, lonlims=None, verbose=False): if (beam is None) or ((oaurl is None) and (None in [track, date, latlims, lonlims])): raise Exception('''Please specify a beam and - either: an OpenAltimetry API url, - or: a track, date, latitude limits and longitude limits.''') else: if oaurl is not None: url = oaurl tofind = '&beamName=' ids = url.find(tofind) while ids>-1: url = url.replace(url[ids:ids+len(tofind)+4],'') ids = url.find(tofind) iprod = url.find('/atl') url = url.replace(url[iprod:iprod+6],'/atlXX') url += tofind + beam + '&client=jupyter' idate = url.find('date=') + len('date=') date = url[idate:idate+10] itrack = url.find('trackId=') + len('trackId=') trackend = url[itrack:].find('&') track = int(url[itrack:itrack+trackend]) bb = [] for s in ['minx=', 'maxx=', 'miny=', 'maxy=']: ids = url.find(s) + len(s) ide = url[ids:].find('&') bb.append(float(url[ids:ids+ide])) lonlims = bb[:2] latlims = bb[2:] elif None not in [track, date, latlims, lonlims]: url = 'https://openaltimetry.org/data/api/icesat2/atlXX?' url += 'date={date}&minx={minx}&miny={miny}&maxx={maxx}&maxy={maxy}&trackId={track}&beamName={beam}'.format( date=date,minx=lonlims[0],miny=latlims[0],maxx=lonlims[1],maxy=latlims[1],track=track,beam=beam) url += '&outputFormat=json&client=jupyter' self.url = url self.date = date self.track = track self.beam = beam self.latlims = latlims self.lonlims = lonlims if verbose: print('OpenAltimetry API URL:', self.url) print('Date:', self.date) print('Track:', self.track) print('Beam:', self.beam) print('Latitude limits:', self.latlims) print('Longitude limits:', self.lonlims) def requestData(self, verbose=False): if verbose: print('---> requesting ATL03 data...',end='') product = 'atl03' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() lat, lon, h, confs = [], [], [], [] for beam in data: for confidence in beam['series']: for p in confidence['data']: confs.append(confidence['name']) lat.append(p[0]) lon.append(p[1]) h.append(p[2]) self.atl03 = pd.DataFrame(list(zip(lat,lon,h,confs)), columns = ['lat','lon','h','conf']) if verbose: print(' Done.') print('---> requesting ATL06 data...',end='') product = 'atl06' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() self.atl06 = pd.DataFrame(data['series'][0]['lat_lon_elev'], columns = ['lat','lon','h']) if verbose: print(' Done.') print('---> requesting ATL07 data...',end='') product = 'atl07' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() self.atl07 = pd.DataFrame(data['series'][0]['lat_lon_elev'], columns = ['lat','lon','h']) if verbose: print(' Done.') print('---> requesting ATL08 data...',end='') product = 'atl08' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() self.atl08 = pd.DataFrame(data['series'][0]['lat_lon_elev_canopy'], columns = ['lat','lon','h','canopy']) if verbose: print(' Done.') ################################################################################################ def plotData(self,ax=None,title='some Data I found on OpenAltimetry',plot_atl07=True,plot_atl08=True): # get data if not already there if 'atl03' not in vars(self).keys(): print('Data has not yet been requested from OpenAltimetry yet. Doing this now.') self.requestData(verbose=True) axes_not_specified = True if ax == None else False # create the figure and axis if axes_not_specified: fig, ax = plt.subplots(figsize=[10,6]) atl03 = ax.scatter(self.atl03.lat, self.atl03.h, s=2, color='black', alpha=0.2, label='ATL03') atl06, = ax.plot(self.atl06.lat, self.atl06.h, label='ATL06') if plot_atl07 == True: atl07, = ax.plot(self.atl07.lat, self.atl07.h, label='ATL07') if plot_atl08 == True: atl08, = ax.plot(self.atl08.lat, self.atl08.h, label='ATL08', linestyle='--') heights = self.atl03.h[self.atl03.conf != 'Noise'] y_min1 = np.min(heights) y_max1 = np.max(heights) if plot_atl08 == True: maxprods = np.nanmax((self.atl06.h.max(), self.atl08.h.max())) minprods = np.nanmin((self.atl06.h.min(), self.atl08.h.min())) else: maxprods = np.nanmax(self.atl06.h.max()) minprods = np.nanmin((self.atl06.h.min(), self.atl07.h.min())) hrange = maxprods - minprods y_min2 = minprods - hrange * 0.5 y_max2 = maxprods + hrange * 0.5 y_min = np.nanmin((y_min1, y_min2)) y_max = np.nanmax((y_max1, y_max2)) x_min = self.atl08.lat.min() x_max = self.atl08.lat.max() ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) # label the axes ax.set_title(title) ax.set_xlabel('latitude') ax.set_ylabel('elevation in meters') # add a legend ax.legend(loc='lower right') # add some text to provide info on what is plotted info = 'ICESat-2 track {track:d}-{beam:s} on {date:s}\n({lon:.4f}E, {lat:.4f}N)'.format(track=self.track, beam=self.beam, date=self.date, lon=np.mean(self.lonlims), lat=np.mean(self.latlims)) infotext = ax.text(0.03, 0.03, info, horizontalalignment='left', verticalalignment='bottom', transform=ax.transAxes, fontsize=7, bbox=dict(edgecolor=None, facecolor='white', alpha=0.9, linewidth=0)) if axes_not_specified: fig.tight_layout() return fig else: return ax ################################################################################################ def plotData_hv(self): import holoviews as hv from holoviews import opts hv.extension('bokeh', 'matplotlib') confdict = {'Noise': -1.0, 'Buffer': 0.0, 'Low': 1.0, 'Medium': 2.0, 'High': 3.0} self.atl03['conf_num'] = [confdict[x] for x in self.atl03.conf] self.atl08['canopy_h'] = self.atl08.h + self.atl08.canopy atl03scat = hv.Scatter(self.atl03, 'lat', vdims=['h', 'conf_num'], label='ATL03')\ .opts(color='conf_num', alpha=1, cmap='dimgray_r') atl06line = hv.Curve(self.atl06, 'lat', 'h', label='ATL06')\ .opts(color='r', alpha=0.5, line_width=3) atl08line = hv.Curve(self.atl08, 'lat', 'h', label='ATL08')\ .opts(color='b', alpha=1, line_width=1) atl08scat = hv.Scatter(self.atl08, 'lat', 'canopy_h', label='ATL08 Canopy') atl08scat = atl08scat.opts(alpha=1, color='g', size=4) hrange = self.atl06.h.max() - self.atl06.h.min() overlay = (atl03scat * atl06line * atl08line * atl08scat).opts( height=500, width=800, xlabel='latitude', ylabel='elevation', title='ICESat-2 track %d %s on %s' % (self.track,self.beam.upper(),self.date), legend_position='bottom_right', ylim=(self.atl06.h.min()-hrange, self.atl06.h.max()+hrange), xlim=(self.atl06.lat.min(), self.atl06.lat.max()) ) return overlay ################################################################################################ def makeGEEmap(self, days_buffer=25): # get data if not already there if 'atl03' not in vars(self).keys(): print('Data has not yet been requested from OpenAltimetry yet. Doing this now.') self.requestData(verbose=True) def dist_latlon2meters(lat1, lon1, lat2, lon2): # returns the distance between two lat/lon coordinate points along the earth's surface in meters R = 6371000 def deg2rad(deg): return deg * (np.pi/180) dlat = deg2rad(lat2-lat1) dlon = deg2rad(lon2-lon1) a = np.sin(dlat/2) * np.sin(dlat/2) + np.cos(deg2rad(lat1)) * np.cos(deg2rad(lat2)) * np.sin(dlon/2) * np.sin(dlon/2) c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)) return R * c lat1, lat2 = self.atl08.lat[0], self.atl08.lat.iloc[-1] lon1, lon2 = self.atl08.lon[0], self.atl08.lon.iloc[-1] center_lat = (lat1 + lat2) / 2 center_lon = (lon1 + lon2) / 2 ground_track_length = dist_latlon2meters(lat1, lon1, lat2, lon2) print('The ground track is %d meters long.' % np.round(ground_track_length)) collection_name1 = 'COPERNICUS/S2_SR' # Sentinel-2 earth engine collection # https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR collection_name2 = 'LANDSAT/LC08/C01/T2' # Landsat 8 earth engine collection # https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T2 # Note: Landsat 8 ingestion into Earth Engine seems to not have reached Antarctica yet, so using raw scenes... # the point of interest (center of the track) as an Earth Engine Geometry point_of_interest = ee.Geometry.Point(center_lon, center_lat) def query_scenes(self, days_buffer): # get the dates datetime_requested = datetime.strptime(self.date, '%Y-%m-%d') search_start = (datetime_requested - timedelta(days=days_buffer)).strftime('%Y-%m-%d') search_end = (datetime_requested + timedelta(days=days_buffer)).strftime('%Y-%m-%d') print('Search for imagery from {start:s} to {end:s}.'.format(start=search_start, end=search_end)) # the collection to query: # 1) merge Landsat 8 and Sentinel-2 collections # 2) filter by acquisition date # 3) filter by the point of interest # 4) sort by acquisition date collection = ee.ImageCollection(collection_name1) \ .merge(ee.ImageCollection(collection_name2)) \ .filterDate(search_start, search_end) \ .filterBounds(point_of_interest) \ .sort('system:time_start') info = collection.getInfo() n_imgs = len(info['features']) print('--> Number of scenes found within +/- %d days of ICESat-2 overpass: %d' % (days_buffer, n_imgs)) return (collection, info, n_imgs) # query collection for initial days_buffer collection, info, n_imgs = query_scenes(self, days_buffer) # if query returns more than 20 images, try to narrow it down tries = 0 while (n_imgs > 20) & (tries<5): print('----> This is too many. Narrowing it down...') days_buffer = np.round(days_buffer * 15 / n_imgs) collection, info, n_imgs = query_scenes(self, days_buffer) n_imgs = len(info['features']) tries += 1 # if query returns no images, then return if n_imgs < 1: print('NO SCENES FOUND. Try to widen your search by including more dates.') return # region of interest around the ground track (use this area to scale visualization factors) buffer_around_center_meters = ground_track_length/2 region_of_interest = point_of_interest.buffer(buffer_around_center_meters) # make an earth engine feature collection from the ground track so we can show it on the map ground_track_coordinates = list(zip(self.atl08.lon, self.atl08.lat)) ground_track_projection = 'EPSG:4326' # <-- this specifies that our data longitude/latitude in degrees [https://epsg.io/4326] gtx_feature = ee.FeatureCollection(ee.Geometry.LineString(coords=ground_track_coordinates, proj=ground_track_projection, geodesic=True)) Map = geemap.Map(center=(40, -100), zoom=4) Map.add_basemap('HYBRID') for i, feature in enumerate(info['features']): # get the relevant info thisDate = datetime.fromtimestamp(feature['properties']['system:time_start']/1e3) dtstr = thisDate.strftime('%Y-%m-%d') dt = (thisDate - datetime.strptime(self.date, '%Y-%m-%d')).days ID = feature['id'] rel = 'before' if dt<0 else 'after' print('%02d: %s (%3d days %s ICESat-2 overpass): %s' % (i, dtstr, np.abs(dt), rel, ID)) # get image by id, and normalize rgb range image_id = feature['id'] thisScene = ee.Image(image_id) rgb = thisScene.select('B4', 'B3', 'B2') rgbmax = rgb.reduce(ee.Reducer.max()).reduceRegion(reducer=ee.Reducer.max(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgbmin = rgb.reduce(ee.Reducer.min()).reduceRegion(reducer=ee.Reducer.min(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgb = rgb.unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) # if the image is Landsat 8, then pan-sharpen the image if 'LANDSAT' in ID: pan = thisScene.select('B8').unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) huesat = rgb.rgbToHsv().select('hue', 'saturation') rgb = ee.Image.cat(huesat, pan).hsvToRgb().clamp(0.0, 1.0) # make the image uint8 rgb = rgb.multiply(255).uint8() # add to map (only show the first layer, then can toggle others on in map) show_layer = True if i==0 else False Map.addLayer(rgb, name='%02d: %d days, %s'%(i,dt,ID), shown=show_layer) # show ground track on map, and center on our region of interest Map.addLayer(gtx_feature, {'color': 'red'}, 'ground track') Map.centerObject(region_of_interest,zoom=11) return Map ################################################################################################ def plotDataAndMap(self, scene_id, crs='EPSG:3857', title='ICESat-2 Data'): from utils.curve_intersect import intersection # get data if not already there if 'atl03' not in vars(self).keys(): print('Data has not yet been requested from OpenAltimetry yet. Doing this now.') self.requestData(verbose=True) # plot the ICESat-2 data fig = plt.figure(figsize=[12,5]) ax_data = fig.add_subplot(122) self.plotData(ax_data, title=title) # get the image and plot ax_img = fig.add_subplot(121) def dist_latlon2meters(lat1, lon1, lat2, lon2): # returns the distance between two lat/lon coordinate points along the earth's surface in meters R = 6371000 def deg2rad(deg): return deg * (np.pi/180) dlat = deg2rad(lat2-lat1) dlon = deg2rad(lon2-lon1) a = np.sin(dlat/2) * np.sin(dlat/2) + np.cos(deg2rad(lat1)) * np.cos(deg2rad(lat2)) * np.sin(dlon/2) * np.sin(dlon/2) c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)) return R * c lat1, lat2 = self.atl08.lat[0], self.atl08.lat.iloc[-1] lon1, lon2 = self.atl08.lon[0], self.atl08.lon.iloc[-1] center_lat = (lat1 + lat2) / 2 center_lon = (lon1 + lon2) / 2 ground_track_length = dist_latlon2meters(lat1, lon1, lat2, lon2) # the point of interest (center of the track) as an Earth Engine Geometry point_of_interest = ee.Geometry.Point(center_lon, center_lat) # region of interest around the ground track (use this area to scale visualization factors) buffer_around_center_meters = ground_track_length*0.52 region_of_interest = point_of_interest.buffer(buffer_around_center_meters) thisScene = ee.Image(scene_id) info = thisScene.getInfo() # get the relevant info thisDate = datetime.fromtimestamp(info['properties']['system:time_start']/1e3) dtstr = thisDate.strftime('%Y-%m-%d') download_folder = 'downloads/' download_filename = '%s%s-8bitRGB.tif' % (download_folder, scene_id.replace('/', '-')) if os.path.exists(download_filename): print('This file already exists, not downloading again: %s' % download_filename) else: # get image by id, and normalize rgb range rgb = thisScene.select('B4', 'B3', 'B2') rgbmax = rgb.reduce(ee.Reducer.max()).reduceRegion(reducer=ee.Reducer.max(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgbmin = rgb.reduce(ee.Reducer.min()).reduceRegion(reducer=ee.Reducer.min(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgb = rgb.unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) # if the image is Landsat 8, then pan-sharpen the image if 'LANDSAT' in scene_id: pan = thisScene.select('B8').unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) huesat = rgb.rgbToHsv().select('hue', 'saturation') rgb = ee.Image.cat(huesat, pan).hsvToRgb().clamp(0.0, 1.0) # make the image uint8 rgb = rgb.multiply(255).uint8() rgb_info = rgb.getInfo() downloadURL = rgb.getDownloadUrl({'name': 'mySatelliteImage', 'crs': crs, 'scale': rgb_info['bands'][0]['crs_transform'][0], 'region': region_of_interest, 'filePerBand': False, 'format': 'GEO_TIFF'}) response = requests.get(downloadURL) if not os.path.exists(download_folder): os.makedirs(download_folder) with open(download_filename, 'wb') as fd: fd.write(response.content) print('Downloaded %s' % download_filename) img = rio.open(download_filename) plot.show(img, ax=ax_img) # get the graticule right latlon_bbox = warp.transform(img.crs, {'init': 'epsg:4326'}, [img.bounds[i] for i in [0,2,2,0,0]], [img.bounds[i] for i in [1,1,3,3,1]]) min_lat = np.min(latlon_bbox[1]) max_lat = np.max(latlon_bbox[1]) min_lon = np.min(latlon_bbox[0]) max_lon = np.max(latlon_bbox[0]) latdiff = max_lat-min_lat londiff = max_lon-min_lon diffs = np.array([0.0001, 0.0002, 0.00025, 0.0004, 0.0005, 0.001, 0.002, 0.0025, 0.004, 0.005, 0.01, 0.02, 0.025, 0.04, 0.05, 0.1, 0.2, 0.25, 0.4, 0.5, 1, 2]) latstep =
np.min(diffs[diffs>latdiff/8])
numpy.min
# This file is largely copied from pgd_attack.py found at # githu.com/MadryLab/mnist_challenge. Relevant Paper: # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Towards Deep Learning # Models Resistant to Adversarial Attacks. ICLR 2018. # I've changed it to work with more general input spaces and convolutional # networks. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow.compat.v1 as tf # tf.disable_resource_variables() tf.logging.set_verbosity(tf.logging.FATAL) tf.disable_v2_behavior() class IntervalPGDAttack: def __init__(self, model, k, a, random_start, loss_func): """Attack parameter initialization. The attack performs k steps of size a, while always staying within epsilon from the initial point.""" self.model = model self.k = k self.a = a self.rand = random_start if loss_func == 'xent': loss = model.xent elif loss_func == 'cw': label_mask = tf.one_hot(model.y_input, 10, on_value=1.0, off_value=0.0, dtype=tf.float32) correct_logit = tf.reduce_sum(label_mask * model.pre_softmax, axis=1) wrong_logit = tf.reduce_max((1-label_mask) * model.pre_softmax, axis=1) loss = -tf.nn.relu(correct_logit - wrong_logit + 50) else: print('Unknown loss function. Defaulting to cross-entropy') loss = model.xent self.grad = tf.gradients(loss, model.x_input)[0] with tf.Session() as sess: self.graph = sess.graph def perturb(self, x_nat, y, lower, upper, sess): if self.rand: # Picks a uniformly distributed random point inside the region #x = x_nat + np.random.uniform(-self.epsilon, self.epsilon, x_nat.shape) x = np.random.uniform(lower, upper, x_nat.shape); else: x =
np.copy(x_nat)
numpy.copy
# coding=utf-8 # Copyright 2018 The DisentanglementLib Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the weakly-supervised methods.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from disentanglement_lib.methods.weak import weak_vae # pylint: disable=unused-import import numpy as np import tensorflow as tf class WeakVaeTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (np.zeros([64, 10]), np.zeros([64, 10]), np.ones([64, 10]), np.ones([64, 10]), np.concatenate((np.zeros([64, 5]), np.ones([64, 5])), axis=1), np.concatenate((np.ones([64, 5]), np.zeros([64, 5])), axis=1)), (np.array([[1, 1]]), np.array([[1, 1]]), np.array([[0, 0]]),
np.array([[0, 0]])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Image Filtering Reference: http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html Note: The outputs are slightly different from the original outputs in the post, due to the `image.png` file is not available (using `image.jpg` instead) <NAME>, 2018-12-12 """ from __future__ import print_function from skimage import io, viewer, color import matplotlib.pyplot as plt import numpy as np from skimage import exposure #import pylab def convolve2d(image, kernel): # This function which takes an image and a kernel # and returns the convolution of them # Args: # image: a numpy array of size [image_height, image_width]. # kernel: a numpy array of size [kernel_height, kernel_width]. # Returns: # a numpy array of size [image_height, image_width] (convolution output). kernel = np.flipud(np.fliplr(kernel)) # Flip the kernel output = np.zeros_like(image) # convolution output # Add zero padding to the input image image_padded = np.zeros((image.shape[0] + 2, image.shape[1] + 2)) image_padded[1:-1, 1:-1] = image for x in range(image.shape[1]): # Loop over every pixel of the image for y in range(image.shape[0]): # element-wise multiplication of the kernel and the image output[y,x]=(kernel*image_padded[y:y+3,x:x+3]).sum() return output ### Load and plot image ### # set the image file name img_file = 'image.jpg' # load the image as grayscale in one step img = io.imread(img_file, as_gray=True) # alternatively, you can load the original image and then convert it to grayscale # img2 = io.imread(img_file) # img2 = color.rgb2gray(img2) print('image matrix size: {}'.format(img.shape)) # print the size of image print('First 5 columns and rows of the image matrix:\n {}'.format(img[:5,:5]*255)) viewer.ImageViewer(img).show() # plot the image ### Convolve the sharpen kernel with an image ### # Adjust the contrast of the image by applying Histogram Equalization # clip_limit: normalized between 0 and 1 (higher values give more contrast) image_equalized = exposure.equalize_adapthist(img/np.max(np.abs(img)), clip_limit=0.03) plt.imshow(image_equalized, cmap=plt.cm.gray) plt.axis('off') plt.show() # Convolve the sharpen kernel and the image kernel = np.array([[0,-1,0],[-1,5,-1],[0,-1,0]]) image_sharpen = convolve2d(img, kernel) print('First 5 columns and rows of the image_sharpen matrix:\n {}'.format(image_sharpen[:5,:5]*255)) # Plot the filtered image plt.imshow(image_sharpen, cmap=plt.cm.gray) plt.axis('off') plt.show() # Adjust the contrast of the filtered image by applying Histogram Equalization image_sharpen_equalized = exposure.equalize_adapthist(image_sharpen/np.max(np.abs(image_sharpen)), clip_limit=0.03) plt.imshow(image_sharpen_equalized, cmap=plt.cm.gray) plt.axis('off') plt.show() ### Convolve the sharpen kernal with an image using Python packages (Scipy) ### import scipy # you can use 'valid' instead of 'same', then it will not add zero padding image_sharpen = scipy.signal.convolve2d(img, kernel, 'same') #image_sharpen = scipy.signal.convolve2d(img, kernel, 'valid') print('First 5 columns and rows of the image_sharpen matrix:\n {}'.format(image_sharpen[:5,:5]*255)) ### Convolve the sharpen kernal with an image using Python packages (OpenCV) ### import cv2 image_sharpen = cv2.filter2D(img, -1, kernel) print('First 5 columns and rows of the image_sharpen matrix:\n {}'.format(image_sharpen[:5,:5]*255)) # Adjust the contrast of the filtered image by applying Histogram Equalization image_sharpen_equalized = exposure.equalize_adapthist(image_sharpen/np.max(
np.abs(image_sharpen)
numpy.abs
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 20 12:25:11 2018 @author: anantgupta """ from __future__ import division # Add classes for Extended Targets import numpy as np import numpy.matlib import sympy as sp from GAutils import proc_est as pr from itertools import combinations from GAutils import config as cfg from GAutils import PCRLB as pcrlb from numba import jit class FMCWprms: c = 3e8 # Speed of light def __init__(self, B=0.5e9, Ts=1 / 82e4, fc=6e10, Ni=64, Nch=64): # was 150M, 1.28M (1m, 0.7816m/s); (0.5G,0.82M)->(0.3m,0.5m/s) self.fc = fc self.B = B self.Ts = Ts self.Ni = Ni self.Nch = Nch self.ss = B / Ts / Ni self.tf = Nch * Ni * Ts Kr = Ts * self.ss * 4 * np.pi / self.c Kd = Ni* Ts * fc * 4 * np.pi / self.c self.FIMr =(Kr**2)*Nch*(Ni/6 * (2 * Ni**2 + 1)) self.FIMd =(Kd**2)*Ni*(Nch/6*(2 * Nch**2 + 1)) # self.x1, self.x2 = np.meshgrid(np.arange(self.Ni)-self.Ni/2, # np.arange(self.Nch)-self.Nch/2) def get_tfa(self, ft=1, st=1, center=0):# center was 0 self.x1, self.x2 = np.meshgrid(np.arange(self.Ni)-center*self.Ni/2, np.arange(self.Nch)-center*self.Nch/2) tfa = self.Ts * (ft*self.x1 + self.Ni * st * self.x2) # sampling time indices of frame return tfa class PointTarget: # Add more parameters for target t = 1 # Time variable def __init__(self, xw, yw, vx, vy, proc_var=0.1, rcs=1): self.x = xw self.y = yw self.vx = vx self.vy = vy self.proc_var = proc_var self.state = [self.x,self.y,self.vx,self.vy] self.rcs = rcs class Sensor: def __init__(self, xw, yw, vx=0, vy=0, ptx=1, mcs=FMCWprms(), meas_std = 0.0): self.x = xw self.y = yw self.vx = vx self.vy = vy self.ptx = ptx # Tx power self.mcs = mcs # FMCW parameters self.meas_std = meas_std self.fov = 1 # FOV sin(half beamwidth) self.crb = self.getCRB() # print(FIM) def getCRB(self, scale=[1,1]): FIMr= self.mcs.FIMr FIMd = self.mcs.FIMd sigma= self.meas_std**2 return (sigma/2)*np.array([scale[0]/FIMr, scale[1]/FIMd]) def getnominalCRB(self, nom_snr=-20, scale=[1,1]): FIMr= self.mcs.FIMr FIMd = self.mcs.FIMd return (10**(-nom_snr/10)/2) * np.array([scale[0]/FIMr, scale[1]/FIMd]) class gardEst: def __init__(self): self.r = np.array([])# range self.d = np.array([])# doppler self.a = np.array([])# angle self.g = np.array([], dtype='complex')# complex gain self.ord = np.array([]) def add_Est(cls, g, a, r, d): cls.ord = np.append(cls.ord, cls.r.shape) cls.r = np.append(cls.r, r) cls.d = np.append(cls.d, d) cls.a = np.append(cls.a, a) cls.g = np.append(cls.g, g) def pop(cls, i): cls.ord = np.delete(cls.ord,i) cls.r = np.delete(cls.r,i) cls.d = np.delete(cls.d,i) cls.a = np.delete(cls.a,i) cls.g = np.delete(cls.g,i) class link: # Stores links to ranges in prev sensor and corr. vx's def __init__(self, indx=[], vxa=[], xa=[], llr=[]): self.indx = indx self.vxa = vxa self.xa = xa self.llr = llr class State: #Linked list of states: mean, covariance def __init__(self, mean, cov): self.mean = mean self.cov = cov self.next = None class obs_node: def __init__(self, g, a, r, d, oid, sid=0): self.g = g self.a = a self.r = r self.d = d self.oid = oid # Order in observation self.sid = sid self.lkf = [] self.lkb = [] self.visited = False self.used = None def insert_flink(cls, lk): cls.lkf.append(lk) def insert_blink(cls, lk): cls.lkb.append(lk) class SignatureTracks: # collection of associated ranges[], doppler[] & estimated vx(scalar). # Precompute Constant matrices CRBdict =dict() # For Extended Kalman Filter Initial covariance Pinit_getter = pcrlb.CRBconverter() x, y, vx, vy, sx, rm, dm, sr, sd = sp.symbols('x y vx vy sx rm dm sr sd') r = sp.sqrt((x-sx)**2+y**2) d = ((x-sx)*vx+y*vy)/r # For EKF time update hk = [sp.lambdify([x,y,vx,vy,sx], r, "numpy"), sp.lambdify([x,y,vx,vy,sx], d, "numpy")] # hk = [jit(nopython=True)(sp.lambdify([x,y,vx,vy,sx], r, "numpy")), jit(nopython=True)(sp.lambdify([x,y,vx,vy,sx], d, "numpy"))] # hk = [sp.utilities.lambdify.lambdastr([x,y,vx,vy,sx], r), sp.utilities.lambdify.lambdastr([x,y,vx,vy,sx], d)] # To Precompute H Matrix varl = [x, y, vx, vy] f =[[] for _ in range(2)] for v1 in range(4): e = (r.diff(varl[v1])) # NOTE: Probe analytical expression for FIM element using e.expand() # f[0].append(jit(nopython=True)(sp.lambdify([x,y,vx,vy,sx], e, "numpy")) ) f[0].append(sp.lambdify([x,y,vx,vy,sx], e) ) for v1 in range(4): e = (d.diff(varl[v1])) # NOTE: Probe analytical expression for FIM element using e.expand() # f[1].append(jit(nopython=True)(sp.lambdify([x,y,vx,vy,sx], e, "numpy") )) f[1].append(sp.lambdify([x,y,vx,vy,sx], e) ) def __init__(self, r, d, sindx, g=[]): self.r =[r] self.d = [d] self.g = [g] self.sindx = [sindx] # sensor index self.state_head = None # Linked List of states: Mean(3x1), D covariance matrix(3x3) self.state_end = None self.N=len(self.r) self.pid =[]# Obs order at sensor self.llr = 0 # Likelihood of observations self.gc = None # Geometric fitting error def get_Pinit(cls, sensors, target): # TODO: Get Pinit in principled manner xr,yr,vxr,vyr = target.state Am1 = np.zeros((4,4)) for s, sensor in enumerate(sensors): crb = sensor.getnominalCRB() cre = crb[0] cde = crb[1] F_mat = np.zeros((4,4)) for v1 in range(4): for v2 in range(4): F_mat[v1,v2] = cls.Pinit_getter.f[v1][v2](xr-sensor.x, yr, vxr, vyr, cre, cde) Am1[:,:] += F_mat Ami = np.linalg.inv(Am1) return Ami # @profile # def get_newfit_error(cls, sensors, rnew, dnew, gnew, sidnew): # # Reports geometry fitting error for given R,D pair # rn = np.append(cls.r, rnew) # dn = np.append(cls.d, dnew) # Ns = len(rn) # sindx_new = np.hstack((cls.sindx,sidnew)) # keyval = tuple(sindx_new) # L = np.array([sensors[si].x for si in sindx_new]) # H = np.array([[sensors[si].x, 1] for si in sindx_new]) # Me = rn*dn # Me2_centered = rn*rn - ( L**2 ) # if keyval in cls.CRBdict: # CRB=cls.CRBdict[keyval] # else: # CRB = np.array([sensors[si].getnominalCRB() for i, si in enumerate(sindx_new)]) # Using nominal # cls.CRBdict[keyval] = CRB # # Main estimator # x2, FAA, rank, s = np.linalg.lstsq(H,np.stack((Me, Me2_centered)).T,rcond=None) # # scaling factors # M1var = (np.sum( CRB * np.array([dn**2, rn**2]).T,1) # + np.prod(CRB,1) ) # M2var = (4*CRB[:,0] * np.array( rn**2) + CRB[:,0]**2)# Ignoring higher order terms # gc = (cfg.rd_wt[0]*([email protected][0])**2/M1var + cfg.rd_wt[1]*(Me2_centered [email protected][1])/M2var) # return sum(gc) @staticmethod @jit(nopython=True, cache = True) def get_newfit_error_group(r_cand, d_cand, Ngrp, r, d, L, CRB, rd_wt, upper_thres): # Reports geometry fitting error for given R,D pair # Ngrp = len(L) rn = np.outer(np.ones(Ngrp), np.append(r,1)) dn = np.outer(np.ones(Ngrp), np.append(d,1)) rn[:,-1] = r_cand dn[:,-1] = d_cand # rn = np.block([rn, np.array([r_cand]).T]) # dn = np.block([dn, np.array([d_cand]).T]) H = np.outer(L, np.ones(2)) H[:,-1] = np.ones(len(L)) Me = (rn)*(dn) Me2 = (rn)*(rn) Me2_centered = Me2 - ( L**2 ) # Main estimator x2, FAA, rank, s = np.linalg.lstsq(H,np.vstack((Me, Me2_centered)).T) rdest = H@x2 # scaling factors gc = [] Stns = [] valid_state_ids = [] for tid in range(Ngrp): M1var = (( CRB[:,0] * dn[tid]**2 + CRB[:,1]* rn[tid]**2) + CRB[:,0]*CRB[:,1]) M2var = (4*CRB[:,0] * ( rn[tid]**2) + CRB[:,0]**2)# Ignoring higher order terms # gc_val = np.sum(rd_wt[0]*(Me[tid][email protected][tid])**2/M1var + rd_wt[1]*(Me2_centered[tid] [email protected][Ngrp+tid])/M2var) gc_val = np.sum(rd_wt[0]*(Me[tid]-rdest[:,tid])**2/M1var + rd_wt[1]*(Me2_centered[tid] -rdest[:,Ngrp+tid])**2/M2var) if gc_val<upper_thres: gc.append(gc_val) # Compute state v_hat = -x2.T[tid][0] x_hat = -x2.T[Ngrp+tid][0]/2 xsa = x_hat - L y_est = np.sqrt(abs(np.mean(Me2[tid] - xsa **2))) # TODO: handle negative value properly vy_est = np.mean(Me[tid] - v_hat*xsa) / y_est # Estimated using other estimates Stn = np.array([x_hat, y_est, v_hat, vy_est]) Stns.append(Stn) valid_state_ids.append(tid) return gc, Stns, valid_state_ids def get_newfit_error_grp(cls, sensors, tnd_grp, sidnew, upper_thres): # Reports geometry fitting error for given R,D pair Ngrp = len(tnd_grp) r_cand = np.array([tnd.r for tnd in tnd_grp]) d_cand = np.array([tnd.d for tnd in tnd_grp]) sindx_new = np.hstack((cls.sindx,sidnew)) L = np.array([sensors[si].x for si in sindx_new]) keyval = tuple(sindx_new) if keyval in cls.CRBdict: CRB=cls.CRBdict[keyval] else: CRB = np.array([sensors[si].getnominalCRB() for i, si in enumerate(sindx_new)]) # Using nominal cls.CRBdict[keyval] = CRB gc, Stns, valid_state_ids = cls.get_newfit_error_group(r_cand, d_cand, Ngrp, cls.r, cls.d, L, CRB, np.array(cfg.rd_wt), upper_thres) Pn = np.diag([1, 1, 1, 1]) states = [State(Stn, Pn) for Stn in Stns] return gc, states, valid_state_ids def get_newfit_error_nn(cls, sensors, tnd_grp, sindx, upper_thres): Ngrp = len(tnd_grp) Rk = np.diag(sensors[sindx].getnominalCRB()) sensx = sensors[sindx].x gc = [] states = [] valid_state_ids = [] if cls.N>1: # Fetch previous State Stp = cls.state_end.mean if cls.N>2: Pp = cls.state_end.cov else: Pp = cls.get_Pinit(sensors, PointTarget(*Stp)) Hk = np.zeros((2,4)) for i in range(2): for j in range(4): Hk[i,j] = cls.f[i][j](Stp[0],Stp[1],Stp[2],Stp[3],sensx) Ik = Hk @ Pp @ Hk.T + Rk # Innovation covariance (2x2) try: Kk = Pp @ Hk.T @ np.linalg.inv(Ik) # Kalman Gain (4x2) except np.linalg.linalg.LinAlgError as err: return gc, states, valid_state_ids yhk = np.array([cls.hk[i](Stp[0],Stp[1],Stp[2],Stp[3],sensx) for i in range(2)]) Pn = (np.eye(4) - Kk@Hk) @ Pp @ (np.eye(4) - Kk@Hk) + Kk @ Rk @ Kk.T for tid in range(Ngrp): try: yk = np.array([tnd.r, tnd.d]) # Measurement Stn = Stp + Kk @ (yk - yhk) gc.append(np.inner((yk - yhk), np.linalg.inv(Ik)@(yk - yhk))) valid_state_ids.append(tid) states.append(Stn) except: # If any degenerate case occurs gc.append(np.inf) valid_state_ids.append(tid) states.append(None) return gc, states, valid_state_ids # @jit(nopython=True)# @profile def get_state(cls, sensors): # Evaluate target kinematic state and corresp. fitting error Ns = cls.N r = np.array(cls.r) d = np.array(cls.d) sindx_new = cls.sindx keyval = tuple(sindx_new) if keyval in cls.CRBdict: CRB=cls.CRBdict[keyval] else: CRB = np.array([sensors[si].getnominalCRB() for i, si in enumerate(sindx_new)]) # Using nominal cls.CRBdict[keyval] = CRB L = np.array([sensors[si].x for si in cls.sindx]) gc, Stns, valid_state_ids = cls.get_newfit_error_group(cls.r[-1], cls.d[-1], 1, np.array(cls.r[0:-1]), np.array(cls.d[0:-1]), L, CRB, np.array(cfg.rd_wt), np.inf) Pn = np.diag([1, 1, 1, 1]) new_state = State(Stns[0], Pn) cls.gc = gc[0] # H = np.array([[sensors[si].x, 1] for si in sindx_new]) # Me = r * d # Me2 = r * r # Me2_centered = Me2 - ( L**2 ) # if keyval in cls.CRBdict: # CRB=cls.CRBdict[keyval] # else: # CRB = np.array([sensors[si].getnominalCRB() for i, si in enumerate(sindx_new)]) # Using nominal # cls.CRBdict[keyval] = CRB # # scaling factors # M1var = (np.sum( CRB * np.array([d**2, r**2]).T,1) # + np.prod(CRB,1) ) # M2var = (4*CRB[:,0] * np.array( r**2) + CRB[:,0]**2)# Ignoring higher order terms # # Main estimator # x2, FAA, rank, s = np.linalg.lstsq(H,np.stack((Me, Me2_centered)).T,rcond=None) # v_hat = -x2[0][0] # x_hat = -x2[0][1]/2 # cls.gc = sum(cfg.rd_wt[0]*([email protected][0])**2/M1var + cfg.rd_wt[1]*(Me2_centered [email protected][1])/M2var) # xsa = x_hat - L # y_est = np.sqrt(abs(np.mean(Me2 - xsa **2))) # TODO: handle negative value properly # vy_est = np.mean(Me - v_hat*xsa) / y_est # Estimated using other estimates # Stn = np.array([x_hat, y_est, v_hat, vy_est]) # # Pn = np.diag([g_nu, g_nu2]) # Pn = np.diag([1, 1, 1, 1]) # new_state = State(Stn, Pn) return new_state # def get_newfit_error_ekf(cls, sensors, rnew, dnew, gnew, sindx): # Rk = np.diag(sensors[sindx].getnominalCRB()) # if cls.N>1: # Fetch previous State # Stp = cls.state_end.mean # if cls.N>2: # Pp = cls.state_end.cov # else: # Pp = cls.get_Pinit(sensors, PointTarget(*Stp)) # Hk = np.zeros((2,4)) # for i in range(2): # for j in range(4): # Hk[i,j] = cls.f[i][j](Stp[0],Stp[1],Stp[2],Stp[3],sensors[sindx].x) # Ik = Hk @ Pp @ Hk.T + Rk # Innovation covariance (2x2) # try: # # Kk = Pp @ Hk.T @ np.linalg.inv(Ik) # Kalman Gain (4x2) # yk = np.array([rnew, dnew]) # Measurement # yhk = np.array([cls.hk[i](Stp[0],Stp[1],Stp[2],Stp[3],sensors[sindx].x) for i in range(2)]) # # Stn = Stp + Kk @ (yk - yhk) # # Pn = (np.eye(4) - Kk@Hk) @ Pp @ (np.eye(4) - Kk@Hk) + Kk @ Rk @ Kk.T # return np.inner((yk - yhk), np.linalg.inv(Ik)@(yk - yhk)) # except: # If any degenerate case occurs # return np.inf # else: # Compute initial covariance # return 1 def add_update3(cls, rs, ds, gs, sindx, sensors, new_state=None, gcc = None): # Dual cost method # TODO: maintain covariance matrix rp0 = cls.r[0] dp0 = cls.d[0] Np = cls.N sindxp0 = cls.sindx[0] # compute x, y, vx from all obs can be used to update state) cls.r = np.append(cls.r, rs) cls.d = np.append(cls.d, ds) cls.g = np.append(cls.g, gs) cls.sindx = np.append(cls.sindx, sindx) cls.N = cls.N+1 # Update previous covariance if Np > 1: if new_state is None: new_state = cls.get_state(sensors) else: cls.gc = gcc# /cls.N*np.ones(cls.N) # Fake geometric cost cls.state_end.next = new_state cls.state_end = new_state else: Pn =
np.zeros((2,2))
numpy.zeros
from __future__ import division, absolute_import, print_function import numpy as np try: from scipy.spatial import cKDTree, KDTree except ImportError: pass try: from scipy.spatial import distance except ImportError: pass try: from scipy.spatial import ConvexHull, Voronoi except ImportError: pass try: from scipy.spatial import SphericalVoronoi except ImportError: pass from .common import Benchmark, LimitedParamBenchmark class Build(Benchmark): params = [ [(3,10000,1000), (8,10000,1000), (16,10000,1000)], ['KDTree', 'cKDTree'], ] param_names = ['(m, n, r)', 'class'] def setup(self, mnr, cls_name): self.cls = KDTree if cls_name == 'KDTree' else cKDTree m, n, r = mnr np.random.seed(1234) self.data = np.concatenate((np.random.randn(n//2,m), np.random.randn(n-n//2,m)+np.ones(m))) self.queries = np.concatenate((np.random.randn(r//2,m), np.random.randn(r-r//2,m)+np.ones(m))) def time_build(self, mnr, cls_name): """ Constructing kd-tree ======================= dim | # points | time """ m, n, r = mnr if cls_name == 'cKDTree_flat': self.T = self.cls(self.data, leafsize=n) else: self.cls(self.data) LEAF_SIZES = [8, 128] BOX_SIZES = [None, 0.0, 1.0] class Query(LimitedParamBenchmark): params = [ [(3,10000,1000), (8,10000,1000), (16,10000,1000)], [1, 2, np.inf], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n, r)', 'p', 'boxsize', 'leafsize'] num_param_combinations = 21 @staticmethod def do_setup(self, mnr, p, boxsize, leafsize): m, n, r = mnr np.random.seed(1234) self.data = np.random.uniform(size=(n, m)) self.queries = np.random.uniform(size=(r, m)) self.T = cKDTree(self.data, leafsize=leafsize, boxsize=boxsize) def setup(self, mnr, p, boxsize, leafsize): LimitedParamBenchmark.setup(self, mnr, p, boxsize, leafsize) Query.do_setup(self, mnr, p, boxsize, leafsize) def time_query(self, mnr, p, boxsize, leafsize): """ Querying kd-tree dim | # points | # queries | KDTree | cKDTree | flat cKDTree """ self.T.query(self.queries, p=p) # Retain old benchmark results (remove this if changing the benchmark) time_query.version = "327bc0627d5387347e9cdcf4c52a550c813bb80a859eeb0f3e5bfe6650a8a1db" class Radius(LimitedParamBenchmark): params = [ [(3,10000,1000)], [1, 2, np.inf], [0.2, 0.5], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n, r)', 'p', 'probe radius', 'boxsize', 'leafsize'] num_param_combinations = 7 def __init__(self): self.time_query_pairs.__func__.params = list(self.params) self.time_query_pairs.__func__.params[0] = [(3,1000,30), (8,1000,30), (16,1000,30)] self.time_query_ball_point.__func__.setup = self.setup_query_ball_point self.time_query_pairs.__func__.setup = self.setup_query_pairs def setup(self, *args): pass def setup_query_ball_point(self, mnr, p, probe_radius, boxsize, leafsize): LimitedParamBenchmark.setup(self, mnr, p, probe_radius, boxsize, leafsize, param_seed=3) Query.do_setup(self, mnr, p, boxsize, leafsize) def setup_query_pairs(self, mnr, p, probe_radius, boxsize, leafsize): # query_pairs is fast enough so we can run all parameter combinations Query.do_setup(self, mnr, p, boxsize, leafsize) def time_query_ball_point(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_ball_point(self.queries, probe_radius, p=p) def time_query_ball_point_nosort(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_ball_point(self.queries, probe_radius, p=p, return_sorted=False) def time_query_pairs(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_pairs(probe_radius, p=p) # Retain old benchmark results (remove this if changing the benchmark) time_query_ball_point.version = "e0c2074b35db7e5fca01a43b0fba8ab33a15ed73d8573871ea6feb57b3df4168" time_query_pairs.version = "cf669f7d619e81e4a09b28bb3fceaefbdd316d30faf01524ab33d41661a53f56" class Neighbors(LimitedParamBenchmark): params = [ [(3,1000,1000), (8,1000,1000), (16,1000,1000)], [1, 2, np.inf], [0.2, 0.5], BOX_SIZES, LEAF_SIZES, ['cKDTree', 'cKDTree_weighted'], ] param_names = ['(m, n1, n2)', 'p', 'probe radius', 'boxsize', 'leafsize', 'cls'] num_param_combinations = 17 def setup(self, mn1n2, p, probe_radius, boxsize, leafsize, cls): LimitedParamBenchmark.setup(self, mn1n2, p, probe_radius, boxsize, leafsize, cls) m, n1, n2 = mn1n2 self.data1 = np.random.uniform(size=(n1, m)) self.data2 = np.random.uniform(size=(n2, m)) self.w1 = np.ones(n1) self.w2 =
np.ones(n2)
numpy.ones
# -*- coding:utf-8 -*- from src.utils import * import numpy as np import tensorflow as tf from collections import deque import gym class CategoricalDQNAgent: def __init__(self, config, base_network): self.config = config self.base_network = base_network self.input_dim = config.input_dim # neural network input dimension self.n_atoms = config.categorical_n_atoms self.vmin = config.categorical_Vmin self.vmax = config.categorical_Vmax self.atoms = np.linspace( config.categorical_Vmin, config.categorical_Vmax, config.categorical_n_atoms, ) # Z self.envs = None self.actor_network = self.base_network.nn_model() self.target_network = tf.keras.models.clone_model(self.actor_network) self.target_network.set_weights(self.actor_network.get_weights()) self.total_steps = 0 self.episodes = config.episodes self.steps = config.steps self.batch_size = config.batch_size self.replay_buffer_size = config.replay_buffer_size self.replay_buffer = deque() self.delta_z = (config.categorical_Vmax - config.categorical_Vmin) / float(config.categorical_n_atoms - 1) self.keras_check = config.keras_checkpoint self.check_model_improved = 0 self.best_max = 0 def transition(self): """ In transition, the agent simply plays and record [current_state, action, reward, next_state, done] in the replay_buffer (or memory pool) Updating the weights of the neural network happens every single time the replay buffer size is reached. done: boolean, whether the game has end or not. """ for each_ep in range(self.episodes): current_state = self.envs.reset() print('Episode: {} Reward: {} Max_Reward: {}'.format(each_ep, self.check_model_improved, self.best_max)) print('-' * 64) self.check_model_improved = 0 for step in range(self.steps): # reshape the input state to a tensor ===> Network ===> action probabilities # size = (1, action dimension, number of atoms) # e.g. size = (1, 2, 51) action_prob, _ = self.actor_network.predict( np.array(current_state).reshape((1, self.input_dim[0], self.input_dim[1]))) # calculate action value (Q-value) action_value = np.dot(np.array(action_prob), self.atoms) # choose action according to the E-greedy policy action = policies.epsilon_greedy(action_values=action_value[0], episode=each_ep, stop_explore=self.config.stop_explore, total_actions=self.config.action_dim) next_state, reward, done, _ = self.envs.step(action=action) # record the per step history into replay buffer self.replay_buffer.append([current_state.reshape(self.input_dim).tolist(), action, next_state.reshape(self.input_dim).tolist(), reward, done]) # when we collect certain number of batches, perform replay and # update the weights in the actor network (Backpropagation) # reset the replay buffer if len(self.replay_buffer) == self.replay_buffer_size: self.train_by_replay() self.replay_buffer.clear() # if episode is finished, break the inner loop # otherwise, continue if done: self.total_steps += 1 break else: current_state = next_state self.total_steps += 1 self.check_model_improved += reward # for any episode where the reward is higher # we copy the actor network weights to the target network if self.check_model_improved > self.best_max: self.best_max = self.check_model_improved self.target_network.set_weights(self.actor_network.get_weights()) def train_by_replay(self): """ TD update by replaying the history. Implementation of algorithm 1 in the paper. """ # step 1: generate replay samples (size = self.batch_size) from the replay buffer # e.g. uniform random replay or prioritize experience replay current_states, actions, next_states, rewards, terminals = \ replay_fn.uniform_random_replay(self.replay_buffer, self.batch_size) # step 2: # generate next state probability, size = (batch_size, action_dimension, number_of_atoms) # e.g. (32, 2, 51) where batch_size = 32, # each batch contains 2 actions, # each action distribution contains 51 bins. prob_next, _ = self.target_network.predict(next_states) # step 3: # calculate next state Q values, size = (batch_size, action_dimension, 1). # e.g. (32, 2, 1), each action has one Q value. # then choose the higher value out of the 2 for each of the 32 batches. action_value_next = np.dot(np.array(prob_next), self.atoms) action_next = np.argmax(action_value_next, axis=1) # step 4: # use the optimal actions as index, pick out the probabilities of the optimal action prob_next = prob_next[np.arange(self.batch_size), action_next, :] # match the rewards from the memory to the same size as the prob_next rewards = np.tile(rewards.reshape(self.batch_size, 1), (1, self.n_atoms)) # perform TD update discount_rate = self.config.discount_rate * (1 - terminals) atoms_next = rewards + np.dot(discount_rate.reshape(self.batch_size, 1), self.atoms.reshape(1, self.n_atoms)) # constrain atoms_next to be within Vmin and Vmax atoms_next = np.clip(atoms_next, self.vmin, self.vmax) # calculate the floors and ceilings of atom_next b = (atoms_next - self.config.categorical_Vmin) / self.delta_z l, u = np.floor(b).astype(int), np.ceil(b).astype(int) # it is important to check if l == u, to avoid histogram collapsing. d_m_l = (u + (l == u) - b) * prob_next d_m_u = (b - l) * prob_next # step 5: redistribute the target probability histogram (calculation of m) # Note that there is an implementation issue # The loss function requires current histogram and target histogram to have the same size # Generally, the loss function should be the categorical cross entropy loss between # P(x, a*): size = (32, 1, 51) and P(x(t+1), a*): size = (32, 1, 51), i.e. only for optimal actions # However, the network generates P(x, a): size = (32, 2, 51), i.e. for all actions # Therefore, I create a tensor with zeros (size = (32, 2, 51)) and update only the probability histogram target_histo = np.zeros(shape=(self.batch_size, self.n_atoms)) for i in range(self.batch_size): target_histo[i][action_next[i]] = 0.0 # clear the histogram that needs to be updated np.add.at(target_histo[i], l[i], d_m_l[i]) # update d_m_l np.add.at(target_histo[i], l[i], d_m_u[i]) # update d_m_u # update actor network weights self.actor_network.fit(x=current_states, y=target_histo, verbose=2, callbacks=self.keras_check) def eval_step(self, render=True): """ Evaluation using the trained target network, no training involved :param render: whether to visualize the evaluation or not """ for each_ep in range(self.config.evaluate_episodes): current_state = self.envs.reset() print('Episode: {} Reward: {} Training_Max_Reward: {}'.format(each_ep, self.check_model_improved, self.best_max)) print('-' * 64) self.check_model_improved = 0 for step in range(self.steps): action_prob, _ = self.target_network.predict( np.array(current_state).reshape((1, self.input_dim[0], self.input_dim[1]))) action_value = np.dot(np.array(action_prob), self.atoms) action =
np.argmax(action_value[0])
numpy.argmax
""" isicarchive.imfunc This module provides image helper functions and doesn't have to be imported from outside the main package functionality (IsicApi). Functions --------- color_superpixel Paint the pixels belong to a superpixel list in a specific color column_period Guess periodicity of data (image) column display_image Display an image (in a Jupyter notebook!) image_compose Compose an image from parts image_corr Correlate pixel values across two images image_crop Crop an image according to coordinates (or superpixel index) image_dice Compute DICE coefficient of two images image_gradient Compute image gradient (and components) image_gray Generate gray-scale version of image image_mark_border Mark border pixels of image with encoded content (string, bytes) image_mark_pixel Mark pixel in image border image_mark_work Mark set of pixels (word) in image border image_mix Mix two (RGB or gray) image, with either max or blending image_overlay Mix an RGB image with a heatmap overlay (resampled) image_read_border Read encoded image border image_register Perform rigid-body alignment of images based on gradient image_resample Cheap (!) resampling of an image image_rotate Rotate an image (ndarray) lut_lookup Color lookup from a table (LUT) segmentation_outline Extract outline from a segmentation mask image superpixel_dice Compute DICE coefficient for superpixel lists superpixel_neighbors Generate neighbors lists for each superpixel in an image superpixel_outlines Extract superpixel (outline) shapes from superpixel map superpixel_values Return the values of a superpixel write_image Write an image to file or buffer (bytes) """ # specific version for file __version__ = '0.4.11' # imports (needed for majority of functions) from typing import Any, List, Optional, Tuple, Union import warnings import numpy from .vars import ISIC_DICE_SHAPE, ISIC_FUNC_PPI, ISIC_IMAGE_DISPLAY_SIZE_MAX # color superpixels in an image def color_superpixels( image:Union[numpy.ndarray, Tuple], splst:Union[list, numpy.ndarray], spmap:numpy.ndarray, color:Union[list, numpy.ndarray], alpha:Union[float, numpy.float, list, numpy.ndarray] = 1.0, almap:numpy.ndarray = None, spval:Union[float, numpy.float, list, numpy.ndarray, None] = None, copy_image:bool = False) -> numpy.ndarray: """ Paint the pixels belong to a superpixel list in a specific color. Parameters ---------- image : numpy.ndarray or 2- or 3-element Tuple with image size Image to be colored, if shape tuple, will be all 0 (black) splst : list or flat numpy.ndarray List of superpixels to color in the image spmap : numpy.ndarray Mapping array from func.superpixels_map(...) color : either a list or numpy.ndarray RGB Color code or list of codes to use to color superpixels alpha : either float or numpy.float value or None Alpha (opacity) value between 0.0 and 1.0, if None, set to 1.0 spval : optional numpy.ndarray Per-pixel opacity value (e.g. confidence, etc.) copy_image : bool Copy the input image prior to painting, default: False Returns ------- image : numpy.ndarray Image with superpixels painted """ # check inputs if isinstance(image, tuple): if len(image) == 2 and (isinstance(image[0], int) and isinstance(image[1], int)): im_shape = image image = numpy.zeros(image[0] * image[1], dtype=numpy.uint8) elif len(image) == 3 and (isinstance(image[0], int) and isinstance(image[1], int) and isinstance(image[2], int) and (image[2] == 1 or image[2] == 3)): im_shape = image image = numpy.zeros(image[0] * image[1] * image[2], dtype=numpy.uint8).reshape((image[0] * image[1], image[2])) else: raise ValueError('Invalid image shape.') copy_image = False else: im_shape = image.shape num_cols = im_shape[1] has_almap = False if not almap is None: if almap.size != (im_shape[0] * im_shape[1]): raise ValueError('Invalid alpha map.') has_almap = True am_shape = almap.shape try: almap.shape = (almap.size,) except: raise if copy_image: image = numpy.copy(image) if len(im_shape) == 3 or im_shape[1] > 3: planes = im_shape[2] if len(im_shape) == 3 else 1 else: if len(im_shape) > 1: planes = im_shape[1] else: planes = 1 image.shape = (im_shape[0] * im_shape[1], planes) has_alpha = False if planes > 3: planes = 3 has_alpha = True numsp = len(splst) if spval is None: spval = numpy.ones(numsp, dtype=numpy.float32) elif isinstance(spval, float) or isinstance(spval, numpy.float): spval = spval * numpy.ones(numsp, dtype=numpy.float32) elif len(spval) != numsp: spval = numpy.ones(numsp, dtype=numpy.float32) if len(color) == 3 and isinstance(color[0], int): color = [color] * numsp if alpha is None: alpha = 1.0 if isinstance(alpha, float): alpha = [alpha] * numsp if isinstance(alpha, list): if len(alpha) != numsp: raise ValueError('alpha list must match number of superpixels') sp_skip = 6.0 * numpy.trunc(0.75 + 0.25 * numpy.sqrt([ im_shape[0] * im_shape[1] / spmap.shape[0]]))[0] # for each superpixel (index) for idx in range(numsp): # get pixel indices, compute inverse alpha, and then set pixel values spcol = color[idx] singlecol = False num_colors = 1 if isinstance(spcol, list): if isinstance(spcol[0], int): singlecol = True else: num_colors = len(spcol) elif isinstance(spcol, numpy.ndarray): if spcol.size == 3: singlecol = True else: num_colors = spcol.shape[0] if num_colors > 6: num_colors = 6 spalpha = alpha[idx] if isinstance(spalpha, float) and not singlecol: spalpha = [spalpha] * num_colors spidx = splst[idx] spnum = spmap[spidx, -1] sppidx = spmap[spidx, 0:spnum] if singlecol: spalpha = spalpha * spval[idx] spinv_alpha = 1.0 - spalpha for p in range(planes): if spalpha == 1.0: image[sppidx, p] = spcol[p] else: image[sppidx, p] = numpy.round( spalpha * spcol[p] + spinv_alpha * image[sppidx, p]) if has_alpha: image[sppidx, 3] = numpy.round(255.0 * 1.0 - (1.0 - 255.0 * image[sppidx, 3]) * (1.0 - 255.0 * spalpha)) elif has_almap: almap[sppidx] = 1.0 - (1.0 - almap[sppidx]) * spinv_alpha else: sppval = spval[idx] if not (isinstance(sppval, list) or isinstance(sppval, numpy.ndarray)): sppval = [sppval] * num_colors elif len(sppval) < num_colors: sppval = [sppval[0]] * num_colors sppidxx = sppidx % num_cols sppidxy = sppidx // num_cols float_num = float(num_colors) spcidx = numpy.trunc(0.5 + (sppidxx + sppidxy).astype(numpy.float) * (float_num / sp_skip)).astype(numpy.int32) % num_colors for cc in range(num_colors): spcsel = spcidx == cc spcidxxy = sppidxx[spcsel] + sppidxy[spcsel] * num_cols spccol = spcol[cc] spcalpha = spalpha[cc] * sppval[cc] spinv_alpha = 1.0 - spcalpha for p in range(planes): if spcalpha == 1.0: image[spcidxxy, p] = spccol[p] else: image[spcidxxy, p] = numpy.round( spcalpha * spccol[p] + spinv_alpha * image[spcidxxy, p]) if has_alpha: image[spcidxxy, 3] = numpy.round(255.0 * 1.0 - (1.0 - 255.0 * image[spcidxxy, 3]) * (1.0 - 255.0 * spcalpha)) elif has_almap: almap[spcidxxy] = 1.0 - (1.0 - almap[spcidxxy]) * spinv_alpha image.shape = im_shape if has_almap: almap.shape = am_shape return image # column period def column_period(c:numpy.ndarray, thresh:int=0): """ Guess the periodicity of a column of (image) data Parameters ---------- c : ndarray Column of data (e.g. pixel values) thresh : int Optional threshold (default: 0) Returns ------- p : int (or float) Guessed periodicity """ cc = numpy.zeros(c.size//2) for ck in range(1, cc.size): cc[ck] = numpy.corrcoef(c[:-ck],c[ck:])[0,1] cc[numpy.isnan(cc)] = 0.0 ccc = numpy.zeros(cc.size//2) for ck in range(3, ccc.size): ccc[ck-1] = numpy.corrcoef(cc[1:-ck], cc[ck:-1])[0,1] ccc[numpy.isnan(ccc)] = -1.0 ccs = numpy.argsort(-ccc) ccsv = numpy.median(ccc[ccs[0:3]]) * 0.816 ccsl = numpy.sort(ccs[ccc[ccs]>=ccsv]) while thresh > 0 and len(ccsl) > 1 and ccsl[0] < thresh: ccsl = ccsl[1:] if len(ccsl) == 1: return ccsl[0] while len(ccsl) > 3 and ccsl[0] < ccsl[1] // 3: ccsl = ccsl[1:] ccsy = ccsl[-1] ccsx = ccsl[0] ccsr = ccsy % ccsx if ccsr == 0: return ccsx if ccsx - ccsr < (ccsx // 4): ccsr = ccsx - ccsr if ccsr < (ccsx // 4) and ccsx >= 6 and len(ccsl) > 3: ccst = ccsl.astype(numpy.float64) / float(ccsx) ccsi = numpy.trunc(ccst + 0.5) ccsd = float(ccsx) * (ccst - ccsi) ccsx = float(ccsx) + numpy.sum(ccsd) / numpy.sum(ccsi) return ccsx while ccsy % ccsx != 0: (ccsy, ccsx) = (ccsx, ccsy % ccsx) return ccsx # display image def display_image( image_data:Union[bytes, str, numpy.ndarray], image_shape:Tuple = None, max_size:int = ISIC_IMAGE_DISPLAY_SIZE_MAX, library:str = 'matplotlib', ipython_as_object:bool = False, mpl_axes:object = None, **kwargs, ) -> Optional[object]: """ Display image in a Jupyter notebook; supports filenames, bytes, arrays Parameters ---------- image_data : bytes, str, ndarray/imageio Array Image specification (file data, filename, or image array) image_shape : tuple Image shape (necessary if flattened array!) max_size : int Desired maximum output size on screen library : str Either 'matplotlib' (default) or 'ipython' mpl_axes : object Optional existing matplotlib axes object No returns """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT import imageio # check inputs if image_data is None: return if not isinstance(library, str): raise ValueError('Invalid library selection.') library = library.lower() if not library in ['ipython', 'matplotlib']: raise ValueError('Invalid library selection.') if (isinstance(image_data, numpy.ndarray) or isinstance(image_data, imageio.core.util.Array)): if library == 'ipython': try: image_data = write_image(image_data, 'buffer', 'jpg') except: raise elif isinstance(image_data, str) and (len(image_data) < 256): try: with open(image_data, 'rb') as image_file: image_data = image_file.read() except: raise if library == 'matplotlib' and isinstance(image_data, bytes): try: image_data = imageio.imread(image_data) except: raise if not isinstance(max_size, int) or (max_size < 32) or (max_size > 5120): max_size = ISIC_IMAGE_DISPLAY_SIZE_MAX if image_shape is None: try: if library == 'ipython': image_array = imageio.imread(image_data) image_shape = image_array.shape else: image_shape = image_data.shape except: raise image_height = image_shape[0] image_width = image_shape[1] image_max_xy = max(image_width, image_height) shrink_factor = max(1.0, image_max_xy / max_size) image_width = int(image_width / shrink_factor) image_height = int(image_height / shrink_factor) # depending on library call appropriate function if library == 'ipython': # IMPORT DONE HERE TO SAVE TIME BETWEEN LIBRARY CHOICES from ipywidgets import Image as ipy_Image from IPython.display import display as ipy_display try: image_out = ipy_Image(value=image_data, width=image_width, height=image_height) if not ipython_as_object: ipy_display(image_out) return None return image_out except Exception as e: warnings.warn('Problem producing image for display: ' + str(e)) return None else: # IMPORT DONE HERE TO SAVE TIME BETWEEN LIBRARY CHOICES import matplotlib import matplotlib.pyplot as mpl_pyplot try: display_width = image_width / ISIC_FUNC_PPI display_height = image_height / ISIC_FUNC_PPI if mpl_axes is None: if 'figsize' in kwargs: mpl_pyplot.figure(figsize=kwargs['figsize']) else: mpl_pyplot.figure(figsize=(display_width, display_height)) ax_img = mpl_pyplot.imshow(image_data, interpolation='hanning') ax_img.axes.set_axis_off() mpl_pyplot.show() else: mpl_axes.imshow(image_data) except Exception as e: warnings.warn('Problem producing image for display: ' + str(e)) return None # image center ([y,x coord] * 0.5) def image_center(image:numpy.ndarray) -> numpy.ndarray: try: imsh = image.shape return 0.5 * numpy.asarray([imsh[0], imsh[1]]).astype(numpy.float64) except: raise # image composition (from other images) def image_compose( imlist:list, outsize:Tuple, bgcolor:list = [255,255,255], ) -> numpy.ndarray: """ Compose image from parts Parameters ---------- imlist : list List of image parts, each element a 3-element list with image (ndarray), x- and y-position in the output image outsize : Tuple Size of output image bgcolor : list 3-element list, default: [255, 255, 255] (white) Returns ------- out_image : ndarray Output image composed of input images """ if not isinstance(outsize, tuple) and not isinstance(outsize, list): raise ValueError('Invalid outsize parameter.') if (len(outsize) != 2 or not isinstance(outsize[0], int) or not isinstance(outsize[1], int) or outsize[0] < 1 or outsize[1] < 1 or (outsize[0] * outsize[2] > 16777216)): raise ValueError('Invalid image dimensions in outsize parameter.') # generate output out = numpy.zeros(3 * outsize[0] * outsize[1], dtype=numpy.uint8).reshape( (outsize[1], outsize[0], 3,)) im_shape = out.shape # set background color if (isinstance(bgcolor, tuple) or isinstance(bgcolor, list)) and len(bgcolor) == 3: try: out[:,:,0] = bgcolor[0] except: pass try: out[:,:,1] = bgcolor[1] except: pass try: out[:,:,2] = bgcolor[2] except: pass # iterare over particles for ii in imlist: # if not a minimally formatted list if not isinstance(ii, list) or len(ii) < 3: continue # get image and inupt shape, check dims ii_image = ii[0] ii_shape = ii_image.shape if len(ii_shape) < 2 or len(ii_shape) > 3: continue elif len(ii_shape) == 3 and not ii_shape[2] in [1, 3]: continue # get target position (top left) ii_x = ii[1] ii_y = ii[2] if ii_x >= im_shape[1] or ii_y >= im_shape[0]: continue # and process alpha if len(ii) == 3: ii_alpha = 1.0 else: ii_alpha = ii[3] if not (isinstance(ii_alpha, float) or isinstance(ii_alpha, numpy.ndarray)): continue if isinstance(ii_alpha, float): if ii_alpha <= 0.0: continue if ii_alpha > 1.0: ii_alpha = 1.0 else: if ii_alpha.ndim != 2: continue if ii_alpha.shape[0] != im_shape[0] or ii_alpha.shape[1] != im_shape[1]: continue ii_alpha[ii_alpha < 0.0] = 0.0 ii_alpha[ii_alpha > 1.0] = 1.0 # resizing of image if len(ii) > 5 and ((isinstance(ii[4], int) and isinstance(ii[5], int)) or (isinstance(ii[4], float) and isinstance(ii[5], float))): from .sampler import Sampler s = Sampler() if isinstance(ii_alpha, numpy.ndarray): ii_alpha = s.sample_grid(ii_alpha, ii[4:6], 'linear') if len(ii) > 6 and isinstance(ii[6], str): ikern = ii[6] else: ikern = 'cubic' ii_image = s.sample_grid(ii_image, ii[4:6], ikern) im_shape = ii_image.shape # check arguments for compatibility if not (isinstance(ii_image, numpy.ndarray) and isinstance(ii_x, int) and isinstance(ii_y, int) and (isinstance(ii_alpha, float) or ( isinstance(ii_alpha, numpy.ndarray) and ii_alpha.ndim == 2 and ii_alpha.shape[0] == ii_image.shape[0]))): continue sfrom_x = 0 sfrom_y = 0 sto_x = ii_shape[1] sto_y = ii_shape[0] tfrom_x = ii_x tfrom_y = ii_y if tfrom_x < 0: sfrom_x -= tfrom_x tfrom_x = 0 if tfrom_y < 0: sfrom_y -= tfrom_y tfrom_y = 0 from_x = sto_x - sfrom_x from_y = sto_y - sfrom_y if from_x <= 0 or from_y <= 0: continue tto_x = tfrom_x + from_x tto_y = tfrom_y + from_y if tto_x > im_shape[1]: shrink = tto_x - im_shape[1] tto_x -= shrink sto_x -= shrink if tto_y > im_shape[0]: shrink = tto_y - im_shape[0] tto_y -= shrink sto_y -= shrink if tto_x <= tfrom_x or tto_y <= tfrom_y: continue if len(ii_shape) == 2: if sfrom_x == 0 and sfrom_y == 0 and sto_x == ii_shape[1] and sto_y == ii_shape[0]: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image, ii_alpha) else: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image[sfrom_y:sto_y, sfrom_x:sto_x], ii_alpha) else: if sfrom_x == 0 and sfrom_y == 0 and sto_x == ii_shape[1] and sto_y == ii_shape[0]: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image, ii_alpha) else: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image[sfrom_y:sto_y, sfrom_x:sto_x, :], ii_alpha) return out # image correlation (pixel values) def image_corr( im1:numpy.ndarray, im2:numpy.ndarray, immask:numpy.ndarray = None, ) -> float: """ Correlate pixel values for two images Parameters ---------- im1, im2 : ndarray Image arrays (of same size!) immask : ndarray Optional masking array (in which case only over those pixels) Returns ------- ic : float Correlation coefficient """ if im1.size != im2.size: raise ValueError('Images must match in size.') if immask is None: cc = numpy.corrcoef(im1.reshape(im1.size), im2.reshape(im2.size)) else: if immask.size != im1.size: immask = image_resample(numpy.uint8(255) * immask.astype(numpy.uint8), (im1.shape[0], im1.shape[1])) >= 128 if immask.dtype != numpy.bool: immask = (immask > 0) cc = numpy.corrcoef(im1[immask], im2[immask]) return cc[0,1] # crop image def image_crop( image:numpy.ndarray, cropping:Any, padding:int = 0, masking:str = None, spmap:numpy.ndarray = None, spnei:List = None, spnei_degree:int = 1, ) -> numpy.ndarray: """ Crops an image to a rectangular region of interest. Parameters ---------- image : ndarray Image (2D or 2D-3) array cropping : Any Cropping selection, either of - [y0, x0, y1, x1] rectangle (y1/x1 non inclusive) - int(S), superpixel index, requires spmap! padding : int Additional padding around cropping in pixels masking : str Masking operation, if requested, either of 'smoothnei' - smooth the neighboring region spmap : ndarray Superpixel mapping array spnei : list Superpixel (list of) list(s) of neighbors spnei_degree : int How many degrees of neighbors to include (default: 1) """ im_shape = image.shape if not isinstance(padding, int) or padding < 0: padding = 0 if isinstance(cropping, list) and len(cropping) == 4: y0 = max(0, cropping[0]-padding) x0 = max(0, cropping[1]-padding) y1 = min(im_shape[0], cropping[2]+padding) x1 = min(im_shape[1], cropping[2]+padding) elif isinstance(cropping, int) and cropping >= 0: if spmap is None or not isinstance(spmap, numpy.ndarray): raise ValueError('Missing spmap parameter.') spidx = cropping sppix = spmap[spidx,:spmap[spidx,-1]] sppiy = sppix // im_shape[1] sppix = sppix % im_shape[1] y0 = max(0, numpy.amin(sppiy)-padding) x0 = max(0, numpy.amin(sppix)-padding) y1 = min(im_shape[0], numpy.amax(sppiy)+padding) x1 = min(im_shape[1], numpy.amax(sppix)+padding) yd = y1 - y0 xd = x1 - x0 dd = (yd + xd) // 2 if isinstance(spnei, list): if len(spnei) > 8: spnei = [spnei] if not isinstance(spnei_degree, int) or spnei_degree < 1: spnei_degree = 0 elif spnei_degree > len(spnei): spnei_degree = len(spnei) - 1 else: spnei_degree -= 1 spnei = spnei[spnei_degree] try: nei = spnei[spidx] for n in nei: sppix = spmap[n,:spmap[n,-1]] sppiy = sppix // im_shape[1] sppix = sppix % im_shape[1] y0 = min(y0, max(0, numpy.amin(sppiy)-padding)) x0 = min(x0, max(0, numpy.amin(sppix)-padding)) y1 = max(y1, min(im_shape[0], numpy.amax(sppiy)+padding)) x1 = max(x1, min(im_shape[1], numpy.amax(sppix)+padding)) except: raise if isinstance(masking, str) and masking == 'smoothnei': from .sampler import Sampler s = Sampler() yd = y1 - y0 xd = x1 - x0 try: if len(im_shape) > 2: ci = image[y0:y1,x0:x1,:] else: ci = image[y0:y1,x0:x1] cim = numpy.zeros(yd * xd).reshape((yd,xd,)) cim[yd//2, xd//2] = 1.0 cims = s.sample_grid(cim, 1.0, 'gauss' + str(dd)) cims /= numpy.amax(cims) cis = image_smooth_fft(ci, float(dd)) return image_mix(cis, ci, cims) except: raise if len(im_shape) > 2: return image[y0:y1,x0:x1,:] else: return image[y0:y1,x0:x1] # Dice coeffient def image_dice( im1:numpy.ndarray, im2:numpy.ndarray, immask:numpy.ndarray = None) -> float: """ Compute DICE coefficient between two (binary mask) images Parameters ---------- im1, im2 : ndarray Two ndarray images of the same size immask : ndarray Optional mask that is applied, DICE within mask only Returns ------- dice : float DICE coefficient """ if im1.shape != im2.shape: if len(im1.shape) > 2: if im1.shape[2] != 1: raise ValueError('Image cannot have more than 1 plane.') if len(im2.shape) > 2: if im2.shape[2] != 1: raise ValueError('Image cannot have more than 1 plane.') if (im1.shape[0], im1.shape[1]) != ISIC_DICE_SHAPE: im1 = image_resample(im1, ISIC_DICE_SHAPE) if (im2.shape[0], im2.shape[1]) != ISIC_DICE_SHAPE: im2 = image_resample(im2, ISIC_DICE_SHAPE) if immask is None: im1 = (im1.reshape(im1.size) > 0) im2 = (im2.reshape(im2.size) > 0) else: if immask.size != im1.size: immask = image_resample(numpy.uint8(255) * immask.astype(numpy.uint8), (im1.shape[0], im1.shape[1])) >= 128 im1 = (im1[immask] > 0) im2 = (im2[immask] > 0) s1 = numpy.sum(im1) s2 = numpy.sum(im2) return 2 * numpy.sum(numpy.logical_and(im1, im2)) / (s1 + s2) # Extended Dice coeffient def image_dice_ext( im1:numpy.ndarray, val1:numpy.ndarray, im2:numpy.ndarray, val2:numpy.ndarray) -> float: """ Compute extended DICE coefficient between two (binary+value) images Parameters ---------- im1 : ndarray First image (ndarray, must be boolean) val1 : ndarray Values for first image im2 : ndarray Second image (ndarray, must be boolean) val2 : ndarray Values for second image Returns ------- xdice : float Extended DICE coefficient """ if not (im1.shape == im2.shape == val1.shape == val2.shape): raise ValueError('Images mismatch in shape.') if len(im1.shape) > 2: raise ValueError('Images must be single-plane.') if im1.dtype != numpy.bool: im1 = im1 > 0 if im2.dtype != numpy.bool: im2 = im2 > 0 s1 = numpy.sum(im1) s2 = numpy.sum(im2) return (numpy.sum(val1[im2]) + numpy.sum(val2[im1])) / (s1 + s2) # Smoothed Dice coeffient def image_dice_fwhm( im1:numpy.ndarray, im2:numpy.ndarray, fwhm:float) -> float: """ Compute smoothed-DICE coefficient between two (binary mask) images Parameters ---------- im1, im2 : ndarray Two ndarray images of the same size fwhm : float Smoothing kernel size Returns ------- xdice : float Extended DICE coefficient """ if im1.shape != im2.shape: raise ValueError('Images mismatch in shape.') if len(im1.shape) > 2: raise ValueError('Images must be single-plane.') if im1.dtype != numpy.bool: im1 = im1 > 0 if im2.dtype != numpy.bool: im2 = im2 > 0 sim1 = image_smooth_scale(im1, fwhm) sim2 = image_smooth_scale(im2, fwhm) return image_dice_ext(im1, sim1, im2, sim2) # image distance average def image_dist_average(source:numpy.ndarray, target:numpy.ndarray) -> float: """ Compute average distance between each foreground in source to target Parameters ---------- source, target : numpy.ndarray Boolean images (will be made boolean if necessary) Returns ------- dist : float Average distance of source to target """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT import scipy.ndimage as ndimage if len(source.shape) > 2 or len(target.shape) > 2: raise ValueError('Images must be 2D.') if source.shape != target.shape: raise ValueError('Images must match in shape.') if source.dtype != numpy.bool: source = source > 0 if target.dtype != numpy.bool: target = target > 0 dist_to_target = ndimage.morphology.distance_transform_edt(numpy.logical_not(target)) return numpy.mean(dist_to_target[source]) # image gradient def image_gradient(image:numpy.ndarray): """ Compute image gradient (and components) Parameters ---------- image : ndarray Image from which the gradient is computed Returns ------- gradient : tuple Magnitude, and per-dimension components """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from . import sampler s = sampler.Sampler() zsk = s._kernels['cubic'] ishape = image.shape if len(ishape) > 2: image = image_gray(image)[:,:,0] s0 = numpy.arange(0.0, float(ishape[0]), 1.0).astype(numpy.float64) s1 = numpy.arange(0.0, float(ishape[1]), 1.0).astype(numpy.float64) (c1, c0) = numpy.meshgrid(s1, s0) c0.shape = (c0.size,1,) c1.shape = (c1.size,1,) c01 = numpy.concatenate((c0,c1), axis=1) step = (1.0 / 512.0) dg0 = sampler._sample_grid_coords( image, c01 + step * numpy.asarray([1.0,1.0]), zsk[0], zsk[1]) dg1 = dg0.copy() cxy = sampler._sample_grid_coords( image, c01 + step * numpy.asarray([1.0,-1.0]), zsk[0], zsk[1]) dg0 += cxy dg1 -= cxy cxy = sampler._sample_grid_coords( image, c01 + step * numpy.asarray([-1.0,1.0]), zsk[0], zsk[1]) dg0 -= cxy dg1 += cxy cxy = sampler._sample_grid_coords( image, c01 + step * numpy.asarray([-1.0,-1.0]), zsk[0], zsk[1]) dg0 -= cxy dg1 -= cxy dg0 *= 128.0 dg1 *= 128.0 dg0.shape = ((ishape[0], ishape[1],)) dg1.shape = ((ishape[0], ishape[1],)) return (numpy.sqrt(dg0 * dg0 + dg1 * dg1), dg0, dg1) # image in gray def image_gray( image:numpy.ndarray, rgb_format:bool = True, conv_type:str = 'desaturate', ) -> numpy.ndarray: """ Convert RGB (color) image into gray-scale image Parameters ---------- image : ndarray RGB (3-plane) image ndarray rgb_format : bool If True (default) return a 3-plane image of equal component values conv_type : str either 'average', 'desaturate' (default), or 'luma' Returns ------- gray : ndarray Gray-scale image ndarray """ im_shape = image.shape if len(im_shape) < 3: if rgb_format: if image.dtype != numpy.uint8: image = numpy.trunc(255.0 * image).astype(numpy.uint8) return image.reshape((im_shape[0], im_shape[1], 1,)).repeat(3, axis=2) return image p = image[:, :, 0].astype(numpy.float) if not conv_type or not isinstance(conv_type, str) or not conv_type[0].lower() in 'al': pmin = p pmax = p for pc in range(1, min(3, im_shape[2])): pmin = numpy.minimum(pmin, image[:, :, pc].astype(numpy.float)) pmax = numpy.maximum(pmin, image[:, :, pc].astype(numpy.float)) p = (pmin + pmax) / 2.0 elif conv_type[0] in 'aA': for pc in range(1, min(3, im_shape[2])): p += image[:, :, pc].astype(numpy.float) p /= numpy.float(min(3, im_shape[2])) else: if im_shape[2] == 2: p = (1.0/3.0) * p + (2.0/3.0) * image[:, :, 1] elif im_shape[2] > 2: p = 0.299 * p + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2] if rgb_format: if image.dtype != numpy.uint8: p = numpy.trunc(255.0 * p).astype(numpy.uint8) return p.astype(numpy.uint8).reshape( (im_shape[0], im_shape[1], 1,)).repeat(3, axis=2) return p.astype(image.dtype) # HSL based histograms def image_hslhist( image:numpy.ndarray, resize:int = 512, bins:int = 64, binsamples:int = 8, hmin:float = 0.0, hmax:float = 1.0, smin:float = 0.0, smax:float = 1.0, lmin:float = 0.0, lmax:float = 1.0, mask:numpy.ndarray = None, mask_cradius:float = 0.875, ) -> tuple: # IMPORT DONE HERE TO SAVE TIME DURING IMPORT from .sampler import Sampler s = Sampler() if len(image.shape) != 3 or image.shape[2] != 3: raise ValueError('Invalid image. Must be RGB.') if binsamples > bins or binsamples < 2: raise ValueError('Invalid bin sampling.') if image.dtype == numpy.uint8: image = (1.0 / 255.0) * image.astype(numpy.float64) if not resize is None and resize > 0: image = s.sample_grid(image, [resize, resize]) hslimage = rgb2hslv(image[:,:,0], image[:,:,1], image[:,:,2]) if mask is None or len(mask.shape) != 2 or mask.shape != image.shape[:2]: cx = 0.5 * float(image.shape[0] - 1) cy = 0.5 * float(image.shape[1] - 1) maskx, masky = numpy.meshgrid(numpy.arange(-1.0, 1.0+0.5/cx, 1.0/cx), numpy.arange(-1.0, 1.0+0.5/cy, 1.0/cy)) mask = (maskx * maskx + masky * masky) <= 1.0 hs = numpy.histogram2d(hslimage[0][mask], hslimage[1][mask], bins=bins, range=[[hmin, hmax], [smin, smax]]) hl = numpy.histogram2d(hslimage[0][mask], hslimage[2][mask], bins=bins, range=[[hmin, hmax], [lmin, lmax]]) sl = numpy.histogram2d(hslimage[1][mask], hslimage[2][mask], bins=bins, range=[[smin, smax], [lmin, lmax]]) if binsamples < bins: ssize = float(bins) / float(binsamples) sc = numpy.round(numpy.arange(0.5 * ssize, float(bins), ssize)).astype(numpy.int32) hs = image_smooth_fft(hs[0], 1.0 / float(binsamples))[:,sc][sc,:] hl = image_smooth_fft(hl[0], 1.0 / float(binsamples))[:,sc][sc,:] sl = image_smooth_fft(sl[0], 1.0 / float(binsamples))[:,sc][sc,:] else: hs = hs[0] hl = hl[0] sl = sl[0] return (hs, hl, sl) # mark border of an image with "content" def image_mark_border( image:numpy.ndarray, content:Union[str,bytes], color_diff:int = 40, ecc_redundancy_level:float = 0.75, pix_width:int = 3, border_expand:bool = True, border_color:list = [128,128,128], ) -> numpy.ndarray: """ Mark image border with content (encoded) Parameters ---------- image : ndarray RGB or grayscale (uint8) image array content : str or bytes array Content to be encoded into the image border, if too long for selected scheme, warning will be printed and fitting scheme selected, if possible (max length=1023 bytes) color_diff : int Amount by which pixel brightness will differ to signify 0 and 1 ecc_redundancy_level : float Amount of payload bytes that can be missing/damaged pix_width:int Number of pixels (in each dimension) to use for a marker border_expand : bool If True (default) expand border by number of pixels Returns ------- marked : ndarray Image with content encoded into border """ # IMPORT DONE HERE TO SAVE TIME DURING MODULE INIT from .reedsolo import RSCodec from .sampler import Sampler # get some numbers, encode message, copy image if not isinstance(content, str) and not isinstance(content, bytes): raise ValueError('Invalid content (type).') if not isinstance(color_diff, int) or color_diff < 32: color_diff = 32 if not isinstance(pix_width, int) or pix_width < 1: raise ValueError('Invalid pix_width parameter.') im_shape = image.shape im_rgb = (len(im_shape) > 2 and im_shape[2] > 2) im_y = im_shape[0] im_x = im_shape[1] if border_expand: if im_rgb: marked = numpy.zeros( (im_y + 2 * pix_width, im_x + 2 * pix_width, im_shape[2],), dtype=numpy.uint8) marked[0:pix_width,pix_width:im_x+pix_width,:] = image[:pix_width,:,:] marked[pix_width:im_y+pix_width,0:pix_width,:] = image[:,:pix_width,:] marked[pix_width:im_y+pix_width,pix_width:im_x+pix_width,:] = image marked[im_y+pix_width:,pix_width:im_x+pix_width,:] = image[-pix_width:,:,:] marked[pix_width:im_y+pix_width,im_x+pix_width:,:] = image[:,-pix_width:,:] marked[:pix_width,:pix_width,:] = numpy.trunc(0.5 * ( marked[:pix_width,pix_width:pix_width+pix_width,:].astype(numpy.float32) + marked[pix_width:pix_width+pix_width,:pix_width,:].astype(numpy.float32))) marked[-pix_width:,:pix_width,:] = numpy.trunc(0.5 * ( marked[-2*pix_width:-pix_width,:pix_width,:].astype(numpy.float32) + marked[-pix_width:,pix_width:pix_width+pix_width,:].astype(numpy.float32))) marked[:pix_width,-pix_width:,:] = numpy.trunc(0.5 * ( marked[:pix_width,-2*pix_width:-pix_width,:].astype(numpy.float32) + marked[pix_width:pix_width+pix_width,-pix_width:,:].astype(numpy.float32))) marked[-pix_width:,-pix_width:,:] = numpy.trunc(0.5 * ( marked[-2*pix_width:-pix_width,-pix_width:,:].astype(numpy.float32) + marked[-pix_width:,-2*pix_width:-pix_width,:].astype(numpy.float32))) else: marked[0:pix_width,pix_width:im_x+pix_width] = image[:pix_width,:] marked[pix_width:im_y+pix_width,0:pix_width] = image[:,:pix_width] marked[pix_width:im_y+pix_width,pix_width:im_x+pix_width] = image marked[im_y+pix_width:,pix_width:im_x+pix_width] = image[-pix_width:,:] marked[pix_width:im_y+pix_width,im_x+pix_width:] = image[:,-pix_width:] marked[:pix_width,:pix_width] = numpy.trunc(0.5 * ( marked[:pix_width,pix_width:pix_width+pix_width].astype(numpy.float32) + marked[pix_width:pix_width+pix_width,:pix_width].astype(numpy.float32))) marked[-pix_width:,:pix_width] = numpy.trunc(0.5 * ( marked[-2*pix_width:-pix_width,:pix_width].astype(numpy.float32) + marked[-pix_width:,pix_width:pix_width+pix_width].astype(numpy.float32))) marked[:pix_width,-pix_width:] = numpy.trunc(0.5 * ( marked[:pix_width,-2*pix_width:-pix_width].astype(numpy.float32) + marked[pix_width:pix_width+pix_width,-pix_width:].astype(numpy.float32))) marked[-pix_width:,-pix_width:] = numpy.trunc(0.5 * ( marked[-2*pix_width:-pix_width,-pix_width:].astype(numpy.float32) + marked[-pix_width:,-2*pix_width:-pix_width].astype(numpy.float32))) im_shape = marked.shape else: marked = image.copy() s = Sampler() if im_rgb: if isinstance(border_color,list) and len(border_color) == 3: marked[0:pix_width,:,0] = border_color[0] marked[0:pix_width,:,1] = border_color[1] marked[0:pix_width,:,2] = border_color[2] marked[:,0:pix_width,0] = border_color[0] marked[:,0:pix_width,1] = border_color[1] marked[:,0:pix_width,2] = border_color[2] marked[-pix_width:,:,0] = border_color[0] marked[-pix_width:,:,1] = border_color[1] marked[-pix_width:,:,2] = border_color[2] marked[:,-pix_width:,0] = border_color[0] marked[:,-pix_width:,1] = border_color[1] marked[:,-pix_width:,2] = border_color[2] else: marked[0:pix_width,:,:] = s.sample_grid(marked[0:pix_width,:,:], [list(range(pix_width)), list(range(im_shape[1]))], 'gauss' + str(24 * pix_width), out_type='uint8') marked[:,0:pix_width,:] = s.sample_grid(marked[:,0:pix_width,:], [list(range(im_shape[0])), list(range(pix_width))], 'gauss' + str(24 * pix_width), out_type='uint8') marked[-pix_width:,:,:] = s.sample_grid(marked[-pix_width:,:,:], [list(range(pix_width)), list(range(im_shape[1]))], 'gauss' + str(24 * pix_width), out_type='uint8') marked[:,-pix_width:,:] = s.sample_grid(marked[:,-pix_width:,:], [list(range(im_shape[0])), list(range(pix_width))], 'gauss' + str(24 * pix_width), out_type='uint8') else: if isinstance(border_color, list) and len(border_color) == 1: border_color = border_color[0] if isinstance(border_color, int): marked[0:pix_width,:] = border_color marked[:,0:pix_width] = border_color marked[-pix_width:,:] = border_color marked[:,-pix_width:] = border_color else: marked[0:pix_width,:] = s.sample_grid(marked[0:pix_width,:], [list(range(pix_width)), list(range(im_shape[1]))], 'gauss' + str(24 * pix_width), out_type='uint8') marked[:,0:pix_width] = s.sample_grid(marked[:,0:pix_width], [list(range(im_shape[0])), list(range(pix_width))], 'gauss' + str(24 * pix_width), out_type='uint8') marked[-pix_width:,:] = s.sample_grid(marked[-pix_width:,:], [list(range(pix_width)), list(range(im_shape[1]))], 'gauss' + str(24 * pix_width), out_type='uint8') marked[:,-pix_width:] = s.sample_grid(marked[:,-pix_width:], [list(range(im_shape[0])), list(range(pix_width))], 'gauss' + str(24 * pix_width), out_type='uint8') im_y = im_shape[0] - 2 * pix_width im_x = im_shape[1] - 2 * pix_width num_wrd_y = min(255, im_y // (pix_width * 24)) num_wrd_x = min(255, im_x // (pix_width * 24)) capacity = 4 * (num_wrd_y + num_wrd_x - 8) if isinstance(content, str): content = content.encode('utf-8') clen = len(content) if clen > 1023: raise ValueError('Content too long.') slen = int(0.95 + float(clen) * 2.0 * ecc_redundancy_level) mlen = clen + slen if mlen <= 255: cchunks = clen nchunks = 1 else: nchunks = 1 + (mlen - 1) // 255 cchunks = 1 + (clen - 1) // nchunks slen = int(0.95 + float(cchunks) * 2.0 * ecc_redundancy_level) if (cchunks + slen) > 255: nchunks += 1 cchunks = 1 + (clen - 1) // nchunks slen = int(0.95 + float(cchunks) * 2.0 * ecc_redundancy_level) if nchunks > 64: raise ValueError('ECC factor too high.') r = RSCodec(slen) echunks = cchunks + slen b = r.encode_to_bits(content, cchunks) if capacity < len(b): raise ValueError('Content too long to encode.') if len(b) < capacity: while len(b) % echunks != 0: b.extend([r.value_to_bits(257)]) b0 = b[:] while len(b) < capacity: b.extend(b0) # mark image with side markers boff = 4 * (nchunks - 1) sm0 = r.value_to_bits(0 + boff) sm1 = r.value_to_bits(1 + boff) sm2 = r.value_to_bits(2 + boff) sm3 = r.value_to_bits(3 + boff) wm0 = r.value_to_bits(num_wrd_y) wm1 = r.value_to_bits(num_wrd_x) sm = [[sm0,wm0], [sm0,wm0], [sm1,wm1], [sm1,wm1], [sm2,wm0], [sm2,wm0], [sm3,wm1], [sm3,wm1]] for cidx in range(8): sm[cidx].extend([r.value_to_bits(cchunks), r.value_to_bits(slen)]) nwyr = num_wrd_y - 4 nwxr = num_wrd_x - 4 nwyc = float(nwyr) nwxc = float(nwxr) nwy = 0.5 * nwxc nwx = 0.5 * nwyc lidx = 0 while nwyr > 0 or nwxr > 0: if nwy <= nwx: sm[0].append(b[lidx]) lidx += 1 sm[1].append(b[lidx]) lidx += 1 sm[4].append(b[lidx]) lidx += 1 sm[5].append(b[lidx]) lidx += 1 nwy += nwxc nwyr -= 1 else: sm[2].append(b[lidx]) lidx += 1 sm[3].append(b[lidx]) lidx += 1 sm[6].append(b[lidx]) lidx += 1 sm[7].append(b[lidx]) lidx += 1 nwx += nwyc nwxr -= 1 image_mark_pixel(marked, 0, pix_width, 0, color_diff, False) image_mark_pixel(marked, 0, pix_width, im_shape[0]-pix_width, color_diff, False) image_mark_pixel(marked, 2, pix_width, 0, color_diff, False) image_mark_pixel(marked, 2, pix_width, im_shape[0]-pix_width, color_diff, False) for cidx in range(8): side = cidx // 2 if (side % 2) == 0: num_wrd = num_wrd_y else: num_wrd = num_wrd_x for widx in range(num_wrd): word = sm[cidx][widx] if (cidx % 2) == 0: wcrd = widx else: wcrd = num_wrd + widx image_mark_word(marked, side, pix_width, num_wrd, wcrd, color_diff, word) return marked # mark pixel in image (color darker or brighter) def image_mark_pixel(image, side, pix_width, pcrd, value, brighter): """ Mark one pixel within an image (with bit value) Parameters ---------- image : ndarray Image to be marked side : int Side of the image on which to mark a pixel (0 through 3) pix_width : int Width of a pixel pcrd : int Pixel coordinate value : int Value to add (or subtract) from the original pixel value brighter : bool Boolean, add (True) or subtract (False) from original value Returns ------- None """ shape = image.shape it = 255 - value darker = not brighter if side == 0 or side == 2: yf = pcrd yt = pcrd + pix_width if side == 0: xf = 0 xt = pix_width else: xf = shape[1] - pix_width xt = shape[1] else: xf = pcrd xt = pcrd + pix_width if side == 1: yf = 0 yt = pix_width else: yf = shape[0] - pix_width yt = shape[0] v0 = value if len(shape) > 2 and shape[2] == 3: v2 = v1 = v0 m0 = numpy.mean(image[yf:yt,xf:xt,0]) m1 = numpy.mean(image[yf:yt,xf:xt,1]) m2 = numpy.mean(image[yf:yt,xf:xt,2]) if darker and m0 > it: v0 += m0 - it elif brighter and m0 < value: v0 += value - m0 if darker and m1 > it: v1 += m1 - it elif brighter and m1 < value: v1 += value - m1 if darker and m2 > it: v2 += m2 - it elif brighter and m2 < value: v2 += value - m2 if darker: (v0, v1, v2) = (-v0, -v1, -v2) image[yf:yt,xf:xt,0] = numpy.maximum(0.0, numpy.minimum(255.0, image[yf:yt,xf:xt,0].astype(numpy.float) + v0)) image[yf:yt,xf:xt,1] = numpy.maximum(0.0, numpy.minimum(255.0, image[yf:yt,xf:xt,1].astype(numpy.float) + v1)) image[yf:yt,xf:xt,2] = numpy.maximum(0.0, numpy.minimum(255.0, image[yf:yt,xf:xt,2].astype(numpy.float) + v2)) else: m0 = numpy.mean(image[yf:yt,xf:xt]) if darker and m0 > it: v0 += m0 - it elif brighter and m0 < value: v0 += value - m0 if darker: v0 = -v0 image[yf:yt,xf:xt] = numpy.maximum(0.0, numpy.minimum(255.0, image[yf:yt,xf:xt].astype(numpy.float) + v0)) # mark word (of size 10 "pixels") in image def image_mark_word(image, side, pix_width, num_wrd, wcrd, value, word): """ Mark 10-bit (8-bit encoded) "word" in image border pixels Parameters ---------- image : ndarray Image to be marked side : int Side of the image on which to mark a pixel (0 through 3) pix_width : int Width of a pixel num_wrd : int Number of words on this side wcrd : int Which word among those to be marked value : int Value that is passed to image_mark_pixel word : list List of bits, passed as "brighter" parameter to image_mark_pixel Returns ------- None """ shape = image.shape if side == 0 or side == 2: slen = shape[0] else: slen = shape[1] if wcrd < num_wrd: scrd = pix_width * (1 + 12 * wcrd) pix_add = pix_width else: scrd = slen - pix_width * (2 + 12 * (wcrd - num_wrd)) pix_add = -pix_width for i in range(10): image_mark_pixel(image, side, pix_width, scrd, value, word[i] > 0) scrd += pix_add image_mark_pixel(image, side, pix_width, scrd, value*2, False) scrd += pix_add image_mark_pixel(image, side, pix_width, scrd, value*2, True) # match images in properties def image_match( source_image:numpy.ndarray, target_image:numpy.ndarray, match_mask:numpy.ndarray = None, match_contrast:bool = True, match_hue:bool = True, match_saturation:bool = True, match_mean:bool = True, match_std:bool = True, gray_conv_type:str = 'desaturate', ) -> numpy.ndarray: """ Match two images on contrast, hue, and saturation Parameters ---------- source_image, target_image : ndarray (must match in size) Source image (will be matched to) and target image match_mask : ndarray Mask (must match in size) match_contrast, match_hue, match_saturation : bool Flags, controlling which aspects are matched (default: all True) match_mean, match_std : bool Flags, controlling how aspects are matched (default: all True) gray_conv_type : str Passed into image_gray as conv_type (see help there) Returns ------- matched_image : ndarray Source image transformed to match target image """ try: sshape = source_image.shape tshape = target_image.shape if sshape != tshape: raise ValueError('Image shape mismatch.') except: raise if not match_mask is None: if not isinstance(match_mask, numpy.ndarray): match_mask = None elif match_mask.ndim != 2: raise ValueError('Invalid mask dims.') elif match_mask.shape[0] != sshape[0] or match_mask.shape[1] != sshape[1]: raise ValueError('Invalid mask shape.') mask_size = 0 if not match_mask is None: mask_size = numpy.sum(match_mask) if mask_size < 16: raise ValueError('Mask covers too little area.') if not match_mean and not match_std: return source_image.copy() source_type = source_image.dtype source_image = source_image.astype(numpy.float64) source_is_gray = (source_image.ndim == 2) target_is_gray = (target_image.ndim == 2) if match_contrast: if source_is_gray: source_gray = source_image else: source_gray = image_gray(source_image, rgb_format=False, conv_type=gray_conv_type) if target_is_gray: target_gray = target_image.astype(numpy.float64) else: target_gray = image_gray(target_image, rgb_format=False, conv_type=gray_conv_type) if mask_size > 0: source_gray = source_gray[match_mask] target_gray = target_gray[match_mask] source_mean = numpy.mean(source_gray) if match_mean: target_mean = numpy.mean(target_gray) mean_corr = (target_mean - source_mean) source_image = source_image + mean_corr if match_std: source_std = numpy.std(source_gray) target_std = numpy.std(target_gray) std_corr = target_std / source_std source_image = target_mean + std_corr * (source_image - target_mean) elif match_std: source_std = numpy.std(source_gray) target_std = numpy.std(target_gray) std_corr = target_std / source_std source_image = source_mean + std_corr * (source_image - source_mean) if not source_is_gray and not target_is_gray and (match_hue or match_saturation): source_hslv = rgb2hslv(source_image[:,:,0], source_image[:,:,1], source_image[:,:,2]) target_hslv = rgb2hslv(target_image[:,:,0], target_image[:,:,1], target_image[:,:,2]) source_hue = source_hslv[0] source_sat = source_hslv[1] target_hue = target_hslv[0] target_sat = target_hslv[1] if mask_size > 0: source_hue = source_hue[match_mask] source_sat = source_sat[match_mask] target_hue = target_hue[match_mask] target_sat = target_sat[match_mask] if match_hue: pass source_image[source_image < 0] = 0 if source_type == numpy.uint8: source_image[source_image > 255] = 255 return source_image.astype(source_type) # image mixing (python portion) def image_mix( image_1:numpy.ndarray, image_2:numpy.ndarray, alpha_2:Union[float, numpy.ndarray, None] = 0.5, ) -> numpy.ndarray: """ Mix two (RGB and/or grayscale) image with either max or blending Parameters ---------- image_1 : ndarray First image (2D: gray, 3D: color) image_2 : ndarray Second image alpha_2 : alpha value(s), either float, ndarray, or None Blending selection - for a single value, this is the opacity of the second image (default = 0.5, i.e. equal mixing); for an array, it must match the size, and be a single plane; if None, each image component is set to the maximum across the two arrays Returns ------- out_image : ndarray Mixed image """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from .jitfunc import image_mix as image_mix_jit # get original shapes and perform necessary checks and reshaping im1shape = image_1.shape im1reshape = True im2shape = image_2.shape im2reshape = True if image_1.shape[0] != image_2.shape[0]: raise ValueError('Invalid input images.') if not alpha_2 is None and isinstance(alpha_2, numpy.ndarray): a2shape = alpha_2.shape if not alpha_2.dtype is numpy.float32: alpha_2 = alpha_2.astype(numpy.float32) im1pix = im1shape[0] im1planes = 1 if len(im1shape) > 1: if im1shape[1] == 3 and len(im1shape) == 2: im1planes = 3 else: im1pix *= im1shape[1] if len(im1shape) > 2: im1planes = im1shape[2] if not im1planes in [1, 3]: if im1planes > 3: if len(im1shape) == 3: image_1 = image_1[:,:,0:3] else: image_1 = image_1[:,0:3] im1planes = 3 im1reshape = False else: raise ValueError('Invalid input image_1.') im2pix = im2shape[0] im2planes = 1 if len(im2shape) > 1: if im2shape[1] == 3 and len(im2shape) == 2: im2planes = 3 else: im2pix *= im2shape[1] if len(im2shape) > 2: im2planes = im2shape[2] if not im2planes in [1, 3]: if im2planes > 3: if len(im2shape) == 3: image_2 = image_2[:,:,0:3] else: image_2 = image_2[:,0:3] im2planes = 3 im2reshape = False else: raise ValueError('Invalid input image_1.') raise ValueError('Invalid input image_2.') if im1pix != im2pix: raise ValueError('Invalid input images.') if isinstance(alpha_2, numpy.ndarray) and alpha_2.size not in [1, im1pix]: raise ValueError('Invalid Alpha size.') try: image_1.shape = (im1pix, im1planes) except: try: image_1 = image_1.reshape((im1pix, im1planes)) except: raise ValueError('Unabled to format image_1.') try: image_2.shape = (im1pix, im2planes) except: try: image_2 = image_2.reshape((im1pix, im2planes)) except: if im1reshape: image_1.shape = im1shape raise ValueError('Unabled to format image_2.') if not alpha_2 is None: if isinstance(alpha_2, float): alpha_2 = numpy.float32(alpha_2) * numpy.ones(im1pix, dtype=numpy.float32) a2shape = alpha_2.shape else: if alpha_2.size == 1: alpha_2 = alpha_2 * numpy.ones(im1pix, dtype=numpy.float32) a2shape = alpha_2.shape else: try: alpha_2.shape = (im1pix) except: try: alpha_2 = alpha_2.reshape(im1pix) except: if im1reshape: image_1.shape = im1shape if im2reshape: image_2.shape = im2shape raise ValueError('Unable to format alpha_2.') # attempt to use JIT function try: immix = image_mix_jit(image_1, image_2, alpha_2) # and return original inputs to their previous state in any case! except: if im1reshape: image_1.shape = im1shape if im2reshape: image_2.shape = im2shape if isinstance(alpha_2, numpy.ndarray): alpha_2.shape = a2shape raise if im1reshape: image_1.shape = im1shape if im2reshape: image_2.shape = im2shape if not alpha_2 is None: alpha_2.shape = a2shape if im1shape[-1] in [1, 3]: immix.shape = im1shape else: if len(im1shape) == 3: immix.shape = (im1shape[0], im1shape[1], immix.shape[-1]) return immix # overlay image def image_overlay( im:numpy.ndarray, heatmap:numpy.ndarray, heatposlut:Union[list,numpy.ndarray]=[[255,0,0],[255,255,0]], heatneglut:Union[list,numpy.ndarray]=None, min_thresh:float=0.0, max_thresh:float=1.0, alpha:Union[float,numpy.ndarray]=-1.0, alpha_max:float=1.0, ) -> numpy.ndarray: # late imports from .sampler import Sampler s = Sampler() # lookup colors imsh = im.shape if im.ndim != 3 or imsh[2] != 3: raise ValueError('Invalid image, must be RGB x*y*3.') if heatmap.ndim != 2: raise ValueError('Invalid heatmap, must be x*y.') hmsh = heatmap.shape if isinstance(heatposlut, list): heatposlut = numpy.asarray(heatposlut).astype(numpy.uint8) if isinstance(heatneglut, list): heatneglut = numpy.asarray(heatneglut).astype(numpy.uint8) hplsh = heatposlut.shape if len(hplsh) != 2 or hplsh[1] != 3: raise ValueError('Invalid heatposlut shape.') if not heatneglut is None: hnlsh = heatneglut.shape if len(hnlsh) != 2 or hnlsh[1] != 3: raise ValueError('Invalid heatneglut shape.') else: hnlsh = [256,3] if (max_thresh - min_thresh) != 1.0: trans_fac = 1.0 / (max_thresh - min_thresh) min_thresh /= trans_fac if min_thresh < 0.0: min_thresh = 0.0 if isinstance(alpha, numpy.ndarray): if alpha.ndim != 2 or alpha.shape[0] != hmsh[0] or alpha.shape[1] != hmsh[1]: alpha = -1.0 else: if alpha.shape[0] != imsh[0] or alpha.shape[1] != imsh[1]: alpha = s.sample_grid(alpha,list(imsh[0:2]), 'linear') if not (isinstance(alpha, numpy.ndarray) or isinstance(alpha, float)): raise ValueError('Invalid alpha parameter.') if alpha_max <= 0.0: return im.copy() if isinstance(alpha, float): if alpha > 1.0: alpha = 1.0 elif alpha == 0: return im.copy() if alpha < 0.0: alpha_map = heatmap.copy() alpha_map[alpha_map < min_thresh] = min_thresh alpha_map -= min_thresh alpha_map /= (max_thresh - min_thresh) alpha_map[alpha_map > 1.0] = 1.0 alpha = -alpha * alpha_map alpha[alpha > 1.0] = 1.0 else: alpha_map = heatmap >= min_thresh alpha_map = alpha_map.astype(numpy.float32) alpha = alpha * alpha_map if alpha.shape[0] != imsh[0] or alpha.shape[1] != imsh[1]: alpha = s.sample_grid(alpha,list(imsh[0:2]), 'linear') if alpha_max < 1.0 and isinstance(alpha, numpy.ndarray): alpha[alpha > alpha_max] = alpha_max heatmap = heatmap - min_thresh heatmap /= (max_thresh - min_thresh) if hplsh[0] < 40: lsfac = (hplsh[0] - 1) / 255.0 heatposlut = s.sample_grid(heatposlut, [numpy.arange(0.0,float(hplsh[0])-1.0+0.5*lsfac,lsfac),3], 'linear') if hnlsh[0] < 40: lsfac = (hnlsh[0] - 1) / 255.0 heatneglut = s.sample_grid(heatneglut, [numpy.arange(0.0,float(hplsh[0])-1.0+0.5*lsfac,lsfac),3], 'linear') heatrgb = lut_lookup(heatmap.flatten(), heatposlut, heatneglut).reshape( (hmsh[0],hmsh[1],3)) if hmsh[0] != imsh[0] or hmsh[1] != imsh[1]: heatrgb = s.sample_grid(heatrgb, list(imsh[0:2]), 'linear').astype(numpy.uint8) return image_mix(im, heatrgb, alpha) # read image border def image_read_border( image:numpy.ndarray, output:str = 'str', pix_width:Union[None,int,float,numpy.ndarray] = None, ) -> Any: """ Read the encoded data from an image border Parameters ---------- image : ndarray Image containing data in its border pixels output : str Either 'str' (default) or 'bytes' pix_width : int, float, ndarray Single value or 4-element vector (for each reading direction), default: auto-detect (None) Returns ------- decoded : str, bytes Decoded content (if able to decode) """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from .reedsolo import RSCodec from .sampler import Sampler r = RSCodec(64) # needed for bit decoding s = Sampler() # guess pixel width im_shape = image.shape if len(im_shape) > 2: image = numpy.trunc(numpy.mean(image, axis=2)).astype(numpy.uint8) if pix_width is None: pix_width = numpy.zeros(4) elif isinstance(pix_width, int): pix_width = float(pix_width) * numpy.ones(4) elif isinstance(pix_width, float): pix_width = pix_width * numpy.ones(4) elif pix_width.size != 4: pix_width = numpy.zeros(4) pwi = numpy.where(pix_width == 0.0)[0] if len(pwi) > 0: pwi = pwi[0] im_shapeh = (im_shape[0] // 2, im_shape[1] // 2) wlen = None cidx = 0 while wlen is None: wlen = column_period(image[:im_shapeh[0],cidx],12) if not wlen is None: break cidx += 1 if wlen is None: raise RuntimeError('Column undetected.') if cidx > 0: image = image[:,cidx:] pix_width[pwi] = float(wlen) / 12.0 if pix_width[pwi] >= 2.0: if numpy.corrcoef(image[:im_shapeh[0],0], image[:im_shapeh[0],1])[0,1] < 0.5: raise RuntimeError('Column not duplicated as expected.') if pwi < 2: pwdiff = pix_width[pwi] - float(int(pix_width[pwi])) if pwdiff != 0.0: if pwdiff > 0.0 and pwdiff < 0.1: xpix_width = float(int(pix_width[pwi])) else: xpix_width = float(int(2.0 * pix_width[pwi] + 0.5)) image = s.sample_grid(image, [xpix_width/pix_width[pwi],1.0]) pix_width[pwi] = xpix_width try: return image_read_border(image_rotate(image[:,cidx:], 'left'), output, pix_width) except: raise pix_width = 0.1 * numpy.trunc(10.0 * pix_width + 0.5) if not numpy.all(pix_width == pix_width[0]): if pix_width[0] != pix_width[2] or pix_width[1] != pix_width[3]: raise RuntimeError('Invalid image detected.') if pix_width[0] > pix_width[1]: image = s.sample_grid(image, [1.0, pix_width[0] / pix_width[1]]) else: image = s.sample_grid(image, [pix_width[1] / pix_width[0], 1.0]) # get reference columns pix_width = int(pix_width[0]) kspec = 'gauss' + str(pix_width*24) if pix_width > 1: c0_p = numpy.mean(image[pix_width:0-pix_width,:pix_width], axis=1) c1_p = numpy.mean(image[:pix_width,pix_width:0-pix_width], axis=0) c2_p = numpy.mean(image[pix_width:0-pix_width,0-pix_width:], axis=1) c3_p = numpy.mean(image[0-pix_width:,pix_width:0-pix_width], axis=0) else: c0_p = image[1:-1,0] c1_p = image[0,1:-1] c2_p = image[1:-1,-1] c3_p = image[-1,1:-1] c0_p.shape = (c0_p.size) c1_p.shape = (c1_p.size) c2_p.shape = (c0_p.size) c3_p.shape = (c1_p.size) c0_n = c0_p[::-1] c1_n = c1_p[::-1] c2_n = c2_p[::-1] c3_n = c3_p[::-1] rc0_p = s.sample_values(c0_p, 1.0/pix_width, kspec) rc0_n = s.sample_values(c0_n, 1.0/pix_width, kspec) rc1_p = s.sample_values(c1_p, 1.0/pix_width, kspec) rc1_n = s.sample_values(c1_n, 1.0/pix_width, kspec) rc2_p = s.sample_values(c2_p, 1.0/pix_width, kspec) rc2_n = s.sample_values(c2_n, 1.0/pix_width, kspec) rc3_p = s.sample_values(c3_p, 1.0/pix_width, kspec) rc3_n = s.sample_values(c3_n, 1.0/pix_width, kspec) if pix_width > 1: c0_p = s.sample_values(c0_p, 1.0/pix_width, 'resample') c0_n = s.sample_values(c0_n, 1.0/pix_width, 'resample') c1_p = s.sample_values(c1_p, 1.0/pix_width, 'resample') c1_n = s.sample_values(c1_n, 1.0/pix_width, 'resample') c2_p = s.sample_values(c2_p, 1.0/pix_width, 'resample') c2_n = s.sample_values(c2_n, 1.0/pix_width, 'resample') c3_p = s.sample_values(c3_p, 1.0/pix_width, 'resample') c3_n = s.sample_values(c3_n, 1.0/pix_width, 'resample') # subtract c0_p = c0_p - rc0_p c0_n = c0_n - rc0_n c1_p = c1_p - rc1_p c1_n = c1_n - rc1_n c2_p = c2_p - rc2_p c2_n = c2_n - rc2_n c3_p = c3_p - rc3_p c3_n = c3_n - rc3_n # decode first values c_values = [] try: c_values.append(r.values_to_value(c0_p[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c0_n[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c1_p[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c1_n[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c2_p[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c2_n[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c3_p[:10])) except: c_values.append(None) try: c_values.append(r.values_to_value(c3_n[:10])) except: c_values.append(None) c_xvals = [v // 4 for v in c_values if not v is None] if len(c_xvals) < 4: raise RuntimeError('Image quality too poor.') if not all([v == c_xvals[0] for v in c_xvals]): xval = float(numpy.median(numpy.asarray(c_xvals))) if float(int(xval)) != xval: raise RuntimeError('Image quality too poor.') xval = int(xval) if sum([xval != v for v in c_xvals]) > (1 + len(c_xvals) // 2): raise RuntimeError('Image quality too poor.') for (idx, v) in c_values: if v is None: continue if (v // 4) != xval: c_values[idx] = 4 * xval + v % 4 else: xval = c_xvals[0] while any([v is None for v in c_values]): for (idx, v) in c_values: nidx = (idx + 1) % 8 pidx = (idx + 7) % 8 if v is None: if (idx % 2) == 0: if not c_values[nidx] is None: c_values[idx] = c_values[nidx] elif not c_values[pidx] is None: c_values[idx] = (4 * xval + (c_values[pidx] + 1) % 4) else: if not c_values[pidx] is None: c_values[idx] = c_values[pidx] elif not c_values[nidx] is None: c_values[idx] = (4 * xval + (c_values[nidx] + 3) % 4) # flip data into correct orientation c_order = [v % 4 for v in c_values] nchunks = 1 + xval if c_order == [1, 1, 2, 2, 3, 3, 0, 0]: (c0_p, c0_n, c1_p, c1_n, c2_p, c2_n, c3_p, c3_n) = (c1_n, c1_p, c2_p, c2_n, c3_n, c3_p, c0_p, c0_n) elif c_order == [2, 2, 3, 3, 0, 0, 1, 1]: (c0_p, c0_n, c1_p, c1_n, c2_p, c2_n, c3_p, c3_n) = (c2_n, c2_p, c3_n, c3_p, c0_n, c0_p, c1_n, c1_p) elif c_order == [3, 3, 0, 0, 1, 1, 2, 2]: (c0_p, c0_n, c1_p, c1_n, c2_p, c2_n, c3_p, c3_n) = (c3_p, c3_n, c0_n, c0_p, c1_p, c1_n, c2_n, c2_p) elif c_order != [0, 0, 1, 1, 2, 2, 3, 3]: raise RuntimeError('Invalid corner markers.') # extract number of words nwy = [] nwx = [] try: nwy.append(r.values_to_value(c0_p[12:22])) except: pass try: nwy.append(r.values_to_value(c0_n[12:22])) except: pass try: nwy.append(r.values_to_value(c2_p[12:22])) except: pass try: nwy.append(r.values_to_value(c2_n[12:22])) except: pass try: nwx.append(r.values_to_value(c1_p[12:22])) except: pass try: nwx.append(r.values_to_value(c1_n[12:22])) except: pass try: nwx.append(r.values_to_value(c3_p[12:22])) except: pass try: nwx.append(r.values_to_value(c3_n[12:22])) except: pass if len(nwy) == 0 or len(nwx) == 0: raise RuntimeError('Error decoding number of words!') if not all([v == nwy[0] for v in nwy]): if len(nwy) == 2: raise RuntimeError('Error decoding number of words!') else: nwy = float(numpy.median(numpy.asarray(nwy))) if float(int(nwy)) != nwy: raise RuntimeError('Error decoding number of words!') else: nwy = nwy[0] if not all([v == nwx[0] for v in nwx]): if len(nwx) == 2: raise RuntimeError('Error decoding number of words!') else: nwx = float(numpy.median(numpy.asarray(nwx))) if float(int(nwx)) != nwx: raise RuntimeError('Error decoding number of words!') else: nwx = nwx[0] # extract content length and number of symbols clen = [] nsym = [] try: clen.append(r.values_to_value(c0_p[24:34])) except: pass try: nsym.append(r.values_to_value(c0_p[36:46])) except: pass try: clen.append(r.values_to_value(c0_n[24:34])) except: pass try: nsym.append(r.values_to_value(c0_n[36:46])) except: pass try: clen.append(r.values_to_value(c1_p[24:34])) except: pass try: nsym.append(r.values_to_value(c1_p[36:46])) except: pass try: clen.append(r.values_to_value(c1_n[24:34])) except: pass try: nsym.append(r.values_to_value(c1_n[36:46])) except: pass try: clen.append(r.values_to_value(c2_p[24:34])) except: pass try: nsym.append(r.values_to_value(c2_p[36:46])) except: pass try: clen.append(r.values_to_value(c2_n[24:34])) except: pass try: nsym.append(r.values_to_value(c2_n[36:46])) except: pass try: clen.append(r.values_to_value(c3_p[24:34])) except: pass try: nsym.append(r.values_to_value(c3_p[36:46])) except: pass try: clen.append(r.values_to_value(c3_n[24:34])) except: pass try: nsym.append(r.values_to_value(c3_n[36:46])) except: pass if len(clen) == 0: raise RuntimeError('Error decoding content length.') if not all([v == clen[0] for v in clen]): if len(clen) == 2: raise RuntimeError('Error decoding content length.') else: clen = float(numpy.median(numpy.asarray(clen))) if float(int(clen)) != clen: raise RuntimeError('Error decoding content length.') clen = int(clen) else: clen = clen[0] if len(nsym) == 0: raise RuntimeError('Error decoding number of ECC bytes.') if not all([v == nsym[0] for v in nsym]): if len(nsym) == 2: raise RuntimeError('Error decoding number of ECC bytes.') else: nsym = float(numpy.median(numpy.asarray(nsym))) if float(int(nsym)) != nsym: raise RuntimeError('Error decoding number of ECC bytes.') nsym = int(nsym) else: nsym = nsym[0] # get code words r = RSCodec(nsym) eclen = clen + nsym chunks = [[None] * eclen for v in range(nchunks)] cidx = 0 lidx = 0 nwyr = nwy - 4 nwxr = nwx - 4 nwyc = float(nwyr) nwxc = float(nwxr) nwy = 0.5 * nwxc nwx = 0.5 * nwyc yc = [c0_p[48:], c0_n[48:], c2_p[48:], c2_n[48:]] xc = [c1_p[48:], c1_n[48:], c3_p[48:], c3_n[48:]] ycidx = 0 xcidx = 0 yidx = 0 xidx = 0 while nwyr > 0 or nwxr > 0: if nwy <= nwx: try: w = r.values_to_value(yc[ycidx][yidx:yidx+10]) except: w = None ycidx += 1 if ycidx > 3: ycidx = 0 yidx += 12 nwy += nwxc nwyr -= 1 else: try: w = r.values_to_value(xc[xcidx][xidx:xidx+10]) except: w = None xcidx += 1 if xcidx > 3: xcidx = 0 xidx += 12 nwx += nwyc nwxr -= 1 if not w is None: if w == 257: cidx = 0 lidx = 0 continue if chunks[cidx][lidx] is None: chunks[cidx][lidx] = w elif isinstance(chunks[cidx][lidx], int): chunks[cidx][lidx] = [chunks[cidx][lidx],w] else: chunks[cidx][lidx].append(w) lidx += 1 if lidx >= eclen: lidx = 0 cidx += 1 if cidx >= nchunks: cidx = 0 out = bytearray() for cidx in range(nchunks): for lidx in range(eclen): if chunks[cidx][lidx] is None: chunks[cidx][lidx] = 0 elif isinstance(chunks[cidx][lidx], list): ll = chunks[cidx][lidx] if all([v == ll[0] for v in ll]): ll = ll[0] elif len(ll) > 2: ll = int(numpy.median(numpy.asarray(ll))) else: ll = ll[0] chunks[cidx][lidx] = ll out.extend(bytearray(chunks[cidx])) try: out = r.decode(out, eclen) except: raise if isinstance(output, str) and output == 'str': out = out.decode('utf-8') return out # image registration (experimental!) def image_register( i1:numpy.ndarray, i2:numpy.ndarray, imask:numpy.ndarray = None, mode:str = 'luma', origin:numpy.ndarray = None, trans:bool = True, rotate:bool = True, scale:bool = False, shear:bool = False, imethod:str = 'linear', maxpts:int = 250000, maxiter:int = 100, smooth:list = [0.005], init_m:dict = None, ) -> numpy.ndarray: # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from . import sampler s = sampler.Sampler() if not imethod in s._kernels: raise ValueError('Invalid interpolation method (kernel function).') sk = s._kernels[imethod] zsk = s._kernels['lanczos3'] if not isinstance(i1, numpy.ndarray) or not isinstance(i2, numpy.ndarray): raise ValueError('Invalid types.') if i1.ndim < 2 or i1.ndim > 3 or i2.ndim < 2 or i2.ndim > 3: raise ValueError('Invalid dimensions.') ishape = i1.shape if ishape[0] != i2.shape[0] or ishape[1] != i2.shape[1]: raise ValueError('Dimension mismatch.') if not imask is None: if not isinstance(imask, numpy.ndarray): raise ValueError('Invalid imask parameter.') elif imask.ndim != 2: raise ValueError('Invalid imask.ndim value.') elif imask.shape[0] != ishape[0] or imask.shape[1] != ishape[1]: raise ValueError('Invalid imask.shape.') if imask.dtype != numpy.bool: imask = (imask > 0).astype(numpy.uint8) else: imask = imask.astype(numpy.uint8) i1o = i1 i2o = i2 if isinstance(smooth, list) and len(smooth) > 0: try: i1 = image_smooth_fft(i1o, smooth[0]) i2 = image_smooth_fft(i2o, smooth[0]) except: raise if isinstance(init_m, dict): if origin is None: if 'origin' in init_m: origin = init_m['origin'] else: origin = 0.5 * numpy.asarray(ishape, numpy.float64) if 'trans' in init_m: transp = init_m['trans'] else: transp = numpy.zeros(2, numpy.float64) if 'rotate' in init_m: rotatep = init_m['rotate'] else: rotatep = numpy.zeros(1, numpy.float64) if 'scale' in init_m: scalep = init_m['scale'] else: scalep = numpy.ones(1, numpy.float64) if 'shear' in init_m: shearp = init_m['shear'] else: shearp = numpy.zeros(1, numpy.float64) else: if origin is None: origin = 0.5 * numpy.asarray(ishape, numpy.float64) transp = numpy.zeros(2, numpy.float64) rotatep = numpy.zeros(1, numpy.float64) scalep = numpy.ones(1, numpy.float64) shearp = numpy.zeros(1, numpy.float64) m = { 'trans': transp, 'rotate': rotatep, 'scale': scalep, 'shear': shearp, } try: moi = sampler.trans_matrix({'trans': origin}) mo = sampler.trans_matrix({'trans': -origin}) #pylint: disable=invalid-unary-operand-type t = numpy.linalg.inv(sampler.trans_matrix(m)) except: raise s0 = numpy.arange(0.0, float(ishape[0]), 1.0).astype(numpy.float64) s1 = numpy.arange(0.0, float(ishape[1]), 1.0).astype(numpy.float64) (c1, c0) = numpy.meshgrid(s1, s0) c0.shape = (c0.size,1,) c1.shape = (c1.size,1,) c01 = numpy.concatenate((c0,c1), axis=1) step = (1.0 / 512.0) dg0 = sampler._sample_grid_coords( i1, c01 + step * numpy.asarray([1.0,1.0]), zsk[0], zsk[1]) dg1 = dg0.copy() cxy = sampler._sample_grid_coords( i1, c01 + step * numpy.asarray([1.0,-1.0]), zsk[0], zsk[1]) dg0 += cxy dg1 -= cxy cxy = sampler._sample_grid_coords( i1, c01 + step * numpy.asarray([-1.0,1.0]), zsk[0], zsk[1]) dg0 -= cxy dg1 += cxy cxy = sampler._sample_grid_coords( i1, c01 + step * numpy.asarray([-1.0,-1.0]), zsk[0], zsk[1]) dg0 -= cxy dg1 -= cxy dg0 *= 128.0 dg1 *= 128.0 sf = max([1.0, numpy.sqrt(float(ishape[0] * ishape[1]) / float(maxpts))]) s0 = numpy.arange(-0.25, float(ishape[0]), sf).astype(numpy.float64) s1 = numpy.arange(-0.25, float(ishape[1]), sf).astype(numpy.float64) (c1, c0) = numpy.meshgrid(s1, s0) c0.shape = (c0.size,1,) c1.shape = (c1.size,1,) dg0.shape = ishape dg1.shape = ishape lsk = s._kernels['linear'] c01 = numpy.concatenate((c0,c1), axis=1) if not imask is None: cmask = sampler._sample_grid_coords(imask.astype(numpy.uint8), c01, lsk[0], lsk[1]) >= 0.5 c0 = c0[cmask] c1 = c1[cmask] else: cmask = sampler._sample_grid_coords((i1 >= 0.5).astype(numpy.uint8), c01, lsk[0], lsk[1]) >= 0.5 c0 = c0[cmask] c1 = c1[cmask] c01 = numpy.concatenate((c0,c1), axis=1) d = sampler._sample_grid_coords(i1, c01, sk[0], sk[1]) dg0 = sampler._sample_grid_coords(dg0, c01, sk[0], sk[1]) dg1 = sampler._sample_grid_coords(dg1, c01, sk[0], sk[1]) dg0.shape = (dg0.size,1,) dg1.shape = (dg1.size,1,) dg01 = numpy.concatenate((dg0, dg1), axis=1) nc = 0 if trans: nc += 2 if rotate: nc += 1 if scale: nc += 1 if shear: nc += 1 i1r = numpy.zeros(c0.size * nc, dtype=numpy.float64).reshape((c0.size, nc,)) nc = 0 if trans: transp[0] = 1.0e-6 t = numpy.matmul(moi, numpy.matmul( numpy.linalg.inv(sampler.trans_matrix(m)), mo)) tc01 = numpy.concatenate( (t[0,0]*c0+t[0,1]*c1+t[0,2], t[1,0]*c0+t[1,1]*c1+t[1,2]), axis=1) i1r[:,nc] = -1.0e6 * numpy.sum((tc01 - c01) * dg01, axis=1) nc += 1 transp[0] = 0.0 transp[1] = 1.0e-6 t = numpy.matmul(moi, numpy.matmul( numpy.linalg.inv(sampler.trans_matrix(m)), mo)) tc01 = numpy.concatenate( (t[0,0]*c0+t[0,1]*c1+t[0,2], t[1,0]*c0+t[1,1]*c1+t[1,2]), axis=1) i1r[:,nc] = -1.0e6 * numpy.sum((tc01 - c01) * dg01, axis=1) nc += 1 transp[1] = 0.0 if rotate: rotatep[0] = 1.0e-6 t = numpy.matmul(moi, numpy.matmul( numpy.linalg.inv(sampler.trans_matrix(m)), mo)) tc01 = numpy.concatenate( (t[0,0]*c0+t[0,1]*c1+t[0,2], t[1,0]*c0+t[1,1]*c1+t[1,2]), axis=1) i1r[:,nc] = -1.0e6 * numpy.sum((tc01 - c01) * dg01, axis=1) nc += 1 rotatep[0] = 0.0 if scale: scalep[0] = 1.000001 t = numpy.matmul(moi, numpy.matmul( numpy.linalg.inv(sampler.trans_matrix(m)), mo)) tc01 = numpy.concatenate( (t[0,0]*c0+t[0,1]*c1+t[0,2], t[1,0]*c0+t[1,1]*c1+t[1,2]), axis=1) i1r[:,nc] = -1.0e6 * numpy.sum((tc01 - c01) * dg01, axis=1) nc += 1 scalep[0] = 1.0 if shear: shearp[0] = 1.0e-6 t = numpy.matmul(moi, numpy.matmul( numpy.linalg.inv(sampler.trans_matrix(m)), mo)) tc01 = numpy.concatenate( (t[0,0]*c0+t[0,1]*c1+t[0,2], t[1,0]*c0+t[1,1]*c1+t[1,2]), axis=1) i1r[:,nc] = -1.0e6 * numpy.sum((tc01 - c01) * dg01, axis=1) nc += 1 shearp[0] = 0.0 ss = numpy.inf * numpy.ones(maxiter+1, dtype=numpy.float64) pss = ss[0] stable = 0 if isinstance(init_m, dict): t = numpy.matmul(numpy.linalg.inv(sampler.trans_matrix(m)), mo) tm = numpy.repeat(t.reshape((t.shape[0], t.shape[1], 1,)), maxiter+1, axis=2) else: tm = numpy.repeat(mo.reshape((mo.shape[0], mo.shape[1], 1,)), maxiter+1, axis=2) i2msk = (i2 >= 0.5).astype(numpy.uint8) while maxiter > 0: t = numpy.matmul(numpy.linalg.inv(tm[:,:,maxiter]), mo) tc01 = numpy.concatenate( (t[0,0]*c0+t[0,1]*c1+t[0,2], t[1,0]*c0+t[1,1]*c1+t[1,2]), axis=1) msk = (sampler._sample_grid_coords(i2msk, tc01, lsk[0], lsk[1]) >= 0.5) if numpy.sum(msk) < 32: raise RuntimeError('Too little image overlap!') f = sampler._sample_grid_coords(i2, tc01[msk,:], sk[0], sk[1]) cm = i1r[msk,:] dm = d[msk] sc = numpy.sum(dm) / numpy.sum(f) dm = dm - sc * f sol = numpy.linalg.lstsq( numpy.matmul(cm.T, cm), numpy.matmul(cm.T, dm), rcond=None)[0] nc = 0 if trans: transp[0] = sol[nc] nc += 1 transp[1] = sol[nc] nc += 1 if rotate: rotatep[0] = sol[nc] nc += 1 if scale: scalep[0] = sol[nc] nc += 1 if shear: shearp[0] = sol[nc] nc += 1 maxiter -= 1 tm[:,:,maxiter] = numpy.matmul(numpy.linalg.inv(sampler.trans_matrix(m)), tm[:,:,maxiter+1]) ss[maxiter] = numpy.sum(dm * dm) / float(dm.size) if not numpy.isinf(pss) and ((pss - ss[maxiter]) / pss) < 1.0e-6: stable += 1 if stable > 2: break else: stable = 0 pss = ss[maxiter] t = numpy.matmul(tm[:,:,numpy.argmin(ss)], moi) ti = list(sampler.trans_matrix_inv(numpy.linalg.inv(t))) if not trans: ti[0] = numpy.zeros(2, numpy.float64) if not rotate: ti[1] = numpy.zeros(1, numpy.float64) if not scale: ti[2] = numpy.ones(2, numpy.float64) if not shear: ti[3] = numpy.zeros(1, numpy.float64) return tuple(ti) # image resampling (cheap!) def image_resample(image:numpy.ndarray, new_shape:tuple) -> numpy.ndarray: """ Cheap (!) image resampling Parameters ---------- image : ndarray Image to be resampled new_shape : tuple Shape of resampled image Returns ------- out_image : ndarray Resampled image """ im_shape = image.shape if len(im_shape) < 2: raise ValueError('Invalid image array.') if isinstance(new_shape, int) and new_shape > 1: max_shape = max(im_shape) sf = float(new_shape) / float(max_shape) new_shape = (int(sf * float(im_shape[0])), int(sf * float(im_shape[1]))) elif isinstance(new_shape, float) and new_shape > 0.0 and new_shape <= 8.0: new_shape = (int(new_shape * float(im_shape[0])), int(new_shape * float(im_shape[1]))) if not isinstance(new_shape, tuple) or len(new_shape) != 2: raise ValueError('Invalid new_shape parameter') if not isinstance(new_shape[0], int) or new_shape[0] < 1: raise ValueError('Invalid new_shape[0] value') if not isinstance(new_shape[1], int) or new_shape[1] < 1: raise ValueError('Invalid new_shape[1] value') # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from .jitfunc import image_resample_u1, image_resample_f4 if len(im_shape) < 3: re_shape = (im_shape[0], im_shape[1], 1) try: image.shape = re_shape except: raise RuntimeError('Error setting necessary planes in shape.') if image.dtype == numpy.uint8: rs_image = image_resample_u1(image, new_shape[0], new_shape[1]) else: rs_image = image_resample_f4(image, new_shape[0], new_shape[1]) rs_shape = rs_image.shape if rs_shape[2] == 1: rs_image.shape = (rs_shape[0], rs_shape[1]) return rs_image # rotate image (90 degrees left, right; or 180 degrees) def image_rotate(image:numpy.ndarray, how:str = None) -> numpy.ndarray: """ Rotate an image Parameters ---------- image : ndarray Image to be rotated how : str Rotation flag, either of 'flip' (180 degree), 'left', or 'right' Returns ------- rotated : ndarray Rotated image """ if not how or not isinstance(how, str) or not how[0].lower() in 'flr': return image im_shape = image.shape has_planes = (len(im_shape) > 2) how = how[0].lower() if how == 'f': if has_planes: return image[::-1, ::-1, :] else: return image[::-1, ::-1] elif how == 'r': if has_planes: return numpy.transpose(image, (1, 0, 2,))[:, ::-1, :] else: return numpy.transpose(image, (1, 0,))[:, ::-1] else: if has_planes: return numpy.transpose(image, (1, 0, 2,))[::-1, :, :] else: return numpy.transpose(image, (1, 0,))[::-1, :] # sample grid def image_sample_grid( image:numpy.ndarray, sampling:Union[numpy.ndarray,list,tuple,int,float], kernel:Union[str,tuple] = 'resample', ) -> numpy.ndarray: """ Sample grid of image (flexible resampling) Parameters ---------- image : ndarray Image array sampling : ndarray, list, tuple, int, float Sampling specification (see Sampler.sample_grid) kernel : str, tuple Kernel specification (see Sampler.sample_grid) Returns ------- sampled : ndarray Sampled image """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from .sampler import Sampler s = Sampler() if image.dtype == numpy.uint8: out_type = 'uint8' else: out_type = 'float64' try: return s.sample_grid(image, sampling, kernel, out_type) except: raise # segment lesion def image_segment_lesion( image:numpy.ndarray, fwhm:float = 0.02, ) -> numpy.ndarray: try: gimage = image_gray(image, rgb_format=False) sgimage = image_smooth_fft(gimage, fwhm) simage = image_smooth_fft(image, fwhm) except: raise ic = image_center(image) icd = numpy.sqrt(0.325 * (ic[0] * ic[0] + ic[1] * ic[1])) s0 = numpy.arange(0.0, float(image.shape[0]), 1.0) s1 = numpy.arange(0.0, float(image.shape[1]), 1.0) (c1,c0) = numpy.meshgrid(s1 - ic[1], s0 - ic[0]) bmask = numpy.sqrt(c0 * c0 + c1 * c1) >= icd fmask = numpy.sqrt(c0 * c0 + c1 * c1) <= (0.5 * icd) back_mean = numpy.mean(sgimage[bmask]) back_std = numpy.std(sgimage[bmask]) fore_mean = numpy.mean(sgimage[fmask]) if fore_mean < (back_mean - 1.5 * back_std) or fore_mean > (back_mean + 1.5 * back_std): lower_mean = (fore_mean < back_mean) ftest = numpy.arange(0.1, 1.5, 0.1) fmean_res = ftest.copy() fstd_res = ftest.copy() for (idx, ft) in enumerate(ftest): fmask = numpy.sqrt(c0 * c0 + c1 * c1) <= (ft * icd) fmean_res[idx] = numpy.mean(sgimage[fmask]) fstd_res[idx] = numpy.std(sgimage[fmask]) print(fmean_res) print(fstd_res) else: pass # smooth image using fft def image_smooth_fft(image:numpy.ndarray, fwhm:float) -> numpy.ndarray: """ Smooth an image using FFT/inverse-FFT Parameters ---------- image : ndarray Image array fwhm : float FWHM parameter (kernel value) Returns ------- smoothed : ndarray Smoothed image """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT from .jitfunc import conv_kernel # deal with invalid/special values if fwhm <= 0.0: return image elif fwhm <= 0.36: fwhm = fwhm * numpy.sqrt(float(image.size)) # place kernel into image k = conv_kernel(numpy.float(fwhm)) ki = k.repeat(k.size).reshape((k.size,k.size)) ki = ki * ki.T im_shape = image.shape if image.dtype != numpy.uint8: from_uint8 = False if len(im_shape) < 3: ka = numpy.zeros_like(image) else: ka = numpy.zeros(im_shape[0] * im_shape[1], dtype=numpy.float32).reshape((im_shape[0], im_shape[1],)) else: from_uint8 = True image = image.astype(numpy.float32) ka = numpy.zeros(im_shape[0] * im_shape[1], dtype=numpy.float32).reshape((im_shape[0], im_shape[1],)) kh = ki.shape[0] // 2 kh0 = min(kh, ka.shape[0]-1) kh1 = min(kh, ka.shape[1]-1) ka[0:kh0+1,0:kh1+1] += ki[kh:kh+kh0+1,kh:kh+kh1+1] ka[0:kh0+1,-kh1:] += ki[kh:kh+kh0+1,0:kh1] ka[-kh0:,0:kh1+1] += ki[0:kh0,kh:kh+kh1+1] ka[-kh0:,-kh1:] += ki[0:kh0,0:kh1] ka /= numpy.sum(ka) # then perform 2D FFT if len(image.shape) < 3: out = numpy.fft.ifftn(numpy.fft.fft2(image) * numpy.fft.fft2(ka)).real else: out = numpy.zeros(image.size, dtype=image.dtype).reshape(image.shape) for p in range(image.shape[2]): out[:,:,p] = numpy.fft.ifft2(numpy.fft.fft2(image[:,:,p]) * numpy.fft.fft2(ka)).real if from_uint8: out = numpy.trunc(out).astype(numpy.uint8) return out # outer-boundary smoothing def image_smooth_outer(im:numpy.ndarray, boundary:int) -> numpy.ndarray: # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT import scipy.ndimage as ndimage from .sampler import _gauss_kernel if len(im.shape) > 2: raise ValueError('Image must be single-plane.') if im.dtype != numpy.bool: im = im > 0 vim = im.astype(numpy.float64) if not isinstance(boundary, int) or boundary <= 0: return vim if boundary == 1: vim[numpy.logical_and(ndimage.binary_dilation(im), numpy.logical_not(im))] = 0.5 return vim imb = numpy.logical_and(im, numpy.logical_not(ndimage.binary_erosion(im))) imd = ndimage.morphology.distance_transform_edt(numpy.logical_not(imb)).astype(numpy.int32) maxd = int(numpy.amax(imd)) k = _gauss_kernel(float(boundary)) kh = k.size // 2 k = k[kh+boundary:] k = k / k[0] if k.size <= maxd: k = numpy.concatenate((k, numpy.zeros(1+maxd-k.size)), axis=0) im = numpy.logical_not(im) vim[im] = k[imd[im]] return vim # scale-smoothing def image_smooth_scale(im:numpy.ndarray, fwhm:float) -> numpy.ndarray: # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT import scipy.ndimage as ndimage if len(im.shape) > 2: raise ValueError('Image must be single-plane.') if im.dtype != numpy.bool: im = im > 0 imb = numpy.logical_and(ndimage.binary_dilation(im), numpy.logical_not(im)) sim = image_smooth_fft(im.astype(numpy.float32), fwhm) return numpy.minimum(sim / numpy.mean(sim[imb]), 1.0) # color LUT operation def lut_lookup( values:numpy.ndarray, pos_lut:numpy.ndarray, neg_lut:numpy.ndarray = None, default:List = None, trans_fac:float = 1.0, trans_off:float = 0.0, above_pos_col:List = None, below_neg_col:List = None, ): """ Color lookup from a look-up table (LUT) Parameters ---------- values : ndarray Numeric values for which to lookup a color from the LUT pos_lut : ndarray Cx3 color lookup table (for positive values) neg_lut : ndarray Cx3 color lookup table (for negative values, default None) default : list Default RGB color triplet (default: black/0,0,0) trans_fac : float Transformation factor (scaling of values, default = 1.0) trans_off : float Offset for transformation (lower threshold, default = 0.0) above_pos_col : list RGB color triplet for values above table length below_neg_col : list RGB color triplet for values below negative values table length Returns ------- colors : ndarray Vx3 RGB triplets """ if pos_lut.ndim != 2: raise ValueError('Invalid LUT') elif pos_lut.shape[1] != 3: raise ValueError('Invalid LUT') try: num_vals = values.size values = values.reshape((num_vals,)) except: raise num_cols = pos_lut.shape[0] if not neg_lut is None: if neg_lut.ndim != 2: raise ValueError('Invalid LUT') elif neg_lut.shape[1] != 3: raise ValueError('Invalid LUT') elif neg_lut.shape[0] != num_cols: raise ValueError('Negative LUT must match in number of colors') if not isinstance(default, list): default = [0, 0, 0] elif len(default) != 3: default = [0, 0, 0] else: default = [].extend(default) if not isinstance(default[0], int) or default[0] < 0: default[0] = 0 elif default[0] > 255: default[0] = 255 if not isinstance(default[1], int) or default[1] < 0: default[1] = 0 elif default[1] > 255: default[1] = 255 if not isinstance(default[2], int) or default[2] < 0: default[2] = 0 elif default[2] > 255: default[2] = 255 if not above_pos_col is None: if not isinstance(above_pos_col, list) or len(above_pos_col) != 3: raise ValueError('Invalid above_pos_col parameter') if (not isinstance(above_pos_col[0], int) or not isinstance(above_pos_col[1], int) or not isinstance(above_pos_col[2], int) or above_pos_col[0] < 0 or above_pos_col[0] > 255 or above_pos_col[1] < 0 or above_pos_col[1] > 255 or above_pos_col[2] < 0 or above_pos_col[2] > 255): raise ValueError('Invalid above_pos_col parameter') if not below_neg_col is None: if not isinstance(below_neg_col, list) or len(below_neg_col) != 3: raise ValueError('Invalid below_neg_col parameter') if (not isinstance(below_neg_col[0], int) or not isinstance(below_neg_col[1], int) or not isinstance(below_neg_col[2], int) or below_neg_col[0] < 0 or below_neg_col[0] > 255 or below_neg_col[1] < 0 or below_neg_col[1] > 255 or below_neg_col[2] < 0 or below_neg_col[2] > 255): raise ValueError('Invalid below_neg_col parameter') zero = numpy.zeros(1, dtype=values.dtype) if trans_fac != 1.0: values = trans_fac * values else: values = values.copy() if not neg_lut is None and trans_off > 0: vs = numpy.sign(values) values = vs * numpy.maximum(zero, numpy.abs(values) - trans_off) elif trans_off != 0: values = values - trans_off if above_pos_col is None: values *= float(num_cols - 1) else: values *= float(num_cols) ispos = (values > 0.0) if not neg_lut is None: isneg = (values < 0.0) values = numpy.trunc(values).astype(numpy.int32) colors = numpy.zeros((num_vals, 3), dtype=numpy.uint8, order='C') colors[:,0] = default[0] colors[:,1] = default[1] colors[:,2] = default[2] if above_pos_col is None: values[values >= num_cols] = num_cols - 1 colors[ispos, 0] = pos_lut[values[ispos], 0] colors[ispos, 1] = pos_lut[values[ispos], 1] colors[ispos, 2] = pos_lut[values[ispos], 2] else: above = (values >= num_cols) below = ispos and (not above) colors[below, 0] = pos_lut[values[below], 0] colors[below, 1] = pos_lut[values[below], 1] colors[below, 2] = pos_lut[values[below], 2] colors[above, 0] = above_pos_col[0] colors[above, 1] = above_pos_col[1] colors[above, 2] = above_pos_col[2] if neg_lut is not None: values = -values if below_neg_col is None: values[values >= num_cols] = num_cols - 1 colors[isneg, 0] = neg_lut[values[isneg], 0] colors[isneg, 1] = neg_lut[values[isneg], 1] colors[isneg, 2] = neg_lut[values[isneg], 2] else: above = (values >= num_cols) below = isneg and (not above) colors[below, 0] = pos_lut[values[below], 0] colors[below, 1] = pos_lut[values[below], 1] colors[below, 2] = pos_lut[values[below], 2] colors[above, 0] = below_neg_col[0] colors[above, 1] = below_neg_col[1] colors[above, 2] = below_neg_col[2] return colors # radial sampling (TODO!) # read image def read_image(image_file:str) -> numpy.ndarray: # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT import imageio try: return imageio.imread(image_file) except: raise # rgb -> hue, saturation, lightness, value def rgb2hslv(r:numpy.ndarray, g:numpy.ndarray, b:numpy.ndarray): """ Convert RGB to HSLV values Parameters ---------- r, g, b : ndarray Arrays with red, green, blue channel values (any dims, must match!) Returns ------- (h, sl, l, sv, v) : tuple Hue, saturation, lightness, and value arrays """ if isinstance(r, list): r = numpy.asarray(r) if isinstance(g, list): g = numpy.asarray(g) if isinstance(b, list): b = numpy.asarray(b) if r.shape != g.shape or r.shape != b.shape: raise ValueError('Invalid shape/dims.') if r.dtype != g.dtype or r.dtype != b.dtype: raise ValueError('Invalid datatype combination.') rm = numpy.logical_and(r >= g, r >= b) gm = numpy.logical_and(g > r, g >= b) bm =
numpy.logical_and(b > r, b > g)
numpy.logical_and
# -*- coding: utf-8 -*- import logging import numpy as np from scipy.spatial.distance import cdist, pdist, squareform # TODO: make this robust to having b0s def swap_sampling_eddy(points, shell_idx, verbose=1): """ Optimize the bvecs of fixed multi-shell scheme for eddy currents correction (fsl EDDY). Bruteforce approach to maximally spread the bvec, shell per shell. For each shell: For each vector: 1) find the closest neighbor, 2) flips it, 3) if global system energy is better, keep it flipped repeat until convergence. Parameters ---------- points: numpy.array, bvecs normalized to 1. shell_idx: numpy.array, Shell index for bvecs in points. verbose: 0 = silent, 1 = summary upon completion, 2 = print iterations. Return ------ points: numpy.array, bvecs normalized to 1. shell_idx: numpy.array, Shell index for bvecs in points. """ new_points = points.copy() Ks = compute_ks_from_shell_idx(shell_idx) maxIter = 100 for shell in range(len(Ks)): # Extract points from shell shell_pts = points[shell_idx == shell].copy() logging.debug('Shell = {}'.format(shell)) # System energy matrix # TODO: test other energy functions such as electron repulsion dist = squareform(pdist(shell_pts, 'Euclidean')) + 2 * np.eye(shell_pts.shape[0]) it = 0 converged = False while (it < maxIter) and not converged: converged = True # For each bvec on the shell for pts_idx in range(len(shell_pts)): # Find closest neighbor w.r.t. metric of dist toMove = np.argmin(dist[pts_idx]) # Compute new column of system matrix with flipped toMove point new_col = cdist(shell_pts, -shell_pts[None, toMove]).squeeze() old_pts_ener = dist[toMove].sum() new_pts_ener = new_col.sum() if new_pts_ener > old_pts_ener: # Swap sign of point toMove shell_pts[toMove] *= -1 dist[:, toMove] = new_col dist[toMove, :] = new_col converged = False logging.debug('Swapped {} ({:.2f} --> \ {:.2f})'.format(toMove, old_pts_ener, new_pts_ener)) it += 1 new_points[shell_idx == shell] = shell_pts logging.info('Eddy current swap optimization finished.') return new_points, shell_idx def compute_ks_from_shell_idx(shell_idx): """ Recover number of points per shell from point-wise shell index. Parameters ---------- shell_idx: numpy.array Shell index of sampling scheme. Return ------ Ks: list number of samples for each shell, starting from lowest. """ K = len(set(shell_idx)) Ks = [] for idx in range(K): Ks.append(np.sum(shell_idx == idx)) return Ks def add_b0s(points, shell_idx, b0_every=10, finish_b0=False, verbose=1): """ Add interleaved b0s to sampling scheme. Parameters ---------- points: numpy.array, bvecs normalized to 1. shell_idx: numpy.array, Shell index for bvecs in points. b0_every: integer, final scheme will have a b0 every b0_every samples finish_b0: boolean, Option to add a b0 as last sample. verbose: 0 = silent, 1 = summary upon completion, 2 = print iterations. Return ------ points: numpy.array bvecs normalized to 1. shell_idx: numpy.array Shell index for bvecs in points. """ new_points = [] new_shell_idx = [] for idx in range(shell_idx.shape[0]): if not idx % (b0_every - 1): # insert b0 new_points.append(np.array([0.0, 0.0, 0.0])) new_shell_idx.append(-1) new_points.append(points[idx]) new_shell_idx.append(shell_idx[idx]) if finish_b0 and (new_shell_idx[-1] != -1): # insert b0 new_points.append(np.array([0.0, 0.0, 0.0])) new_shell_idx.append(-1) logging.info('Interleaved {} b0s'.format(len(new_shell_idx) - shell_idx.shape[0])) return np.array(new_points), np.array(new_shell_idx) def correct_b0s_philips(points, shell_idx, verbose=1): """ Replace the [0.0, 0.0, 0.0] value of b0s bvecs by existing bvecs in the sampling scheme. This is useful because Recon 1.0 of Philips allocates memory proportional to (total nb. of diff. bvals) x (total nb. diff. bvecs) and we can't leave multiple b0s with b-vector [0.0, 0.0, 0.0] and b-value 0 because (b-vector, b-value) pairs have to be unique. Parameters ---------- points: numpy.array bvecs normalized to 1 shell_idx: numpy.array Shell index for bvecs in points. verbose: 0 = silent, 1 = summary upon completion, 2 = print iterations. Return ------ points: numpy.array bvecs normalized to 1 shell_idx: numpy.array Shell index for bvecs in points """ new_points = points.copy() non_b0_pts = points[np.where(shell_idx != -1)] # Assume non-collinearity of non-b0s bvecs (i.e. Caruyer sampler type) new_points[np.where(shell_idx == -1)[0]] = non_b0_pts logging.info('Done adapting b0s for Philips scanner.') return new_points, shell_idx def compute_min_duty_cycle_bruteforce(points, shell_idx, bvals, ker_size=10, Niter=100000, verbose=1, plotting=False, rand_seed=0): """ Optimize the ordering of non-b0s sample to optimize gradient duty-cycle. Philips scanner (and other) will find the peak power requirements with its duty cycle model (this is an approximation) and increase the TR accordingly to the hardware needs. This minimize this effects by: 1) Randomly permuting the non-b0s samples 2) Finding the peak X, Y, and Z amplitude with a sliding-window 3) Compute peak power needed as max(peak_x, peak_y, peak_z) 4) Keeps the permutation yielding the lowest peak power Parameters ---------- points: numpy.array bvecs normalized to 1 shell_idx: numpy.array Shell index for bvecs in points. bvals: list increasing bvals, b0 last. ker_size: int kernel size for the sliding window. Niter: int number of bruteforce iterations. verbose: 0 = silent, 1 = summary upon completion, 2 = print iterations. plotting: bool plot the energy at each iteration. rand_seed: int seed for the random permutations. Return ------ points: numpy.array bvecs normalized to 1. shell_idx: numpy.array Shell index for bvecs in points. """ logging.debug('Shuffling Data (N_iter = {}, \ ker_size = {})'.format(Niter, ker_size)) if plotting: store_best_value = [] non_b0s_mask = shell_idx != -1 N_dir = non_b0s_mask.sum() q_scheme = np.abs(points * np.sqrt(np.array([bvals[idx] for idx in shell_idx]))[:, None]) q_scheme_current = q_scheme.copy() ordering_best = np.arange(N_dir) power_best = compute_peak_power(q_scheme_current, ker_size=ker_size) if plotting: store_best_value.append((0, power_best)) np.random.seed(rand_seed) for it in range(Niter): if not it % np.ceil(Niter/10.): logging.debug('Iter {} / {} : {}'.format(it, Niter, power_best)) ordering_current = np.random.permutation(N_dir) q_scheme_current[non_b0s_mask] = q_scheme[non_b0s_mask][ordering_current] power_current = compute_peak_power(q_scheme_current, ker_size=ker_size) if power_current < power_best: ordering_best = ordering_current.copy() power_best = power_current if plotting: store_best_value.append((it+1, power_best)) logging.debug('Iter {} / {} : {}'.format(Niter, Niter, power_best)) logging.info('Duty cycle optimization finished.') if plotting: store_best_value = np.array(store_best_value) import pylab as pl pl.plot(store_best_value[:, 0], store_best_value[:, 1], '-o') pl.show() new_points = points.copy() new_points[non_b0s_mask] = points[non_b0s_mask][ordering_best] new_shell_idx = shell_idx.copy() new_shell_idx[non_b0s_mask] = shell_idx[non_b0s_mask][ordering_best] return new_points, new_shell_idx def compute_peak_power(q_scheme, ker_size=10): """ Parameters ------ q_scheme: nd.array Scheme of acquisition. ker_size: int Kernel size (default=10). Return ------ Max peak power from q_scheme. """ # Note: np.convolve inverses the filter ker = np.ones(ker_size) pow_x = np.convolve(q_scheme[:, 0], ker, 'full')[:-(ker_size-1)] pow_y = np.convolve(q_scheme[:, 1], ker, 'full')[:-(ker_size-1)] pow_z = np.convolve(q_scheme[:, 2], ker, 'full')[:-(ker_size-1)] max_pow_x = np.max(pow_x) max_pow_y = np.max(pow_y) max_pow_z = np.max(pow_z) return np.max([max_pow_x, max_pow_y, max_pow_z]) def compute_bvalue_lin_q(bmin=0.0, bmax=3000.0, nb_of_b_inside=2, exclude_bmin=True, verbose=1): """ Compute bvals linearly distributed in q-value in the interval [bmin, bmax]. Parameters ---------- bmin: float Minimum b-value, lower b-value bounds. bmax: float Maximum b-value, upper b-value bounds. nb_of_b_inside: int number of b-value excluding bmin and bmax. exclude_bmin: bool exclude bmin from the interval, useful if bmin = 0.0. verbose: 0 = silent, 1 = summary upon completion, 2 = print iterations. Return ------ bvals: list increasing bvals. """ bvals = list(np.linspace(np.sqrt(bmin), np.sqrt(bmax), nb_of_b_inside + 2)**2) if exclude_bmin: bvals = bvals[1:] logging.info('bvals linear in q: {}'.format(bvals)) return bvals def compute_bvalue_lin_b(bmin=0.0, bmax=3000.0, nb_of_b_inside=2, exclude_bmin=True, verbose=1): """ Compute bvals linearly distributed in b-value in the interval [bmin, bmax]. Parameters ---------- bmin: float Minimum b-value, lower b-value bounds. bmax: float Maximum b-value, upper b-value bounds. nb_of_b_inside: int number of b-value excluding bmin and bmax. exclude_bmin: boolean exclude bmin from the interval, useful if bmin = 0.0. verbose: 0 = silent, 1 = summary upon completion, 2 = print iterations. Return ------ bvals: list increasing bvals. """ bvals = list(
np.linspace(bmin, bmax, nb_of_b_inside + 2)
numpy.linspace
import warnings import numpy as np import matplotlib.pyplot as plt from matplotlib.lines import Line2D from automon.automon.automon_coordinator import AdcdHelper from automon import AutomonNode from test_utils.functions_to_monitor import func_entropy, func_variance, func_inner_product, func_rozenbrock from test_utils.node_stream import NodeStreamFrequency, NodeStreamFirstAndSecondMomentum, NodeStreamAverage def entropy_automon_draw_constraints(node): def prep_domain_grid(): X_domain = np.arange(node.domain[0][0], node.domain[0][1], 0.02) Y_domain =
np.arange(node.domain[0][0], node.domain[0][1], 0.02)
numpy.arange
import torch import torch.nn as nn import numpy as np import math class ForwardKinematics: def __init__(self, args, edges): self.topology = [-1] * (len(edges) + 1) self.rotation_map = [] for i, edge in enumerate(edges): self.topology[edge[1]] = edge[0] self.rotation_map.append(edge[1]) self.world = args.fk_world self.pos_repr = args.pos_repr self.quater = args.rotation == 'quaternion' def forward_from_raw(self, raw, offset, world=None, quater=None): if world is None: world = self.world if quater is None: quater = self.quater if self.pos_repr == '3d': position = raw[:, -3:, :] rotation = raw[:, :-3, :] elif self.pos_repr == '4d': raise Exception('Not support') if quater: rotation = rotation.reshape((rotation.shape[0], -1, 4, rotation.shape[-1])) identity = torch.tensor((1, 0, 0, 0), dtype=torch.float, device=raw.device) else: rotation = rotation.reshape((rotation.shape[0], -1, 3, rotation.shape[-1])) identity = torch.zeros((3, ), dtype=torch.float, device=raw.device) identity = identity.reshape((1, 1, -1, 1)) new_shape = list(rotation.shape) new_shape[1] += 1 new_shape[2] = 1 rotation_final = identity.repeat(new_shape) for i, j in enumerate(self.rotation_map): rotation_final[:, j, :, :] = rotation[:, i, :, :] return self.forward(rotation_final, position, offset, world=world, quater=quater) ''' rotation should have shape batch_size * Joint_num * (3/4) * Time position should have shape batch_size * 3 * Time offset should have shape batch_size * Joint_num * 3 output have shape batch_size * Time * Joint_num * 3 ''' def forward(self, rotation: torch.Tensor, position: torch.Tensor, offset: torch.Tensor, order='xyz', quater=False, world=True): if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation') if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation') rotation = rotation.permute(0, 3, 1, 2) position = position.permute(0, 2, 1) result = torch.empty(rotation.shape[:-1] + (3, ), device=position.device) norm = torch.norm(rotation, dim=-1, keepdim=True) #norm[norm < 1e-10] = 1 rotation = rotation / norm if quater: transform = self.transform_from_quaternion(rotation) else: transform = self.transform_from_euler(rotation, order) offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1)) result[..., 0, :] = position for i, pi in enumerate(self.topology): if pi == -1: assert i == 0 continue transform[..., i, :, :] = torch.matmul(transform[..., pi, :, :], transform[..., i, :, :]) result[..., i, :] = torch.matmul(transform[..., i, :, :], offset[..., i, :, :]).squeeze() if world: result[..., i, :] += result[..., pi, :] return result def from_local_to_world(self, res: torch.Tensor): res = res.clone() for i, pi in enumerate(self.topology): if pi == 0 or pi == -1: continue res[..., i, :] += res[..., pi, :] return res @staticmethod def transform_from_euler(rotation, order): rotation = rotation / 180 * math.pi transform = torch.matmul(ForwardKinematics.transform_from_axis(rotation[..., 1], order[1]), ForwardKinematics.transform_from_axis(rotation[..., 2], order[2])) transform = torch.matmul(ForwardKinematics.transform_from_axis(rotation[..., 0], order[0]), transform) return transform @staticmethod def transform_from_axis(euler, axis): transform = torch.empty(euler.shape[0:3] + (3, 3), device=euler.device) cos = torch.cos(euler) sin = torch.sin(euler) cord = ord(axis) - ord('x') transform[..., cord, :] = transform[..., :, cord] = 0 transform[..., cord, cord] = 1 if axis == 'x': transform[..., 1, 1] = transform[..., 2, 2] = cos transform[..., 1, 2] = -sin transform[..., 2, 1] = sin if axis == 'y': transform[..., 0, 0] = transform[..., 2, 2] = cos transform[..., 0, 2] = sin transform[..., 2, 0] = -sin if axis == 'z': transform[..., 0, 0] = transform[..., 1, 1] = cos transform[..., 0, 1] = -sin transform[..., 1, 0] = sin return transform @staticmethod def transform_from_quaternion(quater: torch.Tensor): qw = quater[..., 0] qx = quater[..., 1] qy = quater[..., 2] qz = quater[..., 3] x2 = qx + qx y2 = qy + qy z2 = qz + qz xx = qx * x2 yy = qy * y2 wx = qw * x2 xy = qx * y2 yz = qy * z2 wy = qw * y2 xz = qx * z2 zz = qz * z2 wz = qw * z2 m = torch.empty(quater.shape[:-1] + (3, 3), device=quater.device) m[..., 0, 0] = 1.0 - (yy + zz) m[..., 0, 1] = xy - wz m[..., 0, 2] = xz + wy m[..., 1, 0] = xy + wz m[..., 1, 1] = 1.0 - (xx + zz) m[..., 1, 2] = yz - wx m[..., 2, 0] = xz - wy m[..., 2, 1] = yz + wx m[..., 2, 2] = 1.0 - (xx + yy) return m class InverseKinematics: def __init__(self, rotations: torch.Tensor, positions: torch.Tensor, offset, parents, constrains): self.rotations = rotations self.rotations.requires_grad_(True) self.position = positions self.position.requires_grad_(True) self.parents = parents self.offset = offset self.constrains = constrains self.optimizer = torch.optim.Adam([self.position, self.rotations], lr=1e-3, betas=(0.9, 0.999)) self.crit = nn.MSELoss() def step(self): self.optimizer.zero_grad() glb = self.forward(self.rotations, self.position, self.offset, order='', quater=True, world=True) loss = self.crit(glb, self.constrains) loss.backward() self.optimizer.step() self.glb = glb return loss.item() def tloss(self, time): return self.crit(self.glb[time, :], self.constrains[time, :]) def all_loss(self): res = [self.tloss(t).detach().numpy() for t in range(self.constrains.shape[0])] return
np.array(res)
numpy.array
import numpy as np import matplotlib.pyplot as plt class ValueLogger(object): def __init__(self, show_plot=True): self.plotter = {} if show_plot: ValuePlotter.show_plot() def add_plot(self, name, xlabel, filter_size=None): self.plotter[name] = ValuePlotter(xlabel=xlabel, ylabel=name, filter_size=filter_size) def __call__(self, **kwargs): for key, value in kwargs.items(): if key in self.plotter.keys(): self.plotter[key].add(value) self.plotter[key].plot() class ValuePlotter(object): plots_count = 0 def __init__(self, xlabel, ylabel, filter_size=None): self.xlabel = xlabel self.ylabel = ylabel self.filter_size = filter_size ValuePlotter.plots_count += 1 self.index = self.plots_count self.values = [] @classmethod def show_plot(cls): plt.ion() plt.show() def add(self, value): self.values.append(value) def plot(self): plt.subplot(self.plots_count, 1, self.index) plt.cla() plt.xlabel(self.xlabel) plt.ylabel(self.ylabel) plt.plot(self.values) if self.filter_size is not None: plt.plot(self._filter_values(self.values)) plt.pause(0.001) def _filter_values(self, values): padded_values = np.concatenate( [ np.full(self.filter_size // 2, values[0]), np.array(values),
np.full(self.filter_size // 2 - 1, values[-1])
numpy.full
import sys import numpy as np import matplotlib.patches as patches import matplotlib.pyplot as plt from scipy.interpolate import griddata ''' usage: python wmap1.py <pmesh> <loc> <pmesh> is the filename of pmesh file <loc> is either 'bot' or 'top' ''' def kart2frac(kart, latmat): """ convert cart coords into frac :param kart: a list of cart coords :param latmat: [va, vb, vc] in cart :return: np array [a, b, c]: frac coords """ p = np.matmul(np.array(kart), np.linalg.inv(np.array(latmat))) return p def xyzarray2frac(x, y, z, latmat): """ convert frac into cart :param x: :param y: :param z: :param latmat: [va, vb, vc] in cart :return: nx3 mat """ length = min([len(x), len(y), len(z)]) abc = np.empty((length, 3)) abc[:] = np.nan for i in range(length): kart = kart2frac([x[i], y[i], z[i]], latmat) abc[i][0] = kart[0] abc[i][1] = kart[1] abc[i][2] = kart[2] return abc def parse_cif(cif_name='iso.cif'): """ parse lattice vectors from 'iso.cif' :return: la 1x3 np array lb 1x3 np array lc 1x3 np array theta_c_rad angle between c axis and z axis """ with open(cif_name) as f_iso: content = f_iso.readlines() u = np.zeros(6) for e in [line.strip().split() for line in content if len(line.strip().split()) == 2]: if 'cell_length_a' in e[0]: u[0] = float(e[1]) elif 'cell_length_b' in e[0]: u[1] = float(e[1]) elif 'cell_length_c' in e[0]: u[2] = float(e[1]) elif 'cell_angle_alpha' in e[0]: u[3] = float(e[1]) elif 'cell_angle_beta' in e[0]: u[4] = float(e[1]) elif 'cell_angle_gamma' in e[0]: u[5] = float(e[1]) a, b, c, alpha, beta, gamma = u cosdelta_up = np.cos(np.radians(alpha)) - np.cos(np.radians(beta))*np.cos(
np.radians(gamma)
numpy.radians
from pytest_check import check import numpy as np import fenics import fenics_adjoint as fa import ufl import theano from fenics_pymc3 import create_fenics_theano_op from fenics_pymc3 import FenicsVJPOp from fecr import evaluate_primal, evaluate_pullback theano.config.optimizer = "fast_compile" theano.config.compute_test_value = "ignore" mesh = fa.UnitSquareMesh(3, 2) V = fenics.FunctionSpace(mesh, "P", 1) def assemble_fenics(u, kappa0, kappa1): f = fa.Expression( "10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", degree=2 ) inner, grad, dx = ufl.inner, ufl.grad, ufl.dx J_form = 0.5 * inner(kappa0 * grad(u), grad(u)) * dx - kappa1 * f * u * dx J = fa.assemble(J_form) return J templates = (fa.Function(V), fa.Constant(0.0), fa.Constant(0.0)) inputs = (np.ones(V.dim()),
np.ones(1)
numpy.ones
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]), 'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]), 'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]), 'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]), 'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]), 'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]), 'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]), 'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]), 'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]), 'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]), 'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]), 'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]), 'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&0&75': np.array([0.0, -0.95124502153736]), 'virginica&0&76': np.array([0.0, -0.9708703761803881]), 'virginica&0&77': np.array([0.0, -0.5659706098422994]), 'virginica&0&78': np.array([0.0, -0.3962828716108186]), 'virginica&0&79': np.array([0.0, 0.2538069363248767]), 'virginica&0&80': np.array([0.0, -0.9708703761803881]), 'virginica&0&81': np.array([0.0, -0.5659706098422994]), 'virginica&0&82': np.array([0.0, -0.3962828716108186]), 'virginica&0&83': np.array([0.0, -0.8943993997517804]), 'virginica&0&84': np.array([0.0, -0.5659706098422994]), 'virginica&0&85': np.array([0.0, -0.3962828716108186]), 'virginica&0&86': np.array([0.0, -0.9166476163222441]), 'virginica&0&87': np.array([0.0, -0.3962828716108186]), 'virginica&0&88': np.array([0.0, -0.5466925844560601]), 'virginica&0&89': np.array([0.0, -0.38529908946531777]), 'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]), 'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]), 'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]), 'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&274': np.array([-0.4167677904879879, 0.22207334821665425]), 'virginica&0&275': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&276': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&277': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&278': np.array([-0.07857689135903215, -0.8696882596532965]), 'virginica&0&279': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&280': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&281': np.array([-0.05160969201296555, -0.9000166344885441]), 'virginica&0&282': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&283': np.array([-0.0766197045034485, -0.5080325256323984]), 'virginica&0&284': np.array([-0.32767091750230254, -0.19689316772421933]), 'virginica&0&285': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&286': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&287': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&288': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&289': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&290': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&291': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&292': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&293': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&294': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&295': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&296': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&297': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&298': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&299': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&302': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&303': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&306': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&307': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&309': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&310': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&312': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&313': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&314': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&2': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&3': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&6': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&7': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&9': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&10': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&12': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&13': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&14': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&17': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&18': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&21': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&22': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&24': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&25': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&27': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&28': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&29': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&32': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&33': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&36': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&37': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&39': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&40': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&42': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&43': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&44': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&45': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&46': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&47': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&48': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&49': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&50': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&51': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&52': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&53': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&54': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&55': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&56': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&57': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&58': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&59': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&62': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&63': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&66': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&67': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&69': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&70': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&72': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&73': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&74': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&1&75': np.array([0.0, 0.4756207622944677]), 'virginica&1&76': np.array([0.0, 0.4854334805210761]), 'virginica&1&77': np.array([0.0, -0.16885577975809632]), 'virginica&1&78': np.array([0.0, -0.39580588553855395]), 'virginica&1&79': np.array([0.0, 0.2538072707138344]), 'virginica&1&80': np.array([0.0, 0.4854334805210761]), 'virginica&1&81': np.array([0.0, -0.16885577975809632]), 'virginica&1&82': np.array([0.0, -0.39580588553855395]), 'virginica&1&83': np.array([0.0, 0.4904755652105692]), 'virginica&1&84': np.array([0.0, -0.16885577975809632]), 'virginica&1&85': np.array([0.0, -0.39580588553855395]), 'virginica&1&86': np.array([0.0, 0.5008471974438506]), 'virginica&1&87': np.array([0.0, -0.39580588553855395]), 'virginica&1&88': np.array([0.0, -0.14423919730424817]), 'virginica&1&89': np.array([0.0, -0.3847817540585927]), 'virginica&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&92': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&93': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&96': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&97': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&99': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&100': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&102': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&103': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&104': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&107': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&108': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&111': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&112': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&114': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&115': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&117': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&118': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&119': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&120': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&121': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&122': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&123': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&124': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&125': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&126': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&127': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&128': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&129': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&130': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&131': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&132': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&133': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&134': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&137': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&138': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&141': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&142': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&144': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&145': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&147': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&148': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&149': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&152': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&153': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&156': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&157': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&159': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&160': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&162': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&163': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&164': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&167': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&168': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&171': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&172': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&174': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&175': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&177': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&178': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&179': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&180': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&181': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&182': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&183': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&184': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&185': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&186': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&187': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&188': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&189': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&190': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&191': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&192': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&193': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&194': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&197': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&198': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&201': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&202': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&204': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&205': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&207': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&208': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&209': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&212': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&213': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&216': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&217': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&219': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&220': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&222': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&223': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&224': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&225': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&226': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&227': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&228': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&229': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&230': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&231': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&232': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&233': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&234': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&235': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&236': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&237': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&238': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&239': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'virginica&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&242': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&243': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'virginica&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&246': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&247': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'virginica&1&249': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&250': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'virginica&1&252': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&253': np.array([0.581569928198426, -0.46134543884925855]), 'virginica&1&254': np.array([0.42361197252581306, -0.5068181610814407]), 'virginica&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&257': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&258': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&261': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&262': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&264': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&265': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&267': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&268': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&269': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&270': np.array([-0.6288817118959938, 0.6849987400957501]), 'virginica&1&271': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&272': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&273': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&274': np.array([-0.3507937472799825, 0.22709708691079003]), 'virginica&1&275': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&276': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&277': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&278': np.array([-0.6219129029345898, 0.6860569455333333]), 'virginica&1&279': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&280': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&281': np.array([-0.6423063482710314, 0.7078274136226649]), 'virginica&1&282': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&283': np.array([-0.38798262782075055, 0.05152547330256509]), 'virginica&1&284': np.array([-0.23804537254556749, -0.24790919248823104]), 'virginica&1&285': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&286': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&287': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&288': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&289': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&290': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&291': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&292': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&293': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&294': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&295': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&296': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&297': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&298': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&299': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&302': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&303': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&306': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&307': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&309': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&310': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&312': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&313': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&314': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&2': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&3': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&6': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&7': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&9': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&10': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&12': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&13': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&14': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&17': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&18': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&21': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&22': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&24': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&25': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&27': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&28': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&29': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'virginica&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&32': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&33': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'virginica&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&36': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&37': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'virginica&2&39': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&40': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'virginica&2&42': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&43': np.array([0.15466782862660866, 0.5877736906472755]), 'virginica&2&44': np.array([0.37833006296225374, 0.5922410451071548]), 'virginica&2&45': np.array([0.8252668830593566, 0.11450866713130668]), 'virginica&2&46': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&47': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&48': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&49': np.array([0.8735738195653328, -0.046438180466149094]), 'virginica&2&50': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&51': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&52': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&53': np.array([0.8388485924434891, 0.09800790238640067]), 'virginica&2&54': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&55': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&56': np.array([0.835455914569297, 0.10189258327760495]), 'virginica&2&57': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&58': np.array([0.6958244586699014, 0.2551528503043789]), 'virginica&2&59': np.array([0.7857855057542923, 0.17526869720012267]), 'virginica&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'virginica&2&61':
np.array([-0.5140708637198534, 0.4305361238057349])
numpy.array
import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from matplotlib import pyplot as plt import seaborn as sns import pandas as pd def get_vowel_datsets(): train = np.loadtxt("../datasets/vowel/vowel.train.txt", delimiter=',', skiprows=1, usecols=(i for i in range(1, 12))) test = np.loadtxt("../datasets/vowel/vowel.test.txt", delimiter=',', skiprows=1, usecols=(i for i in range(1, 12))) return train, test def norm(x): x = (x - x.mean()) / x.std() return x # Function for calculating error rate: def get_error_rate(y_calc, y): """Gets the prediction error rate for linear regression Parameters ---------- y_calc : ndarray The output of reg.predict y : DataFrame The correct output for comparation Returns ------- float the prediction error rate """ y_dummy_calc = pd.get_dummies(y_calc.argmax(axis=1)) y_dummy_calc.columns = y.columns.values y_dummy_calc.index = y.index return np.mean(np.mean((y_dummy_calc != y) * 11 / 2)) def calc_linear_regression(x_train, y_train, x_test, y_test): # 1) LINEAR REGRESSION # Convert to dummy variables for better applicate linear regression y_dummy = pd.get_dummies(y_train) y_test_dummy = pd.get_dummies(y_test) # Fit the model reg = LinearRegression().fit(x_train, y_dummy) # Get the error for training and test print("Linear regression:") y_test_calc = reg.predict(x_test) y_calc = reg.predict(x_train) print("\tThe error rate on train is %2.2f %%" % get_error_rate(y_calc, y_dummy)) print("\tThe error rate on test is %2.2f %%" % get_error_rate(y_test_calc, y_test_dummy)) def calc_lda(x_train, y_train, x_test, y_test): # 2) LDA # Fit the model (no need for dummy variables) model = LinearDiscriminantAnalysis(solver='eigen', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001) reg = model.fit(x_train, y_train) print("Linear discriminant analysis (LDA):") print("\tThe error rate on train is %2.5f %%" % (1 - reg.score(x_train, y_train))) print("\tThe error rate on test is %2.5f %%" % (1 - reg.score(x_test, y_test))) def calc_qda(x_train, y_train, x_test, y_test): # 3) QDA # Fit the model (no need for dummy variables) model = QuadraticDiscriminantAnalysis() reg = model.fit(x_train, y_train) print("Quadratic discriminant analysis (QDA):") print("\tThe error rate on train is %2.5f %%" % (1 - reg.score(x_train, y_train))) print("\tThe error rate on test is %2.5f %%" % (1 - reg.score(x_test, y_test))) def calc_logistic(x_train, y_train, x_test, y_test): # 3) QDA # Fit the model (no need for dummy variables) model = LogisticRegression(solver='newton-cg', penalty='none') reg = model.fit(x_train, y_train) print("Logistic regression:") print("\tThe error rate on train is %2.2f %%" % (1 - reg.score(x_train, y_train))) print("\tThe error rate on test is %2.2f %%" % (1 - reg.score(x_test, y_test))) def discriminant_formula(x, sigma_inv, det, mean, pi): delta = float(-0.5 * np.log(det) - 0.5 * (x-mean) @ sigma_inv @ (x-mean) + np.log(pi)) return delta def get_graph_error(x, y, sigma_k_inv, det_k, reg): out = np.empty([x.shape[0], 11]) for j in range(x.shape[0]): # for each x out_row =
np.empty(11)
numpy.empty
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159':
np.array([0.7292373173099087, -0.6975400952780954])
numpy.array
import os import sys import unittest import numpy as np import NumpyTestCase import cPickle try: import pathLocate except: from unittests import pathLocate unittest_dir = pathLocate.getUnitTestDirectory() sys.path.append(pathLocate.getRootDirectory()) from TrackGenerator import trackSize class TestRmaxModel(NumpyTestCase.NumpyTestCase): def setUp(self): np.random.seed(10) self.dparray = np.arange(10, 51, 5) self.latarray =
np.arange(-23, -5, 2)
numpy.arange
#https://docs.pymc.io/notebooks/api_quickstart.html #%matplotlib inline import numpy as np import theano.tensor as tt import pymc3 as pm import seaborn as sns import matplotlib.pyplot as plt from time import time #sns.set_context('notebook') plt.style.use('seaborn-darkgrid') print('Running on PyMC3 v{}'.format(pm.__version__)) np.random.seed(0) N = 100 x = np.random.randn(100) mu_prior = 1.1 sigma_prior = 1.2 Sigma_prior = sigma_prior**2 sigma_x = 1.3 Sigma_x = sigma_x**2 with pm.Model() as model: mu = pm.Normal('mu', mu=mu_prior, sd=sigma_prior) obs = pm.Normal('obs', mu=mu, sd=sigma_x, observed=x) time_start = time() mcmc_samples = pm.sample(1000, tune=500) # mcmc print('time spent MCMC {:0.3f}'.format(time() - time_start)) time_start = time() vi_post = pm.fit() # variational inference print('time spent VI {:0.3f}'.format(time() - time_start)) vi_samples = vi_post.sample(1000) mu_clamped = -0.5 logp = model.logp({'mu': mu_clamped}) import scipy.stats # Computed the log joint manually log_prior = scipy.stats.norm(mu_prior, sigma_prior).logpdf(mu_clamped) log_lik = np.sum(scipy.stats.norm(mu_clamped, sigma_x).logpdf(x)) log_joint = log_prior + log_lik assert np.isclose(logp, log_joint) # Standard MCMC diagonistics pm.traceplot(mcmc_samples) pm.plot_posterior(mcmc_samples); Rhat = pm.gelman_rubin(mcmc_samples) print(Rhat) # Estimate posterior over mu when unclamped # Bayes rule for Gaussians MLAPA sec 5.6.2 Sigma_post = 1/( 1/Sigma_prior + N/Sigma_x ) xbar = np.mean(x) mu_post = Sigma_post * (1/Sigma_x * N * xbar + 1/Sigma_prior * mu_prior) vals = mcmc_samples.get_values('mu') mu_post_mcmc =
np.mean(vals)
numpy.mean
''' @File :dataloader.py @Author:Morton @Date :2020/6/18 16:04 @Desc :The basic loading function to extract raw content and mention graph information from raw data "user_info.xxx.gz". ''' # -*- coding:utf-8 -*- import os import re import csv import kdtree import gensim import numpy as np import pandas as pd import networkx as nx from haversine import haversine from collections import defaultdict, OrderedDict from sklearn.neighbors import NearestNeighbors class DataLoader: def __init__(self, data_home, bucket_size=50, encoding='utf-8', celebrity_threshold=10, one_hot_labels=False, mindf=10, maxdf=0.2, norm='l2', idf=True, btf=True, tokenizer=None, subtf=False, stops=None, token_pattern=r'(?u)(?<![#@])\b\w\w+\b', vocab=None): self.data_home = data_home self.bucket_size = bucket_size self.encoding = encoding self.celebrity_threshold = celebrity_threshold self.one_hot_labels = one_hot_labels self.mindf = mindf self.maxdf = maxdf self.norm = norm self.idf = idf self.btf = btf self.tokenizer = tokenizer self.subtf = subtf self.stops = stops if stops else 'english' self.token_pattern = r'(?u)(?<![#@|,.-_+^……$%&*(); :`,。?、:;;《》{}“”~#¥])\b\w\w+\b' self.vocab = vocab def load_data(self): print('loading the dataset from: {}'.format(self.data_home)) train_file = os.path.join(self.data_home, 'user_info.train.gz') dev_file = os.path.join(self.data_home, 'user_info.dev.gz') test_file = os.path.join(self.data_home, 'user_info.test.gz') df_train = pd.read_csv(train_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'], quoting=csv.QUOTE_NONE, error_bad_lines=False) df_dev = pd.read_csv(dev_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'], quoting=csv.QUOTE_NONE, error_bad_lines=False) df_test = pd.read_csv(test_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'], quoting=csv.QUOTE_NONE, error_bad_lines=False) df_train.dropna(inplace=True) df_dev.dropna(inplace=True) df_test.dropna(inplace=True) df_train['user'] = df_train['user'].apply(lambda x: str(x).lower()) df_train.drop_duplicates(['user'], inplace=True, keep='last') df_train.set_index(['user'], drop=True, append=False, inplace=True) df_train.sort_index(inplace=True) df_dev['user'] = df_dev['user'].apply(lambda x: str(x).lower()) df_dev.drop_duplicates(['user'], inplace=True, keep='last') df_dev.set_index(['user'], drop=True, append=False, inplace=True) df_dev.sort_index(inplace=True) df_test['user'] = df_test['user'].apply(lambda x: str(x).lower()) df_test.drop_duplicates(['user'], inplace=True, keep='last') df_test.set_index(['user'], drop=True, append=False, inplace=True) df_test.sort_index(inplace=True) self.df_train = df_train self.df_dev = df_dev self.df_test = df_test def get_graph(self): g = nx.Graph() nodes = set(self.df_train.index.tolist() + self.df_dev.index.tolist() + self.df_test.index.tolist()) assert len(nodes) == len(self.df_train) + len(self.df_dev) + len(self.df_test), 'duplicate target node' nodes_list = self.df_train.index.tolist() + self.df_dev.index.tolist() + self.df_test.index.tolist() node_id = {node: id for id, node in enumerate(nodes_list)} g.add_nodes_from(node_id.values()) for node in nodes: g.add_edge(node_id[node], node_id[node]) pattern = '(?<=^|(?<=[^a-zA-Z0-9-_\\.]))@([A-Za-z]+[A-Za-z0-9_]+)' pattern = re.compile(pattern) print('start adding the train graph') externalNum = 0 for i in range(len(self.df_train)): user = self.df_train.index[i] user_id = node_id[user] mentions = [m.lower() for m in pattern.findall(self.df_train.text[i])] idmentions = set() for m in mentions: if m in node_id: idmentions.add(node_id[m]) else: id = len(node_id) node_id[m] = id idmentions.add(id) externalNum += 1 if len(idmentions) > 0: g.add_nodes_from(idmentions) for id in idmentions: g.add_edge(user_id, id) print('start adding the dev graph') externalNum = 0 for i in range(len(self.df_dev)): user = self.df_dev.index[i] user_id = node_id[user] mentions = [m.lower() for m in pattern.findall(self.df_dev.text[i])] idmentions = set() for m in mentions: if m in node_id: idmentions.add(node_id[m]) else: id = len(node_id) node_id[m] = id idmentions.add(id) externalNum += 1 if len(idmentions) > 0: g.add_nodes_from(idmentions) for id in idmentions: g.add_edge(id, user_id) print('start adding the test graph') externalNum = 0 for i in range(len(self.df_test)): user = self.df_test.index[i] user_id = node_id[user] mentions = [m.lower() for m in pattern.findall(self.df_test.text[i])] idmentions = set() for m in mentions: if m in node_id: idmentions.add(node_id[m]) else: id = len(node_id) node_id[m] = id idmentions.add(id) externalNum += 1 if len(idmentions) > 0: g.add_nodes_from(idmentions) for id in idmentions: g.add_edge(id, user_id) print('#nodes: %d, #edges: %d' % (nx.number_of_nodes(g), nx.number_of_edges(g))) celebrities = [] for i in range(len(nodes_list), len(node_id)): deg = len(g[i]) if deg == 1 or deg > self.celebrity_threshold: celebrities.append(i) print('removing %d celebrity nodes with degree higher than %d' % (len(celebrities), self.celebrity_threshold)) g.remove_nodes_from(celebrities) print('projecting the graph') projected_g = self.efficient_collaboration_weighted_projected_graph2(g, range(len(nodes_list))) print('#nodes: %d, #edges: %d' % (nx.number_of_nodes(projected_g), nx.number_of_edges(projected_g))) self.graph = projected_g def efficient_collaboration_weighted_projected_graph2(self, B, nodes): # B: the whole graph including known nodes and mentioned nodes --large graph # nodes: the node_id of known nodes --small graph node nodes = set(nodes) G = nx.Graph() G.add_nodes_from(nodes) all_nodes = set(B.nodes()) for m in all_nodes: nbrs = B[m] target_nbrs = [t for t in nbrs if t in nodes] # add edge between known nodesA(m) and known nodesB(n) if m in nodes: for n in target_nbrs: if m < n: if not G.has_edge(m, n): # Morton added for exclude the long edges G.add_edge(m, n) # add edge between known n1 and known n2, # just because n1 and n2 have relation to m, why ? ? ? Yes, it's right. for n1 in target_nbrs: for n2 in target_nbrs: if n1 < n2: if not G.has_edge(n1, n2): G.add_edge(n1, n2) return G def get_raw_content_and_save(self, save_file_path): # Morton add for save the raw content data into files. if os.path.exists(save_file_path): print("content already saved.") return None data = list(self.df_train.text.values) + list(self.df_dev.text.values) + list(self.df_test.text.values) file = open(save_file_path, 'w', encoding='utf-8') for i in range(len(data)): file.write(str(data[i]) + '\n') file.close() print("content saved in {}".format(save_file_path)) def load_doc2vec_feature(self, doc2vec_model_file): """ doc2vec_model_file: the file that including all doc2vec features of the raw content. """ # load model model = gensim.models.doc2vec.Doc2Vec.load(doc2vec_model_file) # train data features feature_list = list() index_l = 0 index_r = len(self.df_train.text) for i in range(index_l, index_r): feature_list.append(model.docvecs[i]) self.X_train = np.array(feature_list) # dev data features feature_list = list() index_l = len(self.df_train.text) index_r = len(self.df_train.text) + len(self.df_dev.text) for i in range(index_l, index_r): feature_list.append(model.docvecs[i]) self.X_dev = np.array(feature_list) # test data features feature_list = list() index_l = len(self.df_train.text) + len(self.df_dev.text) index_r = len(self.df_train.text) + len(self.df_dev.text) + len(self.df_test.text) for i in range(index_l, index_r): feature_list.append(model.docvecs[i]) self.X_test =
np.array(feature_list)
numpy.array
import numpy as np import pytest from skypy.utils.photometry import HAS_SPECLITE def test_magnitude_functions(): from skypy.utils.photometry import (luminosity_in_band, luminosity_from_absolute_magnitude, absolute_magnitude_from_luminosity) # convert between absolute luminosity and magnitude assert np.isclose(luminosity_from_absolute_magnitude(-22), 630957344.5) assert np.isclose(absolute_magnitude_from_luminosity(630957344.5), -22) # convert with standard luminosities for ref, mag in luminosity_in_band.items(): assert np.isclose(luminosity_from_absolute_magnitude(mag, ref), 1.0) assert np.isclose(absolute_magnitude_from_luminosity(1.0, ref), mag) # error when unknown reference is used with pytest.raises(KeyError): luminosity_from_absolute_magnitude(0., 'unknown') with pytest.raises(KeyError): absolute_magnitude_from_luminosity(1., 'unknown') @pytest.mark.skipif(not HAS_SPECLITE, reason='test requires speclite') def test_mag_ab_standard_source(): from astropy import units from speclite.filters import FilterResponse from skypy.utils.photometry import mag_ab # create a filter filt_lam = np.logspace(0, 4, 1000)*units.AA filt_tx = np.exp(-((filt_lam - 1000*units.AA)/(100*units.AA))**2) filt_tx[[0, -1]] = 0 FilterResponse(wavelength=filt_lam, response=filt_tx, meta=dict(group_name='test', band_name='filt')) # test that the AB standard source has zero magnitude lam = filt_lam # same grid to prevent interpolation issues flam = 0.10885464149979998*units.Unit('erg s-1 cm-2 AA')/lam**2 m = mag_ab(lam, flam, 'test-filt') assert np.isclose(m, 0) @pytest.mark.skipif(not HAS_SPECLITE, reason='test requires speclite') def test_mag_ab_redshift_dependence(): from astropy import units from speclite.filters import FilterResponse from skypy.utils.photometry import mag_ab # make a wide tophat bandpass filt_lam = [1.0e-10, 1.1e-10, 1.0e0, 0.9e10, 1.0e10] filt_tx = [0., 1., 1., 1., 0.] FilterResponse(wavelength=filt_lam, response=filt_tx, meta=dict(group_name='test', band_name='filt')) # create a narrow gaussian source lam =
np.logspace(-11, 11, 1000)
numpy.logspace
import multiprocessing import os import tempfile import numpy as np from collections import OrderedDict import cloudpickle import time from rllab.sampler.utils import rollout from rllab.misc import logger from curriculum.envs.base import FixedStateGenerator class FunctionWrapper(object): """Wrap a function for use with parallelized map. """ def __init__(self, func, *args, **kwargs): """Construct the function oject. Args: func: a top level function, or a picklable callable object. *args and **kwargs: Any additional required enviroment data. """ self.func = func self.args = args self.kwargs = kwargs def __call__(self, obj): if obj is None: return self.func(*self.args, **self.kwargs) else: return self.func(obj, *self.args, **self.kwargs) def __getstate__(self): """ Here we overwrite the default pickle protocol to use cloudpickle. """ return dict( func=cloudpickle.dumps(self.func), args=cloudpickle.dumps(self.args), kwargs=cloudpickle.dumps(self.kwargs) ) def __setstate__(self, d): self.func = cloudpickle.loads(d['func']) self.args = cloudpickle.loads(d['args']) self.kwargs = cloudpickle.loads(d['kwargs']) def disable_cuda_initializer(*args, **kwargs): import os os.environ['THEANO_FLAGS'] = 'device=cpu' os.environ['CUDA_VISIBLE_DEVICES'] = '' def parallel_map(func, iterable_object, num_processes=-1): """Parallelized map function based on python process Args: func: Pickleable callable object that takes one parameter. iterable_object: An iterable of elements to map the function on. num_processes: Number of process to use. When num_processes is 1, no new process will be created. Returns: The list resulted in calling the func on all objects in the original list. """ if num_processes == 1: return [func(x) for x in iterable_object] if num_processes == -1: from rllab.sampler.stateful_pool import singleton_pool num_processes = singleton_pool.n_parallel process_pool = multiprocessing.Pool( num_processes, initializer=disable_cuda_initializer ) results = process_pool.map(func, iterable_object) process_pool.close() process_pool.join() return results def compute_rewards_from_paths(all_paths, key='rewards', as_goal=True, env=None, terminal_eps=0.1): all_rewards = [] all_states = [] for paths in all_paths: for path in paths: if key == 'competence': #goal = tuple(path['env_infos']['goal'][0]) goal_np_array = np.array(tuple(path['env_infos']['goal'][0])) start_state = np.array(tuple(env.transform_to_goal_space(path['observations'][0]))) end_state = np.array(tuple(env.transform_to_goal_space(path['observations'][-1]))) final_dist = np.linalg.norm(goal_np_array - end_state) initial_dist = np.linalg.norm(start_state - goal_np_array) if final_dist > initial_dist: competence = -1 elif final_dist < terminal_eps: competence = 0 else: competence = -final_dist / initial_dist reward = competence else: reward = evaluate_path(path, key=key) if as_goal: state = tuple(path['env_infos']['goal'][0]) else: state = tuple(env.transform_to_start_space(path['observations'][0])) all_states.append(state) all_rewards.append(reward) return [all_states, all_rewards] def label_states_from_paths(all_paths, min_reward=0, max_reward=1, key='rewards', as_goal=True, old_rewards=None, improvement_threshold=0, n_traj=1, env=None, return_mean_rewards = False, order_of_states = None): state_dict = {} for paths in all_paths: for path in paths: reward = evaluate_path(path, key=key) if as_goal: state = tuple(path['env_infos']['goal'][0]) else: env_infos_first_time_step = {key: value[0] for key, value in path['env_infos'].items()} state = tuple(env.transform_to_start_space(path['observations'][0], env_infos_first_time_step)) if state in state_dict: state_dict[state].append(reward) else: state_dict[state] = [reward] states = [] unlabeled_state = [] mean_rewards = [] if order_of_states is None: for state, rewards in state_dict.items(): if len(rewards) >= n_traj: states.append(list(state)) mean_rewards.append(np.mean(rewards)) # case where you want states returned in a specific order (useful for TSCL) else: updated = [] for state in order_of_states: states.append(state) if state not in state_dict or len(state_dict[tuple(state)]) < n_traj: mean_rewards.append(0) updated.append(False) else: mean_rewards.append(np.mean(state_dict[tuple(state)])) updated.append(True) # Make this a vertical list. mean_rewards = np.array(mean_rewards).reshape(-1, 1) labels = compute_labels(mean_rewards, old_rewards=old_rewards, min_reward=min_reward, max_reward=max_reward, improvement_threshold=improvement_threshold) states =
np.array(states)
numpy.array
'''Module for all things Radio Frequency Interference Flagging''' import numpy as np from scipy.signal import medfilt def medmin(d): """Calculate the median minus median statistic of array. Args: d (array): 2D data array Returns: (array): array with the statistic applied. """ #return np.median(np.min(chisq,axis=0)) mn = np.min(d,axis=0) return 2*np.median(mn) - np.min(mn) def medminfilt(d, K=8): """Filter an array on scales of K indexes with medmin. Args: d (array): 2D data array. K (int, optional): integer representing box size to apply statistic. Returns: array: filtered array. Same shape as input array. """ d_sm = np.empty_like(d) for i in xrange(d.shape[0]): for j in xrange(d.shape[1]): i0,j0 = max(0,i-K), max(0,j-K) i1,j1 = min(d.shape[0], i+K), min(d.shape[1], j+K) d_sm[i,j] = medmin(d[i0:i1,j0:j1]) return d_sm #def omni_chisq_to_flags(chisq, K=8, sigma=6, sigl=2): # '''Returns a mask of RFI given omnical's chisq statistic''' # if False: # w_sm = np.empty_like(chisq) # sig = np.empty_like(chisq) # #get smooth component of chisq # for i in xrange(chisq.shape[0]): # for j in xrange(chisq.shape[1]): # i0,j0 = max(0,i-K), max(0,j-K) # i1,j1 = min(chisq.shape[0], i+K), min(chisq.shape[1], j+K) # #w_sm[i,j] = np.median(chisq[i0:i1,j0:j1]) # w_sm[i,j] = medmin(chisq[i0:i1,j0:j1]) # else: w_sm = medfilt(chisq, 2*K+1) # #the residual from smooth component # w_rs = chisq - w_sm # w_sq = np.abs(w_rs)**2 # #get the standard deviation of the media. # if False: # for i in xrange(chisq.shape[0]): # for j in xrange(chisq.shape[1]): # i0,j0 = max(0,i-K), max(0,j-K) # i1,j1 = min(chisq.shape[0], i+K), min(chisq.shape[1], j+K) # #sig[i,j] = np.sqrt(np.median(w_sq[i0:i1,j0:j1])) # sig[i,j] = np.sqrt(medmin(w_sq[i0:i1,j0:j1])) # else: sig = np.sqrt(medfilt(w_sq, 2*K+1)) # #Number of sigma above the residual unsmooth part is. # f1 = w_rs / sig # return watershed_flag(f1, sig_init=sigma, sig_adj=sigl) def watershed_flag(d, f=None, sig_init=6, sig_adj=2): '''Generates a mask for flags using a watershed algorithm. Returns a watershed flagging of an array that is in units of standard deviation (i.e. how many sigma the datapoint is from the center). Args: d (array): 2D array to perform watershed on. d should be in units of standard deviations. f (array, optional): input flags. Same size as d. sig_init (int): number of sigma to flag above, initially. sig_adj (int): number of sigma to flag above for points near flagged points. Returns: bool array: Array of mask values for d. ''' #mask off any points above 'sig' sigma and nan's. f1 = np.ma.array(d, mask=np.where(d > sig_init,1,0)) f1.mask |= np.isnan(f1) if not f is None: f1.mask |= f # Loop over flagged points and examine adjacent points to see if they exceed sig_adj #Start the watershed prevx,prevy = 0,0 x,y = np.where(f1.mask) while x.size != prevx and y.size != prevy: for dx,dy in [(1,0),(-1,0),(0,1),(0,-1)]: prevx,prevy = x.size, y.size xp, yp = (x+dx).clip(0,f1.shape[0]-1), (y+dy).clip(0,f1.shape[1]-1) i = np.where(f1[xp,yp] > sig_adj)[0] # if sigma > 'sigl' f1.mask[xp[i],yp[i]] = 1 x,y = np.where(f1.mask) return f1.mask def toss_times_freqs(mask, sig_t=6, sig_f=6): """XXX what does this function do? Needs test.""" f1ch = np.average(f1.mask, axis=0); f1ch.shape = (1,-1) #The cut off value is a made up number here...sig = 'sig' if none flagged. f1.mask = np.logical_or(f1.mask, np.where(f1 > sig_init*(1-f1ch), 1, 0)) f1t = np.average(f1.mask, axis=1) # band-avg flag vs t ts = np.where(f1t > 2*
np.median(f1t)
numpy.median
# Geometry Module import numpy as np from shapely.geometry import Polygon from shapely.geometry.point import Point def width(mag, maglim=20, seeing=1): """ Gives the approximate size of a star on a captor, based on its magnitude, the highest magnitude visible and the seeing of the captor. Parameters ---------- mag : float magnitude of the star. maglim : float highest magnitude visible by the captor. seeing : float seeing, FWHM of the point spread function of the atmosphere. Returns ------- out : the size of the point on the captor, in arcsec. """ if mag >= maglim: w = 0 else: w = 0.58 * seeing * np.sqrt(maglim - mag) return w # arcsec def order_shape(n: int, x, y, mag, config, maglim, seeing): """ Generates shapes representing the visible n'th order of the point spread function of a star on the captor in the case of slitless spectroscopy. Parameters ---------- n : int spectrum order x, y : floats position of the star on the captor (along 0x and 0y axes). mag : float apparent magnitude of the star. config : Configuration object made from a configuration file. maglim : float highest visible magnitude on the captor. seeing : float seeing, FWHM of the point spread function of the telescope. Returns ------- out : shapely Polygon object """ try: disperserate = False lmin, lmax = config.lambda_min, config.lambda_max gpm = config.grooves_per_mm d2ccd = config.distance2ccd p2m, p2a = config.pixel2mm, config.pixel2arcsec except BaseException: disperserate = True lmin, lmax = config.lambda_min, config.lambda_max dr, p2a = config.dispersion_ratio, config.pixel2arcsec w = width(mag, maglim, seeing)/p2a if n == 0: order = Point(x, y).buffer(w) elif isinstance(n, int): if disperserate: hstart, hstop = lmin/dr, lmax/dr else: hstart = n*np.tan(np.arcsin(lmin*gpm))*d2ccd/p2m hstop = n*np.tan(np.arcsin(lmax*gpm))*d2ccd/p2m xmin, xmax = x + hstart, x + hstop ymin, ymax = y - w/abs(n), y + w/abs(n) order = Polygon([[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]]) return order def rotate_around(matrix, centre, angle): """ Rotates a collection of points (2xn matrix) by an angle around a centre. Parameters ---------- matrix : 2xn array_like concatenation of n points on a 2D plain. centre : 2x1 array_like centre around which the points will rotate. angle : float rotation angle, in radian. Returns ------- out : 2xn numpy array. the same concatenation of points but rotated by the given angle around the centre. """ RotMat = np.array(((np.cos(angle), -np.sin(angle)), (np.sin(angle), np.cos(angle)))) n = matrix.shape[-1] X0, Y0 = centre CentreMat = np.repeat([[X0], [Y0]], n, axis=1) return
np.dot(RotMat, matrix - CentreMat)
numpy.dot
# import numpy as np import netCDF4 import scipy.ndimage as ndimage import datetime as dt import cartopy import cartopy.crs as ccrs import cartopy.feature as cpf from cartopy.io.shapereader import Reader from cartopy.io.shapereader import natural_earth from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.patches as mpatches from matplotlib import colors from mpl_toolkits.axes_grid1.inset_locator import inset_axes from sinop_funciones import mapa_base from sinop_funciones import get_index_time from sinop_funciones import get_index_lat from sinop_funciones import extract_var def extraer_variable(file, fecha, nomvar, llat, llon): """ Extrae variables en espacio (X, Y) - Tiempo para la variable pedida en nomvar """ l_lat = llat l_lon = np.array(llon) % 360 i_lat, i_lon, lat, lon = get_index_lat(fecha, file, llat, llon) tiempos = get_index_time(file, fecha) # Creamos una variable aux ndays = 8 res = np.empty([ndays, len(lat), len(lon)]) res[:] = np.nan fdates = [] if nomvar == 'precip': # Leemos la variable ppinit = file.variables['apcpsfc'][:, i_lat[0]:i_lat[1]+1, i_lon[0]:i_lon[1]+1] i1 = np.min(np.where(np.array([a.hour for a in tiempos])==12)) # primer tiempo que inicia a las 12Z d0 = tiempos[i1] # --> Initial day at 12UTC (=9 Local Time) for dia in
np.arange(0, ndays)
numpy.arange
from types import GeneratorType import typing as tp import csv import json from collections import namedtuple from functools import partial import numpy as np from numpy.ma import MaskedArray from static_frame.core.util import DEFAULT_SORT_KIND from static_frame.core.util import NULL_SLICE from static_frame.core.util import KEY_MULTIPLE_TYPES from static_frame.core.util import GetItemKeyType from static_frame.core.util import GetItemKeyTypeCompound from static_frame.core.util import CallableOrMapping from static_frame.core.util import KeyOrKeys from static_frame.core.util import FilePathOrFileLike from static_frame.core.util import DtypeSpecifier from static_frame.core.util import DtypesSpecifier from static_frame.core.util import IndexSpecifier from static_frame.core.util import IndexInitializer from static_frame.core.util import FrameInitializer from static_frame.core.util import immutable_filter from static_frame.core.util import column_2d_filter from static_frame.core.util import column_1d_filter from static_frame.core.util import name_filter from static_frame.core.util import _gen_skip_middle from static_frame.core.util import iterable_to_array from static_frame.core.util import _dict_to_sorted_items from static_frame.core.util import _array_to_duplicated from static_frame.core.util import array_set_ufunc_many from static_frame.core.util import array2d_to_tuples from static_frame.core.util import _read_url from static_frame.core.util import write_optional_file from static_frame.core.util import GetItem from static_frame.core.util import InterfaceSelection2D from static_frame.core.util import InterfaceAsType from static_frame.core.util import IndexCorrespondence from static_frame.core.util import ufunc_unique from static_frame.core.util import STATIC_ATTR from static_frame.core.util import concat_resolved from static_frame.core.util import DepthLevelSpecifier from static_frame.core.util import _array_to_groups_and_locations from static_frame.core.operator_delegate import MetaOperatorDelegate from static_frame.core.iter_node import IterNodeApplyType from static_frame.core.iter_node import IterNodeType from static_frame.core.iter_node import IterNode from static_frame.core.display import DisplayConfig from static_frame.core.display import DisplayActive from static_frame.core.display import Display from static_frame.core.display import DisplayFormats from static_frame.core.display import DisplayHeader from static_frame.core.type_blocks import TypeBlocks from static_frame.core.series import Series from static_frame.core.index_base import IndexBase from static_frame.core.index import Index from static_frame.core.index import IndexGO from static_frame.core.index import _requires_reindex from static_frame.core.index import _is_index_initializer from static_frame.core.index import immutable_index_filter from static_frame.core.index_hierarchy import IndexHierarchy from static_frame.core.index_hierarchy import IndexHierarchyGO from static_frame.core.doc_str import doc_inject def dtypes_mappable(dtypes: DtypesSpecifier): ''' Determine if the dtypes argument can be used by name lookup, rather than index. ''' return isinstance(dtypes, (dict, Series)) @doc_inject(selector='container_init', class_name='Frame') class Frame(metaclass=MetaOperatorDelegate): ''' A two-dimensional ordered, labelled collection, immutable and of fixed size. Args: data: An iterable of row iterables, a 2D numpy array, or dictionary mapping column names to column values. {index} {columns} {own_data} {own_index} {own_columns} ''' __slots__ = ( '_blocks', '_columns', '_index', '_name' ) _COLUMN_CONSTRUCTOR = Index @classmethod def from_concat(cls, frames: tp.Iterable[tp.Union['Frame', Series]], *, axis: int = 0, union: bool = True, index: IndexInitializer = None, columns: IndexInitializer = None, name: tp.Hashable = None, consolidate_blocks: bool = False ): ''' Concatenate multiple Frames into a new Frame. If index or columns are provided and appropriately sized, the resulting Frame will have those indices. If the axis along concatenation (index for axis 0, columns for axis 1) is unique after concatenation, it will be preserved. Args: frames: Iterable of Frames. axis: Integer specifying 0 to concatenate vertically, 1 to concatenate horizontally. union: If True, the union of the aligned indices is used; if False, the intersection is used. index: Optionally specify a new index. columns: Optionally specify new columns. Returns: :py:class:`static_frame.Frame` ''' # when doing axis 1 concat (growin horizontally) Series need to be presented as rows (axis 0) # axis_series = (0 if axis is 1 else 1) frames = [f if isinstance(f, Frame) else f.to_frame(axis) for f in frames] # switch if we have reduced the columns argument to an array from_array_columns = False from_array_index = False own_columns = False own_index = False if axis == 1: # stacks columns (extends rows) # index can be the same, columns must be redefined if not unique if columns is None: # returns immutable array columns = concat_resolved([frame._columns.values for frame in frames]) from_array_columns = True # avoid sort for performance; always want rows if ndim is 2 if len(ufunc_unique(columns, axis=0)) != len(columns): raise RuntimeError('Column names after horizontal concatenation are not unique; supply a columns argument.') if index is None: index = array_set_ufunc_many( (frame._index.values for frame in frames), union=union) index.flags.writeable = False from_array_index = True def blocks(): for frame in frames: if len(frame.index) != len(index) or (frame.index != index).any(): frame = frame.reindex(index=index) for block in frame._blocks._blocks: yield block elif axis == 0: # stacks rows (extends columns) if index is None: # returns immutable array index = concat_resolved([frame._index.values for frame in frames]) from_array_index = True # avoid sort for performance; always want rows if ndim is 2 if len(ufunc_unique(index, axis=0)) != len(index): raise RuntimeError('Index names after vertical concatenation are not unique; supply an index argument.') if columns is None: columns = array_set_ufunc_many( (frame._columns.values for frame in frames), union=union) # import ipdb; ipdb.set_trace() columns.flags.writeable = False from_array_columns = True def blocks(): aligned_frames = [] previous_frame = None block_compatible = True reblock_compatible = True for frame in frames: if len(frame.columns) != len(columns) or (frame.columns != columns).any(): frame = frame.reindex(columns=columns) aligned_frames.append(frame) # column size is all the same by this point if previous_frame is not None: if block_compatible: block_compatible &= frame._blocks.block_compatible( previous_frame._blocks) if reblock_compatible: reblock_compatible &= frame._blocks.reblock_compatible( previous_frame._blocks) previous_frame = frame if block_compatible or reblock_compatible: if not block_compatible and reblock_compatible: type_blocks = [f._blocks.consolidate() for f in aligned_frames] else: type_blocks = [f._blocks for f in aligned_frames] # all TypeBlocks have the same number of blocks by here for block_idx in range(len(type_blocks[0]._blocks)): block_parts = [] for frame_idx in range(len(type_blocks)): b = column_2d_filter( type_blocks[frame_idx]._blocks[block_idx]) block_parts.append(b) # returns immutable array yield concat_resolved(block_parts) else: # must just combine .values; returns immutable array yield concat_resolved([frame.values for frame in frames]) else: raise NotImplementedError('no support for axis', axis) if from_array_columns: if columns.ndim == 2: # we have a hierarchical index column_cls = (IndexHierarchy if cls._COLUMN_CONSTRUCTOR.STATIC else IndexHierarchyGO) columns = column_cls.from_labels(columns) own_columns = True if from_array_index: if index.ndim == 2: # we have a hierarchical index index = IndexHierarchy.from_labels(index) own_index = True if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, own_columns=own_columns, own_index=own_index) @classmethod def from_records(cls, records: tp.Iterable[tp.Any], *, index: tp.Optional[IndexInitializer] = None, columns: tp.Optional[IndexInitializer] = None, dtypes: DtypesSpecifier = None, name: tp.Hashable = None, consolidate_blocks: bool = False ) -> 'Frame': '''Frame constructor from an iterable of rows. Args: records: Iterable of row values, provided either as arrays, tuples, lists, or namedtuples. index: Optionally provide an iterable of index labels, equal in length to the number of records. columns: Optionally provide an iterable of column labels, equal in length to the length of each row. dtypes: Optionally provide an iterable of dtypes, equal in length to the length of each row, or mapping by column name. If a dtype is given as None, NumPy's default type determination will be used. Returns: :py:class:`static_frame.Frame` ''' derive_columns = False if columns is None: derive_columns = True # leave columns list in outer scope for blocks() to populate columns = [] # if records is np; we can just pass it to constructor, as is alrady a consolidate type if isinstance(records, np.ndarray): if dtypes is not None: raise NotImplementedError('handling of dtypes when using NP records is no yet implemented') return cls(records, index=index, columns=columns) dtypes_is_map = dtypes_mappable(dtypes) def get_col_dtype(col_idx): if dtypes_is_map: return dtypes.get(columns[col_idx], None) return dtypes[col_idx] def blocks(): if not hasattr(records, '__len__'): rows = list(records) else: rows = records row_reference = rows[0] row_count = len(rows) col_count = len(row_reference) # if dtypes is not None and len(dtypes) != col_count: # raise RuntimeError('length of dtypes does not match rows') column_getter = None if isinstance(row_reference, dict): col_idx_iter = (k for k, _ in _dict_to_sorted_items(row_reference)) if derive_columns: # just pass the key back column_getter = lambda key: key elif isinstance(row_reference, Series): raise RuntimeError('Frame.from_records() does not support Series. Use Frame.from_concat() instead.') else: # all other iterables col_idx_iter = range(col_count) if hasattr(row_reference, '_fields') and derive_columns: column_getter = row_reference._fields.__getitem__ # derive types from first rows for col_idx, col_key in enumerate(col_idx_iter): if column_getter: # append as side effect of generator! columns.append(column_getter(col_key)) # for each column, try to get a column_type, or None if dtypes is None: field_ref = row_reference[col_key] # string, datetime64 types requires size in dtype specification, so cannot use np.fromiter, as we do not know the size of all columns column_type = (type(field_ref) if not isinstance(field_ref, (str, np.datetime64)) else None) column_type_explicit = False else: # column_type returned here can be None. column_type = get_col_dtype(col_idx) column_type_explicit = True values = None if column_type is not None: try: values = np.fromiter( (row[col_key] for row in rows), count=row_count, dtype=column_type) except ValueError: # the column_type may not be compatible, so must fall back on using np.array to determine the type, i.e., ValueError: cannot convert float NaN to integer if not column_type_explicit: # reset to None if not explicit and failued in fromiter column_type = None if values is None: # let array constructor determine type if column_type is None values = np.array([row[col_key] for row in rows], dtype=column_type) values.flags.writeable = False yield values if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True) @classmethod def from_json(cls, json_data: str, *, name: tp.Hashable = None, dtypes: DtypesSpecifier = None ) -> 'Frame': '''Frame constructor from an in-memory JSON document. Args: json_data: a string of JSON, encoding a table as an array of JSON objects. Returns: :py:class:`static_frame.Frame` ''' data = json.loads(json_data) return cls.from_records(data, name=name, dtypes=dtypes) @classmethod def from_json_url(cls, url: str, *, name: tp.Hashable = None, dtypes: DtypesSpecifier = None ) -> 'Frame': '''Frame constructor from a JSON documenst provided via a URL. Args: url: URL to the JSON resource. Returns: :py:class:`static_frame.Frame` ''' return cls.from_json(_read_url(url), name=name, dtypes=dtypes) @classmethod def from_items(cls, pairs: tp.Iterable[tp.Tuple[tp.Hashable, tp.Iterable[tp.Any]]], *, index: IndexInitializer = None, fill_value: object = np.nan, name: tp.Hashable = None, dtypes: DtypesSpecifier = None, consolidate_blocks: bool = False): '''Frame constructor from an iterator or generator of pairs, where the first value is the column name and the second value an iterable of column values. Args: pairs: Iterable of pairs of column name, column values. index: Iterable of values to create an Index. fill_value: If pairs include Series, they will be reindexed with the provided index; reindexing will use this fill value. consoidate_blocks: If True, same typed adjacent columns will be consolidated into a contiguous array. Returns: :py:class:`static_frame.Frame` ''' columns = [] # if an index initializer is passed, and we expect to get Series, we need to create the index in advance of iterating blocks own_index = False if _is_index_initializer(index): index = Index(index) own_index = True dtypes_is_map = dtypes_mappable(dtypes) def get_col_dtype(col_idx): if dtypes_is_map: return dtypes.get(columns[col_idx], None) return dtypes[col_idx] def blocks(): for col_idx, (k, v) in enumerate(pairs): columns.append(k) # side effet of generator! if dtypes: column_type = get_col_dtype(col_idx) else: column_type = None if isinstance(v, np.ndarray): # NOTE: we rely on TypeBlocks constructor to check that these are same sized if column_type is not None: yield v.astype(column_type) else: yield v elif isinstance(v, Series): if index is None: raise RuntimeError('can only consume Series in Frame.from_items if an Index is provided.') if column_type is not None: v = v.astype(column_type) if _requires_reindex(v.index, index): yield v.reindex(index, fill_value=fill_value).values else: yield v.values elif isinstance(v, Frame): raise NotImplementedError('Frames are not supported in from_items constructor.') else: values = np.array(v, dtype=column_type) values.flags.writeable = False yield values if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), index=index, columns=columns, name=name, own_data=True, own_index=own_index) @classmethod def from_dict(cls, dict: tp.Dict[tp.Hashable, tp.Iterable[tp.Any]], *, index: IndexInitializer = None, fill_value: object = np.nan, name: tp.Hashable = None, dtypes: DtypesSpecifier = None, consolidate_blocks: bool = False): ''' Create a Frame from a dictionary, or any object that has an items() method. ''' return cls.from_items(dict.items(), index=index, fill_value=fill_value, name=name, dtypes=dtypes, consolidate_blocks=consolidate_blocks) @classmethod def from_structured_array(cls, array: np.ndarray, *, name: tp.Hashable = None, index_column: tp.Optional[IndexSpecifier] = None, dtypes: DtypesSpecifier = None, consolidate_blocks: bool = False) -> 'Frame': ''' Convert a NumPy structed array into a Frame. Args: array: Structured NumPy array. index_column: Optionally provide the name or position offset of the column to use as the index. Returns: :py:class:`static_frame.Frame` ''' names = array.dtype.names if isinstance(index_column, int): index_name = names[index_column] else: index_name = index_column # assign in generator; requires reading through gen first index_array = None # cannot use names of we remove an index; might be a more efficient way as we kmnow the size columns = [] columns_with_index = [] dtypes_is_map = dtypes_mappable(dtypes) def get_col_dtype(col_idx): if dtypes_is_map: return dtypes.get(columns_with_index[col_idx], None) return dtypes[col_idx] def blocks(): for col_idx, name in enumerate(names): columns_with_index.append(name) if name == index_name: nonlocal index_array index_array = array[name] continue columns.append(name) # this is not expected to make a copy if dtypes: dtype = get_col_dtype(col_idx) if dtype is not None: yield array[name].astype(dtype) else: yield array[name] else: yield array[name] if consolidate_blocks: block_gen = lambda: TypeBlocks.consolidate_blocks(blocks()) else: block_gen = blocks return cls(TypeBlocks.from_blocks(block_gen()), columns=columns, index=index_array, name=name, own_data=True) #--------------------------------------------------------------------------- # iloc/loc pairs constructors: these are not yet documented @classmethod def from_element_iloc_items(cls, items, *, index, columns, dtype, name: tp.Hashable = None ) -> 'Frame': ''' Given an iterable of pairs of iloc coordinates and values, populate a Frame as defined by the given index and columns. Dtype must be specified. Returns: :py:class:`static_frame.Frame` ''' index = Index(index) columns = cls._COLUMN_CONSTRUCTOR(columns) tb = TypeBlocks.from_element_items(items, shape=(len(index), len(columns)), dtype=dtype) return cls(tb, index=index, columns=columns, name=name, own_data=True, own_index=True, own_columns=True) @classmethod def from_element_loc_items(cls, items, *, index, columns, dtype=None, name: tp.Hashable = None ) -> 'Frame': ''' Returns: :py:class:`static_frame.Frame` ''' index = Index(index) columns = cls._COLUMN_CONSTRUCTOR(columns) items = (((index.loc_to_iloc(k[0]), columns.loc_to_iloc(k[1])), v) for k, v in items) dtype = dtype if dtype is not None else object tb = TypeBlocks.from_element_items(items, shape=(len(index), len(columns)), dtype=dtype) return cls(tb, index=index, columns=columns, name=name, own_data=True, own_index=True, own_columns=True) #--------------------------------------------------------------------------- # file, data format loaders @classmethod def from_csv(cls, fp: FilePathOrFileLike, *, delimiter: str = ',', index_column: tp.Optional[tp.Union[int, str]] = None, skip_header: int = 0, skip_footer: int = 0, header_is_columns: bool = True, quote_char: str = '"', dtypes: DtypesSpecifier = None, encoding: tp.Optional[str] = None ) -> 'Frame': ''' Create a Frame from a file path or a file-like object defining a delimited (CSV, TSV) data file. Args: fp: A file path or a file-like object. delimiter: The character used to seperate row elements. index_column: Optionally specify a column, by position or name, to become the index. skip_header: Number of leading lines to skip. skip_footer: Numver of trailing lines to skip. header_is_columns: If True, columns names are read from the first line after the first skip_header lines. dtypes: set to None by default to permit discovery Returns: :py:class:`static_frame.Frame` ''' # https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html # https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html delimiter_native = '\t' if delimiter != delimiter_native: # this is necessary if there are quoted cells that include the delimiter def to_tsv(): if isinstance(fp, str): with open(fp, 'r') as f: for row in csv.reader(f, delimiter=delimiter, quotechar=quote_char): yield delimiter_native.join(row) else: # handling file like object works for stringio but not for bytesio for row in csv.reader(fp, delimiter=delimiter, quotechar=quote_char): yield delimiter_native.join(row) file_like = to_tsv() else: file_like = fp array = np.genfromtxt(file_like, delimiter=delimiter_native, skip_header=skip_header, skip_footer=skip_footer, names=header_is_columns, dtype=None, encoding=encoding, invalid_raise=False, missing_values={''}, ) # can own this array so set it as immutable array.flags.writeable = False return cls.from_structured_array(array, index_column=index_column, dtypes=dtypes ) @classmethod def from_tsv(cls, fp, **kwargs) -> 'Frame': ''' Specialized version of :py:meth:`Frame.from_csv` for TSV files. Returns: :py:class:`static_frame.Frame` ''' return cls.from_csv(fp, delimiter='\t', **kwargs) @classmethod @doc_inject() def from_pandas(cls, value, *, own_data: bool = False) -> 'Frame': '''Given a Pandas DataFrame, return a Frame. Args: value: Pandas DataFrame. {own_data} Returns: :py:class:`static_frame.Frame` ''' # create generator of contiguous typed data # calling .values will force type unification accross all columns def blocks(): #import ipdb; ipdb.set_trace() pairs = value.dtypes.items() column_start, dtype_current = next(pairs) column_last = column_start for column, dtype in pairs: if dtype != dtype_current: # use loc to select before calling .values array = value.loc[NULL_SLICE, slice(column_start, column_last)].values if own_data: array.flags.writeable = False yield array column_start = column dtype_current = dtype column_last = column # always have left over array = value.loc[NULL_SLICE, slice(column_start, None)].values if own_data: array.flags.writeable = False yield array blocks = TypeBlocks.from_blocks(blocks()) # avoid getting a Series if a column if 'name' not in value.columns and hasattr(value, 'name'): name = value.name else: name = None is_go = not cls._COLUMN_CONSTRUCTOR.STATIC return cls(blocks, index=IndexBase.from_pandas(value.index), columns=IndexBase.from_pandas(value.columns, is_go=is_go), name=name, own_data=True, own_index=True, own_columns=True) #--------------------------------------------------------------------------- def __init__(self, data: FrameInitializer = None, *, index: IndexInitializer = None, columns: IndexInitializer = None, name: tp.Hashable = None, own_data: bool = False, own_index: bool = False, own_columns: bool = False ) -> None: ''' Args: own_data: if True, assume that the data being based in can be owned entirely by this Frame; that is, that a copy does not need to made. own_index: if True, the index is taken as is and is not passed to an Index initializer. ''' self._name = name if name is None else name_filter(name) #----------------------------------------------------------------------- # blocks assignment blocks_constructor = None if isinstance(data, TypeBlocks): if own_data: self._blocks = data else: # assume we need to create a new TB instance; this will not copy underlying arrays as all blocks are immutable self._blocks = TypeBlocks.from_blocks(data._blocks) elif isinstance(data, np.ndarray): if own_data: data.flags.writeable = False self._blocks = TypeBlocks.from_blocks(data) elif isinstance(data, dict): raise RuntimeError('use Frame.from_dict to create a Frmae from a dict') # if a dictionary is given, it is treated as a dictionary of columns # if columns is not None: # raise RuntimeError('cannot create Frame from dictionary when columns is defined') # columns = [] # def blocks(): # for k, v in _dict_to_sorted_items(data): # columns.append(k) # if isinstance(v, np.ndarray): # yield v # else: # values = np.array(v) # values.flags.writeable = False # yield values # self._blocks = TypeBlocks.from_blocks(blocks()) elif data is None and columns is None: # will have shape of 0,0 self._blocks = TypeBlocks.from_none() elif not hasattr(data, '__len__') and not isinstance(data, str): # data is not None, single element to scale to size of index and columns def blocks_constructor(shape): a = np.full(shape, data) a.flags.writeable = False self._blocks = TypeBlocks.from_blocks(a) else: # could be list of lists to be made into an array a = np.array(data) a.flags.writeable = False self._blocks = TypeBlocks.from_blocks(a) # counts can be zero (not None) if _block was created but is empty row_count, col_count = self._blocks._shape if not blocks_constructor else (None, None) #----------------------------------------------------------------------- # index assignment if own_columns or (hasattr(columns, STATIC_ATTR) and columns.STATIC): # if it is a STATIC index we can assign directly self._columns = columns elif columns is None or (hasattr(columns, '__len__') and len(columns) == 0): if col_count is None: raise RuntimeError('cannot create columns when no data given') self._columns = self._COLUMN_CONSTRUCTOR( range(col_count), loc_is_iloc=True, dtype=np.int64) else: self._columns = self._COLUMN_CONSTRUCTOR(columns) if own_index or (hasattr(index, STATIC_ATTR) and index.STATIC): self._index = index elif index is None or (hasattr(index, '__len__') and len(index) == 0): if row_count is None: raise RuntimeError('cannot create rows when no data given') self._index = Index(range(row_count), loc_is_iloc=True, dtype=np.int64) else: self._index = Index(index) # permit bypassing this check if the if blocks_constructor: row_count = self._index.__len__() col_count = self._columns.__len__() blocks_constructor((row_count, col_count)) if row_count and len(self._index) != row_count: # row count might be 0 for an empty DF raise RuntimeError( 'Index has incorrect size (got {}, expected {})'.format( len(self._index), row_count)) if len(self._columns) != col_count: raise RuntimeError( 'Columns has incorrect size (got {}, expected {})'.format( len(self._columns), col_count)) #--------------------------------------------------------------------------- # name interface @property def name(self) -> tp.Hashable: return self._name def rename(self, name: tp.Hashable) -> 'Frame': ''' Return a new Frame with an updated name attribute. ''' # copying blocks does not copy underlying data return self.__class__(self._blocks.copy(), index=self._index, columns=self._columns, # let constructor handle if GO name=name, own_data=True, own_index=True) #--------------------------------------------------------------------------- # interfaces @property def loc(self) -> GetItem: return GetItem(self._extract_loc) @property def iloc(self) -> GetItem: return GetItem(self._extract_iloc) @property def drop(self) -> InterfaceSelection2D: return InterfaceSelection2D( func_iloc=self._drop_iloc, func_loc=self._drop_loc, func_getitem=self._drop_getitem) @property def mask(self) -> InterfaceSelection2D: return InterfaceSelection2D( func_iloc=self._extract_iloc_mask, func_loc=self._extract_loc_mask, func_getitem=self._extract_getitem_mask) @property def masked_array(self) -> InterfaceSelection2D: return InterfaceSelection2D( func_iloc=self._extract_iloc_masked_array, func_loc=self._extract_loc_masked_array, func_getitem=self._extract_getitem_masked_array) @property def assign(self) -> InterfaceSelection2D: return InterfaceSelection2D( func_iloc=self._extract_iloc_assign, func_loc=self._extract_loc_assign, func_getitem=self._extract_getitem_assign) @property def astype(self) -> InterfaceAsType: return InterfaceAsType(func_getitem=self._extract_getitem_astype) # generators @property def iter_array(self) -> IterNode: return IterNode( container=self, function_values=self._axis_array, function_items=self._axis_array_items, yield_type=IterNodeType.VALUES ) @property def iter_array_items(self) -> IterNode: return IterNode( container=self, function_values=self._axis_array, function_items=self._axis_array_items, yield_type=IterNodeType.ITEMS ) @property def iter_tuple(self) -> IterNode: return IterNode( container=self, function_values=self._axis_tuple, function_items=self._axis_tuple_items, yield_type=IterNodeType.VALUES ) @property def iter_tuple_items(self) -> IterNode: return IterNode( container=self, function_values=self._axis_tuple, function_items=self._axis_tuple_items, yield_type=IterNodeType.ITEMS ) @property def iter_series(self) -> IterNode: return IterNode( container=self, function_values=self._axis_series, function_items=self._axis_series_items, yield_type=IterNodeType.VALUES ) @property def iter_series_items(self) -> IterNode: return IterNode( container=self, function_values=self._axis_series, function_items=self._axis_series_items, yield_type=IterNodeType.ITEMS ) @property def iter_group(self) -> IterNode: return IterNode( container=self, function_values=self._axis_group_loc, function_items=self._axis_group_loc_items, yield_type=IterNodeType.VALUES ) @property def iter_group_items(self) -> IterNode: return IterNode( container=self, function_values=self._axis_group_loc, function_items=self._axis_group_loc_items, yield_type=IterNodeType.ITEMS ) @property def iter_group_index(self) -> IterNode: return IterNode( container=self, function_values=self._axis_group_index, function_items=self._axis_group_index_items, yield_type=IterNodeType.VALUES ) @property def iter_group_index_items(self) -> IterNode: return IterNode( container=self, function_values=self._axis_group_index, function_items=self._axis_group_index_items, yield_type=IterNodeType.ITEMS ) @property def iter_element(self) -> IterNode: return IterNode( container=self, function_values=self._iter_element_loc, function_items=self._iter_element_loc_items, yield_type=IterNodeType.VALUES, apply_type=IterNodeApplyType.FRAME_ELEMENTS ) @property def iter_element_items(self) -> IterNode: return IterNode( container=self, function_values=self._iter_element_loc, function_items=self._iter_element_loc_items, yield_type=IterNodeType.ITEMS, apply_type=IterNodeApplyType.FRAME_ELEMENTS ) #--------------------------------------------------------------------------- # index manipulation def _reindex_other_like_iloc(self, value: tp.Union[Series, 'Frame'], iloc_key: GetItemKeyTypeCompound, fill_value=np.nan ) -> 'Frame': '''Given a value that is a Series or Frame, reindex it to the index components, drawn from this Frame, that are specified by the iloc_key. ''' if isinstance(iloc_key, tuple): row_key, column_key = iloc_key else: row_key, column_key = iloc_key, None # within this frame, get Index objects by extracting based on passed-in iloc keys nm_row, nm_column = self._extract_axis_not_multi(row_key, column_key) v = None if nm_row and not nm_column: # only column is multi selection, reindex by column if isinstance(value, Series): v = value.reindex(self._columns._extract_iloc(column_key), fill_value=fill_value) elif not nm_row and nm_column: # only row is multi selection, reindex by index if isinstance(value, Series): v = value.reindex(self._index._extract_iloc(row_key), fill_value=fill_value) elif not nm_row and not nm_column: # both multi, must be a Frame if isinstance(value, Frame): target_column_index = self._columns._extract_iloc(column_key) target_row_index = self._index._extract_iloc(row_key) # this will use the default fillna type, which may or may not be what is wanted v = value.reindex( index=target_row_index, columns=target_column_index, fill_value=fill_value) if v is None: raise Exception(('cannot assign ' + value.__class__.__name__ + ' with key configuration'), (nm_row, nm_column)) return v def reindex(self, index: tp.Union[Index, tp.Sequence[tp.Any]] = None, columns: tp.Union[Index, tp.Sequence[tp.Any]] = None, fill_value=np.nan) -> 'Frame': ''' Return a new Frame based on the passed index and/or columns. ''' if index is None and columns is None: raise Exception('must specify one of index or columns') if index is not None: if isinstance(index, (Index, IndexHierarchy)): # always use the Index constructor for safe reuse when possible index = index.__class__(index) else: # create the Index if not already an index, assume 1D index = Index(index) index_ic = IndexCorrespondence.from_correspondence(self._index, index) else: index = self._index index_ic = None if columns is not None: if isinstance(columns, (Index, IndexHierarchy)): # always use the Index constructor for safe reuse when possible if columns.STATIC != self._COLUMN_CONSTRUCTOR.STATIC: raise Exception('static status of index does not match expected column static status') columns = columns.__class__(columns) else: # create the Index if not already an columns, assume 1D columns = self._COLUMN_CONSTRUCTOR(columns) columns_ic = IndexCorrespondence.from_correspondence(self._columns, columns) else: columns = self._columns columns_ic = None return self.__class__( TypeBlocks.from_blocks(self._blocks.resize_blocks( index_ic=index_ic, columns_ic=columns_ic, fill_value=fill_value)), index=index, columns=columns, name=self._name, own_data=True) def relabel(self, index: CallableOrMapping = None, columns: CallableOrMapping = None) -> 'Frame': ''' Return a new Frame based on a mapping (or callable) from old to new index values. ''' # create new index objects in both cases so as to call with own* index = self._index.relabel(index) if index else self._index.copy() columns = self._columns.relabel(columns) if columns else self._columns.copy() return self.__class__( self._blocks.copy(), # does not copy arrays index=index, columns=columns, name=self._name, own_data=True, own_index=True, own_columns=True) def reindex_flat(self, index: bool = False, columns: bool = False) -> 'Frame': ''' Return a new Frame, where an ``IndexHierarchy`` defined on the index or columns is replaced with a flat, one-dimension index of tuples. ''' index = self._index.flat() if index else self._index.copy() columns = self._columns.flat() if columns else self._columns.copy() return self.__class__( self._blocks.copy(), # does not copy arrays index=index, columns=columns, name=self._name, own_data=True, own_index=True, own_columns=True) def reindex_add_level(self, index: tp.Hashable = None, columns: tp.Hashable = None) -> 'Frame': ''' Return a new Frame, adding a new root level to the ``IndexHierarchy`` defined on the index or columns. ''' index = self._index.add_level(index) if index else self._index.copy() columns = self._columns.add_level(columns) if columns else self._columns.copy() return self.__class__( self._blocks.copy(), # does not copy arrays index=index, columns=columns, name=self._name, own_data=True, own_index=True, own_columns=True) @doc_inject(selector='reindex') def reindex_drop_level(self, index: int = 0, columns: int = 0 ) -> 'Frame': ''' Return a new Frame, dropping one or more levels from the ``IndexHierarchy`` defined on the index or columns. {count} ''' index = self._index.drop_level(index) if index else self._index.copy() columns = self._columns.drop_level(columns) if columns else self._columns.copy() return self.__class__( self._blocks.copy(), # does not copy arrays index=index, columns=columns, name=self._name, own_data=True, own_index=True, own_columns=True) #--------------------------------------------------------------------------- # na handling def isna(self) -> 'Frame': ''' Return a same-indexed, Boolean Frame indicating True which values are NaN or None. ''' # always return a Frame, even if this is a FrameGO return Frame(self._blocks.isna(), index=self._index, columns=self._columns, own_data=True) def notna(self) -> 'Frame': ''' Return a same-indexed, Boolean Frame indicating True which values are not NaN or None. ''' # always return a Frame, even if this is a FrameGO return Frame(self._blocks.notna(), index=self._index, columns=self._columns, own_data=True) def dropna(self, axis: int = 0, condition: tp.Callable[[np.ndarray], bool] = np.all) -> 'Frame': ''' Return a new Frame after removing rows (axis 0) or columns (axis 1) where condition is True, where condition is an NumPy ufunc that process the Boolean array returned by isna(). ''' # returns Boolean areas that define axis to keep row_key, column_key = self._blocks.dropna_to_keep_locations( axis=axis, condition=condition) # NOTE: if not values to drop and this is a Frame (not a FrameGO) we can return self as it is immutable if self.__class__ is Frame: if (row_key is not None and column_key is not None and row_key.all() and column_key.all()): return self return self._extract(row_key, column_key) def fillna(self, value) -> 'Frame': '''Return a new Frame after replacing NaN or None values with the supplied value. ''' return self.__class__(self._blocks.fillna(value), index=self._index, columns=self._columns, name=self._name, own_data=True) #--------------------------------------------------------------------------- def __len__(self) -> int: '''Length of rows in values. ''' return self._blocks._shape[0] def display(self, config: tp.Optional[DisplayConfig] = None ) -> Display: config = config or DisplayActive.get() # create an empty display, then populate with index d = Display([[]], config=config, outermost=True, index_depth=self._index.depth, columns_depth=self._columns.depth + 2) display_index = self._index.display(config=config) d.extend_display(display_index) if self._blocks._shape[1] > config.display_columns: # columns as they will look after application of truncation and insertion of ellipsis # get target column count in the absence of meta data, subtracting 2 data_half_count = Display.truncate_half_count( config.display_columns - Display.DATA_MARGINS) column_gen = partial(_gen_skip_middle, forward_iter=partial(self._blocks.axis_values, axis=0), forward_count=data_half_count, reverse_iter=partial(self._blocks.axis_values, axis=0, reverse=True), reverse_count=data_half_count, center_sentinel=Display.ELLIPSIS_CENTER_SENTINEL ) else: column_gen = partial(self._blocks.axis_values, axis=0) for column in column_gen(): if column is Display.ELLIPSIS_CENTER_SENTINEL: d.extend_ellipsis() else: d.extend_iterable(column, header='') config_transpose = config.to_transpose() display_cls = Display.from_values((), header=DisplayHeader(self.__class__, self._name), config=config_transpose) # need to apply the column config such that it truncates it based on the the max columns, not the max rows display_columns = self._columns.display( config=config_transpose) # add spacers for a wide index for _ in range(self._index.depth - 1): # will need a width equal to the column depth row = [Display.to_cell('', config=config) for _ in range(self._columns.depth)] spacer = Display([row]) display_columns.insert_displays(spacer, insert_index=1) # after the first, the name if self._columns.depth > 1: display_columns_horizontal = display_columns.transform() else: # can just flatten a single column into one row display_columns_horizontal = display_columns.flatten() d.insert_displays( display_cls.flatten(), display_columns_horizontal, ) return d def __repr__(self) -> str: return repr(self.display()) def _repr_html_(self): ''' Provide HTML representation for Jupyter Notebooks. ''' # modify the active display to be fore HTML config = DisplayActive.get( display_format=DisplayFormats.HTML_TABLE, type_show=False ) return repr(self.display(config)) #--------------------------------------------------------------------------- # accessors @property def values(self) -> np.ndarray: return self._blocks.values @property def index(self) -> Index: return self._index @property def columns(self) -> Index: return self._columns #--------------------------------------------------------------------------- # common attributes from the numpy array @property def dtypes(self) -> Series: ''' Return a Series of dytpes for each realizable column. Returns: :py:class:`static_frame.Series` ''' return Series(self._blocks.dtypes, index=self._columns.values) @property def mloc(self) -> np.ndarray: '''Return an immutable ndarray of NP array memory location integers. ''' return self._blocks.mloc #--------------------------------------------------------------------------- @property def shape(self) -> tp.Tuple[int, int]: ''' Return a tuple describing the shape of the underlying NumPy array. Returns: :py:class:`tp.Tuple[int]` ''' return self._blocks._shape @property def ndim(self) -> int: ''' Return the number of dimensions, which for a `Frame` is always 2. Returns: :py:class:`int` ''' return self._blocks.ndim @property def size(self) -> int: ''' Return the size of the underlying NumPy array. Returns: :py:class:`int` ''' return self._blocks.size @property def nbytes(self) -> int: ''' Return the total bytes of the underlying NumPy array. Returns: :py:class:`int` ''' return self._blocks.nbytes #--------------------------------------------------------------------------- @staticmethod def _extract_axis_not_multi(row_key, column_key) -> tp.Tuple[bool, bool]: ''' If either row or column is given with a non-multiple type of selection (a single scalar), reduce dimensionality. ''' row_nm = False column_nm = False if row_key is not None and not isinstance(row_key, KEY_MULTIPLE_TYPES): row_nm = True # axis 0 if column_key is not None and not isinstance(column_key, KEY_MULTIPLE_TYPES): column_nm = True # axis 1 return row_nm, column_nm def _extract(self, row_key: GetItemKeyType = None, column_key: GetItemKeyType = None) -> tp.Union['Frame', Series]: ''' Extract based on iloc selection (indices have already mapped) ''' blocks = self._blocks._extract(row_key=row_key, column_key=column_key) if not isinstance(blocks, TypeBlocks): return blocks # reduced to an element own_index = True # the extracted Frame can always own this index row_key_is_slice = isinstance(row_key, slice) if row_key is None or (row_key_is_slice and row_key == NULL_SLICE): index = self._index else: index = self._index._extract_iloc(row_key) if not row_key_is_slice: name_row = self._index.values[row_key] if self._index.depth > 1: name_row = tuple(name_row) # can only own columns if _COLUMN_CONSTRUCTOR is static column_key_is_slice = isinstance(column_key, slice) if column_key is None or (column_key_is_slice and column_key == NULL_SLICE): columns = self._columns own_columns = self._COLUMN_CONSTRUCTOR.STATIC else: columns = self._columns._extract_iloc(column_key) own_columns = True if not column_key_is_slice: name_column = self._columns.values[column_key] if self._columns.depth > 1: name_column = tuple(name_column) axis_nm = self._extract_axis_not_multi(row_key, column_key) if blocks._shape == (1, 1): # if TypeBlocks did not return an element, need to determine which axis to use for Series index if axis_nm[0]: # if row not multi return Series(blocks.values[0], index=immutable_index_filter(columns), name=name_row) elif axis_nm[1]: return Series(blocks.values[0], index=index, name=name_column) # if both are multi, we return a Frame elif blocks._shape[0] == 1: # if one row if axis_nm[0]: # if row key not multi # best to use blocks.values, as will need to consolidate dtypes; will always return a 2D array return Series(blocks.values[0], index=immutable_index_filter(columns), name=name_row) elif blocks._shape[1] == 1: # if one column if axis_nm[1]: # if column key is not multi return Series( column_1d_filter(blocks._blocks[0]), index=index, name=name_column) return self.__class__(blocks, index=index, columns=columns, name=self._name, own_data=True, # always get new TypeBlock instance above own_index=own_index, own_columns=own_columns ) def _extract_iloc(self, key: GetItemKeyTypeCompound) -> 'Frame': ''' Give a compound key, return a new Frame. This method simply handles the variabiliyt of single or compound selectors. ''' if isinstance(key, tuple): return self._extract(*key) return self._extract(row_key=key) def _compound_loc_to_iloc(self, key: GetItemKeyTypeCompound) -> tp.Tuple[GetItemKeyType, GetItemKeyType]: ''' Given a compound iloc key, return a tuple of row, column keys. Assumes the first argument is always a row extractor. ''' if isinstance(key, tuple): loc_row_key, loc_column_key = key iloc_column_key = self._columns.loc_to_iloc(loc_column_key) else: loc_row_key = key iloc_column_key = None iloc_row_key = self._index.loc_to_iloc(loc_row_key) return iloc_row_key, iloc_column_key def _compound_loc_to_getitem_iloc(self, key: GetItemKeyTypeCompound) -> tp.Tuple[GetItemKeyType, GetItemKeyType]: '''Handle a potentially compound key in the style of __getitem__. This will raise an appropriate exception if a two argument loc-style call is attempted. ''' if isinstance(key, tuple): raise KeyError('__getitem__ does not support multiple indexers') iloc_column_key = self._columns.loc_to_iloc(key) return None, iloc_column_key def _extract_loc(self, key: GetItemKeyTypeCompound) -> 'Frame': iloc_row_key, iloc_column_key = self._compound_loc_to_iloc(key) return self._extract(row_key=iloc_row_key, column_key=iloc_column_key) def __getitem__(self, key: GetItemKeyType): return self._extract(*self._compound_loc_to_getitem_iloc(key)) #--------------------------------------------------------------------------- def _drop_iloc(self, key: GetItemKeyTypeCompound) -> 'Frame': ''' Args: key: If a Boolean Series was passed, it has been converted to Boolean NumPy array already in loc to iloc. ''' blocks = self._blocks.drop(key) if isinstance(key, tuple): iloc_row_key, iloc_column_key = key index = self._index._drop_iloc(iloc_row_key) own_index = True columns = self._columns._drop_iloc(iloc_column_key) own_columns = True else: iloc_row_key = key # no column selection index = self._index._drop_iloc(iloc_row_key) own_index = True columns = self._columns own_columns = False return self.__class__(blocks, columns=columns, index=index, name=self._name, own_data=True, own_columns=own_columns, own_index=own_index ) def _drop_loc(self, key: GetItemKeyTypeCompound) -> 'Frame': key = self._compound_loc_to_iloc(key) return self._drop_iloc(key=key) def _drop_getitem(self, key: GetItemKeyTypeCompound) -> 'Frame': key = self._compound_loc_to_getitem_iloc(key) return self._drop_iloc(key=key) #--------------------------------------------------------------------------- def _extract_iloc_mask(self, key: GetItemKeyTypeCompound) -> 'Frame': masked_blocks = self._blocks.extract_iloc_mask(key) return self.__class__(masked_blocks, columns=self._columns, index=self._index, own_data=True) def _extract_loc_mask(self, key: GetItemKeyTypeCompound) -> 'Frame': key = self._compound_loc_to_iloc(key) return self._extract_iloc_mask(key=key) def _extract_getitem_mask(self, key: GetItemKeyTypeCompound) -> 'Frame': key = self._compound_loc_to_getitem_iloc(key) return self._extract_iloc_mask(key=key) #--------------------------------------------------------------------------- def _extract_iloc_masked_array(self, key: GetItemKeyTypeCompound) -> MaskedArray: masked_blocks = self._blocks.extract_iloc_mask(key) return MaskedArray(data=self.values, mask=masked_blocks.values) def _extract_loc_masked_array(self, key: GetItemKeyTypeCompound) -> MaskedArray: key = self._compound_loc_to_iloc(key) return self._extract_iloc_masked_array(key=key) def _extract_getitem_masked_array(self, key: GetItemKeyTypeCompound) -> 'Frame': key = self._compound_loc_to_getitem_iloc(key) return self._extract_iloc_masked_array(key=key) #--------------------------------------------------------------------------- def _extract_iloc_assign(self, key: GetItemKeyTypeCompound) -> 'FrameAssign': return FrameAssign(self, iloc_key=key) def _extract_loc_assign(self, key: GetItemKeyTypeCompound) -> 'FrameAssign': # extract if tuple, then pack back again key = self._compound_loc_to_iloc(key) return self._extract_iloc_assign(key=key) def _extract_getitem_assign(self, key: GetItemKeyTypeCompound) -> 'FrameAssign': # extract if tuple, then pack back again key = self._compound_loc_to_getitem_iloc(key) return self._extract_iloc_assign(key=key) #--------------------------------------------------------------------------- def _extract_getitem_astype(self, key: GetItemKeyType) -> 'FrameAsType': # extract if tuple, then pack back again _, key = self._compound_loc_to_getitem_iloc(key) return FrameAsType(self, column_key=key) #--------------------------------------------------------------------------- # dictionary-like interface def keys(self): '''Iterator of column labels. ''' return self._columns def __iter__(self): ''' Iterator of column labels, same as :py:meth:`Frame.keys`. ''' return self._columns.__iter__() def __contains__(self, value) -> bool: ''' Inclusion of value in column labels. ''' return self._columns.__contains__(value) def items(self) -> tp.Generator[tp.Tuple[tp.Any, Series], None, None]: '''Iterator of pairs of column label and corresponding column :py:class:`Series`. ''' return zip(self._columns.values, (Series(v, index=self._index) for v in self._blocks.axis_values(0))) def get(self, key, default=None): ''' Return the value found at the columns key, else the default if the key is not found. This method is implemented to complete the dictionary-like interface. ''' if key not in self._columns: return default return self.__getitem__(key) #--------------------------------------------------------------------------- # operator functions def _ufunc_unary_operator(self, operator: tp.Callable) -> 'Frame': # call the unary operator on _blocks return self.__class__( self._blocks._ufunc_unary_operator(operator=operator), index=self._index, columns=self._columns) def _ufunc_binary_operator(self, *, operator, other): if isinstance(other, Frame): # reindex both dimensions to union indices columns = self._columns.union(other._columns) index = self._index.union(other._index) self_tb = self.reindex(columns=columns, index=index)._blocks other_tb = other.reindex(columns=columns, index=index)._blocks return self.__class__(self_tb._ufunc_binary_operator( operator=operator, other=other_tb), index=index, columns=columns, own_data=True ) elif isinstance(other, Series): columns = self._columns.union(other._index) self_tb = self.reindex(columns=columns)._blocks other_array = other.reindex(columns).values return self.__class__(self_tb._ufunc_binary_operator( operator=operator, other=other_array), index=self._index, columns=columns, own_data=True ) # handle single values and lists that can be converted to appropriate arrays if not isinstance(other, np.ndarray) and hasattr(other, '__iter__'): other =
np.array(other)
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Apr 28 09:49:28 2020 @author: youngmin library functions """ import time import os import dill #import sys import numpy as np import sympy as sym import matplotlib.pyplot as plt #from scipy.interpolate import interp1d from sympy.physics.quantum import TensorProduct as kp #from sympy.utilities.lambdify import lambdify, implemented_function from scipy.integrate import solve_ivp def vec(a): """ vec array operator. stack columns. reshape command stacks rows. so transpose then reshape to stack columns https://stackoverflow.com/questions/55444777/... numpy-array-stack-multiple-columns-into-one-using-reshape """ #print(type(a)) #a = np.asarray(a) if np.asarray(a).ndim == 0: return a else: return a.T.reshape(len(a[:,0])*len(a[0,:]),1) def grad(fn,xvec): """ fn is a scalar valued function. xvec is the general input to fn. size of xvec is the dimension of domain xevc contains the domain sympy variables [x1,x2,...,xn] return row vector """ n = len(xvec) gradf = sym.zeros(1,n) for i in range(n): gradf[0,i] = sym.diff(fn,xvec[i]) return gradf def df(fn,xvec,k): """ distinct from grad. we alternate applying vec and grad to fn k times f is map from RN to R (see Eq. 13 Wilson 2020) fn is a function of xvec. step k=1 -apply vec to transform gives 1 x 1 -derivative gives 1 x N -end if k=1 step k=2 -apply vec to previous step gives N x 1 -deriv gives NxN -end if k=2 step k=3 -apply vec to previous step gives 2*N x 1 -deriv gives 2*N x N -end if k=3 etc. output size N^(k-1) x N """ df = fn n = len(xvec) if k == 0: return df if k == 1: df = grad(df,xvec) return df # f^(1) df = grad(df,xvec) #print() #print(np.shape(df)) #print('df1',df) # proceed with higher derivs #print('k',k) for i in range(2,k+1): #print('i,k',i,k) df = vec(df) # preallocate N^(k-1) x N df_temp = sym.zeros(n**(i-1),n) #print(np.shape(df_temp)) # now loop over rows of df_temp and save gradient for j in range(len(df_temp[:,0])): df_temp[j,:] = grad(df[j,:],xvec) df = df_temp #print(np.shape(df)) #print('############ df, i,k',np.shape(df),i,k,df) #print('i,df',i,df) #print(np.shape(df)) #print('############ df, k',np.shape(df),k,df) return df def monodromy(t,z,jacLC): """ calculate right-hand side of system \dot \Phi = J\Phi, \Phi(0)=I \Phi is a matrix solution jacLC is the jacobian evaluated along the limit cycle """ n = int(np.sqrt(len(z))) z = np.reshape(z,(n,n)) #print(n) dy = np.dot(jacLC(t),z) return np.reshape(dy,n*n) def kProd(k,dx): """ Kronecker product applied k times to vector dx (1,n) k=1 returns dx k=2 returns (1,n^2) generally returns (1,n^(k)) """ out = dx for i in range(k-1): #print('out',out) out = kp(out,dx) return out def files_exist(*fnames,dictionary=False): fname_list = [] for i in range(len(fnames)): fname_list += fnames[i] flag = 0 for i in range(len(fname_list)): # check if each fname exists flag += not(os.path.isfile(fname_list[i])) if flag != 0: return False else: return True def load_dill(fnames): #print(fnames) templist = [] for i in range(len(fnames)): templist.append(dill.load(open(fnames[i],'rb'))) return templist def run_newton2(obj,fn,init,k,het_lams,max_iter=10, rel_tol=1e-12,rel_err=10,backwards=True,eps=1e-1, exception=False,alpha=1,min_iter=5, dense=False): if backwards: tLC = -obj.tLC else: tLC = obj.tLC # run newton's method counter = 0 dx = 100 #smallest_init = np.zeros(len(init))+10 dx_smallest = np.zeros(len(init))+10 init_smallest = init try: while counter < max_iter: if (
np.linalg.norm(dx)
numpy.linalg.norm
from IMLearn.learners import UnivariateGaussian, MultivariateGaussian import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def test_univariate_gaussian(): # Question 1 - Draw samples and print fitted model expectation, variance, sample_size = 10, 1, 1000 samples = np.random.normal(expectation, variance, sample_size) univariate_1 = UnivariateGaussian() univariate_1.fit(samples) print("Q1) Estimated expectation and variance of univariate gaussian:") print(f"(expectation, variance) = ({univariate_1.mu_}, {univariate_1.var_})") print("\n") # Question 2 - Empirically showing sample mean is consistent univariate_2 = UnivariateGaussian() expectation_error = np.zeros(sample_size) sample_sizes = np.arange(10, 1010, 10) for i in range(sample_size // 10): univariate_2.fit(samples[:10 * (i + 1)]) expectation_error[i] = abs(univariate_2.mu_ - expectation) layout_2 = go.Layout(dict(title="Q2) Error of Estimated Expectation of a Univariate Gaussian", xaxis_title="Sample Size", yaxis_title="Error", yaxis_range=[0, 0.8])) fig_2 = go.Figure(data=go.Scatter(x=sample_sizes, y=expectation_error), layout=layout_2) fig_2.show() # Question 3 - Plotting Empirical PDF of fitted model pdfs = univariate_1.pdf(samples) data_frame = pd.DataFrame({"Samples": samples, "PDF Values": pdfs}) fig_3 = px.scatter(data_frame, x="Samples", y="PDF Values", title="Q3) Empirical PDF of the Fitted Model") fig_3.show() def test_multivariate_gaussian(): # Question 4 - Draw samples and print fitted model expectation = np.array([0, 0, 4, 0]) covariance = np.array([[1, 0.2, 0, 0.5], [0.2, 2, 0, 0], [0, 0, 1, 0], [0.5, 0, 0, 1]]) samples = np.random.multivariate_normal(expectation, covariance, 1000) multivariate = MultivariateGaussian() multivariate.fit(samples) print("Q4) Estimated expectation and covariance of multivariate gaussian:") print("Expectation Vector:") print(multivariate.mu_) print("Covariance Matrix:") print(multivariate.cov_) print("\n") # Question 5 - Likelihood evaluation feature = np.linspace(-10, 10, 200) likelihood_mat =
np.empty((feature.size, feature.size))
numpy.empty
""" A bot attack agent for the gym-idsgame environment that acts greedily according to a pre-trained policy network """ import numpy as np import torch import traceback from sklearn import preprocessing from gym_idsgame.agents.bot_agents.bot_agent import BotAgent from gym_idsgame.envs.dao.game_state import GameState from gym_idsgame.envs.dao.game_config import GameConfig from gym_idsgame.agents.training_agents.policy_gradient.pg_agent_config import PolicyGradientAgentConfig from gym_idsgame.agents.training_agents.openai_baselines.common.ppo.ppo import PPO from gym_idsgame.envs.idsgame_env import IdsGameEnv import gym_idsgame.envs.util.idsgame_util as util from sklearn.preprocessing import normalize class PPOBaselineAttackerBotAgent(BotAgent): """ Class implementing an attack policy that acts greedily according to a given policy network """ def __init__(self, pg_config: PolicyGradientAgentConfig, game_config: GameConfig, model_path: str = None, env: IdsGameEnv = None): """ Constructor, initializes the policy :param game_config: the game configuration """ super(PPOBaselineAttackerBotAgent, self).__init__(game_config) if model_path is None: raise ValueError("Cannot create a PPOBaselineAttackerBotAgent without specifying the path to the model") self.idsgame_env = env self.config = pg_config self.model_path = model_path self.initialize_models() self.device = "cpu" if not self.config.gpu else "cuda:" + str(self.config.gpu_id) def initialize_models(self) -> None: """ Initialize models :return: None """ policy = "MlpPolicy" if self.config.cnn_feature_extractor: policy = "CnnPolicy" # Initialize models self.model = PPO.load(self.config.attacker_load_path, policy, pg_agent_config=self.config) def action(self, game_state: GameState) -> int: """ Samples an action from the policy. :param game_state: the game state :return: action_id """ try: # Feature engineering attacker_obs = game_state.get_attacker_observation( self.game_config.network_config, local_view=self.idsgame_env.local_view_features(), reconnaissance=self.game_config.reconnaissance_actions, reconnaissance_bool_features=self.idsgame_env.idsgame_config.reconnaissance_bool_features) defender_obs = game_state.get_defender_observation(self.game_config.network_config) attacker_state = self.update_state(attacker_obs=attacker_obs, defender_obs=defender_obs, state=[], attacker=True) if not self.config.ar_policy: actions = list(range(self.idsgame_env.num_attack_actions)) non_legal_actions = list(filter(lambda action: not self.is_attack_legal(action, attacker_obs, game_state), actions)) obs_tensor_a = torch.as_tensor(attacker_state.flatten()).to(self.device) attacker_actions, attacker_values, attacker_log_probs = self.model.attacker_policy.forward( obs_tensor_a, self.idsgame_env, device=self.device, attacker=True, non_legal_actions=non_legal_actions) attacker_action = attacker_actions.cpu().numpy()[0] else: actions = list(range(self.config.attacker_node_net_output_dim)) non_legal_actions = list(filter(lambda action: not self.is_attack_legal(action, attacker_obs, game_state, node=True), actions)) obs_tensor_a = torch.as_tensor(attacker_state.flatten()).to(self.device) attacker_node_actions, attacker_node_values, attacker_node_log_probs, attacker_node_lstm_state = self.model.attacker_node_policy.forward( obs_tensor_a, self.idsgame_env, device=self.device, attacker=True, non_legal_actions=non_legal_actions) attacker_node_probs = self.model.attacker_node_policy.get_action_dist(obs_tensor_a, self.idsgame_env, device=self.device, attacker=True, non_legal_actions=non_legal_actions) attacker_node_actions = attacker_node_actions.cpu().numpy() node = attacker_node_actions[0] obs_tensor_a_1 = obs_tensor_a.reshape(self.idsgame_env.idsgame_config.game_config.num_nodes, self.config.attacker_at_net_input_dim) obs_tensor_a_at = obs_tensor_a_1[node] attacker_at_actions, attacker_at_values, attacker_at_log_probs, attacker_at_lstm_state = self.model.attacker_at_policy.forward( obs_tensor_a_at, self.idsgame_env, device=self.device, attacker=True, non_legal_actions = non_legal_actions) attacker_at_probs = self.model.attacker_at_policy.get_action_dist(obs_tensor_a_at, self.idsgame_env, device=self.device, attacker=True, non_legal_actions=non_legal_actions) # print("attacker node probs:{}".format(attacker_node_probs.detach().cpu().numpy())) # print("attacker at probs:{}".format(attacker_at_probs.detach().cpu().numpy())) self.create_policy_plot(attacker_at_probs.detach().cpu().numpy(), 0, attacker=True) attacker_at_actions = attacker_at_actions.cpu().numpy() attack_id = util.get_attack_action_id(node, attacker_at_actions[0], self.idsgame_env.idsgame_config.game_config) attacker_action = attack_id except Exception as e: print(str(e)) traceback.print_exc() if self.idsgame_env.local_view_features(): attack = self.convert_local_attacker_action_to_global(attacker_action, attacker_obs) return attack else: return attacker_action def is_attack_legal(self, action, obs, game_state, node :bool= False) -> bool: """ Check if a given attack is legal or not. :param attack_action: the attack to verify :return: True if legal otherwise False """ if not self.config.ar_policy: if self.idsgame_env.local_view_features(): action = self.convert_local_attacker_action_to_global(action, obs) if action == -1: return False return util.is_attack_id_legal(action, self.game_config, game_state.attacker_pos, game_state, []) else: if node: return util.is_node_attack_legal(action, game_state.attacker_pos, self.game_config.network_config) else: return True def convert_local_attacker_action_to_global(self, action_id, attacker_obs): num_attack_types = self.idsgame_env.idsgame_config.game_config.num_attack_types neighbor = action_id // (num_attack_types + 1) attack_type = action_id % (num_attack_types + 1) target_id = int(attacker_obs[neighbor][num_attack_types]) if target_id == -1: return -1 attacker_action = target_id * (num_attack_types + 1) + attack_type return attacker_action def update_state(self, attacker_obs: np.ndarray = None, defender_obs: np.ndarray = None, state: np.ndarray = None, attacker: bool = True) -> np.ndarray: """ Update approximative Markov state :param attacker_obs: attacker obs :param defender_obs: defender observation :param state: current state :param attacker: boolean flag whether it is attacker or not :return: new state """ if attacker and self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: a_obs_len = self.idsgame_env.idsgame_config.game_config.num_attack_types + 1 defender_obs = attacker_obs[:, a_obs_len:a_obs_len + self.idsgame_env.idsgame_config.game_config.num_attack_types] if self.idsgame_env.idsgame_config.reconnaissance_bool_features: d_bool_features = attacker_obs[:, a_obs_len + self.idsgame_env.idsgame_config.game_config.num_attack_types:] attacker_obs = attacker_obs[:, 0:a_obs_len] if not attacker and self.idsgame_env.local_view_features(): attacker_obs = self.idsgame_env.state.get_attacker_observation( self.idsgame_env.idsgame_config.game_config.network_config, local_view=False, reconnaissance=self.idsgame_env.idsgame_config.reconnaissance_actions) # Zero mean if self.config.zero_mean_features: if not self.idsgame_env.local_view_features() or not attacker: attacker_obs_1 = attacker_obs[:, 0:-1] else: attacker_obs_1 = attacker_obs[:, 0:-2] zero_mean_attacker_features = [] for idx, row in enumerate(attacker_obs_1): mean = np.mean(row) if mean != 0: t = row - mean else: t = row if np.isnan(t).any(): t = attacker_obs[idx] else: t = t.tolist() if not self.idsgame_env.local_view_features() or not attacker: t.append(attacker_obs[idx][-1]) else: t.append(attacker_obs[idx][-2]) t.append(attacker_obs[idx][-1]) zero_mean_attacker_features.append(t) defender_obs_1 = defender_obs[:, 0:-1] zero_mean_defender_features = [] for idx, row in enumerate(defender_obs_1): mean = np.mean(row) if mean != 0: t = row - mean else: t = row if np.isnan(t).any(): t = defender_obs[idx] else: t = t.tolist() t.append(defender_obs[idx][-1]) zero_mean_defender_features.append(t) attacker_obs = np.array(zero_mean_attacker_features) defender_obs = np.array(zero_mean_defender_features) # Normalize if self.config.normalize_features: if not self.idsgame_env.local_view_features() or not attacker: attacker_obs_1 = attacker_obs[:, 0:-1] / np.linalg.norm(attacker_obs[:, 0:-1]) else: attacker_obs_1 = attacker_obs[:, 0:-2] / np.linalg.norm(attacker_obs[:, 0:-2]) normalized_attacker_features = [] for idx, row in enumerate(attacker_obs_1): if np.isnan(attacker_obs_1).any(): t = attacker_obs[idx] else: t = row.tolist() if not self.idsgame_env.local_view_features() or not attacker: t.append(attacker_obs[idx][-1]) else: t.append(attacker_obs[idx][-2]) t.append(attacker_obs[idx][-1]) normalized_attacker_features.append(t) if attacker and self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: defender_obs_1 = defender_obs[:, 0:-1] / np.linalg.norm(defender_obs[:, 0:-1]) else: defender_obs_1 = defender_obs / np.linalg.norm(defender_obs) normalized_defender_features = [] for idx, row in enumerate(defender_obs_1): if np.isnan(defender_obs_1).any(): t = defender_obs[idx] else: if attacker and self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: t = row.tolist() t.append(defender_obs[idx][-1]) else: t = row normalized_defender_features.append(t) attacker_obs = np.array(normalized_attacker_features) defender_obs = np.array(normalized_defender_features) if self.idsgame_env.local_view_features() and attacker: if not self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: neighbor_defense_attributes = np.zeros((attacker_obs.shape[0], defender_obs.shape[1])) for node in range(attacker_obs.shape[0]): id = int(attacker_obs[node][-1]) neighbor_defense_attributes[node] = defender_obs[id] else: neighbor_defense_attributes = defender_obs if self.idsgame_env.fully_observed() or \ (self.idsgame_env.idsgame_config.game_config.reconnaissance_actions and attacker): if self.config.merged_ad_features: if not self.idsgame_env.local_view_features() or not attacker: a_pos = attacker_obs[:, -1] if not self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: det_values = defender_obs[:, -1] temp = defender_obs[:, 0:-1] - attacker_obs[:, 0:-1] else: temp = defender_obs[:, 0:] - attacker_obs[:, 0:-1] features = [] for idx, row in enumerate(temp): t = row.tolist() t.append(a_pos[idx]) if not self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: t.append(det_values[idx]) features.append(t) else: node_ids = attacker_obs[:, -1] # node_reachable = attacker_obs[:, -1] if not self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: det_values = neighbor_defense_attributes[:, -1] if not self.idsgame_env.idsgame_config.game_config.reconnaissance_actions: temp = neighbor_defense_attributes[:, 0:-1] - attacker_obs[:, 0:-1] else: temp =
np.full(neighbor_defense_attributes.shape, -1)
numpy.full
import matplotlib.pyplot as plt import matplotlib import numpy as np import os import imageio from timeit import timeit from mpl_toolkits import mplot3d from PIL import Image #import png import svd_tools_copy as svdt import image_tools_copy as it #import ../../../david/watermark as watermarktools #sunset = it.load_image('../res/sunset.png') #rainbow = it.load_image('../res/rainbow.png') #view = it.load_image('../res/view.png') view = it.load_image('../res/view.jpg') tree = it.load_image('../res/tree.jpg') plt.rcParams['font.size'] = '18' def sv_plot_save(img, fname): #plotting the singular values, can only be used on a stacked matrix #formatting img = img.astype(np.float64) #stacking color channels img_rows, img_columns = img.shape[:2] img_stacked = img.reshape(img_rows, -1) u, s, v = np.linalg.svd(img_stacked, full_matrices=False) plt.plot(s) plt.savefig(fname) #EXTRACTION ERROR = NORM(ORIGINAL WATERMARK - EXTRACTED WATERMARK) #1. COMPUTE EMBEDDING AND EXTRACTION #2. COMPUTE NORM(ORIGINAL WATERMARK - EXTRACTED WATERMARK)/NORM(ORIGINAL WATERMARK) def reversepad(watermark_extracted,original_watermark): sizes = original_watermark.shape watermark_extracted = watermark_extracted[:sizes[0],:sizes[1]] return watermark_extracted def reversepad3d(watermark_extracted,original_watermark): sizes = original_watermark.shape watermark_extracted = watermark_extracted[:sizes[0],:sizes[1],:sizes[2]] return watermark_extracted def watermark_embed_liutan(img, watermark, scale, save): #embeds watermark into image. if save == 'yes', then it will save to out/watermarking/watermarked_image/liutan img_watermarked, watermarked_u, mat_s, watermarked_vh = it.embed_watermark(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) if save=='no': return img_watermarked elif save=='yes': it.save_image(img_watermarked,'../out/watermarking/watermarked_image/liutan/watermarked_image_alpha_{}.png'.format(scale)) #Image.fromarray(img_watermarked,'RGB').save('../out/watermarking/watermarked_image/liutan/watermarked_image_alpha_{}.png'.format(scale), 'PNG') def watermark_extract_liutan(img, watermark, scale, save): #embeds watermark into image and then extracts the watermark. if save == 'yes', then it will save to out/res/watermark img_watermarked, watermarked_u, mat_s, watermarked_vh = it.embed_watermark(img, watermark, scale=scale) watermark_extracted = it.extract_watermark(img_watermarked, watermarked_u, mat_s, watermarked_vh, scale=scale) watermark_extracted_final = reversepad(watermark_extracted, watermark) watermark_extracted_final = watermark_extracted_final.astype(np.int32) if save=='no': return watermark_extracted_final elif save=='yes': it.save_image(watermark_extracted_final,'../out/watermarking/extracted_watermark/liutan/extracted_watermark_alpha_{}.png'.format(scale)) def watermark_embed_jain(img, watermark, scale, save): #embeds watermark into image. if save == 'yes', then it will save to out/watermarking/watermarked_image/jain img_watermarked, watermark_vh = it.embed_watermark_jain(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) if save=='no': return img_watermarked elif save=='yes': it.save_image(img_watermarked,'../out/watermarking/watermarked_image/jain/watermarked_image_alpha_{}.png'.format(scale)) def watermark_extract_jain(img, watermark, scale, save): #embeds watermark into image. if save == 'yes', then it will save to out/watermarking/watermarked_image/jain img_watermarked, watermark_vh = it.embed_watermark_jain(img, watermark, scale=scale) watermark_extracted = it.extract_watermark_jain(img_watermarked, img, watermark_vh, scale) watermark_extracted_final = reversepad(watermark_extracted, watermark) watermark_extracted_final = watermark_extracted_final.astype(np.int32) if save=='no': return watermark_extracted_final elif save=='yes': it.save_image(watermark_extracted_final,'../out/watermarking/extracted_watermark/jain/extracted_watermark_alpha_{}.png'.format(scale)) def watermark_embed_jain_mod(img, watermark, scale, save): #embeds watermark into image. if save == 'yes', then it will save to out/watermarking/watermarked_image/jainmod img_watermarked, watermark_vh = it.embed_watermark_jain_mod(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) if save=='no': return img_watermarked elif save=='yes': it.save_image(img_watermarked,'../out/watermarking/watermarked_image/jainmod/watermarked_image_alpha_{}.png'.format(scale)) def watermark_extract_jain_mod(img, watermark, scale, save): #embeds watermark into image. if save == 'yes', then it will save to out/watermarking/watermarked_image/jainmod img_watermarked, watermark_vh = it.embed_watermark_jain_mod(img, watermark, scale=scale) watermark_extracted = it.extract_watermark_jain_mod(img_watermarked, img, watermark_vh, scale) watermark_extracted_final = reversepad(watermark_extracted, watermark) watermark_extracted_final = watermark_extracted_final.astype(np.int32) if save=='no': return watermark_extracted_final elif save=='yes': it.save_image(watermark_extracted_final,'../out/watermarking/extracted_watermark/jainmod/extracted_watermark_alpha_{}.png'.format(scale)) def perceptibility_liutan(img, watermark, scale): #watermarked image img_watermarked, watermarked_u, mat_s, watermarked_vh = it.embed_watermark(img, watermark, scale=scale) #stacking watermarked image img_watermarked = img_watermarked.astype(np.int32) img_watermarked_rows, img_watermarked_columns = img_watermarked.shape[:2] img_watermarked_stacked = img_watermarked.reshape(img_watermarked_rows, -1) #stacking image img = img.astype(np.int32) img_rows, img_columns = img.shape[:2] img_stacked = img.reshape(img_rows, -1) #norm difference error = (np.linalg.norm(img_watermarked_stacked-img_stacked))/(np.linalg.norm(img_stacked)) return error def perceptibility_jain(img, watermark, scale): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain(img, watermark, scale=scale) #stacking watermarked image img_watermarked = img_watermarked.astype(np.int32) img_watermarked_rows, img_watermarked_columns = img_watermarked.shape[:2] img_watermarked_stacked = img_watermarked.reshape(img_watermarked_rows, -1) #stacking image img = img.astype(np.int32) img_rows, img_columns = img.shape[:2] img_stacked = img.reshape(img_rows, -1) #norm difference error = (np.linalg.norm(img_watermarked_stacked-img_stacked))/(np.linalg.norm(img_stacked)) return error def perceptibility_jain_mod(img, watermark, scale): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain_mod(img, watermark, scale=scale) #stacking watermarked image img_watermarked = img_watermarked.astype(np.int32) img_watermarked_rows, img_watermarked_columns = img_watermarked.shape[:2] img_watermarked_stacked = img_watermarked.reshape(img_watermarked_rows, -1) #stacking image img = img.astype(np.int32) img_rows, img_columns = img.shape[:2] img_stacked = img.reshape(img_rows, -1) #norm difference error = (np.linalg.norm(img_watermarked_stacked-img_stacked))/(np.linalg.norm(img_stacked)) return error def watermarkedplot(img,watermark,plottype): scales = np.arange(0.05,2.05,0.05) differences = [] #liu tan if plottype == 1: for scale in scales: print(scale) difference = perceptibility_liutan(img, watermark, scale) differences.append(difference) #jain if plottype == 2: for scale in scales: print(scale) difference = perceptibility_jain(img, watermark, scale) differences.append(difference) #jain mod if plottype == 3: for scale in scales: print(scale) difference = perceptibility_jain_mod(img, watermark, scale) differences.append(difference) drawgraph_difference(scales,differences,plottype) def drawgraph_difference(x,y,plottype): plt.plot(x,y,marker='o') plt.xlabel('Alpha') plt.ylabel('Error') #plt.show() #liutan if plottype == 1: plt.savefig('../out/watermarking/plots/perceptibility/liutan/perceptibility_liutan.png') if plottype == 2: plt.savefig('../out/watermarking/plots/perceptibility/jain/perceptibility_jain.png') if plottype == 3: plt.savefig('../out/watermarking/plots/perceptibility/jainmod/perceptibility_jain_mod.png') plt.show() #lowrank extraction error def lowrank_image_liutan(img, watermark, scale, rank, save): #watermarked image img_watermarked, watermarked_u, mat_s, watermarked_vh = it.embed_watermark(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) #extracting watermark using original extraction key and compressed watermarked image watermark_extracted = it.extract_watermark(img_watermarked_approx, watermarked_u, mat_s, watermarked_vh, scale=scale) watermark_extracted = reversepad(watermark_extracted, watermark) watermark_extracted = watermark_extracted.astype(np.int32) if save=='no': return watermark_extracted elif save=='yes': it.save_image(watermark_extracted,'../out/watermarking/robustness/lowrankextraction/liutan/extraction_rank_{}_alpha_{}.png'.format(rank,scale)) def lowrank_watermarked_image_liutan(img, watermark, scale, rank, save): #watermarked image img_watermarked, watermarked_u, mat_s, watermarked_vh = it.embed_watermark(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) img_watermarked_approx = img_watermarked_approx.astype(np.int32) if save=='no': return img_watermarked_approx elif save=='yes': it.save_image(img_watermarked_approx,'../out/watermarking/robustness/lowrankembedding/liutan/embedding_rank_{}_alpha_{}.png'.format(rank,scale)) def lowrank_image_jain(img, watermark, scale, rank, save): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) #extracting watermark using original extraction key and compressed watermarked image watermark_extracted = it.extract_watermark_jain(img_watermarked_approx, img, watermark_vh, scale) watermark_extracted = reversepad(watermark_extracted, watermark) watermark_extracted = watermark_extracted.astype(np.int32) if save=='no': return watermark_extracted elif save=='yes': it.save_image(watermark_extracted,'../out/watermarking/robustness/lowrankextraction/jain/extraction_rank_{}_alpha_{}.png'.format(rank,scale)) def lowrank_watermarked_image_jain(img, watermark, scale, rank, save): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) img_watermarked_approx = img_watermarked_approx.astype(np.int32) if save=='no': return img_watermarked_approx elif save=='yes': it.save_image(img_watermarked_approx,'../out/watermarking/robustness/lowrankembedding/jain/embedding_rank_{}_alpha_{}.png'.format(rank,scale)) def lowrank_image_jain_mod(img, watermark, scale, rank,save): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain_mod(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) #extracting watermark using original extraction key and compressed watermarked image watermark_extracted = it.extract_watermark_jain_mod(img_watermarked, img, watermark_vh, scale=scale) watermark_extracted = reversepad(watermark_extracted, watermark) watermark_extracted = watermark_extracted.astype(np.int32) if save=='no': return watermark_extracted elif save=='yes': it.save_image(watermark_extracted,'../out/watermarking/robustness/lowrankextraction/jainmod/extraction_rank_{}_alpha_{}.png'.format(rank,scale)) def lowrank_watermarked_image_jain_mod(img, watermark, scale, rank,save): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain_mod(img, watermark, scale=scale) img_watermarked = img_watermarked.astype(np.int32) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) img_watermarked_approx = img_watermarked_approx.astype(np.int32) if save=='no': return img_watermarked_approx elif save=='yes': it.save_image(img_watermarked_approx,'../out/watermarking/robustness/lowrankembedding/jainmod/embedding_rank_{}_alpha_{}.png'.format(rank,scale)) def lowrank_error_liutan(img, watermark, scale, rank): #watermarked image img_watermarked, watermarked_u, mat_s, watermarked_vh = it.embed_watermark(img, watermark, scale=scale) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) #extracting watermark using original extraction key and compressed watermarked image watermark_extracted = it.extract_watermark(img_watermarked_approx, watermarked_u, mat_s, watermarked_vh, scale=scale) watermark_extracted = reversepad(watermark_extracted, watermark) #stacking extracted watermark watermark_extracted = watermark_extracted.astype(np.float64) watermark_extracted_rows, watermark_extracted_columns = watermark_extracted.shape[:2] watermark_extracted_stacked = watermark_extracted.reshape(watermark_extracted_rows, -1) #stacking original watermark watermark = watermark.astype(np.float64) watermark_rows, watermark_columns = watermark.shape[:2] watermark_stacked = watermark.reshape(watermark_rows, -1) #norm difference error = (np.linalg.norm(watermark_extracted_stacked-watermark_stacked))/(np.linalg.norm(watermark_stacked)) return error def lowrank_error_jain(img, watermark, scale, rank): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain(img, watermark, scale=scale) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) #extracting watermark using original extraction key and compressed watermarked image watermark_extracted = it.extract_watermark_jain(img_watermarked_approx, img, watermark_vh, scale) watermark_extracted = reversepad(watermark_extracted, watermark) #stacking extracted watermark watermark_extracted = watermark_extracted.astype(np.float64) watermark_extracted_rows, watermark_extracted_columns = watermark_extracted.shape[:2] watermark_extracted_stacked = watermark_extracted.reshape(watermark_extracted_rows, -1) #stacking original watermark watermark = watermark.astype(np.float64) watermark_rows, watermark_columns = watermark.shape[:2] watermark_stacked = watermark.reshape(watermark_rows, -1) #norm difference error = (np.linalg.norm(watermark_extracted_stacked-watermark_stacked))/(np.linalg.norm(watermark_stacked)) return error def lowrank_error_jain_mod(img, watermark, scale, rank): #watermarked image img_watermarked, watermark_vh = it.embed_watermark_jain_mod(img, watermark, scale=scale) #applying low rank compression to watermarked image img_watermarked_approx = it.lowrankapprox(img_watermarked,rank) #extracting watermark using original extraction key and compressed watermarked image watermark_extracted = it.extract_watermark_jain_mod(img_watermarked_approx, img, watermark_vh, scale=scale) watermark_extracted = reversepad(watermark_extracted, watermark) #stacking extracted watermark watermark_extracted = watermark_extracted.astype(np.float64) watermark_extracted_rows, watermark_extracted_columns = watermark_extracted.shape[:2] watermark_extracted_stacked = watermark_extracted.reshape(watermark_extracted_rows, -1) #stacking original watermark watermark = watermark.astype(np.float64) watermark_rows, watermark_columns = watermark.shape[:2] watermark_stacked = watermark.reshape(watermark_rows, -1) #norm difference error = (np.linalg.norm(watermark_extracted_stacked-watermark_stacked))/(np.linalg.norm(watermark_stacked)) return error def lowrank_extractionerror_plot_liutan(img,watermark): alphas = (0.05,0.1,0.5,0.75) ranks =
np.arange(1,300)
numpy.arange
# Copyright (c) Facebook, Inc. and its affiliates. import os ''' This forces the environment to use only 1 cpu when running. This could be helpful when launching multiple environment simulatenously. ''' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import numpy as np import copy import pybullet as pb import pybullet_data from bullet import bullet_client from bullet import bullet_utils as bu from fairmotion.ops import conversions from fairmotion.ops import math from fairmotion.utils import constants import sim_agent import sim_obstacle import importlib.util class Env(object): ''' This environment defines a base environment where the simulated characters exist and they are controlled by tracking controllers ''' def __init__(self, fps_sim, fps_act, char_info_module, sim_char_file, ref_motion_scale, actuation, self_collision=None, contactable_body=None, verbose=False, ): self._num_agent = len(sim_char_file) assert self._num_agent > 0 assert self._num_agent == len(char_info_module) assert self._num_agent == len(ref_motion_scale) self._char_info = [] for i in range(self._num_agent): ''' Load Character Info Moudle ''' spec = importlib.util.spec_from_file_location( "char_info%d"%(i), char_info_module[i]) char_info = importlib.util.module_from_spec(spec) spec.loader.exec_module(char_info) self._char_info.append(char_info) ''' Modfiy Contactable Body Parts ''' if contactable_body: contact_allow_all = True if 'all' in contactable_body else False for joint in list(char_info.contact_allow_map.keys()): char_info.contact_allow_map[joint] = \ contact_allow_all or char_info.joint_name[joint] in contactable_body self._v_up = self._char_info[0].v_up_env ''' Define PyBullet Client ''' self._pb_client = bullet_client.BulletClient( connection_mode=pb.DIRECT, options=' --opengl2') self._pb_client.setAdditionalSearchPath(pybullet_data.getDataPath()) ''' timestep for physics simulation ''' self._dt_sim = 1.0/fps_sim ''' timestep for control of dynamic controller ''' self._dt_act = 1.0/fps_act if fps_sim%fps_act != 0: raise Exception('FPS_SIM should be a multiples of FPS_ACT') self._num_substep = fps_sim//fps_act self._verbose = verbose self.setup_physics_scene(sim_char_file, self._char_info, ref_motion_scale, self_collision, actuation) ''' Elapsed time after the environment starts ''' self._elapsed_time = 0.0 ''' For tracking the length of current episode ''' self._episode_len = 0.0 ''' Create a Manager for Handling Obstacles ''' self._obs_manager = sim_obstacle.ObstacleManager( self._pb_client, self._dt_act, self._char_info[0].v_up_env) ''' Save the initial pybullet state to clear all thing before calling reset ''' self._init_state = None self.reset() self._init_state = self._pb_client.saveState() def setup_physics_scene(self, sim_char_file, char_info, ref_motion_scale, self_collision, actuation): self._pb_client.resetSimulation() self.create_ground() self._agent = [] for i in range(self._num_agent): self._agent.append(sim_agent.SimAgent(name='sim_agent_%d'%(i), pybullet_client=self._pb_client, model_file=sim_char_file[i], char_info=char_info[i], ref_scale=ref_motion_scale[i], self_collision=self_collision[i], actuation=actuation[i], kinematic_only=False, verbose=self._verbose)) def create_ground(self): ''' Create Plane ''' if np.allclose(np.array([0.0, 0.0, 1.0]), self._v_up): R_plane = constants.eye_R() else: R_plane = math.R_from_vectors(np.array([0.0, 0.0, 1.0]), self._v_up) self._plane_id = \ self._pb_client.loadURDF( "plane_implicit.urdf", [0, 0, 0], conversions.R2Q(R_plane), useMaximalCoordinates=True) self._pb_client.changeDynamics(self._plane_id, linkIndex=-1, lateralFriction=0.9) ''' Dynamics parameters ''' assert np.allclose(np.linalg.norm(self._v_up), 1.0) gravity = -9.8 * self._v_up self._pb_client.setGravity(gravity[0], gravity[1], gravity[2]) self._pb_client.setTimeStep(self._dt_sim) self._pb_client.setPhysicsEngineParameter(numSubSteps=2) self._pb_client.setPhysicsEngineParameter(numSolverIterations=10) # self._pb_client.setPhysicsEngineParameter(solverResidualThreshold=1e-10) def check_collision(self, body_id1, body_id2, link_id1=None, link_id2=None): ''' collision between two bodies ''' pts = self._pb_client.getContactPoints( bodyA=body_id1, bodyB=body_id2, linkIndexA=link_id1, linkIndexB=link_id2) return len(p) > 0 # def check_falldown(self, agent, plane_id=None): # ''' check if any non-allowed body part hits the ground ''' # if plane_id is None: plane_id = self._plane_id # pts = self._pb_client.getContactPoints() # for p in pts: # part = None # #ignore self-collision # if p[1] == p[2]: continue # if p[1] == agent._body_id and p[2] == plane_id: part = p[3] # if p[2] == agent._body_id and p[1] == plane_id: part = p[4] # #ignore collision of other agents # if part == None: continue # if not agent._char_info.contact_allow_map[part]: return True # return False def check_falldown(self, agent, plane_id=None): ''' check if any non-allowed body part hits the ground ''' if plane_id is None: plane_id = self._plane_id pts = self._pb_client.getContactPoints( bodyA=agent._body_id, bodyB=plane_id) for p in pts: part = p[3] if p[1] == agent._body_id else p[4] if agent._char_info.contact_allow_map[part]: continue else: return True return False def is_sim_div(self, agent): ''' TODO: check divergence of simulation ''' return False def step(self, target_poses=[]): ''' One Step-forward Simulation ''' ''' Increase elapsed time ''' self._elapsed_time += self._dt_act self._episode_len += self._dt_act ''' Update simulation ''' for _ in range(self._num_substep): for i, target_pose in enumerate(target_poses): self._agent[i].actuate(pose=target_pose, vel=None) self._pb_client.stepSimulation() self._obs_manager.update() def reset(self, time=0.0, poses=None, vels=None, pb_state_id=None): ''' remove obstacles in the scene ''' self._obs_manager.clear() ''' Restore internal pybullet state by uisng the saved info when Env was initially created ''' if pb_state_id is not None: self._pb_client.restoreState(pb_state_id) self._elapsed_time = time if poses is None: if self._init_state is not None: self._pb_client.restoreState(self._init_state) else: for i in range(self._num_agent): pose = poses[i] vel = None if vels is None else vels[i] self._agent[i].set_pose(pose, vel) self._episode_len = 0.0 def add_noise_to_pose_vel(self, agent, pose, vel=None, return_as_copied=True): ''' Add a little bit of noise to the given pose and velocity ''' ref_pose = copy.deepcopy(pose) if return_as_copied else pose if vel: ref_vel = copy.deepcopy(vel) if return_as_copied else vel dof_cnt = 0 for j in agent._joint_indices: joint_type = agent.get_joint_type(j) ''' Ignore fixed joints ''' if joint_type == self._pb_client.JOINT_FIXED: continue ''' Ignore if there is no corresponding joint ''' if agent._char_info.bvh_map[j] == None: continue T = ref_pose.get_transform(agent._char_info.bvh_map[j], local=True) R, p = conversions.T2Rp(T) if joint_type == self._pb_client.JOINT_SPHERICAL: dR = math.random_rotation( mu_theta=agent._char_info.noise_pose[j][0], sigma_theta=agent._char_info.noise_pose[j][1], lower_theta=agent._char_info.noise_pose[j][2], upper_theta=agent._char_info.noise_pose[j][3]) dof_cnt += 3 elif joint_type == self._pb_client.JOINT_REVOLUTE: theta = math.truncnorm( mu=agent._char_info.noise_pose[j][0], sigma=agent._char_info.noise_pose[j][1], lower=agent._char_info.noise_pose[j][2], upper=agent._char_info.noise_pose[j][3]) joint_axis = agent.get_joint_axis(j) dR = conversions.A2R(joint_axis*theta) dof_cnt += 1 else: raise NotImplementedError T_new = conversions.Rp2T(
np.dot(R, dR)
numpy.dot
import numpy as np import torch import torch.nn.functional as F from scipy.spatial.transform import Rotation as R from torch import nn import spherical_sampling from module_utils import MLP from unet_parts import * class UNet(nn.Module): def __init__(self, n_channels, n_classes, bilinear=True): super(UNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = Conv(n_channels, 32) self.down1 = Down(32, 64) self.down2 = Down(64, 128) self.down3 = Down(128, 256) factor = 2 if bilinear else 1 self.down4 = Down(256, 512 // factor) self.up1 = Up(512, 256 // factor, bilinear) self.up2 = Up(256, 128 // factor, bilinear) self.up3 = Up(128, 64 // factor, bilinear) self.up4 = Up(64, 32, bilinear) self.outc = OutConv(32, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits class DirModel(nn.Module): def __init__(self, num_directions, model_type): super().__init__() self.num_directions = num_directions self.model_type = model_type self.raw_directions = spherical_sampling.fibonacci(num_directions, co_ords='cart') image_feature_dim = 256 action_feature_dim = 128 output_dim = 1 self.sgn_action_encoder = MLP(3, action_feature_dim, [action_feature_dim, action_feature_dim]) self.mag_action_encoder = MLP(3, action_feature_dim, [action_feature_dim, action_feature_dim]) if 'sgn' in model_type: self.sgn_image_encoder_1 = Conv(20, 32) self.sgn_image_encoder_2 = Down(32, 64) self.sgn_image_encoder_3 = Down(64, 128) self.sgn_image_encoder_4 = Down(128, 256) self.sgn_image_encoder_5 = Down(256, 512) self.sgn_image_encoder_6 = Down(512, 512) self.sgn_image_encoder_7 = Down(512, 512) self.sgn_image_feature_extractor = MLP(512*7*10, image_feature_dim, [image_feature_dim]) self.sgn_decoder = MLP(image_feature_dim + action_feature_dim, 3 * output_dim, [1024, 1024, 1024]) if 'mag' in model_type: num_channels = 20 if model_type == 'mag' else 10 self.mag_image_encoder_1 = Conv(num_channels, 32) self.mag_image_encoder_2 = Down(32, 64) self.mag_image_encoder_3 = Down(64, 128) self.mag_image_encoder_4 = Down(128, 256) self.mag_image_encoder_5 = Down(256, 512) self.mag_image_encoder_6 = Down(512, 512) self.mag_image_encoder_7 = Down(512, 512) self.mag_image_feature_extractor = MLP(512*7*10, image_feature_dim, [image_feature_dim]) self.mag_decoder = MLP(image_feature_dim + action_feature_dim, output_dim, [1024, 1024, 1024]) # Initialize random weights for m in self.named_modules(): if isinstance(m[1], nn.Conv2d) or isinstance(m[1], nn.Conv3d): nn.init.kaiming_normal_(m[1].weight.data) elif isinstance(m[1], nn.BatchNorm2d) or isinstance(m[1], nn.BatchNorm3d): m[1].weight.data.fill_(1) m[1].bias.data.zero_() def forward(self, observation, directions=None): if 'sgn' in self.model_type: x0 = observation x1 = self.sgn_image_encoder_1(x0) x2 = self.sgn_image_encoder_2(x1) x3 = self.sgn_image_encoder_3(x2) x4 = self.sgn_image_encoder_4(x3) x5 = self.sgn_image_encoder_5(x4) x6 = self.sgn_image_encoder_6(x5) x7 = self.sgn_image_encoder_7(x6) embedding = x7.reshape([x7.size(0), -1]) sgn_feature = self.sgn_image_feature_extractor(embedding) if 'mag' in self.model_type: x0 = observation if self.model_type == 'mag' else observation[:, :10] x1 = self.mag_image_encoder_1(x0) x2 = self.mag_image_encoder_2(x1) x3 = self.mag_image_encoder_3(x2) x4 = self.mag_image_encoder_4(x3) x5 = self.mag_image_encoder_5(x4) x6 = self.mag_image_encoder_6(x5) x7 = self.mag_image_encoder_7(x6) embedding = x7.reshape([x7.size(0), -1]) mag_feature = self.mag_image_feature_extractor(embedding) batch_size = observation.size(0) if directions is None: directions = list() for _ in range(observation.size(0)): r_mat_T = R.from_euler('xyz', np.random.rand(3) * 360, degrees=True).as_matrix().T directions.append(self.raw_directions @ r_mat_T) directions = np.asarray(directions) else: if len(directions.shape) == 2: directions = directions[:, np.newaxis] num_directions = directions.shape[1] torch_directions = torch.from_numpy(directions.astype(np.float32)).to(observation.device) sgn_direction_features = [self.sgn_action_encoder(torch_directions[:, i]) for i in range(num_directions)] mag_direction_features = [self.mag_action_encoder(torch_directions[:, i]) for i in range(num_directions)] sgn_output, mag_output = None, None if 'sgn' in self.model_type: sgn_output = list() for i in range(num_directions): feature_input = torch.cat([sgn_feature, sgn_direction_features[i]], dim=1) sgn_output.append(self.sgn_decoder(feature_input)) sgn_output = torch.stack(sgn_output, dim=1) if 'mag' in self.model_type: mag_output = list() for i in range(num_directions): feature_input = torch.cat([mag_feature, mag_direction_features[i]], dim=1) mag_output.append(self.mag_decoder(feature_input)) mag_output = torch.stack(mag_output, dim=1).squeeze(2) output = sgn_output, mag_output, directions return output class Model(): def __init__(self, num_directions, model_type): self.num_directions = num_directions self.model_type = model_type self.pos_model = UNet(10, 2) self.dir_model = DirModel(num_directions, model_type) def get_direction_affordance(self, observations, model_type, torch_tensor=False, directions=None): """Get position affordance maps. Args: observations: list of dict - image: [W, H, 10]. dtype: float32 - image_init: [W, H, 10]. dtype: float32 model_type: 'sgn', 'mag', 'sgn_mag' torch_tensor: Whether the retuen value is torch tensor (default is numpy array). torch tensor is used for training. Return: affordance_maps: numpy array/torch tensor, [B, K, W, H] directions: list of direction vector """ skip_id_list = list() scene_inputs = [] for id, observation in enumerate(observations): if observation is None: skip_id_list.append(id) continue scene_inputs.append(np.concatenate([observation['image'].transpose([2, 0, 1]), observation['image_init'].transpose([2, 0, 1])], axis=0)) scene_input_tensor = torch.from_numpy(np.stack(scene_inputs)) sgn_output, mag_output, skipped_directions = self.dir_model.forward(scene_input_tensor.to(self.device_dir), directions=directions) # [B, K, W, H] if torch_tensor: assert len(skip_id_list) == 0 return sgn_output, mag_output, None else: if model_type == 'sgn': affordance_maps = 1 - F.softmax(sgn_output, dim=2)[:, :, 1] elif model_type == 'mag': affordance_maps = mag_output elif model_type == 'sgn_mag': sgn = sgn_output.max(2)[1] - 1 affordance_maps = sgn * F.relu(mag_output) skipped_affordance_maps = affordance_maps.data.cpu().numpy() affordance_maps = list() directions = list() cur = 0 for id in range(len(skipped_affordance_maps)+len(skip_id_list)): if id in skip_id_list: affordance_maps.append(None) directions.append(None) else: affordance_maps.append(skipped_affordance_maps[cur]) directions.append(skipped_directions[cur]) cur += 1 return affordance_maps, directions def get_position_affordance(self, observations, torch_tensor=False): """Get position affordance maps. Args: observations: list of dict - image: [W, H, 10]. dtype: float32 torch_tensor: Whether the retuen value is torch tensor (default is numpy array). torch tensor is used for training. Return: affordance_maps: numpy array/torch tensor, [B, K, W, H] """ skip_id_list = list() scene_inputs = [] for observation in observations: scene_inputs.append(observation['image'].transpose([2, 0, 1])) scene_input_tensor = torch.from_numpy(
np.stack(scene_inputs)
numpy.stack
import os.path from scipy.optimize import fsolve import math import numpy as np from matplotlib import pyplot as plt import pandas as pd import utils_Florian as utils def equations(p, t_peak, t_half): x, y = p return (0.5 * (math.exp(-x * t_peak) - math.exp(-y * t_peak)) - (math.exp(-x * t_half) - math.exp(-y * t_half)), -x * math.exp(-x * t_peak) + y * math.exp(-y * t_peak)) results = pd.DataFrame() t_peaks = [] t_halfs = [] xs = [] ys = [] initial_conditions = ((12, 5), (14, 4), (14, 4), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1), (30, 1)) for alpha in range(1, 16): t_peak = 0.1415 t_half = t_peak + 0.2 + alpha * 0.05 print("Target: ", t_half) x, y = fsolve(equations, initial_conditions[alpha], args=(t_peak, t_half)) t_peaks.append(t_peak) t_halfs.append(t_half - t_peak) xs.append(x) ys.append(y) t = np.linspace(0, 2.0, 10000) crf = -np.exp(-x * t) + np.exp(-y * t) crf = crf / sum(crf) print("t peak", t[
np.argmax(crf)
numpy.argmax
import os import glob import numpy as np from scipy import interpolate from scipy.spatial.transform import Rotation as R, RotationSpline from copy import deepcopy from collections import defaultdict # nested dict replacement from .rotations import convert_quat_wxyz_to_xyzw, \ convert_quat_xyzw_to_wxyz, quat_mult, convert_quat_to_euler,\ convert_euler_to_quat, quat_inv, vec_rotate nested_dict = lambda: defaultdict(nested_dict) def convert_nestedddict_to_regular(d): """ Converts nested defaultdict object to regular python nested dicts. """ if isinstance(d, defaultdict): d = {k: convert_nestedddict_to_regular(v) for k, v in d.items()} return d def truncate_dict_of_arrays(dict_array, s_idx=0, e_idx=999999999999999, inplace=False): """Truncate arrays inside a dictionary to desired start/end idx.""" if not inplace: dict_array = deepcopy(dict_array) for k, v in dict_array.items(): if isinstance(v, (np.ndarray, list)): dict_array[k] = v[s_idx:e_idx] return dict_array def select_idx_dict_of_arrays(dict_array, axis_idx_dict, inplace=False, ignore_idx_errors=True): """Selects indexes in desired axis in arrays inside a dictionary. Args: dict_array(dict[str,np.ndarray): dictionary with arrays or tensors. axis_idx_dict(dict[int,list[int]]): dictionary with indexes to select for each axis as {axis:indexes}. inplace(bool): if changes should be done on input arrays. ignore_idx_errors(bool): if errors on arrays with missing dimensions should be ignored. Return: dict[str,np.ndarray]: """ out_dict_array = (dict_array if inplace else dict()) for k, v in dict_array.items(): ix = [axis_idx_dict.get(dim, slice(None)) for dim in range(v.ndim)] if isinstance(v, (np.ndarray)): try: out_dict_array[k] = v[tuple(ix)] except IndexError as e: if not ignore_idx_errors: raise e else: out_dict_array[k] = v return out_dict_array def find_resource_path(path, max_up=5): """Recursively looks for files on the current directory and parents. Args: path(str): base path or files name of resource to search. max_up(int): max parent directory from which to recurse. Returns: (str): path to found resource or None if it was not found. """ for i in range(max_up): pmatch = glob.glob(os.path.join("**/", path), recursive=True) if not pmatch: path = "../" + path else: path = pmatch[0] return path return None def resample_data_frequency_factor(data, factor, axis=0, method="cubic"): """ Resample the data by the desired factor (assumes uniform sampling). Args: data(np.ndarray): data array to resample. factor(float): factor to resample the data. if factor<1.0, decimation is performed, otherwise, interpolation is performed. axis(int): index of the axis to interpolate data along. method(str): method to use for resampling the data. Defaults to cubic spline. When resampling quaternion rotations, use "slerp". Returns: (np.ndarray): The resampled data array. """ x = np.arange(data.shape[axis]) x_new = np.linspace(0, data.shape[axis] - 1, round(data.shape[axis] * factor), endpoint=True) return resample_data_frequency(data, orig_t=x, target_t=x_new, axis=axis, method=method) def resample_data_frequency(data, orig_t, target_t, axis=0, method="cubic"): """ Resample the data from original sampling to target. Args: data(np.ndarray): data array to resample. orig_t(np.ndarray): original timestamps for each data point. target_t(np.ndarray): target timestamps for resampled points. axis(int): index of the axis to interpolate data along. method(str): method to use for resampling the data. Defaults to cubic spline. When resampling quaternion rotations, use "slerp". Returns: (np.ndarray): The resampled data array. """ if method == "slerp": assert axis == 0, "Spherical Rotation Spline only works when axis=0" data = convert_quat_wxyz_to_xyzw(data) # convert quats to scalar_last for scipy if len(np.shape(data)) == 3: # multiple segments sampled_data = np.array( [RotationSpline(orig_t, R.from_quat(ori))(target_t).as_quat() for ori in data.transpose((1, 0, 2)) ]).transpose((1, 0, 2)) else: sampled_data = RotationSpline(orig_t, R.from_quat(data))(target_t).as_quat() return convert_quat_xyzw_to_wxyz(sampled_data) # convert quats back to scalar_first else: return interpolate.interp1d(orig_t, data, kind=method, axis=axis, bounds_error=False, fill_value="extrapolate")(target_t) def find_low_variability_sections(data, threshold, window_size=21, axis=0, thresh_method="max"): """ Find sections of data which contain low variability. Args: data(np.ndarray): data to search. window_size(int): window size to average data. threshold(float): threshold value to consider low_variability axis(int): axis on which to search. thresh_method(str): channel reduction method to compare with threshold. One of ["mean", "min", "max"] Returns: (list[int]): indexes of samples with low variability over the desired axis """ from scipy.signal import convolve from scipy.signal.windows import gaussian reduce_dims = list(np.arange(len(data.shape))) reduce_dims.remove(axis) reduce_dims = tuple(reduce_dims) # apply gaussian smoothing over the axis kernel = np.expand_dims(gaussian(window_size, std=window_size / 8), axis=reduce_dims) smooth_signal = convolve(data, kernel / kernel.sum(), mode="same") # calculate ||pointwise derivatives|| diff = np.abs(np.diff(smooth_signal, axis=0)) diff[-window_size:window_size, ...] = 0 # take (mean, min, max) variability over all channels if thresh_method == "mean": avg_diff = np.mean(diff, axis=reduce_dims) elif thresh_method == "min": avg_diff = np.min(diff, axis=reduce_dims) elif thresh_method == "max": avg_diff = np.max(diff, axis=reduce_dims) else: raise NotImplementedError return list(np.where(avg_diff < threshold)[0]) def remove_outliers(data, std=2.0): """Statistical outlier removal for each axis independently. Args: data(np.ndarray): data from which to remove outliers. std(float): stdev for vaues to be considered outliers. Returns: (np.ndarray): data with outliers removed """ assert len(data.shape) == 2 num, dim = data.shape inliers = list(range(num)) outliers = [] for ax in range(dim): diff = np.append(0., np.diff(data[..., ax])) ax_outliers = np.where(np.abs(diff) > np.abs(np.mean(diff)) + (std * np.std(diff)))[0] outliers.extend(ax_outliers) inliers = np.array(list(set(inliers) - set(outliers))) return data[inliers] def reset_skeleton_position(pos_args_list, pos_ref, axis2reset=(True, True, False)): """ Resets position of data by removing a reference position. Args: pos_args_list(list[np.ndarray]): list with arrays of 3d points from which to remove the reference. pos_ref (np.ndarray[3x]): reference position. axis2reset (tuple[bool]): operation mask. Only axis (xyz) with True will be reset. Returns: (list[np.ndarray]): 3d arrays with reset position. """ return [(p - pos_ref * axis2reset) for p in pos_args_list] def reset_skeleton_orientation(rot_ref, orient_arg_list=(), pos_args_list=(), vec_args_list=(), axis2reset=(False, False, True)): """ Reset orientation by removing a reference rotation. Args: rot_ref(np.ndarray): reference rotation. orient_arg_list(tuple[np.ndarray]): list with arrays of quaternion orientations. pos_args_list(tuple[np.ndarray]): list with arrays of 3d positions around a center point (assumed to be index 0 - root). vec_args_list(tuple[np.ndarray]): list with arrays of 3d vectors. axis2reset(tuple[bool, bool, bool]): operation mask. Only axis (xyz) with True will be reset. Returns: (list[np.ndarray], list[np.ndarray], list[np.ndarray]): orientation and position arrays with reset orientations. """ # reset heading (rot over z-axis, so that subject is facing forward) inv_init_ori = quat_inv( convert_euler_to_quat( convert_quat_to_euler(rot_ref, seq="xyz") * axis2reset, seq="xyz", ) ) reset_ori_data = [] for ori in orient_arg_list: ori_shape = ori.shape ori = quat_mult(inv_init_ori, ori.reshape(-1, 4)).reshape(*ori_shape) reset_ori_data.append(ori) reset_pos_data = [] for pos in pos_args_list: pos_shape = pos.shape # center rotation to origin before rotating init_pos = pos[0, 0] pos = pos - init_pos # apply rotation pos = vec_rotate(pos.reshape(-1, 3), inv_init_ori).reshape(*pos_shape) # restore position to original pos = pos + init_pos reset_pos_data.append(pos) reset_vec_data = [] for vec in vec_args_list: vec_shape = vec.shape vec = vec_rotate(vec.reshape(-1, 3), inv_init_ori).reshape(*vec_shape) reset_vec_data.append(vec) return reset_ori_data, reset_pos_data, reset_vec_data def apply_procrustes_alignment(pred, target): """ Applies procrustes alignment to find closest fit from "pred" to "target" data. Args: pred(np.ndarray[Nx3]): source array to be aligned. target(np.ndarray[Nx3]): target array for alignment. Returns: predicted_aligned - Procrustes aligned data """ pred = pred[np.newaxis, ...] target = target[np.newaxis, ...] muX = np.mean(target, axis=1, keepdims=True) muY = np.mean(pred, axis=1, keepdims=True) X0 = target - muX Y0 = pred - muY normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True)) normY = np.sqrt(
np.sum(Y0 ** 2, axis=(1, 2), keepdims=True)
numpy.sum
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Mon Jun 29 7:07pm 2020 Meant to interface with Lv2_dj_lsp and functions from stingray.pulse.pulsar to analyze Swift data pertaining to NGC 300 X-1 in one place, instead of having the analysis spread between Lv2_dj_lsp.py and test.py """ from __future__ import division, print_function import numpy as np from astropy.io import fits import matplotlib.pyplot as plt import Lv0_dirs,Lv2_dj_lsp,Lv2_swift_lc,Lv2_phase import os from scipy import stats from scipy.optimize import curve_fit from tqdm import tqdm import subprocess from matplotlib import cm from PyAstronomy.pyasl import foldAt from mpl_toolkits.mplot3d import Axes3D import mplcursors import pathlib from stingray.pulse.pulsar import pulse_phase,phase_exposure,fold_events ##### ## Noting here first that all the barycentering, time-ordering, extracting events ## (with XSELECT), doing exposure corrections (xrtlccorr), and subsequently the ## background subtraction, are all done in Lv2_swift_lc. There's no need to do so here. ##### ##### Parameters eventfile = '/Volumes/Samsung_T5/NGC300_ULX_Swift/xrt/event/ngc300x1/ngc300x1_merge_niceroverlap_all.evt' #1 year of data; overlaps with NICER #eventfile = '/Volumes/Samsung_T5/NGC300_ULX_Swift/xrt/event/ngc300x1/ngc300x1_swift_dec16_may19.evt' #eventfile = '/Volumes/Samsung_T5/NGC300_ULX_Swift/xrt/event/ngc300x1/ngc300x1_merge.evt' #all 14 years eventfile_xmm = '/Volumes/Samsung_T5/NGC300_XMMdata/ngc300x1_pn.evt' times = fits.open(eventfile)[1].data['TIME'] #getting array of times times_xmm = fits.open(eventfile_xmm)[1].data['TIME'] gtis_data = fits.open(eventfile)[2].data #getting GTIs gtis_data_xmm = fits.open(eventfile_xmm)[59].data #59 for pn, 15 for mos1, 19 for mos2 T = sum([ gtis_data[i]['STOP']-gtis_data[i]['START'] for i in range(len(gtis_data)) ]) #exposure time T_xmm = sum([ gtis_data_xmm[i]['STOP']-gtis_data_xmm[i]['START'] for i in range(len(gtis_data_xmm)) ]) #exposure time print(T_xmm) T0_MJD = fits.open(eventfile)[1].header['MJDREFI'] + fits.open(eventfile)[1].header['MJDREFF'] + fits.open(eventfile)[1].header['TSTART']/86400 #SWIFT T0_MJD_eclipse = 58239.3498 #mid-eclipse! T0_MJD_xmm = fits.open(eventfile_xmm)[1].header['MJDREF'] + fits.open(eventfile_xmm)[1].header['TSTART']/86400 #XMM-NEWTON MJDREFI = fits.open(eventfile)[1].header['MJDREFI'] #Swift MJDREFF = fits.open(eventfile)[1].header['MJDREFF'] #Swift MJDREF = fits.open(eventfile_xmm)[1].header['MJDREF'] #XMM-Newton diff_swiftxmm = (MJDREFI+MJDREFF-MJDREF)*86400 ##### Get the phase offset between Swift eclipse time and XMM's first event time: Porb_days = (1/8.4712e-6)/86400 xmm_first = MJDREF + times_xmm[0]/86400 no_cycles = (T0_MJD_eclipse - T0_MJD_xmm)/Porb_days xmm_ecl = T0_MJD_eclipse - int(no_cycles)*Porb_days #time of the mid-eclipse BEFORE the first XMM event if xmm_ecl > xmm_first: xmm_ecl -= Porb_days phaseoff = (xmm_first-xmm_ecl)/Porb_days print('Phase offset is ' + str(phaseoff)) ##### Be careful here, as Swift and XMM have different MJDREFs!!! gtis_conform = [] for i in range(len(gtis_data)): gtis_conform.append([gtis_data[i][0],gtis_data[i][1]]) #conform to the input that Stingray uses gtis_conform_xmm = [] for i in range(len(gtis_data_xmm)): gtis_conform_xmm.append([gtis_data_xmm[i][0],gtis_data_xmm[i][1]]) #conform to the input that Stingray uses #bary_outputfolder = '/Volumes/Samsung_T5/NGC300_ULX_Swift/xrt/event/lightcurve/' #obsids = [str(i) for i in range(49834027,49834042)] + [str(i) for i in range(49834043,49834062)] + [str(i) for i in range(49834063,49834066)] + ['88810002'] + [str(i) for i in range(49834066,49834069)] + [str(i) for i in range(49834070,49834079)] + [str(i) for i in range(49834080,49834088)] #corr_lc_files = [bary_outputfolder + 'sw000' + obsids[i] + '_corr.lc' for i in range(len(obsids))] #corr_ulx1_files = [bary_outputfolder + 'sw000' + obsids[i] + '_ulx1_corr.lc' for i in range(len(obsids))] #corr_bg_files = [bary_outputfolder + 'sw000' + obsids[i] + '_bg_corr.lc' for i in range(len(obsids))] #bg_scale_x1 = (30/120)**2 #bg_scale_ulx1 = (35/120)**2 #completeness = np.array([0,10,20,30,40,50,60,70,80,90,100])/100 #rebinned_t, rebinned_rate, rebinned_err, rebinned_fracexp = Lv2_dj_lsp.rebin_lc(corr_lc_files,corr_bg_files,bg_scale_x1,100,0.5) #rebinned_t_ulx1, rebinned_rate_ulx1, rebinned_err_ulx1, rebinned_fracexp_ulx1 = rebin_lc(corr_ulx1_files,corr_bg_files,bg_scale_ulx1,3600,0) #tstart_49834027 = 546830295.758713 """ ### Writing the data from the light curves of X-1 and ULX-1 into text files; also plotting the light curve, This is mainly for 3600s bins x1_text = open(bary_outputfolder + 'ngc300x1_bg_exp_corr_lc_3600s.txt','w') ulx1_text = open(bary_outputfolder + 'ngc300ulx1_bg_exp_corr_lc_3600s.txt','w') for i in range(len(rebinned_t)): x1_text.write(str(51910 + 7.428703700000000E-04+(rebinned_t[i]+tstart_49834027)/86400) + ' ' + str(rebinned_rate[i]) + ' ' + str(rebinned_err[i]) + '\n') x1_text.close() for i in range(len(rebinned_t_ulx1)): ulx1_text.write(str(51910 + 7.428703700000000E-04 + (rebinned_t_ulx1[i]+tstart_49834027)/86400) + ' ' + str(rebinned_rate_ulx1[i]) + ' ' + str(rebinned_err_ulx1[i]) + '\n') ulx1_text.close() mjd = 51910 + 7.428703700000000E-04 + (tstart_49834027+rebinned_t)/86400 mjd_ulx1 = 51910 + 7.428703700000000E-04 + (tstart_49834027+rebinned_t_ulx1)/86400 plt.errorbar(x=mjd[rebinned_err<=0.06],y=rebinned_rate[rebinned_err<=0.06],yerr=rebinned_err[rebinned_err<=0.06],fmt='rx') plt.errorbar(x=mjd_ulx1[rebinned_err_ulx1<=0.06],y=rebinned_rate_ulx1[rebinned_err_ulx1<=0.06],yerr=rebinned_err_ulx1[rebinned_err_ulx1<=0.06],fmt='bx') plt.legend(('X-1','ULX-1'),fontsize=12) plt.xlabel('Time (MJD)',fontsize=12) plt.ylabel('[Exposure-corrected] Count rate (c/s)',fontsize=12) plt.axhline(y=0,color='k',lw=0.5,alpha=0.5) plt.show() """ ### Running Lv2_dj_lsp.lsp """ for i in range(len(completeness)): rebinned_t, rebinned_rate, rebinned_err, rebinned_fracexp = Lv2_dj_lsp.rebin_lc(corr_lc_files,corr_bg_files,bg_scale_x1,100,completeness[i]) omega,psd,prob3,prob4,prob5 = Lv2_dj_lsp.lsp(rebinned_t,rebinned_rate) nu_reg = omega/(2.0*np.pi) freq = omega/(2*np.pi) plt.figure() plt.plot(freq,psd,'rx-') #plt.yscale('log') #plt.xscale('log') plt.xlabel('Frequency (Hz)',fontsize=12) plt.ylabel('Normalized Power',fontsize=12) plt.axhline(y=prob3,lw=0.5,alpha=0.5) plt.axhline(y=prob4,lw=0.5,alpha=0.5) plt.axhline(y=prob5,lw=0.5,alpha=0.5) #print(prob3,prob4,prob5) print(np.max(psd),freq[psd==np.max(psd)][0]) #plt.show() """ ### Doing FR/RSS #for i in range(len(completeness)): # rebinned_t, rebinned_rate, rebinned_err, rebinned_fracexp = Lv2_dj_lsp.rebin_lc(corr_lc_files,corr_bg_files,bg_scale_x1,100,completeness[i]) # freqs_list, psd_list = Lv2_dj_lsp.psd_error(rebinned_t,rebinned_rate,rebinned_err) # print(str(completeness[i]) + '%') # print('Median frequency: ' + str(np.median(freqs_list))) # print('Error in frequency: ' + str(np.std(freqs_list))) #print('Powers: ' + str(psd_list)) ################################################################################ ################################### FOLDING #################################### ################################################################################ """ ##### Folding using my routine; confirmed that the folding of the raw data agrees with Stingray's and foldAt nbins = 20 freq = 8.4712e-6 offset = -0.215*nbins #freq = 8.6088e-6 freqdot = 0 freqdotdot = 0 phase_frac = (T0_MJD_eclipse-T0_MJD)/((1/freq)/86400) #print('MID ECLIPSE TIME:') #print( fits.open(eventfile)[1].header['MJDREFI'] + fits.open(eventfile)[1].header['MJDREFF'] + (times[0] + 0.21569724*1/freq)/86400) #T0_MJD = fits.open(eventfile)[1].header['MJDREF'] + times[0]/86400 ##### Using Lv2_phase plt.figure() phase,profile,profile_error = Lv2_phase.pulse_folding(times,T,T0_MJD,freq,freqdot,freqdotdot,nbins,"SWIFT") plt.errorbar(x=phase[:-1],y=profile,yerr=profile_error,color='r',drawstyle='steps-mid') expos = Lv2_phase.phase_exposure(times[0]-times[0],times[-1]-times[0],1/freq,nbin=nbins,gtis=np.array(gtis_conform)-times[0]) total_expos = np.array(list(expos) + list(expos)) plt.errorbar(x=phase[:-1],y=profile/total_expos,yerr=profile_error/total_expos,color='b',drawstyle='steps-mid') plt.title(str(pathlib.Path(eventfile).name) +', exposure-corrected (using Lv2_phase)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.legend(('Folded profile','Exposure-corrected profile'),loc='best',fontsize=12) print('Original expos:') print(expos) ##### Using stingray.pulse.pulsar's fold_events phase_sr,prof_sr,err_sr = fold_events(times,freq,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times[0],nbin=nbins) phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times,freq,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times[0],expocorr=True,nbin=nbins) total_phase_sr = list(phase_sr) + list(phase_sr+1) total_prof_sr = list(prof_sr)*2 total_err_sr = list(err_sr)*2 total_phase_sr_expo = list(phase_sr_expo) + list(phase_sr_expo+1) total_prof_sr_expo = list(prof_sr_expo)*2 total_err_sr_expo = list(err_sr_expo)*2 if nbins % 2 == 0: fft_x = np.array(list(np.arange(int(nbins/2)+1)) + list(np.arange(int(nbins/2)-1) - (int(nbins/2)-1))) else: fft_x = np.array(list(np.arange(int(nbins/2)+1)) + list(np.arange(int(nbins/2)) - int(nbins/2))) shift = np.exp(-2j*np.pi*fft_x*offset/nbins) shifted_prof_sr = np.real(np.fft.ifft(np.fft.fft(prof_sr_expo)*shift)) #taking the real component of the inverse transform of the shifted Fourier transform of the original folded profile shifted_err_sr = np.real(np.fft.ifft(np.fft.fft(err_sr_expo)*shift)) #taking the real component of the inverse transform of the shifted Fourier transform of the original folded profile a = np.array(list(shifted_prof_sr)*2)/T b = np.array(list(shifted_err_sr)*2)/T swift_lc = open(Lv0_dirs.NGC300_2020 + 'swift_shifted_folded_curve.txt','w') for i in range(len(total_expos)): swift_lc.write(str(total_phase_sr[i]) + ' ' + str(a[i]) + ' ' + str(b[i]) + '\n') swift_lc.close() plt.figure() plt.errorbar(x=total_phase_sr,y=total_prof_sr/T,yerr=total_err_sr/T,color='r',drawstyle='steps-mid') plt.errorbar(x=total_phase_sr_expo,y=total_prof_sr_expo/T,yerr=total_err_sr_expo/T,color='b',drawstyle='steps-mid') plt.legend(('Folded profile','Exposure-corrected'),loc='best',fontsize=12) plt.title(str(pathlib.Path(eventfile).name) +', exposure-corrected (using Stingray fold_events)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.show() """ """ ##### Using foldAt by PyAstronomy plt.figure() phase_bins = np.linspace(0,1,21) phases = foldAt(times,1/freq,T0=times[0]-(1-phase_frac)*1/freq) expos = Lv2_phase.phase_exposure(times[0]-times[0],times[-1]-times[0],1/freq,nbin=nbins,gtis=np.array(gtis_conform)-times[0]) total_expos = np.array(list(expos) + list(expos)) expos_index = int(phase_frac/(phase_bins[1]-phase_bins[0])) #starting point for exposures altered_expos = np.array(list(total_expos[expos_index:]) + list(total_expos[:expos_index])) #print('Altered expos:') #print(altered_expos) profile,bin_edges,binnumber = stats.binned_statistic(phases,np.ones(len(phases)),statistic='sum',bins=phase_bins) error = np.sqrt(profile) phase_to_2 = np.array(list(phase_bins[:-1]) + list(phase_bins+1)) profile_to_2 = np.array(list(profile)*2) error_to_2 = np.array(list(error)*2) plt.errorbar(phase_to_2[:-1],profile_to_2/(T*altered_expos),yerr=error_to_2/(T*altered_expos),color='b',drawstyle='steps-mid') plt.legend(('Folded profile','Exposure-corrected'),loc='best',fontsize=12) plt.title(str(pathlib.Path(eventfile).name) +', exposure-corrected (using PyAstronomy foldAt)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) ##### Shifting pulse profiles through a shifted FT (see Deepto's 7/20/2020 email) if nbins % 2 == 0: fft_x = np.array(list(np.arange(int(nbins/2)+1)) + list(np.arange(int(nbins/2)-1) - (int(nbins/2)-1))) else: fft_x = np.array(list(np.arange(int(nbins/2)+1)) + list(np.arange(int(nbins/2)) - int(nbins/2))) shift = np.exp(-2j*np.pi*fft_x*offset/nbins) shifted_prof_sr = np.real(np.fft.ifft(np.fft.fft(prof_sr_expo)*shift)) #taking the real component of the inverse transform of the shifted Fourier transform of the original folded profile shifted_err_sr = np.real(np.fft.ifft(np.fft.fft(err_sr_expo)*shift)) #taking the real component of the inverse transform of the shifted Fourier transform of the original folded profile plt.figure() plt.errorbar(x=total_phase_sr_expo,y=total_prof_sr_expo/T,yerr=total_err_sr_expo/T,color='b',drawstyle='steps-mid') plt.errorbar(total_phase_sr,np.array(list(shifted_prof_sr)*2)/T,yerr=np.array(list(shifted_err_sr)*2)/T,color='r',drawstyle='steps-mid') plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.title('Exposure-corrected, folded profiles for NGC 300 X-1 from Swift over May 2018 to May 2019') plt.legend(('Folded with T0 = time of first event','Folded with T0 = inferred eclipse time/phase'),fontsize=12) """ """ nbins_t = len(times) offset = (1-0.215)*1/freq ##### Shifting pulse profiles through a shifted FT (see Deepto's 7/20/2020 email) if nbins_t % 2 == 0: fft_x = np.array(list(np.arange(int(nbins_t/2)+1)) + list(np.arange(int(nbins_t/2)-1) - (int(nbins_t/2)-1))) else: fft_x = np.array(list(np.arange(int(nbins_t/2)+1)) + list(np.arange(int(nbins_t/2)) - int(nbins_t/2))) shift = np.exp(-2j*np.pi*fft_x*offset/nbins_t) shifted_t = np.real(np.fft.ifft(np.fft.fft(times)*shift)) #taking the real component of the inverse transform of the shifted Fourier transform of the original folded profile for i in range(20): print(times[i],shifted_t[i]) phase_sr,prof_sr,err_sr = fold_events(shifted_t,freq,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times[0],nbin=nbins) phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(shifted_t,freq,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times[0],expocorr=True,nbin=nbins) plt.figure() plt.errorbar(phase_sr,prof_sr/T,color='b',drawstyle='steps-mid') plt.errorbar(phase_sr,prof_sr_expo/T,color='r',drawstyle='steps-mid') plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) """ #plt.show() """ ##### Fitting 6-model step-and-ramp parameters to the folded profile plt.figure() plt.errorbar(x=phase[:-1],y=profile,yerr=profile_error,color='r',drawstyle='steps-mid') plt.errorbar(x=phase[:-1],y=profile/total_expos,yerr=profile_error/total_expos,color='b',drawstyle='steps-mid') plt.title(str(pathlib.Path(eventfile).name) +', exposure-corrected (using Lv2_phase)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.legend(('Folded profile','Exposure-corrected profile'),loc='best',fontsize=12) start_phase = 0.45 end_phase = 1.95 phase_model = np.linspace(start_phase,end_phase,1001) x = phase[:-1][(phase[:-1]>=start_phase)&(phase[:-1]<=end_phase)] y = profile[(phase[:-1]>=start_phase)&(phase[:-1]<=end_phase)]/total_expos[(phase[:-1]>=start_phase)&(phase[:-1]<=end_phase)] y_err = profile_error[(phase[:-1]>=start_phase)&(phase[:-1]<=end_phase)]/total_expos[(phase[:-1]>=start_phase)&(phase[:-1]<=end_phase)] def piecewise_linear(x,b1,b2,b3,b4,top,bottom): return np.piecewise(x, [(x>=start_phase)&(x<=b1), (x>b1)&(x<=b2), (x>b2)&(x<=b3), (x>b3)&(x<=b4), (x>b4)&(x<=end_phase)], [lambda x:top, lambda x:((bottom-top)/(b2-b1)*x+bottom-(bottom-top)/(b2-b1)*b2), lambda x:bottom, lambda x:((top-bottom)/(b4-b3)*x+top-(top-bottom)/(b4-b3)*b4), lambda x:top]) pguess = np.array([1.05,1.15,1.30,1.45,0.0011,0.0003]) popt,pcov = curve_fit(piecewise_linear,x,y,p0=pguess)#,sigma=y_err) print(popt) print(np.diag(np.sqrt(pcov))/popt*100) plt.plot(phase_model,piecewise_linear(phase_model,*popt),'k-') """ #plt.show() ########################### DOING CHI^2 EXPLORATION ############################ def lorentzian(f, f0, a, gam,const): x = (f-f0)/(gam/2) return a * 1/(1+x**2) + const def gaussian(f,f0,a,sig,const): return a * np.exp( -(f-f0)**2/(2*sig**2) ) + const def sum(f,f0,a,gam,b,sig,const): x = (f-f0)/(gam/2) return a * 1/(1+x**2) + b * np.exp( -(f-f0)**2/(2*sig**2)) + const """ nbins=20 chi2 = [] freqs = np.arange(8.25e-6,8.7e-6,0.01e-6) #freqs = np.arange(-9e-17,-1e-18,1e-20) for i in tqdm(range(len(freqs))): phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times,freqs[i],gtis=np.array(gtis_conform),ref_time=times[0],expocorr=True,nbins=nbins) chi2_freq = Lv2_phase.get_chi2(prof_sr_expo,err_sr_expo) chi2.append( chi2_freq ) """ """ freqs_filter = freqs[(freqs>=8.4693e-6)&(freqs<=8.472e-6)] #8.47 to 8.47275 for 1-year data chi2_filter = np.array(chi2)[(freqs>=8.4693e-6)&(freqs<=8.472e-6)] freq_model = np.linspace(8.4693e-6,8.472e-6,1001) pguess_l = np.array([8.4706e-6,650,0.002e-6]) popt_l,pcov_l = curve_fit(lorentzian,freqs_filter,chi2_filter,p0=pguess_l) print(popt_l) print(np.sqrt(np.diag(pcov_l))) pguess_g = np.array([8.4706e-6,650,0.002e-6]) popt_g,pcov_g = curve_fit(gaussian,freqs_filter,chi2_filter,p0=pguess_g) print(popt_g) print(np.sqrt(np.diag(pcov_g))) pguess_s = np.array([8.4706e-6,650,0.002e-6,600,0.002e-6]) popt_s,pcov_s = curve_fit(sum,freqs_filter,chi2_filter,p0=pguess_s) print(popt_s) print(np.sqrt(np.diag(pcov_s))) """ """ fig,ax = plt.subplots() def pdot_to_fdot(pdot): return -pdot/(1/8.4712e-6)**2 def fdot_to_pdot(fdot): return (-fdot/(8.4712e-6)**2)/1e-7 chi2 = np.array(chi2) #secax = ax.secondary_xaxis('top',functions=(fdot_to_pdot,pdot_to_fdot)) #secax.set_xlabel('Period Derivative (1E-7 s/s)',fontsize=12) print(np.max(chi2),freqs[chi2==np.max(chi2)]) ax.plot(freqs,chi2,'rx-') #ax.axvline(x=-5.60e-17,lw=0.5,alpha=0.5,color='k') #ax.axvline(x=-2.80e-17,lw=0.5,alpha=0.5,color='k') ax.axhline(y=869.357,lw=0.5,alpha=0.5,color='b') #plt.plot(freq_model,lorentzian(freq_model,popt_l[0],popt_l[1],popt_l[2]),'b-') #plt.plot(freq_model,gaussian(freq_model,popt_g[0],popt_g[1],popt_g[2]),'k-') #plt.plot(freq_model,sum(freq_model,popt_s[0],popt_s[1],popt_s[2],popt_s[3],popt_s[4]),'m-') ax.set_xlabel('Frequency Derivative (Hz/s)',fontsize=12) ax.set_ylabel('chi^2 [ sum( (profile-mean)^2/error^2) ]',fontsize=12) #plt.legend(('manual chi^2','Lorentzian fit','Gaussian fit','L+G'),fontsize=12) plt.show() """ def sinecurve(x,a,T,phi,c): return a*np.sin(2*np.pi/T*x+phi) + c ##### Exploring reduced data from XMM-Newton ##### Doing sine curve fitting with the RATE data """ xmm_lc1 = '/Volumes/Samsung_T5/NGC300_XMMdata/0791010101/PROC/xmm_0791010101_lccorr.lc' rebinned_t_xmm1 = fits.open(xmm_lc1)[1].data['TIME'] rebinned_rate_xmm1 = fits.open(xmm_lc1)[1].data['RATE'] rebinned_err_xmm1 = fits.open(xmm_lc1)[1].data['ERROR'] xmm_lc2 = '/Volumes/Samsung_T5/NGC300_XMMdata/0791010301/PROC/xmm_0791010301_lccorr.lc' rebinned_t_xmm2 = fits.open(xmm_lc2)[1].data['TIME'] rebinned_rate_xmm2 = fits.open(xmm_lc2)[1].data['RATE'] rebinned_err_xmm2 = fits.open(xmm_lc2)[1].data['ERROR'] mjd_x1_xmm = fits.open(xmm_lc1)[1].header['MJDREF'] + np.array(list(rebinned_t_xmm1) + list(rebinned_t_xmm2))/86400 rebinned_t_xmm = np.array(list(rebinned_t_xmm1) + list(rebinned_t_xmm2)) rebinned_rate_xmm = np.array(list(rebinned_rate_xmm1) + list(rebinned_rate_xmm2)) rebinned_err_xmm = np.array(list(rebinned_err_xmm1) + list(rebinned_err_xmm2)) pguess = np.array([0.2,120e3,-0.5,0.2]) popt,pcov = curve_fit(sinecurve,rebinned_t_xmm,rebinned_rate_xmm,sigma=rebinned_err_xmm,absolute_sigma=True,p0=pguess) print('amplitude: ' + str(popt[0])) print('period: ' + str(popt[1])) print('freq: ' + str(1/popt[1])) print('phase shift: ' + str(popt[2])) print('offset: ' + str(popt[3])) print(np.sqrt(np.diag(pcov))) plt.plot(rebinned_t_xmm,rebinned_rate_xmm,'r-') plt.plot(rebinned_t_xmm,sinecurve(rebinned_t_xmm,*popt),'b-') plt.xlabel('Time (s)',fontsize=12) plt.ylabel('Rate (counts/s)',fontsize=12) print('subset1') subset_t = rebinned_t_xmm[(rebinned_t_xmm>=5.9845e8)&(rebinned_t_xmm<=5.98475e8)] subset_rate = sinecurve(rebinned_t_xmm,*popt)[(rebinned_t_xmm>=5.9845e8)&(rebinned_t_xmm<=5.98475e8)] print(np.min(subset_rate)) print(subset_t[subset_rate==np.min(subset_rate)][0]) print(50814 + subset_t[subset_rate==np.min(subset_rate)][0]/86400) print('subset2') subset_t = rebinned_t_xmm[rebinned_t_xmm>=5.9855e8] subset_rate = sinecurve(rebinned_t_xmm,*popt)[rebinned_t_xmm>=5.9855e8] print(np.min(subset_rate)) print(subset_t[subset_rate==np.min(subset_rate)][0]) print(50814 + subset_t[subset_rate==np.min(subset_rate)][0]/86400) plt.show() """ """ tbins = np.arange(times[0],times[-1]+100,100) summed_data, bin_edges, binnumber = stats.binned_statistic(times,np.ones(len(times)),statistic='sum',bins=tbins) t_used = tbins[:-1][summed_data>0] counts_used = summed_data[summed_data>0] pguess = np.array([10,120e3,5,15]) #popt,pcov = curve_fit(sinecurve,tbins[:-1],summed_data,sigma=np.sqrt(summed_data),absolute_sigma=True,p0=pguess) popt,pcov = curve_fit(sinecurve,t_used,counts_used,sigma=np.sqrt(counts_used),absolute_sigma=True,p0=pguess,maxfev=10000) print('amplitude: ' + str(popt[0])) print('period: ' + str(popt[1])) print('freq: ' + str(1/popt[1])) print('phase shift: ' + str(popt[2])) print('offset: ' + str(popt[3])) print(np.sqrt(np.diag(pcov))) plt.plot(t_used,counts_used,'r-') plt.plot(t_used,sinecurve(t_used,*popt),'b-') plt.xlabel('Time (s)',fontsize=12) plt.ylabel('Counts',fontsize=12) print('subset1') subset_t = t_used[(t_used>=5.9845e8)&(t_used<=5.98475e8)] subset_rate = sinecurve(t_used,*popt)[(t_used>=5.9845e8)&(t_used<=5.98475e8)] print(np.min(subset_rate)) print(subset_t[subset_rate==np.min(subset_rate)][0]) print(50814 + subset_t[subset_rate==np.min(subset_rate)][0]/86400) print('subset2') subset_t = tbins[:-1][tbins[:-1]>=5.9855e8] subset_rate = sinecurve(tbins[:-1],*popt)[tbins[:-1]>=5.9855e8] print(np.min(subset_rate)) print(subset_t[subset_rate==np.min(subset_rate)][0]) print(50814 + subset_t[subset_rate==np.min(subset_rate)][0]/86400) plt.show() """ ############################################################################### ######################### Folding the XMM-Newton data ######################### ############################################################################### pb = 1/8.4712e-6 freqdot = 0 freqdotdot = 0 nbins = 20 gtis_conform = [] for i in range(len(gtis_data_xmm)): gtis_conform.append([gtis_data_xmm[i][0],gtis_data_xmm[i][1]]) """ nbins=20 chi2 = [] freqs = np.arange(8e-6,9e-6,0.001e-6) #freqs = np.arange(-9e-17,-1e-18,1e-20) for i in tqdm(range(len(freqs))): phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times_xmm,freqs[i],gtis=np.array(gtis_conform),ref_time=times_xmm[0],expocorr=True,nbins=nbins) chi2_freq = Lv2_phase.get_chi2(prof_sr_expo,err_sr_expo) chi2.append( chi2_freq ) fig,ax = plt.subplots() chi2 = np.array(chi2) #secax = ax.secondary_xaxis('top',functions=(fdot_to_pdot,pdot_to_fdot)) #secax.set_xlabel('Period Derivative (1E-7 s/s)',fontsize=12) #print(np.max(chi2),freqs[chi2==np.max(chi2)]) ax.plot(freqs,chi2,'rx-') ax.set_xlabel('Frequency (Hz)',fontsize=12) ax.set_ylabel('chi^2 [ sum( (profile-mean)^2/error^2) ]',fontsize=12) plt.show() """ ##### Using Lv2_phase plt.figure() phase,profile,profile_error = Lv2_phase.pulse_folding(times_xmm,T_xmm,T0_MJD_xmm,1/pb,freqdot,freqdotdot,nbins,"XMM") plt.errorbar(x=phase[:-1],y=profile,yerr=profile_error,color='r',drawstyle='steps-mid') expos = Lv2_phase.phase_exposure(times_xmm[0]-times_xmm[0],times_xmm[-1]-times_xmm[0],pb,nbin=nbins,gtis=np.array(gtis_conform)-times_xmm[0]) total_expos = np.array(list(expos) + list(expos)) plt.errorbar(x=phase[:-1],y=profile/total_expos,yerr=profile_error/total_expos,color='b',drawstyle='steps-mid') plt.title(str(pathlib.Path(eventfile_xmm).name) +', exposure-corrected (using Lv2_phase)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.legend(('Folded profile','Exposure-corrected profile'),loc='best',fontsize=12) ##### Using stingray.pulse.pulsar's fold_events phase_sr,prof_sr,err_sr = fold_events(times_xmm,1/pb,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times_xmm[0]-phaseoff*pb,nbin=nbins) phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times_xmm,1/pb,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times_xmm[0]-phaseoff*pb,expocorr=True,nbin=nbins) total_phase_sr = np.array(list(phase_sr) + list(phase_sr+1)) total_prof_sr = np.array(list(prof_sr)*2) total_err_sr = np.array(list(err_sr)*2) total_phase_sr_expo = np.array(list(phase_sr_expo) + list(phase_sr_expo+1)) total_prof_sr_expo = np.array(list(prof_sr_expo)*2) total_err_sr_expo = np.array(list(err_sr_expo)*2) plt.figure() plt.errorbar(x=total_phase_sr,y=total_prof_sr/T_xmm,yerr=total_err_sr/T_xmm,color='r',drawstyle='steps-mid') plt.errorbar(x=total_phase_sr_expo,y=total_prof_sr_expo/T_xmm,yerr=total_err_sr_expo/T_xmm,color='b',drawstyle='steps-mid') plt.legend(('Folded profile','Exposure-corrected'),loc='best',fontsize=12) plt.title(str(pathlib.Path(eventfile_xmm).name) +', exposure-corrected (using Stingray fold_events)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) for i in range(len(total_phase_sr_expo)): print(total_phase_sr_expo[i],total_prof_sr_expo[i]/T_xmm,total_err_sr_expo[i]/T_xmm) def step_n_ramp(phase,prof,prof_err,start_phase,end_phase,pguess): """ Fitting 6-model step-and-ramp parameters to the folded profile """ phase_model = np.linspace(start_phase,end_phase,101) x = phase[(phase>=start_phase)&(phase<=end_phase)] y = prof[(phase>=start_phase)&(phase<=end_phase)] y_err = prof_err[(phase>=start_phase)&(phase<=end_phase)] def piecewise_linear(x,b1,b2,b3,b4,top,bottom): return np.piecewise(x, [(x>=start_phase)&(x<=b1), (x>b1)&(x<=b2), (x>b2)&(x<=b3), (x>b3)&(x<=b4), (x>b4)&(x<=end_phase)], [lambda x:top, lambda x:((bottom-top)/(b2-b1)*x+bottom-(bottom-top)/(b2-b1)*b2), lambda x:bottom, lambda x:((top-bottom)/(b4-b3)*x+top-(top-bottom)/(b4-b3)*b4), lambda x:top]) plt.figure() popt,pcov = curve_fit(piecewise_linear,x,y,p0=pguess,sigma=y_err,absolute_sigma=True) pars = popt pars_err = np.diag(np.sqrt(pcov)) print('Top: ' + str(pars[4]) + ' +- ' + str(pars_err[4])) print('Bottom: ' + str(pars[5]) + ' +- ' + str(pars_err[5])) print('Vertex 1: ' + str(pars[0]) + ' +- ' + str(pars_err[0])) print('Vertex 2: ' + str(pars[1]) + ' +- ' + str(pars_err[1])) print('Vertex 3: ' + str(pars[2]) + ' +- ' + str(pars_err[2])) print('Vertex 4: ' + str(pars[3]) + ' +- ' + str(pars_err[3])) plt.plot(phase_model,piecewise_linear(phase_model,*popt),'k-') ##### Plotting the folded profiles themselves plt.errorbar(x=phase,y=prof,yerr=prof_err,color='r',drawstyle='steps-mid') plt.title('Exposure-corrected (profiles from Stingray)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.legend(('Piecewise fit','Exposure-corrected profile'),loc='best',fontsize=12) #step_n_ramp(total_phase_sr_expo,total_prof_sr_expo/T_xmm,total_err_sr_expo/T_xmm,0.225,1.775,np.array([0.65,0.75,1,1.25,0.016,0.0035])) plt.show() ############################################################################### ######################## Combining Swift and XMM-Newton ####################### ############################################################################### """ #pb = 117403.24413 #pb = 1/8.47145464e-6 pb = 1/8.4712e-6 freqdot = 0 freqdotdot = 0 nbins = 20 MJDREFI = fits.open(eventfile)[1].header['MJDREFI'] #Swift MJDREFF = fits.open(eventfile)[1].header['MJDREFF'] #Swift MJDREF = fits.open(eventfile_xmm)[1].header['MJDREF'] #XMM-Newton diff_swiftxmm = (MJDREFI+MJDREFF-MJDREF)*86400 gtis_conform = [] for i in range(len(gtis_data_xmm)): #for each GTI in the XMM data gtis_conform.append([gtis_data_xmm[i][0],gtis_data_xmm[i][1]]) for i in range(len(gtis_data)): #for each GTI in the Swift data gtis_conform.append([gtis_data[i][0]+diff_swiftxmm,gtis_data[i][1]+diff_swiftxmm]) times_all = np.array(list(times_xmm) + list(diff_swiftxmm + times)) T_all = T + T_xmm T0_MJD_all = T0_MJD_xmm """ """ ##### chi^2 exploration chi2 = [] freqs = np.arange(8.4e-6,8.500000e-6,0.01e-6) for i in tqdm(range(len(freqs))): phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times_all,freqs[i],gtis=np.array(gtis_conform),ref_time=times_all[0],expocorr=True,nbins=nbins) chi2_freq = Lv2_phase.get_chi2(prof_sr_expo,err_sr_expo) chi2.append( chi2_freq ) plt.figure() plt.plot(freqs/1e-6,chi2,'rx-') plt.axvline(x=8.4712,lw=0.5,alpha=0.5) plt.xlabel('Frequency (microHz)',fontsize=12) plt.ylabel('chi^2 [ sum( (profile-mean)^2/error^2) ]',fontsize=12) plt.legend(('chi^2 exploration','8.4712E-6 Hz, freq. from Swift'),loc='best') plt.show() """ """ ##### Using Lv2_phase plt.figure() phase,profile,profile_error = Lv2_phase.pulse_folding(times_all,T_all,T0_MJD_all,1/pb,freqdot,freqdotdot,nbins,"XMM") plt.errorbar(x=phase[:-1],y=profile,yerr=profile_error,color='r',drawstyle='steps-mid') expos = Lv2_phase.phase_exposure(times_all[0]-times_all[0],times_all[-1]-times_all[0],pb,nbin=nbins,gtis=np.array(gtis_conform)-times_all[0]) total_expos = np.array(list(expos) + list(expos)) plt.errorbar(x=phase[:-1],y=profile/total_expos,yerr=profile_error/total_expos,color='b',drawstyle='steps-mid') plt.title('XMM + Swift, exposure-corrected (using Lv2_phase)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.legend(('Folded profile','Exposure-corrected profile'),loc='best',fontsize=12) ##### Using stingray.pulse.pulsar's fold_events phase_sr,prof_sr,err_sr = fold_events(times_all,1/pb,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times_all[0],nbin=nbins) phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times_all,1/pb,freqdot,freqdotdot,gtis=np.array(gtis_conform),ref_time=times_all[0],expocorr=True,nbin=nbins) total_phase_sr = list(phase_sr) + list(phase_sr+1) total_prof_sr = list(prof_sr)*2 total_err_sr = list(err_sr)*2 total_phase_sr_expo = list(phase_sr_expo) + list(phase_sr_expo+1) total_prof_sr_expo = list(prof_sr_expo)*2 total_err_sr_expo = list(err_sr_expo)*2 plt.figure() plt.errorbar(x=total_phase_sr,y=total_prof_sr/T_all,yerr=total_err_sr/T_all,color='r',drawstyle='steps-mid') plt.errorbar(x=total_phase_sr_expo,y=total_prof_sr_expo/T_all,yerr=total_err_sr_expo/T_all,color='b',drawstyle='steps-mid') plt.legend(('Folded profile','Exposure-corrected'),loc='best',fontsize=12) plt.title('XMM + Swift, exposure-corrected (using Stingray fold_events)',fontsize=12) plt.xlabel('Phase',fontsize=12) plt.ylabel('Counts/s',fontsize=12) plt.show() """ fig,ax = plt.subplots() def pdot_to_fdot(pdot): return -pdot/(1/8.4712e-6)**2 def fdot_to_pdot(fdot): return (-fdot/(8.4712e-6)**2)/1e-7 ##### Independent sums of chi^2 (Deepto's suggestion) nbins = 20 """ chi2 = [] chi2_swift_all = [] chi2_xmm_all = [] #freqs = np.arange(1.0/(40.0*3600.0),1.0/(20.0*3600.0),1e-11) freqs = np.arange(8.45e-6,8.50e-6,1e-10) freqdots = np.arange(1e-18,9e-17,1e-20) chi2_all_write = open('/Volumes/Samsung_T5/NGC300_XMMdata/placeholder.txt','w') chi2_swift_write = open('/Volumes/Samsung_T5/NGC300_XMMdata/placeholder2','w') chi2_xmm_write = open('/Volumes/Samsung_T5/NGC300_XMMdata/placeholder3','w') for i in tqdm(range(len(freqdots))): for j in tqdm(range(len(freqdots))): ## Swift phase_sr_expo,prof_sr_expo,err_sr_expo = fold_events(times,freqs[i],freqdots[j],gtis=np.array(gtis_conform),ref_time=times[0],expocorr=True,nbins=nbins) chi2_swift = Lv2_phase.get_chi2(prof_sr_expo,err_sr_expo) chi2_swift_all.append(chi2_swift) chi2_swift_write.write(str(freqs[i]) + ' ' + str(freqdots[j]) + ' ' + str(chi2_swift) + '\n') ## XMM-Newton phase_sr_expo_xmm,prof_sr_expo_xmm,err_sr_expo_xmm = fold_events(times_xmm,freqs[i],freqdots[j],gtis=np.array(gtis_conform_xmm),ref_time=times_xmm[0],expocorr=True,nbins=nbins) chi2_xmm = Lv2_phase.get_chi2(prof_sr_expo_xmm,err_sr_expo_xmm) chi2_xmm_all.append(chi2_xmm) chi2_xmm_write.write(str(freqs[i]) + ' ' + str(freqdots[j]) + ' ' + str(chi2_xmm) + '\n') chi2.append( chi2_swift + chi2_xmm ) chi2_all_write.write(str(freqs[i]) + ' ' + str(freqdots[j]) + ' ' + str(chi2_swift + chi2_xmm) + '\n') chi2_all_write.close() chi2_swift_write.close() chi2_xmm_write.close() secax = ax.secondary_xaxis('top',functions=(fdot_to_pdot,pdot_to_fdot)) secax.set_xlabel('Period Derivative (1E-7 s/s)',fontsize=12) ax.plot(freqdots,chi2,'kx-') ax.plot(freqdots,chi2_swift_all,'rx-',lw=0.5,alpha=0.5) ax.plot(freqdots,chi2_xmm_all,'bx-',lw=0.5,alpha=0.5) #plt.yscale('log') ax.legend(('Swift+XMM','Swift','XMM'),fontsize=12) ax.set_xlabel('Frequency Derivative (Hz/s)',fontsize=12) ax.set_ylabel('chi^2 [ sum( (profile-mean)^2/error^2) ]',fontsize=12) mplcursors.cursor(hover=True) ax.axvline(x=5.60e-17,lw=0.5,alpha=0.5,color='k') ax.axvline(x=2.80e-17,lw=0.5,alpha=0.5,color='k') #ax.axhline(y=869.357,lw=0.5,alpha=0.5,color='b') for 1e-11 Hz spacing #ax.axhline(y=11830.79495183693,lw=0.5,alpha=0.5,color='b') for 1e-11 spacing ax.axhline(y=734.51,lw=0.5,alpha=0.5,color='b') ax.axhline(y=11689.2,lw=0.5,alpha=0.5,color='b') plt.show() """ """ ##### Plotting results from the chi^2 exploration ## secondary axis reference: https://matplotlib.org/3.1.0/gallery/subplots_axes_and_figures/secondary_axis.html freqs,chi2_all = np.genfromtxt('/Volumes/Samsung_T5/NGC300_XMMdata/chi2_all_dec16-may19.txt',usecols=(0,1),unpack=True) freqs,chi2_swift = np.genfromtxt('/Volumes/Samsung_T5/NGC300_XMMdata/chi2_swift_dec16-may19.txt',usecols=(0,1),unpack=True) freqs,chi2_xmm = np.genfromtxt('/Volumes/Samsung_T5/NGC300_XMMdata/chi2_xmm_dec16-may19.txt',usecols=(0,1),unpack=True) fig,ax = plt.subplots() ax.plot(freqs/1e-6,chi2_all,'kx-') ax.plot(freqs/1e-6,chi2_swift,'rx-',lw=0.5,alpha=0.5) ax.plot(freqs/1e-6,chi2_xmm,'bx-',lw=0.5,alpha=0.5) def time_to_freq(x): return (1/x) def freq_to_time(x): return (1/x)/3600*1e6 secax = ax.secondary_xaxis('top',functions=(freq_to_time,time_to_freq)) secax.set_xlabel('Time (h)',fontsize=12) freqs_fit = freqs[(freqs>=8.46e-6)&(freqs<=8.48e-6)] chi_fit = np.array(chi2_all)[(freqs>=8.46e-6)&(freqs<=8.48e-6)] #pguess = np.array([8.4712,400,0.02,200]) #for Swift pguess = np.array([8.4712,500,0.02,11100]) #for all #popt,pcov = curve_fit(lorentzian,freqs_fit/1e-6,chi_fit,p0=pguess) #print('Lorentzian') #print(popt) #print(np.sqrt(np.diag(pcov))) #plt.plot(freqs_fit/1e-6,lorentzian(freqs_fit/1e-6,*popt),'r-') #popt,pcov = curve_fit(gaussian,freqs_fit/1e-6,chi_fit,p0=pguess) #print('Gaussian') #print(popt) #print(np.sqrt(np.diag(pcov))) #plt.plot(freqs_fit/1e-6,gaussian(freqs_fit/1e-6,*popt),'b-') #plt.legend(('All data','Swift data','XMM data','Lorentzian fit','Gaussian fit'),loc='best') ax.set_xlabel('Frequency (microHz)',fontsize=12) ax.set_ylabel('chi^2 [ sum( (profile-mean)^2/error^2) ]',fontsize=12) plt.show() """ ##### Doing contour plots for the 2D P-Pdot exploration ### do a PDOT version too?? def summarize_2d(space,chi2_type,posneg): """ Summarizing the information from the 2D chi^2 exploration involving frequency and the frequency derivative space - whether in frequency space or period space chi2_type - 'XMM', 'Swift', or 'all' posneg - positive fdot or negative fdot """ plt.figure() if chi2_type == 'XMM': plt.title('XMM') if posneg == 'pos': freq,freqdot,chi2 = np.genfromtxt('/Volumes/Samsung_T5/NGC300_XMMdata/chi2_xmm_fine_ffdot.txt',usecols=(0,1,2),unpack=True) if space == 'frequency': plt.axhline(y=5.6e-17,color='w',lw=1,alpha=0.5) plt.axhline(y=2.8e-17,color='w',lw=1,alpha=0.5) elif space == 'period': plt.axhline(y=-3.9,color='w',lw=1,alpha=0.5) plt.axhline(y=-7.8,color='w',lw=1,alpha=0.5) elif posneg == 'neg': freq,freqdot,chi2 = np.genfromtxt('/Volumes/Samsung_T5/NGC300_XMMdata/chi2_xmm_fine_ffdotneg.txt',usecols=(0,1,2),unpack=True) if space == 'frequency': plt.axhline(y=-5.6e-17,color='w',lw=1,alpha=0.5) plt.axhline(y=-2.8e-17,color='w',lw=1,alpha=0.5) elif space == 'period': plt.axhline(y=3.9,color='w',lw=1,alpha=0.5) plt.axhline(y=7.8,color='w',lw=1,alpha=0.5) elif chi2_type == 'Swift': plt.title('Swift') if posneg == 'pos': freq,freqdot,chi2 =
np.genfromtxt('/Volumes/Samsung_T5/NGC300_XMMdata/chi2_swift_fine_ffdot.txt',usecols=(0,1,2),unpack=True)
numpy.genfromtxt
''' model: cpm task: predict behavioral score (for each clip) data: all clips used together behavioral measures: see notebook ''' import numpy as np import pandas as pd import pickle import os import argparse import time ''' ml ''' from sklearn.model_selection import KFold import torch import torch.nn as nn from cpm import cpm model_type = 'cpm' ''' Helpers ''' from utils import _info from rb_utils import static_score from dataloader import _bhv_class_df as _bhv_reg_df from dataloader import _get_bhv_cpm_seq as _get_seq # results directory RES_DIR = 'results/bhv_{}'.format(model_type) if not os.path.exists(RES_DIR): os.makedirs(RES_DIR) K_SEED = 330 ''' SCORES: 'mse': mean squared error 'p': pearson correlation 's': spearman correlation ''' SCORES = ['mse', 'p', 's'] def _train(df, bhv_df, args): # get X-y from df features = [ii for ii in df.columns if 'feat' in ii] k_feat = len(features) print('number of features = %d' %(k_feat)) k_clip = len(np.unique(df['c'])) print('number of clips = %d' %(k_clip)) subject_list = bhv_df['Subject'].unique() train_list = subject_list[:args.train_size] test_list = subject_list[args.train_size:] # init dict for all results results = {} # true and predicted scores and clip label results['y'] = {} results['y_hat'] = {} results['c'] = {} for score in SCORES: # mean scores across time results['train_%s'%score] = np.zeros(args.k_fold) results['val_%s'%score] = np.zeros(args.k_fold) # per clip score results['c_train_%s'%score] = {} results['c_val_%s'%score] = {} for ii in range(k_clip): results['c_train_%s'%score][ii] = np.zeros(args.k_fold) results['c_val_%s'%score][ii] = np.zeros(args.k_fold) kf = KFold(n_splits=args.k_fold, random_state=K_SEED) # get participant lists for each assigned class class_list = {} for ii in range(args.k_class): class_list[ii] = bhv_df[ (bhv_df['Subject'].isin(train_list)) & (bhv_df['y']==ii)]['Subject'].values print('No. of participants in class {} = {}'.format( ii, len(class_list[ii]))) ''' split participants in each class with kf nearly identical ratio of train and val, in all classes ''' split = {} for ii in range(args.k_class): split[ii] = kf.split(class_list[ii]) for i_fold in range(args.k_fold): _info('fold: %d/%d' %(i_fold+1, args.k_fold)) # ***between-subject train-val split train_subs, val_subs = [], [] for ii in range(args.k_class): train, val = next(split[ii]) for jj in train: train_subs.append(class_list[ii][jj]) for jj in val: val_subs.append(class_list[ii][jj]) ''' model main ''' model = cpm(corr_thresh=args.corr_thresh) X_train, y_train, c_train = _get_seq( df, train_subs, args) X_val, y_val, c_val = _get_seq( df, val_subs, args) # train model _, _ = model.fit(X_train, y_train) ''' results on train data ''' s, s_c, _ = static_score( model, X_train, y_train, c_train, model_type = model_type) for score in SCORES: results['train_%s'%score][i_fold] = s[score] for ii in range(k_clip): results['c_train_%s'%score][ii][i_fold] = s_c[ii][score] print('train p = %0.3f' %s['p']) ''' results on val data ''' s, s_c, y_hat = static_score( model, X_val, y_val, c_val, model_type = model_type) for score in SCORES: results['val_%s'%score][i_fold] = s[score] for ii in range(k_clip): results['c_val_%s'%score][ii][i_fold] = s_c[ii][score] print('val p = %0.3f' %s['p']) results['y'][i_fold] = y_val results['y_hat'][i_fold] = y_hat results['c'][i_fold] = c_val return results def _test(df, bhv_df, args): _info('test mode') # get X-y from df features = [ii for ii in df.columns if 'feat' in ii] k_feat = len(features) print('number of features = %d' %(k_feat)) k_clip = len(
np.unique(df['c'])
numpy.unique
import pathlib from dataclasses import dataclass from typing import Dict, Tuple import napari import numpy as np import torch from magicgui.widgets import Combobox, Slider from magicgui.widgets import FloatSlider, Container, Label from napari.layers import Shapes from skimage.io import imread from torchvision.models.detection.transform import GeneralizedRCNNTransform from torchvision.ops import box_convert from torchvision.ops import nms from anchor_generator import get_anchor_boxes from datasets import ObjectDetectionDataSet from datasets import ObjectDetectionDatasetSingle from transformations import re_normalize from utils import color_mapping_func from utils import enable_gui_qt from utils import read_json, save_json def make_bbox_napari(bbox, reverse=False): """ Obtener las coordenadas de las cuatro esquinas de una caja delimitadora, se espera que sea en formato 'xyxy'. El resultado puede ser puesto directamente en las capas de formas de napari. Orden: arriba-izquierda, abajo-izquierda, abajo-derecha, arriba-derecha estilo numpy ---> [y, x] """ if reverse: x = bbox[:, 1] y = bbox[:, 0] x1 = x.min() y1 = y.min() x2 = x.max() y2 = y.max() return np.array([x1, y1, x2, y2]) else: x1 = bbox[0] y1 = bbox[1] x2 = bbox[2] y2 = bbox[3] bbox_rect = np.array([[y1, x1], [y2, x1], [y2, x2], [y1, x2]]) return bbox_rect def get_center_bounding_box(boxes: torch.tensor): """Regresa los puntos centrales de una caja delimitadora dada.""" return box_convert(boxes, in_fmt="xyxy", out_fmt="cxcywh")[:, :2] class ViewerBase: def napari(self): # IPython magic para napari < 0.4.8 enable_gui_qt() # napari if self.viewer: try: del self.viewer except AttributeError: pass self.index = 0 # Iniciar una instancia napari self.viewer = napari.Viewer() # Mostrar la muestra actual self.show_sample() # Comandos de teclado # Presionar 'n' para pasar a la siguiente muestra @self.viewer.bind_key("n") def next(viewer): self.increase_index() # Incrementar el índice self.show_sample() # Mostrar la siguiente muestra # Presionar 'b' para regresar a la muestra anterior @self.viewer.bind_key("b") def prev(viewer): self.decrease_index() # Decrementar el ínidce self.show_sample() # Mostrar la siguiente muestra def increase_index(self): self.index += 1 if self.index >= len(self.dataset): self.index = 0 def decrease_index(self): self.index -= 1 if self.index < 0: self.index = len(self.dataset) - 1 def show_sample(self): """Método de sobrescritura""" pass def create_image_layer(self, x, x_name): return self.viewer.add_image(x, name=str(x_name)) def update_image_layer(self, image_layer, x, x_name): """Reemplazar la información y el nombre de una image_layer dada""" image_layer.data = x image_layer.name = str(x_name) def get_all_shape_layers(self): return [layer for layer in self.viewer.layers if isinstance(layer, Shapes)] def remove_all_shape_layers(self): all_shape_layers = self.get_all_shape_layers() for shape_layer in all_shape_layers: self.remove_layer(shape_layer) def remove_layer(self, layer): self.viewer.layers.remove(layer) class DatasetViewer(ViewerBase): def __init__( self, dataset: ObjectDetectionDataSet, color_mapping: Dict, rccn_transform: GeneralizedRCNNTransform = None, ): self.dataset = dataset self.index = 0 self.color_mapping = color_mapping # Visor de instancia napari self.viewer = None # RCNN_transformer self.rccn_transform = rccn_transform # imagen y capa de forma actual self.image_layer = None self.shape_layer = None def show_sample(self): # Obtener una muestra del dataset sample = self.get_sample_dataset(self.index) # RCNN-transformer if self.rccn_transform is not None: sample = self.rcnn_transformer(sample, self.rccn_transform) # Transformar una muestra a numpy, CPU y el formato correcto a visualizar x, x_name = self.transform_x(sample) y, y_name = self.transform_y(sample) # Crear una capa de imagen if self.image_layer not in self.viewer.layers: self.image_layer = self.create_image_layer(x, x_name) else: self.update_image_layer(self.image_layer, x, x_name) # Crear una capa de forma if self.shape_layer not in self.viewer.layers: self.shape_layer = self.create_shape_layer(y, y_name) else: self.update_shape_layer(self.shape_layer, y, y_name) # Reiniciar vista self.viewer.reset_view() # self.viewer.layers.select_previous() # enfocar en una capa de entrada # self.viewer.status = f'index: {self.index}, x_name: {x_name}, y_name: {y_name}' def get_sample_dataset(self, index): return self.dataset[index] def transform_x(self, sample): # desempaquetar diccionario x, x_name = sample["x"], sample["x_name"] # Asegurarse de que es numpy.ndarray en el CPU x = x.cpu().numpy() # De [C, H, W] a [H, W, C] - solo para imágenes en RGB. # if self.check_if_rgb(x): # x = np.moveaxis(x, source=0, destination=-1) if len(x.shape) == 2: x = x.T x = x[np.newaxis,...] # x = x.T # Para parasrlas de [W,H] a [H,W] # x = x[..., np.newaxis] # Añadido para imagenes de un canal # print(len(x.shape)) # Re-normalizar x = re_normalize(x) return x, x_name def transform_y(self, sample): # Desempaquetar diccionario y, y_name = sample["y"], sample["y_name"] # Asegurarse de que es numpy.ndarray en el CPU y = {key: value.cpu().numpy() for key, value in y.items()} return y, y_name def get_boxes(self, y): boxes = y["boxes"] # Transformar cajas delimitadoras para hacerlas compatibles con napari boxes_napari = [make_bbox_napari(box) for box in boxes] return boxes_napari def get_labels(self, y): return y["labels"] def get_colors(self, y): return color_mapping_func(y["labels"], self.color_mapping) def get_scores(self, y): return y["scores"] def get_text_parameters(self): return { "text": "{labels}", "size": 10, "color": "white", "anchor": "upper_left", "translation": [-1, 0], } def create_shape_layer(self, y, y_name): boxes = self.get_boxes(y) labels = self.get_labels(y) colors = self.get_colors(y) # Añadir propiedades a la capa de forma # Esto se requiere para obtener el txto correcto para el TextManager # El TextManager muestra el texto en la parte superior de la caja delimitadora # en este caso es la etiqueta atribuida acada caja delimitadora text_parameters = self.get_text_parameters() # diccionario properties = {"labels": labels} if "scores" in y.keys(): scores = self.get_scores(y) text_parameters["text"] = "label: {labels}\nscore: {scores:.2f}" properties["scores"] = scores # Añadir una capa de forma shape_layer = self.viewer.add_shapes( data=boxes, face_color="transparent", edge_color="red", edge_width=2, properties=properties, name=y_name, text=text_parameters, ) # Convertir la capa en no-editable shape_layer.editable = False # Guardar información como metadatos self.save_to_metadata(shape_layer, "boxes", boxes) self.save_to_metadata(shape_layer, "labels", labels) self.save_to_metadata(shape_layer, "colors", colors) # Añadir puntajes if "scores" in y.keys(): self.save_to_metadata(shape_layer, "scores", scores) # Actualizar Color. self.set_colors_of_shapes(shape_layer, self.color_mapping) return shape_layer def update_shape_layer(self, shape_layer, y, y_name): """Remove all shapes and replace the data and the properties""" # Eliminar todas las foras de una capa self.select_all_shapes(shape_layer) shape_layer.remove_selected() boxes = self.get_boxes(y) labels = self.get_labels(y) colors = self.get_colors(y) if "scores" in y.keys(): scores = self.get_scores(y) # Configurar las propiedades actuales shape_layer.current_properties["labels"] = labels if "scores" in y.keys(): shape_layer.current_properties["scores"] = scores # Añadir formas a la capa shape_layer.add(boxes) # Configurar las propuedades de dorma correcta shape_layer.properties["labels"] = labels if "scores" in y.keys(): shape_layer.properties["scores"] = scores # Anular la información en los metadatos self.reset_metadata(shape_layer) self.save_to_metadata(shape_layer, "boxes", boxes) self.save_to_metadata(shape_layer, "labels", labels) self.save_to_metadata(shape_layer, "colors", colors) # Añadir puntajes if "scores" in y.keys(): self.save_to_metadata(shape_layer, "scores", scores) # Actualizar color self.set_colors_of_shapes(shape_layer, self.color_mapping) # Cambiar el nombre shape_layer.name = y_name def save_to_metadata(self, shape_layer, key, value): shape_layer.metadata[key] = value def reset_metadata(self, shape_layer): shape_layer.metadata = {} def check_if_rgb(self, x): """Verificar si la primer dimensión de la imagen es el número de canales, y es 3""" # TODO: Las imágenes RGBA tienen 4 canles -> se genera Error if x.shape[0] == 3: return True else: raise AssertionError( f"The channel dimension is supposed to be 3 for RGB images. This image has a channel dimension of size {x.shape[0]}" ) def get_unique_labels(self, shapes_layer): return set(shapes_layer.metadata["labels"]) def select_all_shapes(self, shape_layer): """Seleciona todas las formas dentro de una instancia shape_layer.""" shape_layer.selected_data = set(range(shape_layer.nshapes)) def select_all_shapes_label(self, shape_layer, label): """Selecciona todas las formas de una determinada etiqueta""" if label not in self.get_unique_labels(shape_layer): raise ValueError( f"Label {label} does not exist. Available labels are {self.get_unique_labels(shape_layer)}!" ) indices = set(self.get_indices_of_shapes(shape_layer, label)) shape_layer.selected_data = indices def get_indices_of_shapes(self, shapes_layer, label): return list(np.argwhere(shapes_layer.properties["labels"] == label).flatten()) def set_colors_of_shapes(self, shape_layer, color_mapping): """ Itera sobre etiquetas únicas y asigna un color conforme a el color_mapping.""" for label in self.get_unique_labels(shape_layer): # get unique labels color = color_mapping[label] # get color from mapping self.set_color_of_shapes(shape_layer, label, color) def set_color_of_shapes(self, shapes_layer, label, color): """Asigna un oclor a cada forma de una determinada etiqueta""" self.select_all_shapes_label( shapes_layer, label ) # Seleccionar únicamente las formas correctas shapes_layer.current_edge_color = ( color # Cambiar el color de las formas formas seleccionadas ) def gui_text_properties(self, shape_layer): container = self.create_gui_text_properties(shape_layer) self.viewer.window.add_dock_widget( container, name="text_properties", area="right" ) def gui_score_slider(self, shape_layer): if "nms_slider" in self.viewer.window._dock_widgets.keys(): self.remove_gui("nms_slider") self.shape_layer.events.name.disconnect( callback=self.shape_layer.events.name.callbacks[0] ) container = self.create_gui_score_slider(shape_layer) self.slider = container self.viewer.window.add_dock_widget(container, name="score_slider", area="right") def gui_nms_slider(self, shape_layer): if "score_slider" in self.viewer.window._dock_widgets.keys(): self.remove_gui("score_slider") self.shape_layer.events.name.disconnect( callback=self.shape_layer.events.name.callbacks[0] ) container = self.create_gui_nms_slider(shape_layer) self.slider = container self.viewer.window.add_dock_widget(container, name="nms_slider", area="right") def remove_gui(self, name): widget = self.viewer.window._dock_widgets[name] self.viewer.window.remove_dock_widget(widget) def create_gui_text_properties(self, shape_layer): TextColor = Combobox( choices=shape_layer._colors, name="text color", value="white" ) TextSize = Slider(min=1, max=50, name="text size", value=1) container = Container(widgets=[TextColor, TextSize]) def change_text_color(event): # Esto cambia el color del texto shape_layer.text.color = str(TextColor.value) def change_text_size(event): # Esto cambia el tamaño del texto shape_layer.text.size = int(TextSize.value) TextColor.changed.connect(change_text_color) TextSize.changed.connect(change_text_size) return container def create_gui_score_slider(self, shape_layer): slider = FloatSlider(min=0.0, max=1.0, step=0.01, name="Score", value=0.0) slider_label = Label(name="Score_threshold", value=0.0) container = Container(widgets=[slider, slider_label]) def change_boxes(event, shape_layer=shape_layer): # Eliminar todas las formas self.select_all_shapes(shape_layer) shape_layer.remove_selected() # Crear la mascara y nueva información mask = np.where(shape_layer.metadata["scores"] > slider.value) new_boxes = np.asarray(shape_layer.metadata["boxes"])[mask] new_labels = shape_layer.metadata["labels"][mask] new_scores = shape_layer.metadata["scores"][mask] # Configurar las propiedades actuales shape_layer.current_properties["labels"] = new_labels shape_layer.current_properties["scores"] = new_scores # Añadir formas a una capa if new_boxes.size > 0: shape_layer.add(list(new_boxes)) # Configurar las propiedades shape_layer.properties["labels"] = new_labels shape_layer.properties["scores"] = new_scores # Cambiar la etiqueta slider_label.value = str(slider.value) slider.changed.connect(change_boxes) # Invocar puntaje container.Score.value = 0.0 # Evento que se activa cuando el nombre de la capa es cambiado self.shape_layer.events.name.connect(change_boxes) return container def create_gui_nms_slider(self, shape_layer): slider = FloatSlider(min=0.0, max=1.0, step=0.01, name="NMS", value=0.0) slider_label = Label(name="IoU_threshold") container = Container(widgets=[slider, slider_label]) def change_boxes(event, shape_layer=shape_layer): # Remover todas las formas de unas capas self.select_all_shapes(shape_layer) shape_layer.remove_selected() # Crear una mascara y nueva información boxes = torch.tensor( [ make_bbox_napari(box, reverse=True) for box in shape_layer.metadata["boxes"] ] ) scores = torch.tensor(shape_layer.metadata["scores"]) if boxes.size()[0] > 0: mask = nms(boxes, scores, slider.value) # torch.tensor mask = (np.array(mask),) new_boxes = np.asarray(shape_layer.metadata["boxes"])[mask] new_labels = shape_layer.metadata["labels"][mask] new_scores = shape_layer.metadata["scores"][mask] # Configurar las propiedades shape_layer.current_properties["labels"] = new_labels shape_layer.current_properties["scores"] = new_scores # Añadir formas a una capa if new_boxes.size > 0: shape_layer.add(list(new_boxes)) # Configurar las propiedas shape_layer.properties["labels"] = new_labels shape_layer.properties["scores"] = new_scores # Configurar información temporal shape_layer.metadata["boxes_nms"] = list(new_boxes) shape_layer.metadata["labels_nms"] = new_labels shape_layer.metadata["scores_nms"] = new_scores # Cambiar etiqueta slider_label.value = str(slider.value) slider.changed.connect(change_boxes) # Invocar NMS container.NMS.value = 1.0 # Evento lanzado cuando el nombre de las capa de formas cambia self.shape_layer.events.name.connect(change_boxes) return container def rcnn_transformer(self, sample, transform): # Desempaquetar diccionario x, x_name, y, y_name = ( sample["x"], sample["x_name"], sample["y"], sample["y_name"], ) x, y = transform([x], [y]) x, y = x.tensors[0], y[0] return {"x": x, "y": y, "x_name": x_name, "y_name": y_name} class DatasetViewerSingle(DatasetViewer): def __init__( self, dataset: ObjectDetectionDatasetSingle, rccn_transform: GeneralizedRCNNTransform = None, ): self.dataset = dataset self.index = 0 # Instancia del visualizador napari self.viewer = None # rccn_transformer self.rccn_transform = rccn_transform # Imagen actual y capa de formase & shape layer self.image_layer = None self.shape_layer = None def show_sample(self): # Obtener una muestra del conjunto de datos sample = self.get_sample_dataset(self.index) # RCNN-transformer if self.rccn_transform is not None: sample = self.rcnn_transformer(sample, self.rccn_transform) # Transformar la muestra a numpy, CPU y el formato correcto a visualizar x, x_name = self.transform_x(sample) # Crear una capa de imagen if self.image_layer not in self.viewer.layers: self.image_layer = self.create_image_layer(x, x_name) else: self.update_image_layer(self.image_layer, x, x_name) # Reiniciar vista self.viewer.reset_view() def rcnn_transformer(self, sample, transform): # Desempaquetar diccionario x, x_name = sample["x"], sample["x_name"] x, _ = transform([x]) x, _ = x.tensors[0], _ return {"x": x, "x_name": x_name} class Annotator(ViewerBase): def __init__( self, image_ids: pathlib.Path, annotation_ids: pathlib.Path = None, color_mapping: Dict = {}, ): self.image_ids = image_ids self.annotation_ids = annotation_ids self.index = 0 self.color_mapping = color_mapping # Instancia del visualizador napari self.viewer = None # Imagen actual y capas de formas self.image_layer = None self.shape_layers = [] # Iniciar anotaciones self.annotations = self.init_annotations() # Cargar anotaciones del disco if self.annotation_ids is not None: self.load_annotations() # Ancho de los bordes para las formas self.edge_width = 2.0 # Aotaciones de los objetos actuales self.annotation_object = None def init_annotations(self): @dataclass class AnnotationObject: name: str boxes: np.ndarray labels: np.ndarray def __bool__(self): return True if self.boxes.size > 0 else False return [ AnnotationObject( name=image_id.stem, boxes=np.array([]), labels=np.array([]) ) for image_id in self.image_ids ] def increase_index(self): self.index += 1 if self.index >= len(self.image_ids): self.index = 0 def decrease_index(self): self.index -= 1 if self.index < 0: self.index = len(self.image_ids) - 1 def show_sample(self): # Obtener el identificardor de la imagen image_id = self.get_image_id(self.index) # Cargar la imagen x = self.load_x(image_id) # Transformaciones de la imagen x = self.transform_x(x) # Crear o actualizar una capa de imagen if self.image_layer not in self.viewer.layers: self.image_layer = self.create_image_layer(x, image_id) else: self.update_image_layer(self.image_layer, x, image_id) # Guardar las anotaciones en annotation_object (cualquier cambio será guardado o sobreescrito) self.save_annotations(self.annotation_object) # Actualizar el objeto de anotaciones actual self.annotation_object = self.get_annotation_object(self.index) # Eliminar todas las capas de formas self.remove_all_shape_layers() # Crear las nuevas capas de formas self.shape_layers = self.create_shape_layers(self.annotation_object) # Reiniciar la vista self.viewer.reset_view() def get_image_id(self, index): return self.image_ids[index] def get_annotation_object(self, index): return self.annotations[index] def transform_x(self, x): # Re-normalizar x = re_normalize(x) return x def load_x(self, image_id): return imread(image_id) def load_annotations(self): # Generar una lista de nombres, el archivo de anotación debe tener el mismo nombre que la imagen. annotation_object_names = [ annotation_object.name for annotation_object in self.annotations ] # Iterar sobre el identificadores de las anotaciones for annotation_id in self.annotation_ids: annotation_name = annotation_id.stem index_list = self.get_indices_of_sequence( annotation_name, annotation_object_names ) if index_list: # Verificar si se encuentra mas de un índice idx = index_list[0] # Obtener el valor de ínidce de index_list annotation_file = read_json(annotation_id) # Leer archivo # Almacenarlos como np.ndarrays boxes =
np.array(annotation_file["boxes"])
numpy.array
import numpy as np import pandas as pd import joblib import tensorflow as tf import sys import functools import os import tensorflow.keras.backend as K from matplotlib import pyplot as plt # from IPython.display import clear_output from scipy.stats import gaussian_kde, binned_statistic as binstat from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import ShuffleSplit, GroupShuffleSplit from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, median_absolute_error from tensorflow.keras.losses import Loss from scipy.spatial.distance import jensenshannon as js class HuberLoss(Loss): """ Custom TensorFlow Loss subclass implementing the Huber loss. """ def __init__(self, threshold: float = 1): """ :param threshold: float The Huber threshold between L1 and L2 losses. """ super().__init__() self.threshold = threshold def call(self, y_true, y_pred): error = y_true - y_pred is_small_error = tf.abs(error) <= self.threshold small_error_loss = tf.square(error) / 2 big_error_loss = self.threshold * (tf.abs(error) - (0.5 * self.threshold)) return tf.where(is_small_error, small_error_loss, big_error_loss) def root_mean_squared_error(y, y_pred, sample_weight=None): """ Compute the root mean squared error metric. """ value = mean_squared_error(y, y_pred, sample_weight=sample_weight) return np.sqrt(value) def process_input_parameters(pars, min_folds_cv=5): """ Check the consistency of the input parameters and make modifications if necessary. :param pars: argparse.Namespace An argparse namespace object containing the input parameters. :param min_folds_cv: int The minimum number of folds required for K-fold cross-validation. :return: pars, argparse.Namespace The processed version of the input namespace object. """ if len(pars.lcdir) > 1: assert len(pars.wavebands) == len(pars.lcdir), "The number of items in lcdir must either be 1 or match " \ "the number of items in wavebands." assert len(pars.wavebands) == len(pars.lcfile_suffices), \ "The number of items in wavebands and lcfile_suffices must match." if not os.path.isdir(os.path.join(pars.rootdir, pars.outdir)): os.mkdir(os.path.join(pars.rootdir, pars.outdir)) pars.hparam_grid = np.array(pars.hpars) # Check if only the CPU is to be used: if pars.cpu: os.environ["CUDA_VISIBLE_DEVICES"] = "" # Join the list elements of pars.subset into a long string: if pars.subset: pars.subset = ' '.join(pars.subset) # Check the number of meta input features: if pars.meta_input is None: pars.n_meta = 0 else: pars.n_meta = len(pars.meta_input) if pars.nn_type == 'cnn': pars.n_channels = len(pars.wavebands) else: pars.n_channels = 2 * len(pars.wavebands) if pars.weighing_by_density: print("Density weighing is ON with cutoff {}".format(pars.weighing_by_density)) else: print("Density weighing is OFF.") print("Number of input channels: {}".format(pars.n_channels)) print("Number of meta features: {}".format(pars.n_meta)) if pars.train: pars.predict = False # We want to train a regression model. if pars.pick_fold is not None: for ii in pars.pick_fold: print(type(ii)) assert isinstance(ii, int) and 0 < ii <= pars.k_fold, \ "pick_fold must be > 0 AND <= k_fold integer" assert pars.k_fold >= min_folds_cv, \ "pick_fold requires k_fold >= {}".format(min_folds_cv) pars.refit = False if not pars.cross_validate: assert len(pars.hparam_grid) == 1, "Cannot do grid-search of hyper-parameters if cross_validate is False." pars.refit = True if pars.explicit_test_frac: assert pars.refit or pars.ensemble, \ "For the evaluation of the model on the test set, 'refit' or 'ensemble' must be set." if pars.optimize_lr: pars.n_epochs = 100 pars.decay = 0.0 pars.save_model = False pars.cross_validate = False pars.refit = True return pars def read_dataset(filename: str, columns: list = None, subset_expr: str = None, input_feature_names: list = None, trim_quantiles: list = None, qlo: float = 0.25, qhi: float = 0.75, plothist: bool = False, histfig: str = "hist.png", dropna_cols: list = None, comment: str = '#', dtype=None): """ Loads, trims, and exports dataset to numpy arrays. :param filename: str The name of the input file. :param columns: list of strings Passed to the usecols parameter of pandas.read_csv() :param subset_expr: str Expression for subsetting the input data, passed as the first parameter of pandas.DataFrame.query() :param input_feature_names: list of strings An optional subset of the usecols parameter, including the names of the columns to be returned as features. If None, all columns in usecols will be returned. :param trim_quantiles: list An optional subset of the usecols parameter, including the names of the columns to be threshold-rejected beyond the quantiles specified by qlo and qhi. If None, no quantile-trimming will be performed. :param qlo: float Lower quantile for threshold rejection. :param qhi: float Upper quantile for threshold rejection. :param plothist: bool If True, the histograms of the columns in usecols will be plotted before and, if performed, after quantile trimming. :param histfig: str The name of the output histogram figure file if plothist is True. :param dropna_cols: :param comment: :param dtype: :return: """ with open(filename) as f: header = f.readline() cols = header.strip('#').split() df = pd.read_csv(filename, names=cols, header=None, sep="\s+", usecols=columns, comment=comment, dtype=dtype) if dropna_cols is not None: df.dropna(inplace=True, subset=dropna_cols) ndata = len(df) print(df.head()) print("----------\n{} lines read from {}\n".format(ndata, filename)) df_orig = df # Apply threshold rejections: if subset_expr is not None: df = df.query(subset_expr) ndata = len(df) print("{} lines after threshold rejections\n".format(ndata)) # plot histogram for each column in original dataset if plothist: fig, ax = plt.subplots(figsize=(20, 10)) fig.clf() _ = pd.DataFrame.hist(df, bins=int(np.ceil(np.cbrt(ndata) * 2)), figsize=(20, 10), grid=False, color='red', ax=ax) plt.savefig(histfig) # omit data beyond specific quantiles [qlo, qhi] if trim_quantiles is not None: dfq = df[trim_quantiles] quantiles = pd.DataFrame.quantile(dfq, q=[qlo, qhi], axis=0, numeric_only=True, interpolation='linear') print("Values at [{},{}] quantiles to be applied for data trimming:".format(qlo, qhi)) print(quantiles.sum) mask = (dfq > dfq.quantile(qlo)) & (dfq < dfq.quantile(qhi)) # print(mask) mask = mask.all(axis=1) # print(mask.shape) df = pd.DataFrame.dropna(df[mask]) ndata = len(df) print("\n{} lines remained after quantile rejection.\n".format(ndata)) # plot histogram for each column in trimmed dataset if plothist: fig, ax = plt.subplots(figsize=(20, 10)) _ = pd.DataFrame.hist(df, bins=int(np.ceil(np.cbrt(ndata) * 2)), figsize=(20, 10), grid=False, color='green', ax=ax) fig.savefig("hist_trim.png", format="png") if input_feature_names is not None: return df.loc[:, input_feature_names], df_orig else: return df, df_orig def read_time_series_for_rnn(name_list, source_dir, nts, input_wavebands, ts_file_suffix, rootdir="", periods=None, max_phase=1.0, phase_shift=None, nbins=None): print("Reading time series...", file=sys.stderr) n_data = len(name_list) scaler = StandardScaler(copy=True, with_mean=True, with_std=False) X_list = list() times_dict = dict() mags_dict = dict() phases_dict = dict() if nbins is not None: print("Light curves will be binned to max. {0} points in [0, {1:.1f}].".format(nbins, max_phase)) for iband, waveband in enumerate(input_wavebands): X = np.zeros((n_data, nts, 2)) # Input shape required by an RNN: (batch_size, time_steps, features) phases = list() times = list() mags = list() if len(source_dir) > 1: directory = source_dir[iband] else: directory = source_dir[0] for ii, name in enumerate(name_list): print('Reading data for {}\r'.format(name), end="", file=sys.stderr) pp, mm = np.genfromtxt(os.path.join(rootdir, directory, name + ts_file_suffix[iband]), unpack=True, comments='#') phasemask = (pp < max_phase) pp = pp[phasemask] mm = mm[phasemask] if phase_shift is not None: pp = get_phases(1.0, pp, shift=phase_shift, all_positive=True) inds = np.argsort(pp) pp = pp[inds] mm = mm[inds] if nbins is not None: pp, mm = binlc(pp, mm, nbins=nbins, max_y=max_phase) if periods is not None: tt = pp * periods[ii] else: tt = pp # here we only subtract the mean: mm = scaler.fit_transform(mm.reshape(-1, 1)).flatten() times.append(tt) mags.append(mm) phases.append(pp) times_padded = pad_sequences(times, maxlen=nts, dtype='float64', padding='post', truncating='post', value=-1) mags_padded = pad_sequences(mags, maxlen=nts, dtype='float64', padding='post', truncating='post', value=-1) X[:, :, 0] = times_padded X[:, :, 1] = mags_padded X_list.append(X) times_dict[waveband] = times mags_dict[waveband] = mags phases_dict[waveband] = phases # Create final data matrix for the time series: X = np.concatenate(X_list, axis=2) print("") return X, times_dict, mags_dict, phases_dict def read_time_series_for_cnn(name_list, source_dir, nts, input_wavebands, ts_file_suffix, nuse=1, rootdir="", n_aug=None): nmags = int(nts / nuse) n_data = len(name_list) if n_aug is not None: assert isinstance(n_aug, int) and n_aug > 0, \ "n_aug must be a positive integer" dict_x_ts = dict() for waveband in input_wavebands: dict_x_ts[waveband] = np.zeros((n_data, nmags)) if n_aug is not None: dict_x_ts[waveband] = np.zeros((n_data * n_aug, nmags)) groups = np.zeros((n_data * n_aug)) dict_x_ts_scaled = dict() print("Reading time series...", file=sys.stderr) for ii, name in enumerate(name_list): print('Reading data for {}\r'.format(name), end="", file=sys.stderr) for iband, waveband in enumerate(input_wavebands): if len(source_dir) > 1: directory = source_dir[iband] else: directory = source_dir[0] if n_aug is None: phases, timeseries = np.genfromtxt(os.path.join(directory, name + ts_file_suffix[iband]), unpack=True, comments='#') phases = phases[0:nts] timeseries = timeseries[0:nts] dict_x_ts[waveband][ii][:] = timeseries[nuse - 1::nuse] groups = None else: tsinput = np.genfromtxt(os.path.join(directory, name + ts_file_suffix[iband]), unpack=False, comments='#') # check if there are n_aug+1 columns in the data matrix assert tsinput.shape[1] == n_aug + 1, \ "data matrix in " + os.path.join(directory, name + ts_file_suffix[iband]) + " has wrong shape" phases = tsinput[0:nts, 0] for jj in range(n_aug): timeseries = tsinput[0:nts, jj + 1] dict_x_ts[waveband][jj + ii * n_aug][:] = timeseries[nuse - 1::nuse] groups[jj + ii * n_aug] = ii phases = phases[nuse - 1::nuse] # Scale the time series to the [0,1] range scaler = MinMaxScaler(copy=True, feature_range=(0, 1)) ts_list = list() for ii, waveband in enumerate(input_wavebands): scaler.fit(dict_x_ts[waveband].T) dict_x_ts_scaled[waveband] = (scaler.transform(dict_x_ts[waveband].T)).T ts_list.append(np.expand_dims(dict_x_ts_scaled[waveband], axis=2)) # Create final data matrix for the time series: X = np.concatenate(ts_list, axis=2) print("") return X, dict_x_ts, dict_x_ts_scaled, phases, groups def cross_validate(model, folds: list, x_list: list or tuple, y, model_kwargs: dict = {}, compile_kwargs: dict = {}, initial_weights: list = None, sample_weight_fit=None, sample_weight_eval=None, ids=None, indices_to_scale: list or tuple = None, scaler=None, n_epochs: int = 1, batch_size: int = None, shuffle=True, verbose: int = 0, callbacks: list = [], metrics: list or tuple = None, log_training=True, log_prefix='', pick_fold: list or tuple = None, save_data=True, rootdir='.', filename_train='train.dat', filename_val='val.dat', strategy=None, n_devices=1, validation_freq=1, seed=1): # Initialize variables: histories = list() model_weights = list() scalers_folds = list() Y_train_collected = np.array([]) Y_val_collected = np.array([]) Y_train_pred_collected = np.array([]) Y_val_pred_collected = np.array([]) fitting_weights_train_collected = np.array([]) fitting_weights_val_collected = np.array([]) eval_weights_train_collected = np.array([]) eval_weights_val_collected = np.array([]) ids_train_collected = np.array([]) ids_val_collected = np.array([]) numcv_t = np.array([]) numcv_v = np.array([]) # callbacks.append(PrintLearningRate()) if ids is None: # create IDs by simply numbering the data ids =
np.linspace(1, y.shape[0], y.shape[0])
numpy.linspace
# -*- coding: utf-8 -*- """ <NAME> and <NAME> AM205 Final Project Code plots red dots for a range of x values and u zero plots blue dots for one iteration forward from the red initial conditions """ import numpy as np import matplotlib.pyplot as plt import scipy as sp import scipy.optimize as opt # Determine initial conditions mu = 0.01 C = 3.2 sample = 100 #number of crossings tr = 1 uptime = 1000 dt = 0.01 h = 10**(-2) # define dz/dt components for odeint solver def pend(z,t): x,y,u,v = z dzdt = [u,v,v + 0.5*(2*(x-mu) + ((mu-1)*2*x)/(x**2+y**2)**(3.0/2) + (2*mu*(1-x))/((x-1)**2 + y**2)**(3.0/2)),-u + 0.5*(2*y + ((mu-1)*2*y)/(x**2+y**2)**(3.0/2) + (-2*mu*y)/((x-1)**2 + y**2)**(3.0/2)) ] return dzdt # function used in determining set of initial conditions def f(x): return (x-mu)**2 + 2*(1-mu)/
np.abs(x)
numpy.abs
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 22 10:05:24 2020 @author: tungutokyo """ import joblib import pickle import pandas as pd import numpy as np import urllib import requests import bs4 from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import MeCab from gensim.models import word2vec from gensim.models import Doc2Vec from gensim.models.doc2vec import TaggedDocument from tqdm import tqdm, tqdm_pandas, tqdm_notebook import matplotlib.pyplot as plt import seaborn as sns import itertools from scipy import interp from sklearn.model_selection import train_test_split, cross_val_score from sklearn.preprocessing import LabelBinarizer from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.fixes import logsumexp from sklearn.metrics.pairwise import cosine_similarity import warnings warnings.filterwarnings("ignore") class NaiveBayes: def __init__(self, alpha=0.01): path_to_artifacts = "../../research/" self.alpha = alpha def get_news(self, link): title = [] thearticle = [] #print(link) paragraphtext = [] url = link page = requests.get(url) soup = bs4.BeautifulSoup(page.text, "html.parser") atitle = soup.find(class_="article_header_text").find("h1") thetitle = atitle.get_text() articletext = soup.find_all("p") for paragraph in articletext: text = paragraph.get_text() paragraphtext.append(text) title.append(thetitle) thearticle.append(paragraphtext) myarticle = [" ".join(article) for article in thearticle] data = { "Title": title, "Article": myarticle, "PageLink": link} news = pd.DataFrame(data=data) cols = ["Title", "Article", "PageLink"] news = news[cols] return news def preprocessing(self, input_data): df = input_data.reset_index(drop=True) df["Content_Parsed_1"] = df["Article"].str.replace("キーワードで気になるニュースを絞りこもう 「いいね」、フォローをしておすすめの記事をチェックしよう。 グノシーについて 公式SNS 関連サイト アプリをダウンロード グノシー | 情報を世界中の人に最適に届ける Copyright © Gunosy Inc. All rights reserved.", '') def get_wakati_text(text): tagger = MeCab.Tagger("-Owakati") wakati_text = tagger.parse(text).strip() return wakati_text nrows = len(df) wakati_text_list = [] for row in range(0, nrows): text = df.loc[row]["Content_Parsed_1"] wakati_text_list.append(get_wakati_text(text)) df["wakati_text"] = wakati_text_list self.df_pred = df with open("News_dataset.pickle", "rb") as data: self.df_train = pickle.load(data) self.df_train = self.df_train.reset_index(drop=True).drop(columns = ["News_length"]) with open("Updated_news.pickle", "rb") as data: self.df_pre_recommend = pickle.load(data) self.df_pre_recommend = self.df_pre_recommend.reset_index(drop=True).drop(columns = ["News_length"]) self.df_train["Content_Parsed_1"] = self.df_train["Article"].str.replace("キーワードで気になるニュースを絞りこもう 「いいね」、フォローをしておすすめの記事をチェックしよう。 グノシーについて 公式SNS 関連サイト アプリをダウンロード グノシー | 情報を世界中の人に最適に届ける Copyright © Gunosy Inc. All rights reserved.", '') nrows = len(self.df_train) wakati_text_list = [] for row in range(0, nrows): text = self.df_train.loc[row]["Content_Parsed_1"] wakati_text_list.append(get_wakati_text(text)) self.df_train["wakati_text"] = wakati_text_list self.df_pre_recommend["Content_Parsed_1"] = self.df_pre_recommend["Article"].str.replace("キーワードで気になるニュースを絞りこもう 「いいね」、フォローをしておすすめの記事をチェックしよう。 グノシーについて 公式SNS 関連サイト アプリをダウンロード グノシー | 情報を世界中の人に最適に届ける Copyright © Gunosy Inc. All rights reserved.", '') nrows = len(self.df_pre_recommend) wakati_text_list = [] for row in range(0, nrows): text = self.df_pre_recommend.loc[row]["Content_Parsed_1"] wakati_text_list.append(get_wakati_text(text)) self.df_pre_recommend["wakati_text"] = wakati_text_list df = pd.concat([df, self.df_train]).reset_index(drop=True) vectorizer = TfidfVectorizer(use_idf = True, token_pattern=u'(?u)\\b\\w+\\b') X = vectorizer.fit_transform(df.wakati_text.values) X = X.toarray() X_pred = X[0].reshape(1,-1) X = np.delete(X, 0, axis=0) df = df.drop(df.index[0]) y = df["Category"].apply(lambda x: 0 if x == "エンタメ" else 1 if x == "スポーツ" else 2 if x == "グルメ" else 3 if x == "海外" else 4 if x == "おもしろ" else 5 if x == "国内" else 6 if x == "IT・科学" else 7) return X, y, X_pred """ Reference: https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ def count(self, X, Y): """Count and smooth feature occurrences. feature_count_: the number of occurances of term in training documents from class class_count_: the number of classes """ self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def update_feature_log_distribution(self, alpha): """Apply smoothing to raw counts and recompute log probabilities Equation 119: log P^(t|c) = log(T_ct + alpha) - log (sum(T_ct' + alpha)) """ smoothed_fc = self.feature_count_ + alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X Equation 115: log P^(c) + sum(log P^(t|c)) """ return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) def update_class_log_distribution(self): """ Equation 116: log P^(c) = log(Nc) - log(N) Nc: the number of documents in class c N: the total number of documents """ n_classes = len(self.classes_) with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) log_class_count = np.log(self.class_count_) # empirical prior, with sample_weight taken into account self.class_log_prior_ = (log_class_count - np.log(self.class_count_.sum())) def starting_values(self, n_effective_classes, n_features): self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) def estimate_predict(self, X, y, X_test): _, n_features = X.shape self.n_features_ = n_features labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) n_effective_classes = Y.shape[1] self.starting_values(n_effective_classes, n_features) self.count(X, Y) alpha = 0.01 # The maximum of posteriori (MAP) self.update_feature_log_distribution(alpha) self.update_class_log_distribution() jll = self.joint_log_likelihood(X_test) predict = self.classes_[np.argmax(jll, axis=1)] log_prob_x = logsumexp(jll, axis=1) predict_log_prob = jll -
np.atleast_2d(log_prob_x)
numpy.atleast_2d
import numpy as np from at import * from at.load import load_mat from matplotlib import pyplot as plt import matplotlib.pyplot as plt import at.plot import numpy as np from pylab import * import pandas as pd import csv from random import random def plot_closedOrbit(ring, refpts): elements_indexes = get_refpts(ring, refpts) lindata0, tune, chrom, lindata = ring.linopt(get_chrom=True, refpts=elements_indexes) closed_orbitx = lindata['closed_orbit'][:, 0] closed_orbity = lindata['closed_orbit'][:, 2] s_pos = lindata['s_pos'] closed_orbit = lindata['closed_orbit'] beta_x= lindata['beta'][:, 0] beta_y= lindata['beta'][:, 1] dx = lindata['dispersion'][:, 0] dy = lindata['dispersion'][:, 2] plt.plot(s_pos, closed_orbitx) # Label for x-axis plt.xlabel("s_pos") # Label for y-axis plt.ylabel("closed_orbit x") # for display i = 0 S_pos2 = [] plt.title("Closed orbit x") plt.show() plt.plot(s_pos, closed_orbity) # Label for x-axis plt.xlabel("s_pos") # Label for y-axis plt.ylabel("closed_orbit y") # for display i = 0 S_pos2 = [] plt.title("Closed orbit y") plt.show() def correctionType(alpha1,alpha2, alpha3): if alpha1 == 1: type = "optics correction" if alpha2 == 1: type = "dispersion correction" if alpha3 == 1: type = "optics and dispersion correction" print("This code performs: ", type) #return type def func(j, mylist): # dedup, preserving order (dict is insertion-ordered as a language guarantee as of 3.7): deduped = list(dict.fromkeys(mylist)) # Slice off all but the part you care about: return deduped[::j] def defineMatrices_w_eta(W, alpha1, alpha2,alpha3, C0x, C0y, C0xy, C0yx, Cxx_err, Cyy_err, Cxy_err, Cyx_err, dCx, dCy, dCxy,dCyx): Nk = len(dCx) # number of free parameters Nm = len(dCx) # number of measurements print('NK:', Nk) print('Nm:', Nm) Ax = np.zeros([Nk, Nk]) Ay = np.zeros([Nk, Nk]) Axy = np.zeros([Nk, Nk]) Ayx = np.zeros([Nk, Nk]) A = np.zeros([4 * Nk, Nk]) ## Bx = np.zeros([Nk, 1]) By = np.zeros([Nk, 1]) Bxy = np.zeros([Nk, 1]) Byx = np.zeros([Nk, 1]) B = np.zeros([4 * Nk, 1]) ## Dx = (Cxx_err[:, :] - C0x[:, :] )#- error_variance) ### dk ? Dy = (Cyy_err[:, :] - C0y[:, :] ) Dxy = (Cxy_err[:, :] - C0xy[:, :]) Dyx = (Cyx_err[:, :] - C0yx[:, :] ) ## for i in range(Nk): ## i represents each quad # print('done A:', 100.* i ,'%') for j in range(Nk): Ax[i, j] = np.sum(np.dot(np.dot(dCx[i][0: -2, :],W*alpha1), dCx[j][0: -2, :].T)) + np.sum(np.dot(np.dot(dCx[i][ -2 ::, :],W*alpha2), dCx[j][ -2 ::, :].T)) + np.sum(np.dot(np.dot(dCx[i],W*alpha3), dCx[j].T)) Ay[i, j] = np.sum(np.dot(np.dot(dCy[i][0: -2, :],W*alpha1), dCy[j][0: -2, :].T)) + np.sum(np.dot(np.dot(dCy[i][ -2 ::, :],W*alpha2), dCy[j][ -2 ::, :].T))+ np.sum(np.dot(np.dot(dCy[i],W*alpha3), dCy[j].T)) Axy[i, j] = np.sum(np.dot(np.dot(dCxy[i][0: -2, :],W*alpha1), dCxy[j][0: -2, :].T)) + np.sum(np.dot(np.dot(dCxy[i][ -2 ::, :],W*alpha2), dCxy[j][ -2 ::, :].T))+ np.sum(np.dot(np.dot(dCxy[i],W*alpha3), dCxy[j].T)) Ayx[i, j] = np.sum(np.dot(np.dot(dCyx[i][0: -2, :],W*alpha1), dCyx[j][0: -2, :].T)) + np.sum(np.dot(np.dot(dCyx[i][ -2 ::, :],W*alpha2), dCyx[j][ -2 ::, :].T))+ np.sum(np.dot(np.dot(dCyx[i],W*alpha3), dCyx[j].T)) A[i, :] = Ax[i, :] A[i + Nk, :] = Ay[i, :] A[i + 2 * Nk, :] = Axy[i, :] A[i + 3 * Nk, :] = Ayx[i, :] ## for i in range(Nk): Bx[i] = np.sum(np.dot(np.dot(dCx[i][0: -2, :],W*alpha1), Dx[0: -2, :].T))+ np.sum(np.dot(np.dot(dCx[i][ -2 ::, :],W*alpha2), Dx[ -2 ::, :].T)) + np.sum(np.dot(np.dot(dCx[i],W*alpha3), Dx.T)) By[i] = np.sum(np.dot(np.dot(dCy[i][0: -2, :],W*alpha1), Dy[0: -2, :].T)) + np.sum(np.dot(
np.dot(dCy[i][ -2 ::, :],W*alpha2)
numpy.dot
import GPy import numpy as np import pytest from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern from bopy.benchmark_functions import forrester from bopy.exceptions import NotFittedError from bopy.surrogate import GPyGPSurrogate, ScipyGPSurrogate n_samples = 10 @pytest.fixture(scope="module", autouse=True) def x(): return np.linspace(0, 1, n_samples).reshape(-1, 1) @pytest.fixture(scope="module", autouse=True) def y(x): return forrester(x) def scipy_gp_surrogate(): return ScipyGPSurrogate( gp=GaussianProcessRegressor(kernel=Matern(nu=1.5), alpha=1e-5, normalize_y=True) ) def gpy_gp_surrogate(): def gp_initializer(x, y): return GPy.models.GPRegression( x, y, kernel=GPy.kern.RBF(input_dim=1), noise_var=1e-5, normalizer=True ) return GPyGPSurrogate(gp_initializer=gp_initializer) @pytest.fixture( scope="module", autouse=True, params=[scipy_gp_surrogate(), gpy_gp_surrogate()], ids=["scipy_gp", "gpy_gp"], ) def surrogate(request): return request.param @pytest.fixture(scope="class") def trained_surrogate(surrogate, x, y): surrogate.fit(x, y) return surrogate class TestArgumentsToFit: def test_x_must_contain_at_least_one_sample(self, surrogate): with pytest.raises(ValueError, match="`x` must contain at least one sample"): surrogate.fit(x=np.array([]), y=np.array([1.0])) def test_y_must_contain_at_least_one_sample(self, surrogate): with pytest.raises(ValueError, match="`y` must contain at least one sample"): surrogate.fit(x=np.array([[1.0]]), y=np.array([])) def test_x_and_y_must_contain_the_same_number_of_samples(self, surrogate): with pytest.raises( ValueError, match="`x` and `y` must have the same number of samples" ): surrogate.fit(x=np.array([[1.0]]), y=np.array([1.0, 1.0])) def test_x_must_be_2d(self, surrogate): with pytest.raises(ValueError, match="`x` must be 2D"): surrogate.fit(x=np.array([[[1.0]]]), y=np.array([1.0])) def test_y_must_be_1d(self, surrogate): with pytest.raises(ValueError, match="`y` must be 1D"): surrogate.fit(x=np.array([[1.0]]), y=np.array([[1.0]])) class TestBeforeFitting: def test_calling_predict_raises_not_fitted_error(self, surrogate, x): with pytest.raises(NotFittedError, match="must be fitted first"): surrogate.predict(x) class TestArgumentsToPredictAfterFitting: def test_x_must_contain_at_least_one_sample(self, trained_surrogate): with pytest.raises(ValueError, match="`x` must contain at least one sample"): trained_surrogate.predict(x=np.array([])) def test_x_must_be_2d(self, trained_surrogate): with pytest.raises(ValueError, match="`x` must be 2D"): trained_surrogate.predict(x=np.array([1.0])) def test_x_must_have_the_same_number_of_dimensions_as_the_training_data( self, trained_surrogate ): with pytest.raises( ValueError, match="`x` must have the same number of dimensions as the training data", ): trained_surrogate.predict(x=np.array([[1.0, 1.0]])) class TestAfterPredicting: @pytest.fixture(scope="class", autouse=True) def predictions(self, trained_surrogate, x): return trained_surrogate.predict(x) @pytest.fixture(scope="class", autouse=True) def predicted_mean(self, predictions): return predictions[0] @pytest.fixture(scope="class", autouse=True) def predicted_var(self, predictions): return predictions[1] def test_predicted_mean_is_the_correct_shape(self, predicted_mean): assert predicted_mean.shape == (n_samples,) def test_predicted_var_is_the_correct_shape(self, predicted_var): assert predicted_var.shape == (n_samples, n_samples) def test_reference_to_x_is_stored(self, trained_surrogate, x): assert
np.array_equal(trained_surrogate.x, x)
numpy.array_equal
# -*- coding: utf-8 -*- # import copy import os import string import tempfile import numpy import meshio # In general: # Use values with an infinite decimal representation to test precision. tri_mesh = meshio.Mesh( numpy.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]) / 3, {"triangle": numpy.array([[0, 1, 2], [0, 2, 3]])}, ) triangle6_mesh = meshio.Mesh( numpy.array( [ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.5, 0.25, 0.0], [1.25, 0.5, 0.0], [0.25, 0.75, 0.0], [2.0, 1.0, 0.0], [1.5, 1.25, 0.0], [1.75, 0.25, 0.0], ] ) / 3.0, {"triangle6": numpy.array([[0, 1, 2, 3, 4, 5], [1, 6, 2, 8, 7, 4]])}, ) quad_mesh = meshio.Mesh( numpy.array( [ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0], [2.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], ] ) / 3.0, {"quad":
numpy.array([[0, 1, 4, 5], [1, 2, 3, 4]])
numpy.array
import io import contextlib import warnings import numpy as np import scipy as sp from copy import deepcopy from sklearn.base import clone from sklearn.utils.validation import check_is_fitted from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.metaestimators import if_delegate_has_method from joblib import Parallel, delayed from hyperopt import fmin, tpe from .utils import ParameterSampler, _check_param, _check_boosting from .utils import _set_categorical_indexes, _get_categorical_support from .utils import _feature_importances, _shap_importances class _BoostSearch(BaseEstimator): """Base class for BoostSearch meta-estimator. Warning: This class should not be used directly. Use derived classes instead. """ def __init__(self): pass def _validate_param_grid(self, fit_params): """Private method to validate fitting parameters.""" if not isinstance(self.param_grid, dict): raise ValueError("Pass param_grid in dict format.") self._param_grid = self.param_grid.copy() for p_k, p_v in self._param_grid.items(): self._param_grid[p_k] = _check_param(p_v) if 'eval_set' not in fit_params: raise ValueError( "When tuning parameters, at least " "a evaluation set is required.") self._eval_score = np.argmax if self.greater_is_better else np.argmin self._score_sign = -1 if self.greater_is_better else 1 rs = ParameterSampler( n_iter=self.n_iter, param_distributions=self._param_grid, random_state=self.sampling_seed ) self._param_combi, self._tuning_type = rs.sample() self._trial_id = 1 if self.verbose > 0: n_trials = self.n_iter if self._tuning_type is 'hyperopt' \ else len(self._param_combi) print("\n{} trials detected for {}\n".format( n_trials, tuple(self.param_grid.keys()))) def _fit(self, X, y, fit_params, params=None): """Private method to fit a single boosting model and extract results.""" model = self._build_model(params) if isinstance(model, _BoostSelector): model.fit(X=X, y=y, **fit_params) else: with contextlib.redirect_stdout(io.StringIO()): model.fit(X=X, y=y, **fit_params) results = {'params': params, 'status': 'ok'} if isinstance(model, _BoostSelector): results['booster'] = model.estimator_ results['model'] = model else: results['booster'] = model results['model'] = None if 'eval_set' not in fit_params: return results if self.boost_type_ == 'XGB': # w/ eval_set and w/ early_stopping_rounds if hasattr(results['booster'], 'best_score'): results['iterations'] = results['booster'].best_iteration # w/ eval_set and w/o early_stopping_rounds else: valid_id = list(results['booster'].evals_result_.keys())[-1] eval_metric = list(results['booster'].evals_result_[valid_id])[-1] results['iterations'] = \ len(results['booster'].evals_result_[valid_id][eval_metric]) else: # w/ eval_set and w/ early_stopping_rounds if results['booster'].best_iteration_ is not None: results['iterations'] = results['booster'].best_iteration_ # w/ eval_set and w/o early_stopping_rounds else: valid_id = list(results['booster'].evals_result_.keys())[-1] eval_metric = list(results['booster'].evals_result_[valid_id])[-1] results['iterations'] = \ len(results['booster'].evals_result_[valid_id][eval_metric]) if self.boost_type_ == 'XGB': # w/ eval_set and w/ early_stopping_rounds if hasattr(results['booster'], 'best_score'): results['loss'] = results['booster'].best_score # w/ eval_set and w/o early_stopping_rounds else: valid_id = list(results['booster'].evals_result_.keys())[-1] eval_metric = list(results['booster'].evals_result_[valid_id])[-1] results['loss'] = \ results['booster'].evals_result_[valid_id][eval_metric][-1] else: valid_id = list(results['booster'].best_score_.keys())[-1] eval_metric = list(results['booster'].best_score_[valid_id])[-1] results['loss'] = results['booster'].best_score_[valid_id][eval_metric] if params is not None: if self.verbose > 0: msg = "trial: {} ### iterations: {} ### eval_score: {}".format( str(self._trial_id).zfill(4), str(results['iterations']).zfill(5), round(results['loss'], 5) ) print(msg) self._trial_id += 1 results['loss'] *= self._score_sign return results def fit(self, X, y, trials=None, **fit_params): """Fit the provided boosting algorithm while searching the best subset of features (according to the selected strategy) and choosing the best parameters configuration (if provided). It takes the same arguments available in the estimator fit. Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,) Target values. trials : hyperopt.Trials() object, default=None A hyperopt trials object, used to store intermediate results for all optimization runs. Effective (and required) only when hyperopt parameter searching is computed. **fit_params : Additional fitting arguments. Returns ------- self : object """ self.boost_type_ = _check_boosting(self.estimator) if self.param_grid is None: results = self._fit(X, y, fit_params) for v in vars(results['model']): if v.endswith("_") and not v.startswith("__"): setattr(self, str(v), getattr(results['model'], str(v))) else: self._validate_param_grid(fit_params) if self._tuning_type == 'hyperopt': if trials is None: raise ValueError( "trials must be not None when using hyperopt." ) search = fmin( fn=lambda p: self._fit( params=p, X=X, y=y, fit_params=fit_params ), space=self._param_combi, algo=tpe.suggest, max_evals=self.n_iter, trials=trials, rstate=np.random.RandomState(self.sampling_seed), show_progressbar=False, verbose=0 ) all_results = trials.results else: all_results = Parallel( n_jobs=self.n_jobs, verbose=self.verbose * int(bool(self.n_jobs)) )(delayed(self._fit)(X, y, fit_params, params) for params in self._param_combi) # extract results from parallel loops self.trials_, self.iterations_, self.scores_, models = [], [], [], [] for job_res in all_results: self.trials_.append(job_res['params']) self.iterations_.append(job_res['iterations']) self.scores_.append(self._score_sign * job_res['loss']) if isinstance(job_res['model'], _BoostSelector): models.append(job_res['model']) else: models.append(job_res['booster']) # get the best id_best = self._eval_score(self.scores_) self.best_params_ = self.trials_[id_best] self.best_iter_ = self.iterations_[id_best] self.best_score_ = self.scores_[id_best] self.estimator_ = models[id_best] for v in vars(models[id_best]): if v.endswith("_") and not v.startswith("__"): setattr(self, str(v), getattr(models[id_best], str(v))) return self def predict(self, X, **predict_params): """Predict X. Parameters ---------- X : array-like of shape (n_samples, n_features) Samples. **predict_params : Additional predict arguments. Returns ------- pred : ndarray of shape (n_samples,) The predicted values. """ check_is_fitted(self) if hasattr(self, 'transform'): X = self.transform(X) return self.estimator_.predict(X, **predict_params) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X, **predict_params): """Predict X probabilities. Parameters ---------- X : array-like of shape (n_samples, n_features) Samples. **predict_params : Additional predict arguments. Returns ------- pred : ndarray of shape (n_samples, n_classes) The predicted values. """ check_is_fitted(self) if hasattr(self, 'transform'): X = self.transform(X) return self.estimator_.predict_proba(X, **predict_params) def score(self, X, y, sample_weight=None): """Return the score on the given test data and labels. Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. y : array-like of shape (n_samples,) True values for X. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float Accuracy for classification, R2 for regression. """ check_is_fitted(self) if hasattr(self, 'transform'): X = self.transform(X) return self.estimator_.score(X, y, sample_weight=sample_weight) class _BoostSelector(BaseEstimator, TransformerMixin): """Base class for feature selection meta-estimator. Warning: This class should not be used directly. Use derived classes instead. """ def __init__(self): pass def transform(self, X): """Reduces the input X to the features selected by Boruta. Parameters ---------- X : array-like of shape (n_samples, n_features) Samples. Returns ------- X : array-like of shape (n_samples, n_features_) The input samples with only the selected features by Boruta. """ check_is_fitted(self) shapes = np.shape(X) if len(shapes) != 2: raise ValueError("X must be 2D.") if shapes[1] != self.support_.shape[0]: raise ValueError( "Expected {} features, received {}.".format( self.support_.shape[0], shapes[1])) if isinstance(X, np.ndarray): return X[:, self.support_] elif hasattr(X, 'loc'): return X.loc[:, self.support_] else: raise ValueError("Data type not understood.") class _Boruta(_BoostSelector): """Base class for BoostBoruta meta-estimator. Warning: This class should not be used directly. Use derived classes instead. Notes ----- The code for the Boruta algorithm is inspired and improved from: https://github.com/scikit-learn-contrib/boruta_py """ def __init__(self, estimator, *, perc=100, alpha=0.05, max_iter=100, early_stopping_boruta_rounds=None, importance_type='feature_importances', train_importance=True, verbose=0): self.estimator = estimator self.perc = perc self.alpha = alpha self.max_iter = max_iter self.early_stopping_boruta_rounds = early_stopping_boruta_rounds self.importance_type = importance_type self.train_importance = train_importance self.verbose = verbose def _create_X(self, X, feat_id_real): """Private method to add shadow features to the original ones. """ if isinstance(X, np.ndarray): X_real = X[:, feat_id_real].copy() X_sha = X_real.copy() X_sha = np.apply_along_axis(self._random_state.permutation, 0, X_sha) X = np.hstack((X_real, X_sha)) elif hasattr(X, 'iloc'): X_real = X.iloc[:, feat_id_real].copy() X_sha = X_real.copy() X_sha = X_sha.apply(self._random_state.permutation) X_sha = X_sha.astype(X_real.dtypes) X = X_real.join(X_sha, rsuffix='_SHA') else: raise ValueError("Data type not understood.") return X def _check_fit_params(self, fit_params, feat_id_real=None): """Private method to validate and check fit_params.""" _fit_params = deepcopy(fit_params) estimator = clone(self.estimator) # add here possible estimator checks in each iteration _fit_params = _set_categorical_indexes( self.support_, self._cat_support, _fit_params, duplicate=True) if feat_id_real is None: # final model fit if 'eval_set' in _fit_params: _fit_params['eval_set'] = list(map(lambda x: ( self.transform(x[0]), x[1] ), _fit_params['eval_set'])) else: if 'eval_set' in _fit_params: # iterative model fit _fit_params['eval_set'] = list(map(lambda x: ( self._create_X(x[0], feat_id_real), x[1] ), _fit_params['eval_set'])) if 'feature_name' in _fit_params: # LGB _fit_params['feature_name'] = 'auto' if 'feature_weights' in _fit_params: # XGB import warnings warnings.warn( "feature_weights is not supported when selecting features. " "It's automatically set to None.") _fit_params['feature_weights'] = None return _fit_params, estimator def _do_tests(self, dec_reg, hit_reg, iter_id): """Private method to operate Bonferroni corrections on the feature selections.""" active_features = np.where(dec_reg >= 0)[0] hits = hit_reg[active_features] # get uncorrected p values based on hit_reg to_accept_ps = sp.stats.binom.sf(hits - 1, iter_id, .5).flatten() to_reject_ps = sp.stats.binom.cdf(hits, iter_id, .5).flatten() # Bonferroni correction with the total n_features in each iteration to_accept = to_accept_ps <= self.alpha / float(len(dec_reg)) to_reject = to_reject_ps <= self.alpha / float(len(dec_reg)) # find features which are 0 and have been rejected or accepted to_accept = np.where((dec_reg[active_features] == 0) * to_accept)[0] to_reject = np.where((dec_reg[active_features] == 0) * to_reject)[0] # updating dec_reg dec_reg[active_features[to_accept]] = 1 dec_reg[active_features[to_reject]] = -1 return dec_reg def fit(self, X, y, **fit_params): """Fit the Boruta algorithm to automatically tune the number of selected features.""" self.boost_type_ = _check_boosting(self.estimator) if self.max_iter < 1: raise ValueError('max_iter should be an integer >0.') if self.perc <= 0 or self.perc > 100: raise ValueError('The percentile should be between 0 and 100.') if self.alpha <= 0 or self.alpha > 1: raise ValueError('alpha should be between 0 and 1.') if self.early_stopping_boruta_rounds is None: es_boruta_rounds = self.max_iter else: if self.early_stopping_boruta_rounds < 1: raise ValueError( 'early_stopping_boruta_rounds should be an integer >0.') es_boruta_rounds = self.early_stopping_boruta_rounds importances = ['feature_importances', 'shap_importances'] if self.importance_type not in importances: raise ValueError( "importance_type must be one of {}. Get '{}'".format( importances, self.importance_type)) if self.importance_type == 'shap_importances': if not self.train_importance and not 'eval_set' in fit_params: raise ValueError( "When train_importance is set to False, using " "shap_importances, pass at least a eval_set.") eval_importance = not self.train_importance and 'eval_set' in fit_params shapes = np.shape(X) if len(shapes) != 2: raise ValueError("X must be 2D.") n_features = shapes[1] # create mask for user-defined categorical features self._cat_support = _get_categorical_support(n_features, fit_params) # holds the decision about each feature: # default (0); accepted (1); rejected (-1) dec_reg = np.zeros(n_features, dtype=np.int) dec_history = np.zeros((self.max_iter, n_features), dtype=np.int) # counts how many times a given feature was more important than # the best of the shadow features hit_reg = np.zeros(n_features, dtype=np.int) # record the history of the iterations imp_history = np.zeros(n_features, dtype=np.float) sha_max_history = [] for i in range(self.max_iter): if (dec_reg != 0).all(): if self.verbose > 1: print("All Features analyzed. Boruta stop!") break if self.verbose > 1: print('Iterantion: {} / {}'.format(i + 1, self.max_iter)) self._random_state = np.random.RandomState(i + 1000) # add shadow attributes, shuffle and train estimator self.support_ = dec_reg >= 0 feat_id_real = np.where(self.support_)[0] n_real = feat_id_real.shape[0] _fit_params, estimator = self._check_fit_params(fit_params, feat_id_real) estimator.set_params(random_state=i + 1000) _X = self._create_X(X, feat_id_real) with contextlib.redirect_stdout(io.StringIO()): estimator.fit(_X, y, **_fit_params) # get coefs if self.importance_type == 'feature_importances': coefs = _feature_importances(estimator) else: if eval_importance: coefs = _shap_importances( estimator, _fit_params['eval_set'][-1][0]) else: coefs = _shap_importances(estimator, _X) # separate importances of real and shadow features imp_sha = coefs[n_real:] imp_real = np.zeros(n_features) * np.nan imp_real[feat_id_real] = coefs[:n_real] # get the threshold of shadow importances used for rejection imp_sha_max = np.percentile(imp_sha, self.perc) # record importance history sha_max_history.append(imp_sha_max) imp_history = np.vstack((imp_history, imp_real)) # register which feature is more imp than the max of shadows hit_reg[np.where(imp_real[~np.isnan(imp_real)] > imp_sha_max)[0]] += 1 # check if a feature is doing better than expected by chance dec_reg = self._do_tests(dec_reg, hit_reg, i + 1) dec_history[i] = dec_reg es_id = i - es_boruta_rounds if es_id >= 0: if np.equal(dec_history[es_id:(i + 1)], dec_reg).all(): if self.verbose > 0: print("Boruta early stopping at iteration {}".format(i + 1)) break confirmed = np.where(dec_reg == 1)[0] tentative =
np.where(dec_reg == 0)
numpy.where
import gc import numpy as np import pandas as pd import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score from sklearn.model_selection import RepeatedKFold from sklearn.preprocessing import LabelEncoder from datetime import datetime from tqdm import tqdm import lightgbm as lgb # Load Data dtype = { 'id': str, 'teacher_id': str, 'teacher_prefix': str, 'school_state': str, 'project_submitted_datetime': str, 'project_grade_category': str, 'project_subject_categories': str, 'project_subject_subcategories': str, 'project_title': str, 'project_essay_1': str, 'project_essay_2': str, 'project_essay_3': str, 'project_essay_4': str, 'project_resource_summary': str, 'teacher_number_of_previously_posted_projects': int, 'project_is_approved': np.uint8, } # Write code that limits the rows until I've sorted out the kinks data_dir = "F:/Nerdy Stuff/Kaggle/DonorsChoose" sub_path = "F:/Nerdy Stuff/Kaggle submissions/DonorChoose" train = pd.read_csv(os.path.join(data_dir, 'data/train_stem.csv'), low_memory=True) test = pd.read_csv(os.path.join(data_dir, 'data/test_stem.csv'), low_memory=True) id_test = test['id'].values # Extract features def extract_features(df): df['project_title_len'] = df['project_title'].apply(lambda x: len(str(x))) df['project_essay_1_len'] = df['project_essay_1'].apply(lambda x: len(str(x))) df['project_essay_2_len'] = df['project_essay_2'].apply(lambda x: len(str(x))) df['project_essay_3_len'] = df['project_essay_3'].apply(lambda x: len(str(x))) df['project_essay_4_len'] = df['project_essay_4'].apply(lambda x: len(str(x))) df['project_resource_summary_len'] = df['project_resource_summary'].apply(lambda x: len(str(x))) df['project_title_wc'] = df['project_title'].apply(lambda x: len(str(x).split(' '))) df['project_essay_1_wc'] = df['project_essay_1'].apply(lambda x: len(str(x).split(' '))) df['project_essay_2_wc'] = df['project_essay_2'].apply(lambda x: len(str(x).split(' '))) df['project_essay_3_wc'] = df['project_essay_3'].apply(lambda x: len(str(x).split(' '))) df['project_essay_4_wc'] = df['project_essay_4'].apply(lambda x: len(str(x).split(' '))) df['project_resource_summary_wc'] = df['project_resource_summary'].apply(lambda x: len(str(x).split(' '))) extract_features(train) extract_features(test) train.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4'], axis=1, inplace=True) test.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4'], axis=1, inplace=True) # Recoding as when stopwords are removed some titles have no values print("Recoding missing values once NLP preprocessing done. Might want to check that") train.loc[train['project_title'].isnull() == True, 'project_title'] = 'No values once NLP preprocessing is done' test.loc[test['project_title'].isnull() == True, 'project_title'] = 'No values once NLP preprocessing is done' train.loc[train['project_essay'].isnull() == True, 'project_essay'] = 'No values once NLP preprocessing is done' test.loc[test['project_essay'].isnull() == True, 'project_essay'] = 'No values once NLP preprocessing is done' train.loc[train['project_resource_summary'].isnull() == True, 'project_resource_summary'] = 'No values once NLP preprocessing is done' test.loc[test['project_resource_summary'].isnull() == True, 'project_resource_summary'] = 'No values once NLP preprocessing is done' train.loc[train['description_ttl'].isnull() == True, 'description_ttl'] = 'No values once NLP preprocessing is done' test.loc[test['description_ttl'].isnull() == True, 'description_ttl'] = 'No values once NLP preprocessing is done' gc.collect() # Preprocess columns with label encoder print('Label Encoder...') cols = [ 'teacher_id', 'teacher_prefix', 'school_state', 'project_grade_category', 'project_subject_categories', 'project_subject_subcategories' ] df_all = pd.concat([train, test], axis=0) for c in tqdm(cols): le = LabelEncoder() le.fit(df_all[c].astype(str)) train[c] = le.transform(train[c].astype(str)) test[c] = le.transform(test[c].astype(str)) del le gc.collect() print('Done.') # Preprocess timestamp print('Preprocessing timestamp...') def process_timestamp(df): df['project_submitted_datetime'] = pd.to_datetime(df['project_submitted_datetime']) df['year'] = df['project_submitted_datetime'].apply(lambda x: x.year) df['month'] = df['project_submitted_datetime'].apply(lambda x: x.month) df['day'] = df['project_submitted_datetime'].apply(lambda x: x.day) df['day_of_week'] = df['project_submitted_datetime'].apply(lambda x: x.dayofweek) df['hour'] = df['project_submitted_datetime'].apply(lambda x: x.hour) df['minute'] = df['project_submitted_datetime'].apply(lambda x: x.minute) df['project_submitted_datetime'] = df['project_submitted_datetime'].values.astype(np.int64) process_timestamp(train) process_timestamp(test) print('Done.') # Preprocess text print('Preprocessing text...') cols = [ 'project_title', 'project_essay', 'project_resource_summary', 'description_ttl' ] n_features = [ 400, 4040, 400, 400 ] for c_i, c in tqdm(enumerate(cols)): print("TFIDF for %s" % (c)) tfidf = TfidfVectorizer( max_features=n_features[c_i], norm='l2', ) tfidf.fit(df_all[c]) tfidf_train = np.array(tfidf.transform(train[c]).toarray(), dtype=np.float16) tfidf_test = np.array(tfidf.transform(test[c]).toarray(), dtype=np.float16) for i in range(n_features[c_i]): train[c + '_tfidf_' + str(i)] = tfidf_train[:, i] test[c + '_tfidf_' + str(i)] = tfidf_test[:, i] del tfidf, tfidf_train, tfidf_test gc.collect() print('Done.') gc.collect() # Prepare data cols_to_drop = [ 'Unnamed: 0' , 'id' , 'teacher_id' , 'project_title' , 'project_essay' , 'project_resource_summary' , 'project_is_approved' , 'description_ttl' ] X = train.drop(cols_to_drop, axis=1, errors='ignore') y = train['project_is_approved'] X_test = test.drop(cols_to_drop, axis=1, errors='ignore') id_test = test['id'].values feature_names = list(X.columns) print(X.shape, X_test.shape) # del train, test gc.collect() # Build the model cnt = 0 p_buf = [] n_splits = 5 n_repeats = 1 kf = RepeatedKFold( n_splits=n_splits, n_repeats=n_repeats, random_state=0) auc_buf = [] num_rows = 60000 X_train_test = X.iloc[0:num_rows, :] y_train_test = y.iloc[0:num_rows] prob_ests = [] y_test = [] prb = np.array(prob_ests[0]) y_tst = np.asarray(y_test[0], np.int32) prb.dtype y_tst.dtype prb.shape y_tst.shape prb_ser = pd.Series(prb) roc_auc_score(np.asarray(y_tst[0:9000], np.int32), prb[0:9000]) import matplotlib.pyplot as plt pd.Series(prb[0:9000]).dtype for train_index, valid_index in kf.split(X_train_test): print('Fold {}/{}'.format(cnt + 1, n_splits)) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'max_depth': 14, 'num_leaves': 31, 'learning_rate': 0.025, 'feature_fraction': 0.85, 'bagging_fraction': 0.85, 'bagging_freq': 5, 'verbose': 0, 'num_threads': 1, 'lambda_l2': 1.0, 'min_gain_to_split': 0, } lgb_train = lgb.Dataset( X_train_test.loc[train_index], y_train_test.loc[train_index], feature_name=feature_names, ) lgb_train.raw_data = None lgb_valid = lgb.Dataset( X_train_test.loc[valid_index], y_train_test.loc[valid_index], ) lgb_valid.raw_data = None model = lgb.train( params, lgb_train, # num_boost_round=10000, num_boost_round=100, valid_sets=[lgb_train, lgb_valid], early_stopping_rounds=100, verbose_eval=100, ) if cnt == 0: importance = model.feature_importance() model_fnames = model.feature_name() tuples = sorted(zip(model_fnames, importance), key=lambda x: x[1])[::-1] tuples = [x for x in tuples if x[1] > 0] print('Important features:') for i in range(60): if i < len(tuples): print(tuples[i]) else: break del importance, model_fnames, tuples p = model.predict(X.loc[valid_index], num_iteration=model.best_iteration) print(type(p)) print(p[0:5]) print(type(X)) print(type(y)) print(max(p)) prob_ests.append(p) y_test.append(y.loc[valid_index]) auc = roc_auc_score(y.loc[valid_index], p) auc = round(auc, 4) print('{} AUC: {}'.format(str(cnt), str(auc))) p = model.predict(X_test, num_iteration=model.best_iteration) if len(p_buf) == 0: p_buf =
np.array(p, dtype=np.float16)
numpy.array
import os from gym import error, spaces from gym.utils import seeding import numpy as np from gym.envs.flex import flex_env import pygame as pg import itertools from pygame.locals import * from OpenGL.GL import * from OpenGL.GLU import * from scipy.spatial.distance import cdist from scipy.spatial.transform import Rotation as R try: import bindings as pyFlex except ImportError as e: raise error.DependencyNotInstalled( "{}. (HINT: PyFlex Binding is not installed correctly)".format(e)) class PlasticFlippingEnv(flex_env.FlexEnv): def __init__(self): self.resolution = 32 self.direct_info_dim = 13 obs_size = self.resolution * self.resolution *1 + self.direct_info_dim self.frame_skip = 10 self.mapHalfExtent = 4 self.mapPartitionSize = 3 self.idxPool = np.array([x for x in itertools.product(np.arange(self.mapPartitionSize) - int( self.mapPartitionSize / 2), np.arange(self.mapPartitionSize) - int(self.mapPartitionSize / 2))]) self.numInitClusters = 1 self.randomCluster = True self.clusterDim = np.array([5,2,5]) action_bound = np.array([[-10, -10, -10, -np.pi / 2], [ 10, 10, 10, np.pi / 2]]) obs_high = np.ones(obs_size) * np.inf obs_low = -obs_high observation_bound = np.array([obs_low, obs_high]) flex_env.FlexEnv.__init__(self, self.frame_skip, obs_size, observation_bound, action_bound, scene=2, viewer=0) self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.action_scale = (action_bound[1] - action_bound[0]) / 2 self.barDim = np.array([1.5, 2.0, 0.8]) # self.goal_gradients = np.zeros((self.numInstances,self.resolution,self.resolution)) self.initClusterparam = np.zeros( (self.numInstances, 6 * self.numInitClusters)) self.rolloutCnt = 0 self.stage = np.ones(self.numInstances) self.rolloutRet = np.zeros(self.numInstances) self.currCurriculum = 0 self.rwdBuffer = [[0, 0, 0] for _ in range(100)] print("============================================Flipping================================================") def angle_to_rot_matrix(self, angles): rot_vec = np.ones((self.numInstances, 2, 2)) rot_vec[:, 0, 0] = np.cos(angles) rot_vec[:, 0, 1] = -np.sin(angles) rot_vec[:, 1, 0] = np.sin(angles) rot_vec[:, 1, 1] = np.cos(angles) return rot_vec def _step(self, action): action = action * self.action_scale prev_bar_state, prev_part_state, prev_part_heights,prev_part_vel = self.get_state() rot_mat = self.angle_to_rot_matrix(action[:, 3]) transformed_action = np.zeros((self.numInstances, 6)) for i in range(action.shape[0]): bar_rot = R.from_euler('x',prev_bar_state[i,1,0]) action_trans = bar_rot.apply(action[i,0:3]) transformed_action[i, 0:3] = action_trans + prev_bar_state[i, 0] flex_action = np.zeros((self.numInstances, 7)) flex_action[:, 0] = transformed_action[:, 0] flex_action[:, 1] = transformed_action[:, 1] flex_action[:, 2] = transformed_action[:, 2] flex_action[:, 3] = prev_bar_state[:, 1, 0] + action[:, 3] flex_action[:, 4] = 0 flex_action[:, 5] = 0 flex_action[:, 6] = 0 prev_height_diff = np.min(prev_part_heights,axis=1)-prev_bar_state[:,0,1] prev_com_xz = np.mean(prev_part_state,axis=1) # Simulation done = self.do_simulation(flex_action, self.frame_skip) curr_bar_state, curr_part_state, curr_part_heights,curr_part_vels = self.get_state() curr_com_xz = np.mean(curr_part_state,axis=1) obs = self._get_obs() height_diff = np.min(curr_part_heights,axis=1)-curr_bar_state[:,0,1] curr_total_heat = np.zeros(self.numInstances) curr_total_heat_cnt = np.zeros(self.numInstances) ang_vels = np.zeros(self.numInstances) ang_vels_full = np.zeros((self.numInstances,3)) ang_vels_res = np.zeros(self.numInstances) for i in range(self.numInstances): height = height_diff[i] curr_part_vel = curr_part_vels[i] bar_rot = R.from_euler('x',curr_bar_state[i,1,0]) currParts = np.concatenate([curr_part_state[i,:,0,np.newaxis],curr_part_heights[i,:,np.newaxis],curr_part_state[i,:,1,np.newaxis]],axis=1) rel_pos = currParts-curr_bar_state[i,0] trans_pos = bar_rot.inv().apply(rel_pos) ang_vel = self.get_angular_vel(currParts,curr_part_vel) # w = np.mean(rel_pos,axis=0)[1] if np.mean(rel_pos,axis=0)[1]>0.5 else 0 w = 1 if np.mean(rel_pos,axis=0)[1]>0.5 else 0 # if(i==0): # print(np.mean(rel_pos,axis=0)[1]) # print("Vel mag", np.mean(np.linalg.norm(curr_part_vel,axis=1))) ang_vels_full[i] = 5*ang_vel*w ang_vel_proj =np.dot(ang_vel,np.array([1,0,0]))*w ang_vel_res = np.linalg.norm(ang_vel - ang_vel_proj*np.array([1,0,0])) ang_vels[i] = np.clip(4*(ang_vel_proj),-1,1) # ang_vels[i] = -4*(ang_vel_proj) ang_vels_res[i] = (ang_vel_res) # Heavy penalty on low particle heights # Clipped ang vel val # Only height reward self.set_aux_info(ang_vels_full) height_diff[height_diff>0] = 0.1+height_diff[height_diff>0]*10 height_diff[height_diff<0] *= 0.1 rewards = 0.1*0*height_diff+ang_vels # print(ang_vels[0]) # if self.currCurriculum == 1: # rewards -=-ang_vels_res self.rolloutRet += rewards info = { # 'Total Reward': rewards[0], 'Height' : 0.1*height_diff[0], 'ang_vel': ang_vels[0], # 'com_diff': com_diff[0] } reward_decomp = [0,0,0] if (len(self.rwdBuffer) >= 100): self.rwdBuffer.pop(0) self.rwdBuffer.append(reward_decomp) return obs, rewards, done, info def _get_obs(self): bar_states, part_states, part_heights,part_vels = self.get_state() obs_list = [] for i in range(self.numInstances): stage = self.stage[i] part_state = part_states[i] valid_idx = (part_state[:, 0] > -self.mapHalfExtent) & (part_state[:, 0] < self.mapHalfExtent) & ( part_state[:, 1] > -self.mapHalfExtent) & (part_state[:, 1] < self.mapHalfExtent) part_state = part_state[valid_idx] part_height = part_heights[i] part_height = part_height[valid_idx] part_vel = part_vels[i] part_vel = part_vel[valid_idx] bar_state = bar_states[i] bar_y_rot_vec = np.array([np.cos(bar_state[1, 1]), np.sin(bar_state[1, 1])]) # bar_rot = np.zeros((2, 2)) # bar_rot[0, 0] = bar_y_rot_vec[0] # bar_rot[0, 1] = -bar_y_rot_vec[1] # bar_rot[1, 0] = bar_y_rot_vec[1] # bar_rot[1, 1] = bar_y_rot_vec[0] # density = self.get_particle_density( # part_state, bar_state, bar_rot, normalized=True) # height_map = self.get_mean_height_map(part_state, bar_state, bar_rot, part_height) part_pos_xyz = np.concatenate([part_state[:,0,np.newaxis],part_height[:,np.newaxis],part_state[:,1,np.newaxis]],axis=1) height_map = self.get_mean_height_map(part_pos_xyz, bar_state) # if(i==0): # print(np.max(heightz)) ang_vel = self.get_angular_vel(part_pos_xyz,part_vel) #3 bar_pos = bar_state[0] # 3 bar_ang_x = np.array([np.cos(bar_state[1, 0]), np.sin(bar_state[1, 0])]) # 2 bar_vel = bar_state[2] # 3 bar_ang_vel_x = np.array([np.cos(bar_state[3, 0]), np.sin(bar_state[3, 0])]) # 2 # if(i==0): # print(part_pos_xyz) # print(part_vel) # print(ang_vel) bar_info = np.concatenate([bar_pos, bar_ang_x, bar_vel, bar_ang_vel_x,bar_vel]) obs = np.concatenate( [bar_info, height_map.flatten() ]) obs_list.append(obs) return np.array(obs_list) def get_particle_density(self, particles, bar_state, rot, normalized=True, width=2.5): if (particles.shape[0] == 0): return np.zeros((self.resolution, self.resolution)) particles -= bar_state[0, (0, 2)] particles = np.matmul(particles, rot.transpose()) particles = np.clip(particles, -self.mapHalfExtent, self.mapHalfExtent) H = self.get_density(particles, self.resolution, width, self.mapHalfExtent) if normalized: # H = H ** (1.0 / 2) H = H / (200) H = np.clip(H, 0, 1) return H def get_angular_vel(self,part_pos,part_vel): if(part_pos.shape[0]==0): return np.array([0,0,0]) return self.get_angular_vel_flex(part_pos,part_vel) def get_mean_height_map(self, particles, bar_state, normalized=True, width=2.5): if (particles.shape[0] == 0): return np.zeros((self.resolution, self.resolution)) bar_euler = bar_state[1] bar_rot = R.from_euler('x',bar_euler[0]) rel_pos = particles-bar_state[0] trans_pos = bar_rot.inv().apply(rel_pos) trans_pos = trans_pos[(trans_pos[:,0]>-self.barDim[1])&(trans_pos[:,0]<self.barDim[1])&(trans_pos[:,2]>-self.barDim[1])&(trans_pos[:,2]<self.barDim[1])&(trans_pos[:,1]>0)] # trans_pos[:,(0,2)] = np.clip(trans_pos[:,(0,2)], -self.barDim[1], self.barDim[1]) H = self.get_height_map(trans_pos[:,(0,2)], trans_pos[:,1], self.resolution, width, self.mapHalfExtent) # rel_pos = particles-np.array([bar_state[0,0],0,bar_state[0,2]]) # trans_pos = bar_rot.inv().apply(rel_pos) # trans_pos = trans_pos[(trans_pos[:,0]>-self.barDim[1])&(trans_pos[:,0]<self.barDim[1])&(trans_pos[:,2]>-self.barDim[1])&(trans_pos[:,2]<self.barDim[1])&(trans_pos[:,1]>0)] # trans_pos[:,(0,2)] = np.clip(trans_pos[:,(0,2)], -self.barDim[1], self.barDim[1]) # H = self.get_height_map(rel_pos[:,(0,2)], rel_pos[:,1], self.resolution, width, self.mapHalfExtent) return H def get_state(self): full_state = flex_env.FlexEnv.get_state(self) numPart = (full_state.shape[1]-4)//2 part_state = full_state[:, 4:4+numPart, (0, 2)] part_vel = full_state[:, 4+numPart:4+2*numPart, :] bar_state = full_state[:, :4, :] part_heights = full_state[:, 4:4+numPart, 1] return bar_state, part_state, part_heights, part_vel def _reset(self): self.rwdBuffer = [[0, 0, 0] for _ in range(100)] print("Return at current rollout: ", self.rolloutRet) print("Mean Return at current rollout: ", np.mean(self.rolloutRet)) print("Current Curriculum: ",self.currCurriculum) if(np.mean(self.rolloutRet)>100): self.currCurriculum = 1 self.rolloutRet = np.zeros(self.numInstances) if self.randomCluster: self.idxPool =
np.array([[0, 0]])
numpy.array
''' ''' import os import sys import h5py import numpy as np from scipy.stats import chi2 np.seterr(divide='ignore', invalid='ignore') # -- abcpmc -- import abcpmc from abcpmc import mpi_util # -- galpopfm -- from . import dustfm as dustFM from . import measure_obs as measureObs dat_dir = os.environ['GALPOPFM_DIR'] def distance_metric(x_obs, x_model, method='chi2', x_err=None): ''' distance metric between forward model m(theta) and observations notes ----- * simple L2 norm between the 3D histogram of [Rmag, Balmer, FUV-NUV] ''' if x_err is None: x_err = [1. for _x in x_obs] if method == 'chi2': # chi-squared rho = [np.sum((_obs - _mod)**2/_err**2) for _obs, _mod, _err in zip(x_obs, x_model, x_err)] elif method == 'L2': # chi-squared rho = [np.sum((_obs - _mod)**2) for _obs, _mod, _err in zip(x_obs, x_model, x_err)] elif method == 'L1': # L1 morm rho = [np.sum(np.abs(_obs - _mod)) for _obs, _mod, _err in zip(x_obs, x_model, x_err)] else: raise NotImplementedError return rho def sumstat_obs(statistic='2d', return_bins=False): ''' summary statistics for SDSS observations is the 3D histgram of [M_r, G-R, FUV - NUV]. notes ----- * 09/22/2020: observation summary statistics updated to Jeremy's SDSS catalog (centrals *and* satellites) with NSA absolute magnitudes * see `nb/observables.ipynb` to see exactly how the summary statistic is calculated. ''' if statistic == '1d': r_edges, gr_edges, fn_edges, x_gr, x_fn, _, _ = np.load(os.path.join(dat_dir, 'obs', 'tinker.Mr_20.Mr.GR.FUVNUV.npy'), allow_pickle=True) dgr = gr_edges[1] - gr_edges[0] nbar = dgr * np.sum(x_gr) x_obs = [nbar, x_gr, x_fn] elif statistic == '2d': r_edges, gr_edges, fn_edges, x_gr, x_fn, _, _ = np.load(os.path.join(dat_dir, 'obs', 'tinker.Mr_20.Mr_GR.Mr_FUVNUV.npy'), allow_pickle=True) dr = r_edges[1] - r_edges[0] dgr = gr_edges[1] - gr_edges[0] nbar = dr * dgr * np.sum(x_gr), x_obs = [nbar, x_gr, x_fn] elif statistic == '3d': r_edges, gr_edges, fn_edges, _x_obs, _ = np.load(os.path.join(dat_dir, 'obs', 'tinker.Mr_20.Mr_GR_FUVNUV.npy'), allow_pickle=True) dr = r_edges[1] - r_edges[0] dgr = gr_edges[1] - gr_edges[0] dfn = fn_edges[1] - fn_edges[0] nbar = dr * dgr * dfn * np.sum(_x_obs) x_obs = [nbar, _x_obs] if return_bins: return r_edges, gr_edges, fn_edges, x_obs return x_obs def sumstat_model(theta, sed=None, dem='slab_calzetti', f_downsample=1., statistic='2d', noise=True, seed=None, return_datavector=False, sfr0_prescription='adhoc'): ''' calculate summary statistics for forward model m(theta) :param theta: array of input parameters :param sed: dictionary with SEDs of **central** galaxies :param dem: string specifying the dust empirical model :param f_downsample: if f_downsample > 1., then the SED dictionary is downsampled. :param sfr0_prescription: prescription for dealing with SFR=0 galaxies notes ----- * 09/22/2020: simple noise model implemented * 4/22/2020: extra_data kwarg added. This is to pass pre-sampled observables for SFR = 0 galaxies ''' # don't touch these values! they are set to agree with the binning of # obersvable nbins = [8, 400, 200] ranges = [(20, 24), (-5., 20.), (-5, 45.)] dRmag = 0.5 dGR = 0.0625 dfuvnuv = 0.25 # SFR=0 galaxies sfr0 = (sed['logsfr.inst'] == -999) if sfr0_prescription == 'adhoc': raise ValueError #R_mag_sfr0, G_R_sfr0, FUV_NUV_sfr0 = _observable_zeroSFR( # sed['wave'], # sed['sed_noneb'][sfr0,:]) elif sfr0_prescription == 'sfrmin': logsfr_min = sed['logsfr.inst'][~sfr0].min() # minimum SFR print(logsfr_min) sed['logsfr.inst'][sfr0] = logsfr_min else: raise NotImplementedError sed_dusty = dustFM.Attenuate( theta, sed['wave'], sed['sed_noneb'], sed['sed_onlyneb'], sed['logmstar'], sed['logsfr.inst'], dem=dem) # observational measurements F_mag = measureObs.AbsMag_sed(sed['wave'], sed_dusty, band='galex_fuv') N_mag = measureObs.AbsMag_sed(sed['wave'], sed_dusty, band='galex_nuv') G_mag = measureObs.AbsMag_sed(sed['wave'], sed_dusty, band='g_sdss') R_mag = measureObs.AbsMag_sed(sed['wave'], sed_dusty, band='r_sdss') # apply FUV and NUV cut uv_cut = (F_mag < -13.5) & (N_mag < -14) F_mag = F_mag[uv_cut] N_mag = N_mag[uv_cut] G_mag = G_mag[uv_cut] R_mag = R_mag[uv_cut] # calculate color FUV_NUV = F_mag - N_mag G_R = G_mag - R_mag if sfr0_prescription == 'adhoc': # append sampled SFR=0 observables to data vector R_mag = np.concatenate([R_mag, R_mag_sfr0]) G_R = np.concatenate([G_R, G_R_sfr0]) FUV_NUV = np.concatenate([FUV_NUV, FUV_NUV_sfr0]) n_gal = len(R_mag) if noise: if seed is not None: np.random.seed(seed) # noise model (simplest model) sig_R = chi2.rvs(3, loc=0.02, scale=0.00003, size=n_gal) sig_FN = chi2.rvs(2, loc=0.05, scale=0.05, size=n_gal) sig_GR = chi2.rvs(3, size=n_gal) * (0.00001 * (R_mag + 20.1) + 0.00005)\ + (0.000025 * (R_mag + 20.1) + 0.02835) R_mag += np.random.normal(size=n_gal) * sig_R FUV_NUV += np.random.normal(size=n_gal) * sig_FN G_R += np.random.normal(size=n_gal) * sig_GR data_vector =
np.array([-1.*R_mag, G_R, FUV_NUV])
numpy.array
# Copyright 2020 DeepLearningResearch # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file has been modified by DeepLearningResearch for the development of DEAL. """Make datasets and save specified directory. Downloads datasets using scikit datasets and can also parse csv file to save into pickle format. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from io import BytesIO import os import pickle try: from StringIO import StringIO except ImportError: from io import StringIO import tarfile from urllib.request import urlopen import keras.backend as K from keras.datasets import cifar10 from keras.datasets import cifar100 from keras.datasets import mnist import numpy as np import pandas as pd import sklearn.datasets.rcv1 from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from absl import app from absl import flags from tensorflow import gfile # Flags to specify save directory and data set to be downloaded. flags.DEFINE_string('save_dir', '../../data/', 'Where to save outputs') flags.DEFINE_string('datasets', 'mnist_keras', 'Which datasets to download, comma separated.') FLAGS = flags.FLAGS class Dataset(object): def __init__(self, X, y): self.data = X self.target = y def get_keras_data(dataname): """Get datasets using keras API and return as a Dataset object.""" if dataname == 'cifar10_keras': train, test = cifar10.load_data() elif dataname == 'cifar100_coarse_keras': train, test = cifar100.load_data('coarse') elif dataname == 'cifar100_keras': train, test = cifar100.load_data() elif dataname == 'mnist_keras': train, test = mnist.load_data() else: raise NotImplementedError('dataset not supported') X = np.concatenate((train[0], test[0])) y = np.concatenate((train[1], test[1])) if dataname == 'mnist_keras': # Add extra dimension for channel num_rows = X.shape[1] num_cols = X.shape[2] X = X.reshape(X.shape[0], 1, num_rows, num_cols) if K.image_data_format() == 'channels_last': X = X.transpose(0, 2, 3, 1) y = y.flatten() data = Dataset(X, y) return data def get_cifar10(): """Get CIFAR-10 dataset from source dir. Slightly redundant with keras function to get cifar10 but this returns in flat format instead of keras numpy image tensor. """ url = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' def download_file(url): #req = urllib2.Request(url) #response = urllib2.urlopen(req) response = urlopen(url).read() return response response = download_file(url) tmpfile = BytesIO() while True: # Download a piece of the file from the connection s = response.read(16384) # Once the entire file has been downloaded, tarfile returns b'' # (the empty bytes) which is a falsey value if not s: break # Otherwise, write the piece of the file to the temporary file. tmpfile.write(s) response.close() tmpfile.seek(0) tar_dir = tarfile.open(mode='r:gz', fileobj=tmpfile) X = None y = None for member in tar_dir.getnames(): if '_batch' in member: filestream = tar_dir.extractfile(member).read() batch = pickle.load(StringIO.StringIO(filestream)) if X is None: X = np.array(batch['data'], dtype=np.uint8) y =
np.array(batch['labels'])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 17 14:32:28 2019 @author: tcandela """ """ Librairies to read nesting beach features and to compute initial positions """ # ============================================================================= # IMPORTS # ============================================================================= from mpl_toolkits.basemap import Basemap from mpl_toolkits.axes_grid.inset_locator import inset_axes from matplotlib import gridspec import netCDF4 as nc import numpy as np import matplotlib.pyplot as plt import datetime as dt import time import os from os.path import isfile, join import cv2 from matplotlib.colors import LinearSegmentedColormap from matplotlib import cm import random #Personal librairies import librumeau as brum import netCDF_lib as ncl import turtle_lib as tul # ============================================================================= # FUNCTIONS # ============================================================================= def complete_release_map(infile, path, gridfile, lonlat1D, nturtles, xmin, xmax, ymin, ymax, lat_space, lon_space): figname = 'fig/Release_Map.png' #Zone to plot in minimap xmin_sl = -180 xmax_sl = 180 ymin_sl = -80 ymax_sl = 85 #yticks parameters ymax_pos = 11.5 dy = 0.1 #To annotate country names and change map scale, go to plot code# #Loading initial positions initfile = open(infile,'r') x_init, y_init, t_init = np.loadtxt(initfile,usecols=(0,1,3),unpack=True) x_init, y_init, t_init = x_init[:nturtles], y_init[:nturtles], t_init[:nturtles] print('\nInitial positions loaded') #Loading grid file grid = nc.Dataset(gridfile) if lonlat1D == True: lon_mat = np.squeeze(grid['glamt']) lat_mat = np.squeeze(grid['gphit']) else: lon_mat = np.squeeze(grid['glamt'])[0,:] lat_mat = np.squeeze(grid['gphit'])[:,0] print('\nGrid file loaded') #Convert grid point into lon/lat lon, lat = brum.grid_to_geo(x_init, y_init, lon_mat, lat_mat) for i in np.arange(len(lon)): if lon[i] > 180: lon[i] = lon[i]-360 # PLOT CODE #Figure parameters fig = plt.figure(figsize=(7/2.54,5/2.54)) ax_pos = fig.add_subplot(111) ax_pos_small = inset_axes(ax_pos, width="50%", height="25%", loc='upper right') ax_pos.set_yticks(np.arange(ymin,ymax_pos,dy)) ax_pos.spines['right'].set_linewidth(0.5) ax_pos.spines['left'].set_linewidth(0.5) ax_pos.spines['bottom'].set_linewidth(0.5) ax_pos.spines['top'].set_linewidth(0.5) #Plot map m = Basemap(ax=ax_pos, projection='merc',lon_0=5,lat_0=90.0,llcrnrlon=xmin,urcrnrlon=xmax,llcrnrlat=ymin,urcrnrlat=ymax,resolution='h') m.fillcontinents(color='0.65',alpha=1, lake_color='w') m.drawcoastlines(color='0.3',linewidth=0.2) m.drawcountries(color='w',linewidth=0.1) m.drawparallels(np.arange(ymin,ymax_pos,lat_space), labels=[1,0,0,0], fontsize=5, linewidth=0.1) m.drawmeridians(np.arange(xmin,xmax,lon_space), labels=[0,0,0,1], fontsize=5, linewidth=0.1) #Plot annotations m.drawmapscale(-55.5, 4.25,-55.5,4.25, length=75,fontsize=4.5, barstyle='simple',labelstyle='simple') ax_pos.annotate(u'French Guiana', xy=(0.60, 0.25), fontsize=5,fontweight='normal',xycoords='axes fraction' ,horizontalalignment='right', verticalalignment='center',color='k') ax_pos.annotate(u'Suriname', xy=(0.25, 0.4), fontsize=5,fontweight='normal',xycoords='axes fraction' ,horizontalalignment='right', verticalalignment='center',color='k') #PLot turtles lon_m,lat_m = m(lon,lat) m.scatter(lon_m,lat_m,color='b', marker="o",edgecolors='None',s = 0.1)#,alpha=0.8,marker=".") #Plot minimap m_pt = Basemap(ax=ax_pos_small, projection='cyl',lon_0=-180,lat_0=90.0,llcrnrlon=xmin_sl,urcrnrlon=xmax_sl,llcrnrlat=ymin_sl,urcrnrlat=ymax_sl,resolution='l') m_pt.fillcontinents(color='0.65',alpha=1, lake_color='w') m_pt.scatter([-53.85],[6.1], color='b', marker="o", edgecolors='None', s=4,zorder=12) #Save figure plt.subplots_adjust(left=0.1, right=0.95, bottom=0.02, top=0.98) plt.savefig(path+figname,dpi = 300) print('\nMission accomplie ! (plot saved at ' + path + figname +')\n') def plot_habitat(ax,hab_mode, gridfile, numday,latlim,lonlim, SCL, To, food_max,dmin,dmax,param,data_lists,current_date, lonmin, lonmax, log=False) : """ Plot habitat on map.""" # Read Temp end Mnk data. lonmax = max(lonlim) lat = param['lat_phy'] lon = param['lon_phy'] temp = param['T_var'] U_var = param['U_var'] V_var = param['V_var'] food_path = param['food_dir'] + '/' #Feeding habitat if hab_mode == 'npp' or hab_mode == 'tot': PP = ncl.interpolate_vgpm(current_date, param) if hab_mode == 'tot': PP = PP[::-1,:] #reverse lat PP = PP[119:,:] #remove first 10 degrees !!!!!! il faut sélectionner les indices pour que les grilles correspondent mais il peut y avoir un décalage d'une demi maille. La résolution doit être la même Food_hab = tul.food_hab(PP,food_max) # if hab_mode == 'npp': lat = param['lat_food'] lon = param['lon_food'] latlon = ncl.read_nc(gridfile,[lat,lon]) latmat = np.asarray(latlon[lat]) lonmat = np.asarray(latlon[lon]) #Temperature habitat if hab_mode == 'temp' or hab_mode == 'tot': T_files = data_lists[2] current_T_file = T_files[numday] T_dict = ncl.read_nc(current_T_file, [lat,lon,temp]) T = np.squeeze(T_dict[temp]) T_hab = tul.t_hab(T,SCL,To,param['species']) latmat = np.asarray(T_dict[lat]) lonmat = np.asarray(T_dict[lon]) #Ocean currents if hab_mode == 'current': U_files = data_lists[0] current_U_file = U_files[numday] U_dict = ncl.read_nc(current_U_file, [lat, lon, U_var]) # V_files = data_lists[1] current_V_file = V_files[numday] V_dict = ncl.read_nc(current_V_file, [V_var]) # latmat = np.asarray(U_dict[lat]) lonmat = np.asarray(U_dict[lon]) # U = np.squeeze(U_dict[U_var]) V = np.squeeze(V_dict[V_var]) norm = np.sqrt((U**2)+(V**2)) if hab_mode == 'npp': hab = Food_hab legend = u"Foraging Habitat suitability index" cmap = 'pink_r' levels = np.arange(0.,1.1,0.1) ticks = levels elif hab_mode == 'temp': hab = T_hab legend = u"Thermal Habitat suitability index" cmap = 'pink_r' levels = np.arange(0.,1.1,0.1) ticks = levels elif hab_mode == 'tot': hab = T_hab*Food_hab legend = u"Habitat suitability index" cmap = 'pink_r' levels = np.arange(0,1.1,0.1) ticks = levels elif hab_mode == 'current': hab = norm legend = u'Current velocity [m/s]' cmap = 'pink_r' levels = np.arange(0,2.1,0.1) ticks = np.arange(0,2.2,0.2) hab = np.where(hab>levels[-1], levels[-1], hab) if lonmax > 180 and lonmin < 180: # manage date line change idx1 = np.where(lonmat < 0)[0] idx2 = np.where(lonmat >= 0)[0] hab0 = hab.copy() hab[:, idx1] = hab0[:, idx2] hab[:, idx2] = hab0[:, idx1] lonmat[idx1] += 360 lonmat0 = lonmat.copy() lonmat[idx1] = lonmat0[idx2] lonmat[idx2] = lonmat0[idx1] # Plot #im = ax.contourf(lonmat,latmat,hab,levels,cmap=cmap, alpha = 0.9,zorder=0) im = ax.pcolormesh(lonmat,latmat,hab,cmap=cmap, alpha = 0.9,zorder=0,vmin=0,vmax=2)#vmin=levels[0],vmax=levels[-1] cbar = plt.colorbar(im, orientation='horizontal',pad = 0.1, shrink=0.87, ticks = ticks)#, shrink=0.9)#, shrink=0.45, pad=0.03, fraction=0.25) cbar.ax.tick_params(labelsize=12) cbar.set_label(legend, labelpad=5, size=16) #cbar.outline.set_linewidth(0.5) #cbar.ax.xaxis.set_tick_params(width=0.5) def display_fig(frame_title=''): c=1 fig=plt.figure(num=1,figsize=(11*c,6.21*c), facecolor='w', edgecolor='w') # Display frame title ax=fig.add_subplot(111) #cax=plt.axes([0.85, 0.1, 0.075, 0.8]) #cax = fig.add_axes([0.85, 0.09, 0.045, 0.8]) ax.text(0.15, 1.06,frame_title, ha='center',va='center', transform=ax.transAxes,fontweight = 'bold', color='k',fontsize=16,) ''' cb_ax = fig.add_axes([0.05, 0.09, 0.045, 0.8]) cb = pl.colorbar(im,cax=cb_ax,orientation='vertical') cb.solids.set(alpha=1) cb.ax.tick_params(labelsize=12) cb.set_label(u"habitat suitability index", labelpad=3, size=12) cb.outline.set_linewidth(0.5) cb.ax.xaxis.set_tick_params(width=0.5) ''' return ax#,cax def display_colorbar(f,im, ax_cb, label): cb=f.colorbar(im,cax=ax_cb,orientation='horizontal') cb.solids.set(alpha=1) cb.ax.tick_params(labelsize=8) cb.set_label(label, labelpad=1, size=8) cb.outline.set_linewidth(0.5) cb.ax.xaxis.set_tick_params(width=0.5) def display_tracks(ax, lat='NA',lon='NA',dates='NA',ms=0.00,col='b', marker= 'o',alpha=0.5,label=None) : """ """ ax.scatter(lon, lat, marker=marker,s=ms, edgecolor='none',c=col, alpha=alpha, zorder=100,label=label) return ax def plot_map(ax, latmin, latmax, lonmin, lonmax,value=0.6,res=0.25,alpha=1, lon_space=20,lat_space=10) : """ Plot continents. """ map=Basemap(ax=ax,llcrnrlon=lonmin,llcrnrlat=latmin,urcrnrlon=lonmax,urcrnrlat=latmax,projection='cyl',resolution='l') #Get meridians and parallels spaces def getTicks(lmin, lmax, step): lmaxabs = (int(max(abs(lmax), abs(lmin)))/step+1)*step return np.intersect1d(np.arange(lmin+1, lmax), np.arange(-lmaxabs, lmaxabs, step)) #Draw parallels & meridians map.drawparallels(np.arange(latmin, latmax, lat_space),labels=[1,0,0,0], fontsize=8,zorder=0.2,linewidth=0.1) map.drawmeridians(np.arange(lonmin, lonmax, lon_space),labels=[0,0,0,1], fontsize=8,zorder=0.2,linewidth=0.1) map.drawcountries(color='k',linewidth=0.01,zorder=0.3) map.drawcoastlines(color='grey',linewidth=0.2,zorder=0.3) map.fillcontinents(color='0.35') return ax def getTicks(lmin, lmax, step): lmaxabs = (int(max(abs(lmax), abs(lmin)))/step+1)*step return np.intersect1d(np.arange(lmin+1, lmax), np.arange(-lmaxabs, lmaxabs, step)) def show_start_point(ax, lat,lon) : """ """ ax.plot((np.mean(lon[0,:]),),(np.mean(lat[0,:]),),markerfacecolor='w', markeredgecolor='k',marker='o',ms=6,mew=0.3,zorder=999) def plot_animation_frames(gridfile, dico,hab_mode,To,lethargy,coef_SMR,start_day,end_day,h,latlim,lonlim, save_path, param, data_lists, last_turtle, mortality, group, nb_cat, colors, hourly=False, dpi=100): """ Plot animation frames with turtles positions and approximate habitat. """ species = param['species'] nturtles = param['nturtles'] - 1 if last_turtle == -1 else last_turtle time_extra = param['time_extrapolation'] # latmin = min(latlim) latmax = max(latlim) lonmin = min(lonlim) lonmax = max(lonlim) if hourly: delta = 24 # nb of positions per datafile else: delta = 1 # daily dmin = 80. dmax = 200. lat = dico['traj_lat'][:,:last_turtle] lon = dico['traj_lon'][:,:last_turtle] init_t = dico['init_t'][:last_turtle] traj_time = dico['traj_time'][:,:last_turtle] group = group[:last_turtle] # lon[lon>=180] -= 360 #needed ? if hab_mode != 'void' and mortality: temp = dico['traj_temp'][start_day:end_day,:last_turtle] date_death = tul.find_date_death(nturtles,temp,To,coef_SMR,lethargy,init_t, end_day-start_day) date_start_physfile = dt.datetime(param['ystart'],1,1) date_start_physfile_entier= date_start_physfile.toordinal() if hab_mode != 'void' and mortality: date_death_entier = date_death + date_start_physfile_entier month_names = ['Jan.','Feb.','Mar.','Apr.','May','Jun.','Jul.','Aug.','Sep.','Oct.','Nov.','Dec.'] # SCL = tul.compute_SCL_VGBF(param['SCL0'], species, start_day) for step in range(start_day,end_day,h): print('\n') print(step, 'of', end_day-h) days_since_ref = init_t.min() + step/delta # nb of days since ref (1st January ystart) current_date = date_start_physfile + dt.timedelta(days_since_ref) if param['time_periodic']: days_since_ref = init_t.min() + (days_since_ref - init_t.min()) % param['time_periodic'] file_date = date_start_physfile + dt.timedelta(days_since_ref) # datafile date date_today_entier = file_date.toordinal() # datafile date used for comparision numday = int(days_since_ref - init_t.min() + 0.5) # nb of days since first turtle release, +0.5 because datafiles are at 12:00 # Frame title title = current_date.strftime("%d %B %Y, %H:%M") print(title) print('numday',numday) # newlat,newlon,date_mat = ncl.age_to_date(traj_time,init_t,lat,lon) # ax = display_fig(frame_title=title) # Display habitat. if hab_mode != 'void': # Calcul des paramètre relatifs à la nage active et à l'habitat SCL = tul.compute_SCL_VGBF(SCL, species, h) #increment SCL of h days food_max = tul.compute_Fmax(step+start_day,species,SCL,param['P0']) plot_habitat(ax, hab_mode, gridfile, numday, [latmin, latmax], [lonmin,lonmax], SCL, To, food_max, dmin, dmax, param, data_lists,file_date, lonmin, lonmax) # Find alive and dead turtles # Blue dots : alive turtles # Black dots: dead turtles # Dead turtles are removed from the animation 90 days after they died if hab_mode != 'void' and mortality and len(group)==0: index_dead_at_date = np.where((date_death_entier<=date_today_entier)&(date_death_entier+90>date_today_entier)) #+90 > dead disappear after 90 days index_alive_at_date = np.where(date_death_entier>date_today_entier) if hab_mode == 'void' and mortality and len(group)==0: index_dead_at_date=[] index_alive_at_date=np.arange(lat.shape[1]) # Display position (scatter) if mortality and len(group) == 0: display_tracks(ax, lat=newlat[step,index_dead_at_date],lon=newlon[step,index_dead_at_date],ms=11,col='k', marker = 'o',alpha=0.6) display_tracks(ax, lat=newlat[step,index_alive_at_date],lon=newlon[step,index_alive_at_date],ms=11,col='#1f78b4', marker = 'o',alpha=0.6) elif len(group)==0: display_tracks(ax, lat=newlat[step,:],lon=newlon[step,:],ms=11,col='#1f78b4',alpha=0.6) if hab_mode != 'void' and len(group) > 0: for cat in np.arange(nb_cat): if mortality: index_dead_at_date = np.where((date_death_entier <= date_today_entier) & (date_death_entier + 90 > date_today_entier) & (group == cat)) #+90 > dead disappear after 90 days index_alive_at_date = np.where((date_death_entier > date_today_entier) & (group == cat)) display_tracks(ax, lat=newlat[step,index_dead_at_date], lon=newlon[step,index_dead_at_date], ms=5, col=colors[cat], marker = 'x', alpha=0.6) display_tracks(ax, lat=newlat[step,index_alive_at_date], lon=newlon[step,index_alive_at_date], ms=5, col=colors[cat], marker = 'o', alpha=0.6) else: idx = np.where(group == cat) display_tracks(ax, lat=newlat[step,idx], lon=newlon[step,idx], ms=5, col=colors[cat], marker = 'o', alpha=0.6) # Plot starting point #show_start_point(ax, lat,lon) lon_space = (lonmax - lonmin)/7 lat_space = (latmax - latmin)/7 # Display map. #plot_map(ax, latmin, latmax, lonmin, lonmax, lon_space,lat_space) plt.xlim([lonmin,lonmax]) plt.ylim([latmin,latmax]) #save figure m = str(("%04d") %step) plt.savefig(save_path + 'frame_' + m + '.png', bbox_inches='tight', dpi=dpi) plt.close() def plot_animation_frames_tuned(gridfile, dico,hab_mode,To,lethargy,coef_SMR,start_day,end_day,h,latlim,lonlim,save_path, param, data_lists, last_turtle, mortality = True, dpi=100): """ Plot animation frames for 1 turtle with a dt < 24h (for example 24 dt / day) Also plot 4 points at a distance grad_dx to see where gradients are computed Might work with several turtles """ #Tuned parameters delta = 24 #24 positions for 1 data file (dt = 1h) grad = False #to plot points where gradient is computed deg = 111195 #1degree = 111,195 km approx grad_dx = param['grad_dx'] # species = param['species'] nturtles = param['nturtles'] - 1 if last_turtle == -1 else last_turtle # latmin = min(latlim) latmax = max(latlim) lonmin = min(lonlim) lonmax = max(lonlim) dmin = 80. dmax = 200. lat = dico['traj_lat'][:,:last_turtle] lon = dico['traj_lon'][:,:last_turtle] init_t = dico['init_t'][:last_turtle] traj_time = dico['traj_time'][:,:last_turtle] date_start_physfile = dt.datetime(param['ystart'],1,1) #à modifier éventuellement month_names = ['Jan.','Feb.','Mar.','Apr.','May','Jun.','Jul.','Aug.','Sep.','Oct.','Nov.','Dec.'] # SCL = param['SCL0'] + tul.age_to_SCL(start_day,species) #not exact if (SCL0 is not hatchling SCL and start_day > 0) for step in range(0,end_day,h): #here not days but time_steps print('\n') print(step, 'of', end_day-h) days_since_ref = int(init_t.min()) + 1 + step//delta #increment days each delta time steps date_title = date_start_physfile + dt.timedelta(days_since_ref) date = date_start_physfile + dt.timedelta(days_since_ref) # Frame title m = '00' month = month_names[date_title.month-1] day = str(("%02d") %date_title.day) year = str(date_title.year) title ='| '+day+' '+month+' '+year+' |' print(' ',title) print('File date : ',date.strftime("%d-%m-%Y")) # newlat,newlon,date_mat = ncl.age_to_date(traj_time,init_t,lat,lon) # ax = display_fig(frame_title=title) # Display habitat. if hab_mode != 'void': # Calcul des paramètre relatifs à la nage active et à l'habitat SCL = tul.compute_SCL_VGBF(SCL, species, 1) food_max = tul.compute_Fmax(step+start_day,species,SCL,param['P0']) numday = days_since_ref - int(init_t.min()) plot_habitat(ax, hab_mode, gridfile, numday, [latmin, latmax], [lonmin,lonmax], SCL, To, food_max, dmin, dmax, param, data_lists,date) print(numday) display_tracks(ax, lat=newlat[step,:],lon=newlon[step,:],ms=11,col='#1f78b4',alpha=0.6) #For gradients points if grad: dx_lon = grad_dx / (deg * np.cos(newlat[step,0] * np.pi / 180)) dx_lat = grad_dx / deg display_tracks(ax, lat=newlat[step,:]-dx_lat,lon=newlon[step,:],ms=11,col='k',alpha=0.6) display_tracks(ax, lat=newlat[step,:]+dx_lat,lon=newlon[step,:],ms=11,col='k',alpha=0.6) display_tracks(ax, lat=newlat[step,:],lon=newlon[step,:]-dx_lon,ms=11,col='k',alpha=0.6) display_tracks(ax, lat=newlat[step,:],lon=newlon[step,:]+dx_lon,ms=11,col='k',alpha=0.6) # Plot starting point show_start_point(ax, lat,lon) lon_space = (lonmax - lonmin)/7 lat_space = (latmax - latmin)/7 # Display map. plot_map(ax, latmin, latmax, lonmin, lonmax, lon_space,lat_space) plt.xlim([lonmin,lonmax]) plt.ylim([latmin,latmax]) #save figure m = str(("%04d") %step) plt.savefig(save_path + 'frame_' + m + '.png', bbox_inches='tight', dpi=dpi) plt.close() def convert_frames_to_video(pathIn, pathOut, fps): print('\n') print('****************************************************') print("Converting frames to video...") print('****************************************************') print('\n') frame_array = [] files = [f for f in os.listdir(pathIn) if (isfile(join(pathIn, f)) and os.path.splitext(join(pathIn, f))[-1] == '.png')] #for sorting the file names properly #only png files should be in the directory try: files.sort(key = lambda x: int(x[6:10])) #work if name = frame_****.png except: files = sorted(files) for i in range(len(files)): time.sleep(0.01) filename = pathIn + files[i] #reading each files img = cv2.imread(filename) height, width, layers = img.shape size = (width,height) print(filename) #inserting the frames into an image array frame_array.append(img) out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc('M','J','P','G'), fps, size) for i in range(len(frame_array)): # writing to a image array out.write(frame_array[i]) out.release() def compute_presence_map(dx,x,y,xmin,xmax,ymin,ymax,seuil_numpos=30000,lat_space=5,lon_space=20): x = np.array(x) x[x>=xmax]-=360 y = np.array(y) x_ravel = x.ravel() y_ravel = y.ravel() x_ravel[np.where(y_ravel==0)] = 0 y_ravel[np.where(x_ravel==0)] = 0 x_ravel_nonzero = np.delete(x_ravel,np.where(x_ravel==0)) y_ravel_nonzero = np.delete(y_ravel,np.where(y_ravel==0)) x_ravel_nonone = np.delete(x_ravel_nonzero,np.where(x_ravel_nonzero==1.0)) y_ravel_nonone = np.delete(y_ravel_nonzero,np.where(y_ravel_nonzero==1.0)) x_ravel_nonone= np.append(x_ravel_nonone,0) x_ravel_nonone = np.append(x_ravel_nonone,410) y_ravel_nonone =
np.append(y_ravel_nonone,-90)
numpy.append
''' A short script to plot the outputs of the SSP Mutual Information sampling Is currently assuming that the data is stored in the format: /<path-to>/<test-function-name>/<selection-agent> where <selection-agent> is one of {gp-mi,ssp-mi} ''' import numpy as np import numpy.matlib as matlib import pandas as pd import pytry import matplotlib.pyplot as plt import matplotlib as mpl mpl.use('pgf') mpl.rcParams.update({ 'pgf.texsystem': 'pdflatex', 'font.family': 'serif', 'text.usetex': True, 'pgf.rcfonts': False, 'pdf.fonttype': 42, 'ps.fonttype': 42, 'figure.autolayout': True }) from argparse import ArgumentParser import best def get_data(data_frame): regret = np.vstack(data_frame['regret'].values) avg_regret =
np.vstack(data_frame['avg_regret'].values)
numpy.vstack
"""Tests for the `pyabc.sumstat` module.""" import os import tempfile import numpy as np import pandas as pd import pytest import pyabc from pyabc.predictor import LinearPredictor from pyabc.sumstat import ( GMMSubsetter, IdentitySumstat, IdSubsetter, PredictorSumstat, ) from pyabc.util import EventIxs, dict2arr, dict2arrlabels def test_dict2arr(): """Test conversion of dicts to arrays.""" dct = { "s0": pd.DataFrame({"a": [0, 1], "b": [2, 3]}), "s1": np.array([4, 5]), "s2": 6, } keys = ["s0", "s1", "s2"] arr = dict2arr(dct, keys=keys) assert (arr == np.array([0, 2, 1, 3, 4, 5, 6])).all() labels = dict2arrlabels(dct, keys=keys) assert len(labels) == len(arr) assert labels == [ "s0:a:0", "s0:b:0", "s0:a:1", "s0:b:1", "s1:0", "s1:1", "s2", ] with pytest.raises(TypeError): dict2arr({"s0": "alice"}, keys=["s0"]) with pytest.raises(TypeError): dict2arrlabels({"s0": "alice"}, keys=["s0"]) @pytest.fixture(params=[None, [lambda x: x, lambda x: x ** 2]]) def trafos(request): """Data transformations.""" return request.param def test_identity_sumstat(trafos): """Test the IdentitySumstat.""" sumstat = IdentitySumstat(trafos=trafos) x0 = {'s0': 1.0, 's1': 42.0} sumstat.initialize( t=0, get_sample=lambda: pyabc.population.Sample(), x_0=x0, total_sims=0 ) assert not sumstat.requires_calibration() assert not sumstat.is_adaptive() if trafos is None: assert (sumstat({'s1': 7.0, 's0': 3.0}) == np.array([3.0, 7.0])).all() assert len(sumstat.get_ids()) == 2 else: assert ( sumstat({'s1': 7.0, 's0': 3.0}) == np.array([3.0, 7.0, 9.0, 49.0]) ).all() assert len(sumstat.get_ids()) == 4 def test_event_ixs(): """Test fit index construction.""" ixs = EventIxs(ts=1, sims=10) assert not ixs.act(t=0, total_sims=0) assert ixs.act(t=1, total_sims=0) assert ixs.act(t=0, total_sims=20) ixs = EventIxs(ts={np.inf}) assert ixs.act(t=0, total_sims=0) assert ixs.act(t=7, total_sims=0) ixs = EventIxs(sims={10, 20}) assert not ixs.act(t=0, total_sims=5) assert ixs.act(t=0, total_sims=15) assert not ixs.act(t=0, total_sims=16) assert ixs.act(t=0, total_sims=20) ixs = EventIxs(from_t=5) assert ( not ixs.act(t=4, total_sims=50) and ixs.act(t=5, total_sims=50) and ixs.act(t=20, total_sims=50) ) ixs = EventIxs(from_sims=10) assert ( not ixs.act(t=4, total_sims=9) and ixs.act(t=4, total_sims=10) and ixs.act(t=4, total_sims=20) ) def test_pre(): """Test chaining of summary statistics.""" sumstat = IdentitySumstat( trafos=[lambda x: x ** 2], pre=IdentitySumstat(trafos=[lambda x: x, lambda x: x ** 2]), ) assert not sumstat.requires_calibration() assert not sumstat.is_adaptive() sumstat.configure_sampler(pyabc.SingleCoreSampler()) x0 = {'s0': 1.0, 's1': 42.0} sumstat.initialize( t=0, get_sample=lambda: pyabc.population.Sample(), x_0=x0, total_sims=0 ) assert ( sumstat({'s1': 7.0, 's0': 3.0}) ==
np.array([3.0, 7.0, 9.0, 49.0])
numpy.array
import numpy as np, random #from RLKeras import ReplayMemory class Game(object): Delta = 0.1 NActions = 2 StateDim = 2 Moves = np.array( [ (1.0, 0.0), (0.0, 1.0), (-1.0, 0.0), (0.0, -1.0) ] ) * Delta def init(self, n): # returns ranodm states, done states = self.randomStates(n) return states def step(self, states, actions): n = len(states) states1 = states.copy() done = np.zeros((n,), dtype=np.bool) rewards = np.zeros((n,)) for i, (state, action) in enumerate(zip(states, actions)): states1[i,:] += self.Moves[action] x, y = states1[i,:] final = x > 1.0 or y > 1.0 if final: z = x if y > 1.0 else y r = 1-2*z done[i] = True rewards[i] = r return states1, rewards, done def randomStates(self, n): return
np.random.random((n,2))
numpy.random.random