prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python # coding: utf-8 # In[ ]: # load tensorflow and keras import tensorflow as tf from tensorflow import keras from tensorflow.keras import models, layers, optimizers, datasets from tensorflow.keras.layers.experimental import preprocessing from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, roc_curve, auc from sklearn.model_selection import cross_val_score, KFold, StratifiedKFold from sklearn.inspection import permutation_importance from sklearn.metrics import precision_recall_curve, f1_score #helper libraries import matplotlib.pyplot as plt import numpy as np import pandas as pd # Make numpy printouts easier to read. np.set_printoptions(precision=3, suppress=True) print(tf.__version__) # In[ ]: #Plotting function def plot_history(model_history, model_name): fig = plt.figure(figsize=(15,5), facecolor='w') ax = fig.add_subplot(121) ax.plot(model_history.history['loss']) ax.plot(model_history.history['val_loss']) ax.set(title=model_name + ': Model loss', ylabel='Loss', xlabel='Epoch') ax.legend(['Train', 'Test'], loc='upper right') ax = fig.add_subplot(122) ax.plot(np.log(model_history.history['loss'])) ax.plot(np.log(model_history.history['val_loss'])) ax.set(title=model_name + ': Log model loss', ylabel='Log loss', xlabel='Epoch') ax.legend(['Train', 'Test'], loc='upper right') plt.show() plt.close() # In[ ]: # Define the cross-validator object for regression, which inherits from # StratifiedKFold, overwritting the split method #code source: https://colab.research.google.com/drive/1KnXujsQDvLZOgCRg_iis036cwffwZM2_?usp=sharing#scrollTo=2q_q9w8Jpmwd # &https://github.com/scikit-learn/scikit-learn/issues/4757 class StratifiedKFoldReg(StratifiedKFold): """ This class generate cross-validation partitions for regression setups, such that these partitions resemble the original sample distribution of the target variable. """ def split(self, X, y, groups=None): n_samples = len(y) # Number of labels to discretize our target variable, # into bins of quasi equal size n_labels = int(np.round(n_samples/self.n_splits)) # Assign a label to each bin of n_splits points y_labels_sorted = np.concatenate([np.repeat(ii, self.n_splits) for ii in range(n_labels)]) # Get number of points that would fall # out of the equally-sized bins mod = np.mod(n_samples, self.n_splits) # Find unique idxs of first unique label's ocurrence _, labels_idx = np.unique(y_labels_sorted, return_index=True) # sample randomly the label idxs to which assign the # the mod points rand_label_ix = np.random.choice(labels_idx, mod, replace=False) # insert these at the beginning of the corresponding bin y_labels_sorted = np.insert(y_labels_sorted, rand_label_ix, y_labels_sorted[rand_label_ix]) # find each element of y to which label corresponds in the sorted # array of labels map_labels_y = dict() for ix, label in zip(np.argsort(y), y_labels_sorted): map_labels_y[ix] = label # put labels according to the given y order then y_labels = np.array([map_labels_y[ii] for ii in range(n_samples)]) return super().split(X, y_labels, groups) # In[ ]: #load data raw_dataset = pd.read_csv('.spyder-py3/merged_datasets_for_simeval.csv') dataset = raw_dataset.copy() dataset.drop(['dofv', 'ID', 'Study_ID', 'Model_number', 'lin_model'], axis = 1, inplace=True) dataset.head() # In[ ]: #split features and labels x = dataset.copy() y = x.pop('residual') # In[ ]: # normalization # scaler = StandardScaler().fit(x) # X = scaler.transform(x) X = x.values # Normalization is built into model now # In[ ]: ################################################################################################################################################## # In[ ]: #ANN5: This is the final model n_splits = 10 #number of folds loss_per_fold = [] #to store test loss value in each fold Train_loss_per_fold = [] #to store training loss value in each fold predcited_y = np.array([]) #to store predicted residual value from each CV fold true_y = np.array([]) #to store true residual value from each CV fold cv_stratified = StratifiedKFoldReg(n_splits=n_splits, shuffle=True, random_state=10) # Stratified CV fold_no = 1 for ii, (train_index, test_index) in enumerate(cv_stratified.split(X, y)): y_train, y_test = y[train_index], y[test_index] X_train, X_test = X[train_index], X[test_index] #Define and summarize the model inps = layers.Input(shape=X_train[0].shape) norm_layer = layers.Normalization(axis=1) norm_layer.adapt(X_train) x = norm_layer(inps) x = layers.Dense(48, activation='relu')(x) x = layers.Dense(24, activation='relu')(x) x = layers.Dense(12, activation='relu')(x) x = layers.Dropout(0.2)(x) preds = layers.Dense(1)(x) ANN5 = models.Model(inputs=inps, outputs=preds) #Compile the model lr = 0.00007 ANN5.compile(optimizer=optimizers.RMSprop(lr=lr), loss='mse') # Generate a print print('------------------------------------------------------------------------') print(f'Training for fold {fold_no} ...') test_labels = y_test.to_list() test_labels = [round(num, 2) for num in test_labels] print(test_labels) #to have a look at the true residual values for test dataset #print histogram of y_test and y_train fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(5, 5)) axs.hist(y_train, label="training") axs.hist(y_test, label="test") axs.legend() plt.tight_layout() # Fit data to model history = ANN5.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) plot_history(history, 'ANN5') #to store values for plotting global predicted vs. true residual values test_predictions = ANN5.predict(X_test).flatten() predcited_y = np.append(predcited_y, test_predictions) y_test_array = y_test.values true_y = np.append(true_y, y_test_array) # Generate generalization metrics scores = ANN5.evaluate(X_test, y_test, verbose=0) print(f'Test Score for fold {fold_no}: {ANN5.metrics_names} of {scores}') scores_training = ANN5.evaluate(X_train, y_train, verbose=0) print(f'Training Score for fold {fold_no}: {ANN5.metrics_names} of {scores_training}') loss_per_fold.append(scores) Train_loss_per_fold.append(scores_training) # Increase fold number fold_no = fold_no + 1 # global plot true vs. predicted a = plt.axes(aspect='equal') plt.scatter(predcited_y, true_y) plt.xlabel('Predictions [residual]') plt.ylabel('True Values [residual]') lims = [-5, 20] plt.xlim(lims) plt.ylim(lims) prediction_plot = plt.plot(lims, lims) # In[ ]: # == Provide average scores == print('------------------------------------------------------------------------') print('Score per fold') for i in range(0, len(loss_per_fold)): print('------------------------------------------------------------------------') print(f'> Fold {i+1} - Training Loss: {Train_loss_per_fold[i]} - Testing Loss: {loss_per_fold[i]} -') print('------------------------------------------------------------------------') print('Average scores for all folds:') print(f'> Test Loss: {np.mean(loss_per_fold)}') print(f'> Training Loss: {
np.mean(Train_loss_per_fold)
numpy.mean
import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split import src.ticTacToeGenerator def main(): tttGameBoard = src.ticTacToeGenerator.GameBoard() feature_columns = [tf.feature_column.numeric_column("x", shape=[9])] estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns, model_dir="/tmp/ttt_model_regressor") # Generate random data to train again tttGameBoard.generate_100_games_random() board_train, board_test, result_train, result_test = train_test_split(tttGameBoard.overallHistory, tttGameBoard.overallResults, test_size=0.20) input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(board_train)}, y=np.array(result_train), num_epochs=None, shuffle=True) estimator.train(input_fn=input_fn, steps=100) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(board_train)}, y=np.array(result_train), batch_size=4, num_epochs=100, shuffle=False) test_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(board_test)}, y=np.array(result_test), batch_size=4, num_epochs=100, shuffle=False) train_metrics = estimator.evaluate(input_fn=train_input_fn) eval_metrics = estimator.evaluate(input_fn=test_input_fn) print("train metrics: %r" % train_metrics) print("eval metrics: %r" % eval_metrics) player_one_wins, player_two_wins, ties = 0, 0, 0 for x in range(len(tttGameBoard.winnerResults)): if tttGameBoard.winnerResults[x] == tttGameBoard.playerOneMark: player_one_wins += 1 elif tttGameBoard.winnerResults[x] == tttGameBoard.playerTwoMark: player_two_wins += 1 else: ties += 1 print("Player One Wins: " + str(player_one_wins) + " Player Two Wins: " + str(player_two_wins) + " Ties: " + str(ties)) # Generate random data to train again tttGameBoard.clear_history() tttGameBoard.generate_100_games_predict_player_one_random_player_two(estimator) board_train, board_test, result_train, result_test = train_test_split(tttGameBoard.overallHistory, tttGameBoard.overallResults, test_size=0.20) input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(board_train)}, y=np.array(result_train), num_epochs=None, shuffle=True) estimator.train(input_fn=input_fn, steps=100) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(board_train)}, y=np.array(result_train), batch_size=4, num_epochs=100, shuffle=False) test_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(board_test)}, y=
np.array(result_test)
numpy.array
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.models.rgb.deprecated` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from itertools import permutations from colour.models.rgb.deprecated import (RGB_to_HSV, HSV_to_RGB, RGB_to_HSL, HSL_to_RGB, RGB_to_CMY, CMY_to_RGB, CMY_to_CMYK, CMYK_to_CMY) from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestRGB_to_HSV', 'TestHSV_to_RGB', 'TestRGB_to_HSL', 'TestHSL_to_RGB', 'TestRGB_to_CMY', 'TestCMY_to_RGB', 'TestCMY_to_CMYK', 'TestCMYK_to_CMY' ] class TestRGB_to_HSV(unittest.TestCase): """ Defines :func:`colour.models.rgb.deprecated.RGB_to_HSV` definition unit tests methods. """ def test_RGB_to_HSV(self): """ Tests :func:`colour.models.rgb.deprecated.RGB_to_HSV` definition. """ np.testing.assert_almost_equal( RGB_to_HSV(np.array([0.45620519, 0.03081071, 0.04091952])), np.array([0.99603944, 0.93246304, 0.45620519]), decimal=7) np.testing.assert_almost_equal( RGB_to_HSV(np.array([0.00000000, 0.00000000, 0.00000000])), np.array([0.00000000, 0.00000000, 0.00000000]), decimal=7) np.testing.assert_almost_equal( RGB_to_HSV(np.array([1.00000000, 1.00000000, 1.00000000])), np.array([0.00000000, 0.00000000, 1.00000000]), decimal=7) def test_n_dimensional_RGB_to_HSV(self): """ Tests :func:`colour.models.rgb.deprecated.RGB_to_HSV` definition n-dimensional arrays support. """ RGB = np.array([0.45620519, 0.03081071, 0.04091952]) HSV = RGB_to_HSV(RGB) RGB = np.tile(RGB, (6, 1)) HSV = np.tile(HSV, (6, 1)) np.testing.assert_almost_equal(RGB_to_HSV(RGB), HSV, decimal=7) RGB = np.reshape(RGB, (2, 3, 3)) HSV = np.reshape(HSV, (2, 3, 3)) np.testing.assert_almost_equal(RGB_to_HSV(RGB), HSV, decimal=7) def test_domain_range_scale_RGB_to_HSV(self): """ Tests :func:`colour.models.rgb.deprecated.RGB_to_HSV` definition domain and range scale support. """ RGB = np.array([0.45620519, 0.03081071, 0.04091952]) HSV = RGB_to_HSV(RGB) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( RGB_to_HSV(RGB * factor), HSV * factor, decimal=7) @ignore_numpy_errors def test_nan_RGB_to_HSV(self): """ Tests :func:`colour.models.rgb.deprecated.RGB_to_HSV` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: RGB = np.array(case) RGB_to_HSV(RGB) class TestHSV_to_RGB(unittest.TestCase): """ Defines :func:`colour.models.rgb.deprecated.HSV_to_RGB` definition unit tests methods. """ def test_HSV_to_RGB(self): """ Tests :func:`colour.models.rgb.deprecated.HSV_to_RGB` definition. """ np.testing.assert_almost_equal( HSV_to_RGB(np.array([0.99603944, 0.93246304, 0.45620519])), np.array([0.45620519, 0.03081071, 0.04091952]), decimal=7) np.testing.assert_almost_equal( HSV_to_RGB(np.array([0.00000000, 0.00000000, 0.00000000])), np.array([0.00000000, 0.00000000, 0.00000000]), decimal=7) np.testing.assert_almost_equal( HSV_to_RGB(np.array([0.00000000, 0.00000000, 1.00000000])), np.array([1.00000000, 1.00000000, 1.00000000]), decimal=7) def test_n_dimensional_HSV_to_RGB(self): """ Tests :func:`colour.models.rgb.deprecated.HSV_to_RGB` definition n-dimensional arrays support. """ HSV = np.array([0.99603944, 0.93246304, 0.45620519]) RGB = HSV_to_RGB(HSV) HSV = np.tile(HSV, (6, 1)) RGB = np.tile(RGB, (6, 1)) np.testing.assert_almost_equal(HSV_to_RGB(HSV), RGB, decimal=7) HSV = np.reshape(HSV, (2, 3, 3)) RGB = np.reshape(RGB, (2, 3, 3)) np.testing.assert_almost_equal(HSV_to_RGB(HSV), RGB, decimal=7) def test_domain_range_scale_HSV_to_RGB(self): """ Tests :func:`colour.models.rgb.deprecated.HSV_to_RGB` definition domain and range scale support. """ HSV = np.array([0.99603944, 0.93246304, 0.45620519]) RGB = HSV_to_RGB(HSV) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( HSV_to_RGB(HSV * factor), RGB * factor, decimal=7) @ignore_numpy_errors def test_nan_HSV_to_RGB(self): """ Tests :func:`colour.models.rgb.deprecated.HSV_to_RGB` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: HSV = np.array(case) HSV_to_RGB(HSV) class TestRGB_to_HSL(unittest.TestCase): """ Defines :func:`colour.models.rgb.deprecated.RGB_to_HSL` definition unit tests methods. """ def test_RGB_to_HSL(self): """ Tests :func:`colour.models.rgb.deprecated.RGB_to_HSL` definition. """ np.testing.assert_almost_equal( RGB_to_HSL(np.array([0.45620519, 0.03081071, 0.04091952])), np.array([0.99603944, 0.87347144, 0.24350795]), decimal=7) np.testing.assert_almost_equal( RGB_to_HSL(np.array([0.00000000, 0.00000000, 0.00000000])), np.array([0.00000000, 0.00000000, 0.00000000]), decimal=7) np.testing.assert_almost_equal( RGB_to_HSL(np.array([1.00000000, 1.00000000, 1.00000000])), np.array([0.00000000, 0.00000000, 1.00000000]), decimal=7) def test_n_dimensional_RGB_to_HSL(self): """ Tests :func:`colour.models.rgb.deprecated.RGB_to_HSL` definition n-dimensional arrays support. """ RGB = np.array([0.45620519, 0.03081071, 0.04091952]) HSL = RGB_to_HSL(RGB) RGB = np.tile(RGB, (6, 1)) HSL = np.tile(HSL, (6, 1)) np.testing.assert_almost_equal(RGB_to_HSL(RGB), HSL, decimal=7) RGB = np.reshape(RGB, (2, 3, 3)) HSL =
np.reshape(HSL, (2, 3, 3))
numpy.reshape
import param import numpy as np from bokeh.models import Patches from ...core.data import Dataset from ...core.util import basestring, max_range, dimension_sanitizer from .graphs import GraphPlot class SankeyPlot(GraphPlot): color_index = param.ClassSelector(default=2, class_=(basestring, int), allow_None=True, doc=""" Index of the dimension from which the node colors will be drawn""") label_index = param.ClassSelector(default=2, class_=(basestring, int), allow_None=True, doc=""" Index of the dimension from which the node labels will be drawn""") label_position = param.ObjectSelector(default='right', objects=['left', 'right'], doc=""" Whether node labels should be placed to the left or right.""") show_values = param.Boolean(default=True, doc=""" Whether to show the values.""") node_width = param.Number(default=15, doc=""" Width of the nodes.""") node_padding = param.Integer(default=10, doc=""" Number of pixels of padding relative to the bounds.""") iterations = param.Integer(default=32, doc=""" Number of iterations to run the layout algorithm.""") _style_groups = dict(GraphPlot._style_groups, quad='nodes', text='label') _draw_order = ['patches', 'quad', 'text'] style_opts = GraphPlot.style_opts + ['edge_fill_alpha', 'nodes_line_color', 'label_text_font_size'] filled = True def _init_glyphs(self, plot, element, ranges, source): ret = super(SankeyPlot, self)._init_glyphs(plot, element, ranges, source) renderer = plot.renderers.pop(plot.renderers.index(self.handles['glyph_renderer'])) plot.renderers = [renderer] + plot.renderers return ret def get_data(self, element, ranges, style): data, mapping, style = super(SankeyPlot, self).get_data(element, ranges, style) self._compute_quads(element, data, mapping) style['nodes_line_color'] = 'black' lidx = element.nodes.get_dimension(self.label_index) if lidx is None: if self.label_index is not None: dims = element.nodes.dimensions()[2:] self.warning("label_index supplied to Sankey not found, " "expected one of %s, got %s." % (dims, self.label_index)) return data, mapping, style self._compute_labels(element, data, mapping) self._patch_hover(element, data) return data, mapping, style def _compute_quads(self, element, data, mapping): """ Computes the node quad glyph data.x """ quad_mapping = {'left': 'x0', 'right': 'x1', 'bottom': 'y0', 'top': 'y1'} quad_data = dict(data['scatter_1']) quad_data.update({'x0': [], 'x1': [], 'y0': [], 'y1': []}) for node in element._sankey['nodes']: quad_data['x0'].append(node['x0']) quad_data['y0'].append(node['y0']) quad_data['x1'].append(node['x1']) quad_data['y1'].append(node['y1']) data['quad_1'] = quad_data if 'node_fill_color' in mapping['scatter_1']: quad_mapping['fill_color'] = mapping['scatter_1']['node_fill_color'] mapping['quad_1'] = quad_mapping def _compute_labels(self, element, data, mapping): """ Computes labels for the nodes and adds it to the data. """ lidx = element.nodes.get_dimension(self.label_index) if element.vdims: edges = Dataset(element)[element[element.vdims[0].name]>0] nodes = list(np.unique([edges.dimension_values(i) for i in range(2)])) nodes = element.nodes.select(**{element.nodes.kdims[2].name: nodes}) else: nodes = element value_dim = element.vdims[0] labels = [lidx.pprint_value(v) for v in nodes.dimension_values(lidx)] if self.show_values: value_labels = [] for i, node in enumerate(element._sankey['nodes']): value = value_dim.pprint_value(node['value']) label = '%s - %s' % (labels[i], value) if value_dim.unit: label += ' %s' % value_dim.unit value_labels.append(label) labels = value_labels ys = nodes.dimension_values(1) nodes = element._sankey['nodes'] offset = (nodes[0]['x1']-nodes[0]['x0'])/4. if self.label_position == 'right': xs =
np.array([node['x1'] for node in nodes])
numpy.array
''' File: simLVcircuit.py Description: simulate circuit with ngspice History: Date Programmer SAR# - Description ---------- ---------- ---------------------------- Author: <EMAIL> 08MAR2021 - Created Author: <EMAIL> 08MAR2021 - v1.0.0 Author: <EMAIL> 13APR2021 - v2.0.0 Author: <EMAIL> 21APR2021 - v2.1.0 Author: <EMAIL> 09JUN2021 - v3.0.0 -added remove "temp_"+lvufilename[:-4] files Author: <EMAIL> 10JUL2021 - v3.1.2 - debug lvflowrate input run by adding voltage lvgnd2 to gnd as v(lv) ''' ######################################################################## _version='3.1.2' import logging logger = logging.getLogger(__name__) import sys import vtk import os import inspect from heartFEM import ngspice_py import numpy as np from scipy import interpolate ######################################################################## suffixDict={4:'T ',3:'g ',2:'meg',1:'k ',0:' ',-1:'m ',-2:'u ',-3:'n ',-4:'p ',-5:'f '} def simLVcircuit(casename,stopTime,lvufile,lvinputvar='V',initLAvol=0,initRAvol=0,initLVvol=0,initRVvol=0,vla0=None,vra0=None,init_file=None,init_time=None,additionalVarDict=None,timetopeak_from_to=None,verbose=True): logger.info('*** simulateLVcircuit ***') cirfilename = casename + ".cir" cirtempfilename = casename + "_temp.cir" cirlogfilename = casename + "_cir.log" cmd = "cp " + cirfilename + " " + cirtempfilename os.system(cmd) cmd = "sed -i.bak s/'<<stopTime>>'/'" + '{:.2f}m'.format(stopTime) + "'/g " + cirtempfilename os.system(cmd) if lvinputvar=='i' or lvinputvar=='I': cmd = "sed -i.bak s/'<<lvinputvar>>'/'I'/g " + cirtempfilename os.system(cmd) #cmd = "sed -i.bak s/'Vlvu'/'*Vlvu'/g " + cirtempfilename #os.system(cmd) #cmd = "sed -i.bak s/'*Elvu'/'Elvu'/g " + cirtempfilename #os.system(cmd) else: cmd = "sed -i.bak s/'<<lvinputvar>>'/'V'/g " + cirtempfilename os.system(cmd) if lvinputvar in ['i','v','I','V']: cmd = "sed -i.bak s/'<<lvsourcemode>>'/'2'/g " + cirtempfilename os.system(cmd) if os.path.isfile(lvufile): case_dir,lvufilename = os.path.split(lvufile) else: data=np.array(lvufile) case_dir=os.getcwd() lvufilename='lvufile.txt' lvufile=os.getcwd()+'/'+lvufilename np.savetxt(lvufile,data) if init_file is not None and init_time is not None: data=
np.loadtxt(lvufile)
numpy.loadtxt
""" Base classes used in the `ChiantiPy.core.ion` and `ChiantiPy.core.spectrum` classes. Mostly printing, plotting and saving routines. """ import copy import time import numpy as np import matplotlib.pyplot as plt import ChiantiPy.tools.util as util import ChiantiPy.Gui as chGui import ChiantiPy.tools.data as chdata class ionTrails(object): """ Base class for `ChiantiPy.core.ion` and `ChiantiPy.core.spectrum` """ def argCheck(self, temperature=None, eDensity=None, pDensity='default', em = None, verbose=0): ''' to check the compatibility of the three arguments and put them into numpy arrays of atleast_1d and create attributes to the object ''' if temperature is not None: self.Temperature = np.atleast_1d(temperature) if isinstance(self.Temperature[0], str): raise ValueError(' temperature can not be a string') if np.any(self.Temperature <= 0.): raise ValueError(' all temperatures must be positive') self.Ntemp = self.Temperature.size else: raise ValueError('temperature not defined') if pDensity == 'default': self.p2eRatio() if eDensity is not None: self.EDensity =
np.atleast_1d(eDensity)
numpy.atleast_1d
#! /usr/bin/env python ''' tensorflow==2.5.0+ python3 openvino2tensorflow.py \ --model_path openvino/448x448/FP32/Resnet34_3inputs_448x448_20200609.xml \ --output_saved_model \ --output_pb \ --output_weight_quant_tflite \ --output_float16_quant_tflite \ --output_no_quant_float32_tflite python3 openvino2tensorflow.py \ --model_path debug/openvino/yolox_nano/320x320/FP32/yolox_nano_320x320.xml \ --output_saved_model \ --output_pb \ --output_no_quant_float32_tflite \ --weight_replacement_config debug/weight_replacement_config_yolox_nano.json ''' import os import sys import argparse import struct import numpy as np from pathlib import Path import xml.etree.ElementTree as et import logging import warnings from tensorflow.python.framework.ops import _run_using_default_session from tensorflow.python.keras.backend import ndim os.environ['TF_CPP_MIN_LOG_LEVEL']='3' warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=Warning) class Color: BLACK = '\033[30m' RED = '\033[31m' GREEN = '\033[32m' YELLOW = '\033[33m' BLUE = '\033[34m' MAGENTA = '\033[35m' CYAN = '\033[36m' WHITE = '\033[37m' COLOR_DEFAULT = '\033[39m' BOLD = '\033[1m' UNDERLINE = '\033[4m' INVISIBLE = '\033[08m' REVERCE = '\033[07m' BG_BLACK = '\033[40m' BG_RED = '\033[41m' BG_GREEN = '\033[42m' BG_YELLOW = '\033[43m' BG_BLUE = '\033[44m' BG_MAGENTA = '\033[45m' BG_CYAN = '\033[46m' BG_WHITE = '\033[47m' BG_DEFAULT = '\033[49m' RESET = '\033[0m' def convert(model_path, model_output_path, output_saved_model, output_h5, output_weight_and_json, output_pb, output_no_quant_float32_tflite, output_dynamic_range_quant_tflite, output_weight_quant_tflite, output_float16_quant_tflite, output_integer_quant_tflite, output_full_integer_quant_tflite, output_integer_quant_type, string_formulas_for_normalization, calib_ds_type, ds_name_for_tfds_for_calibration, split_name_for_tfds_for_calibration, download_dest_folder_path_for_the_calib_tfds, tfds_download_flg, npy_load_default_path, load_dest_file_path_for_the_calib_npy, output_tfjs, output_tftrt_float32, output_tftrt_float16, tftrt_maximum_cached_engines, output_coreml, output_edgetpu, edgetpu_compiler_timeout, edgetpu_num_segments, output_onnx, onnx_opset, use_onnx_optimization, output_myriad, vpu_number_of_shaves, vpu_number_of_cmx_slices, replace_swish_and_hardswish, optimizing_hardswish_for_edgetpu, replace_prelu_and_minmax, restricted_resize_image_mode, weight_replacement_config, use_experimental_new_quantizer, optimizing_barracuda, layerids_of_the_terminating_output, keep_input_tensor_in_nchw): print(f'{Color.REVERCE}TensorFlow/Keras model building process starts{Color.RESET}', '=' * 38) import subprocess import tensorflow as tf tf.get_logger().setLevel('INFO') tf.autograph.set_verbosity(0) tf.get_logger().setLevel(logging.ERROR) import tensorflow_datasets as tfds from tensorflow.keras import Model, Input from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, AveragePooling2D, Conv2DTranspose, PReLU, Lambda, LeakyReLU, Conv3D from tensorflow.keras.initializers import Constant from tensorflow.keras.activations import elu from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 from tensorflow.python.framework.ops import EagerTensor if output_coreml: import coremltools as ct import json import pprint import math # for unpacking binary buffer format_config = { 'FP32' : ['f', 4], 'FP16' : ['e', 2], 'I64' : ['q', 8], 'I32' : ['i', 4], 'I16' : ['h', 2], 'I8' : ['b', 1], 'U8' : ['B', 1], 'BOOL' : ['?', 1] } # vino: u8, u16, u32, u64, i8, i16, i32, i64, f16, f32, bf16, boolean # tf : uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bfloat16 # type conversion table cast_type_ov_tf = { 'u8' : tf.uint8, 'u16' : tf.uint16, 'u32' : tf.uint32, 'u64' : tf.uint64, 'i8' : tf.int8, 'i16' : tf.int16, 'i32' : tf.int32, 'i64' : tf.int64, 'f16' : tf.float16, 'f32' : tf.float32, 'bf16': tf.bfloat16, 'boolean': tf.bool } # integer type table int_type_tf = [ tf.uint8, tf.uint16, tf.uint32, tf.uint64, tf.int8, tf.int16, tf.int32, tf.int64 ] # pad type conversion table pad_type_ov_tf = { 'constant' : 'CONSTANT', 'reflect' : 'REFLECT', 'symmetric': 'SYMMETRIC', 'edge' : 'REFLECT' } # Read IR weight data with open(model_path+'.bin', 'rb') as f: binWeight = f.read() # Parse IR XML file, tree = et.parse(model_path+'.xml') root = tree.getroot() edges = root.find('edges') layers = root.find('layers') tf_layers_dict = {} tf_edges = {} tf_inputs = [] tf_outputs = [] layer_id_port_dict = {} def get_num_of_outputs_per_layer_id(tf_edges): output_count_by_layer_id_tmp = {} for key in tf_edges.keys(): key_tmp = key.split(':')[0] output_count_by_layer_id_tmp.setdefault(key_tmp, {'count': 0, 'layer_id:port': []}) output_count_by_layer_id_tmp[key_tmp]['count'] += 1 output_count_by_layer_id_tmp[key_tmp]['layer_id:port'].append(key) return output_count_by_layer_id_tmp def get_bere_layer_type(before_layer): t = type(tf_layers_dict[before_layer]) if t == np.ndarray: # Const return 'const' else: try: return tf_layers_dict[before_layer.split(':')[0]].op.type except: # TopK return 'other' def get_tf_edges_from(tf_edges, layer_id, edge_index=-1): if edge_index == -1: # Add, Concat layer_list = [] for edge_index in range(len(tf_edges[layer_id])): before_layer_type = get_bere_layer_type(tf_edges[layer_id][edge_index]) if before_layer_type == 'Split': layer_list.append(tf_edges[layer_id][edge_index]) elif before_layer_type == 'other': layer_list.append(tf_edges[layer_id][edge_index]) else: layer_list.append(tf_edges[layer_id][edge_index].split(':')[0]) return layer_list else: # Other if layer_id in tf_edges: before_layer_type = get_bere_layer_type(tf_edges[layer_id][edge_index]) else: for key in tf_edges.keys(): if layer_id in key: before_layer_type = get_bere_layer_type(tf_edges[key][edge_index]) layer_id = key break if before_layer_type == 'Split': return tf_edges[layer_id][edge_index] elif before_layer_type == 'other': return tf_edges[layer_id][edge_index] else: return tf_edges[layer_id][edge_index].split(':')[0] """ format_version : Format version of weight_replacement_config. layer_id : ID of the Const layer whose weight/constant parameter is to be swapped. For example, specify "1123" for layer id="1123" for type="Const" in .xml. <layer id="1123" name="Decoder/softmax/Reshape_1/Cast_123722_const657_const" type="Const" version="opset1"> <data element_type="i64" offset="7632604" shape="4" size="32"/> <output> <port id="1" precision="I64"> <dim>4</dim> </port> </output> </layer> replace_mode : "direct" or "npy" "direct": Specify the values of the Numpy matrix directly in the "values" attribute. Ignores the values recorded in the .bin file and replaces them with the values specified in "values". { "layer_id": "1123", "replace_mode": "direct", "values": [ 1, 2, 513, 513 ] } "npy": Load a Numpy binary file with the matrix output by np.save('xyz', a). The "values" attribute specifies the path to the Numpy binary file. { "layer_id": "1125", "replace_mode": "npy", "values": "weights/xyz.npy" } values : Specify the value or the path to the Numpy binary file to replace the weight/constant value recorded in .bin. The way to specify is as described in the description of 'replace_mode'. """ # Elements for each version of weights_replacement_config # key = config version # value = Allowed elements for each version weights_replacement_config_version_elements = { 1 : ['layer_id', 'replace_mode', 'values'], 2 : ['layer_id', 'type', 'replace_mode', 'values'] } # Combinations of possible values for type key and replace_mode in weights_replacement_config. # key = Type name # value = List of replace_mode weights_replacement_config_types = { 'Const': ['direct', 'npy'], 'Transpose': ['insert_before', 'insert_after'], 'Reshape': ['insert_before', 'insert_after'], 'Cast': ['insert_before', 'insert_after'], 'Concat': ['change_axis'], 'SoftMax': ['change_axis'], 'ShuffleChannels': ['change_axis'], 'StridedSlice': ['change_attributes'], 'MaxPool': ['change_padding_mode'], 'PReLU': ['change_shared_axes'], 'ReverseSequence': ['change_batch_axis', 'change_seq_axis'], 'Squeeze': ['insert_before', 'insert_after'], 'Unsqueeze': ['insert_before', 'insert_after'], } def parse_json(jsonfile_path: str): """Parsing weights_replacement_config Args: ---------- jsonfile_path : str Path to the weights_replacement_config file Returns: ---------- format_version : int Format version number of weights_replacement_config layers : dict Result of parsing weights_replacement_config into dict format """ j = json.load(open(jsonfile_path)) format_version = j['format_version'] layers = {} for v in j['layers']: # Elements check for k in v.keys(): if not k in weights_replacement_config_version_elements[format_version]: key_name1 = 'layer_id' print(f'{Color.RED}ERROR:{Color.RESET} It contains a key that cannot be included in the config with format_version: {format_version}. layer_id: {v[key_name1]}, key: "{k}"') print(f'{Color.RED}ERROR:{Color.RESET} List of keys to allow in format_version: {format_version}. {weights_replacement_config_version_elements[format_version]}') sys.exit(-1) for k in weights_replacement_config_version_elements[format_version]: if not k in v.keys(): key_name1 = 'layer_id' print(f'{Color.RED}ERROR:{Color.RESET} Missing elements that must be included in the config for format_version: {format_version}. layer_id: {v[key_name1]}, key: "{k}"') print(f'{Color.RED}ERROR:{Color.RESET} List of elements that must be included in the config for format_version: {format_version}. {weights_replacement_config_version_elements[format_version]}') sys.exit(-1) # weights_replacement_config_types check (Only when format_version is 2 or higher) if format_version >= 2: # Type check if not v['type'] in weights_replacement_config_types.keys(): key_name1 = 'layer_id' key_name2 = 'type' print(f'{Color.RED}ERROR:{Color.RESET} It contains a key that cannot be included in the config. layer_id: {v[key_name1]}, type: "{v[key_name2]}"') print(f'{Color.RED}ERROR:{Color.RESET} List of keys to allow. {weights_replacement_config_types.keys()}') sys.exit(-1) # Replace Mode check if not v['replace_mode'] in weights_replacement_config_types[v['type']]: key_name1 = 'layer_id' key_name2 = 'replace_mode' key_name3 = 'type' print(f'{Color.RED}ERROR:{Color.RESET} It contains a key that cannot be included in the config. layer_id: {v[key_name1]}, replace_mode: "{v[key_name2]}"') print(f'{Color.RED}ERROR:{Color.RESET} List of keys to allow. {weights_replacement_config_types[v[key_name3]]}') sys.exit(-1) layers[v['layer_id']] = v print(f'{Color.GREEN}weight_replacement_config format_version:{Color.RESET} {format_version}') print(f'{Color.GREEN}Replace the value of Const for each layer_id with the value below.{Color.RESET}') pprint.pprint(layers) return format_version, layers format_version = None wr_config = None if weight_replacement_config: format_version, wr_config = parse_json(weight_replacement_config) def extrapolation_of_layers(setting_up_layers_to_be_extrapolated: dict, input): """Processing of input operations based on weights_replacement_config settings Args: ---------- setting_up_layers_to_be_extrapolated : dict wr_config[layer_id] { "layer_id": "659", "type": "Transpose", "replace_mode": "insert_before", "values": [0,2,1] } input : INPUT operation INPUT layer to be input to TF operations Returns: ---------- Processed input operations """ tf_layer = None layer_type = setting_up_layers_to_be_extrapolated['type'] param = setting_up_layers_to_be_extrapolated['values'] if layer_type == 'Transpose': tf_layer = tf.transpose( input, perm=param ) elif layer_type == 'Reshape': tf_layer = tf.reshape( input, shape=param ) elif layer_type == 'Cast': tf_layer = tf.cast( input, dtype=cast_type_ov_tf[param] ) elif layer_type == 'Squeeze': tf_layer = tf.squeeze( input, axis=param ) elif layer_type == 'Unsqueeze': tf_layer = tf.expand_dims( input, axis=param ) return tf_layer print(f'{Color.REVERCE}Layer structure{Color.RESET}', '=' * 69) def layer_structure_print(info: dict) -> None: for key, value in info.items(): print(f'{Color.GREEN}{key}{Color.RESET}: {value}') print('=' * 84) # edges added_key_list = [] concat_port_list = {} for edge in edges: to_layer = edge.attrib['to-layer'] to_layer_port = edge.attrib['to-port'] from_layer = edge.attrib['from-layer'] from_layer_port = edge.attrib['from-port'] for layer in layers: if layer.attrib['id'] == to_layer: output_layer_ports = layer.find('output') if layer.attrib['type'] != 'Result' and len(output_layer_ports) >= 2: for port in output_layer_ports: tf_edges.setdefault('{}:{}'.format(to_layer, port.attrib['id']), []).append(from_layer) added_key_list.append(to_layer) else: tf_edges.setdefault(to_layer, []) if layer.attrib['type'] == 'Concat' or \ layer.attrib['type'] == 'Gather' or \ layer.attrib['type'] == 'GatherND' or \ layer.attrib['type'] == 'GatherElements' or \ layer.attrib['type'] == 'ScatterElementsUpdate' or \ layer.attrib['type'] == 'ScatterNDUpdate' or \ layer.attrib['type'] == 'Reshape' or \ layer.attrib['type'] == 'ConvertLike' or \ layer.attrib['type'] == 'Subtract' or \ layer.attrib['type'] == 'Divide' or \ layer.attrib['type'] == 'FloorMod' or \ layer.attrib['type'] == 'Power' or \ layer.attrib['type'] == 'MatMul' or \ layer.attrib['type'] == 'Greater' or \ layer.attrib['type'] == 'GreaterEqual' or \ layer.attrib['type'] == 'Less' or \ layer.attrib['type'] == 'LessEqual' or \ layer.attrib['type'] == 'SquaredDifference' or \ layer.attrib['type'] == 'PriorBox' or \ layer.attrib['type'] == 'PriorBoxClustered' or \ layer.attrib['type'] == 'StridedSlice' or \ layer.attrib['type'] == 'Select' or \ layer.attrib['type'] == 'VariadicSplit' or \ layer.attrib['type'] == 'ReverseSequence' or \ layer.attrib['type'] == 'Range': concat_port_list.setdefault(to_layer, []).append(f'{from_layer}:{to_layer_port}') for layer in layers: if layer.attrib['id'] == from_layer: output_layer_ports = layer.find('output') if len(output_layer_ports) >= 2: flg = 'not_found' for key in tf_edges.keys(): if to_layer in key and from_layer in tf_edges[key] and '{}:{}'.format(from_layer, from_layer_port) not in tf_edges[key]: tf_edges[key].append('{}:{}'.format(from_layer, from_layer_port)) flg = 'found' try: tf_edges[key].remove(from_layer) except: pass if flg == 'not_found': tf_edges.setdefault(to_layer, []).append('{}:{}'.format(from_layer, from_layer_port)) if to_layer not in added_key_list: added_key_list.append(to_layer) else: if to_layer not in added_key_list: tf_edges.setdefault(to_layer, []).append(from_layer) added_key_list.append(to_layer) else: flg = 'not_found' for key in tf_edges.keys(): if to_layer in key and from_layer in tf_edges[key]: flg = 'found' break if flg == 'not_found': tf_edges.setdefault(to_layer, []).append(from_layer) break # The following loop sorts tf_edges in ascending order by port for to_layer, from_layer_ports in concat_port_list.items(): temp_sorted_tf_edge = [] # from_layer_ports = [from_layer_id:port, from_layer_id:port, from_layer_id:port, ...] ports = [p.split(':')[1] for p in from_layer_ports] for idx, port in enumerate(ports): temp_sorted_tf_edge.append(tf_edges[to_layer][ports.index(str(idx))]) tf_edges[to_layer] = temp_sorted_tf_edge del added_key_list del concat_port_list layer_id_port_dict = get_num_of_outputs_per_layer_id(tf_edges) # layers for idx, layer in enumerate(layers): layer_id = layer.attrib['id'] layer_name = layer.attrib['name'].replace('.', '_').replace('/', '_') data = layer.find('data') try: outputs = None layer_id_values = None layer_id_indices = None ### Parameter if layer.attrib['type'] == 'Parameter': if not data is None and 'shape' in data.attrib: shape_str = data.attrib['shape'].split(',') shape = [int(s) for s in shape_str] if len(shape) == 4: if not keep_input_tensor_in_nchw: tf_layers_dict[layer_id] = Input(shape=(shape[2], shape[3], shape[1]), batch_size=shape[0], name=layer_name) else: nchw = Input(shape=(shape[1], shape[2], shape[3]), batch_size=shape[0], name=layer_name) tf_layers_dict[layer_id] = tf.transpose(nchw, perm=[0,2,3,1]) else: if keep_input_tensor_in_nchw: print(f'{Color.RED}ERROR:{Color.RESET} The keep_input_tensor_in_nchw parameter only supports 4D input. layer_id: {layer_id} input_shape: {shape}') sys.exit(-1) tf_layers_dict[layer_id] = Input(shape=[inp for inp in shape[1:]], batch_size=shape[0], name=layer_name) if keep_input_tensor_in_nchw: tf_inputs.append(nchw) else: tf_inputs.append(tf_layers_dict[layer_id]) layer_structure_print( { 'layer_type': 'Input', 'layer_id': layer_id, 'tf_layers_dict': tf_layers_dict[layer_id] } ) if wr_config and layer_id in wr_config and format_version >= 2: print(f'{Color.RED}ERROR:{Color.RESET} Extrapolation of operations to "Parameter" is not supported. layer_id: {layer_id}') sys.exit(-1) ### Const elif layer.attrib['type'] == 'Const': if not data is None: if 'offset' in data.attrib and 'size' in data.attrib: offset = int(data.attrib['offset']) size = int(data.attrib['size']) shape_str = '1' if data.attrib['shape'] == '' else data.attrib['shape'].split(',') shape = [int(s) for s in shape_str] blobBin = binWeight[offset:offset+size] prec = layer.find('output').find('port').attrib['precision'] formatstring = '<' + format_config[prec][0] * (len(blobBin)//format_config[prec][1]) decodedwgt = np.array(list(struct.unpack(formatstring, blobBin))).reshape(shape) if not wr_config or layer_id not in wr_config: if type(decodedwgt) == np.ndarray and decodedwgt.dtype == np.float64: tf_layers_dict[layer_id] = decodedwgt.astype(np.float32) else: tf_layers_dict[layer_id] = decodedwgt else: if layer_id in wr_config and format_version == 1: if wr_config[layer_id]['replace_mode'] == 'direct': try: tf_layers_dict[layer_id] = np.array(wr_config[layer_id]['values']) except: tf_layers_dict[layer_id] = wr_config[layer_id]['values'] elif wr_config[layer_id]['replace_mode'] == 'npy': tf_layers_dict[layer_id] = np.load(wr_config[layer_id]['values']) elif layer_id in wr_config and format_version >= 2 and wr_config[layer_id]['type'] == 'Const': if wr_config[layer_id]['replace_mode'] == 'direct': try: tf_layers_dict[layer_id] = np.array(wr_config[layer_id]['values']) except: tf_layers_dict[layer_id] = wr_config[layer_id]['values'] elif wr_config[layer_id]['replace_mode'] == 'npy': tf_layers_dict[layer_id] = np.load(wr_config[layer_id]['values']) else: if type(decodedwgt) == np.ndarray and decodedwgt.dtype == np.float64: tf_layers_dict[layer_id] = decodedwgt.astype(np.float32) else: tf_layers_dict[layer_id] = decodedwgt if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': print(f'{Color.RED}ERROR:{Color.RESET} Extrapolation of operations to {layer.attrib["type"]} {wr_config[layer_id]["replace_mode"]} is not supported. layer_id: {layer_id}') sys.exit(-1) elif wr_config[layer_id]['replace_mode'] == 'insert_after': tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[layer_id] ) else: pass layer_structure_print( { 'layer_type': layer.attrib['type'], 'layer_id': layer_id, 'tf_layers_dict': tf_layers_dict[layer_id].shape } ) ### Convolution elif layer.attrib['type'] == 'Convolution': # port0 = [int(sdim.text) for sdim in layer.find('input')[0]] port1 = [int(sdim.text) for sdim in layer.find('input')[1]] filters = int(port1[0]) dilations = [int(s) for s in data.attrib['dilations'].split(',')] strides = [int(s) for s in data.attrib['strides'].split(',')] pads_begin = 0 pads_end = 0 if not data is None and 'pads_begin' in data.attrib: pads_begin = sum([int(s) for s in data.attrib['pads_begin'].split(',')]) if not data is None and 'pads_end' in data.attrib: pads_end = sum([int(s) for s in data.attrib['pads_end'].split(',')]) padding = '' if (pads_begin + pads_end) == 0: if 'auto_pad' in data.attrib: if data.attrib['auto_pad'] == 'same_upper' or data.attrib['auto_pad'] == 'same_lower': padding = 'same' else: padding = 'valid' else: padding = 'valid' else: padding = 'same' temp = tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] if len(strides) == 2: # Conv2D kernel_size = [int(port1[2]), int(port1[3])] orig = None if pads_begin > 0: padding = 'valid' # begin 0 = top # begin 1 = left # end 0 = bottom # end 1 = right begin = [int(data.attrib['pads_begin'].split(',')[0]), int(data.attrib['pads_end'].split(',')[0])] end = [int(data.attrib['pads_begin'].split(',')[1]), int(data.attrib['pads_end'].split(',')[1])] orig = tf.keras.layers.ZeroPadding2D([begin, end])(temp) else: if temp.shape[0] == 1 and temp.shape[2] == 1 and temp.shape[3] == 1: orig = tf.transpose(temp, perm=(0,2,3,1)) else: orig = temp try: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], orig ) tf_layers_dict[layer_id] = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose(2,3,1,0)) )(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose(2,3,1,0)) )(orig) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose(2,3,1,0)) )(orig) except: try: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], orig ) tf_layers_dict[layer_id] = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].numpy().transpose(2,3,1,0)) )(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].numpy().transpose(2,3,1,0)) )(orig) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].numpy().transpose(2,3,1,0)) )(orig) except: # Weights from OP that are not fixed values if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], orig ) tf_layers_dict[layer_id] = tf.nn.conv2d( input=inp, filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)], strides=strides, padding=padding.upper(), dilations=dilations ) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.nn.conv2d( input=orig, filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)], strides=strides, padding=padding.upper(), dilations=dilations ) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = tf.nn.conv2d( input=orig, filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)], strides=strides, padding=padding.upper(), dilations=dilations ) elif len(strides) == 3: # Conv3D - WIP padding same only # https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv3D """ openvino = [C_OUT, C_IN, Z, Y, X] = [8,1,3,3,3] [16,8,3,3,3] tf = [ Z, Y, X, C_IN, C_OUT] = [3,3,3,1,8] [3,3,3,8,16] """ kernel_size = [int(port1[2]), int(port1[3]), int(port1[4])] try: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = Conv3D( filters=filters, kernel_size=kernel_size, strides=strides, padding='same', dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose((2,3,4,1,0))) )(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = Conv3D( filters=filters, kernel_size=kernel_size, strides=strides, padding='same', dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose((2,3,4,1,0))) )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = Conv3D( filters=filters, kernel_size=kernel_size, strides=strides, padding='same', dilation_rate=dilations, use_bias=False, kernel_initializer=Constant(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose((2,3,4,1,0))) )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: # Weights from OP that are not fixed values # https://www.tensorflow.org/api_docs/python/tf/nn/conv3d strides = [1, strides[0], strides[1], strides[2], 1] if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = tf.nn.conv3d( input=inp, filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)], strides=strides, padding="SAME", dilations=[1, dilations[0], dilations[1], dilations[2], 1] ) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.nn.conv3d( input=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)], filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)], strides=strides, padding="SAME", dilations=[1, dilations[0], dilations[1], dilations[2], 1] ) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = tf.nn.conv3d( input=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)], filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)], strides=strides, padding="SAME", dilations=[1, dilations[0], dilations[1], dilations[2], 1] ) elif len(strides) == 1: # Conv1D """ VINO:[N, C, W] TF :[N, W, C] VINO = input:[1,1024,16] filter:[512,1024,1] TF = input:[1,16,1024] filter:[1,1024,512] """ kernel_size = [int(port1[2])] if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = tf.nn.conv1d( input=inp, filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose(2,1,0), stride=strides, padding=padding.upper(), dilations=dilations ) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.nn.conv1d( input=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)], filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose(2,1,0), stride=strides, padding=padding.upper(), dilations=dilations ) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = tf.nn.conv1d( input=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)], filters=tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].transpose(2,1,0), stride=strides, padding=padding.upper(), dilations=dilations ) ### Add elif layer.attrib['type'] == 'Add': # 'Fused_Add_' == BiasAdd if len(tf_edges[layer_id]) == 2 and type(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)]) == np.ndarray: try: # Biasadd or Add edge_id0 = get_tf_edges_from(tf_edges, layer_id, 0) edge_id1 = get_tf_edges_from(tf_edges, layer_id, 1) if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': print(f'{Color.RED}ERROR:{Color.RESET} Extrapolation of operations to {layer.attrib["type"]} {wr_config[layer_id]["replace_mode"]} is not supported. layer_id: {layer_id}') sys.exit(-1) elif wr_config[layer_id]['replace_mode'] == 'insert_after': if tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)].shape[-1] == tf_layers_dict[edge_id1].flatten().shape[0]: inp = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1].flatten()) else: inp = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: if tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)].shape[-1] == tf_layers_dict[edge_id1].flatten().shape[0]: tf_layers_dict[layer_id] = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1].flatten()) else: tf_layers_dict[layer_id] = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1]) except: # Add edge_id0 = get_tf_edges_from(tf_edges, layer_id, 0) edge_id1 = get_tf_edges_from(tf_edges, layer_id, 1) if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': print(f'{Color.RED}ERROR:{Color.RESET} Extrapolation of operations to {layer.attrib["type"]} {wr_config[layer_id]["replace_mode"]} is not supported. layer_id: {layer_id}') sys.exit(-1) elif wr_config[layer_id]['replace_mode'] == 'insert_after': try: inp = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1]) except: inp = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1].transpose(0,2,3,1)) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: try: tf_layers_dict[layer_id] = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1]) except: tf_layers_dict[layer_id] = tf.math.add(tf_layers_dict[edge_id0], tf_layers_dict[edge_id1].transpose(0,2,3,1)) else: # Add if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': print(f'{Color.RED}ERROR:{Color.RESET} Extrapolation of operations to {layer.attrib["type"]} {wr_config[layer_id]["replace_mode"]} is not supported. layer_id: {layer_id}') sys.exit(-1) elif wr_config[layer_id]['replace_mode'] == 'insert_after': if len(get_tf_edges_from(tf_edges, layer_id)) == 2: try: tmp_layers = [tf_layers_dict[from_layer_id].transpose(0,2,3,1).astype(np.float32) if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] inp = tf.math.add(tmp_layers[0], tmp_layers[1]) except: try: tmp_layers = [tf_layers_dict[from_layer_id].transpose(0,2,3,1) if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] inp = tf.math.add(tmp_layers[0], tmp_layers[1]) except: tmp_layers = [tf_layers_dict[from_layer_id] if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] inp = tf.math.add(tmp_layers[0], tmp_layers[1]) else: inp = tf.math.add_n( [tf_layers_dict[from_layer_id].transpose(0,2,3,1).astype(np.float32) if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] ) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: if len(get_tf_edges_from(tf_edges, layer_id)) == 2: try: tmp_layers = [tf_layers_dict[from_layer_id].transpose(0,2,3,1).astype(np.float32) if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] tf_layers_dict[layer_id] = tf.math.add(tmp_layers[0], tmp_layers[1]) except: try: tmp_layers = [tf_layers_dict[from_layer_id].transpose(0,2,3,1) if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] tf_layers_dict[layer_id] = tf.math.add(tmp_layers[0], tmp_layers[1]) except: tmp_layers = [tf_layers_dict[from_layer_id] if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] tf_layers_dict[layer_id] = tf.math.add(tmp_layers[0], tmp_layers[1]) else: tf_layers_dict[layer_id] = tf.math.add_n( [tf_layers_dict[from_layer_id].transpose(0,2,3,1).astype(np.float32) if type(tf_layers_dict[from_layer_id]) == np.ndarray else tf_layers_dict[from_layer_id] for from_layer_id in get_tf_edges_from(tf_edges, layer_id)] ) ### ReLU elif layer.attrib['type'] == 'ReLU': if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = tf.nn.relu(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.nn.relu(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = tf.nn.relu(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) ### PReLU elif layer.attrib['type'] == 'PReLU': input_len = len(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)].shape) alpha_len = len(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)].shape) shared_axes = [] if alpha_len < 4: if input_len == 4: shared_axes = [1, 2] elif input_len == 3: shared_axes = [1] else: shared_axes = None else: shared_axes = None temp_alpha = tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 1)] if alpha_len > 1 and temp_alpha.size == 1: temp_alpha = np.squeeze(temp_alpha) alpha_len = 1 if alpha_len == 4 and temp_alpha.shape[0] == 1 and temp_alpha.shape[2] == 1 and temp_alpha.shape[3] == 1: shared_axes = [1, 2] if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['type'] == 'PReLU' and wr_config[layer_id]['replace_mode'] == 'change_shared_axes': shared_axes = wr_config[layer_id]['values'] if alpha_len == 4: if replace_prelu_and_minmax: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) try: tf_layers_dict[layer_id] = \ tf.maximum(0.0, inp) + \ tf.minimum(0.0, temp_alpha.transpose(0,2,3,1) * inp) except: tf_layers_dict[layer_id] = \ tf.maximum(0.0, inp) + \ tf.minimum(0.0, tf.transpose(temp_alpha, perm=[0,2,3,1]) * inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': try: inp = tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha.transpose(0,2,3,1) * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: inp = tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, tf.transpose(temp_alpha, perm=[0,2,3,1]) * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: try: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha.transpose(0,2,3,1) * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, tf.transpose(temp_alpha, perm=[0,2,3,1]) * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: try: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha.transpose(0,2,3,1) * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, tf.transpose(temp_alpha, perm=[0,2,3,1]) * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha.transpose(0,2,3,1)), shared_axes=shared_axes )(inp) except: try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(tf.transpose(temp_alpha, perm=[0,2,3,1])), shared_axes=shared_axes )(inp) except: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': try: inp = PReLU( alpha_initializer=Constant(temp_alpha.transpose(0,2,3,1)), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: try: inp = PReLU( alpha_initializer=Constant(tf.transpose(temp_alpha, perm=[0,2,3,1])), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: inp = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha.transpose(0,2,3,1)), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(tf.transpose(temp_alpha, perm=[0,2,3,1])), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha.transpose(0,2,3,1)), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(tf.transpose(temp_alpha, perm=[0,2,3,1])), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) elif alpha_len >= 2: if replace_prelu_and_minmax: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = \ tf.maximum(0.0, inp) + \ tf.minimum(0.0, temp_alpha * inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: try: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: # alpha_len == 1 (LeakyReLU) if replace_prelu_and_minmax: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = \ tf.maximum(0.0, inp) + \ tf.minimum(0.0, temp_alpha * inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) elif output_edgetpu: # LeakyReLU -> Max/Min if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) tf_layers_dict[layer_id] = tf.maximum(0.0, inp) + tf.minimum(0.0, inp * temp_alpha) elif wr_config[layer_id]['replace_mode'] == 'insert_after': inp = tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: tf_layers_dict[layer_id] = \ tf.maximum(0.0, tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) + \ tf.minimum(0.0, temp_alpha * tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: if wr_config and layer_id in wr_config and format_version >= 2: if wr_config[layer_id]['replace_mode'] == 'insert_before': inp = extrapolation_of_layers( wr_config[layer_id], tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)] ) try: tf_layers_dict[layer_id] = LeakyReLU( alpha=temp_alpha )(inp) except: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(inp) elif wr_config[layer_id]['replace_mode'] == 'insert_after': try: inp = LeakyReLU( alpha=temp_alpha )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: inp = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) tf_layers_dict[layer_id] = extrapolation_of_layers( wr_config[layer_id], inp ) else: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) else: try: tf_layers_dict[layer_id] = LeakyReLU( alpha=temp_alpha )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) except: tf_layers_dict[layer_id] = PReLU( alpha_initializer=Constant(temp_alpha), shared_axes=shared_axes )(tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)]) ### Clamp elif layer.attrib['type'] == 'Clamp': cmin = None cmax = None if tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)].dtype == np.int64: cmin = np.asarray(data.attrib['min']).astype(np.int64) cmax = np.asarray(data.attrib['max']).astype(np.int64) elif tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)].dtype == np.int32: cmin = np.asarray(data.attrib['min']).astype(np.int32) cmax = np.asarray(data.attrib['max']).astype(np.int32) elif tf_layers_dict[get_tf_edges_from(tf_edges, layer_id, 0)].dtype == np.float32: cmin = np.asarray(data.attrib['min']).astype(np.float32) cmax =
np.asarray(data.attrib['max'])
numpy.asarray
import numpy as np import matplotlib.pyplot as plt from matplotlib import path from numpy import linspace class foreground(): # Contains coor, areas, numpts, dx,dy,dz and right and left boundaries for areas def __init__(self, coor, vols, xyx_numpts_vec, dx_vec, dy_vec, dh_vec, xr, xl, yr, yl, hr, hl): self.coor = coor self.vols = vols self.xyz_numpts_vec = xyx_numpts_vec self.dx_vec = dx_vec self.dy_vec = dy_vec self.dh_vec = dh_vec self.xr = xr self.xl = xl self.yr = yr self.yl = yl self.hr = hr self.hl = hl def generate_unif_particles(origin, xyzmax_vec, xyz_numpts_vec): # Generate areas and positions from input origin, 3 orthogonal max displacements in x, y and z as [xmax, ymax, zmax], and a vector of the number of points in x, y and z to generate as np.array([numptsx, numptsy, numptsz]) xyz_totalnumpts_vec = xyz_numpts_vec node_num=xyz_totalnumpts_vec[0]*xyz_totalnumpts_vec[1]*xyz_totalnumpts_vec[2] x=np.zeros(xyz_totalnumpts_vec[0]) y=np.zeros(xyz_totalnumpts_vec[1]) h=np.zeros(xyz_totalnumpts_vec[2]) dx_vec=np.zeros(node_num) dy_vec=np.zeros(node_num) dh_vec=np.zeros(node_num) xr_vec=np.zeros(node_num) xl_vec=np.zeros(node_num) yr_vec=np.zeros(node_num) yl_vec=np.zeros(node_num) hr_vec=np.zeros(node_num) hl_vec=np.zeros(node_num) coor=np.zeros((int(node_num),4)) print('Generating Uniform Particles...') print("%s Nodes" %node_num) vol=np.zeros(node_num) dx=(xyzmax_vec[0]-origin[0])/(xyz_numpts_vec[0]) dy=(xyzmax_vec[1]-origin[1])/(xyz_numpts_vec[1]) if xyz_numpts_vec[2]>1: dh=(np.double(xyzmax_vec[2])-origin[2])/(np.double(xyz_numpts_vec[2])) if xyz_numpts_vec[2]==1: dh=0 node=0 for i in range(xyz_totalnumpts_vec[2]): if i>0: h[i]=h[i-1]+dh if i==0: h[i]=origin[2]+(0.5)*dh hr=h[i]+dh/2.0 hl=h[i]-dh/2.0 for j in range(xyz_totalnumpts_vec[0]): if j>0: x[j]=x[j-1]+dx if j==0: x[j]=origin[0]+(0.5)*dx xr=x[j]+dx/2.0 xl=x[j]-dx/2.0 for k in range(xyz_totalnumpts_vec[1]): if k>0: y[k]=y[k-1]+dy if k==0: y[k]=origin[1]+(0.5)*dy yr=y[k]+dy/2.0 yl=y[k]-dy/2.0 vol[node]=(xr-xl)*(yr-yl) if hr!=hl: vol[node]=vol[node]*(hr-hl) coor[node,:]=[node+1,x[j],y[k],h[i]] xr_vec[node]=xr xl_vec[node]=xl yr_vec[node]=yr yl_vec[node]=yl hr_vec[node]=hr hl_vec[node]=hl dx_vec[node]=xr-xl dy_vec[node]=yr-yl dh_vec[node]=hr-hl node=node+1 coor=np.vstack(([node,0,0,0], coor)) G=foreground(coor, vol, xyz_numpts_vec, dx_vec, dy_vec, dh_vec, xr_vec, xl_vec, yr_vec, yl_vec, hr_vec, hl_vec) print("Complete") return(G) def vis_particles2d(G): # Generate Scatter plot of saved point cloud data plt.scatter(G.coor[1:,1], G.coor[1:,2]) plt.show() def save_geometry(G): # outputs Geometry.dat including input coordinates and areas of the PD nodes print("Saving input files...") coor=G.coor vol=G.vols dx_vec=np.transpose(np.array([G.dx_vec])) dy_vec=np.transpose(np.array([G.dy_vec])) dz_vec=np.transpose(np.array([G.dh_vec])) nodes=coor.shape[0]-1 with open("Geometry.dat", "w") as f: f.write("%6d \t\t\t x \t\t\t\t\t y\t\t\t\t\t\t z \t\t\t\t\tarea \n" % (nodes) ) data=np.hstack((coor[1:nodes+1,:], np.transpose(np.array([vol[:nodes]])))) with open("Geometry.dat", "ab") as f: np.savetxt(f, np.vstack((data)), fmt='%6i %e %e %e %e') print("Save Complete, %d nodes"%nodes) def subt_rect_dom_fg(G, p1, p2, p3, p4): #Subtracts rectangle primitive domain from particles domain given 4 corner point vectors as nparray p1 p2 p3 p4 xyz=G.coor[1:,1:-1] temp=G.coor[1:,:] p = path.Path([p1,p2,p3,p4]) bools=p.contains_points(xyz) bools=np.invert(p.contains_points(xyz)) nodenum=np.sum(bools) G.coor=temp[bools] for i in range(G.coor.shape[0]): G.coor[i,0]=i+1 G.coor=np.vstack((np.array([nodenum,0,0,0]),G.coor)) G.vols=G.vols[bools] G.dx_vec = G.dx_vec[bools] G.dy_vec = G.dy_vec[bools] G.dh_vec = G.dh_vec[bools] G.xr = G.xr[bools] G.xl = G.xl[bools] G.yr = G.yr[bools] G.yl = G.yl[bools] G.hr = G.hr[bools] G.hl = G.hl[bools] return(G) def in_cube(xyz, xmin, xmax, ymin, ymax, zmin, zmax): out = np.logical_and(np.logical_and(np.logical_and(xyz[:, 0]>=xmin, xyz[:, 0]<=xmax), np.logical_and(xyz[:, 1]>=ymin, xyz[:, 1]<=ymax)), np.logical_and(xyz[:, 2]>=zmin, xyz[:, 2]<=zmax)) return(out) def subt_cubic_dom_fg(G, xmin, xmax, ymin, ymax, zmin, zmax): #Subtracts cubic primitive domain from particles domain given 4 corner point vectors as nparray p1 p2 p3 p4 xyz=G.coor[1:,1:] temp=G.coor[1:,:] bools=in_cube(xyz, xmin, xmax, ymin, ymax, zmin, zmax) bools=np.invert(bools) nodenum=np.sum(bools) G.coor=temp[bools] for i in range(G.coor.shape[0]): G.coor[i,0]=i+1 G.coor=np.vstack((np.array([nodenum,0,0,0]),G.coor)) G.vols=G.vols[bools] G.dx_vec = G.dx_vec[bools] G.dy_vec = G.dy_vec[bools] G.dh_vec = G.dh_vec[bools] G.xr = G.xr[bools] G.xl = G.xl[bools] G.yr = G.yr[bools] G.yl = G.yl[bools] G.hr = G.hr[bools] G.hl = G.hl[bools] return(G) def in_circle(xyz, center, radius): # Determine if point(s) is(are) within the 2d circular region defined by center and radius out = np.sqrt(np.sum(np.multiply(np.array(xyz)-center,np.array(xyz)-center), axis=1))>=radius return(out) def subt_circular_domain(G, center, radius): # Subtracts cirucular domain from particles given center and radius xyz=G.coor[1:,1:] temp=G.coor[1:,:] bools=in_circle(xyz, center, radius) nodenum=np.sum(bools) G.coor=temp[bools] for i in range(G.coor.shape[0]): G.coor[i,0]=i+1 G.coor=np.vstack((
np.array([nodenum,0,0,0])
numpy.array
import numpy as np from cartesian.cgp import Primitive from scipy.stats import skew, kurtosis ################################################################# # Here we define pool of functions available for CGP experiments. ################################################################# ############################## Utils functions ############################## def float2index(vector, y): """ Transform float y representation to (integer) index to vector. :param vector: Strictly one-dim np.array. :param y: Any np.array or scalar. :return: Index to vector. """ l = vector.shape[0] index_f = np.mean(np.abs((y + 1) / 2)) return int(np.nan_to_num(np.min((np.max(((l-1) * index_f, 0)), l-1)))) def common_submatrices(x, y): if len(x.shape) == 1: x = np.expand_dims(x, 0) if len(y.shape) == 1: y = np.expand_dims(y, 0) (x1, x2), (y1, y2) = x.shape, y.shape n1, n2 = min(x1, y1), min(x2, y2) return x[0:n1, 0:n2], y[0:n1, 0:n2] def scaled_array(array): array[~np.isfinite(array)] = 0.0 array[array < -1.0] = -1.0 array[array > 1.0] = 1.0 return array def scaled_scalar(number): if not np.isfinite(number): return 0.0 else: return np.min((np.max((number, -1.0)), 1.0)) ############################## Mathematical functions ############################## def cgp_inner_ypow(x, y): if (isinstance(x, np.ndarray) and isinstance(y, np.ndarray)): x, y = common_submatrices(x, y) return np.power(np.abs(x), np.abs(y)) def cgp_inner_sqrtxy(x, y): if (isinstance(x, np.ndarray) and isinstance(y, np.ndarray)): x, y = common_submatrices(x, y) return np.sqrt(x**2 + y**2) / np.sqrt(2) cgp_add = Primitive("add", lambda x, y: sum(*common_submatrices(x, y)) / 2.0 if (isinstance(x, np.ndarray) and isinstance(y, np.ndarray)) else (x+y)/2.0, 2) cgp_aminus = Primitive("aminus", lambda x, y: np.abs(sum(*common_submatrices(x, -y))) / 2.0 if (isinstance(x, np.ndarray) and isinstance(y, np.ndarray)) else np.abs(x-y)/2.0, 2) cgp_mult = Primitive("mult", lambda x, y: np.multiply(*common_submatrices(x, y)) if (isinstance(x, np.ndarray) and isinstance(y, np.ndarray)) else x*y, 2) cgp_inv = Primitive("inverse", lambda x: scaled_array(np.divide(1, x)) if isinstance(x, np.ndarray) else scaled_scalar(np.divide(1, x)), 1) cgp_abs = Primitive("abs", lambda x: np.abs(x), 1) cgp_sqrt = Primitive("sqrt", lambda x: np.sqrt(np.abs(x)), 1) cgp_ypow = Primitive("ypow", cgp_inner_ypow, 2) cgp_expx = Primitive("expx", lambda x: (np.exp(x) - 1) / (np.exp(1) - 1), 1) cgp_sinx = Primitive("sinx", lambda x:
np.sin(x)
numpy.sin
import datetime import locale import os import matplotlib import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import pandas as pd from netCDF4 import num2date __author__ = '<NAME>' __email__ = '<EMAIL>' __created__ = datetime.datetime(2017, 2, 24) __modified__ = datetime.datetime(2019, 1, 21) __version__ = "1.0" __status__ = "Development" matplotlib.rcParams.update({'font.size': 14}) class FormatScalarFormatter(matplotlib.ticker.ScalarFormatter): def __init__(self, fformat="%1.1f", offset=True, mathText=True): self.fformat = fformat matplotlib.ticker.ScalarFormatter.__init__(self, useOffset=offset, useMathText=mathText) def _set_format(self): self.format = self.fformat if self._useMathText: self.format = r'$\mathdefault{%s}$' % self.format class StationPlot: # Used for contour plots def define_variable_specifics(self, varname): return {"temp": {"vmin": 4, "vmax": 17, "title": "{}: Temperatur ($^o$C)".format(self.name)}, "salt": {"vmin": 25, "vmax": 35, "title": "{}: Saltholdighet".format(self.name)}, "ox": {"vmin": 0, "vmax": 12, "title": "{}: Oksygenkons.(mlO$_2$/L)".format(self.name)}, "oxsat": {"vmin": 0, "vmax": 120, "title": "{}: Oksygenmetning ($\%$)".format(self.name)}, "ftu": {"vmin": 0, "vmax": 5, "title": "{}: Fluorescence".format(self.name)}}[varname] # Used for variability over time at fixed depths def define_variable_specifics_3m(self, varname): return {"temp": {"vmin": 2, "vmax": 19, "ylabel": "Temperatur ($^o$C)", "title": "{}".format(self.name)}, "salt": {"vmin": 25, "vmax": 35.3, "ylabel": "Saltholdighet", "title": "{}".format(self.name)}, "ox": {"vmin": 2, "vmax": 12, "ylabel": "Oksygenkons.(mlO$_2$/L)", "title": "{}".format(self.name)}, "oxsat": {"vmin": 0, "vmax": 120, "ylabel": "Oksygenmetning ($\%$)", "title": "{}".format(self.name)}, "ftu": {"vmin": 0, "vmax": 5, "ylabel": "Fluorescence", "title": "{}".format(self.name)}}[varname] # Used for variability over time at fixed depths def define_variable_specifics_100_200m(self, varname): return {"temp": {"vmin": 6, "vmax": 11, "ylabel": "Temperatur ($^o$C)", "title": "{}".format(self.name)}, "salt": {"vmin": 34, "vmax": 35.3, "ylabel": "Saltholdighet", "title": "{}".format(self.name)}, "ox": {"vmin": 2, "vmax": 8, "ylabel": "Oksygenkons.(mlO$_2$/L)", "title": "{}".format(self.name)}, "oxsat": {"vmin": 0, "vmax": 120, "ylabel": "Oksygenmetning ($\%$)", "title": "{}".format(self.name)}, "ftu": {"vmin": 0, "vmax": 5, "ylabel": "Fluorescence", "title": "{}".format(self.name)}}[varname] def define_array_for_variable(self, varname): return {"temp": self.sectionTE, "salt": self.sectionSA, "ox": self.sectionOX, "ftu": self.sectionFTU, "oxsat": self.sectionOXS}[varname] # Save figures to file depending on what sort of plot (plot_type) def save_to_file(self, CTDConfig, var_name, plot_type, work_dir, selected_depth=None, dateObjectStart=None, dateObjectEnd=None): figures_path = os.path.join(work_dir,'figures', CTDConfig.survey) if not os.path.isdir(figures_path): os.makedirs(figures_path) if plot_type == "timeseries": start = dateObjectStart.strftime("%Y%m%d") stop = dateObjectEnd.strftime("%Y%m%d") filename = f"timeseries-{self.name}-{var_name}-{start}-to-{stop}.png" else: filename = f"{plot_type}-{self.name}-{var_name}-{selected_depth}.png" plotfileName = os.path.join(figures_path, filename) if os.path.exists(plotfileName): os.remove(plotfileName) print("Saving time series to file {}".format(plotfileName)) plt.savefig(plotfileName, dpi=300, bbox_inches='tight') plt.close() def get_depthindex(self, Y, max_depth, ax, varname): if float(max_depth) > 250: ax.set_ylim(-250, 0) depthindex = np.where(Y == 250)[0][0] elif 150 < float(150) < 190: ax.set_ylim(150, 0) depthindex = np.where(Y == max_depth)[0][0] elif 120 < float(120) < 150: ax.set_ylim(120, 0) depthindex = np.where(Y == max_depth)[0][0] else: depthindex = -1 if self.name in ["S16", "S10", "SOE72", "Lind1"]: ax.set_ylim(-40, 0) depthindex = np.where(Y == 40)[0][0] if self.name in ["S22"]: ax.set_ylim(-25, 0) depthindex = np.where(Y == 25)[0][0] if self.name == "OKS1" or self.name == "OFOT1": ax.set_ylim(-150, 0) depthindex = np.where(Y == 150)[0][0] if self.name == "NORD2": ax.set_ylim(-225, 0) depthindex = np.where(Y == 225)[0][0] if self.name in ["VT79"]: ax.set_ylim(-500, 0) depthindex = np.where(Y == 450)[0][0] if self.name in ["VT69"]: ax.set_ylim(-20, 0) depthindex = np.where(Y == 20)[0][0] if self.name in ["VT70"]: ax.set_ylim(-590, 0) depthindex = np.where(Y == 590)[0][0] if self.name in ["VT75"]: ax.set_ylim(-180, 0) depthindex = np.where(Y == 180)[0][0] if self.name in ["VT52"]: ax.set_ylim(-370, 0) depthindex = np.where(Y == 370)[0][0] if self.name in ["VT74"]: ax.set_ylim(-230, 0) depthindex = np.where(Y == 230)[0][0] if self.name in ["VT53"]: ax.set_ylim(-850, 0) depthindex = np.where(Y == 850)[0][0] if self.name in ["VT16"] and varname in ["oxsat", "ox"]: ax.set_ylim(-1250, 0) depthindex = np.where(Y == 1250)[0][0] if self.name in ["VT16"] and varname in ["temp", "salt"]: ax.set_ylim(-300, 0) depthindex = np.where(Y == 300)[0][0] if varname in ["ftu"]: if ax.get_ylim()[0] < -100: ax.set_ylim(-100, 0) depthindex = np.where(Y == 100)[0][0] return depthindex def createHistoricalTimeseries(self, CTDConfig,work_dir): dates = [num2date(jd, units=CTDConfig.refdate, calendar="standard") for jd in self.julianDay] # Either we plot all the years or a selection (e.g. years=[2017,2018]) startdate = dates[0] enddate = dates[-1] steps = (enddate.year - startdate.year) + 1 years = [int(startdate.year) + i for i in range(steps)] n_months = 12 smooth = False print("Using smoothing for timeseries: {}".format(smooth)) if self.name in ["VT69", "VT70"]: if self.name in ["VT69"]: CTDConfig.selected_depths = [5] elif self.name in ["VT70"]: CTDConfig.selected_depths = [5, 100, 200] print("RUNNING HISTORICAL ", self.name, CTDConfig.selected_depths) for var_name in ["temp", "salt"]: # ,"salt","ox"]: for sub_index, selected_depth in enumerate(CTDConfig.selected_depths): fig, ax = plt.subplots(nrows=1) colormap = plt.cm.plasma colors = [colormap(i) for i in np.linspace(0, 0.9, len(years))] # Size of data is number of years for data storage all_data = np.empty((len(years), n_months)) Z = self.define_array_for_variable(var_name) depthindex = np.where(self.Y == selected_depth)[0][0] all_dates = np.zeros((len(years), 12)) print("STATION {} DEPTH {} FOUND DEPTH {}".format(self.name, selected_depth, self.Y[depthindex])) # Extract only data for each individual year and save by month for ind, d in enumerate(dates): year_index = years.index(d.year) all_data[year_index, int(d.month - 1)] = Z[ind, depthindex] all_dates[year_index, d.month - 1] = self.julianDay[ind] # Mask the data to remove months where observations may not exist all_data = np.ma.masked_where(all_data < 0.1, all_data) if var_name in ["salt"]: all_data = np.ma.masked_where(all_data < 28, all_data) if var_name in ["salt", "temp"]: # Salinity above 35.2 not likely in inner fjords. all_data = np.ma.masked_where(all_data > 35.2, all_data) all_data = np.ma.masked_invalid(all_data) legendlist = [] # Create the smoothed series of data and plot for ind in range(len(years)): changed_dates = [] legendlist.append("{}".format(years[ind])) alld = num2date(all_dates[ind, :], units=CTDConfig.refdate, calendar="standard") # Mock the year in dates so all plots from different years can be using the same # x-axis and be overlaid on top of eachother for d in alld: changed_dates.append(datetime.datetime(years[0], d.month, d.day, d.hour)) # Smooth the data by creating a pandas Series object which is resampled at high frequency ser = pd.Series(all_data[ind, :], index=pd.to_datetime(changed_dates)) ser = ser.dropna() if smooth: smoothed = ser.resample("60T").apply(['median']) tsint = smoothed.interpolate(method='cubic') # Get the vmin and vmax limits for the specific plot if selected_depth < 10: specs = self.define_variable_specifics_3m(var_name) else: specs = self.define_variable_specifics_100_200m(var_name) # ser=ser.mask(ser>36) ax.set_ylim(float(specs["vmin"]), float(specs["vmax"])) if not smooth: ax = ser.loc['2013-01-01':'2030-01-01'].plot(color=colors[ind], lw=2.2, ax=ax, label=str(years[ind])) # SMOOTHED version uncomment next line if smooth: ax = tsint.loc['2013-01-01':'2020-01-01'].plot(color=colors[ind], ax=ax, lw=2.2, label=str(years[ind]), x_compat=True) # SHOW DOTS FOR original positions uncomment next line # ax[ind] = ser.loc['2017-01-01':'2030-01-01'].plot(style="o",ms=5,ax=ax) #,label=str(years[ind])) ax.xaxis.set_tick_params(reset=True) ax.xaxis.set_major_locator(mdates.MonthLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('')) # Make sure the month names are in Norwegian locale.setlocale(locale.LC_ALL, "no_NO") leg = ax.legend(legendlist, loc=1, prop={'size': 10}) label = " {}m".format(selected_depth) ax.text(0.1, 0.1, label, size=12, horizontalalignment='right', verticalalignment='bottom', transform=ax.transAxes) ax.xaxis.set_tick_params(reset=True) ax.xaxis.set_major_locator(mdates.MonthLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('%b')) ax.set_xlabel("Dato") ax.set_ylabel(specs["ylabel"], multialignment='center') ax.set_title(specs["title"]) plt.tight_layout() if not smooth: self.save_to_file(CTDConfig, var_name, 'annual_variability_historical',work_dir, selected_depth=str(selected_depth)) else: self.save_to_file(CTDConfig, var_name, 'annual_variability_historical_smoothed',work_dir, selected_depth=str(selected_depth)) plt.clf() def createTimeseriesPlot(self, CTDConfig): dates = [num2date(jd, units=CTDConfig.refdate, calendar="standard") for jd in self.julianDay] if len(dates)> 0: # Either we plot all the years or a selection (e.g. years=[2017,2018]) startdate = dates[0] enddate = dates[-1] steps = (enddate.year - startdate.year) + 1 years = [int(startdate.year) + i for i in range(steps)] n_months = 12 if self.get_max_depth() < 100: CTDConfig.selected_depths = [5] elif self.get_max_depth() < 200: CTDConfig.selected_depths = [5, 100] elif self.get_max_depth() < 300: CTDConfig.selected_depths = [5, 100, 200] for var_name in ["temp","salt"]: # ,"salt","ox"]: fig, ax = plt.subplots(nrows=3) if self.name in ["VT75"]: fig, ax = plt.subplots(nrows=2) colormap = plt.cm.plasma colors = [colormap(i) for i in np.linspace(0, 0.9, len(years))] legendlist = [] # Loop over all depths to be plotted as individual figures for sub_index, selected_depth in enumerate(CTDConfig.selected_depths): # Size of data is number of years for data storage all_data = np.empty((len(years), n_months)) Z = self.define_array_for_variable(var_name) depthindex = np.where(self.Y == selected_depth)[0][0] all_dates = np.zeros((len(years), 12)) # Extract only data for each individual year and save by month for ind, d in enumerate(dates): year_index = years.index(d.year) all_data[year_index, int(d.month - 1)] = Z[ind, depthindex] all_dates[year_index, d.month - 1] = self.julianDay[ind] # Mask the data to remove months where observations may not exist all_data = np.ma.masked_where(all_data < 0.1, all_data) all_data = np.ma.masked_where(all_data > 150, all_data) # Create the smoothed series of data and plot for ind in range(len(years)): changed_dates = [] legendlist.append("{}".format(years[ind])) alld = num2date(all_dates[ind, :], units=CTDConfig.refdate, calendar="standard") # Mock the year in dates so all plots from different years can be using the same # x-axis and be overlaid on top of eachother for d in alld: changed_dates.append(datetime.datetime(years[0], d.month, d.day, d.hour)) # Smooth the data by creating a pandas Series object which is resampled at high frequency ser = pd.Series(all_data[ind, :], index=pd.to_datetime(changed_dates)) # smoothed = ser.resample("60T").apply(['median']) # tsint = smoothed.interpolate(method='cubic') # Get the vmin and vmax limits for the specific plot if selected_depth < 10: specs = self.define_variable_specifics_3m(var_name) else: specs = self.define_variable_specifics_100_200m(var_name) # ser=ser.mask(ser>36) ax[sub_index].set_ylim(float(specs["vmin"]), float(specs["vmax"])) ax[sub_index] = ser.loc['2013-01-01':'2030-01-01'].plot(color=colors[ind], lw=1.5, ax=ax[sub_index], label=str(years[ind])) # SMOOTHED version uncomment next line # ax[ind] = tsint.loc['2017-01-01':'2030-01-01'].plot(color=colors[ind],ax=ax,lw=2,label=str(years[ind]),x_compat=True) # SHOW DOTS FOR original positions uncomment next line # ax[ind] = ser.loc['2017-01-01':'2030-01-01'].plot(style="o",ms=5,ax=ax) #,label=str(years[ind])) ax[sub_index].xaxis.set_tick_params(reset=True) ax[sub_index].xaxis.set_major_locator(mdates.MonthLocator()) ax[sub_index].xaxis.set_major_formatter(mdates.DateFormatter('')) # Make sure the month names are in Norwegian locale.setlocale(locale.LC_ALL, "no_NO") if self.name in ["VT75"]: leg = ax[1].legend(legendlist, loc=1, prop={'size': 10}) else: leg = ax[2].legend(legendlist, loc=1, prop={'size': 10}) for j, selected_depth in enumerate(CTDConfig.selected_depths): label = " {}m".format(selected_depth) if self.name in ["VT75"]: yy=1.15 else: yy=1.5 ax[j].text(0.1, yy, label, size=12, horizontalalignment='right', verticalalignment='top', transform=ax[j].transAxes) if self.name in ["VT75"]: ax[1].xaxis.set_tick_params(reset=True) ax[1].xaxis.set_major_locator(mdates.MonthLocator()) ax[1].xaxis.set_major_formatter(mdates.DateFormatter('%b')) ax[1].set_xlabel("Dato") else: ax[2].xaxis.set_tick_params(reset=True) ax[2].xaxis.set_major_locator(mdates.MonthLocator()) ax[2].xaxis.set_major_formatter(mdates.DateFormatter('%b')) ax[2].set_xlabel("Dato") ax[1].set_ylabel(specs["ylabel"], multialignment='center') if self.survey not in ['Soerfjorden']: ax[0].set_title(specs["title"]) plt.tight_layout() self.save_to_file(CTDConfig, var_name, 'annual_variability', CTDConfig.work_dir, selected_depth=str(selected_depth)) plt.clf() else: print('Empty dates', CTDConfig) def createContourPlots(self, CTDConfig): xticklabels = [] yticklabels = [] for d, dd in enumerate(self.julianDay): dateObject = num2date(self.julianDay[d], units=CTDConfig.refdate, calendar="standard") self.X[d] = self.julianDay[d] xticklabels.append(str(dateObject.year) + "-" + str(dateObject.month)) for yy in self.Y: yticklabels.append(str(-(np.max(self.Y) - yy))) plt.set_cmap('RdYlBu_r') varNames = ["temp", "salt", "ox", "ftu", "oxsat"] if self.name in ['SJON1', 'SJON2']: varNames = ["temp", "salt", "ox", "oxsat"] for i in range(len(varNames)): plt.clf() fig, ax = plt.subplots() # Get data and settings for station specs = self.define_variable_specifics(varNames[i]) Z = self.define_array_for_variable(varNames[i]) Z = np.ma.masked_where(Z < 0, Z) if varNames[i] == "ftu": Z = np.ma.masked_where(Z > 20, Z) delta = (specs["vmax"] - specs["vmin"]) / 15 levels =
np.arange(specs["vmin"], specs["vmax"], delta)
numpy.arange
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import numpy as np from test.bigdl.test_zoo_utils import ZooTestCase import bigdl.dllib.keras.layers as ZLayer from bigdl.dllib.keras.models import Model as ZModel from bigdl.dllib.keras.models import Sequential as ZSequential import keras.layers as KLayer from keras.engine import merge as kmerge, Model as KModel from keras.models import Sequential as KSequential import keras.backend as K from bigdl.dllib.keras.converter import WeightsConverter from bigdl.dllib.keras import regularizers np.random.seed(1337) # for reproducibility class TestLayer(ZooTestCase): def test_embedding(self): input_data = np.random.randint(1000, size=(32, 10)) zlayer = ZLayer.Embedding(1000, 64, input_shape=(10, )) klayer = KLayer.Embedding(1000, 64, input_length=10) self.compare_layer(klayer, zlayer, input_data, WeightsConverter.convert_embedding) def test_batchnormalization(self): print("Running batch normal test") K.set_image_dim_ordering("th") input_data = np.random.random_sample([2, 5, 32, 32]) zlayer = ZLayer.BatchNormalization(axis=1, input_shape=(5, 32, 32)) klayer = KLayer.BatchNormalization(axis=1, input_shape=(5, 32, 32)) self.compare_layer(klayer, zlayer, input_data, WeightsConverter.convert_batchnormalization) K.set_image_dim_ordering("tf") input_data2 = np.random.random_sample([2, 32, 32, 4]) zlayer = ZLayer.BatchNormalization(axis=-1, dim_ordering="tf", input_shape=(32, 32, 4)) klayer = KLayer.BatchNormalization(axis=-1, input_shape=(32, 32, 4)) self.compare_layer(klayer, zlayer, input_data2, WeightsConverter.convert_batchnormalization) K.set_image_dim_ordering("th") input_data = np.random.random_sample([2, 5]) zlayer = ZLayer.BatchNormalization(axis=1, input_shape=(5,)) klayer = KLayer.BatchNormalization(axis=1, input_shape=(5,)) self.compare_layer(klayer, zlayer, input_data, WeightsConverter.convert_batchnormalization) def test_merge_sum(self): z1 = ZLayer.InputLayer(input_shape=(3, 5)) z2 = ZLayer.InputLayer(input_shape=(3, 5)) zlayer = ZLayer.Merge(layers=[z1, z2], mode="sum") k1 = KLayer.InputLayer(input_shape=(3, 5)) k2 = KLayer.InputLayer(input_shape=(3, 5)) klayer = KLayer.Merge(layers=[k1, k2], mode="sum") input_data = [np.random.random([2, 3, 5]), np.random.random([2, 3, 5])] self.compare_layer(klayer, zlayer, input_data) def test_merge_mul(self): z1 = ZLayer.InputLayer(input_shape=(3, 5)) z2 = ZLayer.InputLayer(input_shape=(3, 5)) zlayer = ZLayer.Merge(layers=[z1, z2], mode="mul") k1 = KLayer.InputLayer(input_shape=(3, 5)) k2 = KLayer.InputLayer(input_shape=(3, 5)) klayer = KLayer.Merge(layers=[k1, k2], mode="mul") input_data = [np.random.random([2, 3, 5]), np.random.random([2, 3, 5])] self.compare_layer(klayer, zlayer, input_data) def test_merge_ave(self): z1 = ZLayer.InputLayer(input_shape=(2, 5, 8)) z2 = ZLayer.InputLayer(input_shape=(2, 5, 8)) zlayer = ZLayer.Merge(layers=[z1, z2], mode="ave") k1 = KLayer.InputLayer(input_shape=(2, 5, 8)) k2 = KLayer.InputLayer(input_shape=(2, 5, 8)) klayer = KLayer.Merge(layers=[k1, k2], mode="ave") input_data = [np.random.random([3, 2, 5, 8]), np.random.random([3, 2, 5, 8])] self.compare_layer(klayer, zlayer, input_data) def test_merge_max(self): z1 = ZLayer.InputLayer(input_shape=(2, 5, 8)) z2 = ZLayer.InputLayer(input_shape=(2, 5, 8)) zlayer = ZLayer.Merge(layers=[z1, z2], mode="max") k1 = KLayer.InputLayer(input_shape=(2, 5, 8)) k2 = KLayer.InputLayer(input_shape=(2, 5, 8)) klayer = KLayer.Merge(layers=[k1, k2], mode="max") input_data = [np.random.random([3, 2, 5, 8]), np.random.random([3, 2, 5, 8])] self.compare_layer(klayer, zlayer, input_data) def test_merge_concat(self): z1 = ZLayer.InputLayer(input_shape=(2, 5, 11)) z2 = ZLayer.InputLayer(input_shape=(2, 5, 8)) zlayer = ZLayer.Merge(layers=[z1, z2], mode="concat") k1 = KLayer.InputLayer(input_shape=(2, 5, 11)) k2 = KLayer.InputLayer(input_shape=(2, 5, 8)) klayer = KLayer.Merge(layers=[k1, k2], mode="concat") input_data = [np.random.random([3, 2, 5, 11]), np.random.random([3, 2, 5, 8])] self.compare_layer(klayer, zlayer, input_data) def test_merge_dot(self): z1 = ZLayer.InputLayer(input_shape=(4, )) z2 = ZLayer.InputLayer(input_shape=(4, )) zlayer = ZLayer.Merge(layers=[z1, z2], mode="dot") k1 = KLayer.InputLayer(input_shape=(4, )) k2 = KLayer.InputLayer(input_shape=(4, )) klayer = KLayer.Merge(layers=[k1, k2], mode="dot") input_data = [np.random.random([2, 4]), np.random.random([2, 4])] self.compare_layer(klayer, zlayer, input_data) def test_merge_cos(self): z1 = ZLayer.InputLayer(input_shape=(3, )) z2 = ZLayer.InputLayer(input_shape=(3, )) zlayer = ZLayer.Merge(layers=[z1, z2], mode="cos") k1 = KLayer.InputLayer(input_shape=(3, )) k2 = KLayer.InputLayer(input_shape=(3, )) klayer = KLayer.Merge(layers=[k1, k2], mode="cos") input_data = [np.random.random([2, 3]), np.random.random([2, 3])] self.compare_layer(klayer, zlayer, input_data) def convert_two_dense(self, kmodel, weights): return [weights[2].T, weights[3], weights[0].T, weights[1]] def test_merge_method_sum(self): zx1 = ZLayer.Input(shape=(8, )) zx2 = ZLayer.Input(shape=(6, )) zy1 = ZLayer.Dense(10)(zx1) zy2 = ZLayer.Dense(10)(zx2) zz = ZLayer.merge([zy1, zy2], mode="sum") zmodel = ZModel([zx1, zx2], zz, name="graph1") kx1 = KLayer.Input(shape=(8, )) kx2 = KLayer.Input(shape=(6, )) ky1 = KLayer.Dense(10)(kx1) ky2 = KLayer.Dense(10)(kx2) kz = kmerge([ky1, ky2], mode="sum") kmodel = KModel([kx1, kx2], kz) input_data = [np.random.random([2, 8]), np.random.random([2, 6])] self.compare_layer(kmodel, zmodel, input_data, self.convert_two_dense) def test_merge_method_model_concat(self): zx1 = ZLayer.Input(shape=(4, )) zx2 = ZLayer.Input(shape=(5, )) zy1 = ZLayer.Dense(6, activation="sigmoid")(zx1) zbranch1 = ZModel(zx1, zy1)(zx1) zbranch2 = ZLayer.Dense(8)(zx2) zz = ZLayer.merge([zbranch1, zbranch2], mode="concat") zmodel = ZModel([zx1, zx2], zz) kx1 = KLayer.Input(shape=(4, )) kx2 = KLayer.Input(shape=(5, )) ky1 = KLayer.Dense(6, activation="sigmoid")(kx1) kbranch1 = KModel(kx1, ky1)(kx1) kbranch2 = KLayer.Dense(8)(kx2) kz = KLayer.merge([kbranch1, kbranch2], mode="concat") kmodel = KModel([kx1, kx2], kz) input_data = [np.random.random([2, 4]), np.random.random([2, 5])] self.compare_layer(kmodel, zmodel, input_data, self.convert_two_dense) def test_merge_method_seq_concat(self): zx1 = ZLayer.Input(shape=(10, )) zx2 = ZLayer.Input(shape=(10, )) zy1 = ZLayer.Dense(12, activation="sigmoid")(zx1) zbranch1_node = ZModel(zx1, zy1)(zx1) zbranch2 = ZSequential() zbranch2.add(ZLayer.Dense(12, input_dim=10)) zbranch2_node = zbranch2(zx2) zz = ZLayer.merge([zbranch1_node, zbranch2_node], mode="concat") zmodel = ZModel([zx1, zx2], zz) kx1 = KLayer.Input(shape=(10, )) kx2 = KLayer.Input(shape=(10, )) ky1 = KLayer.Dense(12, activation="sigmoid")(kx1) kbranch1_node = KModel(kx1, ky1)(kx1) kbranch2 = KSequential() kbranch2.add(KLayer.Dense(12, input_dim=10)) kbranch2_node = kbranch2(kx2) kz = KLayer.merge([kbranch1_node, kbranch2_node], mode="concat") kmodel = KModel([kx1, kx2], kz) input_data = [np.random.random([2, 10]), np.random.random([2, 10])] self.compare_layer(kmodel, zmodel, input_data, self.convert_two_dense) def test_reshape(self): a = np.random.random((2, 2, 3, 4)) i1 = ZLayer.Input(shape=(2, 3, 4)) s = ZLayer.Reshape((-1, 2, 12))(i1) m = ZModel(i1, s) # predict should not generate exception y = m.predict(a, distributed=False) def test_regularizer(self): model = ZSequential() model.add(ZLayer.Dense(16, W_regularizer=regularizers.l2(0.001), activation='relu', input_shape=(10000,))) model.summary() model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) def test_transformer_forward_backward(self): layer = ZLayer.TransformerLayer.init( vocab=200, hidden_size=128, n_head=4, seq_len=20) train_token = np.random.randint(20, size=(2, 20)) train_pos = np.zeros((2, 20), dtype=np.int32) input = [train_token, train_pos] self.assert_forward_backward(layer, input) def test_bert_forward_backward(self): layer = ZLayer.BERT.init( vocab=200, hidden_size=128, n_head=4, seq_len=20, intermediate_size=20) train_token = np.random.randint(20, size=(2, 20)) token_type_id = np.zeros((2, 20), dtype=np.int32) train_pos =
np.zeros((2, 20), dtype=np.int32)
numpy.zeros
# Copyright 2015 Bloomberg Finance L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" ============ Traits Types ============ .. currentmodule:: bqplot.traits .. autosummary:: :toctree: _generate/ Date """ from traitlets import Instance, TraitError, TraitType, Undefined import traittypes as tt import numpy as np import pandas as pd import warnings import datetime as dt import six import warnings # Date def date_to_json(value, obj): if value is None: return value else: return value.strftime('%Y-%m-%dT%H:%M:%S.%f') def date_from_json(value, obj): if value: return dt.datetime.strptime(value, '%Y-%m-%dT%H:%M:%S.%f') else: return value date_serialization = dict(to_json=date_to_json, from_json=date_from_json) class Date(TraitType): """ A datetime trait type. Converts the passed date into a string format that can be used to construct a JavaScript datetime. """ def validate(self, obj, value): try: if isinstance(value, dt.datetime): return value if isinstance(value, dt.date): return dt.datetime(value.year, value.month, value.day) if np.issubdtype(np.dtype(value), np.datetime64): # TODO: Fix this. Right now, we have to limit the precision # of time to microseconds because np.datetime64.astype(datetime) # returns date values only for precision <= 'us' value_truncated = np.datetime64(value, 'us') return value_truncated.astype(dt.datetime) except Exception: self.error(obj, value) self.error(obj, value) def __init__(self, default_value=dt.datetime.today(), **kwargs): args = (default_value,) self.default_value = default_value super(Date, self).__init__(args=args, **kwargs) self.tag(**date_serialization) def convert_to_date(array, fmt='%m-%d-%Y'): # If array is a np.ndarray with type == np.datetime64, the array can be # returned as such. If it is an np.ndarray of dtype 'object' then conversion # to string is tried according to the fmt parameter. if(isinstance(array, np.ndarray) and np.issubdtype(array.dtype, np.datetime64)): # no need to perform any conversion in this case return array elif(isinstance(array, list) or (isinstance(array, np.ndarray) and array.dtype == 'object')): return_value = [] # Pandas to_datetime handles all the cases where the passed in # data could be any of the combinations of # [list, nparray] X [python_datetime, np.datetime] # Because of the coerce=True flag, any non-compatible datetime type # will be converted to pd.NaT. By this comparison, we can figure # out if it is date castable or not. if(len(np.shape(array)) == 2): for elem in array: temp_val = pd.to_datetime( elem, errors='coerce', box=False, infer_datetime_format=True) temp_val = elem if ( temp_val[0] == np.datetime64('NaT')) else temp_val return_value.append(temp_val) elif(isinstance(array, list)): temp_val = pd.to_datetime( array, errors='coerce', box=False, infer_datetime_format=True) return_value = array if ( temp_val[0] == np.datetime64('NaT')) else temp_val else: temp_val = pd.to_datetime( array, errors='coerce', box=False, infer_datetime_format=True) temp_val = array if ( temp_val[0] == np.datetime64('NaT')) else temp_val return_value = temp_val return return_value elif(isinstance(array, np.ndarray)): warnings.warn("Array could not be converted into a date") return array def array_from_json(value, obj=None): if value is not None: # this will accept regular json data, like an array of values, which can be useful it you want # to link bqplot to other libraries that use that if isinstance(value, list): if len(value) > 0 and isinstance(value[0], dict) and 'value' in value[0]: return np.array([array_from_json(k) for k in value]) else: return np.array(value) elif 'value' in value: try: ar = np.frombuffer(value['value'], dtype=value['dtype']).reshape(value['shape']) except AttributeError: # in some python27/numpy versions it does not like the memoryview # we go the .tobytes() route, but since i'm not 100% sure memory copying # is happening or not, we one take this path if the above fails. ar = np.frombuffer(value['value'].tobytes(), dtype=value['dtype']).reshape(value['shape']) if value.get('type') == 'date': assert value['dtype'] == 'float64' ar = ar.astype('datetime64[ms]') return ar def array_to_json(ar, obj=None, force_contiguous=True): if ar is None: return None if ar.dtype.kind in ['O']: has_strings = False all_strings = True # empty array we can interpret as an empty list for el in ar: if isinstance(el, six.string_types): has_strings = True else: all_strings = False if all_strings: ar = ar.astype('U') else: if has_strings: warnings.warn('Your array contains mixed strings and other types') if ar.dtype.kind in ['S', 'U']: # strings to as plain json return ar.tolist() type = None if ar.dtype.kind == 'M': # since there is no support for int64, we'll use float64 but as ms # resolution, since that is the resolution the js Date object understands ar = ar.astype('datetime64[ms]').astype(np.float64) type = 'date' if ar.dtype.kind not in ['u', 'i', 'f']: # ints and floats, and datetime raise ValueError("unsupported dtype: %s" % (ar.dtype)) # if ar.dtype == np.float64: # WebGL does not support float64, cast it here? # ar = ar.astype(np.float32) if ar.dtype == np.int64: # JS does not support int64 ar = ar.astype(np.int32) if force_contiguous and not ar.flags["C_CONTIGUOUS"]: # make sure it's contiguous ar = np.ascontiguousarray(ar) if not ar.dtype.isnative: dtype = ar.dtype.newbyteorder() ar = ar.astype(dtype) return {'value':memoryview(ar), 'dtype':str(ar.dtype), 'shape':ar.shape, 'type': type} array_serialization = dict(to_json=array_to_json, from_json=array_from_json) def array_squeeze(trait, value): if len(value.shape) > 1: return
np.squeeze(value)
numpy.squeeze
import shutil from pathlib import Path import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib.ticker as mtick from scipy.optimize import minimize_scalar import filter kBarWidth = 0.2 def fitLine(row, formantName, start, end, outputDir): key = '@'.join([row['Filename'], row['Annotation'], formantName]) x = np.arange(2, 11) y = row[formantName + '_' + str(start): formantName + '_' + str(end)].to_numpy(dtype='float') coeff = np.polyfit(x, y, 4) line1 = np.poly1d(coeff) line1d = np.polyder(line1, 1) line1dd = np.polyder(line1, 2) line1dd_max = minimize_scalar(-line1dd, bounds=(2, 10), method='bounded') inflection = line1dd_max.x plt.plot(x, y, 'o') plt.plot(x, line1(x), label='fitted line') plt.plot(x, line1d(x), label='1st deriv') plt.plot(x, line1dd(x), label='2nd deriv') plt.axvline(x=inflection, linestyle='dashed', label='inflection') plt.legend(loc='best') plt.title(key) # plt.show() plt.savefig(outputDir / (key + '.png')) plt.clf() plt.cla() # return pd.Series(coeff, index=['x4', 'x3', 'x2', 'x1', 'x0']) return pd.Series(inflection, index=['Inflection_'+formantName]) def removeChars(s): for c in [' ', '\\', '/', '^']: s = s.replace(c, '') return s class Analyzer(object): def RunAnalysis(self, df, group_name, output_base_dir): raise NotImplementedError def GetName(self): raise NotImplementedError class FormantQuantiles(Analyzer): def GetName(self): return "FormantQuantiles" def GetInputType(self): return "Formant" def RunAnalysis(self, df, group_name, output_dir): # output = df[['Filename']].copy() # output['Annotation'] = df[['Annotation']] df['barkF1_25p'] = df[['barkF1_3', 'barkF1_4']].mean(axis=1) df['barkF1_75p'] = df[['barkF1_8', 'barkF1_9']].mean(axis=1) df['barkF1_50p'] = df[['barkF1_6']] df['barkF2_25p'] = df[['barkF2_3', 'barkF2_4']].mean(axis=1) df['barkF2_75p'] = df[['barkF2_8', 'barkF2_9']].mean(axis=1) df['barkF2_50p'] = df[['barkF2_6']] df['diff_F1F1_25p'] = df['barkF1_25p'] - df['barkF2_25p'] df['diff_F1F1_50p'] = df['barkF1_50p'] - df['barkF2_50p'] df['diff_F1F1_75p'] = df['barkF1_75p'] - df['barkF2_75p'] output_debug = pd.concat( [df[['Filename']], df[['Annotation']], df.loc[:, df.columns.str.startswith("barkF1")], df.loc[:, df.columns.str.startswith("barkF2")], df.loc[:, df.columns.str.startswith("diff")], ], axis=1) output = pd.DataFrame( df.loc[:, df.columns.str.startswith("diff")].mean()).T output_path = output_dir / (group_name + '.csv') output_debug_path = output_dir / (group_name + '.debug.csv') output_debug.to_csv(output_debug_path, index=False) output.to_csv(output_path, index=False) class FormantQuantilesByDemographic(Analyzer): def GetName(self): return "FormantQuantilesByDemographic" def GetInputType(self): return "Formant" def RunAnalysis(self, df, outer_filters, inner_filters, group_name, output_dir): for outer_f in outer_filters: key = outer_f.GetValue() matched_rows = dict() for _, row in df.iterrows(): if not outer_f.IsMatched(row): continue for inner_f in inner_filters: if inner_f.IsMatched(row): matched_rows.setdefault( inner_f.GetValue(), []).append(row) if len(matched_rows) == 0: continue x = np.arange(3) for k, v in matched_rows.items(): matched_df = pd.DataFrame(v) full_group_name = group_name + '@' + outer_f.GetValue() + '@@' + k df_mean = self.ComputeMean( matched_df, full_group_name, output_dir) y = [df_mean['diff_F1F2_25p'][0], df_mean['diff_F1F2_50p'][0], df_mean['diff_F1F2_75p'][0]] plt.bar(x, y, width=kBarWidth, label=k) x = [xval + kBarWidth for xval in x] plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") plt.xticks([r + kBarWidth for r in range(3)], ('25%', '50%', '75%')) plt.title(key) plt.savefig(output_dir / (group_name + '@' + key + '.png'), bbox_inches="tight") plt.clf() plt.cla() def ComputeMean(self, df, full_group_name, output_dir): df['barkF1_25p'] = df[['barkF1_3', 'barkF1_4']].mean(axis=1) df['barkF1_75p'] = df[['barkF1_8', 'barkF1_9']].mean(axis=1) df['barkF1_50p'] = df[['barkF1_6']] df['barkF2_25p'] = df[['barkF2_3', 'barkF2_4']].mean(axis=1) df['barkF2_75p'] = df[['barkF2_8', 'barkF2_9']].mean(axis=1) df['barkF2_50p'] = df[['barkF2_6']] df['diff_F1F2_25p'] = df['barkF1_25p'] - df['barkF2_25p'] df['diff_F1F2_50p'] = df['barkF1_50p'] - df['barkF2_50p'] df['diff_F1F2_75p'] = df['barkF1_75p'] - df['barkF2_75p'] output = pd.DataFrame( df.loc[:, df.columns.str.startswith("diff")].mean()).T output_path = output_dir / (full_group_name + '.csv') output_debug_path = output_dir / (full_group_name + '.debug.csv') output.to_csv(output_path, index=False) df.to_csv(output_debug_path, index=False) return output class FormantRegression(Analyzer): def GetName(self): return "FormantRegression" def GetInputType(self): return "Formant" def RunAnalysis(self, df, group_name, output_dir): s_f1 = df.loc[:, df.columns.str.startswith("barkF1")].mean() s_f2 = df.loc[:, df.columns.str.startswith("barkF2")].mean() x = np.arange(0, 9) y1 = s_f1['barkF1_2': 'barkF1_10'].to_numpy(dtype='float') y2 = s_f2['barkF2_2': 'barkF2_10'].to_numpy(dtype='float') coeff1 = np.polyfit(x, y1, 4) coeff2 = np.polyfit(x, y2, 4) line1 = np.poly1d(coeff1) line2 = np.poly1d(coeff2) # line1d = np.polyder(line1, 1) # line2d = np.polyder(line2, 1) line1dd = np.polyder(line1, 2) line2dd = np.polyder(line2, 2) line1dd_max = minimize_scalar(-line1dd, bounds=(0, 8), method='bounded') line2dd_max = minimize_scalar(-line2dd, bounds=(0, 8), method='bounded') inflection1 = line1dd_max.x inflection2 = line2dd_max.x df_inflex = pd.DataFrame( data={'f1_inflection': [inflection1], 'f2_inflection': [inflection2]}) df_inflex.to_csv(output_dir / (group_name + '.csv'), index=False) # Plot f1/f2 plt.plot(x, y1, 'o') plt.plot(x, y2, 'x') plt.plot(x, line1(x), label='F1 fitted') plt.plot(x, line2(x), label='F2 fitted') plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") plt.title(group_name) plt.savefig(output_dir / (group_name + '.fitted.png'), bbox_inches="tight") plt.clf() plt.cla() # plt.plot(x, line1d(x), label='F1 1st deriv') # plt.plot(x, line2d(x), label='F2 1st deriv') # Plot deriv and inflection plt.plot(x, line1dd(x), label='F1 2nd deriv') plt.plot(x, line2dd(x), label='F2 2nd deriv') plt.axvline(x=inflection1, linestyle=':', label='F1 inflection') plt.axvline(x=inflection2, linestyle='-.', label='F2 inflection') plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") plt.title(group_name) plt.savefig(output_dir / (group_name + '.inflection.png'), bbox_inches="tight") plt.clf() plt.cla() output_debug_path = output_dir / (group_name + '.debug.csv') df.to_csv(output_debug_path, index=False) class HnrRegression(Analyzer): def GetName(self): return "HnrRegression" def GetInputType(self): return "HNR" def RunAnalysis(self, df, group_name, output_dir): for i in range(1, 10): df['mid_'+str(i)] = df[['HNR_'+str(i), 'HNR_'+str(i+1)]].mean(axis=1) sy = df.loc[:, df.columns.str.startswith('mid_')].mean() y = sy['mid_1': 'mid_9'].to_numpy(dtype='float') x = np.arange(0, 9) coeff =
np.polyfit(x, y, 4)
numpy.polyfit
""" integer converter: converts between integers and rgb encodings [red,green,blue] image converter: converts images """ import numpy as np TWO_TO_TWENTYFORUTH_MINUS_ONE = 16777215 def convert_to_rgb(an_int): blue = an_int & 255 green = (an_int >> 8) & 255 red = (an_int >> 16) & 255 return np.uint8(red), np.uint8(green), np.uint8(blue) def convert_array_to_rgb(an_array_of_ints): blue = an_array_of_ints & 255 green = (an_array_of_ints >> 8) & 255 red = (an_array_of_ints >> 16) & 255 rgb_image=np.dstack((red,green,blue)).astype(np.uint8) return rgb_image def convert_to_rainbow(an_int): COLOR_BIN=TWO_TO_TWENTYFORUTH_MINUS_ONE//7 slope=255/COLOR_BIN try: # from black...ramp-up blue in first bin if an_int<COLOR_BIN: x=an_int blue=x*slope green=0 red=0 # ramp-up green in second bin elif an_int>=COLOR_BIN and an_int<COLOR_BIN*2: x=an_int-COLOR_BIN blue=255 green=x*slope red=0 # ramp-down blue in third bin elif an_int>=COLOR_BIN*2 and an_int<COLOR_BIN*3: x=an_int-2*COLOR_BIN blue=255-x*slope green=255 red=0 # ramp-up red in the fourth bin elif an_int>=COLOR_BIN*3 and an_int<COLOR_BIN*4: x=an_int-3*COLOR_BIN blue=0 green=255 red=x*slope #ramp-down green in 5th bin elif an_int>=COLOR_BIN*4 and an_int<COLOR_BIN*5: x=an_int-4*COLOR_BIN blue=0 green=255-x*slope red=255 #ramp-up blue in 6th bin elif an_int>=COLOR_BIN*5 and an_int<COLOR_BIN*6: x=an_int-5*COLOR_BIN blue=x*slope green=0 red=255 #ramp-up green (white=highest) elif an_int>=COLOR_BIN*6 and an_int<COLOR_BIN*7: x=an_int-6*COLOR_BIN blue=255 green=x*slope red=255 except: print('Invald range.') return np.uint8(red), np.uint8(green), np.uint8(blue) def convert_array_to_rainbow(an_array_of_ints): COLOR_BIN=TWO_TO_TWENTYFORUTH_MINUS_ONE//7 slope=255/COLOR_BIN blue=np.zeros(an_array_of_ints.shape) green=
np.zeros(an_array_of_ints.shape)
numpy.zeros
""" Computes the Orbital-Optimized LCCD correlation energy. Equations taken from [Bozkaya:2013:054104]. __authors__ = "<NAME>" __credits__ = ["<NAME>"] __copyright__ = "(c) 2014-2020, The Psi4NumPy Developers" __license__ = "BSD-3-Clause" """ import numpy as np import psi4 from scipy import linalg as spla from DSD import DirectSumDiis from integrals import integrals ### Settings mol = psi4.geometry(""" O H 1 1.0 H 1 1.0 2 104.5 symmetry c1""") scf_type = "pk" target_convergence = 7 maxiter = 50 compare_psi4 = True basis = "cc-pvdz" ### Setup psi4.set_options({"scf_type": scf_type, "e_convergence": target_convergence + 1, "basis": basis}) I, F, intermed = integrals(mol, singles=True, return_intermediates=True) t1 = np.zeros(F["ov"].shape) t2 = np.zeros(I["oovv"].shape) dsd = DirectSumDiis(3, 8) num_occ, num_vir = t1.shape # We need the initial one-electron integrals as well for orbital-optimized methods. # The orbital gradient expression requires these instead of the Fock integrals that our amplitude expressions need. H = { "oo": np.einsum('pP, qQ, pq -> PQ', intermed["O"], intermed["O"], intermed["OEI"], optimize = True), "ov": np.einsum('pP, qQ, pq -> PQ', intermed["O"], intermed["V"], intermed["OEI"], optimize = True), "vv": np.einsum('pP, qQ, pq -> PQ', intermed["V"], intermed["V"], intermed["OEI"], optimize = True) } Escf = mol.nuclear_repulsion_energy() + np.trace(H["oo"]) + 0.5 * np.einsum("ijij ->", I["oooo"], optimize = True) ### Main Loop for i in range(1, maxiter + 1): if i != 1: # Compute new orbitals and transform into them. See Section IIA5 of Bozkaya. Zoo = np.zeros((num_occ, num_occ)) Zvv =
np.zeros((num_vir, num_vir))
numpy.zeros
import torch from torch.utils.data import TensorDataset, Dataset from torch.utils.data import DataLoader import numpy as np class Dataset_V5(Dataset): def __init__(self,X_signal,X_ci,Y,Y_mask,final_len_x,diff_window_ppg,device): self.X_signal = X_signal self.X_ci = X_ci self.Y = Y self.Y_mask = Y_mask self.final_len_x = final_len_x self.diff_window_ppg = diff_window_ppg self.device = device def __getitem__(self, index): x = self.X_signal[index] x_ci = self.X_ci[index] y = self.Y[index] y_mask = self.Y_mask[index] # Desplazamos la señal idx_roll = np.random.randint(0, self.diff_window_ppg) x = x[:,idx_roll:idx_roll+self.final_len_x] x_s = x[0:1,:] # Por ultimo normalizamos [0, 1] a la señal a_max = np.amax(x_s, axis=1) a_min = np.amin(x_s, axis=1) x_s = (x_s - a_min[None,:]) / (a_max[None,:] - a_min[None,:]) x_d1 = x[1:2,:] a_max = np.amax(x_d1, axis=1) a_min = np.amin(x_d1, axis=1) x_d1 = (x_d1 - a_min[None,:]) / (a_max[None,:] - a_min[None,:]) x = np.concatenate((x_s,x_d1)) x = torch.from_numpy(x).float().to(self.device) x_ci = torch.from_numpy(x_ci).float().to(self.device) y = torch.from_numpy(y).float().to(self.device) y_mask = torch.from_numpy(y_mask).float().to(self.device) return (x,x_ci,y,y_mask) def __len__(self): return len(self.X_signal) class Dataset_V6(Dataset): def __init__(self,X_signal,Y,Y_mask,final_len_x,diff_window_ppg,device): self.X_signal = X_signal self.Y = Y self.Y_mask = Y_mask self.final_len_x = final_len_x self.diff_window_ppg = diff_window_ppg self.device = device def __getitem__(self, index): x = self.X_signal[index] y = self.Y[index] y_mask = self.Y_mask[index] # Desplazamos la señal idx_roll = np.random.randint(0, self.diff_window_ppg) x = x[:,idx_roll:idx_roll+self.final_len_x] x_s = x[0:1,:] # Por ultimo normalizamos [0, 1] a la señal a_max = np.amax(x_s, axis=1) a_min = np.amin(x_s, axis=1) x_s = (x_s - a_min[None,:]) / (a_max[None,:] - a_min[None,:]) x_d1 = x[1:2,:] a_max = np.amax(x_d1, axis=1) a_min =
np.amin(x_d1, axis=1)
numpy.amin
# -*- coding: utf-8 -*- """ Created on Sun Jan 19 11:54:59 2020 @author: binod """ # Author: <NAME> <<EMAIL>> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from matplotlib import pyplot as plt from sklearn.neighbors import KNeighborsRegressor from astroML.datasets import fetch_sdss_galaxy_colors from astroML.plotting import scatter_contour n_neighbors = 1 data = fetch_sdss_galaxy_colors() N = len(data) # shuffle data np.random.seed(0) np.random.shuffle(data) # put colors in a matrix X = np.zeros((N, 4)) X[:, 0] = data['u'] - data['g'] X[:, 1] = data['g'] - data['r'] X[:, 2] = data['r'] - data['i'] X[:, 3] = data['i'] - data['z'] z = data['redshift'] # divide into training and testing data Ntrain = N // 2 Xtrain = X[:Ntrain] ztrain = z[:Ntrain] Xtest = X[Ntrain:] ztest = z[Ntrain:] knn = KNeighborsRegressor(n_neighbors, weights='uniform') zpred = knn.fit(Xtrain, ztrain).predict(Xtest) axis_lim = np.array([-0.1, 2.5]) rms = np.sqrt(
np.mean((ztest - zpred) ** 2)
numpy.mean
import numpy as np from .LowResHighResDataset import LowResHighResDataset, region_geometry class NearestNeighborData(LowResHighResDataset): def __init__(self, dataset: LowResHighResDataset, num_models=None, model_index=None, k=16): super(NearestNeighborData, self).__init__( dataset.geometry_lr, dataset.geometry_hr, dataset.grid_names_lr, dataset.grid_names_hr, dataset.grid_names_target ) if isinstance(self.geometry_lr, dict): assert len(self.geometry_lr.keys()) == 1, '[ERROR] NearestNeighborData is not thought to be used with multi-region datasets.' self.geometry_lr = self.geometry_lr[list(self.geometry_lr.keys())[0]] if isinstance(self.geometry_hr, dict): assert len(self.geometry_hr.keys()) == 1, '[ERROR] NearestNeighborData is not thought to be used with multi-region datasets.' self.geometry_hr = self.geometry_hr[list(self.geometry_hr.keys())[0]] self.num_nearest_neighbors_lr = k self.num_nearest_neighbors_hr = 12 * k self._set_nearest_neighbor_indices(model_index, num_models) self._read_dataset(dataset) self._in_grid_mode = False self._reset_mask_hr() def _set_nearest_neighbor_indices(self, model_index, num_models): mask_lr = self.geometry_lr.mask lon_lr = self.geometry_lr.lon lat_lr = self.geometry_lr.lat mask_hr = self.geometry_hr.mask lon_hr = self.geometry_hr.lon lat_hr = self.geometry_hr.lat max_num_models = np.sum(1 - mask_hr) if num_models is None: assert model_index is not None assert len(model_index) <= max_num_models assert max(model_index) < max_num_models else: if model_index is not None: assert len(model_index) == num_models assert len(model_index) <= max_num_models assert max(model_index) < max_num_models else: model_index = np.arange(max_num_models).astype(int) if num_models < max_num_models: np.random.shuffle(model_index) model_index = np.sort(model_index[:num_models]) self.num_models = len(model_index) valid_lon_lr = lon_lr[mask_lr == 0] valid_lat_lr = lat_lr[mask_lr == 0] valid_lon_hr = lon_hr[mask_hr == 0] valid_lat_hr = lat_hr[mask_hr == 0] index_lon_lr, index_lat_lr = np.meshgrid(np.arange(self.shape_lr[1]), np.arange(self.shape_lr[0])) index_lon_hr, index_lat_hr = np.meshgrid(np.arange(self.shape_hr[1]), np.arange(self.shape_hr[0])) valid_index_lon_lr = index_lon_lr[mask_lr == 0].astype(int) valid_index_lat_lr = index_lat_lr[mask_lr == 0].astype(int) valid_index_lon_hr = index_lon_hr[mask_hr == 0].astype(int) valid_index_lat_hr = index_lat_hr[mask_hr == 0].astype(int) self.model_index_lon = valid_index_lon_hr[model_index] self.model_index_lat = valid_index_lat_hr[model_index] input_index_lon_lr = [] input_index_lat_lr = [] input_index_lon_hr = [] input_index_lat_hr = [] for i in model_index: nn_dist = self._nearest_neighbor_metric( lon=valid_lon_lr, lat=valid_lat_lr, lon_0=valid_lon_hr[i], lat_0=valid_lat_hr[i] ) rank_index_lr = np.argpartition(nn_dist, self.num_nearest_neighbors_lr)[:self.num_nearest_neighbors_lr] input_index_lon_lr.append(valid_index_lon_lr[rank_index_lr]) input_index_lat_lr.append(valid_index_lat_lr[rank_index_lr]) self.input_index_lon_lr = np.array(input_index_lon_lr) self.input_index_lat_lr = np.array(input_index_lat_lr) for i in model_index: nn_dist = self._nearest_neighbor_metric( lon=valid_lon_hr, lat=valid_lat_hr, lon_0=valid_lon_hr[i], lat_0=valid_lat_hr[i] ) rank_index_hr = np.argpartition(nn_dist, self.num_nearest_neighbors_hr)[:self.num_nearest_neighbors_hr] input_index_lon_hr.append(valid_index_lon_hr[rank_index_hr]) input_index_lat_hr.append(valid_index_lat_hr[rank_index_hr]) self.input_index_lon_hr = np.array(input_index_lon_hr) self.input_index_lat_hr = np.array(input_index_lat_hr) self.num_features = ( self.num_nearest_neighbors_lr * len(self.input_grids_lr()) + self.num_nearest_neighbors_hr * len(self.input_grids_hr()) ) @staticmethod def _nearest_neighbor_metric(lon=None, lat=None, lon_0=None, lat_0=None): return np.abs(lon - lon_0) + np.abs(lat - lat_0) def _read_dataset(self, dataset: LowResHighResDataset): self.input_lr = {'static': [], 'dynamic': []} if len(self.grid_names_lr['dynamic']): data, _ = dataset.get_input_lr(self.grid_names_lr['dynamic']) for idx_lat, idx_lon in zip(self.input_index_lat_lr, self.input_index_lon_lr): self.input_lr['dynamic'].append(np.reshape(data[:, :, idx_lat, idx_lon], newshape=(data.shape[0], -1))) self.input_lr.update( { 'dynamic': np.stack(self.input_lr['dynamic'], axis=1) if len(self.input_lr['dynamic']) > 0 else None } ) if len(self.grid_names_lr['static']): data, _ = dataset.get_input_lr(self.grid_names_lr['static']) for idx_lat, idx_lon in zip(self.input_index_lat_lr, self.input_index_lon_lr): self.input_lr['static'].append(np.reshape(data[:, :, idx_lat, idx_lon], newshape=(data.shape[0], -1))) self.input_lr.update( { 'static': np.stack(self.input_lr['static'], axis=1) if len(self.input_lr['static']) > 0 else None } ) self.input_hr = {'static': [], 'dynamic': []} if len(self.grid_names_hr['dynamic']): data, _ = dataset.get_input_hr(self.grid_names_hr['dynamic']) for idx_lat, idx_lon in zip(self.input_index_lat_hr, self.input_index_lon_hr): self.input_hr['dynamic'].append(np.reshape(data[:, :, idx_lat, idx_lon], newshape=(data.shape[0], -1))) self.input_hr.update( { 'dynamic': np.stack(self.input_hr['dynamic'], axis=1) if len(self.input_hr['dynamic']) > 0 else None } ) if len(self.grid_names_hr['static']): data, _ = dataset.get_input_hr(self.grid_names_hr['static']) for idx_lat, idx_lon in zip(self.input_index_lat_hr, self.input_index_lon_hr): self.input_hr['static'].append(np.reshape(data[:, :, idx_lat, idx_lon], newshape=(data.shape[0], -1))) self.input_hr.update( { 'static': np.stack(self.input_hr['static'], axis=1) if len(self.input_hr['static']) > 0 else None } ) self.target = {'static': [], 'dynamic': []} if len(self.grid_names_target['dynamic']): data, _ = dataset.get_target(self.grid_names_target['dynamic']) for idx_lat, idx_lon in zip(self.model_index_lat, self.model_index_lon): self.target['dynamic'].append(
np.reshape(data[:, :, idx_lat, idx_lon], newshape=(data.shape[0], -1))
numpy.reshape
"""Rangeland Production Model.""" import os import logging import tempfile import shutil from builtins import range import re import math import pickle import numpy import pandas from osgeo import ogr from osgeo import osr from osgeo import gdal import pygeoprocessing from rangeland_production import utils from rangeland_production import validation LOGGER = logging.getLogger('rangeland_production.forage') # we only have these types of soils SOIL_TYPE_LIST = ['clay', 'silt', 'sand'] # temporary directory to store intermediate files PROCESSING_DIR = None # user-supplied crude protein of vegetation CRUDE_PROTEIN = None # state variables and parameters take their names from Century # _SITE_STATE_VARIABLE_FILES contains state variables that are a # property of the site, including: # carbon in each soil compartment # (structural, metabolic, som1, som2, som3) and layer (1=surface, 2=soil) # e.g., som2c_2 = carbon in soil som2; # N and P in each soil layer and compartment (1=N, 2=P) # e.g., som2e_1_1 = N in surface som2, som2e_1_2 = P in surface som2; # water in each soil layer, asmos_<layer> # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _SITE_STATE_VARIABLE_FILES = { 'metabc_1_path': 'metabc_1.tif', 'metabc_2_path': 'metabc_2.tif', 'som1c_1_path': 'som1c_1.tif', 'som1c_2_path': 'som1c_2.tif', 'som2c_1_path': 'som2c_1.tif', 'som2c_2_path': 'som2c_2.tif', 'som3c_path': 'som3c.tif', 'strucc_1_path': 'strucc_1.tif', 'strucc_2_path': 'strucc_2.tif', 'strlig_1_path': 'strlig_1.tif', 'strlig_2_path': 'strlig_2.tif', 'metabe_1_1_path': 'metabe_1_1.tif', 'metabe_2_1_path': 'metabe_2_1.tif', 'som1e_1_1_path': 'som1e_1_1.tif', 'som1e_2_1_path': 'som1e_2_1.tif', 'som2e_1_1_path': 'som2e_1_1.tif', 'som2e_2_1_path': 'som2e_2_1.tif', 'som3e_1_path': 'som3e_1.tif', 'struce_1_1_path': 'struce_1_1.tif', 'struce_2_1_path': 'struce_2_1.tif', 'metabe_1_2_path': 'metabe_1_2.tif', 'metabe_2_2_path': 'metabe_2_2.tif', 'plabil_path': 'plabil.tif', 'secndy_2_path': 'secndy_2.tif', 'parent_2_path': 'parent_2.tif', 'occlud_path': 'occlud.tif', 'som1e_1_2_path': 'som1e_1_2.tif', 'som1e_2_2_path': 'som1e_2_2.tif', 'som2e_1_2_path': 'som2e_1_2.tif', 'som2e_2_2_path': 'som2e_2_2.tif', 'som3e_2_path': 'som3e_2.tif', 'struce_1_2_path': 'struce_1_2.tif', 'struce_2_2_path': 'struce_2_2.tif', 'asmos_1_path': 'asmos_1.tif', 'asmos_2_path': 'asmos_2.tif', 'asmos_3_path': 'asmos_3.tif', 'asmos_4_path': 'asmos_4.tif', 'asmos_5_path': 'asmos_5.tif', 'asmos_6_path': 'asmos_6.tif', 'asmos_7_path': 'asmos_7.tif', 'asmos_8_path': 'asmos_8.tif', 'asmos_9_path': 'asmos_9.tif', 'avh2o_3_path': 'avh2o_3.tif', 'minerl_1_1_path': 'minerl_1_1.tif', 'minerl_2_1_path': 'minerl_2_1.tif', 'minerl_3_1_path': 'minerl_3_1.tif', 'minerl_4_1_path': 'minerl_4_1.tif', 'minerl_5_1_path': 'minerl_5_1.tif', 'minerl_6_1_path': 'minerl_6_1.tif', 'minerl_7_1_path': 'minerl_7_1.tif', 'minerl_8_1_path': 'minerl_8_1.tif', 'minerl_9_1_path': 'minerl_9_1.tif', 'minerl_10_1_path': 'minerl_10_1.tif', 'minerl_1_2_path': 'minerl_1_2.tif', 'minerl_2_2_path': 'minerl_2_2.tif', 'minerl_3_2_path': 'minerl_3_2.tif', 'minerl_4_2_path': 'minerl_4_2.tif', 'minerl_5_2_path': 'minerl_5_2.tif', 'minerl_6_2_path': 'minerl_6_2.tif', 'minerl_7_2_path': 'minerl_7_2.tif', 'minerl_8_2_path': 'minerl_8_2.tif', 'minerl_9_2_path': 'minerl_9_2.tif', 'minerl_10_2_path': 'minerl_10_2.tif', 'snow_path': 'snow.tif', 'snlq_path': 'snlq.tif', } # _PFT_STATE_VARIABLES contains state variables that are a # property of a PFT, including: # carbon, nitrogen, and phosphorous in aboveground biomass # where 1=N, 2=P # e.g. aglivc = C in aboveground live biomass, # aglive_1 = N in aboveground live biomass; # carbon, nitrogen, and phosphorous in aboveground standing dead # biomass, stdedc and stdede; # carbon, nitrogen and phosphorous in belowground live biomass, # aglivc and aglive # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _PFT_STATE_VARIABLES = [ 'aglivc', 'bglivc', 'stdedc', 'aglive_1', 'bglive_1', 'stdede_1', 'aglive_2', 'bglive_2', 'stdede_2', 'avh2o_1', 'crpstg_1', 'crpstg_2', ] # intermediate parameters that do not change between timesteps, # including field capacity and wilting point of each soil layer, # coefficients describing effect of soil texture on decomposition # rates _PERSISTENT_PARAMS_FILES = { 'afiel_1_path': 'afiel_1.tif', 'afiel_2_path': 'afiel_2.tif', 'afiel_3_path': 'afiel_3.tif', 'afiel_4_path': 'afiel_4.tif', 'afiel_5_path': 'afiel_5.tif', 'afiel_6_path': 'afiel_6.tif', 'afiel_7_path': 'afiel_7.tif', 'afiel_8_path': 'afiel_8.tif', 'afiel_9_path': 'afiel_9.tif', 'awilt_1_path': 'awilt_1.tif', 'awilt_2_path': 'awilt_2.tif', 'awilt_3_path': 'awilt_3.tif', 'awilt_4_path': 'awilt_4.tif', 'awilt_5_path': 'awilt_5.tif', 'awilt_6_path': 'awilt_6.tif', 'awilt_7_path': 'awilt_7.tif', 'awilt_8_path': 'awilt_8.tif', 'awilt_9_path': 'awilt_9.tif', 'wc_path': 'wc.tif', 'eftext_path': 'eftext.tif', 'p1co2_2_path': 'p1co2_2.tif', 'fps1s3_path': 'fps1s3.tif', 'orglch_path': 'orglch.tif', 'fps2s3_path': 'fps2s3.tif', 'rnewas_1_1_path': 'rnewas_1_1.tif', 'rnewas_2_1_path': 'rnewas_2_1.tif', 'rnewas_1_2_path': 'rnewas_1_2.tif', 'rnewas_2_2_path': 'rnewas_2_2.tif', 'rnewbs_1_1_path': 'rnewbs_1_1.tif', 'rnewbs_1_2_path': 'rnewbs_1_2.tif', 'rnewbs_2_1_path': 'rnewbs_2_1.tif', 'rnewbs_2_2_path': 'rnewbs_2_2.tif', 'vlossg_path': 'vlossg.tif', } # site-level values that are updated once per year _YEARLY_FILES = { 'annual_precip_path': 'annual_precip.tif', 'baseNdep_path': 'baseNdep.tif', } # pft-level values that are updated once per year _YEARLY_PFT_FILES = ['pltlig_above', 'pltlig_below'] # intermediate values for each plant functional type that are shared # between submodels, but do not need to be saved as output _PFT_INTERMEDIATE_VALUES = [ 'h2ogef_1', 'tgprod_pot_prod', 'cercrp_min_above_1', 'cercrp_min_above_2', 'cercrp_max_above_1', 'cercrp_max_above_2', 'cercrp_min_below_1', 'cercrp_min_below_2', 'cercrp_max_below_1', 'cercrp_max_below_2', 'tgprod', 'rtsh', 'flgrem', 'fdgrem'] # intermediate site-level values that are shared between submodels, # but do not need to be saved as output _SITE_INTERMEDIATE_VALUES = [ 'amov_1', 'amov_2', 'amov_3', 'amov_4', 'amov_5', 'amov_6', 'amov_7', 'amov_8', 'amov_9', 'amov_10', 'snowmelt', 'bgwfunc', 'diet_sufficiency'] # fixed parameters for each grazing animal type are adapted from the GRAZPLAN # model as described by Freer et al. 2012, "The GRAZPLAN animal biology model # for sheep and cattle and the GrazFeed decision support tool" _FREER_PARAM_DICT = { 'b_indicus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.31, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'b_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.36, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'indicus_x_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.335, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'sheep': { 'CN1': 0.0157, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.04, 'CI2': 1.7, 'CI8': 28, 'CI9': 1.4, 'CI12': 0.15, 'CI13': 0.02, 'CI14': 0.002, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00112, 'CR5': 0.6, 'CR6': 0.00112, 'CR7': 0, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.486, 'CL1': 2, 'CL2': 22, 'CL3': 1, 'CL5': 0.94, 'CL6': 4.7, 'CL15': 0.045, 'CM1': 0.09, 'CM2': 0.26, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.02, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CW1': 24, 'CW2': 0.004, 'CW3': 0.7, 'CW5': 0.25, 'CW6': 0.072, 'CW7': 1.35, 'CW8': 0.016, 'CW9': 1, 'CW12': 0.025, 'CP1': 150, 'CP4': 0.33, 'CP5': 1.43, 'CP6': 3.38, 'CP7': 0.91, 'CP8': 4.33, 'CP9': 4.37, 'CP10': 0.965, 'CP15': 0.1, }, } # Target nodata is for general rasters that are positive, and _IC_NODATA are # for rasters that are any range _TARGET_NODATA = -1.0 _IC_NODATA = float(numpy.finfo('float32').min) # SV_NODATA is for state variables _SV_NODATA = -1.0 def execute(args): """InVEST Forage Model. [model description] Parameters: args['workspace_dir'] (string): path to target output workspace. args['results_suffix'] (string): (optional) string to append to any output file names args['starting_month'] (int): what month to start reporting where the range 1..12 is equivalent to Jan..Dec. args['starting_year'] (int): what year to start runs. this value is used to notate outputs in the form [month_int]_[year] args['n_months'] (int): number of months to run model, the model run will start reporting in `args['starting_month']`. args['aoi_path'] (string): path to polygon vector indicating the desired spatial extent of the model. This has the effect of clipping the computational area of the input datasets to be the area intersected by this polygon. args['management_threshold'] (float): biomass in kg/ha required to be left standing at each model step after offtake by grazing animals args['proportion_legume_path'] (string): path to raster containing fraction of pasture that is legume, by weight args['bulk_density_path'] (string): path to bulk density raster. args['ph_path'] (string): path to soil pH raster. args['clay_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is clay args['silt_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is silt args['sand_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is sand args['precip_dir'] (string): path to a directory containing monthly precipitation rasters. The model requires at least 12 months of precipitation and expects to find a precipitation file input for every month of the simulation, so the number of precipitation files should be the maximum of 12 and `n_months`. The file name of each precipitation raster must end with the year, followed by an underscore, followed by the month number. E.g., Precip_2016_1.tif for January of 2016. args['min_temp_dir'] (string): path to a directory containing monthly minimum temperature rasters. The model requires one minimum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each minimum temperature raster must end with the month number. E.g., Min_temperature_1.tif for January. args['max_temp_dir'] (string): path to a directory containing monthly maximum temperature rasters. The model requires one maximum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each maximum temperature raster must end with the month number. E.g., Max_temperature_1.tif for January. args['site_param_table'] (string): path to csv file giving site parameters. This file must contain a column named "site" that contains unique integers. These integer values correspond to site type identifiers which are values in the site parameter spatial index raster. Other required fields for this table are site and "fixed" parameters from the Century model, i.e., the parameters in the Century input files site.100 and fix.100. args['site_param_spatial_index_path'] (string): path to a raster file that indexes site parameters, indicating which set of site parameter values should apply at each pixel in the raster. The raster should be composed of integers that correspond to values in the field "site" in `site_param_table`. args['veg_trait_path'] (string): path to csv file giving vegetation traits for each plant functional type available for grazing. This file must contain a column named "PFT" that contains unique integers. These integer values correspond to PFT identifiers of veg spatial composition rasters. Other required fields for this table are vegetation input parameters from the Century model, for example maximum intrinsic growth rate, optimum temperature for production, minimum C/N ratio, etc. args['veg_spatial_composition_path_pattern'] (string): path to vegetation rasters, one per plant functional type available for grazing, where <PFT> can be replaced with an integer that is indexed in the veg trait csv. Example: if this value is given as `./vegetation/pft_<PFT>.tif` and the directory `./vegetation/` contains these files: "pft_1.tif" "pft_12.tif" "pft_50.tif", then the "PFT" field in the vegetation trait table must contain the values 1, 12, and 50. args['animal_trait_path'] (string): path to csv file giving animal traits for each animal type - number - duration combination. This table must contain a column named "animal_id" that contains unique integers. These integer values correspond to features in the animal management layer. Other required fields in this table are: type (allowable values: b_indicus, b_taurus, indicus_x_taurus, sheep, camelid, hindgut_fermenter) sex (allowable values: entire_m, castrate, breeding_female, NA) age (days) weight (kg) SRW (standard reference weight, kg; the weight of a mature female in median condition) SFW (standard fleece weight, kg; the average weight of fleece of a mature adult; for sheep only) birth_weight (kg) grz_months (a string of integers, separated by ','; months of the simulation when animals are present, relative to `starting_month`. For example, if `n_months` is 3, and animals are present during the entire simulation period, `grz_months` should be "1,2,3") args['animal_grazing_areas_path'] (string): path to animal vector inputs giving the location of grazing animals. Must have a field named "animal_id", containing unique integers that correspond to the values in the "animal_id" column of the animal trait csv, and a field named "num_animal" giving the number of animals grazing inside each polygon feature. args['initial_conditions_dir'] (string): optional input, path to directory containing initial conditions. If this directory is not supplied, a site_initial_table and pft_initial_table must be supplied. If supplied, this directory must contain a series of rasters with initial values for each PFT and for the site. Required rasters for each PFT: initial variables that are a property of PFT in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing e.g., aglivc_<PFT>.tif Required for the site: initial variables that are a property of site in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['site_initial_table'] (string): optional input, path to table containing initial conditions for each site state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each site code and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['pft_initial_table'] (string): optional input, path to table containing initial conditions for each plant functional type state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each plant functional type index and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['save_sv_rasters'] (boolean): optional input, default false. Should rasters containing all state variables be saved for each model time step? args['animal_density'] (string): optional input, density of grazing animals in animals per hectare. args['crude_protein'] (float): optional input, crude protein concentration of forage for the purposes of animal diet selection. Should be a value between 0-1. If included, this value is substituted for N content of forage when calculating digestibility and "ingestibility" of forage, and protein content of the diet, for grazing animals. Returns: None. """ LOGGER.info("model execute: %s", args) starting_month = int(args['starting_month']) starting_year = int(args['starting_year']) n_months = int(args['n_months']) try: delete_sv_folders = not args['save_sv_rasters'] except KeyError: delete_sv_folders = True try: global CRUDE_PROTEIN CRUDE_PROTEIN = args['crude_protein'] except KeyError: pass try: animal_density_path = args['animal_density'] except KeyError: args['animal_density'] = None # this set will build up the integer months that are used so we can index # them with temperature later temperature_month_set = set() # this dict will be used to build the set of input rasters associated with # a reasonable lookup ID so we can have a nice dataset to align for raster # stack operations base_align_raster_path_id_map = {} precip_dir_list = [ os.path.join(args['precip_dir'], f) for f in os.listdir(args['precip_dir'])] for month_index in range(n_months): month_i = (starting_month + month_index - 1) % 12 + 1 temperature_month_set.add(month_i) year = starting_year + (starting_month + month_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No precipitation data found for year %d, month %d" % (year, month_i)) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_{}'.format(month_index)] = file_list[0] # the model requires 12 months of precipitation data to calculate # atmospheric N deposition and potential production from annual precip n_precip_months = int(args['n_months']) if n_precip_months < 12: m_index = int(args['n_months']) while n_precip_months < 12: month_i = (starting_month + m_index - 1) % 12 + 1 year = starting_year + (starting_month + m_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: break if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_%d' % m_index] = file_list[0] n_precip_months = n_precip_months + 1 m_index = m_index + 1 if n_precip_months < 12: raise ValueError("At least 12 months of precipitation data required") # collect monthly temperature data min_temp_dir_list = [ os.path.join(args['min_temp_dir'], f) for f in os.listdir(args['min_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in min_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No minimum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'min_temp_%d' % month_i] = file_list[0] max_temp_dir_list = [ os.path.join(args['max_temp_dir'], f) for f in os.listdir(args['max_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in max_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No maximum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'max_temp_%d' % month_i] = file_list[0] # lookup to provide path to soil percent given soil type for soil_type in SOIL_TYPE_LIST: base_align_raster_path_id_map[soil_type] = ( args['%s_proportion_path' % soil_type]) if not os.path.exists(base_align_raster_path_id_map[soil_type]): raise ValueError( "Couldn't find %s for %s" % ( base_align_raster_path_id_map[soil_type], soil_type)) base_align_raster_path_id_map['bulk_d_path'] = args['bulk_density_path'] base_align_raster_path_id_map['ph_path'] = args['ph_path'] # make sure site initial conditions and parameters exist for each site # identifier base_align_raster_path_id_map['site_index'] = ( args['site_param_spatial_index_path']) n_bands = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['n_bands'] if n_bands > 1: raise ValueError( 'Site spatial index raster must contain only one band') site_datatype = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['datatype'] if site_datatype not in [1, 2, 3, 4, 5]: raise ValueError('Site spatial index raster must be integer type') # get unique values in site param raster site_index_set = set() for offset_map, raster_block in pygeoprocessing.iterblocks( (args['site_param_spatial_index_path'], 1)): site_index_set.update(numpy.unique(raster_block)) site_nodata = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['nodata'][0] if site_nodata in site_index_set: site_index_set.remove(site_nodata) site_param_table = utils.build_lookup_from_csv( args['site_param_table'], 'site') missing_site_index_list = list( site_index_set.difference(site_param_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find parameter values for the following site " + "indices: %s\n\t" + ", ".join(missing_site_index_list)) # make sure plant functional type parameters exist for each pft raster pft_dir = os.path.dirname(args['veg_spatial_composition_path_pattern']) pft_basename = os.path.basename( args['veg_spatial_composition_path_pattern']) files = [ f for f in os.listdir(pft_dir) if os.path.isfile( os.path.join(pft_dir, f))] pft_regex = re.compile(pft_basename.replace('<PFT>', r'(\d+)')) pft_matches = [ m for m in [pft_regex.search(f) for f in files] if m is not None] pft_id_set = set([int(m.group(1)) for m in pft_matches]) for pft_i in pft_id_set: pft_path = args['veg_spatial_composition_path_pattern'].replace( '<PFT>', '%d' % pft_i) base_align_raster_path_id_map['pft_%d' % pft_i] = pft_path veg_trait_table = utils.build_lookup_from_csv( args['veg_trait_path'], 'PFT') missing_pft_trait_list = pft_id_set.difference(veg_trait_table.keys()) if missing_pft_trait_list: raise ValueError( "Couldn't find trait values for the following plant functional " + "types: %s\n\t" + ", ".join(missing_pft_trait_list)) frtcindx_set = set([ pft_i['frtcindx'] for pft_i in veg_trait_table.values()]) if frtcindx_set.difference(set([0, 1])): raise ValueError("frtcindx parameter contains invalid values") base_align_raster_path_id_map['proportion_legume_path'] = args[ 'proportion_legume_path'] # track separate state variable files for each PFT pft_sv_dict = {} for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: pft_sv_dict['{}_{}_path'.format( sv, pft_i)] = '{}_{}.tif'.format(sv, pft_i) # make sure animal traits exist for each feature in animal management # layer anim_id_list = [] driver = ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(args['animal_grazing_areas_path'], 0) layer = datasource.GetLayer() for feature in layer: anim_id_list.append(feature.GetField('animal_id')) input_animal_trait_table = utils.build_lookup_from_csv( args['animal_trait_path'], 'animal_id') missing_animal_trait_list = set( anim_id_list).difference(input_animal_trait_table.keys()) if missing_animal_trait_list: raise ValueError( "Couldn't find trait values for the following animal " + "ids: %s\n\t" + ", ".join(missing_animal_trait_list)) # if animal density is supplied, align inputs to match its resolution # otherwise, match resolution of precipitation rasters if args['animal_density']: target_pixel_size = pygeoprocessing.get_raster_info( args['animal_density'])['pixel_size'] base_align_raster_path_id_map['animal_density'] = args[ 'animal_density'] else: target_pixel_size = pygeoprocessing.get_raster_info( base_align_raster_path_id_map['precip_0'])['pixel_size'] LOGGER.info( "pixel size of aligned inputs: %s", target_pixel_size) # temporary directory for intermediate files global PROCESSING_DIR PROCESSING_DIR = os.path.join(args['workspace_dir'], "temporary_files") if not os.path.exists(PROCESSING_DIR): os.makedirs(PROCESSING_DIR) # set up a dictionary that uses the same keys as # 'base_align_raster_path_id_map' to point to the clipped/resampled # rasters to be used in raster calculations for the model. aligned_raster_dir = os.path.join( args['workspace_dir'], 'aligned_inputs') if os.path.exists(aligned_raster_dir): shutil.rmtree(aligned_raster_dir) os.makedirs(aligned_raster_dir) aligned_inputs = dict([(key, os.path.join( aligned_raster_dir, 'aligned_%s' % os.path.basename(path))) for key, path in base_align_raster_path_id_map.items()]) # align all the base inputs to be the minimum known pixel size and to # only extend over their combined intersections source_input_path_list = [ base_align_raster_path_id_map[k] for k in sorted( base_align_raster_path_id_map.keys())] aligned_input_path_list = [ aligned_inputs[k] for k in sorted(aligned_inputs.keys())] pygeoprocessing.align_and_resize_raster_stack( source_input_path_list, aligned_input_path_list, ['near'] * len(source_input_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], vector_mask_options={'mask_vector_path': args['aoi_path']}) _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set) file_suffix = utils.make_suffix_string(args, 'results_suffix') # create animal trait spatial index raster from management polygon aligned_inputs['animal_index'] = os.path.join( aligned_raster_dir, 'animal_spatial_index.tif') pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], aligned_inputs['animal_index'], gdal.GDT_Int32, [_TARGET_NODATA], fill_value_list=[_TARGET_NODATA]) pygeoprocessing.rasterize( args['animal_grazing_areas_path'], aligned_inputs['animal_index'], option_list=["ATTRIBUTE=animal_id"]) # create uniform animal density raster, if not supplied as input if not args['animal_density']: aligned_inputs['animal_density'] = os.path.join( aligned_raster_dir, 'animal_density.tif') _animal_density(aligned_inputs, args['animal_grazing_areas_path']) # Initialization sv_dir = os.path.join(args['workspace_dir'], 'state_variables_m-1') os.makedirs(sv_dir) initial_conditions_dir = None try: initial_conditions_dir = args['initial_conditions_dir'] except KeyError: pass if initial_conditions_dir: # check that a raster for each required state variable is supplied missing_initial_values = [] # set _SV_NODATA from initial rasters state_var_nodata = set([]) # align initial state variables to resampled inputs resample_initial_path_map = {} for sv in _SITE_STATE_VARIABLE_FILES: sv_path = os.path.join( initial_conditions_dir, _SITE_STATE_VARIABLE_FILES[sv]) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'][0]])) resample_initial_path_map[sv] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: sv_key = '{}_{}_path'.format(sv, pft_i) sv_path = os.path.join( initial_conditions_dir, '{}_{}.tif'.format(sv, pft_i)) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'] [0]])) resample_initial_path_map[sv_key] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) if missing_initial_values: raise ValueError( "Couldn't find the following required initial values: " + "\n\t".join(missing_initial_values)) if len(state_var_nodata) > 1: raise ValueError( "Initial state variable rasters contain >1 nodata value") global _SV_NODATA _SV_NODATA = list(state_var_nodata)[0] # align initial values with inputs initial_path_list = ( [aligned_inputs['precip_0']] + [resample_initial_path_map[key] for key in sorted( resample_initial_path_map.keys())]) aligned_initial_path_list = ( [os.path.join(PROCESSING_DIR, 'aligned_input_template.tif')] + [os.path.join( sv_dir, os.path.basename(resample_initial_path_map[key])) for key in sorted(resample_initial_path_map.keys())]) pygeoprocessing.align_and_resize_raster_stack( initial_path_list, aligned_initial_path_list, ['near'] * len(initial_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], raster_align_index=0, vector_mask_options={'mask_vector_path': args['aoi_path']}) sv_reg = dict( [(key, os.path.join(sv_dir, os.path.basename(path))) for key, path in resample_initial_path_map.items()]) else: # create initialization rasters from tables try: site_initial_conditions_table = utils.build_lookup_from_csv( args['site_initial_table'], 'site') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_site_index_list = list( site_index_set.difference(site_initial_conditions_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find initial conditions values for the following " + "site indices: %s\n\t" + ", ".join(missing_site_index_list)) try: pft_initial_conditions_table = utils.build_lookup_from_csv( args['pft_initial_table'], 'PFT') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_pft_index_list = pft_id_set.difference( pft_initial_conditions_table.keys()) if missing_pft_index_list: raise ValueError( "Couldn't find initial condition values for the following " "plant functional types: %s\n\t" + ", ".join( missing_pft_index_list)) sv_reg = initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table) # calculate persistent intermediate parameters that do not change during # the simulation persist_param_dir = os.path.join( args['workspace_dir'], 'intermediate_parameters') utils.make_directories([persist_param_dir]) pp_reg = utils.build_file_registry( [(_PERSISTENT_PARAMS_FILES, persist_param_dir)], file_suffix) # calculate derived animal traits that do not change during the simulation freer_parameter_df = pandas.DataFrame.from_dict( _FREER_PARAM_DICT, orient='index') freer_parameter_df['type'] = freer_parameter_df.index animal_trait_table = calc_derived_animal_traits( input_animal_trait_table, freer_parameter_df) # calculate maximum potential intake of each animal type for animal_id in animal_trait_table.keys(): revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # calculate field capacity and wilting point LOGGER.info("Calculating field capacity and wilting point") _afiel_awilt( aligned_inputs['site_index'], site_param_table, sv_reg['som1c_2_path'], sv_reg['som2c_2_path'], sv_reg['som3c_path'], aligned_inputs['sand'], aligned_inputs['silt'], aligned_inputs['clay'], aligned_inputs['bulk_d_path'], pp_reg) # calculate other persistent parameters LOGGER.info("Calculating persistent parameters") _persistent_params( aligned_inputs['site_index'], site_param_table, aligned_inputs['sand'], aligned_inputs['clay'], pp_reg) # calculate required ratios for decomposition of structural material LOGGER.info("Calculating required ratios for structural decomposition") _structural_ratios( aligned_inputs['site_index'], site_param_table, sv_reg, pp_reg) # make yearly directory for values that are updated every twelve months year_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) year_reg = dict( [(key, os.path.join(year_dir, path)) for key, path in _YEARLY_FILES.items()]) for pft_i in pft_id_set: for file in _YEARLY_PFT_FILES: year_reg['{}_{}'.format(file, pft_i)] = os.path.join( year_dir, '{}_{}.tif'.format(file, pft_i)) # make monthly directory for monthly intermediate parameters that are # shared between submodels, but do not need to be saved as output month_temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) month_reg = {} for pft_i in pft_id_set: for val in _PFT_INTERMEDIATE_VALUES: month_reg['{}_{}'.format( val, pft_i)] = os.path.join( month_temp_dir, '{}_{}.tif'.format(val, pft_i)) for val in _SITE_INTERMEDIATE_VALUES: month_reg[val] = os.path.join(month_temp_dir, '{}.tif'.format(val)) output_dir = os.path.join(args['workspace_dir'], "output") if not os.path.exists(output_dir): os.makedirs(output_dir) # provisional state variable registry contains provisional biomass in # absence of grazing provisional_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) provisional_sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, provisional_sv_dir), (pft_sv_dict, provisional_sv_dir)], file_suffix) intermediate_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) # Main simulation loop # for each step in the simulation for month_index in range(n_months): if (month_index % 12) == 0: # Update yearly quantities _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg) current_month = (starting_month + month_index - 1) % 12 + 1 current_year = starting_year + (starting_month + month_index - 1) // 12 # track state variables from previous step prev_sv_reg = sv_reg for animal_id in animal_trait_table.keys(): if animal_trait_table[animal_id]['sex'] == 'breeding_female': revised_animal_trait_dict = update_breeding_female_status( animal_trait_table[animal_id], month_index) animal_trait_table[animal_id] = revised_animal_trait_dict revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # enforce absence of grazing as zero biomass removed for pft_i in pft_id_set: pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # populate provisional_sv_reg with provisional biomass in absence of # grazing _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, provisional_sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, provisional_sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, provisional_sv_reg) intermediate_sv_reg = copy_intermediate_sv( pft_id_set, provisional_sv_reg, intermediate_sv_dir) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, provisional_sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, provisional_sv_reg) # estimate grazing offtake by animals relative to provisional biomass # at an intermediate step, after senescence but before new growth _calc_grazing_offtake( aligned_inputs, args['aoi_path'], args['management_threshold'], intermediate_sv_reg, pft_id_set, aligned_inputs['animal_index'], animal_trait_table, veg_trait_table, current_month, month_reg) # estimate actual biomass production for this step, integrating impacts # of grazing sv_dir = os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index) utils.make_directories([sv_dir]) sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, sv_dir), (pft_sv_dict, sv_dir)], file_suffix) _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg) _animal_diet_sufficiency( sv_reg, pft_id_set, aligned_inputs, animal_trait_table, veg_trait_table, current_month, month_reg) _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg) _leach(aligned_inputs, site_param_table, month_reg, sv_reg) _write_monthly_outputs( aligned_inputs, provisional_sv_reg, sv_reg, month_reg, pft_id_set, current_year, current_month, output_dir, file_suffix) # summary results summary_output_dir = os.path.join(output_dir, 'summary_results') os.makedirs(summary_output_dir) summary_shp_path = os.path.join( summary_output_dir, 'grazing_areas_results_rpm{}.shp'.format(file_suffix)) create_vector_copy( args['animal_grazing_areas_path'], summary_shp_path) field_pickle_map, field_header_order_list = aggregate_and_pickle_results( output_dir, summary_shp_path) _add_fields_to_shapefile( field_pickle_map, field_header_order_list, summary_shp_path) # clean up shutil.rmtree(persist_param_dir) shutil.rmtree(PROCESSING_DIR) if delete_sv_folders: for month_index in range(-1, n_months): shutil.rmtree( os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index)) def raster_multiplication( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Multiply raster1 by raster2. Multiply raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_multiply_op(raster1, raster2): """Multiply two rasters.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata result[valid_mask] = raster1[valid_mask] * raster2[valid_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_multiply_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_division( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Divide raster1 by raster2. Divide raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_divide_op(raster1, raster2): """Divide raster1 by raster2.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) raster1 = raster1.astype(numpy.float32) raster2 = raster2.astype(numpy.float32) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata error_mask = ((raster1 != 0) & (raster2 == 0.) & valid_mask) zero_mask = ((raster1 == 0.) & (raster2 == 0.) & valid_mask) nonzero_mask = ((raster2 != 0.) & valid_mask) result[error_mask] = target_path_nodata result[zero_mask] = 0. result[nonzero_mask] = raster1[nonzero_mask] / raster2[nonzero_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_divide_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_list_sum( raster_list, input_nodata, target_path, target_nodata, nodata_remove=False): """Calculate the sum per pixel across rasters in a list. Sum the rasters in `raster_list` element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. If nodata is treated as zero, areas where all inputs are nodata will be nodata in the output. Parameters: raster_list (list): list of paths to rasters to sum input_nodata (float or int): nodata value in the input rasters target_path (string): path to location to store the result target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(*raster_list): """Add the rasters in raster_list without removing nodata values.""" invalid_mask = numpy.any( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters def raster_sum_op_nodata_remove(*raster_list): """Add the rasters in raster_list, treating nodata as zero.""" invalid_mask = numpy.all( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_sum( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Add raster 1 and raster2. Add raster1 and raster2, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to one raster operand raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to second raster operand raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the sum target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(raster1, raster2): """Add raster1 and raster2 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] + raster2[valid_mask] return result def raster_sum_op_nodata_remove(raster1, raster2): """Add raster1 and raster2, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 + raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_difference( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Subtract raster2 from raster1. Subtract raster2 from raster1 element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to raster from which to subtract raster2 raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to raster which should be subtracted from raster1 raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the difference target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the difference in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_difference_op(raster1, raster2): """Subtract raster2 from raster1 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] - raster2[valid_mask] return result def raster_difference_op_nodata_remove(raster1, raster2): """Subtract raster2 from raster1, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 - raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op, target_path, gdal.GDT_Float32, target_nodata) def reclassify_nodata(target_path, new_nodata_value): """Reclassify the nodata value of a raster to a new value. Convert all areas of nodata in the target raster to the new nodata value, which must be an integer. Parameters: target_path (string): path to target raster new_nodata_value (integer): new value to set as nodata Side effects: modifies the raster indicated by `target_path` Returns: None """ def reclassify_op(target_raster): reclassified_raster = numpy.copy(target_raster) reclassify_mask = (target_raster == previous_nodata_value) reclassified_raster[reclassify_mask] = new_nodata_value return reclassified_raster fd, temp_path = tempfile.mkstemp(dir=PROCESSING_DIR) shutil.copyfile(target_path, temp_path) previous_nodata_value = pygeoprocessing.get_raster_info( target_path)['nodata'][0] pygeoprocessing.raster_calculator( [(temp_path, 1)], reclassify_op, target_path, gdal.GDT_Float32, new_nodata_value) # clean up os.close(fd) os.remove(temp_path) def weighted_state_variable_sum( sv, sv_reg, aligned_inputs, pft_id_set, weighted_sum_path): """Calculate weighted sum of state variable across plant functional types. To sum a state variable across PFTs within a grid cell, the state variable must be weighted by the fractional cover of each PFT inside the grid cell. First multiply the state variable by its fractional cover, and then add up the weighted products. Parameters: sv (string): state variable to be summed across plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables, including sv, the state variable to be summed aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types weighted_sum_path (string): path to raster that should contain the weighted sum across PFTs Side effects: modifies or creates the raster indicated by `weighted_sum_path` Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in pft_id_set: val = '{}_weighted'.format(sv) temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) weighted_path_list = [] for pft_i in pft_id_set: target_path = temp_val_dict['{}_weighted_{}'.format(sv, pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) raster_list_sum( weighted_path_list, _TARGET_NODATA, weighted_sum_path, _TARGET_NODATA, nodata_remove=True) # clean up temporary files shutil.rmtree(temp_dir) def _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set): """Check the sum of fractional cover across plant functional types. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types Raises: ValueError if the pixel-wise sum of fractional cover values across plant functional types exceeds 1 Returns: None """ with tempfile.NamedTemporaryFile( prefix='cover_sum', dir=PROCESSING_DIR) as cover_sum_temp_file: cover_sum_path = cover_sum_temp_file.name with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name # initialize sum to zero pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], cover_sum_path, gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) for pft_i in pft_id_set: shutil.copyfile(cover_sum_path, operand_temp_path) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_sum( aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, operand_temp_path, _TARGET_NODATA, cover_sum_path, _TARGET_NODATA) # get maximum sum of fractional cover max_cover = 0. for offset_map, raster_block in pygeoprocessing.iterblocks( (cover_sum_path, 1)): valid_mask = (raster_block != _TARGET_NODATA) if raster_block[valid_mask].size > 0: max_cover = max(max_cover, numpy.amax(raster_block[valid_mask])) if max_cover > 1: raise ValueError( "Fractional cover across plant functional types exceeds 1") # clean up os.remove(cover_sum_path) def initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table): """Generate initial state variable registry from initial conditions tables. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including site spatial index raster and fractional cover of each plant functional type sv_dir (string): path to directory where initial state variable rasters should be stored pft_id_set (set): set of integers identifying plant functional types site_initial_conditions_table (dict): map of site spatial index to dictionaries that contain initial values for site-level state variables pft_initial_conditions_table (dict): map of plant functional type index to dictionaries that contain initial values for plant functional type-level state variables Returns: initial_sv_reg, map of key, path pairs giving paths to initial state variable rasters """ def full_masked(pft_cover, fill_val): """Create a constant raster masked by pft fractional cover. Parameters: pft_cover (numpy.ndarray): input, fractional cover of the plant functional type fill_val (float): constant value with which to fill raster in areas where fractional cover > 0 Returns: full_masked, a raster containing `fill_val` in areas where `pft_cover` > 0 """ valid_mask = ( (~numpy.isclose(pft_cover, _SV_NODATA)) & (pft_cover > 0)) full_masked = numpy.empty(pft_cover.shape, dtype=numpy.float32) full_masked[:] = _SV_NODATA full_masked[valid_mask] = fill_val return full_masked initial_sv_reg = {} # site-level state variables # check for missing state variable values required_site_state_var = set( [sv_key[:-5] for sv_key in _SITE_STATE_VARIABLE_FILES.keys()]) for site_code in site_initial_conditions_table.keys(): missing_site_state_var = required_site_state_var.difference( site_initial_conditions_table[site_code].keys()) if missing_site_state_var: raise ValueError( "The following state variables were not found in the site " + "initial conditions table: \n\t" + "\n\t".join( missing_site_state_var)) for sv_key, basename in _SITE_STATE_VARIABLE_FILES.items(): state_var = sv_key[:-5] site_to_val = dict( [(site_code, float(table[state_var])) for ( site_code, table) in site_initial_conditions_table.items()]) target_path = os.path.join(sv_dir, basename) initial_sv_reg[sv_key] = target_path pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _SV_NODATA) # PFT-level state variables for pft_i in pft_id_set: # check for missing values missing_pft_state_var = set(_PFT_STATE_VARIABLES).difference( pft_initial_conditions_table[pft_i].keys()) if missing_pft_state_var: raise ValueError( "The following state variables were not found in the plant " + "functional type initial conditions table: \n\t" + "\n\t".join( missing_pft_state_var)) for state_var in _PFT_STATE_VARIABLES: fill_val = pft_initial_conditions_table[pft_i][state_var] pft_cover_path = aligned_inputs['pft_{}'.format(pft_i)] target_path = os.path.join( sv_dir, '{}_{}.tif'.format(state_var, pft_i)) sv_key = '{}_{}_path'.format(state_var, pft_i) initial_sv_reg[sv_key] = target_path pygeoprocessing.raster_calculator( [(pft_cover_path, 1), (fill_val, 'raw')], full_masked, target_path, gdal.GDT_Float32, _SV_NODATA) return initial_sv_reg def _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path, ompc_path): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): path to active organic soil carbon raster som2c_2_path (string): path to slow organic soil carbon raster som3c_path (string): path to passive organic soil carbon raster bulkd_path (string): path to bulk density of soil raster edepth (string): path to depth of soil raster ompc_path (string): path to result, total soil organic matter Side effects: modifies or creates the raster indicated by `ompc_path` Returns: None """ def ompc_op(som1c_2, som2c_2, som3c, bulkd, edepth): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): state variable, active organic soil carbon som2c_2_path (string): state variable, slow organic soil carbon som3c_path (string): state variable, passive organic soil carbon bulkd_path (string): input, bulk density of soil edepth_path (string): parameter, depth of soil for this calculation Returns: ompc, total soil organic matter weighted by bulk density. """ ompc = numpy.empty(som1c_2.shape, dtype=numpy.float32) ompc[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som2c_2, _SV_NODATA)) & (~numpy.isclose(som3c, _SV_NODATA)) & (~numpy.isclose(bulkd, bulkd_nodata)) & (edepth != _IC_NODATA)) ompc[valid_mask] = ( (som1c_2[valid_mask] + som2c_2[valid_mask] + som3c[valid_mask]) * 1.724 / (10000. * bulkd[valid_mask] * edepth[valid_mask])) return ompc bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path]], ompc_op, ompc_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulkd_path, afiel_path): """Calculate field capacity for one soil layer. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster afiel_path (string): path to result raster, field capacity for this soil layer Side effects: creates the raster indicated by `afiel_path` Returns: None """ def afiel_op(sand, silt, clay, ompc, bulkd): """Calculate field capacity for one soil layer. Field capacity, maximum soil moisture retention capacity, from <NAME> Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: afiel, field capacity for this soil layer """ afiel = numpy.empty(sand.shape, dtype=numpy.float32) afiel[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) afiel[valid_mask] = ( 0.3075 * sand[valid_mask] + 0.5886 * silt[valid_mask] + 0.8039 * clay[valid_mask] + 2.208E-03 * ompc[valid_mask] + -0.1434 * bulkd[valid_mask]) return afiel sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], afiel_op, afiel_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulkd_path, awilt_path): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster awilt_path (string): path to result raster, wilting point for this soil layer Side effects: creates the raster indicated by `awilt_path` Returns: None """ def awilt_op(sand, silt, clay, ompc, bulkd): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: awilt, wilting point for this soil layer """ awilt = numpy.empty(sand.shape, dtype=numpy.float32) awilt[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) awilt[valid_mask] = ( -0.0059 * sand[valid_mask] + 0.1142 * silt[valid_mask] + 0.5766 * clay[valid_mask] + 2.228E-03 * ompc[valid_mask] + 0.02671 * bulkd[valid_mask]) return awilt sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], awilt_op, awilt_path, gdal.GDT_Float32, _TARGET_NODATA) def _afiel_awilt( site_index_path, site_param_table, som1c_2_path, som2c_2_path, som3c_path, sand_path, silt_path, clay_path, bulk_d_path, pp_reg): """Calculate field capacity and wilting point for each soil layer. Computations based on Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Field capacity is calculated for -0.33 bar; wilting point is calculated for water content at -15 bars. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters including 'edepth' field som1c_2_path (string): path to the state variable 'som1c_2', active organic soil carbon som2c_2_path (string): path to the state variable 'som2c_2', slow organic soil carbon som3c_path (string): path to the state variable 'som3c', passive organic soil carbon sand_path (string): path to raster containing proportion sand in soil silt_path (string): path to raster containing proportion silt in soil clay_path (string): path to raster containing proportion clay in soil bulk_d_path (string): path to raster containing bulk density of soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation Modifies the rasters pp_reg['afiel_<layer>'] and pp_reg['awilt_<layer>'] for all soil layers. Returns: None """ def decrement_ompc(ompc_orig_path, ompc_dec_path): """Decrease estimated organic matter to 85% of its value. In each subsequent soil layer, estimated organic matter is decreased by 15%, to 85% of its previous value. Parameters: ompc_orig_path (string): path to estimated soil organic matter raster ompc_dec_path (string): path to result raster, estimated soil organic matter decreased to 85% of its previous value Side effects: modifies or creates the raster indicated by `ompc_dec_path` Returns: None """ def decrement_op(ompc_orig): """Reduce organic matter to 85% of its previous value.""" ompc_dec = numpy.empty(ompc_orig.shape, dtype=numpy.float32) ompc_dec[:] = _TARGET_NODATA valid_mask = (ompc_orig != _TARGET_NODATA) ompc_dec[valid_mask] = ompc_orig[valid_mask] * 0.85 return ompc_dec pygeoprocessing.raster_calculator( [(ompc_orig_path, 1)], decrement_op, ompc_dec_path, gdal.GDT_Float32, _TARGET_NODATA) # temporary intermediate rasters for calculating field capacity and # wilting point temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) edepth_path = os.path.join(temp_dir, 'edepth.tif') ompc_path = os.path.join(temp_dir, 'ompc.tif') site_to_edepth = dict( [(site_code, float(table['edepth'])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_edepth, edepth_path, gdal.GDT_Float32, _IC_NODATA) # estimate total soil organic matter _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulk_d_path, edepth_path, ompc_path) # calculate field capacity and wilting point for each soil layer, # decreasing organic matter content by 85% with each layer for lyr in range(1, 10): afiel_path = pp_reg['afiel_{}_path'.format(lyr)] awilt_path = pp_reg['awilt_{}_path'.format(lyr)] _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, afiel_path) _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, awilt_path) ompc_dec_path = os.path.join(temp_dir, 'ompc{}.tif'.format(lyr)) decrement_ompc(ompc_path, ompc_dec_path) ompc_path = ompc_dec_path # clean up temporary files shutil.rmtree(temp_dir) def _persistent_params( site_index_path, site_param_table, sand_path, clay_path, pp_reg): """Calculate persistent parameters. The calculated values do not change over the course of the simulation. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sand_path (string): path to raster containing proportion sand in soil clay_path (string): path to raster containing proportion clay in soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['wc_path'] pp_reg['eftext_path'] pp_reg['p1co2_2_path'] pp_reg['fps1s3_path'] pp_reg['fps2s3_path'] pp_reg['orglch_path'] pp_reg['vlossg_path'] Returns: None """ sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] # temporary intermediate rasters for persistent parameters calculation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in[ 'peftxa', 'peftxb', 'p1co2a_2', 'p1co2b_2', 'ps1s3_1', 'ps1s3_2', 'ps2s3_1', 'ps2s3_2', 'omlech_1', 'omlech_2', 'vlossg']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_wc(afiel_1, awilt_1): """Calculate water content of soil layer 1.""" return afiel_1 - awilt_1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ pp_reg['afiel_1_path'], pp_reg['awilt_1_path']]], calc_wc, pp_reg['wc_path'], gdal.GDT_Float32, _TARGET_NODATA) def calc_eftext(peftxa, peftxb, sand): """Calculate effect of soil texture on microbial decomposition. Use an empirical regression to estimate the effect of soil sand content on the microbe decomposition rate. Line 359 Prelim.f Parameters: peftxa (numpy.ndarray): parameter, regression intercept peftxb (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: eftext, coefficient that modifies microbe decomposition rate. """ eftext = numpy.empty(sand.shape, dtype=numpy.float32) eftext[:] = _IC_NODATA valid_mask = ( (peftxa != _IC_NODATA) & (peftxb != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) eftext[valid_mask] = ( peftxa[valid_mask] + (peftxb[valid_mask] * sand[valid_mask])) return eftext pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['peftxa'], param_val_dict['peftxb'], sand_path]], calc_eftext, pp_reg['eftext_path'], gdal.GDT_Float32, _IC_NODATA) def calc_p1co2_2(p1co2a_2, p1co2b_2, sand): """Calculate the fraction of carbon lost to CO2 from som1c_2. During decomposition from active organic soil carbon, a fraction of decomposing material is lost to CO2 as the soil respires. Line 366 Prelim.f Parameters: p1co2a_2 (numpy.ndarray): parameter, intercept of regression predicting loss to CO2 from active organic soil carbon p1co2b_2 (numpy.ndarray): parameter, slope of regression predicting loss to CO2 from active organic soil carbon sand (numpy.ndarray): input, proportion sand in soil Returns: p1co2_2, fraction of carbon that flows to CO2 from active organic soil carbon """ p1co2_2 = numpy.empty(sand.shape, dtype=numpy.float32) p1co2_2[:] = _IC_NODATA valid_mask = ( (p1co2a_2 != _IC_NODATA) & (p1co2b_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) p1co2_2[valid_mask] = ( p1co2a_2[valid_mask] + (p1co2b_2[valid_mask] * sand[valid_mask])) return p1co2_2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['p1co2a_2'], param_val_dict['p1co2b_2'], sand_path]], calc_p1co2_2, pp_reg['p1co2_2_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps1s3(ps1s3_1, ps1s3_2, clay): """Calculate effect of clay content on decomposition from som1c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from soil organic matter with fast turnover to soil organic matter with slow turnover. Line 370 Prelim.f Parameters: ps1s3_1 (numpy.ndarray): parameter, regression intercept ps1s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps1s3, coefficient that modifies rate of decomposition from som1c_2 """ fps1s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps1s3[:] = _IC_NODATA valid_mask = ( (ps1s3_1 != _IC_NODATA) & (ps1s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps1s3[valid_mask] = ( ps1s3_1[valid_mask] + (ps1s3_2[valid_mask] * clay[valid_mask])) return fps1s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps1s3_1'], param_val_dict['ps1s3_2'], clay_path]], calc_fps1s3, pp_reg['fps1s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps2s3(ps2s3_1, ps2s3_2, clay): """Calculate effect of clay content on decomposition from som2c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from slow soil organic carbon to soil passive organic carbon. Line 371 Prelim.f Parameters: ps2s3_1 (numpy.ndarray): parameter, regression intercept ps2s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps2s3, coefficient that modifies rate of decomposition from som2c_2 to som3c """ fps2s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps2s3[:] = _IC_NODATA valid_mask = ( (ps2s3_1 != _IC_NODATA) & (ps2s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps2s3[valid_mask] = ( ps2s3_1[valid_mask] + (ps2s3_2[valid_mask] * clay[valid_mask])) return fps2s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps2s3_1'], param_val_dict['ps2s3_2'], clay_path]], calc_fps2s3, pp_reg['fps2s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_orglch(omlech_1, omlech_2, sand): """Calculate the effect of sand content on leaching from soil. Use an empirical regression to estimate the effect of sand content of soil on rate of organic leaching from soil when there is drainage of soil water from soil layer 1 to soil layer 2. Line 110 Predec.f Parameters: omlech_1 (numpy.ndarray): parameter, regression intercept omlech_2 (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: orglch, the fraction of organic compounds leaching from soil with drainage from soil layer 1 to layer 2 """ orglch = numpy.empty(sand.shape, dtype=numpy.float32) orglch[:] = _IC_NODATA valid_mask = ( (omlech_1 != _IC_NODATA) & (omlech_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) orglch[valid_mask] = ( omlech_1[valid_mask] + (omlech_2[valid_mask] * sand[valid_mask])) return orglch pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['omlech_1'], param_val_dict['omlech_2'], sand_path]], calc_orglch, pp_reg['orglch_path'], gdal.GDT_Float32, _IC_NODATA) def calc_vlossg(vlossg_param, clay): """Calculate proportion of gross mineralized N that is volatized. During decomposition, some N is lost to volatilization. This is a function of the gross mineralized N and is calculated according to this multiplier, which varies with soil clay content. Parameters: vlossg (numpy.ndarray): parameter, volatilization loss multiplier clay (numpy.ndarray): input, proportion clay in soil Returns: vlossg, proportion of gross mineralized N that is volatized """ valid_mask = ( (vlossg_param != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) vlossg = numpy.empty(vlossg_param.shape, dtype=numpy.float32) vlossg[:] = _IC_NODATA max_mask = ((clay > 0.3) & valid_mask) min_mask = ((clay < 0.1) & valid_mask) vlossg[valid_mask] = -0.1 * (clay[valid_mask] - 0.3) + 0.01 vlossg[max_mask] = 0.01 vlossg[min_mask] = 0.03 vlossg[valid_mask] = vlossg[valid_mask] * vlossg_param[valid_mask] return vlossg pygeoprocessing.raster_calculator( [(path, 1) for path in [param_val_dict['vlossg'], clay_path]], calc_vlossg, pp_reg['vlossg_path'], gdal.GDT_Float32, _IC_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _aboveground_ratio(anps, tca, pcemic_1, pcemic_2, pcemic_3): """Calculate C/<iel> ratios of decomposing aboveground material. This ratio is used to test whether there is sufficient <iel> (N or P) in aboveground material for the material to decompose. Agdrat.f Parameters: anps (numpy.ndarray): state variable, N or P in the donor material tca (numpy.ndarray): state variable, total C in the donor material pcemic_1 (numpy.ndarray): parameter, maximum C/<iel> of new material pcemic_2 (numpy.ndarray): parameter, minimum C/<iel> of new material pcemic_3 (numpy.ndarray): parameter, minimum <iel> content of decomposing material that gives minimum C/<iel> of new material Returns: agdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(tca, _SV_NODATA)) & (pcemic_1 != _IC_NODATA) & (pcemic_2 != _IC_NODATA) & (pcemic_3 != _IC_NODATA)) cemicb = numpy.empty(anps.shape, dtype=numpy.float32) cemicb[:] = _IC_NODATA cemicb[valid_mask] = ( (pcemic_2[valid_mask] - pcemic_1[valid_mask]) / pcemic_3[valid_mask]) econt = numpy.empty(anps.shape, dtype=numpy.float32) econt[:] = _TARGET_NODATA econt[valid_mask] = 0 decompose_mask = ((tca > 0.) & valid_mask) econt[decompose_mask] = anps[decompose_mask] / (tca[decompose_mask] * 2.5) agdrat = numpy.empty(anps.shape, dtype=numpy.float32) agdrat[:] = _TARGET_NODATA agdrat[valid_mask] = pcemic_2[valid_mask] compute_mask = ((econt <= pcemic_3) & valid_mask) agdrat[compute_mask] = ( pcemic_1[compute_mask] + econt[compute_mask] * cemicb[compute_mask]) return agdrat def _belowground_ratio(aminrl, varat_1_iel, varat_2_iel, varat_3_iel): """Calculate C/<iel> ratios of decomposing belowground material. This ratio is used to test whether there is sufficient <iel> (N or P) in soil metabolic material to decompose. Bgdrat.f Parameters: aminrl (numpy.ndarray): derived, average surface mineral <iel> varat_1_iel (numpy.ndarray): parameter, maximum C/<iel> ratio for newly decomposed material varat_2_iel (numpy.ndarray): parameter, minimum C/<iel> ratio varat_3_iel (numpy.ndarray): parameter, amount of <iel> present when minimum ratio applies Returns: bgdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(aminrl, _SV_NODATA)) & (varat_1_iel != _IC_NODATA) & (varat_2_iel != _IC_NODATA) & (varat_3_iel != _IC_NODATA)) bgdrat = numpy.empty(aminrl.shape, dtype=numpy.float32) bgdrat[:] = _TARGET_NODATA bgdrat[valid_mask] = ( (1. - aminrl[valid_mask] / varat_3_iel[valid_mask]) * (varat_1_iel[valid_mask] - varat_2_iel[valid_mask]) + varat_2_iel[valid_mask]) max_mask = ((aminrl <= 0) & valid_mask) bgdrat[max_mask] = varat_1_iel[max_mask] min_mask = ((aminrl > varat_3_iel) & valid_mask) bgdrat[min_mask] = varat_2_iel[min_mask] return bgdrat def _structural_ratios(site_index_path, site_param_table, sv_reg, pp_reg): """Calculate maximum C/N and C/P ratios for structural material. These ratios limit decomposition of structural material (i.e., material containing lignin). Lines 31-77 Predec.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sv_reg (dict): map of key, path pairs giving paths to state variables for the current month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['rnewas_1_1_path'] pp_reg['rnewas_1_2_path'] pp_reg['rnewas_2_1_path'] pp_reg['rnewas_2_2_path'] pp_reg['rnewbs_1_1_path'] pp_reg['rnewbs_1_2_path'] pp_reg['rnewbs_2_1_path'] pp_reg['rnewbs_2_2_path'] Returns: None """ # temporary parameter rasters for structural ratios calculations temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for iel in [1, 2]: for val in[ 'pcemic1_2', 'pcemic1_1', 'pcemic1_3', 'pcemic2_2', 'pcemic2_1', 'pcemic2_3', 'rad1p_1', 'rad1p_2', 'rad1p_3', 'varat1_1', 'varat22_1']: target_path = os.path.join(temp_dir, '{}_{}.tif'.format(val, iel)) param_val_dict['{}_{}'.format(val, iel)] = target_path site_to_val = dict( [(site_code, float(table['{}_{}'.format(val, iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_rnewas_som2( pcemic2_2, pcemic2_1, pcemic2_3, struce_1, strucc_1, rad1p_1, rad1p_2, rad1p_3, pcemic1_2, rnewas1): """Calculate C/<iel> ratio for decomposition into som2. This ratio is calculated separately for each nutrient (i.e., N, P). When material decomposes into the surface slow organic pool, the C/<iel> ratio of decomposing material must be smaller than or equal to this ratio. A portion of the ratio of material entering som1, the surface active pool, is also added to som2 and calculated here. Parameters: pcemic2_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface slow organic pool pcemic2_1 (numpy.ndarray): parameter, maximum C/<iel> ratio for surface slow organic pool pcemic2_3 (numpy.ndarray): parameter, mimimum <iel> content of decomposing aboveground material, above which the C/<iel> ratio of the surface slow organic pool equals pcemic1_2 struce_1 (numpy.ndarray): state variable, <iel> in surface structural material strucc_1 (numpy.ndarray): state variable, C in surface structural material rad1p_1 (numpy.ndarray): parameter, intercept of regression used to calculate addition of <iel> from surface active pool rad1p_2 (numpy.ndarray): parameter, slope of regression used to calculate addition of <iel> from surface active pool rad1p_3 (numpy.ndarray): parameter, minimum allowable C/<iel> used to calculate addition term for C/<iel> ratio of som2 formed from surface active pool pcemic1_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface active organic pool rnewas1 (numpy.ndarray): derived, C/<iel> ratio for decomposition into som1 Returns: rnewas2, required ratio for decomposition of structural material into som2 for one nutrient """ valid_mask = ( (pcemic2_2 != _IC_NODATA) & (pcemic2_1 != _IC_NODATA) & (pcemic2_3 != _IC_NODATA) & (~numpy.isclose(struce_1, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (rad1p_1 != _IC_NODATA) & (rad1p_2 != _IC_NODATA) & (rad1p_3 != _IC_NODATA) & (pcemic1_2 != _IC_NODATA) & (rnewas1 != _TARGET_NODATA)) rnewas2 = _aboveground_ratio( struce_1, strucc_1, pcemic2_1, pcemic2_2, pcemic2_3) radds1 = numpy.empty(strucc_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1[valid_mask] + rad1p_2[valid_mask] * (rnewas1[valid_mask] - pcemic1_2[valid_mask])) rnewas2[valid_mask] = rnewas1[valid_mask] + radds1[valid_mask] rnewas2[valid_mask] = numpy.maximum( rnewas2[valid_mask], rad1p_3[valid_mask]) return rnewas2 for iel in [1, 2]: # calculate rnewas_iel_1 - aboveground material to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, pp_reg['rnewas_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewas_iel_2 - aboveground material to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['pcemic2_2_{}'.format(iel)], param_val_dict['pcemic2_1_{}'.format(iel)], param_val_dict['pcemic2_3_{}'.format(iel)], sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], pp_reg['rnewas_{}_1_path'.format(iel)]]], calc_rnewas_som2, pp_reg['rnewas_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_1 - belowground material to SOM1 site_to_varat1_1 = dict([ (site_code, float(table['varat1_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat1_1, pp_reg['rnewbs_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_2 - belowground material to SOM2 # rnewbs(iel,2) = varat22(1,iel) site_to_varat22_1 = dict([ (site_code, float(table['varat22_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat22_1, pp_reg['rnewbs_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg): """Calculate quantities that remain static for 12 months. These quantities are annual precipitation, annual atmospheric N deposition, and the fraction of plant residue which is lignin for each pft. Century also calculates non-symbiotic soil N fixation once yearly, but here those were moved to monthly tasks. Century uses precipitation in the future 12 months (prcgrw) to predict root:shoot ratios, but here we instead use the sum of monthly precipitation in 12 months including the current one, if data for 12 future months are not available. Lines 79-82, 164 Eachyr.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including monthly precipitation and site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters month_index (int): current monthly step, relative to 0 so that month_index=0 at first monthly time step pft_id_set (set): set of integers identifying plant functional types year_reg (dict): map of key, path pairs giving paths to the annual precipitation and N deposition rasters Side effects: modifies or creates the rasters indicated by: year_reg['annual_precip_path'] year_reg['baseNdep_path'] year_reg['pltlig_above_<pft>'] for each pft year_reg['pltlig_below_<pft>'] for each pft Returns: None Raises: ValueError if fewer than 12 monthly precipitation rasters can be found """ def calc_base_N_dep(epnfa_1, epnfa_2, prcann): """Calculate base annual atmospheric N deposition. Parameters: epnfa_1 (numpy.ndarray): parameter, intercept of regression predicting atmospheric N deposition from precipitation epnfa_2 (numpy.ndarray): parameter, slope of regression predicting atmospheric N deposition from precipitation prcann (numpy.ndarray): derived, annual precipitation Returns: baseNdep, annual atmospheric N deposition """ baseNdep = numpy.empty(prcann.shape, dtype=numpy.float32) baseNdep[:] = 0. valid_mask = ( (epnfa_1 != _IC_NODATA) & (epnfa_2 != _IC_NODATA) & (prcann != _TARGET_NODATA)) baseNdep[valid_mask] = ( epnfa_1[valid_mask] + (epnfa_2[valid_mask] * numpy.minimum(prcann[valid_mask], 80.))) baseNdep[baseNdep < 0] = 0. return baseNdep def calc_pltlig(fligni_1_lyr, fligni_2_lyr, prcann): """Calculate the fraction of residue that is lignin. Cmplig.f This fraction is used to calculate the fraction of residue (i.e., incoming litter from fall of standing dead or incoming soil from death of roots) that is partitioned to metabolic vs structural pools. It is calculated once per year from annual precipitation and fixed parameters. Parameters: fligni_1_lyr (numpy.ndarray): parameter, intercept for regression predicting lignin content fraction from rainfall fligni_2_lyr (numpy.ndarray): parameter, slope for regression predicting lignin content fraction from rainfall prcann (numpy.ndarray): derived, annual precipitation Returns: pltlig_lyr, fraction of residue that is lignin """ valid_mask = ( (fligni_1_lyr != _IC_NODATA) & (fligni_2_lyr != _IC_NODATA) & (prcann != _TARGET_NODATA)) pltlig = numpy.empty(fligni_1_lyr.shape, dtype=numpy.float32) pltlig[:] = _TARGET_NODATA pltlig[valid_mask] = ( fligni_1_lyr[valid_mask] + fligni_2_lyr[valid_mask] * prcann[valid_mask]) pltlig[valid_mask] = numpy.clip(pltlig[valid_mask], 0.02, 0.5) return pltlig offset = -12 annual_precip_rasters = [] while len(annual_precip_rasters) < 12: offset += 1 if offset == 12: raise ValueError("Insufficient precipitation rasters were found") precip_month = month_index + offset try: annual_precip_rasters.append( aligned_inputs['precip_%d' % precip_month]) except KeyError: continue precip_nodata = set([]) for precip_raster in annual_precip_rasters: precip_nodata.update( set([pygeoprocessing.get_raster_info(precip_raster)['nodata'][0]])) if len(precip_nodata) > 1: raise ValueError("Precipitation rasters include >1 nodata value") precip_nodata = list(precip_nodata)[0] raster_list_sum( annual_precip_rasters, precip_nodata, year_reg['annual_precip_path'], _TARGET_NODATA) # intermediate parameter rasters for this operation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in['epnfa_1', 'epnfa_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['fligni_1_1', 'fligni_2_1', 'fligni_1_2', 'fligni_2_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # calculate base N deposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['epnfa_1'], param_val_dict['epnfa_2'], year_reg['annual_precip_path']]], calc_base_N_dep, year_reg['baseNdep_path'], gdal.GDT_Float32, _TARGET_NODATA) for pft_i in pft_id_set: # fraction of surface residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_1_{}'.format(pft_i)], param_val_dict['fligni_2_1_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_above_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # fraction of soil residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_2_{}'.format(pft_i)], param_val_dict['fligni_2_2_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_below_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_latitude(template_raster, latitude_raster_path): """Calculate latitude at the center of each pixel in a template raster.""" pygeoprocessing.new_raster_from_base( template_raster, latitude_raster_path, gdal.GDT_Float32, [_IC_NODATA]) latitude_raster = gdal.OpenEx( latitude_raster_path, gdal.OF_RASTER | gdal.GA_Update) target_band = latitude_raster.GetRasterBand(1) base_raster_info = pygeoprocessing.get_raster_info(template_raster) geotransform = base_raster_info['geotransform'] for offset_map, raster_block in pygeoprocessing.iterblocks( (template_raster, 1)): n_y_block = raster_block.shape[0] n_x_block = raster_block.shape[1] # offset by .5 so we're in the center of the pixel xoff = offset_map['xoff'] + 0.5 yoff = offset_map['yoff'] + 0.5 # calculate the projected x and y coordinate bounds for the block x_range = numpy.linspace( geotransform[0] + geotransform[1] * xoff, geotransform[0] + geotransform[1] * (xoff + n_x_block - 1), n_x_block) y_range = numpy.linspace( geotransform[3] + geotransform[5] * yoff, geotransform[3] + geotransform[5] * (yoff + n_y_block - 1), n_y_block) # we'll use this to avoid generating any nodata points valid_mask = raster_block != base_raster_info['nodata'] # these indexes correspond to projected coordinates # y_vector is what we want, an array of latitude coordinates x_vector, y_vector = numpy.meshgrid(x_range, y_range) target_band.WriteArray( y_vector, xoff=offset_map['xoff'], yoff=offset_map['yoff']) # Making sure the band and dataset is flushed and not in memory target_band.FlushCache() target_band.FlushCache() target_band = None gdal.Dataset.__swig_destroy__(latitude_raster) latitude_raster = None def _calc_daylength(template_raster, month, daylength_path): """Calculate estimated hours of daylength. Daylen.c. Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January daylength_path (string): path to shortwave radiation raster Side effects: modifies or creates the raster indicated by `daylength_path` Returns: None """ def daylength(month): def _daylength(latitude): """Estimate hours of daylength for a given month and latitude.""" # Julian day at beginning of each month jday_list = [ 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 337] jday = jday_list[month - 1] # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) declin = 0.4014 * numpy.sin(6.283185 * (jday - 77.0) / 365) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0] = 0 par1 = numpy.sqrt(temp) par2 = -numpy.tan(rlatitude) * numpy.tan(declin) ahou = numpy.arctan2(par1, par2) hours_of_daylength = (ahou / numpy.pi) * 24 return hours_of_daylength return _daylength # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], daylength(month), daylength_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _shortwave_radiation(template_raster, month, shwave_path): """Calculate shortwave radiation outside the atmosphere. Shortwave radiation outside the atmosphere is calculated according to Penman (1948), "Natural evaporation from open water, bare soil and grass", Proc. Roy. Soc. London. The latitude of each pixel is required to calculate radiation and is calculated as an intermediate step from the input `template_raster`. shwave.f Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January shwave_path (string): path to shortwave radiation raster Side effects: Modifies the raster indicated by `shwave_path` Returns: None """ def shwave(month): def _shwave(latitude): """Calculate shortwave radiation outside the atmosphere. Parameters: latitude (float): latitude of current site in degrees month (int): current month of the year, such that month=1 indicates January Returns: shwave, short wave solar radiation outside the atmosphere """ # Julian date in middle of each month of the year jday_list = [ 16, 46, 75, 106, 136, 167, 197, 228, 259, 289, 320, 350] jday = jday_list[month - 1] transcof = 0.8 # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) # short wave solar radiation on a clear day declin = 0.401426 * numpy.sin(6.283185 * (jday - 77.0) / 365.0) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0.] = 0. par1 = numpy.sqrt(temp) par2 = (-numpy.tan(rlatitude) * numpy.tan(declin)) ahou = numpy.arctan2(par1, par2) ahou[ahou < 0.] = 0. solrad = ( 917.0 * transcof * ( ahou * numpy.sin(rlatitude) * numpy.sin(declin) + numpy.cos(rlatitude) * numpy.cos(declin) * numpy.sin(ahou))) # short wave radiation outside the atmosphere shwave = solrad / transcof return shwave return _shwave # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], shwave(month), shwave_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _reference_evapotranspiration( max_temp_path, min_temp_path, shwave_path, fwloss_4_path, pevap_path): """Calculate reference evapotranspiration. Reference evapotranspiration from the FAO Penman-Monteith equation in "Guidelines for computing crop water requirements", FAO Irrigation and drainage paper 56 (http://www.fao.org/docrep/X0490E/x0490e08.htm), modified by the parameter fwloss(4). Parameters: max_temp_path (string): path to maximum monthly temperature min_temp_path (string): path to minimum monthly temperature shwave_path (string): path to shortwave radiation outside the atmosphere fwloss_4_path (string): path to parameter, scaling factor for reference evapotranspiration pevap_path (string): path to result, reference evapotranspiration raster Side effects: modifies or creates the raster indicated by `pevap_path` Returns: None """ def _calc_pevap(max_temp, min_temp, shwave, fwloss_4): """Calculate reference evapotranspiration. Pevap.f Parameters: max_temp (numpy.ndarray): input, maximum monthly temperature min_temp (numpy.ndarray): input, minimum monthly temperature shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere fwloss_4 (numpy.ndarray): parameter, scaling factor for reference evapotranspiration Returns: pevap, reference evapotranspiration """ const1 = 0.0023 const2 = 17.8 langleys2watts = 54.0 valid_mask = ( (~numpy.isclose(max_temp, maxtmp_nodata)) & (~numpy.isclose(min_temp, mintmp_nodata)) & (shwave != _TARGET_NODATA) & (fwloss_4 != _IC_NODATA)) trange = numpy.empty(fwloss_4.shape, dtype=numpy.float32) trange[:] = _TARGET_NODATA trange[valid_mask] = max_temp[valid_mask] - min_temp[valid_mask] tmean = numpy.empty(fwloss_4.shape, dtype=numpy.float32) tmean[:] = _IC_NODATA tmean[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2.0 # daily reference evapotranspiration daypet = numpy.empty(fwloss_4.shape, dtype=numpy.float32) daypet[:] = _TARGET_NODATA in1 = const1 * (tmean[valid_mask] + const2) in2 = numpy.sqrt(trange[valid_mask]) in3 = (shwave[valid_mask] / langleys2watts) daypet[valid_mask] = ( const1 * (tmean[valid_mask] + const2) * numpy.sqrt(trange[valid_mask]) * (shwave[valid_mask] / langleys2watts)) # monthly reference evapotranspiration, from mm to cm, # bounded to be at least 0.5 monpet = (daypet * 30.) / 10. monpet[monpet <= 0.5] = 0.5 pevap = numpy.empty(fwloss_4.shape, dtype=numpy.float32) pevap[:] = _TARGET_NODATA pevap[valid_mask] = monpet[valid_mask] * fwloss_4[valid_mask] return pevap maxtmp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ max_temp_path, min_temp_path, shwave_path, fwloss_4_path]], _calc_pevap, pevap_path, gdal.GDT_Float32, _TARGET_NODATA) def _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg): """Calculate above- and belowground potential production. Potential production of each plant functional type is calculated as total potential production given incoming solar radiation, limited by temperature, soil moisture, and obstruction by biomass and litter. Further modification of potential production according to limitation by water and nutrient availability is calculated in the root:shoot ratio submodel. Lines 57-148 Potcrp.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['h2ogef_1_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month creates the raster indicated by `month_reg['tgprod_pot_prod_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: if str(current_month) in veg_trait_table[pft_i]['growth_months']: do_PFT.append(pft_i) if not do_PFT: return def calc_ctemp(aglivc, pmxbio, maxtmp, pmxtmp, mintmp, pmntmp): """Calculate soil temperature relative to its effect on growth. Soil temperature is calculated from monthly temperature inputs and modified by total standing live biomass. Lines 69-84 Potcrp.f Parameters: aglivc (numpy.ndarray): derived, sum of aglivc (carbon in aboveground live biomass) across plant functional types pmxbio (numpy.ndarray): parameter, maximum biomass impact on temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature pmxtmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly maximum temperature mintmp (numpy.ndarray): input, average minimum monthly temperature pmntmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly minimum temperature Returns: ctemp, effect of soil temperature on potential production """ bio = numpy.empty(aglivc.shape, dtype=numpy.float32) bio[:] = _IC_NODATA valid_mask = ( (aglivc >= 0.) & (pmxbio != _IC_NODATA) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (pmxtmp != _IC_NODATA) & (~numpy.isclose(mintmp, mintmp_nodata)) & (pmntmp != _IC_NODATA)) bio[valid_mask] = aglivc[valid_mask] * 2.5 bio[bio > pmxbio] = pmxbio[bio > pmxbio] bio[pmxbio < 0] = _IC_NODATA # Maximum temperature tmxs = numpy.empty(aglivc.shape, dtype=numpy.float32) tmxs[:] = _IC_NODATA tmxs[valid_mask] = ( maxtmp[valid_mask] + ( (25.4/(1. + 18. * numpy.exp(-0.20 * maxtmp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * bio[valid_mask]) - 0.13))) # Minimum temperature tmns = numpy.empty(aglivc.shape, dtype=numpy.float32) tmns[:] = _IC_NODATA tmns[valid_mask] = ( mintmp[valid_mask] + (pmntmp[valid_mask] * bio[valid_mask] - 1.78)) # Average temperature ctemp = numpy.empty(aglivc.shape, dtype=numpy.float32) ctemp[:] = _IC_NODATA ctemp[valid_mask] = (tmxs[valid_mask] + tmns[valid_mask])/2. return ctemp def calc_potprd(mintmp, maxtmp, ctemp, ppdf_1, ppdf_2, ppdf_3, ppdf_4): """Calculate the limiting effect of temperature on growth. Estimated soil temperature restricts potential production according to a Poisson Density Function curve described by the plant functional type-specific parameters ppdf_1-4.. Lines 73-84 Potcrp.f Parameters: mintmp (numpy.ndarray): input, average minimum monthly temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature ctemp (numpy.ndarray): derived, soil temperature as calculated from monthly temperature and modified by standing live biomass ppdf_1 (numpy.ndarray): parameter, optimum temperature for growth ppdf_2 (numpy.ndarray): parameter, maximum temperature for growth ppdf_3 (numpy.ndarray): parameter, left curve shape for Poisson Density Function curve describing growth as function of temperature ppdf_4 (numpy.ndarray): parameter, right curve shape for Poisson Density Function curve describing growth as function of temperature Returns: potprd, scaling factor describing potential production limited by temperature """ valid_mask = ( (~numpy.isclose(mintmp, mintmp_nodata)) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (ctemp != _IC_NODATA) & (ppdf_1 != _IC_NODATA) & (ppdf_2 != _IC_NODATA) & (ppdf_3 != _IC_NODATA) & (ppdf_4 != _IC_NODATA)) frac = numpy.empty(ctemp.shape, dtype=numpy.float32) frac[:] = _TARGET_NODATA frac[valid_mask] = ( (ppdf_2[valid_mask] - ctemp[valid_mask]) / (ppdf_2[valid_mask] - ppdf_1[valid_mask])) avg_tmp = numpy.empty(ctemp.shape, dtype=numpy.float32) avg_tmp[valid_mask] = (mintmp[valid_mask] + maxtmp[valid_mask]) / 2. grow_mask = ( (avg_tmp > 0) & (frac > 0) & valid_mask) potprd = numpy.empty(ctemp.shape, dtype=numpy.float32) potprd[:] = _TARGET_NODATA potprd[valid_mask] = 0. potprd[grow_mask] = (numpy.exp( (ppdf_3[grow_mask]/ppdf_4[grow_mask]) * (1. - numpy.power(frac[grow_mask], ppdf_4[grow_mask]))) * numpy.power(frac[grow_mask], ppdf_3[grow_mask])) return potprd def calc_h2ogef_1( pevap, avh2o_1, precip, wc, pprpts_1, pprpts_2, pprpts_3): """Calculate the limiting factor of water availability on growth. Soil moisture restricts potential production according to the ratio of available water to reference evapotranspiration. The shape of the linear relationship of this ratio to potential production is controlled by the site parameters pprpts_1, pprpts_2, and pprpts_3. Lines 57-64 Potcrp.f Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration avh2o_1 (numpy.ndarray): state variable, water available to this plant functional type for growth precip (numpy.ndarray): input, precipitation for the current month wc (numpy.ndarray): derived, water content in soil layer 1 pprpts_1 (numpy.ndarray): parameter, the minimum ratio of available water to reference evapotranspiration that limits production completely pprpts_2 (numpy.ndarray): parameter, influences the slope of the line predicting potential production from available water pprpts_3 (numpy.ndarray): parameter, the ratio of available water to reference evapotranspiration above which production is not restricted Returns: h2ogef_1, scaling factor describing potential production limited by soil moisture """ valid_mask = ( (pevap != _TARGET_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (~numpy.isclose(precip, precip_nodata)) & (wc != _TARGET_NODATA) & (pprpts_1 != _IC_NODATA) & (pprpts_2 != _IC_NODATA) & (pprpts_3 != _IC_NODATA)) h2ogef_prior = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_prior[:] = _TARGET_NODATA h2ogef_prior[valid_mask] = numpy.where( pevap[valid_mask] >= 0.01, (avh2o_1[valid_mask] + precip[valid_mask])/pevap[valid_mask], 0.01) intcpt = ( pprpts_1[valid_mask] + (pprpts_2[valid_mask] * wc[valid_mask])) slope = 1. / (pprpts_3[valid_mask] - intcpt) h2ogef_1 = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_1[:] = _TARGET_NODATA h2ogef_1[valid_mask] = ( 1.0 + slope * (h2ogef_prior[valid_mask] - pprpts_3[valid_mask])) h2ogef_1[valid_mask] = numpy.clip(h2ogef_1[valid_mask], 0.01, 1.) return h2ogef_1 def calc_biof(sum_stdedc, sum_aglivc, strucc_1, pmxbio, biok5): """Calculate the effect of obstruction on growth. Live biomass, standing dead biomass, and litter reduce potential production through obstruction. The shape of the relationship between standing biomass and litter and potential production is controlled by the site parameter pmxbio and the plant functional type parameter biok5. Lines 91-120 Potcrp.f Parameters: sum_stdedc (numpy.ndarray): derived, total carbon in standing dead biomass across plant functional types sum_aglivc (numpy.ndarray): derived, total carbon in aboveground live biomass across plant functional types strucc_1 (numpy.ndarray): derived, carbon in surface litter pmxbio (numpy.ndarray): parameter, maximum biomass impact on potential production biok5 (numpy.ndarray): parameter, level of standing dead biomass and litter Returns: biof, scaling factor describing potential production limited by obstruction """ valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (pmxbio != _IC_NODATA) & (biok5 != _IC_NODATA)) bioc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioc[:] = _IC_NODATA bioc[valid_mask] = numpy.where( ((sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask]) <= 0.), 0.01, (sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask])) bioc[valid_mask] = numpy.where( (bioc[valid_mask] > pmxbio[valid_mask]), pmxbio[valid_mask], bioc[valid_mask]) bioprd = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioprd[:] = _IC_NODATA bioprd[valid_mask] = 1. - ( bioc[valid_mask] / (biok5[valid_mask] + bioc[valid_mask])) temp1 = 1. - bioprd temp2 = temp1 * 0.75 temp3 = temp1 * 0.25 ratlc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) ratlc[:] = _IC_NODATA ratlc[valid_mask] = sum_aglivc[valid_mask] / bioc[valid_mask] biof = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) biof[:] = _TARGET_NODATA biof[valid_mask] = numpy.where( ratlc[valid_mask] <= 1., (bioprd[valid_mask] + (temp2[valid_mask] * ratlc[valid_mask])), numpy.where( ratlc[valid_mask] <= 2., (bioprd[valid_mask] + temp2[valid_mask]) + temp3[valid_mask] * (ratlc[valid_mask] - 1.), 1.)) return biof def calc_tgprod_pot_prod(prdx_1, shwave, potprd, h2ogef_1, biof): """Calculate total potential production. Total above- and belowground potential biomass production is calculated as the total potential production given solar radiation and the intrinsinc growth capacity of the plant functional type, modified by limiting factors of temperature, soil moisture, and obstruction by standing biomass and litter. Line 147 Potcrp.f Parameters: prdx_1 (numpy.ndarray): parameter, the intrinsic capacity of the plant functional type for growth per unit of solar radiation shwave (numpy.ndarray): derived, shortwave solar radiation outside the atmosphere potprd (numpy.ndarray): parameter, scaling factor describing limiting effect of temperature h2ogef_1 (numpy.ndarray): derived, scaling factor describing the limiting effect of soil moisture biof (numpy.ndarray): derived, scaling factor describing the limiting effect of obstruction by standing biomass and litter Returns: tgprod_pot_prod, total above- and belowground potential biomass production (g biomass) """ valid_mask = ( (prdx_1 != _IC_NODATA) & (shwave != _TARGET_NODATA) & (potprd != _TARGET_NODATA) & (h2ogef_1 != _TARGET_NODATA) & (biof != _TARGET_NODATA)) tgprod_pot_prod = numpy.empty(prdx_1.shape, dtype=numpy.float32) tgprod_pot_prod[:] = _TARGET_NODATA tgprod_pot_prod[valid_mask] = ( prdx_1[valid_mask] * shwave[valid_mask] * potprd[valid_mask] * h2ogef_1[valid_mask] * biof[valid_mask]) return tgprod_pot_prod # temporary intermediate rasters for calculating total potential production temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} # site-level temporary calculated values for val in ['sum_aglivc', 'sum_stdedc', 'ctemp', 'shwave', 'pevap']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in [ 'aglivc_weighted', 'stdedc_weighted', 'potprd', 'biof']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) # temporary parameter rasters for calculating total potential production param_val_dict = {} # site-level parameters for val in [ 'pmxbio', 'pmxtmp', 'pmntmp', 'fwloss_4', 'pprpts_1', 'pprpts_2', 'pprpts_3']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for val in [ 'ppdf_1', 'ppdf_2', 'ppdf_3', 'ppdf_4', 'biok5', 'prdx_1']: for pft_i in do_PFT: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) maxtmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] # calculate intermediate quantities that do not differ between PFTs: # sum of aglivc (standing live biomass) and stdedc (standing dead biomass) # across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # ctemp, soil temperature relative to impacts on growth pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], param_val_dict['pmxbio'], aligned_inputs['max_temp_{}'.format(current_month)], param_val_dict['pmxtmp'], aligned_inputs['min_temp_{}'.format(current_month)], param_val_dict['pmntmp']]], calc_ctemp, temp_val_dict['ctemp'], gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # calculate quantities that differ between PFTs for pft_i in do_PFT: # potprd, the limiting effect of temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['min_temp_{}'.format(current_month)], aligned_inputs['max_temp_{}'.format(current_month)], temp_val_dict['ctemp'], param_val_dict['ppdf_1_{}'.format(pft_i)], param_val_dict['ppdf_2_{}'.format(pft_i)], param_val_dict['ppdf_3_{}'.format(pft_i)], param_val_dict['ppdf_4_{}'.format(pft_i)]]], calc_potprd, temp_val_dict['potprd_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # h2ogef_1, the limiting effect of soil water availability pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], prev_sv_reg['avh2o_1_{}_path'.format(pft_i)], aligned_inputs['precip_{}'.format(month_index)], pp_reg['wc_path'], param_val_dict['pprpts_1'], param_val_dict['pprpts_2'], param_val_dict['pprpts_3']]], calc_h2ogef_1, month_reg['h2ogef_1_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # biof, the limiting effect of obstruction pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_stdedc'], temp_val_dict['sum_aglivc'], prev_sv_reg['strucc_1_path'], param_val_dict['pmxbio'], param_val_dict['biok5_{}'.format(pft_i)]]], calc_biof, temp_val_dict['biof_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['prdx_1_{}'.format(pft_i)], temp_val_dict['shwave'], temp_val_dict['potprd_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], temp_val_dict['biof_{}'.format(pft_i)]]], calc_tgprod_pot_prod, month_reg['tgprod_pot_prod_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_favail_P(sv_reg, param_val_dict): """Calculate the fraction of P in surface layer available to plants. This must be performed after the sum of mineral N in the surface layer is calculated because the fraction of labile P available to plants is impacted by the amount of mineral N in the surface layer. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables for the current month, including minerl_1_1, mineral N in the surface layer param_val_dict (dict): map of key, path pairs giving paths to site-level parameters, including favail_4, favail_5, favail_6, and favail_2 Side effects: modifies or creates the raster indicated by `param_val_dict['favail_2']` Returns: None """ def favail_P_op(minerl_1_1, favail_4, favail_5, favail_6): """Calculate the fraction of P in surface layer available to plants. The fraction of labile P available to plants depends on mineral N in the surface layer and site parameters favail_4, favail_5, favail_6. Line 395 Simsom.f Parameters: minerl_1_1 (numpy.ndarray): state variable, mineral N in the surface layer favail_4 (numpy.ndarray): parameter, minimum fraction of P available favail_5 (numpy.ndarray): parameter, maximum fraction of P available favail_6 (numpy.ndarray): parameter, mineral N in surface layer required to attain maximum fraction of P available Returns: favail_P, fraction of mineral P available to plants """ valid_mask = ( (~numpy.isclose(minerl_1_1, _SV_NODATA)) & (favail_4 != _IC_NODATA) & (favail_5 != _IC_NODATA) & (favail_6 != _IC_NODATA)) interim = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) interim[:] = _IC_NODATA interim[valid_mask] = ( favail_4[valid_mask] + minerl_1_1[valid_mask] * (favail_5[valid_mask] - favail_4[valid_mask]) / favail_6[valid_mask]) favail_P = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) favail_P[:] = _IC_NODATA favail_P[valid_mask] = numpy.maximum( favail_4[valid_mask], numpy.minimum( interim[valid_mask], favail_5[valid_mask])) return favail_P pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_1_path'], param_val_dict['favail_4'], param_val_dict['favail_5'], param_val_dict['favail_6']]], favail_P_op, param_val_dict['favail_2'], gdal.GDT_Float32, _IC_NODATA) def _calc_avail_mineral_nutrient(pft_param_dict, sv_reg, iel, target_path): """Calculate one mineral nutrient available to one plant functional type. The mineral nutrient available to a plant functional type is calculated from the mineral nutrient content of soil layers accessible by that plant function type. Parameters: pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month iel (int): integer index for current nutrient (1=N, 2=P) target_path (string): path to raster to contain available mineral nutrient for this plant functional type and nutrient Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ nlay = int(pft_param_dict['nlaypg']) mineral_raster_list = [ sv_reg['minerl_{}_{}_path'.format(lyr, iel)] for lyr in range( 1, nlay + 1)] raster_list_sum( mineral_raster_list, _SV_NODATA, target_path, _TARGET_NODATA, nodata_remove=True) def _calc_available_nutrient( pft_i, iel, pft_param_dict, sv_reg, site_param_table, site_index_path, availm_path, favail_path, tgprod_path, eavail_path): """Calculate nutrient available to a plant functional type. The nutrient available is the sum of mineral nutrient (N or P) in soil layers accessible by the roots of the plant functional type, modified by the fraction of nutrient available to plants and the current root biomass. Parameters: pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month site_index_path (string): path to site spatial index raster availm_path (string): path to raster containing available mineral nutrient for the given plant functional type and nutrient site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters favail_path (string): path to raster containing the appropriate value of the parameter favail. For nitrogen, this parameter is supplied directly as user input, but for phosphorus, it must be calculated from other parameters. tgprod_path (string): path to raster containing total potential production (g biomass) eavail_path (string): path to location to store the result, nutrient available to the plant functional type Side effects: modifies or creates the raster indicated by `eavail_path` Returns: None """ def calc_eavail(rictrl, bglivc, riint, availm, favail, crpstg): """Calculate available nutrient. Parameters: rictrl (numpy.ndarray): parameter, scaling factor used to calculate the impact of root biomass on nutrient availability bglivc (numpy.ndarray): state variable, carbon in belowground live biomass riint (numpy.ndarray): parameter, intercept used to calculate the impact of root biomass on nutrient availability availm (numpy.ndarray): derived, the sum of mineral nutrient in soil layers accessible by this plant functional type favail (numpy.ndarray): parameter, fraction of the nutrient available each month to plants crpstg (numpy.ndarray): state variable, nutrient in retranslocation storage pool for the plant functional type Returns: eavail, the nutrient available to the plant functional type """ valid_mask = ( (rictrl != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA)) & (riint != _IC_NODATA) & (availm != _TARGET_NODATA) & (favail != _IC_NODATA) & (~numpy.isclose(crpstg, _SV_NODATA))) rimpct = numpy.empty(rictrl.shape, dtype=numpy.float32) rimpct[:] = _TARGET_NODATA rimpct[valid_mask] = numpy.where( ((rictrl[valid_mask] * bglivc[valid_mask] * 2.5) > 33.), 1., 1. - riint[valid_mask] * numpy.exp( -rictrl[valid_mask] * bglivc[valid_mask] * 2.5)) eavail = numpy.empty(rictrl.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = ( (availm[valid_mask] * favail[valid_mask] * rimpct[valid_mask]) + crpstg[valid_mask]) return eavail def add_symbiotic_fixed_N(eavail_prior, snfxmx, tgprod): """Add nitrogen fixed by the plant to nutrient available. Some nitrogen may be fixed by the plant, and this must be added to available mineral nitrogen. Nitrogen fixed by the plant is calculated from total potential production and the maximum rate of N fixation. Parameters: eavail_prior (numpy.ndarray): derived, mineral nitrogen available to the plant functional type, calculated with calc_eavail() snfxmx (numpy.ndarray): parameter, maximum rate of symbiotic nitrogen fixation tgprod (numpy.ndarray): derived, total above- and belowground potential production (g biomass) Returns: eavail, total N available including N fixed by the plant """ valid_mask = ( (eavail_prior != _TARGET_NODATA) & (snfxmx != _IC_NODATA) & (tgprod != _TARGET_NODATA)) maxNfix = numpy.empty(eavail_prior.shape, dtype=numpy.float32) maxNfix[:] = _TARGET_NODATA maxNfix[valid_mask] = snfxmx[valid_mask] * (tgprod[valid_mask] / 2.5) eavail = numpy.empty(eavail_prior.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = eavail_prior[valid_mask] + maxNfix[valid_mask] return eavail # temporary intermediate rasters for calculating available nutrient temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in ['rictrl', 'riint']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['snfxmx_1']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path fill_val = pft_param_dict[val] pygeoprocessing.new_raster_from_base( site_index_path, target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['rictrl'], sv_reg['bglivc_{}_path'.format(pft_i)], param_val_dict['riint'], availm_path, favail_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]], calc_eavail, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) if iel == 1: eavail_prior_path = os.path.join(temp_dir, 'eavail_prior.tif') shutil.copyfile(eavail_path, eavail_prior_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_prior_path, param_val_dict['snfxmx_1'], tgprod_path]], add_symbiotic_fixed_N, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_nutrient_demand( biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path, demand_path): """Calculate the demand of one nutrient by a plant functional type. Demand is calculated from total biomass production, the fraction of biomass production allocated to roots, and the minimum carbon/nutrient ratios of above- and belowground live biomass. Lines 88-92 CropDynC.f and line 65, Nutrlm.f Parameters: biomass_production_path (string): path to raster giving total biomass production fraction_allocated_to_roots_path (string): path to raster giving the fraction fo total biomass production allocated to roots cercrp_min_above_path (string): path to raster giving the minimum ratio of carbon to nutrient in aboveground live biomass cercrp_min_below_path (string): path to raster giving the minimum ratio of carbon to nutrient in belowground live biomass Side effects: modifies or creates the raster indicated by `demand_path` Returns: None """ def nutrient_demand_op( biomass_production, root_fraction, cercrp_min_above, cercrp_min_below): """Calculate nutrient demand. Parameters: biomass_production (numpy.ndarray): derived, total biomass production root_fraction (numpy.ndarray): derived, fraction of biomass allocated to roots cercrp_min_above (numpy.ndarray): derived, minimum carbon to nutrient ratio of new aboveground live material cercrp_min_below (numpy.ndarray): derived, minimum carbon to nutrient ratio of new belowground live material Returns: demand_e, nutrient demand """ valid_mask = ( (biomass_production != _TARGET_NODATA) & (root_fraction != _TARGET_NODATA) & (cercrp_min_above != _TARGET_NODATA) & (cercrp_min_above > 0) & (cercrp_min_below > 0) & (cercrp_min_below != _TARGET_NODATA)) demand_above = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_above[:] = _TARGET_NODATA demand_above[valid_mask] = ( ((biomass_production[valid_mask] * (1. - root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_above[valid_mask])) demand_below = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_below[:] = _TARGET_NODATA demand_below[valid_mask] = ( ((biomass_production[valid_mask] * (root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_below[valid_mask])) demand_e = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_e[:] = _TARGET_NODATA demand_e[valid_mask] = ( demand_above[valid_mask] + demand_below[valid_mask]) return demand_e pygeoprocessing.raster_calculator( [(path, 1) for path in [ biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path]], nutrient_demand_op, demand_path, gdal.GDT_Float32, _TARGET_NODATA) def calc_provisional_fracrc( annual_precip, frtcindx, bgppa, bgppb, agppa, agppb, cfrtcw_1, cfrtcw_2, cfrtcn_1, cfrtcn_2): """Calculate provisional fraction of carbon allocated to roots. A temporary provisional fraction of carbon allocated to roots must be calculated prior to calculating plant demand for N and P. The value of this provisional fraction depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 36-47 cropDynC.f Parameters: annual_precip (numpy.ndarray): derived, sum of monthly precipitation over twelve months including the current month frtcindx (numpy.ndarray): parameter, flag indicating whether root:shoot allocation follows the Great Plains equation (frtcindx=0) or as a perennial plant (frtcindx=1) bgppa (numpy.ndarray): parameter, intercept in regression estimating belowground production from annual precipitation if frtcindx=0 bgppb (numpy.ndarray): parameter, slope in regression estimating belowground production from annual precipitation if frtcindx=0 agppa (numpy.ndarray): parameter, intercept in regression estimating aboveground production from annual precipitation if frtcindx=0 agppb (numpy.ndarray): parameter, slope in regression estimating aboveground production from annual precipitation if frtcindx=0 cfrtcw_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum water stress if frtcindx=1 cfrtcw_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots without water stress if frtcindx=1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum nutrient stress if frtcindx=1 cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots under no nutrient stress if frtcindx=1 Returns: fracrc_p, provisional fraction of carbon allocated to roots """ valid_mask = ( (annual_precip != _TARGET_NODATA) & (frtcindx != _IC_NODATA) & (bgppa != _IC_NODATA)) rtsh = numpy.empty(annual_precip.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[valid_mask] = ( (bgppa[valid_mask] + annual_precip[valid_mask] * bgppb[valid_mask]) / (agppa[valid_mask] + annual_precip[valid_mask] * agppb[valid_mask])) fracrc_p = numpy.empty(annual_precip.shape, dtype=numpy.float32) fracrc_p[:] = _TARGET_NODATA fracrc_p[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, (1.0 / (1.0 / rtsh[valid_mask] + 1.0)), ((cfrtcw_1[valid_mask] + cfrtcw_2[valid_mask] + cfrtcn_1[valid_mask] + cfrtcn_2[valid_mask]) / 4.0)) return fracrc_p def calc_ce_ratios( pramn_1_path, pramn_2_path, aglivc_path, biomax_path, pramx_1_path, pramx_2_path, prbmn_1_path, prbmn_2_path, prbmx_1_path, prbmx_2_path, annual_precip_path, pft_i, iel, month_reg): """Calculate minimum and maximum carbon to nutrient ratios. Minimum and maximum C/E ratios are used to calculate demand for a nutrient by a plant functional type. This function calculates the ratios for above- and belowground plant portions, for one plant functional type and one nutrient. Fltce.f Parameters: pramn_1_path (string): path to raster containing the parameter pramn_<iel>_1, the minimum aboveground ratio with zero biomass pramn_2_path (string): path to raster containing the parameter pramn_<iel>_2, the minimum aboveground ratio with biomass greater than or equal to biomax aglivc_path (string): path to raster containing carbon in aboveground live biomass biomax_path (string): path to raster containing the parameter biomax, the biomass above which the ratio equals pramn_2 or pramx_2 pramx_1_path (string): path to raster containing the parameter pramx_<iel>_1, the maximum aboveground ratio with zero biomass pramx_2_path (string): path to raster containing the parameter pramx_<iel>_2, the maximum aboveground ratio with biomass greater than or equal to biomax prbmn_1_path (string): path to raster containing the parameter prbmn_<iel>_1, intercept of regression to predict minimum belowground ratio from annual precipitation prbmn_2_path (string): path to raster containing the parameter prbmn_<iel>_2, slope of regression to predict minimum belowground ratio from annual precipitation prbmx_1_path (string): path to raster containing the parameter prbmx_<iel>_1, intercept of regression to predict maximum belowground ratio from annual precipitation prbmx_2_path (string): path to raster containing the parameter prbmx_<iel>_2, slope of regression to predict maximum belowground ratio from annual precipitation annual_precip_path (string): path to annual precipitation raster pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the rasters indicated by `month_reg['cercrp_min_above_<iel>_<pft_i>']`, `month_reg['cercrp_max_above_<iel>_<pft_i>']`, `month_reg['cercrp_min_below_<iel>_<pft_i>']`, `month_reg['cercrp_max_below_<iel>_<pft_i>']`, Returns: None """ def calc_above_ratio(pra_1, pra_2, aglivc, biomax): """Calculate carbon to nutrient ratio for aboveground material. Parameters: pra_1 (numpy.ndarray): parameter, minimum or maximum ratio with zero biomass pra_2 (numpy.ndarray): parameter, minimum or maximum ratio with biomass greater than or equal to biomax aglivc (numpy.ndarray): state variable, carbon in aboveground live material biomax (numpy:ndarray): parameter, biomass above which the ratio equals pra_2 Returns: cercrp_above, carbon to nutrient ratio for aboveground material """ valid_mask = ( (pra_1 != _IC_NODATA) & (pra_2 != _IC_NODATA) & (~numpy.isclose(aglivc, _SV_NODATA)) & (biomax != _IC_NODATA)) cercrp_above = numpy.empty(pra_1.shape, dtype=numpy.float32) cercrp_above[:] = _TARGET_NODATA cercrp_above[valid_mask] = numpy.minimum( (pra_1[valid_mask] + (pra_2[valid_mask] - pra_1[valid_mask]) * 2.5 * aglivc[valid_mask] / biomax[valid_mask]), pra_2[valid_mask]) return cercrp_above def calc_below_ratio(prb_1, prb_2, annual_precip): """Calculate carbon to nutrient ratio for belowground material. Parameters: prb_1 (numpy.ndarray): parameter, intercept of regression to predict ratio from annual precipitation prb_2 (numpy.ndarray): parameter, slope of regression to predict ratio from annual precipitation annual_precip (numpy.ndarray): derived, precipitation in twelve months including the current month Returns: cercrp_below, carbon to nutrient ratio for belowground material """ valid_mask = ( (prb_1 != _IC_NODATA) & (prb_2 != _IC_NODATA) & (annual_precip != _TARGET_NODATA)) cercrp_below = numpy.empty(prb_1.shape, dtype=numpy.float32) cercrp_below[:] = _TARGET_NODATA cercrp_below[valid_mask] = ( prb_1[valid_mask] + (prb_2[valid_mask] * annual_precip[valid_mask])) return cercrp_below pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramn_1_path, pramn_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramx_1_path, pramx_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_max_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmn_1_path, prbmn_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmx_1_path, prbmx_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_max_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) def calc_revised_fracrc( frtcindx_path, fracrc_p_path, totale_1_path, totale_2_path, demand_1_path, demand_2_path, h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, cfrtcn_1_path, cfrtcn_2_path, fracrc_r_path): """ Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots includes the impacts of water and nutrient limitation. The method of the revised calculation depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 96-104, cropDynC.f, froota.f Parameters: frtcindx_path (string): path to raster containing the parameter frtcindx fracrc_p_path (string): path to raster containing provisional fraction of carbon allocated to roots totale_1_path (string): path to raster containing total available nitrogen totale_2_path (string): path to raster containing total available phosphorus demand_1_path (string): path to raster containing nitrogen demand demand_2_path (string): path to raster containing phosphorus demand h2ogef_1_path (string): path to raster containing the limiting effect of water availability on growth cfrtcw_1_path (string): path to raster containing the parameter cfrtcw_1 cfrtcw_2_path (string): path to raster containing the parameter cfrtcw_2 cfrtcn_1_path (string): path to raster containing the parameter cfrtcn_1 cfrtcn_2_path (string): path to raster containing the parameter cfrtcn_2 fracrc_r_path (string): path to raster that should contain the result, revised fraction of carbon allocated to roots Side effects: creates the raster indicated by `fracrc_r_path` Returns: None """ def calc_a2drat(totale, demand): """Calculate the ratio of available nutrient to nutrient demand. The ratio of nutrient available to demand for the nutrient is restricted to be between 0 and 1. Parameters: totale (numpy.ndarray): derived, nutrient available demand (numpy.ndarray): derived, demand for the nutrient Returns: a2drat, the ratio of available nutrient to demand, restricted to be between 0 and 1 """ valid_mask = ( (totale != _TARGET_NODATA) & (demand != _TARGET_NODATA)) a2drat = numpy.empty(totale.shape, dtype=numpy.float32) a2drat[:] = _TARGET_NODATA demand_mask = ((demand > 0) & valid_mask) a2drat[valid_mask] = 1. a2drat[demand_mask] = numpy.clip( totale[demand_mask] / demand[demand_mask], 0., 1.) return a2drat def calc_perennial_fracrc( h2ogef, cfrtcw_1, cfrtcw_2, a2drat_1, a2drat_2, cfrtcn_1, cfrtcn_2): """Calculate fraction C allocated to roots for a perennial plant. The fraction of carbon allocated to roots is determined by water availability, described by h2ogef, and nutrient availability, described by a2drat_1 for nitrogen and a2drat_2 for phosphorus. Lines 114-125 froota.f Parameters: h2ogef (numpy.ndarray): derived, the limiting factor of water availability on growth cfrtcw_1 (numpy.ndarray): parameter, the maximum fraction of carbon allocated to roots with maximum water stress cfrtcw_2 (numpy.ndarray): parameter, the minimum fraction of carbon allocated to roots with no water stress a2drat_1 (numpy.ndarray): derived, the ratio of available nitrogen to nitrogen demand, restricted to be between 0 and 1 a2drat_2 (numpy.ndarray): derived, the ratio of available phosphorus to phosphorus demand, restricted to be between 0 and 1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots with maximum nutrient stress cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots with no nutrient stress Returns: fracrc_perennial, revised fraction of C allocated to roots for a perennial plant """ valid_mask = ( (h2ogef != _TARGET_NODATA) & (cfrtcw_1 != _IC_NODATA) & (cfrtcw_2 != _IC_NODATA) & (a2drat_1 != _TARGET_NODATA) & (a2drat_2 != _TARGET_NODATA) & (cfrtcn_1 != _IC_NODATA) & (cfrtcn_2 != _IC_NODATA)) h2oeff = numpy.empty(h2ogef.shape, dtype=numpy.float32) h2oeff[:] = _TARGET_NODATA h2oeff[valid_mask] = ( (cfrtcw_2[valid_mask] - cfrtcw_1[valid_mask]) * (h2ogef[valid_mask] - 1.) + cfrtcw_2[valid_mask]) ntreff_1 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_1[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_1[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff_2 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_2[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_2[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff[:] = _TARGET_NODATA ntreff[valid_mask] = numpy.maximum( ntreff_1[valid_mask], ntreff_2[valid_mask]) fracrc_perennial = numpy.empty( h2ogef.shape, dtype=numpy.float32) fracrc_perennial[:] = _TARGET_NODATA fracrc_perennial[valid_mask] = numpy.minimum( numpy.maximum(h2oeff[valid_mask], ntreff[valid_mask]), 0.99) return fracrc_perennial def revised_fracrc_op(frtcindx, fracrc_p, fracrc_perennial): """Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots is calculated according to the parameter frtcindx. If frtcindx=0 (use the "Great Plains equation"), the revised fraction is equal to the provisional fraction. If frtcindx=1 (a perennial plant), the revised fraction is calculated from water and nutrient stress. Parameters: frtcindx (numpy.ndarray): parameter, indicates whether revised fraction of carbon allocated to roots should follow the "Great Plains equation" or the algorithm for a perennial plant fracrc_p (numpy.ndarray): derived, provisional fraction of carbon allocated to roots fracrc_perennial (numpy.ndarray): derived, fraction of carbon allocated to roots for a perennial plant Returns: fracrc_r, revised fraction of carbon allocated to roots """ valid_mask = ( (frtcindx != _IC_NODATA) & (fracrc_p != _TARGET_NODATA) & (fracrc_perennial != _TARGET_NODATA)) fracrc_r = numpy.empty(frtcindx.shape, dtype=numpy.float32) fracrc_r[:] = _TARGET_NODATA fracrc_r[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, fracrc_p[valid_mask], fracrc_perennial[valid_mask]) return fracrc_r # temporary intermediate rasters for calculating revised fracrc temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['a2drat_1', 'a2drat_2', 'fracrc_perennial']: temp_val_dict[val] = os.path.join( temp_dir, '{}.tif'.format(val)) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_1_path, demand_1_path]], calc_a2drat, temp_val_dict['a2drat_1'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_2_path, demand_2_path]], calc_a2drat, temp_val_dict['a2drat_2'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, temp_val_dict['a2drat_1'], temp_val_dict['a2drat_2'], cfrtcn_1_path, cfrtcn_2_path]], calc_perennial_fracrc, temp_val_dict['fracrc_perennial'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ frtcindx_path, fracrc_p_path, temp_val_dict['fracrc_perennial']]], revised_fracrc_op, fracrc_r_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def grazing_effect_on_aboveground_production(tgprod, fracrc, flgrem, grzeff): """Adjust aboveground production with the impact of grazing. Removal of biomass by herbivores directly impacts potential aboveground production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0, 3, or 4, aboveground production is not changed. If grzeff=1 or 6, production decreases linearly with biomass removed; if grzeff=2 or 5, biomass removed has a quadratic impact on production. Grazrst.f Parameters: tgprod (numpy.ndarray): derived, total potential biomass production restricted by water and nutrient availability fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio Returns: agprod, aboveground production impacted by grazing """ valid_mask = ( (tgprod != _TARGET_NODATA) & (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA)) agprod_prior = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod_prior[:] = _TARGET_NODATA agprod_prior[valid_mask] = ( tgprod[valid_mask] * (1. - fracrc[valid_mask])) linear_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( (1. - (2.21*flgrem[valid_mask])) * agprod_prior[valid_mask], 0.02) quadratic_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = ( (1. + 2.6*flgrem[valid_mask] - (5.83*(numpy.power(flgrem[valid_mask], 2)))) * agprod_prior[valid_mask]) quadratic_effect[valid_mask] = numpy.maximum( quadratic_effect[valid_mask], 0.02) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 3, 4])) linear_mask = (valid_mask & numpy.isin(grzeff, [1, 6])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 5])) agprod = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod[:] = _TARGET_NODATA agprod[no_effect_mask] = agprod_prior[no_effect_mask] agprod[linear_mask] = linear_effect[linear_mask] agprod[quadratic_mask] = quadratic_effect[quadratic_mask] return agprod def grazing_effect_on_root_shoot(fracrc, flgrem, grzeff, gremb): """Adjust root:shoot ratio according to the impact of grazing. Removal of biomass by herbivores directly impacts the root:shoot ratio of production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0 or 1, the root:shoot ratio is not changed. If grzeff=2 or 3, biomass removed has a quadratic impact on the root:shoot ratio. If grzeff=4, 5, or 6, biomass removed has a linear effect on the root:shoot ratio. The parameter gremb multiplies the linear impact of grazing when grzeff=4, 5 or 6. Grzrst.f Parameters: fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio grzemb (numpy.ndarray): parameter, grazing effect multiplier Returns: rtsh, root:shoot ratio impacted by grazing """ valid_mask = ( (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA) & (gremb != _IC_NODATA)) rtsh_prior = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh_prior[:] = _TARGET_NODATA rtsh_prior[valid_mask] = ( fracrc[valid_mask] / (1. - fracrc[valid_mask])) quadratic_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = numpy.maximum( rtsh_prior[valid_mask] + 3.05 * flgrem[valid_mask] - 11.78 * numpy.power(flgrem[valid_mask], 2), 0.01) linear_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( 1. - (flgrem[valid_mask] * gremb[valid_mask]), 0.01) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 1])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 3])) linear_mask = (valid_mask & numpy.isin(grzeff, [4, 5, 6])) rtsh = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[no_effect_mask] = rtsh_prior[no_effect_mask] rtsh[quadratic_mask] = quadratic_effect[quadratic_mask] rtsh[linear_mask] = linear_effect[linear_mask] return rtsh def calc_tgprod_final(rtsh, agprod): """Calculate final total potential production. Final total potential production is calculated from aboveground production impacted by grazing and the final root:shoot ratio impacted by grazing. Parameters: rtsh (numpy.ndarray): derived, final root:shoot ratio impacted by grazing agprod (numpy.ndarray): derived, final aboveground potential production impacted by grazing Returns: tgprod, final total potential production """ valid_mask = ( (rtsh != _TARGET_NODATA) & (agprod != _TARGET_NODATA)) tgprod = numpy.empty(rtsh.shape, dtype=numpy.float32) tgprod[:] = _TARGET_NODATA tgprod[valid_mask] = ( agprod[valid_mask] + (rtsh[valid_mask] * agprod[valid_mask])) return tgprod def calc_final_tgprod_rtsh( tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path, gremb_path, tgprod_path, rtsh_path): """Calculate final potential production and root:shoot ratio. Final potential production and root:shoot ratio include the impact of grazing. First calculate final aboveground production including the impact of grazing; then calculate rtsh, the final root:shoot ratio including the impact of grazing; then calculate tgprod, final total potential production, from final aboveground production and final root:shoot ratio. Grazrst.f Parameters: tgprod_pot_prod_path (string): path to raster containing total potential biomass production restricted by water and nutrient availability, prior to effects of grazing fracrc_path (string): path to raster containing the fraction of carbon production allocated to roots according to restriction by water and nutrient availability, prior to effects of grazing flgrem_path (string): path to raster containing the fraction of live aboveground biomass removed by herbivores according to diet selection in the previous step grzeff_path (string): path to raster containing the parameter grzeff, the effect of defolation on production and root:shoot ratio gremb_path (string): path to raster containing the parameter gremb, the grazing effect multiplier tgprod_path (string): path to raster containing final total potential production (g biomass) rtsh_path (string): path to raster containing final root:shoot ratio of potential production Side effects: creates the raster indicated by tgprod_path creates the raster indicated by rtsh_path Returns: None """ # temporary intermediate rasters for grazing effect temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) agprod_path = os.path.join(temp_dir, 'agprod.tif') # grazing effect on aboveground production pygeoprocessing.raster_calculator( [(path, 1) for path in [ tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path]], grazing_effect_on_aboveground_production, agprod_path, gdal.GDT_Float32, _TARGET_NODATA) # grazing effect on final root:shoot ratio pygeoprocessing.raster_calculator( [(path, 1) for path in [ fracrc_path, flgrem_path, grzeff_path, gremb_path]], grazing_effect_on_root_shoot, rtsh_path, gdal.GDT_Float32, _TARGET_NODATA) # final total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [rtsh_path, agprod_path]], calc_tgprod_final, tgprod_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg): """Calculate final potential production and root:shoot ratio. Final potential biomass production and root:shoot ratio is calculated according to nutrient availability and demand for the nutrient, and the impact of defoliation by herbivores. CropDynC.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including the site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month year_reg (dict): map of key, path pairs giving paths to rasters that are modified once per year, including annual precipitation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['tgprod_<PFT>']`, total potential production (g biomass) for each plant functional type (PFT) creates the raster indicated by `month_reg['rtsh_<PFT>']` for each plant functional type (PFT) Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: # growth occurs in growth months and when senescence not scheduled do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: do_PFT.append(pft_i) if not do_PFT: return # temporary intermediate rasters for root:shoot submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in do_PFT: for val in ['fracrc_p', 'fracrc', 'availm']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) for iel in [1, 2]: for val in ['eavail', 'demand']: temp_val_dict[ '{}_{}_{}'.format(val, iel, pft_i)] = os.path.join( temp_dir, '{}_{}_{}.tif'.format(val, iel, pft_i)) # temporary parameter rasters for root:shoot submodel param_val_dict = {} # site-level parameters for val in [ 'bgppa', 'bgppb', 'agppa', 'agppb', 'favail_1', 'favail_4', 'favail_5', 'favail_6']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for pft_i in do_PFT: for val in [ 'frtcindx', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'biomax', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'grzeff', 'gremb']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for val in [ 'pramn_1_1', 'pramn_1_2', 'pramx_1_1', 'pramx_1_2', 'prbmn_1_1', 'prbmn_1_2', 'prbmx_1_1', 'prbmx_1_2', 'pramn_2_1', 'pramn_2_2', 'pramx_2_1', 'pramx_2_2', 'prbmn_2_1', 'prbmn_2_2', 'prbmx_2_1', 'prbmx_2_2']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict[ '{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # the parameter favail_2 must be calculated from current mineral N in # surface layer param_val_dict['favail_2'] = os.path.join(temp_dir, 'favail_2.tif') _calc_favail_P(prev_sv_reg, param_val_dict) for pft_i in do_PFT: # fracrc_p, provisional fraction of C allocated to roots pygeoprocessing.raster_calculator( [(path, 1) for path in [ year_reg['annual_precip_path'], param_val_dict['frtcindx_{}'.format(pft_i)], param_val_dict['bgppa'], param_val_dict['bgppb'], param_val_dict['agppa'], param_val_dict['agppb'], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)]]], calc_provisional_fracrc, temp_val_dict['fracrc_p_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: # persistent ratios used here and in plant growth submodel calc_ce_ratios( param_val_dict['pramn_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramn_{}_2_{}'.format(iel, pft_i)], prev_sv_reg['aglivc_{}_path'.format(pft_i)], param_val_dict['biomax_{}'.format(pft_i)], param_val_dict['pramx_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramx_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_2_{}'.format(iel, pft_i)], year_reg['annual_precip_path'], pft_i, iel, month_reg) # sum of mineral nutrient in accessible soil layers _calc_avail_mineral_nutrient( veg_trait_table[pft_i], prev_sv_reg, iel, temp_val_dict['availm_{}'.format(pft_i)]) # eavail_iel, available nutrient _calc_available_nutrient( pft_i, iel, veg_trait_table[pft_i], prev_sv_reg, site_param_table, aligned_inputs['site_index'], temp_val_dict['availm_{}'.format(pft_i)], param_val_dict['favail_{}'.format(iel)], month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['eavail_{}_{}'.format(iel, pft_i)]) # demand_iel, demand for the nutrient _calc_nutrient_demand( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], temp_val_dict['demand_{}_{}'.format(iel, pft_i)]) # revised fraction of carbon allocated to roots calc_revised_fracrc( param_val_dict['frtcindx_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], temp_val_dict['demand_1_{}'.format(pft_i)], temp_val_dict['demand_2_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)]) # final potential production and root:shoot ratio accounting for # impacts of grazing calc_final_tgprod_rtsh( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], param_val_dict['grzeff_{}'.format(pft_i)], param_val_dict['gremb_{}'.format(pft_i)], month_reg['tgprod_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)]) # clean up temporary files shutil.rmtree(temp_dir) def _snow( site_index_path, site_param_table, precip_path, tave_path, max_temp_path, min_temp_path, prev_snow_path, prev_snlq_path, current_month, snowmelt_path, snow_path, snlq_path, inputs_after_snow_path, pet_rem_path): """Account for precipitation as snow and snowmelt from snowpack. Determine whether precipitation falls as snow. Track the fate of new and existing snowpack including evaporation and melting. Track the the remaining snowpack and liquid in snow and potential evapotranspiration remaining after evaporation of snow. Snowcent.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters precip_path (string): path to raster containing precipitation for the current month tave_path (string): path to raster containing average temperature for the current month max_temp_path (string): path to raster containing maximum temperature for the current month min_temp_path (string): path to raster containing minimum temperature for the current month prev_snow_path (string): path to raster containing current snowpack prev_snlq_path (string): path to raster containing current liquid in snow current_month (int): current month of the year, such that month=0 indicates January snow_path (string): path to raster to contain modified snowpack snlq_path (string): path to raster to contain modified liquid in snow inputs_after_snow_path (string): path to raster containing water inputs to the system after accounting for snow pet_rem_path (string): path to raster containing potential evapotranspiration remaining after any evaporation of snow Side effects: creates the raster indicated by `snowmelt_path` creates the raster indicated by `snow_path` creates the raster indicated by `snlq_path` creates the raster indicated by `inputs_after_snow_path` creates the raster indicated by `pet_rem_path` Returns: None """ def calc_snow_moisture(return_type): """Calculate change in snow, pet, snow liquid, and moisture inputs. Record changes in snowpack, liquid in snow, potential evapotranspiration energy, and liquid draining into soil from snow. Parameters: return_type (string): flag indicating whether modified snowpack, modified liquid in snow, modified potential evapotranspiration, or soil moisture inputs after snow should be returned Returns: the function `_calc_snow_moisture` """ def _calc_snow_moisture( tave, precip, snow, snlq, pet, tmelt_1, tmelt_2, shwave): """Calculate the fate of moisture from snow. Calculate new snowfall or rain on snow. Calculate direct evaporation of snow and consumption of potential evapotranspiration energy. Calculate snowmelt and liquid draining from snow into the soil. Parameters: tave (numpy.ndarray): derived, average temperature precip (numpy.ndarray): input, precipitation for this month snow (numpy.ndarray): derived, existing snowpack prior to new snowfall snlq (numpy.ndarray): derived, existing liquid in snowpack pet (numpy.ndarray): derived, potential evapotranspiration tmelt_1 (numpy.ndarray): parameter, minimum temperature above which snow will melt tmelt_2 (numpy.ndarray): parameter, ratio between degrees above the minimum temperature and cm of snow that will melt shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere Returns: snowmelt if return_type is 'snowmelt' snow_revised if return_type is 'snow' snlq_revised if return_type is 'snlq' pet_revised if return_type is 'pet' inputs_after_snow if return_type is 'inputs_after_snow' """ valid_mask = ( (tave != _IC_NODATA) & (~numpy.isclose(precip, precip_nodata)) & (~numpy.isclose(snow, _SV_NODATA)) & (~numpy.isclose(snlq, _SV_NODATA)) & (pet != _TARGET_NODATA) & (tmelt_1 != _IC_NODATA) & (tmelt_2 != _IC_NODATA) & (shwave != _TARGET_NODATA)) inputs_after_snow = numpy.empty(precip.shape, dtype=numpy.float32) inputs_after_snow[:] = _TARGET_NODATA inputs_after_snow[valid_mask] = precip[valid_mask] snowfall_mask = (valid_mask & (tave <= 0)) snow[snowfall_mask] = (snow[snowfall_mask] + precip[snowfall_mask]) inputs_after_snow[snowfall_mask] = 0. rain_on_snow_mask = ( (valid_mask) & (tave > 0) & (snow > 0)) snlq[rain_on_snow_mask] = ( snlq[rain_on_snow_mask] + precip[rain_on_snow_mask]) inputs_after_snow[rain_on_snow_mask] = 0. snowtot = numpy.zeros(snow.shape, dtype=numpy.float32) snowtot[valid_mask] = numpy.maximum( snow[valid_mask] + snlq[valid_mask], 0) evap_mask = (valid_mask & (snowtot > 0.)) evsnow = numpy.zeros(snow.shape, dtype=numpy.float32) evsnow[evap_mask] = numpy.minimum( snowtot[evap_mask], pet[evap_mask] * 0.87) snow_revised = numpy.empty(snow.shape, dtype=numpy.float32) snow_revised[:] = _TARGET_NODATA snow_revised[valid_mask] = snow[valid_mask] snow_revised[evap_mask] = numpy.maximum( snow[evap_mask] - evsnow[evap_mask] * (snow[evap_mask] / snowtot[evap_mask]), 0.) snlq_revised =
numpy.zeros(snow.shape, dtype=numpy.float32)
numpy.zeros
import numpy as np from scipy.sparse import csr_matrix, identity, kron from scipy.sparse.linalg import eigs, eigsh import itertools from scipy.linalg import block_diag, eig, expm, eigh from scipy.sparse import save_npz, load_npz, csr_matrix, csc_matrix import yaml import copy import warnings import os class ManualL: def __init__(self,L,mu_ket_up,*,output='uf2',savedir=''): self.L = L self.mu_ket_up = mu_ket_up self.output = output if savedir=='': savedir = os.getcwd() self.base_path = os.path.join(savedir,output) os.makedirs(self.base_path,exist_ok=True) if output == 'uf2': self.eigfun(self.L) self.save_eigensystem(self.base_path) if len(mu_ket_up.shape) == 2: self.save_RWA_mu(self.base_path) elif len(mu_ket_up.shape) == 3: self.save_RWA_mu3D(self.base_path) elif output == 'RKE': self.save_L(self.base_path) self.save_RWA_mu_site_basis(self.base_path) def save_L(self,dirname): save_npz(os.path.join(dirname,'L.npz'),csr_matrix(self.L)) def eigfun(self,L,*,check_eigenvectors = True,invert = True,populations_only = False): eigvals, eigvecs = np.linalg.eig(L) eigvals = np.round(eigvals,12) sort_indices = eigvals.argsort() eigvals.sort() eigvecs = eigvecs[:,sort_indices] for i in range(eigvals.size): max_index = np.argmax(np.abs(eigvecs[:,i])) if np.real(eigvecs[max_index,i]) < 0: eigvecs[:,i] *= -1 if eigvals[i] == 0: # eigenvalues of 0 correspond to thermal distributions, # which should have unit trace in the Hamiltonian space if populations_only: trace_norm = eigvecs[:,i].sum() eigvecs[:,i] = eigvecs[:,i] / trace_norm else: shape = int(np.sqrt(eigvals.size)) trace_norm = eigvecs[:,i].reshape(shape,shape).trace() eigvecs[:,i] = eigvecs[:,i] / trace_norm if invert: eigvecs_left = np.linalg.pinv(eigvecs) else: eigvals_left, eigvecs_left = np.linalg.eig(L.T) eigvals_left = np.round(eigvals_left,12) sort_indices_left = eigvals_left.argsort() eigvals_left.sort() eigvecs_left = eigvecs_left[:,sort_indices_left] eigvecs_left = eigvecs_left.T for i in range(eigvals_left.size): norm = np.dot(eigvecs_left[i,:],eigvecs[:,i]) eigvecs_left[i,:] *= 1/norm if check_eigenvectors: LV = L.dot(eigvecs) D = eigvecs_left.dot(LV) if np.allclose(D,np.diag(eigvals),rtol=1E-10,atol=1E-10): pass else: warnings.warn('Using eigenvectors to diagonalize Liouvillian does not result in the expected diagonal matrix to tolerance, largest deviation is {}'.format(np.max(np.abs(D - np.diag(eigvals))))) self.eigenvalues = eigvals self.eigenvectors = {'left':eigvecs_left,'right':eigvecs} return eigvals, eigvecs, eigvecs_left def save_eigensystem(self,dirname): np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds = self.eigenvectors['right']) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds = self.eigenvectors['left']) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds = self.eigenvalues) def mu3D_eigentransform(self,mu): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] mu_t = np.zeros(mu.shape,dtype='complex') for i in range(3): mu_t[:,:,i] = np.dot(np.dot(evl,mu[:,:,i]),ev) return mu_t def mask_mu3D(self,mu): mu_mask_tol = 10 mu_mask = np.zeros(mu.shape[:2],dtype='bool') mu_abs = np.sqrt(np.sum(np.abs(mu)**2,axis=2)) mu_mask[:,:] = np.round(mu_abs,mu_mask_tol)[:,:] mu_masked = mu * mu_mask[:,:,np.newaxis] return mu_mask, mu_masked def save_RWA_mu3D(self,dirname,*,mask=True): H_size = self.mu_ket_up.shape[0] mu_dtype= self.mu_ket_up.dtype L_size = H_size**2 II = np.eye(H_size) mu_ket_up = np.zeros((L_size,L_size,3),dtype=mu_dtype) mu_ket_down = np.zeros((L_size,L_size,3),dtype=mu_dtype) mu_bra_up = np.zeros((L_size,L_size,3),dtype=mu_dtype) mu_bra_down = np.zeros((L_size,L_size,3),dtype=mu_dtype) for i in range(3): mu_ket_up[:,:,i] = np.kron(self.mu_ket_up[:,:,i],II.T) mu_ket_down[:,:,i] = np.kron(np.conjugate(self.mu_ket_up[:,:,i].T),II.T) mu_bra_up[:,:,i] = np.kron(II,np.conjugate(self.mu_ket_up[:,:,i])) mu_bra_down[:,:,i] = np.kron(II,self.mu_ket_up[:,:,i].T) mu_ket_up_t = self.mu3D_eigentransform(mu_ket_up) mu_ket_down_t = self.mu3D_eigentransform(mu_ket_down) mu_bra_up_t = self.mu3D_eigentransform(mu_bra_up) mu_bra_down_t = self.mu3D_eigentransform(mu_bra_down) np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_t,bra_up=mu_bra_up_t, ket_down=mu_ket_down_t,bra_down=mu_bra_down_t) if mask: ket_up_t_mask, mu_ket_up_t_masked = self.mask_mu3D(mu_ket_up_t) ket_down_t_mask, mu_ket_down_t_masked = self.mask_mu3D(mu_ket_down_t) bra_up_t_mask, mu_bra_up_t_masked = self.mask_mu3D(mu_bra_up_t) bra_down_t_mask, mu_bra_down_t_masked = self.mask_mu3D(mu_bra_down_t) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket_up=ket_up_t_mask,bra_up=bra_up_t_mask, ket_down=ket_down_t_mask,bra_down=bra_down_t_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket_up=mu_ket_up_t_masked, bra_up=mu_bra_up_t_masked,ket_down=mu_ket_down_t_masked, bra_down=mu_bra_down_t_masked) def save_RWA_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up = np.kron(self.mu_ket_up,II.T) mu_ket_down = np.kron(np.conjugate(self.mu_ket_up.T),II.T) mu_bra_up = np.kron(II,np.conjugate(self.mu_ket_up)) mu_bra_down = np.kron(II,self.mu_ket_up.T) mu_mask_tol = 10 mu_ket_up_t = np.dot(np.dot(evl,mu_ket_up),ev) mu_ket_up_3d = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d[:,:,0] = mu_ket_up_t mu_bra_up_t = np.dot(np.dot(evl,mu_bra_up),ev) mu_bra_up_3d = np.zeros((mu_bra_up_t.shape[0],mu_bra_up_t.shape[0],3),dtype='complex') mu_bra_up_3d[:,:,0] = mu_bra_up_t mu_ket_down_t = np.dot(np.dot(evl,mu_ket_down),ev) mu_ket_down_3d = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d[:,:,0] = mu_ket_down_t mu_bra_down_t = np.dot(np.dot(evl,mu_bra_down),ev) mu_bra_down_3d = np.zeros((mu_bra_down_t.shape[0],mu_bra_down_t.shape[0],3),dtype='complex') mu_bra_down_3d[:,:,0] = mu_bra_down_t if mask: ket_up_mask = np.zeros(mu_ket_up_t.shape,dtype='bool') ket_up_mask[:,:] = np.round(mu_ket_up_t,mu_mask_tol)[:,:] mu_ket_up_t_masked = mu_ket_up_t * ket_up_mask mu_ket_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d_masked[:,:,0] = mu_ket_up_t_masked bra_up_mask = np.zeros(mu_bra_up_t.shape,dtype='bool') bra_up_mask[:,:] = np.round(mu_bra_up_t,mu_mask_tol)[:,:] mu_bra_up_t_masked = mu_bra_up_t * bra_up_mask mu_bra_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_bra_up_3d_masked[:,:,0] = mu_bra_up_t_masked ket_down_mask = np.zeros(mu_ket_down_t.shape,dtype='bool') ket_down_mask[:,:] = np.round(mu_ket_down_t,mu_mask_tol)[:,:] mu_ket_down_t_masked = mu_ket_down_t * ket_down_mask mu_ket_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d_masked[:,:,0] = mu_ket_down_t_masked bra_down_mask = np.zeros(mu_bra_down_t.shape,dtype='bool') bra_down_mask[:,:] = np.round(mu_bra_down_t,mu_mask_tol)[:,:] mu_bra_down_t_masked = mu_bra_down_t * bra_down_mask mu_bra_down_3d_masked =
np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex')
numpy.zeros
""" Programming Assignment 2 To be submitted via canvas, just as Programming Assignment 1 This program builds a two-layer neural network for the Iris dataset. The first layer is a relu layer with 10 units, and the second one is a softmax layer. The network structure is specified in the "train" function. The parameters are learned using SGD. The forward propagation and backward propagation are carried out in the "compute_neural_net_loss" function. The codes for the propagations are deleted. Your task is to fill in the missing codes. """ # In this exercise, we are going to work with a two-layer neural network # first layer is a relu layer with 10 units, and second one is a softmax layer. # randomly initialize parameters import numpy as np import os, sys import math # Data sets IRIS_TRAINING = "iris_training.csv" IRIS_TEST = "iris_test.csv" def get_data(): # Load datasets. train_data = np.genfromtxt(IRIS_TRAINING, skip_header=1, dtype=float, delimiter=',') test_data = np.genfromtxt(IRIS_TEST, skip_header=1, dtype=float, delimiter=',') train_x = train_data[:, :4] train_y = train_data[:, 4].astype(np.int64) test_x = test_data[:, :4] test_y = test_data[:, 4].astype(np.int64) return train_x, train_y, test_x, test_y def compute_neural_net_loss(params, X, y, reg=0.0): """ Neural network loss function. Inputs: - params: dictionary of parameters, including "W1", "b1", "W2", "b2" - X: N x D array of training data. Each row is a D-dimensional point. - y: 1-d array of shape (N, ) for the training labels. Returns: - loss: the softmax loss with regularization - grads: dictionary of gradients for the parameters in params """ # Unpack variables from the params dictionary assert y is not None W1, b1 = params['W1'], params['b1'] W2, b2 = params['W2'], params['b2'] N, D = X.shape loss = 0.0 grads = {} ############################################################################# # TODO: Finish the forward pass, and compute the loss. This should include # # both the data loss and L2 regularization for W1 and W2. Store the result # # in the variable loss, which should be a scalar. Use the Softmax # # classifier loss. So that your results match ours, multiply the # # regularization loss by 0.5 # ############################################################################# z = np.dot(X, W1) + b1 h = np.maximum(z, 0) scores = np.dot(h, W2) + b2 out = np.exp(scores) out /= np.sum(out, axis=1, keepdims=True).reshape(N, 1) # compute softmax loss loss -= np.sum(np.log(out[np.arange(N), y])) loss /= N loss += 0.5 * reg * (np.sum(W1**2) + np.sum(W2**2)) ############################################################################# # END OF YOUR CODE # ############################################################################# ############################################################################# # TODO: Compute the backward pass, computing the derivatives of the weights # # and biases. Store the results in the grads dictionary. For example, # # grads['W1'] should store the gradient on W1, and be a matrix of same size # ############################################################################# # back propagation dout = np.copy(out) # (N, C) dout[np.arange(N), y] -= 1 dh = np.dot(dout, W2.T) dh[h <= 0] = 0 # compute gradient for parameters grads['W2'] = np.dot(h.T, dout) / N # (H, C) db2 = np.sum(dout, axis=0) / N # (C,) grads['W1'] = np.dot(X.T, dh) / N # (D, H) db1 =
np.sum(dh, axis=0)
numpy.sum
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) #################################################################################### def test_allclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) tolerance = 1e-5 data1 = np.random.randn(shape.rows, shape.cols) data2 = data1 + tolerance / 10 data3 = data1 + 1 cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance) #################################################################################### def test_amax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_amin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_angle(): components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.angleScaler(value), 9) == np.round(np.angle(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.angleArray(cArray), 9), np.round(np.angle(data), 9)) #################################################################################### def test_any(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) #################################################################################### def test_append(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.append(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) numRows = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + numRows, shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.append(data1, data2, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) NumCppols = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + NumCppols) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.append(data1, data2, axis=1)) #################################################################################### def test_arange(): start = np.random.randn(1).item() stop = np.random.randn(1).item() * 100 step = np.abs(np.random.randn(1).item()) if stop < start: step *= -1 data = np.arange(start, stop, step) assert np.array_equal(np.round(NumCpp.arange(start, stop, step).flatten(), 9), np.round(data, 9)) #################################################################################### def test_arccos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) #################################################################################### def test_arccosh(): value = np.abs(np.random.rand(1).item()) + 1 assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) + 1 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) #################################################################################### def test_arcsin(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) #################################################################################### def test_arcsinh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) #################################################################################### def test_arctan(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) #################################################################################### def test_arctan2(): xy = np.random.rand(2) * 2 - 1 assert np.round(NumCpp.arctan2Scaler(xy[1], xy[0]), 9) == np.round(np.arctan2(xy[1], xy[0]), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayX = NumCpp.NdArray(shape) cArrayY = NumCpp.NdArray(shape) xy = np.random.rand(*shapeInput, 2) * 2 - 1 xData = xy[:, :, 0].reshape(shapeInput) yData = xy[:, :, 1].reshape(shapeInput) cArrayX.setArray(xData) cArrayY.setArray(yData) assert np.array_equal(np.round(NumCpp.arctan2Array(cArrayY, cArrayX), 9), np.round(np.arctan2(yData, xData), 9)) #################################################################################### def test_arctanh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) #################################################################################### def test_argmax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) #################################################################################### def test_argmin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) #################################################################################### def test_argsort(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): # noqa allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): allPass = False break assert allPass #################################################################################### def test_argwhere(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) #################################################################################### def test_around(): value = np.abs(np.random.rand(1).item()) * np.random.randint(1, 10, [1, ]).item() numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert NumCpp.aroundScaler(value, numDecimalsRound) == np.round(value, numDecimalsRound) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert np.array_equal(NumCpp.aroundArray(cArray, numDecimalsRound), np.round(data, numDecimalsRound)) #################################################################################### def test_array_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, shapeInput) data2 = np.random.randint(1, 100, shapeInput) cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) cArray3 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) #################################################################################### def test_array_equiv(): shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) data1 = np.random.randint(1, 100, shapeInput1) data3 = np.random.randint(1, 100, shapeInput3) cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) cArray3 = NumCpp.NdArrayComplexDouble(shape3) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) imag3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data3 = real3 + 1j * imag3 cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) #################################################################################### def test_asarray(): values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToUint32(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.uint32)) assert cArrayCast.dtype == np.uint32 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex128)) assert cArrayCast.dtype == np.complex128 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) cArrayCast = NumCpp.astypeComplexToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex64)) assert cArrayCast.dtype == np.complex64 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) cArrayCast = NumCpp.astypeComplexToDouble(cArray).getNumpyArray() warnings.filterwarnings('ignore', category=np.ComplexWarning) assert np.array_equal(cArrayCast, data.astype(np.double)) warnings.filters.pop() # noqa assert cArrayCast.dtype == np.double #################################################################################### def test_average(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, axis=1), 9)) #################################################################################### def test_averageWeighted(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [shape.rows, shape.cols]) cArray.setArray(data) cWeights.setArray(weights) assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \ np.round(np.average(data, weights=weights), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [shape.rows, shape.cols]) cArray.setArray(data) cWeights.setArray(weights) assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \ np.round(np.average(data, weights=weights), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(1, shape.cols) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [1, shape.rows]) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(1, shape.cols) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [1, shape.rows]) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(1, shape.rows) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [1, shape.cols]) cWeights.setArray(weights) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(1, shape.rows) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [1, shape.cols]) cWeights.setArray(weights) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=1), 9)) #################################################################################### def test_binaryRepr(): value = np.random.randint(0, np.iinfo(np.uint64).max, [1, ], dtype=np.uint64).item() assert NumCpp.binaryRepr(np.uint64(value)) == np.binary_repr(value, np.iinfo(np.uint64).bits) #################################################################################### def test_bincount(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) assert np.array_equal(NumCpp.bincount(cArray, 0).flatten(), np.bincount(data.flatten(), minlength=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) minLength = int(np.max(data) + 10) assert np.array_equal(NumCpp.bincount(cArray, minLength).flatten(), np.bincount(data.flatten(), minlength=minLength)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) cWeights = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, 0).flatten(), np.bincount(data.flatten(), minlength=0, weights=weights.flatten())) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) cWeights = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) cWeights.setArray(weights) minLength = int(np.max(data) + 10) assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, minLength).flatten(), np.bincount(data.flatten(), minlength=minLength, weights=weights.flatten())) #################################################################################### def test_bitwise_and(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_and(cArray1, cArray2), np.bitwise_and(data1, data2)) #################################################################################### def test_bitwise_not(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt64(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray.setArray(data) assert np.array_equal(NumCpp.bitwise_not(cArray), np.bitwise_not(data)) #################################################################################### def test_bitwise_or(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_or(cArray1, cArray2), np.bitwise_or(data1, data2)) #################################################################################### def test_bitwise_xor(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_xor(cArray1, cArray2), np.bitwise_xor(data1, data2)) #################################################################################### def test_byteswap(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt64(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray.setArray(data) assert np.array_equal(NumCpp.byteswap(cArray).shape, shapeInput) #################################################################################### def test_cbrt(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cbrtArray(cArray), 9), np.round(np.cbrt(data), 9)) #################################################################################### def test_ceil(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.ceilArray(cArray), 9), np.round(np.ceil(data), 9)) #################################################################################### def test_center_of_mass(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.NONE).flatten(), 9), np.round(meas.center_of_mass(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) coms = list() for col in range(data.shape[1]): coms.append(np.round(meas.center_of_mass(data[:, col])[0], 9)) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(coms, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) coms = list() for row in range(data.shape[0]): coms.append(np.round(meas.center_of_mass(data[row, :])[0], 9)) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(coms, 9)) #################################################################################### def test_clip(): value = np.random.randint(0, 100, [1, ]).item() minValue = np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) minValue = np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) # noqa #################################################################################### def test_column_stack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.column_stack(cArray1, cArray2, cArray3, cArray4), np.column_stack([data1, data2, data3, data4])) #################################################################################### def test_complex(): real = np.random.rand(1).astype(np.double).item() value = complex(real) assert np.round(NumCpp.complexScaler(real), 9) == np.round(value, 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.complexScaler(components[0], components[1]), 9) == np.round(value, 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) realArray = NumCpp.NdArray(shape) real = np.random.rand(shape.rows, shape.cols) realArray.setArray(real) assert np.array_equal(np.round(NumCpp.complexArray(realArray), 9), np.round(real + 1j * np.zeros_like(real), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) realArray = NumCpp.NdArray(shape) imagArray = NumCpp.NdArray(shape) real = np.random.rand(shape.rows, shape.cols) imag = np.random.rand(shape.rows, shape.cols) realArray.setArray(real) imagArray.setArray(imag) assert np.array_equal(np.round(NumCpp.complexArray(realArray, imagArray), 9), np.round(real + 1j * imag, 9)) #################################################################################### def test_concatenate(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.NONE).flatten(), np.concatenate([data1.flatten(), data2.flatten(), data3.flatten(), data4.flatten()])) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape3 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape4 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.ROW), np.concatenate([data1, data2, data3, data4], axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.COL), np.concatenate([data1, data2, data3, data4], axis=1)) #################################################################################### def test_conj(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.conjScaler(value), 9) == np.round(np.conj(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.conjArray(cArray), 9), np.round(np.conj(data), 9)) #################################################################################### def test_contains(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data.T: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data.T: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth)) #################################################################################### def test_copy(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.copy(cArray), data) #################################################################################### def test_copysign(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.copysign(cArray1, cArray2), np.copysign(data1, data2)) #################################################################################### def test_copyto(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray() data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) assert np.array_equal(NumCpp.copyto(cArray2, cArray1), data1) #################################################################################### def test_cos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9)) #################################################################################### def test_cosh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9)) #################################################################################### def test_count_nonzero(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1)) #################################################################################### def test_cross(): shape = NumCpp.Shape(1, 2) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item() shape = NumCpp.Shape(1, 2) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item() shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(1, 3) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.cross(data1, data2).flatten()) shape = NumCpp.Shape(1, 3) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.cross(data1, data2).flatten()) shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.cross(data1, data2, axis=1)) #################################################################################### def test_cube(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9)) #################################################################################### def test_cumprod(): shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod()) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod()) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1)) #################################################################################### def test_cumsum(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum()) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum()) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1)) #################################################################################### def test_deg2rad(): value = np.abs(np.random.rand(1).item()) * 360 assert np.round(NumCpp.deg2radScaler(value), 9) == np.round(np.deg2rad(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 360 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.deg2radArray(cArray), 9), np.round(np.deg2rad(data), 9)) #################################################################################### def test_degrees(): value = np.abs(np.random.rand(1).item()) * 2 * np.pi assert np.round(NumCpp.degreesScaler(value), 9) == np.round(np.degrees(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi cArray.setArray(data) assert np.array_equal(np.round(NumCpp.degreesArray(cArray), 9), np.round(np.degrees(data), 9)) #################################################################################### def test_deleteIndices(): shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.NONE).flatten(), np.delete(data, indicesPy, axis=None)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.ROW), np.delete(data, indicesPy, axis=0)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.COL), np.delete(data, indicesPy, axis=1)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, shape.size(), [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.NONE).flatten(), np.delete(data, index, axis=None)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.ROW), np.delete(data, index, axis=0)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.COL), np.delete(data, index, axis=1)) #################################################################################### def test_diag(): shapeInput = np.random.randint(2, 25, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) k = np.random.randint(0, np.min(shapeInput), [1, ]).item() elements = np.random.randint(1, 100, shapeInput) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k)) shapeInput = np.random.randint(2, 25, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) k = np.random.randint(0, np.min(shapeInput), [1, ]).item() real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k)) #################################################################################### def test_diagflat(): numElements = np.random.randint(2, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() elements = np.random.randint(1, 100, [numElements, ]) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(2, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() real = np.random.randint(1, 100, [numElements, ]) imag = np.random.randint(1, 100, [numElements, ]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(1, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() elements = np.random.randint(1, 100, [numElements, ]) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(1, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() real = np.random.randint(1, 100, [numElements, ]) imag = np.random.randint(1, 100, [numElements, ]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) #################################################################################### def test_diagonal(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(), np.diagonal(data, offset, axis1=0, axis2=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(), np.diagonal(data, offset, axis1=0, axis2=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(), np.diagonal(data, offset, axis1=1, axis2=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(), np.diagonal(data, offset, axis1=1, axis2=0)) #################################################################################### def test_diff(): shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(), np.diff(data.flatten())) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(), np.diff(data.flatten())) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL).astype(np.uint32), np.diff(data, axis=1)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL), np.diff(data, axis=1)) #################################################################################### def test_divide(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2[data2 == 0] = 1 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = 0 while value == 0: value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) data[data == 0] = 1 cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 data2[data2 == complex(0)] = complex(1) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = 0 while value == complex(0): value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[data == complex(0)] = complex(1) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2[data2 == 0] = 1 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 data2[data2 == complex(0)] = complex(1) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) while value == complex(0): value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) data[data == 0] = 1 cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = 0 while value == 0: value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[data == complex(0)] = complex(1) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) #################################################################################### def test_dot(): size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols]) real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() shapeInput = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2)) shapeInput = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) real1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2)) #################################################################################### def test_empty(): shapeInput = np.random.randint(1, 100, [2, ]) cArray = NumCpp.emptyRowCol(shapeInput[0].item(), shapeInput[1].item()) assert cArray.shape[0] == shapeInput[0] assert cArray.shape[1] == shapeInput[1] assert cArray.size == shapeInput.prod() shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.emptyShape(shape) assert cArray.shape[0] == shape.rows assert cArray.shape[1] == shape.cols assert cArray.size == shapeInput.prod() shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.empty_like(cArray1) assert cArray2.shape().rows == shape.rows assert cArray2.shape().cols == shape.cols assert cArray2.size() == shapeInput.prod() #################################################################################### def test_endianess(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) assert NumCpp.endianess(cArray) == NumCpp.Endian.NATIVE #################################################################################### def test_equal(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 10, [shape.rows, shape.cols]) data2 = np.random.randint(0, 10, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2)) #################################################################################### def test_exp2(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9) value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.exp2Scaler(value), 9) == np.round(np.exp2(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.exp2Array(cArray), 9), np.round(np.exp2(data), 9)) #################################################################################### def test_exp(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9)) value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.rand(shape.rows, shape.cols) imag = np.random.rand(shape.rows, shape.cols) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9)) #################################################################################### def test_eye(): shapeInput = np.random.randint(1, 100, [1, ]).item() randK = np.random.randint(0, shapeInput, [1, ]).item() assert np.array_equal(NumCpp.eye1D(shapeInput, randK), np.eye(shapeInput, k=randK)) shapeInput = np.random.randint(1, 100, [1, ]).item() randK = np.random.randint(0, shapeInput, [1, ]).item() assert np.array_equal(NumCpp.eye1DComplex(shapeInput, randK), np.eye(shapeInput, k=randK) + 1j * np.zeros([shapeInput, shapeInput])) shapeInput = np.random.randint(10, 100, [2, ]) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eye2D(shapeInput[0].item(), shapeInput[1].item(), randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK)) shapeInput = np.random.randint(10, 100, [2, ]) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eye2DComplex(shapeInput[0].item(), shapeInput[1].item(), randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) + 1j * np.zeros(shapeInput)) shapeInput = np.random.randint(10, 100, [2, ]) cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eyeShape(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK)) shapeInput = np.random.randint(10, 100, [2, ]) cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eyeShapeComplex(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) + 1j * np.zeros(shapeInput)) #################################################################################### def test_fill_diagonal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) NumCpp.fillDiagonal(cArray, 666) np.fill_diagonal(data, 666) assert np.array_equal(cArray.getNumpyArray(), data) #################################################################################### def test_find(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) value = data.mean() cMask = NumCpp.operatorGreater(cArray, value) cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1]) cMaskArray.setArray(cMask) idxs = NumCpp.find(cMaskArray).astype(np.int64) idxsPy = np.nonzero((data > value).flatten())[0] assert np.array_equal(idxs.flatten(), idxsPy) #################################################################################### def test_findN(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) value = data.mean() cMask = NumCpp.operatorGreater(cArray, value) cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1]) cMaskArray.setArray(cMask) idxs = NumCpp.findN(cMaskArray, 8).astype(np.int64) idxsPy = np.nonzero((data > value).flatten())[0] assert np.array_equal(idxs.flatten(), idxsPy[:8]) #################################################################################### def fix(): value = np.random.randn(1).item() * 100 assert NumCpp.fixScaler(value) == np.fix(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) assert np.array_equal(NumCpp.fixArray(cArray), np.fix(data)) #################################################################################### def test_flatten(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flatten(cArray).getNumpyArray(), np.resize(data, [1, data.size])) #################################################################################### def test_flatnonzero(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flatnonzero(cArray).getNumpyArray().flatten(), np.flatnonzero(data)) #################################################################################### def test_flip(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flip(cArray, NumCpp.Axis.NONE).getNumpyArray(), np.flip(data.reshape(1, data.size), axis=1).reshape(shapeInput)) #################################################################################### def test_fliplr(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.fliplr(cArray).getNumpyArray(), np.fliplr(data)) #################################################################################### def test_flipud(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flipud(cArray).getNumpyArray(), np.flipud(data)) #################################################################################### def test_floor(): value = np.random.randn(1).item() * 100 assert NumCpp.floorScaler(value) == np.floor(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) assert np.array_equal(NumCpp.floorArray(cArray), np.floor(data)) #################################################################################### def test_floor_divide(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.floor_divideScaler(value1, value2) == np.floor_divide(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.floor_divideArray(cArray1, cArray2), np.floor_divide(data1, data2)) #################################################################################### def test_fmax(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.fmaxScaler(value1, value2) == np.fmax(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.fmaxArray(cArray1, cArray2), np.fmax(data1, data2)) #################################################################################### def test_fmin(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.fminScaler(value1, value2) == np.fmin(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.fminArray(cArray1, cArray2), np.fmin(data1, data2)) #################################################################################### def test_fmod(): value1 = np.random.randint(1, 100, [1, ]).item() * 100 + 1000 value2 = np.random.randint(1, 100, [1, ]).item() * 100 + 1000 assert NumCpp.fmodScaler(value1, value2) == np.fmod(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) * 100 + 1000 data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.fmodArray(cArray1, cArray2), np.fmod(data1, data2)) #################################################################################### def test_fromfile(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = r'C:\Temp' if not os.path.exists(tempDir): os.mkdir(tempDir) tempFile = os.path.join(tempDir, 'NdArrayDump.bin') NumCpp.dump(cArray, tempFile) assert os.path.isfile(tempFile) data2 = NumCpp.fromfile(tempFile, '').reshape(shape) assert np.array_equal(data, data2) os.remove(tempFile) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = tempfile.gettempdir() tempFile = os.path.join(tempDir, 'NdArrayDump') NumCpp.tofile(cArray, tempFile, '\n') assert os.path.exists(tempFile + '.txt') data2 = NumCpp.fromfile(tempFile + '.txt', '\n').reshape(shape) assert np.array_equal(data, data2) os.remove(tempFile + '.txt') #################################################################################### def test_fromiter(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.fromiter(cArray).flatten(), data.flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.fromiter(cArray).flatten(), data.flatten()) #################################################################################### def test_full(): shapeInput = np.random.randint(1, 100, [1, ]).item() value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullSquare(shapeInput, value) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput**2 and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [1, ]).item() value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullSquareComplex(shapeInput, value) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput**2 and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullRowCol(shapeInput[0].item(), shapeInput[1].item(), value) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullRowColComplex(shapeInput[0].item(), shapeInput[1].item(), value) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullShape(shape, value) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullShape(shape, value) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(cArray == value)) #################################################################################### def test_full_like(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) value = np.random.randint(1, 100, [1, ]).item() cArray2 = NumCpp.full_like(cArray1, value) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == value)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() cArray2 = NumCpp.full_likeComplex(cArray1, value) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == value)) #################################################################################### def test_gcd(): if not NumCpp.NUMCPP_NO_USE_BOOST or NumCpp.STL_GCD_LCM: value1 = np.random.randint(1, 1000, [1, ]).item() value2 = np.random.randint(1, 1000, [1, ]).item() assert NumCpp.gcdScaler(value1, value2) == np.gcd(value1, value2) if not NumCpp.NUMCPP_NO_USE_BOOST: size = np.random.randint(20, 100, [1, ]).item() cArray = NumCpp.NdArrayUInt32(1, size) data = np.random.randint(1, 1000, [size, ], dtype=np.uint32) cArray.setArray(data) assert NumCpp.gcdArray(cArray) == np.gcd.reduce(data) # noqa #################################################################################### def test_gradient(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 1000, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.ROW), np.gradient(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 1000, [shape.rows, shape.cols]) imag = np.random.randint(1, 1000, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.ROW), np.gradient(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 1000, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.COL), np.gradient(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 1000, [shape.rows, shape.cols]) imag = np.random.randint(1, 1000, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.COL), np.gradient(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 1000, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.NONE).flatten(), np.gradient(data.flatten(), axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 1000, [shape.rows, shape.cols]) imag = np.random.randint(1, 1000, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.NONE).flatten(), np.gradient(data.flatten(), axis=0)) #################################################################################### def test_greater(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater(cArray1, cArray2).getNumpyArray(), np.greater(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater(cArray1, cArray2).getNumpyArray(), np.greater(data1, data2)) #################################################################################### def test_greater_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater_equal(cArray1, cArray2).getNumpyArray(), np.greater_equal(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater_equal(cArray1, cArray2).getNumpyArray(), np.greater_equal(data1, data2)) #################################################################################### def test_histogram(): shape = NumCpp.Shape(1024, 1024) cArray = NumCpp.NdArray(shape) data = np.random.randn(1024, 1024) * np.random.randint(1, 10, [1, ]).item() + np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) numBins = np.random.randint(10, 30, [1, ]).item() histogram, bins = NumCpp.histogram(cArray, numBins) h, b = np.histogram(data, numBins) assert np.array_equal(histogram.getNumpyArray().flatten().astype(np.int32), h) assert np.array_equal(np.round(bins.getNumpyArray().flatten(), 9), np.round(b, 9)) shape = NumCpp.Shape(1024, 1024) cArray = NumCpp.NdArray(shape) data = np.random.randn(1024, 1024) * np.random.randint(1, 10, [1, ]).item() + np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) binEdges = np.linspace(data.min(), data.max(), 15, endpoint=True) cBinEdges = NumCpp.NdArray(1, binEdges.size) cBinEdges.setArray(binEdges) histogram = NumCpp.histogram(cArray, cBinEdges) h, _ = np.histogram(data, binEdges) assert np.array_equal(histogram.flatten().astype(np.int32), h) #################################################################################### def test_hstack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.hstack(cArray1, cArray2, cArray3, cArray4), np.hstack([data1, data2, data3, data4])) #################################################################################### def test_hypot(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.hypotScaler(value1, value2) == np.hypot(value1, value2) value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 value3 = np.random.randn(1).item() * 100 + 1000 assert (np.round(NumCpp.hypotScalerTriple(value1, value2, value3), 9) == np.round(np.sqrt(value1**2 + value2**2 + value3**2), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.hypotArray(cArray1, cArray2), 9), np.round(np.hypot(data1, data2), 9)) #################################################################################### def test_identity(): squareSize = np.random.randint(10, 100, [1, ]).item() assert np.array_equal(NumCpp.identity(squareSize).getNumpyArray(), np.identity(squareSize)) squareSize = np.random.randint(10, 100, [1, ]).item() assert np.array_equal(NumCpp.identityComplex(squareSize).getNumpyArray(), np.identity(squareSize) + 1j * np.zeros([squareSize, squareSize])) #################################################################################### def test_imag(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.imagScaler(value), 9) == np.round(np.imag(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.imagArray(cArray), 9), np.round(np.imag(data), 9)) #################################################################################### def test_interp(): endPoint = np.random.randint(10, 20, [1, ]).item() numPoints = np.random.randint(50, 100, [1, ]).item() resample = np.random.randint(2, 5, [1, ]).item() xpData = np.linspace(0, endPoint, numPoints, endpoint=True) fpData = np.sin(xpData) xData = np.linspace(0, endPoint, numPoints * resample, endpoint=True) cXp = NumCpp.NdArray(1, numPoints) cFp = NumCpp.NdArray(1, numPoints) cX = NumCpp.NdArray(1, numPoints * resample) cXp.setArray(xpData) cFp.setArray(fpData) cX.setArray(xData) assert np.array_equal(np.round(NumCpp.interp(cX, cXp, cFp).flatten(), 9), np.round(np.interp(xData, xpData, fpData), 9)) #################################################################################### def test_intersect1d(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.uint32) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.intersect1d(cArray1, cArray2).getNumpyArray().flatten(), np.intersect1d(data1, data2)) #################################################################################### def test_invert(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.invert(cArray).getNumpyArray(), np.invert(data)) #################################################################################### def test_isclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.rand(shape.rows, shape.cols) data2 = data1 + np.random.randn(shape.rows, shape.cols) * 1e-5 cArray1.setArray(data1) cArray2.setArray(data2) rtol = 1e-5 atol = 1e-8 assert np.array_equal(NumCpp.isclose(cArray1, cArray2, rtol, atol).getNumpyArray(), np.isclose(data1, data2, rtol=rtol, atol=atol)) #################################################################################### def test_isinf(): value = np.random.randn(1).item() * 100 + 1000 assert NumCpp.isinfScaler(value) == np.isinf(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data[data > 1000] = np.inf cArray.setArray(data) assert np.array_equal(NumCpp.isinfArray(cArray), np.isinf(data)) #################################################################################### def test_isnan(): value = np.random.randn(1).item() * 100 + 1000 assert NumCpp.isnanScaler(value) == np.isnan(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data[data > 1000] = np.nan cArray.setArray(data) assert np.array_equal(NumCpp.isnanArray(cArray), np.isnan(data)) #################################################################################### def test_lcm(): if not NumCpp.NUMCPP_NO_USE_BOOST or NumCpp.STL_GCD_LCM: value1 = np.random.randint(1, 1000, [1, ]).item() value2 = np.random.randint(1, 1000, [1, ]).item() assert NumCpp.lcmScaler(value1, value2) == np.lcm(value1, value2) if not NumCpp.NUMCPP_NO_USE_BOOST: size = np.random.randint(2, 10, [1, ]).item() cArray = NumCpp.NdArrayUInt32(1, size) data = np.random.randint(1, 100, [size, ], dtype=np.uint32) cArray.setArray(data) assert NumCpp.lcmArray(cArray) == np.lcm.reduce(data) # noqa #################################################################################### def test_ldexp(): value1 = np.random.randn(1).item() * 100 value2 = np.random.randint(1, 20, [1, ]).item() assert np.round(NumCpp.ldexpScaler(value1, value2), 9) == np.round(np.ldexp(value1, value2), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayUInt8(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 data2 = np.random.randint(1, 20, [shape.rows, shape.cols], dtype=np.uint8) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.ldexpArray(cArray1, cArray2), 9), np.round(np.ldexp(data1, data2), 9)) #################################################################################### def test_left_shift(): shapeInput = np.random.randint(20, 100, [2, ]) bitsToshift = np.random.randint(1, 32, [1, ]).item() shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(1, np.iinfo(np.uint32).max, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.left_shift(cArray, bitsToshift).getNumpyArray(), np.left_shift(data, bitsToshift)) #################################################################################### def test_less(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less(cArray1, cArray2).getNumpyArray(), np.less(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less(cArray1, cArray2).getNumpyArray(), np.less(data1, data2)) #################################################################################### def test_less_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less_equal(cArray1, cArray2).getNumpyArray(), np.less_equal(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less_equal(cArray1, cArray2).getNumpyArray(), np.less_equal(data1, data2)) #################################################################################### def test_load(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = tempfile.gettempdir() tempFile = os.path.join(tempDir, 'NdArrayDump.bin') NumCpp.dump(cArray, tempFile) assert os.path.isfile(tempFile) data2 = NumCpp.load(tempFile).reshape(shape) assert np.array_equal(data, data2) os.remove(tempFile) #################################################################################### def test_linspace(): start = np.random.randint(1, 10, [1, ]).item() end = np.random.randint(start + 10, 100, [1, ]).item() numPoints = np.random.randint(1, 100, [1, ]).item() assert np.array_equal(np.round(NumCpp.linspace(start, end, numPoints, True).getNumpyArray().flatten(), 9), np.round(np.linspace(start, end, numPoints, endpoint=True), 9)) start = np.random.randint(1, 10, [1, ]).item() end = np.random.randint(start + 10, 100, [1, ]).item() numPoints = np.random.randint(1, 100, [1, ]).item() assert np.array_equal(np.round(NumCpp.linspace(start, end, numPoints, False).getNumpyArray().flatten(), 9), np.round(np.linspace(start, end, numPoints, endpoint=False), 9)) #################################################################################### def test_log(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.logScaler(value), 9) == np.round(np.log(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.logScaler(value), 9) == np.round(np.log(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.logArray(cArray), 9), np.round(np.log(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.logArray(cArray), 9), np.round(np.log(data), 9)) #################################################################################### def test_log10(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.log10Scaler(value), 9) == np.round(np.log10(value), 9) components = np.random.randn(2).astype(np.double) * 100 + 100 value = complex(components[0], components[1]) assert np.round(NumCpp.log10Scaler(value), 9) == np.round(np.log10(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log10Array(cArray), 9), np.round(np.log10(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log10Array(cArray), 9), np.round(np.log10(data), 9)) #################################################################################### def test_log1p(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.log1pScaler(value), 9) == np.round(np.log1p(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log1pArray(cArray), 9), np.round(np.log1p(data), 9)) #################################################################################### def test_log2(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.log2Scaler(value), 9) == np.round(np.log2(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log2Array(cArray), 9), np.round(np.log2(data), 9)) #################################################################################### def test_logical_and(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 20, [shape.rows, shape.cols]) data2 = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.logical_and(cArray1, cArray2).getNumpyArray(), np.logical_and(data1, data2)) #################################################################################### def test_logical_not(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.logical_not(cArray).getNumpyArray(), np.logical_not(data)) #################################################################################### def test_logical_or(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 20, [shape.rows, shape.cols]) data2 = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.logical_or(cArray1, cArray2).getNumpyArray(), np.logical_or(data1, data2)) #################################################################################### def test_logical_xor(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 20, [shape.rows, shape.cols]) data2 = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.logical_xor(cArray1, cArray2).getNumpyArray(), np.logical_xor(data1, data2)) #################################################################################### def test_matmul(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 20, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 20, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) data1 = np.random.randint(0, 20, [shape1.rows, shape1.cols]) real2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArray(shape2) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(0, 20, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) #################################################################################### def test_max(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.max(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.max(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_maximum(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.maximum(cArray1, cArray2), np.maximum(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.maximum(cArray1, cArray2), np.maximum(data1, data2)) #################################################################################### def test_mean(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.mean(cArray, NumCpp.Axis.NONE).getNumpyArray().item(), 9) == \ np.round(np.mean(data, axis=None).item(), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.round(NumCpp.mean(cArray, NumCpp.Axis.NONE).getNumpyArray().item(), 9) == \ np.round(np.mean(data, axis=None).item(), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=1), 9)) #################################################################################### def test_median(): isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) # noqa cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.median(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten().item() == np.median(data, axis=None).item() isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.median(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.median(data, axis=0)) isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.median(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.median(data, axis=1)) #################################################################################### def test_meshgrid(): start = np.random.randint(0, 20, [1, ]).item() end = np.random.randint(30, 100, [1, ]).item() step = np.random.randint(1, 5, [1, ]).item() dataI = np.arange(start, end, step) iSlice = NumCpp.Slice(start, end, step) start = np.random.randint(0, 20, [1, ]).item() end = np.random.randint(30, 100, [1, ]).item() step = np.random.randint(1, 5, [1, ]).item() dataJ = np.arange(start, end, step) jSlice = NumCpp.Slice(start, end, step) iMesh, jMesh = np.meshgrid(dataI, dataJ) iMeshC, jMeshC = NumCpp.meshgrid(iSlice, jSlice) assert np.array_equal(iMeshC.getNumpyArray(), iMesh) assert np.array_equal(jMeshC.getNumpyArray(), jMesh) #################################################################################### def test_min(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.min(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.min(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_minimum(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.minimum(cArray1, cArray2), np.minimum(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.minimum(cArray1, cArray2), np.minimum(data1, data2)) #################################################################################### def test_mod(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.mod(cArray1, cArray2).getNumpyArray(), np.mod(data1, data2)) #################################################################################### def test_multiply(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) #################################################################################### def test_nan_to_num(): shapeInput = np.random.randint(50, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.size(), ]).astype(np.double) nan_idx = np.random.choice(range(data.size), 10, replace=False) pos_inf_idx = np.random.choice(range(data.size), 10, replace=False) neg_inf_idx = np.random.choice(range(data.size), 10, replace=False) data[nan_idx] = np.nan data[pos_inf_idx] = np.inf data[neg_inf_idx] = -np.inf data = data.reshape(shapeInput) cArray.setArray(data) nan_replace = float(np.random.randint(100)) pos_inf_replace = float(np.random.randint(100)) neg_inf_replace = float(np.random.randint(100)) assert np.array_equal(NumCpp.nan_to_num(cArray, nan_replace, pos_inf_replace, neg_inf_replace), np.nan_to_num(data, nan=nan_replace, posinf=pos_inf_replace, neginf=neg_inf_replace)) #################################################################################### def test_nanargmax(): shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanargmax(cArray, NumCpp.Axis.NONE).item() == np.nanargmax(data) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmax(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanargmax(data, axis=0)) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmax(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanargmax(data, axis=1)) #################################################################################### def test_nanargmin(): shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanargmin(cArray, NumCpp.Axis.NONE).item() == np.nanargmin(data) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmin(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanargmin(data, axis=0)) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmin(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanargmin(data, axis=1)) #################################################################################### def test_nancumprod(): shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumprod(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.nancumprod(data, axis=None)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data =
np.random.randint(1, 4, [shape.rows, shape.cols])
numpy.random.randint
import sys import numpy as np import pandas as pd from optparse import OptionParser import os from scipy.stats import entropy from scipy import signal import scipy.stats as spstats import fnmatch from datetime import datetime from scipy.stats import skew from scipy.stats import kurtosis from scipy.stats import t from scipy.optimize import fsolve import scipy.special as sc # Extracts aggregate features per run from raw eye tracking and oculomotor event data, and builds a single feature matrix for use as input to train and validate a predictive model. If the feature matrix file already exists from a prior run of getFeatureMatrix(), you can save time by specifying useExisting=True to load it directly from the file rather than recomputing it from scratch. # Research was sponsored by the United States Air Force Research Laboratory and the # United States Air Force Artificial Intelligence Accelerator and was accomplished # under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions # contained in this document are those of the authors and should not be interpreted # as representing the official policies, either expressed or implied, of the United # States Air Force or the U.S. Government. The U.S. Government is authorized to # reproduce and distribute reprints for Government purposes notwithstanding any # copyright notation herein. # def main(): # parser = OptionParser() # parser.add_option('-d', '--dataDir', action="store", dest="dataDir", default=None, help="The top level data directory containing all the raw signal files for each subject.") # parser.add_option('-o', '--outFilePath', action="store", dest="outFilePath", default=None, help="File to write full feature matrix."); # (options, args) = parser.parse_args() # getFeatureMatrix(options.dataDir, options.outFilePath); def getFeatureMatrix(dataDir, filePath, useExisting): if useExisting: if os.path.exists(filePath): print("Found precomputed feature matrix.") featMatDF = pd.read_csv(filePath) print("Loaded into a dataFrame.") return featMatDF else: print( "Cannot use existing feature matrix because specified file was not found. Recomputing it from scratch." ) subjDirs = [f.path for f in os.scandir(dataDir) if f.is_dir()] dfHeader = [ "Subject", "Session", "Run", "OverallGazeEntropyLX", "psdMaxLX", "psdFreqOfMaxLX", "OverallGazeEntropyLY", "psdMaxLY", "psdFreqOfMaxLY", "OverallGazeEntropyLZ", "psdMaxLZ", "psdFreqOfMaxLZ", "OverallGazeEntropyRX", "psdMaxRX", "psdFreqOfMaxRX", "OverallGazeEntropyRY", "psdMaxRY", "psdFreqOfMaxRY", "OverallGazeEntropyRZ", "psdMaxRZ", "psdFreqOfMaxRZ", "EyesClosedFractionL", "EyesClosedFractionR", "PupilDiamMeanL", "PupilDiamStdevL", "PupilDiamSkewL", "PupilDiamKurtL", "PupilDiamMeanR", "PupilDiamStdevR", "PupilDiamSkewR", "PupilDiamKurtR", "FixDurMean", "FixDurStdev", "FixDurSkew", "FixDurKurt", "FixDensityMean", "FixDensityStdev", "FixDensitySkew", "FixDensityKurt", "SacMainSeqMean", "SacMainSeqStdev", "SacPeakVelMean", "SacPeakVelStdev", ] # walks through the directory structure of the raw data featMat = [] ctr = 1 for subjd in subjDirs: sessDirs = [f.path for f in os.scandir(subjd) if f.is_dir()] print( "Processing subject " + str(ctr) + " of " + str(len(subjDirs)) + ": " + os.path.basename(subjd) ) ctr = ctr + 1 for sessd in sessDirs: runDirs = [f.path for f in os.scandir(sessd) if f.is_dir()] for rund in runDirs: dataFiles = [f.path for f in os.scandir(rund) if f.is_file()] toks = rund.split(os.path.sep) subj = toks[-3] sess = toks[-2] run = toks[-1] rawEyeFile = fnmatch.filter(dataFiles, "*lslhtcviveeye*.csv") dfraw = pd.read_csv(rawEyeFile[0]) timeStr = dfraw["time_s"] datalen = len(timeStr) if datalen < 10: continue # if there is even one corrupted date-time string, skip this whole run. try: timesMillis = [convertTimeStrToMillis(f) for f in timeStr] except ValueError: print( "corrupted timestamp string, skipping run = " + run + ", subj = " + subj + ", sess = " + sess ) continue ocuEvtsFile = fnmatch.filter(dataFiles, "*_ocuevts_*.csv") if len(ocuEvtsFile) < 1: print( "No oculomotor events file found for run " + run + ", subj = " + subj + ", sess = " + sess ) continue try: dfocu = pd.read_csv(ocuEvtsFile[0]) except pd.errors.EmptyDataError: print("Empty oculomotor events file. Skipping.") continue if dfocu.shape[0] < 10: continue gazeFeats = extractRawEyeFeats(dfraw, timesMillis) ocuEvtFeats = extractOcuEvtFeats(dfraw, dfocu) dfrow = [subj, sess, run] dfrow = dfrow + gazeFeats + ocuEvtFeats featMat.append(dfrow) featMatDF = pd.DataFrame(featMat, columns=dfHeader) if filePath != None: print("Saving feature matrix to file.") featMatDF.to_csv(filePath) print("Processing complete. Returning feature matrix data frame.") return featMatDF def convertTimeStrToMillis(timeStr): millisec = float(timeStr) * 1000 return millisec def extractRawEyeFeats(df, timesMillis): diffTimes = np.diff(timesMillis) fs = np.mean(1.0 / diffTimes) gazeFeatsLX = getSpectralFeatures(df["gaze_direction_l_x_mm"].values, fs) gazeFeatsLY = getSpectralFeatures(df["gaze_direction_l_y_mm"].values, fs) gazeFeatsLZ = getSpectralFeatures(df["gaze_direction_l_z_mm"].values, fs) gazeFeatsRX = getSpectralFeatures(df["gaze_direction_r_x_mm"].values, fs) gazeFeatsRY = getSpectralFeatures(df["gaze_direction_r_y_mm"].values, fs) gazeFeatsRZ = getSpectralFeatures(df["gaze_direction_r_z_mm"].values, fs) eyeClosedFracL = getFracTimeEyeClosed(df["eye_openness_l"].values, 0.5) eyeClosedFracR = getFracTimeEyeClosed(df["eye_openness_r"].values, 0.5) pupilFeatsL = getPupilFeatures(df["pupil_diameter_l_mm"].values) pupilFeatsR = getPupilFeatures(df["pupil_diameter_r_mm"].values) eyeFeatsAll = ( gazeFeatsLX + gazeFeatsLY + gazeFeatsLZ + gazeFeatsRX + gazeFeatsRY + gazeFeatsRZ + [eyeClosedFracL, eyeClosedFracR] + pupilFeatsL + pupilFeatsR ) return eyeFeatsAll def getFracTimeEyeClosed(eoSignal, thresh): closedSamples = np.where(eoSignal <= thresh) timeEyeClosed = np.max(closedSamples[0].shape) fracTimeEyeClosed = timeEyeClosed / np.max(eoSignal.shape) return fracTimeEyeClosed def getPupilFeatures(pdSignal): meanPD = np.mean(pdSignal) stdevPD = np.std(pdSignal) skewPD = skew(pdSignal) kurtPD = kurtosis(pdSignal) return [meanPD, stdevPD, skewPD, kurtPD] # compute the overall spectral entropy of a continuous-valued signal, as well as the peak of the power spectral density. def getSpectralFeatures(rawSignal, fs): f, psd = signal.welch(rawSignal, fs) # defaults to: hanning window, 256 samples per segment. Returns mean across segments. psdMaxPower = max(psd) psdMaxPowerIdx = np.argmax(psd) psdFreqOfMax = f[psdMaxPowerIdx] # Spectral Entropy is defined to be the Shannon Entropy of the power spectral density of the data. # Step 1: Normalize the PSD by dividing it by the total PSD sum normPSD = psd / sum(psd) # Step 2: Calculate power spectral entropy overallEntropy = -np.sum(normPSD * np.log2(psd)) return [overallEntropy, psdMaxPower, psdFreqOfMax] # Extract features pertaining to oculomotor events: fixations and saccades. def extractOcuEvtFeats(dfRawEye, dfOcuEvt): eoSignal = dfRawEye["eye_openness_l"].values eyeOpenIdxs = np.where(eoSignal > 0.5) eoIdxs = eyeOpenIdxs[0] fixFeats = getFixationFeats(dfOcuEvt, dfRawEye, eoIdxs[:-2]) sacFeats = getSaccadeFeats(dfOcuEvt, dfRawEye, eoIdxs[:-2]) return fixFeats + sacFeats # Computes aggregate statistics of fixation durations and densities across each run. def getFixationFeats(dfOcuEvt, dfRawEye, eoIdxs): fixSeq = dfOcuEvt["FixationSeq"].values timeCol = dfOcuEvt["Timestamp"].values gazeX = dfRawEye["gaze_direction_l_x_mm"].values gazeY = dfRawEye["gaze_direction_l_y_mm"].values gazeZ = dfRawEye["gaze_direction_l_z_mm"].values fixEO = fixSeq[eoIdxs] timeEO = timeCol[eoIdxs] fixDurs = getFixDurations(fixEO, timeEO) fixDens = getFixDensities( fixEO, timeEO, gazeX[eoIdxs], gazeY[eoIdxs], gazeZ[eoIdxs] ) meanFixDur = np.mean(fixDurs) stdevFixDur = np.std(fixDurs) skewFixDur = skew(fixDurs) kurtFixDur = kurtosis(fixDurs) meanFixDen = np.mean(fixDens) stdevFixDen = np.std(fixDens) skewFixDen = skew(fixDens) kurtFixDen = kurtosis(fixDens) return [ meanFixDur, stdevFixDur, skewFixDur, kurtFixDur, meanFixDen, stdevFixDen, skewFixDen, kurtFixDen, ] def getFixDurations(fixEO, timeEO): fixDurs = [] uniqueFixNums = set(fixEO) for fn in uniqueFixNums: if fn < 0: continue curFixIdxsArr = np.where(fixEO == fn) curFixIdxs = curFixIdxsArr[0] curFixTimes = timeEO[curFixIdxs] startTime = curFixTimes[0] endTime = curFixTimes[-1] curFixDur = endTime - startTime fixDurs.append(curFixDur) return fixDurs def getFixDensities(fixEO, timeEO, gazeEOx, gazeEOy, gazeEOz): fixDens = [] uniqueFixNums = set(fixEO) for fn in uniqueFixNums: if fn < 0: continue curFixIdxsArr = np.where(fixEO == fn) curFixIdxs = curFixIdxsArr[0] curFixTimes = timeEO[curFixIdxs] startTime = curFixTimes[0] endTime = curFixTimes[-1] curFixDen = computeDispersion( gazeEOx[curFixIdxs], gazeEOy[curFixIdxs], gazeEOz[curFixIdxs] ) fixDens.append(curFixDen) return fixDens def computeDispersion(gazeX, gazeY, gazeZ): centroidX = np.mean(gazeX) centroidY = np.mean(gazeY) centroidZ = np.mean(gazeZ) offsetsXsq = np.square(gazeX - centroidX) offsetsYsq = np.square(gazeY - centroidY) offsetsZsq = np.square(gazeZ - centroidZ) dispersion = np.sqrt( np.mean(offsetsXsq) +
np.mean(offsetsYsq)
numpy.mean
""" Created on Sat May 23 18:17:31 2020 celebx = 'CC1=CC=C(C=C1)C2=CC(=NN2C3=CC=C(C=C3)S(=O)(=O)N)C(F)(F)F' tiotixene = 'CN1CCN(CC1)CCC=C2C3=CC=CC=C3SC4=C2C=C(C=C4)S(=O)(=O)N(C)C' Troglitazone = 'CC1=C(C2=C(CCC(O2)(C)COC3=CC=C(C=C3)CC4C(=O)NC(=O)S4)C(=C1O)C)C' @author: akshat """ import selfies import numpy as np import random from rdkit.Chem import MolFromSmiles as smi2mol from rdkit.Chem import MolToSmiles as mol2smi from rdkit import Chem from rdkit.Chem import AllChem from rdkit.DataStructs.cDataStructs import TanimotoSimilarity from selfies import encoder, decoder from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') def get_ECFP4(mol): ''' Return rdkit ECFP4 fingerprint object for mol Parameters: mol (rdkit.Chem.rdchem.Mol) : RdKit mol object Returns: rdkit ECFP4 fingerprint object for mol ''' return AllChem.GetMorganFingerprint(mol, 2) def sanitize_smiles(smi): '''Return a canonical smile representation of smi Parameters: smi (string) : smile string to be canonicalized Returns: mol (rdkit.Chem.rdchem.Mol) : RdKit mol object (None if invalid smile string smi) smi_canon (string) : Canonicalized smile representation of smi (None if invalid smile string smi) conversion_successful (bool): True/False to indicate if conversion was successful ''' try: mol = smi2mol(smi, sanitize=True) smi_canon = mol2smi(mol, isomericSmiles=False, canonical=True) return (mol, smi_canon, True) except: return (None, None, False) def mutate_selfie(selfie, max_molecules_len, write_fail_cases=False): '''Return a mutated selfie string (only one mutation on slefie is performed) Mutations are done until a valid molecule is obtained Rules of mutation: With a 50% propbabily, either: 1. Add a random SELFIE character in the string 2. Replace a random SELFIE character with another Parameters: selfie (string) : SELFIE string to be mutated max_molecules_len (int) : Mutations of SELFIE string are allowed up to this length write_fail_cases (bool) : If true, failed mutations are recorded in "selfie_failure_cases.txt" Returns: selfie_mutated (string) : Mutated SELFIE string smiles_canon (string) : canonical smile of mutated SELFIE string ''' valid=False fail_counter = 0 chars_selfie = get_selfie_chars(selfie) while not valid: fail_counter += 1 alphabet = list(selfies.get_semantic_robust_alphabet()) # 34 SELFIE characters choice_ls = [1, 2] # 1=Insert; 2=Replace; 3=Delete random_choice = np.random.choice(choice_ls, 1)[0] # Insert a character in a Random Location if random_choice == 1: random_index = np.random.randint(len(chars_selfie)+1) random_character =
np.random.choice(alphabet, size=1)
numpy.random.choice
""" ``CovEmu`` is an emulator for covariance matrices (or any set of real-symmetric matrices). """ from copy import deepcopy import george import numpy as np import scipy.optimize as op from george.kernels import ExpSquaredKernel from covariance_emulator.breakdown import ( breakdown_covariance, breakdown_covariance_from_components, ) class CovEmu(object): """ Generalized emulator for covariance matrices. """ def __init__( self, parameters, covariance_matrices, NPC_D=1, NPC_L=1, kernel_D=None, kernel_lp=None, ): Cs = np.atleast_3d(covariance_matrices) self.N = Cs.shape[0] parameters = np.atleast_2d(parameters).reshape(self.N, -1) self.Npars = len(parameters[0]) assert len(parameters) == len(Cs), f"{parameters.shape} vs {Cs.shape}" assert parameters.ndim == 2, parameters.ndim assert Cs.ndim == 3, Cs.ndim msg = "all covariances must have the same dimension" assert all(len(C) == len(C[0]) for C in Cs), msg # Save all attributes self.NPC_D = NPC_D self.NPC_L = NPC_L self.covariance_matrices = Cs self.parameters = parameters # Create kernels for the emulator metric_guess = np.std(self.parameters, 0) self.kernel_D = kernel_D or 1.0 * ExpSquaredKernel( metric=metric_guess, ndim=self.Npars ) self.kernel_lp = kernel_lp or 1.0 * ExpSquaredKernel( metric=metric_guess, ndim=self.Npars ) # Call methods that start to build the emulator self.breakdown_matrices() self.create_training_data() self.build_emulator() self.train_emulator() @classmethod def from_Ds_Lprimes(cls, Ds, Lprimes): """ Reconstruct all covariance matrices from their individual parts and assemble the emulator from those. """ pass def breakdown_matrices(self): """ Break down matrices into their constituent parts. :returns: None """ Cs = self.covariance_matrices ND = len(self.covariance_matrices[0]) NLp = int(ND * (ND - 1) / 2) Ds = np.zeros((self.N, ND)) Lprimes = np.zeros((self.N, NLp)) # Loop over matrices and break them down for i in range(self.N): breakdown = breakdown_covariance(Cs[i]) Ds[i] = breakdown["D"] Lprimes[i] = breakdown["Lprime"] continue # Save the broken down data self.Ds = Ds self.ds_raw = np.log(Ds) self.Lprimes = Lprimes # Compute their first statistical moments self.d_mean = np.mean(self.ds_raw, 0) self.d_std = np.std(self.ds_raw, 0) self.Lprime_mean =
np.mean(Lprimes, 0)
numpy.mean
import mxnet as mx import cv2 as cv import numpy as np import os from PIL import Image import math from collections import namedtuple from mxnet.contrib.onnx import import_model import cityscapes_labels def preprocess(im, rgb_mean): # Convert to float32 test_img = im.astype(np.float32) # Extrapolate image with a small border in order obtain an accurate reshaped image after DUC layer test_shape = [im.shape[0],im.shape[1]] cell_shapes = [math.ceil(l / 8)*8 for l in test_shape] test_img = cv.copyMakeBorder(test_img, 0, max(0, int(cell_shapes[0]) - im.shape[0]), 0, max(0, int(cell_shapes[1]) - im.shape[1]), cv.BORDER_CONSTANT, value=rgb_mean) test_img = np.transpose(test_img, (2, 0, 1)) # subtract rbg mean for i in range(3): test_img[i] -= rgb_mean[i] test_img = np.expand_dims(test_img, axis=0) return test_img def get_palette(): # get train id to color mappings from file trainId2colors = {label.trainId: label.color for label in cityscapes_labels.labels} # prepare and return palette palette = [0] * 256 * 3 for trainId in trainId2colors: colors = trainId2colors[trainId] if trainId == 255: colors = (0, 0, 0) for i in range(3): palette[trainId * 3 + i] = colors[i] return palette def colorize(labels): # generate colorized image from output labels and color palette result_img = Image.fromarray(labels).convert('P') result_img.putpalette(get_palette()) return np.array(result_img.convert('RGB')) def predict(imgs, result_shape, mod, im): # get input and output dimensions result_height, result_width = result_shape _, _, img_height, img_width = imgs.shape # set downsampling rate ds_rate = 8 # set cell width cell_width = 2 # number of output label classes label_num = 19 # Perform forward pass batch = namedtuple('Batch', ['data']) mod.forward(batch([imgs]),is_train=False) labels = mod.get_outputs()[0].asnumpy().squeeze() # re-arrange output test_width = int((int(img_width) / ds_rate) * ds_rate) test_height = int((int(img_height) / ds_rate) * ds_rate) feat_width = int(test_width / ds_rate) feat_height = int(test_height / ds_rate) labels = labels.reshape((label_num, 4, 4, feat_height, feat_width)) labels = np.transpose(labels, (0, 3, 1, 4, 2)) labels = labels.reshape((label_num, int(test_height / cell_width), int(test_width / cell_width))) labels = labels[:, :int(img_height / cell_width),:int(img_width / cell_width)] labels = np.transpose(labels, [1, 2, 0]) labels = cv.resize(labels, (result_width, result_height), interpolation=cv.INTER_LINEAR) labels =
np.transpose(labels, [2, 0, 1])
numpy.transpose
import random import numpy as np import matplotlib.pyplot as plt phi = lambda vec: np.sin(np.product(vec)) h = lambda x: np.sqrt(1 + np.sin(np.product(x)) ** 2) # Section 1.1.5 - Analytical Evaluation # SubSection 1 def gradient_phi(vec: np.matrix): grad_vec = np.matrix(np.array([[vec[1] * vec[2]], [vec[0] * vec[2]], [vec[0] * vec[1]]]), dtype=np.float128) grad_vec = grad_vec.transpose() return np.cos(np.product(vec)) * grad_vec def hessian_phi(mat: np.matrix, vec: np.matrix): nabla = np.zeros((3, 3)) nabla[0, 0] = (-((vec[1] * vec[2]) ** 2) * np.sin(np.product(vec))) nabla[0, 1] = vec[2] * np.cos(np.product(vec)) - np.product(vec) * vec[2] * np.sin(np.product(vec)) nabla[0, 2] = vec[1] * np.cos(np.product(vec)) - np.product(vec) * vec[1] * np.sin(np.product(vec)) nabla[1, 0] = vec[2] * np.cos(np.product(vec)) - np.product(vec) * vec[2] * np.sin(np.product(vec)) nabla[1, 1] = (-((vec[0] * vec[2]) ** 2) * np.sin(np.product(vec))) nabla[1, 2] = vec[0] * np.cos(np.product(vec)) - np.product(vec) * vec[0] * np.sin(np.product(vec)) nabla[2, 0] = vec[1] * np.cos(np.product(vec)) - np.product(vec) * vec[1] * np.sin(np.product(vec)) nabla[2, 1] = vec[0] * np.cos(np.product(vec)) - np.product(vec) * vec[0] * np.sin(np.product(vec)) nabla[2, 2] = (-((vec[0] * vec[1]) ** 2) * np.sin(np.product(vec))) return mat.transpose() * nabla * mat # SubSection 2 def gradient_h(vec: np.matrix): return 0.5 * phi(vec) / ((1 + (phi(vec) ** 2)) ** 0.5) \ * gradient_phi(vec) def hessian_h(vec: np.matrix): # Calculating the 2nd derivative of h of phi derivative = (np.cos(np.product(vec)) ** 2 - (1 + np.sin(np.product(vec)) ** 2) * np.sin(np.product(vec)) ** 2) / \ (1 + np.sin(np.product(vec)) ** 2) ** 1.5 return derivative * hessian_phi(np.matrix(np.identity(3)), vec) # Section 1.2.1 - Numerical Differentiation def numerical_diff_gradient(func, vector: np.matrix, epsilon): vec_len = vector.shape[0] assert vector.shape[1] == 1 assert vec_len > 0 gradient = np.matrix(np.zeros((vec_len, 1)), dtype=np.float128) for i in range(vec_len): base_vector = np.matrix(np.zeros((vec_len, 1)), dtype=np.float128) base_vector[i, 0] = 1 func_plus = func(vector + (epsilon * base_vector)) func_minus = func(vector - (epsilon * base_vector)) gradient[i, 0] = ((func_plus - func_minus) / (2 * epsilon)) return gradient def numerical_diff_hessian(vec: np.matrix, epsilon, hess_phi=False, hess_h=False,): vec_len = vec.shape[0] assert vec.shape[1] == 1 assert vec_len > 0 hessian = np.matrix(np.zeros((vec_len, vec_len)), dtype=np.float128) for i in range(vec_len): base_vector = np.matrix(
np.zeros((vec_len, 1))
numpy.zeros
import os import numpy as np from PIL import Image from torch.utils.data import Dataset class DatasetSimple(Dataset): """ Args: root (string): Root directory path. frame_list_path (string): Frame list path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. sample_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, frame_list_path, transform=None, sample_transform=None): self.root = root self.frame_list = np.loadtxt(frame_list_path, skiprows=1, dtype=str) self.transform = transform self.sample_transform = sample_transform def __len__(self): return len(self.frame_list) def __getitem__(self, index): image_name = self.frame_list[index] image_path = os.path.join(self.root, image_name) with open(image_path, "rb") as f: img = Image.open(f) img.convert("RGB") if self.transform: img = self.transform(img) return img, image_name def box_to_center_scale(box, model_image_width, model_image_height): """convert a box to center,scale information required for pose transformation Parameters ---------- box : list | ndarray model_image_width : int model_image_height : int Returns ------- (numpy array, numpy array) Two numpy arrays, coordinates for the center of the box and the scale of the box """ center =
np.zeros(2, dtype=np.float32)
numpy.zeros
# standard modules import ast import csv import datetime import logging import os import platform import subprocess import Tkinter # 3rd party modules import dateutil import matplotlib.dates as mdt import matplotlib.pyplot as plt import numpy import pylab # PFP modules import constants as c import pfp_ck import pfp_io import pfp_ts import pfp_utils logger = logging.getLogger("pfp_log") # functions for GapFillUsingSOLO def GapFillUsingSOLO(cf, dsa, dsb): ''' This is the "Run SOLO" GUI. The SOLO GUI is displayed separately from the main OzFluxQC GUI. It consists of text to display the start and end datetime of the file, two entry boxes for the start and end datetimes of the SOLO run and a button to run SOLO ("Run SOLO") and a button to exit the SOLO GUI when we are done. On exit, the OzFluxQC main GUI continues and eventually writes the gap filled data to file. ''' # set the default return code dsb.returncodes["solo"] = "normal" if "solo" not in dir(dsb): return # local pointer to the datetime series ldt = dsb.series["DateTime"]["Data"] startdate = ldt[0] enddate = ldt[-1] solo_info = {"file_startdate":startdate.strftime("%Y-%m-%d %H:%M"), "file_enddate":enddate.strftime("%Y-%m-%d %H:%M"), "startdate":startdate.strftime("%Y-%m-%d %H:%M"), "enddate":enddate.strftime("%Y-%m-%d %H:%M")} # check to see if this is a batch or an interactive run call_mode = pfp_utils.get_keyvaluefromcf(cf, ["Options"], "call_mode", default="interactive") solo_info["call_mode"]= call_mode if call_mode.lower()=="interactive": solo_info["show_plots"] = True if call_mode.lower()=="interactive": # put up a plot of the data coverage at L4 gfSOLO_plotcoveragelines(dsb, solo_info) # call the GapFillUsingSOLO GUI gfSOLO_gui(dsa, dsb, solo_info) else: if "GUI" in cf: if "SOLO" in cf["GUI"]: gfSOLO_run_nogui(cf, dsa, dsb, solo_info) else: logger.warning(" No GUI sub-section found in Options section of control file") gfSOLO_plotcoveragelines(dsb, solo_info) gfSOLO_gui(dsa, dsb, solo_info) else: logger.warning(" No GUI sub-section found in Options section of control file") gfSOLO_plotcoveragelines(dsb, solo_info) gfSOLO_gui(dsa, dsb, solo_info) def gfSOLO_gui(dsa, dsb, solo_info): ldt = dsb.series["DateTime"]["Data"] # set up the GUI solo_gui = Tkinter.Toplevel() solo_gui.wm_title("SOLO GUI (Fluxes)") solo_gui.grid() # top row nrow = 0 solo_gui.nodesLabel = Tkinter.Label(solo_gui,text="Nodes") solo_gui.nodesLabel.grid(row=nrow,column=0,columnspan=1,sticky="E") solo_gui.nodesEntry = Tkinter.Entry(solo_gui,width=6) solo_gui.nodesEntry.grid(row=nrow,column=1,columnspan=1,sticky="W") solo_gui.nodesEntry.insert(0,"Auto") solo_gui.trainingLabel = Tkinter.Label(solo_gui,text="Training") solo_gui.trainingLabel.grid(row=nrow,column=2,columnspan=1,sticky="E") solo_gui.trainingEntry = Tkinter.Entry(solo_gui,width=6) solo_gui.trainingEntry.grid(row=nrow,column=3,columnspan=1,sticky="W") solo_gui.trainingEntry.insert(0,"500") solo_gui.factorLabel = Tkinter.Label(solo_gui,text="Nda factor") solo_gui.factorLabel.grid(row=nrow,column=4,columnspan=1,sticky="E") solo_gui.factorEntry = Tkinter.Entry(solo_gui,width=6) solo_gui.factorEntry.grid(row=nrow,column=5,columnspan=1,sticky="W") solo_gui.factorEntry.insert(0,"5") # second row nrow = nrow + 1 solo_gui.learningrateLabel = Tkinter.Label(solo_gui,text="Learning") solo_gui.learningrateLabel.grid(row=nrow,column=2,columnspan=1,sticky="E") solo_gui.learningrateEntry = Tkinter.Entry(solo_gui,width=6) solo_gui.learningrateEntry.grid(row=nrow,column=3,columnspan=1,sticky="W") solo_gui.learningrateEntry.insert(0,"0.001") solo_gui.iterationsLabel = Tkinter.Label(solo_gui,text="Iterations") solo_gui.iterationsLabel.grid(row=nrow,column=4,columnspan=1,sticky="E") solo_gui.iterationsEntry = Tkinter.Entry(solo_gui,width=6) solo_gui.iterationsEntry.grid(row=nrow,column=5,columnspan=1,sticky="W") solo_gui.iterationsEntry.insert(0,"500") # third row nrow = nrow + 1 solo_gui.filestartLabel = Tkinter.Label(solo_gui,text="File start date") solo_gui.filestartLabel.grid(row=nrow,column=0,columnspan=3) solo_gui.fileendLabel = Tkinter.Label(solo_gui,text="File end date") solo_gui.fileendLabel.grid(row=nrow,column=3,columnspan=3) # fourth row nrow = nrow + 1 solo_gui.filestartValue = Tkinter.Label(solo_gui,text=str(ldt[0])) solo_gui.filestartValue.grid(row=nrow,column=0,columnspan=3) solo_gui.fileendValue = Tkinter.Label(solo_gui,text=str(ldt[-1])) solo_gui.fileendValue.grid(row=nrow,column=3,columnspan=3) # fifth row nrow = nrow + 1 solo_gui.startLabel = Tkinter.Label(solo_gui, text="Start date (YYYY-MM-DD)") solo_gui.startLabel.grid(row=nrow,column=0,columnspan=3) solo_gui.startEntry = Tkinter.Entry(solo_gui) solo_gui.startEntry.grid(row=nrow,column=3,columnspan=3) # sixth row nrow = nrow + 1 solo_gui.endLabel = Tkinter.Label(solo_gui, text="End date (YYYY-MM-DD)") solo_gui.endLabel.grid(row=nrow,column=0,columnspan=3) solo_gui.endEntry = Tkinter.Entry(solo_gui) solo_gui.endEntry.grid(row=nrow,column=3,columnspan=3) # seventh row nrow = nrow + 1 solo_gui.peropt = Tkinter.IntVar() solo_gui.peropt.set(2) solo_gui.manualperiod = Tkinter.Radiobutton(solo_gui,text="Manual",variable=solo_gui.peropt,value=1) solo_gui.manualperiod.grid(row=nrow,column=0,columnspan=1,sticky="W") #solo_gui.manualperiod = Tkinter.Radiobutton(solo_gui,text="Auto",variable=solo_gui.peropt,value=4) #solo_gui.manualperiod.grid(row=nrow,column=1,columnspan=1,sticky="W") solo_gui.minptsLabel = Tkinter.Label(solo_gui,text="Min. pts (%)") solo_gui.minptsLabel.grid(row=nrow,column=3,columnspan=1,sticky="E") solo_gui.minptsEntry = Tkinter.Entry(solo_gui,width=5) solo_gui.minptsEntry.grid(row=nrow,column=4,columnspan=1,sticky="W") solo_gui.minptsEntry.insert(0,"25") # eigth row nrow = nrow + 1 solo_gui.automonthly = Tkinter.Radiobutton(solo_gui,text="Monthly",variable=solo_gui.peropt,value=2) solo_gui.automonthly.grid(row=nrow,column=0,columnspan=1,sticky="W") solo_gui.daysLabel = Tkinter.Radiobutton(solo_gui,text="Days",variable=solo_gui.peropt,value=3) solo_gui.daysLabel.grid(row=nrow,column=1,columnspan=1,sticky="W") solo_gui.daysEntry = Tkinter.Entry(solo_gui,width=3) solo_gui.daysEntry.grid(row=nrow,column=2,columnspan=1,sticky="W") solo_gui.daysEntry.insert(0,"90") solo_gui.autocompleteopt = Tkinter.IntVar() solo_gui.autocompleteopt.set(1) solo_gui.autocomplete = Tkinter.Checkbutton(solo_gui, text="Auto complete", variable=solo_gui.autocompleteopt) solo_gui.autocomplete.grid(row=nrow,column=3,columnspan=3,sticky="w") # ninth row nrow = nrow + 1 solo_gui.pltopt = Tkinter.IntVar() solo_gui.pltopt.set(1) solo_gui.showplots = Tkinter.Checkbutton(solo_gui, text="Show plots", variable=solo_gui.pltopt) solo_gui.showplots.grid(row=nrow,column=0,columnspan=3,sticky="w") solo_gui.owopt = Tkinter.IntVar() solo_gui.owopt.set(0) solo_gui.overwrite = Tkinter.Checkbutton(solo_gui, text="Overwrite", variable=solo_gui.owopt) solo_gui.overwrite.grid(row=nrow,column=3,columnspan=3,sticky="w") # tenth row nrow = nrow + 1 solo_gui.doneButton = Tkinter.Button (solo_gui, text="Done",command=lambda:gfSOLO_done(dsb,solo_gui,solo_info)) solo_gui.doneButton.grid(row=nrow,column=0,columnspan=2) solo_gui.runButton = Tkinter.Button (solo_gui, text="Run",command=lambda:gfSOLO_run_gui(dsa,dsb,solo_gui,solo_info)) solo_gui.runButton.grid(row=nrow,column=2,columnspan=2) solo_gui.quitButton = Tkinter.Button (solo_gui, text="Quit",command=lambda:gfSOLO_quit(dsb,solo_gui)) solo_gui.quitButton.grid(row=nrow,column=4,columnspan=2) # eleventh row nrow = nrow + 1 solo_gui.progress_row = nrow solo_gui.progress = Tkinter.Label(solo_gui, text='Waiting for input ...') solo_gui.progress.grid(row=nrow,column=0,columnspan=6,sticky="W") solo_gui.wait_window(solo_gui) def gfSOLO_autocomplete(dsa, dsb, solo_info): if not solo_info["auto_complete"]: return ldt = dsb.series["DateTime"]["Data"] nRecs = len(ldt) for output in dsb.solo.keys(): not_enough_points = False series = dsb.solo[output]["label_tower"] data_solo, _, _ = pfp_utils.GetSeriesasMA(dsb, output) if numpy.ma.count(data_solo)==0: continue mask_solo = numpy.ma.getmaskarray(data_solo) gapstartend = pfp_utils.contiguous_regions(mask_solo) data_obs, _, _ = pfp_utils.GetSeriesasMA(dsb, series) for si_gap, ei_gap in gapstartend: min_points = int((ei_gap-si_gap)*solo_info["min_percent"]/100) num_good_points = numpy.ma.count(data_obs[si_gap:ei_gap]) while num_good_points < min_points: si_gap = max([0, si_gap - solo_info["nperday"]]) ei_gap = min([nRecs-1, ei_gap + solo_info["nperday"]]) if si_gap == 0 and ei_gap == nRecs-1: msg = " Unable to find enough good points in series "+series logger.warning(msg) not_enough_points = True if not_enough_points: break min_points = int((ei_gap-si_gap)*solo_info["min_percent"]/100) num_good_points = numpy.ma.count(data_obs[si_gap:ei_gap]) if not_enough_points: break si = max([0, si_gap]) ei = min([len(ldt)-1, ei_gap]) solo_info["startdate"] = ldt[si].strftime("%Y-%m-%d %H:%M") solo_info["enddate"] = ldt[ei].strftime("%Y-%m-%d %H:%M") gfSOLO_main(dsa, dsb, solo_info, output_list=[output]) gfSOLO_plotcoveragelines(dsb, solo_info) def gfSOLO_done(ds,solo_gui,solo_info): # plot the summary statistics if gap filling was done manually if solo_gui.peropt.get()==1: # write Excel spreadsheet with fit statistics pfp_io.xl_write_SOLOStats(ds) # plot the summary statistics gfSOLO_plotsummary(ds,solo_info) # destroy the SOLO GUI solo_gui.destroy() # remove the solo dictionary from the data structure ds.returncodes["solo"] = "normal" def gfSOLO_getserieslist(cf): series_list = [] if "Drivers" in cf.keys(): for series in cf["Drivers"].keys(): if "GapFillUsingSOLO" in cf["Drivers"][series]: series_list.append(series) elif "Fluxes" in cf.keys(): for series in cf["Fluxes"].keys(): if "GapFillUsingSOLO" in cf["Fluxes"][series]: series_list.append(series) elif "Variables" in cf.keys(): for series in cf["Variables"].keys(): if "GapFillUsingSOLO" in cf["Variables"][series]: series_list.append(series) else: series_list = [] msg = "No Variables, Drivers or Fluxes section found in control file" logger.error(msg) return series_list def gfSOLO_initplot(**kwargs): # set the margins, heights, widths etc pd = {"margin_bottom":0.075, "margin_top":0.075, "margin_left":0.05, "margin_right":0.05, "xy_height":0.20, "xy_width":0.20, "xyts_space":0.05, "ts_width":0.9} # set the keyword arguments for key, value in kwargs.iteritems(): pd[key] = value # calculate bottom of the first time series and the height of the time series plots pd["ts_bottom"] = pd["margin_bottom"]+pd["xy_height"]+pd["xyts_space"] pd["ts_height"] = (1.0 - pd["margin_top"] - pd["ts_bottom"])/float(pd["nDrivers"]+1) return pd def gfSOLO_main(dsa,dsb,solo_info,output_list=[]): ''' This is the main routine for running SOLO, an artifical neural network for gap filling fluxes. ''' if len(output_list)==0: output_list = dsb.solo.keys() startdate = solo_info["startdate"] enddate = solo_info["enddate"] logger.info(" Gap filling using SOLO: "+startdate+" to "+enddate) # read the control file again, this allows the contents of the control file to # be changed with the SOLO GUI still displayed cfname = dsb.globalattributes["controlfile_name"] cf = pfp_io.get_controlfilecontents(cfname,mode="quiet") solo_info["plot_path"] = cf["Files"]["plot_path"] # put the control file object in the solo_info dictionary dsb.cf = cf.copy() # get some useful things site_name = dsa.globalattributes["site_name"] # get the time step and a local pointer to the datetime series ts = dsb.globalattributes["time_step"] ldt = dsb.series["DateTime"]["Data"] xldt = dsb.series["xlDateTime"]["Data"] # get the start and end datetime indices si = pfp_utils.GetDateIndex(ldt,startdate,ts=ts,default=0,match="exact") ei = pfp_utils.GetDateIndex(ldt,enddate,ts=ts,default=len(ldt)-1,match="exact") # check the start and end indices if si >= ei: msg = " GapFillUsingSOLO: end datetime index ("+str(ei)+") smaller that start ("+str(si)+")" logger.warning(msg) return if si==0 and ei==-1: msg = " GapFillUsingSOLO: no start and end datetime specified, using all data" logger.warning(msg) nRecs = int(dsb.globalattributes["nc_nrecs"]) else: nRecs = ei - si + 1 # loop over the series to be gap filled using solo #solo_info["min_points"] = int(nRecs*solo_info["min_percent"]/100) solo_info["min_points"] = int((ei-si)*solo_info["min_percent"]/100) # close any open plot windows if len(plt.get_fignums())!=0: for i in plt.get_fignums(): if i!=0: plt.close(i) fig_num = 0 for output in output_list: # get the target series label series = dsb.solo[output]["label_tower"] # clean up the target series if required variable = pfp_utils.GetVariable(dsb, series) pfp_ck.UpdateVariableAttributes_QC(cf, variable) pfp_ck.ApplyQCChecks(variable) pfp_utils.CreateVariable(dsb, variable) # check to see if we are gap filling L5 or L4 if dsb.globalattributes["nc_level"].lower()=="l4": for driver in dsb.solo[output]["drivers"]: for mlist in dsb.merge.keys(): if driver in dsb.merge[mlist]: srclist = dsb.merge[mlist][driver]["source"] pfp_ts.do_mergeseries(dsb,driver,srclist,mode="quiet") dsb.solo[output]["results"]["startdate"].append(xldt[si]) dsb.solo[output]["results"]["enddate"].append(xldt[ei]) d,f,a = pfp_utils.GetSeriesasMA(dsb,series,si=si,ei=ei) if numpy.ma.count(d)<solo_info["min_points"]: logger.warning("gfSOLO: Less than "+str(solo_info["min_points"])+" points available for series "+series+" ...") dsb.solo[output]["results"]["No. points"].append(float(0)) results_list = dsb.solo[output]["results"].keys() for item in ["startdate","enddate","No. points"]: if item in results_list: results_list.remove(item) for item in results_list: dsb.solo[output]["results"][item].append(float(c.missing_value)) continue drivers = dsb.solo[output]["drivers"] if str(solo_info["nodes"]).lower()=="auto": solo_info["nodes_target"] = len(drivers)+1 else: solo_info["nodes_target"] = int(solo_info["nodes"]) #output = dsb.solo[series]["output"] # set the number of nodes for the inf files #nodesAuto = gfSOLO_setnodesEntry(solo_gui,drivers) # overwrite the GUI settings if required if "solo_settings" in dsb.solo[output]: solo_info["nodes_target"] = dsb.solo[output]["solo_settings"]["nodes_target"] solo_info["training"] = dsb.solo[output]["solo_settings"]["training"] solo_info["factor"] = dsb.solo[output]["solo_settings"]["factor"] solo_info["learningrate"] = dsb.solo[output]["solo_settings"]["learningrate"] solo_info["iterations"] = dsb.solo[output]["solo_settings"]["iterations"] # write the inf files for sofm, solo and seqsolo gfSOLO_writeinffiles(solo_info) # run SOFM result = gfSOLO_runsofm(dsa,dsb,drivers,series,nRecs,si=si,ei=ei) if result!=1: return # run SOLO result = gfSOLO_runsolo(dsa,dsb,drivers,series,nRecs,si=si,ei=ei) if result!=1: return # run seqsolo and put the solo_modelled data into the ds series result = gfSOLO_runseqsolo(dsa,dsb,drivers,series,output,nRecs,si=si,ei=ei) if result!=1: return # plot the results fig_num = fig_num + 1 title = site_name+' : Comparison of tower and SOLO data for '+series pd = gfSOLO_initplot(site_name=site_name,label=series,fig_num=fig_num,title=title, nDrivers=len(drivers)) gfSOLO_plot(pd,dsa,dsb,drivers,series,output,solo_info,si=si,ei=ei) # reset the nodesEntry in the solo_gui #if nodesAuto: gfSOLO_resetnodesEntry(solo_gui) if 'GapFillUsingSOLO' not in dsb.globalattributes['Functions']: dsb.globalattributes['Functions'] = dsb.globalattributes['Functions']+', GapFillUsingSOLO' def gfSOLO_plot(pd,dsa,dsb,driverlist,targetlabel,outputlabel,solo_info,si=0,ei=-1): """ Plot the results of the SOLO run. """ # get the time step ts = int(dsb.globalattributes['time_step']) # get a local copy of the datetime series xdt = dsb.series["DateTime"]["Data"][si:ei+1] Hdh,f,a = pfp_utils.GetSeriesasMA(dsb,'Hdh',si=si,ei=ei) # get the observed and modelled values obs,f,a = pfp_utils.GetSeriesasMA(dsb,targetlabel,si=si,ei=ei) mod,f,a = pfp_utils.GetSeriesasMA(dsb,outputlabel,si=si,ei=ei) # make the figure if solo_info["show_plots"]: plt.ion() else: plt.ioff() fig = plt.figure(pd["fig_num"],figsize=(13,8)) fig.clf() fig.canvas.set_window_title(targetlabel) plt.figtext(0.5,0.95,pd["title"],ha='center',size=16) # XY plot of the diurnal variation rect1 = [0.10,pd["margin_bottom"],pd["xy_width"],pd["xy_height"]] ax1 = plt.axes(rect1) # get the diurnal stats of the observations mask = numpy.ma.mask_or(obs.mask,mod.mask) obs_mor = numpy.ma.array(obs,mask=mask) Num1,Hr1,Av1,Sd1,Mx1,Mn1 = gf_getdiurnalstats(Hdh,obs_mor,ts) ax1.plot(Hr1,Av1,'b-',label="Obs") # get the diurnal stats of all SOLO predictions Num2,Hr2,Av2,Sd2,Mx2,Mn2 = gf_getdiurnalstats(Hdh,mod,ts) ax1.plot(Hr2,Av2,'r-',label="SOLO(all)") # get the diurnal stats of SOLO predictions when the obs are present mod_mor = numpy.ma.array(mod,mask=mask) if numpy.ma.count_masked(obs)!=0: index = numpy.where(numpy.ma.getmaskarray(obs)==False)[0] #index = numpy.ma.where(numpy.ma.getmaskarray(obs)==False)[0] # get the diurnal stats of SOLO predictions when observations are present Num3,Hr3,Av3,Sd3,Mx3,Mn3=gf_getdiurnalstats(Hdh[index],mod_mor[index],ts) ax1.plot(Hr3,Av3,'g-',label="SOLO(obs)") plt.xlim(0,24) plt.xticks([0,6,12,18,24]) ax1.set_ylabel(targetlabel) ax1.set_xlabel('Hour') ax1.legend(loc='upper right',frameon=False,prop={'size':8}) # XY plot of the 30 minute data rect2 = [0.40,pd["margin_bottom"],pd["xy_width"],pd["xy_height"]] ax2 = plt.axes(rect2) ax2.plot(mod,obs,'b.') ax2.set_ylabel(targetlabel+'_obs') ax2.set_xlabel(targetlabel+'_SOLO') # plot the best fit line coefs = numpy.ma.polyfit(numpy.ma.copy(mod),numpy.ma.copy(obs),1) xfit = numpy.ma.array([numpy.ma.minimum(mod),numpy.ma.maximum(mod)]) yfit = numpy.polyval(coefs,xfit) r = numpy.ma.corrcoef(mod,obs) ax2.plot(xfit,yfit,'r--',linewidth=3) eqnstr = 'y = %.3fx + %.3f, r = %.3f'%(coefs[0],coefs[1],r[0][1]) ax2.text(0.5,0.875,eqnstr,fontsize=8,horizontalalignment='center',transform=ax2.transAxes) # write the fit statistics to the plot numpoints = trap_masked_constant(numpy.ma.count(obs)) numfilled = trap_masked_constant(numpy.ma.count(mod)-numpy.ma.count(obs)) diff = mod - obs bias = trap_masked_constant(numpy.ma.average(diff)) fractional_bias = trap_masked_constant(bias/(0.5*(numpy.ma.average(obs+mod)))) dsb.solo[outputlabel]["results"]["Bias"].append(bias) dsb.solo[outputlabel]["results"]["Frac Bias"].append(fractional_bias) rmse = numpy.ma.sqrt(numpy.ma.mean((obs-mod)*(obs-mod))) mean_mod = numpy.ma.mean(mod) mean_obs = numpy.ma.mean(obs) data_range = numpy.ma.maximum(obs)-numpy.ma.minimum(obs) nmse = rmse/data_range plt.figtext(0.65,0.225,'No. points') plt.figtext(0.75,0.225,str(numpoints)) dsb.solo[outputlabel]["results"]["No. points"].append(numpoints) plt.figtext(0.65,0.200,'No. filled') plt.figtext(0.75,0.200,str(numfilled)) plt.figtext(0.65,0.175,'Nodes') plt.figtext(0.75,0.175,str(solo_info["nodes_target"])) plt.figtext(0.65,0.150,'Training') plt.figtext(0.75,0.150,str(solo_info["training"])) plt.figtext(0.65,0.125,'Nda factor') plt.figtext(0.75,0.125,str(solo_info["factor"])) plt.figtext(0.65,0.100,'Learning rate') plt.figtext(0.75,0.100,str(solo_info["learningrate"])) plt.figtext(0.65,0.075,'Iterations') plt.figtext(0.75,0.075,str(solo_info["iterations"])) plt.figtext(0.815,0.225,'Slope') plt.figtext(0.915,0.225,str(pfp_utils.round2sig(coefs[0],sig=4))) dsb.solo[outputlabel]["results"]["m_ols"].append(trap_masked_constant(coefs[0])) plt.figtext(0.815,0.200,'Offset') plt.figtext(0.915,0.200,str(pfp_utils.round2sig(coefs[1],sig=4))) dsb.solo[outputlabel]["results"]["b_ols"].append(trap_masked_constant(coefs[1])) plt.figtext(0.815,0.175,'r') plt.figtext(0.915,0.175,str(pfp_utils.round2sig(r[0][1],sig=4))) dsb.solo[outputlabel]["results"]["r"].append(trap_masked_constant(r[0][1])) plt.figtext(0.815,0.150,'RMSE') plt.figtext(0.915,0.150,str(pfp_utils.round2sig(rmse,sig=4))) dsb.solo[outputlabel]["results"]["RMSE"].append(trap_masked_constant(rmse)) dsb.solo[outputlabel]["results"]["NMSE"].append(trap_masked_constant(nmse)) var_obs = numpy.ma.var(obs) plt.figtext(0.815,0.125,'Var (obs)') plt.figtext(0.915,0.125,'%.4g'%(var_obs)) dsb.solo[outputlabel]["results"]["Var (obs)"].append(trap_masked_constant(var_obs)) var_mod = numpy.ma.var(mod) plt.figtext(0.815,0.100,'Var (SOLO)') plt.figtext(0.915,0.100,'%.4g'%(var_mod)) dsb.solo[outputlabel]["results"]["Var (SOLO)"].append(trap_masked_constant(var_mod)) dsb.solo[outputlabel]["results"]["Var ratio"].append(trap_masked_constant(var_obs/var_mod)) dsb.solo[outputlabel]["results"]["Avg (obs)"].append(trap_masked_constant(numpy.ma.average(obs))) dsb.solo[outputlabel]["results"]["Avg (SOLO)"].append(trap_masked_constant(
numpy.ma.average(mod)
numpy.ma.average
""" Helper methods for loading and parsing KITTI data. Author: <NAME>, <NAME> Date: September 2017/2018 https://github.com/kuixu/kitti_object_vis """ import numpy as np cbox = np.array([[0,70],[-40,40],[-2.5,1]]) class Calibration(object): ''' Calibration matrices and utils 3d XYZ in <label>.txt are in rect camera coord. 2d box xy are in image2 coord Points in <lidar>.bin are in Velodyne coord. y_image2 = P^2_rect * x_rect y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo x_ref = Tr_velo_to_cam * x_velo x_rect = R0_rect * x_ref P^2_rect = [f^2_u, 0, c^2_u, -f^2_u b^2_x; 0, f^2_v, c^2_v, -f^2_v b^2_y; 0, 0, 1, 0] = K * [1|t] image2 coord: ----> x-axis (u) | | v y-axis (v) velodyne coord: front x, left y, up z rect/ref camera coord: right x, down y, front z Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf TODO(rqi): do matrix multiplication only once for each projection. ''' def __init__(self, calib_filepath, from_video=False): calibs = self.read_calib_file(calib_filepath) # Projection matrix from rect camera coord to image2 coord self.P = calibs['P2'] self.P = np.reshape(self.P, [3,4]) # Rigid transform from Velodyne coord to reference camera coord self.V2C = calibs['Tr_velo_to_cam'] self.V2C = np.reshape(self.V2C, [3,4]) self.C2V = inverse_rigid_trans(self.V2C) # Rotation from reference camera coord to rect camera coord self.R0 = calibs['R0_rect'] self.R0 = np.reshape(self.R0,[3,3]) # Camera intrinsics and extrinsics self.c_u = self.P[0,2] self.c_v = self.P[1,2] self.f_u = self.P[0,0] self.f_v = self.P[1,1] self.b_x = self.P[0,3]/(-self.f_u) # relative self.b_y = self.P[1,3]/(-self.f_v) def read_calib_file(self, filepath): ''' Read in a calibration file and parse into a dictionary. Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py ''' data = {} with open(filepath, 'r') as f: for line in f.readlines(): line = line.rstrip() if len(line)==0: continue key, value = line.split(':', 1) # The only non-float values in these files are dates, which # we don't care about anyway try: data[key] = np.array([float(x) for x in value.split()]) except ValueError: pass return data def cart2hom(self, pts_3d): ''' Input: nx3 points in Cartesian Oupput: nx4 points in Homogeneous by pending 1 ''' n = pts_3d.shape[0] pts_3d_hom = np.hstack((pts_3d, np.ones((n,1)))) return pts_3d_hom # =========================== # ------- 3d to 3d ---------- # =========================== def project_velo_to_ref(self, pts_3d_velo): pts_3d_velo2 = self.cart2hom(pts_3d_velo) # nx4 result = np.dot(pts_3d_velo2, np.transpose(self.V2C)) return result def project_ref_to_velo(self, pts_3d_ref): pts_3d_ref = self.cart2hom(pts_3d_ref) # nx4 return np.dot(pts_3d_ref, np.transpose(self.C2V)) def project_rect_to_ref(self, pts_3d_rect): ''' Input and Output are nx3 points ''' return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect))) def project_ref_to_rect(self, pts_3d_ref): ''' Input and Output are nx3 points ''' return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref))) def project_rect_to_velo(self, pts_3d_rect): ''' Input: nx3 points in rect camera coord. Output: nx3 points in velodyne coord. ''' pts_3d_ref = self.project_rect_to_ref(pts_3d_rect) return self.project_ref_to_velo(pts_3d_ref) def project_velo_to_rect(self, pts_3d_velo): pts_3d_ref = self.project_velo_to_ref(pts_3d_velo) result = self.project_ref_to_rect(pts_3d_ref) # result = np.zeros_like(pts_3d_velo) return result # =========================== # ------- 3d to 2d ---------- # =========================== def project_rect_to_image(self, pts_3d_rect): ''' Input: nx3 points in rect camera coord. Output: nx2 points in image2 coord. ''' pts_3d_rect = self.cart2hom(pts_3d_rect) pts_2d = np.dot(pts_3d_rect, np.transpose(self.P)) # nx3 pts_2d[:,0] /= pts_2d[:,2] pts_2d[:,1] /= pts_2d[:,2] return pts_2d[:,0:2] def project_velo_to_image(self, pts_3d_velo): ''' Input: nx3 points in velodyne coord. Output: nx2 points in image2 coord. ''' pts_3d_rect = self.project_velo_to_rect(pts_3d_velo) # pts_3d_rect = np.zeros_like(pts_3d_velo) result = self.project_rect_to_image(pts_3d_rect) # result = np.zeros((pts_3d_rect.shape[0], 3)) return result def project_8p_to_4p(self, pts_2d): x0 = np.min(pts_2d[:,0]) x1 = np.max(pts_2d[:,0]) y0 = np.min(pts_2d[:,1]) y1 = np.max(pts_2d[:,1]) x0 = max(0,x0) #x1 = min(x1, proj.image_width) y0 = max(0,y0) #y1 = min(y1, proj.image_height) return np.array([x0, y0, x1, y1]) def project_velo_to_4p(self, pts_3d_velo): ''' Input: nx3 points in velodyne coord. Output: 4 points in image2 coord. ''' pts_2d_velo = self.project_velo_to_image(pts_3d_velo) return self.project_8p_to_4p(pts_2d_velo) # =========================== # ------- 2d to 3d ---------- # =========================== def project_image_to_rect(self, uv_depth): ''' Input: nx3 first two channels are uv, 3rd channel is depth in rect camera coord. Output: nx3 points in rect camera coord. ''' n = uv_depth.shape[0] x = ((uv_depth[:,0]-self.c_u)*uv_depth[:,2])/self.f_u + self.b_x y = ((uv_depth[:,1]-self.c_v)*uv_depth[:,2])/self.f_v + self.b_y pts_3d_rect = np.zeros((n,3)) pts_3d_rect[:,0] = x pts_3d_rect[:,1] = y pts_3d_rect[:,2] = uv_depth[:,2] return pts_3d_rect def project_image_to_velo(self, uv_depth): pts_3d_rect = self.project_image_to_rect(uv_depth) return self.project_rect_to_velo(pts_3d_rect) def project_depth_to_velo(self, depth, constraint_box=True): depth_pt3d = get_depth_pt3d(depth) depth_UVDepth = np.zeros_like(depth_pt3d) depth_UVDepth[:,0] = depth_pt3d[:,1] depth_UVDepth[:,1] = depth_pt3d[:,0] depth_UVDepth[:,2] = depth_pt3d[:,2] #print("depth_pt3d:",depth_UVDepth.shape) depth_pc_velo = self.project_image_to_velo(depth_UVDepth) #print("dep_pc_velo:",depth_pc_velo.shape) if constraint_box: depth_box_fov_inds = (depth_pc_velo[:,0]< cbox[0][1] ) & \ (depth_pc_velo[:,0]>= cbox[0][0] ) & \ (depth_pc_velo[:,1]< cbox[1][1]) & \ (depth_pc_velo[:,1]>= cbox[1][0]) & \ (depth_pc_velo[:,2]< cbox[2][1]) & \ (depth_pc_velo[:,2]>= cbox[2][0]) depth_pc_velo=depth_pc_velo[depth_box_fov_inds] return depth_pc_velo def get_depth_pt3d(depth): pt3d=[] for i in range(depth.shape[0]): for j in range(depth.shape[1]): pt3d.append([i, j, depth[i, j]]) return np.array(pt3d) def rotx(t): ''' 3D Rotation about the x-axis. ''' c = np.cos(t) s = np.sin(t) return np.array([[1, 0, 0], [0, c, -s], [0, s, c]]) def roty(t): ''' Rotation about the y-axis. ''' c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def rotz(t): ''' Rotation about the z-axis. ''' c = np.cos(t) s = np.sin(t) return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]]) def transform_from_rot_trans(R, t): ''' Transforation matrix from rotation matrix and translation vector. ''' R = R.reshape(3, 3) t = t.reshape(3, 1) return np.vstack((np.hstack([R, t]), [0, 0, 0, 1])) def inverse_rigid_trans(Tr): ''' Inverse a rigid body transform matrix (3x4 as [R|t]) [R'|-R't; 0|1] ''' inv_Tr =
np.zeros_like(Tr)
numpy.zeros_like
# -*- coding: utf-8 -*- """ RED Log Encodings ================= Defines the *RED* log encodings: - :func:`colour.models.log_encoding_REDLog` - :func:`colour.models.log_decoding_REDLog` - :func:`colour.models.log_encoding_REDLogFilm` - :func:`colour.models.log_decoding_REDLogFilm` - :func:`colour.models.log_encoding_Log3G10` - :func:`colour.models.log_decoding_Log3G10` - :func:`colour.models.log_encoding_Log3G12` - :func:`colour.models.log_decoding_Log3G12` See Also -------- `RGB Colourspaces Jupyter Notebook <http://nbviewer.jupyter.org/github/colour-science/colour-notebooks/\ blob/master/notebooks/models/rgb.ipynb>`_ References ---------- - :cite:`Nattress2016a` : <NAME>. (2016). Private Discussion with Shaw, N. - :cite:`SonyImageworks2012a` : Sony Imageworks. (2012). make.py. Retrieved November 27, 2014, from https://github.com/imageworks/OpenColorIO-Configs/\ blob/master/nuke-default/make.py """ from __future__ import division, unicode_literals import numpy as np from colour.models.rgb.transfer_functions import (log_encoding_Cineon, log_decoding_Cineon) from colour.utilities import from_range_1, to_domain_1 __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'log_encoding_REDLog', 'log_decoding_REDLog', 'log_encoding_REDLogFilm', 'log_decoding_REDLogFilm', 'log_encoding_Log3G10', 'log_decoding_Log3G10', 'log_encoding_Log3G12', 'log_decoding_Log3G12' ] def log_encoding_REDLog(x, black_offset=10 ** ((0 - 1023) / 511)): """ Defines the *REDLog* log encoding curve / opto-electronic transfer function. Parameters ---------- x : numeric or array_like Linear data :math:`x`. black_offset : numeric or array_like Black offset. Returns ------- numeric or ndarray Non-linear data :math:`y`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`SonyImageworks2012a` Examples -------- >>> log_encoding_REDLog(0.18) # doctest: +ELLIPSIS 0.6376218... """ x = to_domain_1(x) y = (1023 + 511 * np.log10(x * (1 - black_offset) + black_offset)) / 1023 return from_range_1(y) def log_decoding_REDLog(y, black_offset=10 ** ((0 - 1023) / 511)): """ Defines the *REDLog* log decoding curve / electro-optical transfer function. Parameters ---------- y : numeric or array_like Non-linear data :math:`y`. black_offset : numeric or array_like Black offset. Returns ------- numeric or ndarray Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`SonyImageworks2012a` Examples -------- >>> log_decoding_REDLog(0.637621845988175) # doctest: +ELLIPSIS 0.1... """ y = to_domain_1(y) x = ((10 ** ((1023 * y - 1023) / 511)) - black_offset) / (1 - black_offset) return from_range_1(x) def log_encoding_REDLogFilm(x, black_offset=10 ** ((95 - 685) / 300)): """ Defines the *REDLogFilm* log encoding curve / opto-electronic transfer function. Parameters ---------- x : numeric or array_like Linear data :math:`x`. black_offset : numeric or array_like Black offset. Returns ------- numeric or ndarray Non-linear data :math:`y`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`SonyImageworks2012a` Examples -------- >>> log_encoding_REDLogFilm(0.18) # doctest: +ELLIPSIS 0.4573196... """ return log_encoding_Cineon(x, black_offset) def log_decoding_REDLogFilm(y, black_offset=10 ** ((95 - 685) / 300)): """ Defines the *REDLogFilm* log decoding curve / electro-optical transfer function. Parameters ---------- y : numeric or array_like Non-linear data :math:`y`. black_offset : numeric or array_like Black offset. Returns ------- numeric or ndarray Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`SonyImageworks2012a` Examples -------- >>> log_decoding_REDLogFilm(0.457319613085418) # doctest: +ELLIPSIS 0.1799999... """ return log_decoding_Cineon(y, black_offset) def log_encoding_Log3G10(x, legacy_curve=False): """ Defines the *Log3G10* log encoding curve / opto-electronic transfer function. Parameters ---------- x : numeric or array_like Linear data :math:`x`. legacy_curve : bool, optional Whether to use the v1 *Log3G10* log encoding curve. Default is *False*. Returns ------- numeric or ndarray Non-linear data :math:`y`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ - The v1 *Log3G10* log encoding curve is the one used in *REDCINE-X beta 42*. *Resolve 12.5.2* also uses the v1 curve. *RED* is planning to use v2 *Log3G10* log encoding curve in the release version of the *RED SDK*. Use the `legacy_curve=True` argument to switch to the v1 curve for compatibility with the current (as of September 21, 2016) *RED SDK*. - The intent of the v1 *Log3G10* log encoding curve is that zero maps to zero, 0.18 maps to 1/3, and 10 stops above 0.18 maps to 1.0. The name indicates this in a similar way to the naming conventions of *Sony HyperGamma* curves. The constants used in the functions do not in fact quite hit these values, but rather than use corrected constants, the functions here use the official *RED* values, in order to match the output of the *RED SDK*. For those interested, solving for constants which exactly hit 1/3 and 1.0 yields the following values:: B = 25 * (np.sqrt(4093.0) - 3) / 9 A = 1 / np.log10(B * 184.32 + 1) where the function takes the form:: Log3G10(x) = A * np.log10(B * x + 1) Similarly for *Log3G12*, the values which hit exactly 1/3 and 1.0 are:: B = 25 * (np.sqrt(16381.0) - 3) / 9 A = 1 / np.log10(B * 737.28 + 1) References ---------- :cite:`Nattress2016a` Examples -------- >>> log_encoding_Log3G10(0.18, legacy_curve=True) # doctest: +ELLIPSIS 0.3333336... >>> log_encoding_Log3G10(0.0) # doctest: +ELLIPSIS 0.0915514... """ x = to_domain_1(x) if legacy_curve: y = np.sign(x) * 0.222497 * np.log10((np.abs(x) * 169.379333) + 1) else: y = (np.sign(x + 0.01) * 0.224282 * np.log10((np.abs(x + 0.01) * 155.975327) + 1)) return from_range_1(y) def log_decoding_Log3G10(y, legacy_curve=False): """ Defines the *Log3G10* log decoding curve / electro-optical transfer function. Parameters ---------- y : numeric or array_like Non-linear data :math:`y`. legacy_curve : bool, optional Whether to use the v1 *Log3G10* log encoding curve. Default is *False*. Returns ------- numeric or ndarray Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Nattress2016a` Examples -------- >>> log_decoding_Log3G10(1.0 / 3, legacy_curve=True) # doctest: +ELLIPSIS 0.1799994... >>> log_decoding_Log3G10(1.0) # doctest: +ELLIPSIS 184.3223476... """ y = to_domain_1(y) if legacy_curve: x = (np.sign(y) * (10.0 ** (np.abs(y) / 0.222497) - 1) / 169.379333) else: x = (np.sign(y) * (10.0 ** (np.abs(y) / 0.224282) - 1) / 155.975327) - 0.01 return from_range_1(x) def log_encoding_Log3G12(x): """ Defines the *Log3G12* log encoding curve / opto-electronic transfer function. Parameters ---------- x : numeric or array_like Linear data :math:`x`. Returns ------- numeric or ndarray Non-linear data :math:`y`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``y`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Nattress2016a` Examples -------- >>> log_encoding_Log3G12(0.18) # doctest: +ELLIPSIS 0.3333326... """ x = to_domain_1(x) y = np.sign(x) * 0.184904 * np.log10((
np.abs(x)
numpy.abs
""" Example implementation - TODO >> I should eventually delete this file altogether """ import numpy as np import matplotlib.pylab as plt # Global Variables __input_file__ = "dataset.txt" __context_size__ = 100 __arm_size__ = 10 # Function to calculate the Cummulative Take Rate def calc_CTR(reward, ctr_num, ctr_den): # Keeps a count of CTR and updates the numerator and denominator on every correct call ctr_num = ctr_num + reward ctr_den = ctr_den + 1 ctr = ctr_num/ctr_den return ctr, ctr_num, ctr_den # linUCB Algorithm def linUCB(data, __alpha__): # Dictionary to store CTR at every time step CTR = {} # Declare the coefficient, upper confidence bound dictionary and the other dictionaries # used for plotting the various graphs coeff = {} ucb = {} ucb_mean = {} arm_pred = {} correct_pred = {} # Declare dictionaries A and b A = {} b = {} for arm in range(1,__arm_size__ + 1): # Initialize matrix A and b for each arm, with dimension as 100 which is the size of context A[arm] = np.identity(__context_size__) # dimension 100 * 100 b[arm] = np.atleast_2d(np.zeros(__context_size__)).T # dimension 100 * 1 # Initialize UCBs as 0 for all arms ucb[arm] = 0 # Initialize arm prediction for each arm - to plot it later arm_pred[arm] = 0 correct_pred[arm] = 0 ucb_mean[arm] = 0 # Initiate time, predicted arm and numerator and denominators of CTR time = 1 ctr_num = 0 ctr_den = 0 # Iterate over all 10,000 data point for line in data: # Fetch individual values to perform operations on them values = line.split() # Convert all strings in the list to integer values = list(map(int, values)) # Get the Arm - which is the action performed curr_arm = values.pop(0) # Get reward for the current action reward = values.pop(0) # Create the context array context = np.asarray(values) # Loop to update coefficient and calculate pay off for each arm for arm in range(1,__arm_size__ + 1): # Calculate the coefficent, standard deviation and UCB for the arm coeff[arm] = np.dot(np.linalg.inv(A[arm]), b[arm]) standard_deviation = np.sqrt(np.dot(context.T, np.dot(np.linalg.inv(A[arm]), context))) # Method 1 - Prediction count dependent alpha if(__alpha__ == -1): denom = 0.001/((correct_pred[arm]+1)/10) ucb[arm] = np.asscalar(np.dot(coeff[arm].T, context) + np.dot(denom, standard_deviation)) elif(__alpha__ == 0): # Method 2 - Time Dependent Alpha ucb[arm] = np.asscalar(
np.dot(coeff[arm].T, context)
numpy.dot
import numpy as np from numpy import pi, unravel_index from PyQt5 import QtCore import pyqtgraph as pg from scipy.fftpack import fft, fftshift from acconeer_utils.clients.reg.client import RegClient, RegSPIClient from acconeer_utils.clients.json.client import JSONClient from acconeer_utils.clients import configs from acconeer_utils import example_utils from acconeer_utils.pg_process import PGProcess, PGProccessDiedException import logging log = logging.getLogger("acconeer_utils.examples.obstacle_detection") MAX_SPEED = 8.00 # Max speed to be resolved with FFT in cm/s WAVELENGTH = 0.49 # Wavelength of radar in cm def main(): args = example_utils.ExampleArgumentParser(num_sens=1).parse_args() example_utils.config_logging(args) if args.socket_addr: client = JSONClient(args.socket_addr) elif args.spi: client = RegSPIClient() else: port = args.serial_port or example_utils.autodetect_serial_port() client = RegClient(port) sensor_config = get_sensor_config() processing_config = get_processing_config() sensor_config.sensor = args.sensors client.setup_session(sensor_config) pg_updater = PGUpdater(sensor_config, processing_config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") processor = ObstacleDetectionProcessor(sensor_config, processing_config) while not interrupt_handler.got_signal: info, sweep = client.get_next() plot_data = processor.process(sweep) if plot_data is not None: try: pg_process.put_data(plot_data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect() def get_sensor_config(): config = configs.IQServiceConfig() config.range_interval = [0.1, 0.5] config.sweep_rate = int(
np.ceil(MAX_SPEED * 4 / WAVELENGTH)
numpy.ceil
import hashlib import itertools import json import numpy as np from sklearn.manifold import TSNE class Orientation(object): def __init__(self, direction): if direction == 'both': self.direction = direction elif direction == True: self.direction = 'left' elif direction == False: self.direction = 'right' def __eq__(self, value): if self.direction == 'both' or value.direction == 'both': return True if self.direction == value.direction: return True return False def __str__(self): if self.direction == 'both': return self.direction elif self.direction == 'left': return 'True' elif self.direction == 'right': return 'False' def get_hash(d): """ Get the hash of a dictionary TODO: Check if it is better to change from MD5 to SHA1 Parameters ---------- d: dict The dictionary to hash Returns ------- String The md5 hash of the dictionary """ return hashlib.md5(json.dumps(d, sort_keys=True, default=str).encode('utf-8')).hexdigest() def normalize(array): """ Normalize a 1d numpy array between [0,1] Parameters ---------- array: ndarray the array to normalize Returns ------- ndarray the normalized array """ ptp = np.ptp(array) if ptp != 0: return (array - np.min(array)) / np.ptp(array) else: return np.ones_like(array) def matching_items(d1, d2): matching_keys = [] common_keys = d1.keys() & d2.keys() for k in common_keys: if d1[k] == d2[k]: matching_keys.append(k) return matching_keys def merge_dictionaries_with_disagreements(d1, d2): merge = {**d1, **d2} common_keys = d1.keys() & d2.keys() for k in common_keys: if d1[k] != d2[k]: merge.pop(k) return merge def get_positions_from_labels(ys): positions = np.zeros([len(ys), 2]) classes = np.unique(ys) num_pts = len(classes) indices = np.arange(0, num_pts, dtype=float) + 0.5 r = np.sqrt(indices / num_pts) theta = np.pi * (1 + 5 ** 0.5) * indices means = np.transpose([r *
np.cos(theta)
numpy.cos
import numpy as np from matplotlib import animation from matplotlib.widgets import Button, Slider import matplotlib.pyplot as plt from Plotter import dataset, figret import math,random class constraints: def __init__(self,f,val,max,min): self.f = f self.max = max self.min=min self.val = val class dataform: def __init__(self,data,min,max,lrate=None,name=None,cons=None): self.data=data self.min=min self.max=max self.lrate=lrate self.name=name self.constraints=cons def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx], idx def find_nearest_point(arrayy,arrayx,x,y): arrayy = np.asarray(arrayy) arrayx = np.asarray(arrayx) newx=None newy=None for i in range(len(arrayy)): if(newx==None): newx=arrayx[i] newy=arrayy[i] else: r=np.abs(((newx**2) + (newy**2)) - (x**2 + y**2)) rp = np.abs((arrayx[i]**2) + (arrayy[i]**2) - (x**2 + y**2)) if( rp<r): newx = arrayx[i] newy = arrayy[i] return newx,newy def getGradient(y: [], x: [], i: int = None, minchange: float = 1e-4, delfactor: float = 0.5): a = None b = None delf = None if (i == None): a = (y[-1] - y[-2]) b = (x[-1] - x[-2]) else: a = (y[i] - y[i - 1]) b = (x[i] - x[i - 1]) #todo add second order functionality # if it is not greater than minchange in x it be a factor of the y if (np.abs(b) >= minchange and np.abs(a)>0): grad = (b) / (a) else: rand = np.random.rand() grad = x[-1]*((rand-0.5))*5e-1 # if (np.abs(grad) == np.nan or np.abs(grad) < minchange): # grad = delfactor * a if(math.isnan(grad)): print("asfd") return grad class Fitter: def __init__(self, func, ds: dataset, figret: figret, fargs:[dataform],max_int:int=10000,show_error:bool=True,grad:bool=True,manual_mode:bool=False): tem = [] for i in fargs: tem.append(i.data) self.iteration=0 self.dataform=fargs self.args = tuple(tem) self.ds = ds self.func = func self.figret = figret self.errors = [] self.grad=grad self.all_error=[] self.reset_count = 0 self.resetmax=10 self.slider_changed=False self.pkfound = False self.error_count=0 self.oldargs = [] self.oldargs_byparameter=[] self.slopes_byparameter=[] self.slope_signchangecount=[] self.slope_signchangecountmax=6 self.cur_par = 0 self.cur_par_count = 0 self.par_opt_len = 6 self.learning_rate = 0.001 self.org_learning_rate = 0.001 self.close_error=2 self.chi=-1 self.lcount=0 self.maxlcount=3 self.figret.ax.errorbar(ds.x, ds.y, yerr=ds.y_error, xerr=ds.x_error, c="C1", fmt='o',ms=3) self.maxinter=max_int+1 self.errorplot=None self.show_error=show_error self.errorSlider=None self.random_search=True self.complete=False self.updating_sliders = False self.cur_err_par=0 self.pause=False self.errorBetterCount=0 self.errorBetterCountMax=10 self.manual_mode = manual_mode if(self.manual_mode != True): self.ani = animation.FuncAnimation(figret.fig, self.update, interval=10, blit=False, repeat=False, frames=self.maxinter) axnext = self.figret.pyplt.axes([0.86, 0.25, 0.1, 0.075]) self.bpause = Button(axnext, 'Play/Pause') axshowbesst = self.figret.pyplt.axes([0.86, 0.25 + 0.075, 0.1, 0.075]) self.showbest = Button(axshowbesst, 'Show Best') self.slider_array = [] self.figret.pyplt.subplots_adjust(left=0.25, bottom=0.5) self.buildSliders() # self.figret.fig.canvas.mpl_connect('button_press_event', self.playpause) self.bpause.on_clicked(self.playpause) self.showbest.on_clicked(self.showBest) def run(self): self.figret.pyplt.show() def buildSliders(self): axcolor = 'lightgoldenrodyellow' for j in range(len(self.dataform)): df = self.dataform[j] ax = self.figret.pyplt.axes([0.15, 0.40 - (0.03*(j+1)), 0.65, 0.03], facecolor=axcolor) step=(df.max- df.min)/100 slider = Slider(ax, df.name, df.min, df.max, valinit=df.data, valstep=step) slider.on_changed(self.updateSlider) self.slider_array.append(slider) def updateSlider(self,event): self.slider_changed=True if(self.manual_mode == True and self.updating_sliders == False): self.update(self.iteration) self.reset_count = 1 def showBest(self,event): if(self.manual_mode != True): if (self.pause == False): self.playpause(event) minarg = np.array(self.all_error).argmin() self.arg = self.oldargs[minarg] newds = self.func(*self.arg) plots = self.figret.plots tplots = plots[0] # updaating sliders for j in range(len(self.slider_array)): self.slider_array[j].set_val(self.arg[j]) try: if (len(tplots) > 0): tplots[0].set_ydata(newds.y) else: plots[0].set_ydata(newds.y) except Exception: plots[0].set_ydata(newds.y) elif(self.manual_mode == True): self.run_finished() minarg = np.array(self.all_error).argmin() self.arg = self.oldargs[minarg] newds = self.func(*self.arg) plots = self.figret.plots tplots = plots[0] # updaating sliders for j in range(len(self.slider_array)): self.slider_array[j].set_val(self.arg[j]) try: if (len(tplots) > 0): tplots[0].set_ydata(newds.y) else: plots[0].set_ydata(newds.y) except Exception: plots[0].set_ydata(newds.y) def playpause(self,event): if(self.manual_mode != True): if(self.pause==False): self.ani.event_source.stop() self.pause=True else: self.ani.event_source.start() self.pause=False else: minarg = np.array(self.all_error).argmin() self.arg = self.oldargs[minarg] newds = self.func(*self.arg) plots = self.figret.plots tplots = plots[0] # updaating sliders for j in range(len(self.slider_array)): self.slider_array[j].set_val(self.arg[j]) try: if (len(tplots) > 0): tplots[0].set_ydata(newds.y) else: plots[0].set_ydata(newds.y) except Exception: plots[0].set_ydata(newds.y) def update(self, i): self.iteration = i f = self.func args = self.args if(self.slider_changed): self.slider_changed=False temp=[] for j in self.slider_array: temp.append(j.val) args=tuple(temp) # updaating sliders self.args = args #check for constraints if(self.manual_mode != True): for df in self.dataform: dfcon = df.constraints if(dfcon is not None): for tc in dfcon: tf = tc.f tmax = tc.max tmin = tc.min targ = self.args tv = tf(targ) maxrecur =9000 count =0 while(tv>tmax or tv<tmin or count>maxrecur): print("constraint hit") print(count) self.args = self.startNewPar(self.cur_par, curParam=False, completelyrandom=True) targ = self.args tv = tf(targ) count +=1 # if (self.iteration >= 1): # self.iteration -= 1 # else: # self.iteration = 0 #gets newds with this iterations parameters newds = f(*args) #get error of newrun er = self.errorCalc(newds) #will use to update blueline later update_blue=False if(len(self.all_error)>1): miner = min(self.all_error) if(er<miner): update_blue=True # adds to current parameters errors try: self.errors[self.cur_par].append(er) except Exception as e: # extends errors to hold the current parameters. # todo chang to if self.errors.append([er]) if(self.grad==False): # adds history of old arguments try: self.oldargs_byparameter[self.cur_par].append(self.args[self.cur_par]) except Exception as e: # extends list of arguments # todo change to if self.oldargs_byparameter.append([self.args[self.cur_par]]) # adds to all error self.all_error.append(er) # adds args as tuple to history self.oldargs.append(self.args) if(self.manual_mode != True): if(self.grad == False): if (self.cur_par_count == 0): if (len(self.all_error) > self.par_opt_len): if (self.all_error[-1] > min(self.all_error[-self.par_opt_len:-1])): tt = np.argmin(self.all_error[-self.par_opt_len:-1]) self.args = list(self.args) self.args[self.cur_par] = self.oldargs[-(self.par_opt_len - tt)][self.cur_par] self.args = tuple(self.args) print("reverting set and slowing down previous") cp = self.cur_par cp = cp-1 if(cp<0): cp=len(self.args)-1 if(self.dataform[cp].lrate>1e-3): self.dataform[cp].lrate = self.dataform[cp].lrate * 0.5 self.cur_par_count+=1 return if (self.manual_mode != True): if(self.grad==False): if(len(self.errors) == len(self.args)): if(len(self.errors[self.cur_par])>5): if(self.all_error[-1]>self.close_error): if(np.abs((self.errors[self.cur_par][-1] - self.errors[self.cur_par][-2])/self.errors[self.cur_par][-1])<1e-1): if(self.dataform[self.cur_par].lrate<1e3): self.dataform[self.cur_par].lrate =self.dataform[self.cur_par].lrate*2 print("speed increased") if (self.random_search): if(self.reset_count==0): if(np.abs((self.all_error[-1] - min(self.all_error))/min(self.all_error))>3): self.args = self.oldargs[-2] self.reset_count+=1 print("reverting random") self.cur_par_count += 1 return if (np.abs((self.all_error[-1] - min(self.all_error))/min(self.all_error)) >25): minar = np.argmin(self.all_error) self.args=self.oldargs[minar] print("reverting terrible") self.cur_par_count += 1 return #Plots error if(self.show_error and len(self.errors)== len(self.args)): self.plotError(i) newargs = list(args) if (self.manual_mode != True): #need at least two runs to start the process if (self.errors!=None and len(self.errors[self.cur_par])>=2): if(self.grad): for k in range(len(args)): self.update_param(k,newargs) else: newargs=list(args) newargs = self.update_param(self.cur_par,newargs) else: #start random if we don't have enough to get a gradient newargs = list(self.startNewPar(self.cur_par,curParam=True,center=True)) if(self.grad == False): #checks if we need to move to a new parameter if (self.cur_par_count >= self.par_opt_len): self.cur_par += 1 self.cur_par_count = 0 if (self.cur_par > (len(args) - 1)): self.cur_par = 0 ####updating plot self.args = newargs if(update_blue): plots = self.figret.plots tplots = plots[0] try: if(len(tplots)>0): tplots[0].set_ydata(newds.y) else: plots[0].set_ydata(newds.y) except Exception: plots[0].set_ydata(newds.y) self.figret.ax.set_title("Iterataion: " + str(i) + " Current Parameter: " + str(self.cur_par) +" cur_par_count: "+str(self.cur_par_count)+ " Chi: " + str("{:.4f}".format(self.chi) )) #updaating sliders self.updating_sliders=True for j in range(len(self.slider_array)): self.slider_array[j].set_val(self.args[j]) self.updating_sliders = True self.updating_sliders = False self.slider_changed=False #when finished if(i>=self.maxinter-3): print("run finished called") self.run_finished() def update_param(self,param,newargs): done=False close=False k=param args = self.args tw = np.matrix(self.oldargs) allerr = self.all_error tw1 = tw[:, k] tw2 = [] for j in tw1: tw2.append(float(j[0])) ter = self.all_error if(min(ter)<=self.close_error): close=True grad = getGradient(y=ter, x=tw2) try: self.slopes_byparameter[k].append(grad) except Exception as e: # extends list of arguments # todo change to if self.slopes_byparameter.append([grad]) gfactor = grad * (self.dataform[k].lrate) diff = self.dataform[k].max - self.dataform[k].min if (np.abs(gfactor) > np.abs(diff / 10)): gfactor = (gfactor / np.abs(gfactor)) * diff / 10 a = args[k] - gfactor #todo make add_min param add_min = 1e-4 if(self.dataform[k].min != 0): add_min = self.dataform[k].min /100 if (a <= self.dataform[k].min): a = self.dataform[k].min + add_min if(self.dataform[self.cur_par].lrate<1e-3): self.dataform[self.cur_par].lrate = self.dataform[self.cur_par].lrate * 0.5 print("barrier slowed") elif (a >= self.dataform[k].max): a = self.dataform[k].max - add_min if (self.dataform[self.cur_par].lrate < 1e-3): self.dataform[self.cur_par].lrate = self.dataform[self.cur_par].lrate * 0.5 print("barrier slowed") if(close): newargs[k] = a if (len(self.slopes_byparameter) == len(args)): for zz in range(len(args)): if (len(self.slopes_byparameter[zz]) > 3): s1 = self.slopes_byparameter[zz][-1] s2 = self.slopes_byparameter[zz][-2] if (np.abs(s1) != 0): sign1 = s1 / np.abs(s1) else: sign1 = 0 if (np.abs(s2) != 0): sign2 = s2 / np.abs(s2) else: sign2 = 0 if (len(self.slope_signchangecount) == zz): self.slope_signchangecount.append(0) if (sign1 != sign2 and sign1 != 0 and sign2 != 0): try: self.slope_signchangecount[zz] += 1 except Exception as e: # extends errors to hold the current parameters. # todo chang to if self.slope_signchangecount.append(1) else: try: self.slope_signchangecount[zz] = 0 except Exception as e: # extends errors to hold the current parameters. # todo chang to if self.slope_signchangecount.append(0) while (len(self.slope_signchangecount) < zz + 1): self.slope_signchangecount.append(0) if(len(self.errors[self.cur_par])>3): if (self.slope_signchangecount[zz] > self.slope_signchangecountmax and min(self.all_error)< 10*self.close_error): if(self.dataform[zz].lrate > 1e-2): self.slope_signchangecount[zz] = 0 self.dataform[zz].lrate = self.dataform[zz].lrate * 0.5 print("slowed") if(self.random_search): if (len(tw2) > 2): if (np.abs(tw2[-1] - tw2[-2]) < 1e-2 and np.abs(self.all_error[-1] - self.all_error[-2]) < 1e-2 and self.all_error[-1] < 10 and done == False): if (self.reset_count < self.resetmax): self.reset_count += 1 else: self.reset_count = 0 a = self.startNewPar(curpar=k)[k] # if (self.dataform[k].lrate < 1e2): # self.dataform[k].lrate = self.dataform[k].lrate * 1.01 newargs[k] = a self.cur_par_count += 1 print("newparam b " + str(self.iteration)) done = True if (self.all_error[-1] > min(self.all_error) * 10 and done == False and close==False): if (self.reset_count < self.resetmax): self.reset_count += 1 else: self.reset_count = 0 cen = False if (self.all_error[-1] > 10): cen = True a = self.startNewPar(curpar=k, center=cen)[k] self.cur_par_count += 1 print("newparam a "+str(self.iteration)) newargs[k] = a done=True if (len(tw2) > 3): if (np.abs((tw2[-1] - tw2[-2])) < 1e-4 and np.abs((self.all_error[-1] - self.all_error[-2])/self.all_error[-2])<5e-4): if (self.dataform[k].lrate < 1e2): self.dataform[k].lrate = self.dataform[k].lrate * 1.5 print("speeding up") self.cur_par_count += 1 newargs[k] = a if(self.random_search): if (len(allerr) > 10): avg10b = np.average(allerr[-10:-5]) avg5b = np.average(allerr[-5:-1]) stdev5b = np.std(allerr[-5:-1]) max5b = max(allerr[-5:-1]) if ( avg5b > 10 and stdev5b < max5b /20 and done==False): if (self.reset_count < self.resetmax): self.reset_count += 1 else: self.reset_count = 0 if ((avg10b + avg5b) < min(allerr) * 2): newargs = self.startNewPar(curpar=k, center=False, curParam=False) print("newargs a avg10b=" + str(avg10b) + " avg5b=" + str(avg5b) + " min:" + str(min(allerr)) +" "+str(self.iteration)) else: if(close==False): newargs = self.startNewPar(curpar=k, center=True, curParam=False) print("newargs b "+str(self.iteration)) return newargs def run_finished(self): if(self.manual_mode!=True): self.showBest(None) self.figret.pyplt.close('all') print("Finished") self.complete = True def isErrorBetterThanOtherError(self): self.errorBetterCount+=1 numofpar = len(self.args) lserdiff = np.abs(self.errors[self.cur_par][-1] - self.errors[self.cur_par][-2]) if(len(self.errors)==len(self.args)): ret = True for i in range(numofpar): if(i == self.cur_par): continue terdiff = np.abs(self.errors[i][-1] - self.errors[i][-2]) if(terdiff<lserdiff): ret = False break else: ret = False if(ret==True and self.errorBetterCount>self.errorBetterCountMax): self.errorBetterCount=0 ret = False return ret def startNewPar(self,curpar, center=False,curParam=True,completelyrandom=False): args = self.args newargs = [] for i in range(len(args)): amin = self.dataform[i].min amax = self.dataform[i].max uselog = False top = amax-amin top = top+1 bottom = 1 if(np.abs(top/bottom)>100): uselog =True if(curParam==True): if(completelyrandom == False): if i == curpar: a = args[self.cur_par] minerind=np.argmin(self.all_error) matr = np.matrix(self.oldargs) bestarg = matr[minerind,i] mu, sigma = bestarg, np.abs(amax-amin)/10 # mean and standard deviation if (center and min(self.all_error)>self.close_error): sigma=np.abs(amax-amin)/100 mu = (np.abs(amax - amin)/2)+ amin elif(min(self.all_error)<self.close_error): sigma=np.abs(amax-amin)/10000 s = np.random.normal(mu, sigma, 1) if(s<amin): s=amin elif(s>amax): s=amax newargs.append(float(s)) else: newargs.append(float(args[i])) else: if i == curpar: if (uselog): r = np.random.uniform(np.log10(amin), np.log10(amax)) newargs.append(float(10 ** r)) else: r = np.random.uniform(amin, amax) newargs.append(float(r)) else: newargs.append(float(args[i])) else: if(completelyrandom==False): if(len(self.all_error)>10): a = args[i] minerind = np.argmin(self.all_error) matr = np.matrix(self.oldargs) bestarg = matr[minerind, i] mu, sigma = bestarg, np.sqrt(amax - amin) / 10 # mean and standard deviation else: center=True if (center): sigma =np.sqrt(amax - amin) / 10 mu = (np.abs(amax - amin) / 2) + amin s = np.random.normal(mu, sigma, 1) if (s < amin): s = amin elif (s > amax): s = amax newargs.append(float(s)) else: if(uselog): r = np.random.uniform(np.log10(amin), np.log10(amax)) newargs.append(float(10**r)) else: r = np.random.uniform(amin,amax) newargs.append(float(r)) return tuple(newargs) def argMaxMinCheck(self,v): amin = self.dataform[self.cur_par].min amax = self.dataform[self.cur_par].max # if(type(v) is tuple): # print("asdf") # if (v < amin): # print("asdf") # elif (v > amax): # print("asdf") # def checkErrorAndCount(self): # if(self.) def errorCalc(self, newds: dataset): y = newds.y x = newds.x cy = list(self.ds.y) cx = list(self.ds.x) xer = None yer = None if(self.ds.x_error is not None): xer = list(self.ds.x_error) if (self.ds.y_error is not None): yer = list(self.ds.y_error) yobs=[] xobs = [] for tt in range(len(cy)): tval,tind = find_nearest(x,cx[tt]) yobs.append(y[tind]) xobs.append(tval) chi2 = self.chi2(yobs=yobs,yexp=cy,xobs=xobs,xexp=cx,x_error=xer,y_error=yer) error = chi2 self.chi = chi2 if len(self.figret.plots)<2: plotty = self.figret.ax.scatter(xobs, yobs, c="C2") self.figret.plots.append(plotty) else: self.figret.plots[1].set_offsets(np.c_[xobs,yobs]) self.figret.fig.canvas.draw() if(math.isnan(error)): print("Error is NAN") return error def chi2(self,yobs,yexp,xobs=None,xexp=None,y_error=None,x_error=None): r=0 islog=False if(np.std(yobs)>100 or np.std(xobs)>100): yobs = list(np.log10(
np.array(yobs)
numpy.array
import onnxruntime_numpy as onp from onnxruntime_numpy.types import float_types import numpy as np import pytest from .utils import expect def gemm_reference_implementation(A, B, C=None, alpha=1., beta=1., transA=0, transB=0): A = A if transA == 0 else A.T B = B if transB == 0 else B.T C = C if C is not None else np.array(0) Y = alpha * np.dot(A, B) + beta * C return Y @pytest.mark.parametrize("type_a", [*float_types]) def test_gemm_all_attribute(type_a): a = np.random.ranf([4, 3]).astype(type_a) b = np.random.ranf([5, 4]).astype(type_a) c = np.random.ranf([1, 5]).astype(type_a) expected = gemm_reference_implementation( a, b, c, transA=1, transB=1, alpha=0.25, beta=0.35) result = onp.gemm(onp.array(a, dtype=type_a), onp.array(b, dtype=type_a), onp.array(c, dtype=type_a), transA=True, transB=True, alpha=0.25, beta=0.35) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types]) def test_gemm_alpha(type_a): a = np.random.ranf([3, 5]).astype(type_a) b = np.random.ranf([5, 4]).astype(type_a) c = np.zeros([1, 4]).astype(type_a) expected = gemm_reference_implementation(a, b, c, alpha=0.5) result = onp.gemm(onp.array(a, dtype=type_a), onp.array(b, dtype=type_a), onp.array(c, dtype=type_a), alpha=0.5) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types]) def test_gemm_beta(type_a): a = np.random.ranf([3, 5]).astype(type_a) b = np.random.ranf([5, 4]).astype(type_a) c = np.zeros([1, 4]).astype(type_a) expected = gemm_reference_implementation(a, b, c, beta=0.5) result = onp.gemm(onp.array(a, dtype=type_a), onp.array(b, dtype=type_a), onp.array(c, dtype=type_a), beta=0.5) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types]) def test_gemm_default_matrix_bias(type_a): a = np.random.ranf([3, 6]).astype(type_a) b = np.random.ranf([6, 4]).astype(type_a) c = np.random.ranf([3, 4]).astype(type_a) expected = gemm_reference_implementation(a, b, c) result = onp.gemm(onp.array(a, dtype=type_a), onp.array(b, dtype=type_a), onp.array(c, dtype=type_a)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types]) def test_gemm_default_no_bias(type_a): a = np.random.ranf([2, 10]).astype(type_a) b = np.random.ranf([10, 3]).astype(type_a) expected = gemm_reference_implementation(a, b) result = onp.gemm(onp.array(a, dtype=type_a), onp.array(b, dtype=type_a)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types]) def test_gemm_default_scalar_bias(type_a): a =
np.random.ranf([2, 10])
numpy.random.ranf
from hypothesis import given import numpy as np from functools import reduce import utils_hypothesis @given(shapes=utils_hypothesis.get_boardcastable_arrays_shapes()) def test_get_boardcastable_arrays_shapes(shapes): arrays = [np.ones(shape) for shape in shapes] reduce(np.add, arrays) @given(shapes_indicies=utils_hypothesis.get_boardcastable_arrays_shapes_and_indices()) def test_get_boardcastable_arrays_shapes_and_indices(shapes_indicies): shapes, indices, shape = shapes_indicies arrays = [np.ones(shape) for shape in shapes] array = reduce(np.add, arrays) _ = array[indices] np.testing.assert_array_equal(shape, array.shape) @given(shapes=utils_hypothesis.get_chainable_array_shapes()) def test_get_chainable_array_shapes(shapes): arrays = [np.ones(shape) if len(shape) == 2 else np.diag(np.ones(shape)) for shape in shapes] reduce(np.dot, arrays) @given(shapes_indicies=utils_hypothesis.get_chainable_arrays_shapes_and_indices()) def test_get_chainable_array_shapes_and_indicies(shapes_indicies): shapes, indices, shape = shapes_indicies arrays = [np.ones(shape) if len(shape) == 2 else np.diag(np.ones(shape)) for shape in shapes] array = reduce(np.dot, arrays) np.testing.assert_array_equal(array.shape, shape) array[indices] @given(n_index_axis=utils_hypothesis.get_vector_index_axis()) def test_get_vector_index_axis(n_index_axis): n, index, axis = n_index_axis a = np.diag(np.ones(n))
np.testing.assert_array_equal(a[index, :], a[:, index].T)
numpy.testing.assert_array_equal
import numpy as np import cv2 from scipy import signal from scipy import misc from scipy.ndimage import binary_opening import skimage from skimage.transform import hough_line, hough_line_peaks from skimage.feature import canny from skimage.draw import line from skimage import data from scipy.ndimage import gaussian_filter import matplotlib.pyplot as plt from matplotlib import cm scharr = np.array([[ -3-3j, 0-10j, +3 -3j], [-10+0j, 0+ 0j, +10 +0j], [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy sobel = np.asarray([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float) sobel_y = np.array([[1, 2, 1], [0, 0, 0], [-1,-2,-1]], dtype = np.float) def remove_diagonal(X): X_ = X.copy() n = X.shape[0] for i in range(-30, 30): x = range(n) y = [x_ + i for x_ in x] if i != 0: x = x[abs(i):-abs(i)] y = y[abs(i):-abs(i)] X_[x,y] = 0 return X_ def convolve_array(X, cfilter=scharr): grad = signal.convolve2d(X, cfilter, boundary='symm', mode='same') X_conv = np.absolute(grad) return X_conv def convolve_array_sobel(X, cfilter=sobel): grad_x = signal.convolve2d(X, sobel_x, boundary='symm', mode='same') grad_y = signal.convolve2d(X, sobel_y, boundary='symm', mode='same') grad = np.hypot(grad_x, grad_y) X_conv = np.absolute(grad) return X_conv def convolve_array_tile(X, cfilter=sobel, divisor=49): """ Iteratively convolve equal sized tiles in X, rejoining for fast convolution of the whole """ x_height, x_width = X.shape assert x_height == x_width, "convolve_array expects square matrix" # Find even split for array divisor = divisor tile_height = None while (not tile_height) or (int(tile_height) != tile_height): # iterate divisor until whole number is found divisor += 1 tile_height = x_height / divisor tile_height = int(tile_height) # Get list of tiles tiled_array = X.reshape(divisor, tile_height, -1, tile_height)\ .swapaxes(1, 2)\ .reshape(-1, tile_height, tile_height) # Convolve tiles iteratively tiled_array_conv = np.array([convolve_array(x, cfilter=cfilter) for x in tiled_array]) # Reconstruct original array using convolved tiles X_conv = tiled_array_conv.reshape(divisor, divisor, tile_height, tile_height)\ .swapaxes(1, 2)\ .reshape(x_height, x_width) return X_conv def binarize(X, bin_thresh, filename=None): X_bin = X.copy() X_bin[X_bin < bin_thresh] = 0 X_bin[X_bin >= bin_thresh] = 1 if filename: skimage.io.imsave(filename, X_bin) return X_bin def diagonal_gaussian(X, gauss_sigma, filename=False): d = X.shape[0] X_gauss = X.copy() diag_indices_x, diag_indices_y = np.diag_indices_from(X_gauss) for i in range(1,d): diy =
np.append(diag_indices_y, diag_indices_y[:i])
numpy.append
import numpy as np from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D from keras import applications from keras import backend as K #from keras_squeezenet import SqueezeNet import tensorflow as tf from influence import Influence, plot_mnist import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data from sklearn.preprocessing import normalize def retrain_inception_on_flowers(seed=22, verbose=True, new_training_data=False): # dimensions of our images. img_width, img_height = 299, 299 nb_train_samples = 1000 nb_validation_samples = 200 epochs = 10 batch_size = 20 tf.set_random_seed(seed) np.random.seed(seed) train_shuffle_idx = np.random.permutation(nb_train_samples) train_data = np.load('data/flower_photos/bottleneck_features_train-inception.npy')[train_shuffle_idx] train_labels = np.array([0] * int(nb_train_samples / 2) + [1] * int(nb_train_samples / 2)).reshape(-1,1)[train_shuffle_idx] valid_shuffle_idx = np.random.permutation(nb_validation_samples) validation_data = np.load('data/flower_photos/bottleneck_features_validation-inception.npy')[valid_shuffle_idx] validation_labels = np.array([0] * int(nb_validation_samples / 2) + [1] * int(nb_validation_samples / 2)).reshape(-1,1)[valid_shuffle_idx] if new_training_data: il = ImageLoader() train_data = np.zeros((nb_train_samples, 2048)) for i in range(nb_train_samples): if (i%100==0): print("Regenerating training data:",i) pic, feature = il.load_candidate_image(train_shuffle_idx[i], img_folder='train', dataset='flowers', model='Inception') train_data[i] = feature validation_data = np.zeros((nb_validation_samples, 2048)) for i in range(nb_validation_samples): if (i%100==0): print("Regenerating validation data:",i) pic, feature = il.load_candidate_image(valid_shuffle_idx[i], img_folder='validation', dataset='flowers', model='Inception') validation_data[i] = feature tf.reset_default_graph() tf.set_random_seed(seed) g = tf.Graph() with g.as_default(): tf.set_random_seed(seed) X = tf.placeholder(tf.float32, shape=(None, 2048)) W_flat = tf.get_variable("all_weights",[2049]) W = tf.reshape(W_flat[0:2048], [2048, 1]) b = tf.reshape(W_flat[2048], [1]) y = tf.nn.sigmoid(tf.matmul(X, W) + b) y_ = tf.placeholder(tf.float32, [None, 1],name="y_") cross_entropy = tf.reduce_sum(tf.squared_difference(y_, y)) #yes, I know this isn't cross entropy... train_step = tf.train.AdamOptimizer().minimize(cross_entropy) correct_prediction = tf.equal(tf.round(y), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session(graph=g) np.random.seed(seed) tf.set_random_seed(seed) sess.run(tf.global_variables_initializer()) for j in range(epochs): for i in range(10): batch_xs = train_data[100*i:100*(i+1)] batch_ys = train_labels[100*i:100*(i+1)] _, acc, cp = sess.run([train_step, accuracy, correct_prediction], feed_dict={X: batch_xs, y_: batch_ys}) if verbose: print('Epoch '+str(j) + ', Batch Acc=' + str(acc)) print("Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) return g, sess, W_flat, cross_entropy, X, y, y_, train_data, train_labels, train_shuffle_idx, valid_shuffle_idx def retrain_VGG_on_flowers(seed=22, verbose=True): global train_shuffle_idx, valid_shuffle_idx np.random.seed(seed) label_names = ['Cat','Dog'] # dimensions of our images. img_width, img_height = 150, 150 top_model_weights_path = 'vgg16_weights.h5' nb_train_samples = 1000 nb_validation_samples = 200 epochs = 10 batch_size = 20 train_shuffle_idx = np.random.permutation(nb_train_samples) train_data = np.load('data/flower_photos/bottleneck_features_train-vgg.npy').reshape(-1,4*4*512)[train_shuffle_idx] train_labels = np.array([0] * int(nb_train_samples / 2) + [1] * int(nb_train_samples / 2)).reshape(-1,1)[train_shuffle_idx] valid_shuffle_idx = np.random.permutation(nb_validation_samples) validation_data = np.load('data/flower_photos/bottleneck_features_validation-vgg.npy').reshape(-1,4*4*512)[valid_shuffle_idx] validation_labels = np.array([0] * int(nb_validation_samples / 2) + [1] * int(nb_validation_samples / 2)).reshape(-1,1)[valid_shuffle_idx] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape=(None, 4*4*512)) W_flat = tf.Variable(tf.zeros([train_data.shape[1]+1]),name="W_flat") W = tf.reshape(W_flat[:-1], [train_data.shape[1], 1]) b = W_flat[-1] y = tf.nn.sigmoid(tf.matmul(X, W) + b) y_ = tf.placeholder(tf.float32, [None, 1],name="y_") cross_entropy = tf.reduce_sum(tf.squared_difference(y_, y)) #yes, I know this isn't cross entropy... train_step = tf.train.AdamOptimizer().minimize(cross_entropy) correct_prediction = tf.equal(tf.round(y), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session() sess.run(tf.global_variables_initializer()) for j in range(epochs): for i in range(10): batch_xs = train_data[100*i:100*(i+1)] batch_ys = train_labels[100*i:100*(i+1)] _, acc, cp = sess.run([train_step, accuracy, correct_prediction], feed_dict={X: batch_xs, y_: batch_ys}) if verbose: print('Epoch '+str(j) + ', Batch Acc=' + str(acc)) print("Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) return sess, W_flat, cross_entropy, X, y, y_, train_data, train_labels, train_shuffle_idx, valid_shuffle_idx def train_squeeze_on_cats_dogs(seed=43, verbose=True): np.random.seed(seed) nb_train_samples = 2000 nb_validation_samples = 800 epochs = 10 batch_size = 16 train_shuffle_idx = np.random.permutation(nb_train_samples) train_data = np.load('bottleneck_features_train-squeeze.npy').reshape(-1,13*13*512)[train_shuffle_idx] train_labels = np.array([0] * int(nb_train_samples / 2) + [1] * int(nb_train_samples / 2)).reshape(-1,1)[train_shuffle_idx] valid_shuffle_idx = np.random.permutation(nb_validation_samples) validation_data = np.load('bottleneck_features_validation-squeeze.npy').reshape(-1,13*13*512)[valid_shuffle_idx] validation_labels = np.array([0] * int(nb_validation_samples / 2) + [1] * int(nb_validation_samples / 2)).reshape(-1,1)[valid_shuffle_idx] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape=(None, 13*13*512)) W_flat = tf.get_variable("all_weights",[1029]) W_conv = tf.reshape(W_flat[:1024],[1, 1, 512, 2]) b_conv = tf.reshape(W_flat[1024:1026], [2]) W = tf.reshape(W_flat[-3:-1], [2, 1]) b = W_flat[-1] conv = tf.reshape(X, [-1,13,13,512]) conv = tf.nn.conv2d(conv, W_conv, strides=[1,1,1,1], padding='VALID') conv = tf.nn.bias_add(conv, b_conv) conv = tf.nn.sigmoid(conv) out = tf.nn.avg_pool(conv, (1, 13, 13, 1), (1,1,1,1), padding='VALID') out = tf.reshape(out, [-1, 2]) y = tf.nn.sigmoid(tf.matmul(out, W) + b) y_ = tf.placeholder(tf.float32, [None, 1],name="y_") cross_entropy = tf.reduce_sum(tf.squared_difference(y_, y)) #yes, I know this isn't cross entropy... train_step = tf.train.AdamOptimizer().minimize(cross_entropy) correct_prediction = tf.equal(tf.round(y), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session() sess.run(tf.global_variables_initializer()) for j in range(epochs): for i in range(20): batch_xs = train_data[100*i:100*(i+1)] batch_ys = train_labels[100*i:100*(i+1)] _, acc, cp = sess.run([train_step, accuracy, cross_entropy], feed_dict={X: batch_xs, y_: batch_ys}) if (j%20==0): if (verbose): print('Epoch '+str(j) + ', Batch Acc=' + str(acc)) print('Loss '+str(cp)) print("Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) print("Final Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) return sess, W_flat, cross_entropy, X, y, y_, train_data, train_labels, train_shuffle_idx, valid_shuffle_idx def train_squeeze_on_flowers(seed=43, verbose=True): np.random.seed(seed) train_data_dir = 'data/flower_photos/train' validation_data_dir = 'data/flower_photos/validation' nb_train_samples = 1000 nb_validation_samples = 200 epochs = 240 batch_size = 20 train_shuffle_idx = np.random.permutation(nb_train_samples) train_data = np.load('data/flower_photos/bottleneck_features_train-squeeze.npy').reshape(-1,13*13*512)[train_shuffle_idx] train_labels = np.array([0] * int(nb_train_samples / 2) + [1] * int(nb_train_samples / 2)).reshape(-1,1)[train_shuffle_idx] valid_shuffle_idx = np.random.permutation(nb_validation_samples) validation_data = np.load('data/flower_photos/bottleneck_features_validation-squeeze.npy').reshape(-1,13*13*512)[valid_shuffle_idx] validation_labels = np.array([0] * int(nb_validation_samples / 2) + [1] * int(nb_validation_samples / 2)).reshape(-1,1)[valid_shuffle_idx] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape=(None, 13*13*512)) W_flat = tf.get_variable("all_weights",[1029]) W_conv = tf.reshape(W_flat[:1024],[1, 1, 512, 2]) b_conv = tf.reshape(W_flat[1024:1026], [2]) W = tf.reshape(W_flat[-3:-1], [2, 1]) b = W_flat[-1] conv = tf.reshape(X, [-1,13,13,512]) conv = tf.nn.conv2d(conv, W_conv, strides=[1,1,1,1], padding='VALID') conv = tf.nn.bias_add(conv, b_conv) conv = tf.nn.sigmoid(conv) out = tf.nn.avg_pool(conv, (1, 13, 13, 1), (1,1,1,1), padding='VALID') out = tf.reshape(out, [-1, 2]) y = tf.nn.sigmoid(tf.matmul(out, W) + b) y_ = tf.placeholder(tf.float32, [None, 1],name="y_") cross_entropy = tf.reduce_sum(tf.squared_difference(y_, y)) #yes, I know this isn't cross entropy... train_step = tf.train.AdamOptimizer().minimize(cross_entropy) correct_prediction = tf.equal(tf.round(y), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session() sess.run(tf.global_variables_initializer()) for j in range(epochs): for i in range(10): batch_xs = train_data[100*i:100*(i+1)] batch_ys = train_labels[100*i:100*(i+1)] _, acc, cp = sess.run([train_step, accuracy, cross_entropy], feed_dict={X: batch_xs, y_: batch_ys}) if (j%20==0): if (verbose): print('Epoch '+str(j) + ', Batch Acc=' + str(acc)) print('Loss '+str(cp)) print("Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) print("Final Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) return sess, W_flat, cross_entropy, X, y, y_, train_data, train_labels, train_shuffle_idx, valid_shuffle_idx def train_convnet_on_mnist_fashion(seed=43, verbose=True): mnist = input_data.read_data_sets('data/fashion',one_hot=False) X_train, y_train = mnist.train.next_batch(10000) idx = np.where(y_train>7)[0][:1500] X_train = X_train[idx]; y_train = y_train[idx].reshape(-1,1)-8 X_test, y_test = mnist.test.next_batch(1000) idx = np.where(y_test>7)[0] X_test = X_test[idx]; y_test = y_test[idx].reshape(-1,1)-8 np.random.seed(seed) tf.reset_default_graph() def conv2d(x, W, b, strides=1): # Conv2D wrapper, with bias and relu activation x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') x = tf.nn.bias_add(x, b) return tf.nn.sigmoid(x) def maxpool2d(x, k=2): # MaxPool2D wrapper return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME') # Placeholders n_w_conv = 5*5*16 n_b_conv = 16 n_mult = 14*14*16 n_bias = 1 lengths = [n_w_conv, n_b_conv, n_mult, n_bias] idx = np.cumsum(lengths) W_flat = tf.Variable(tf.zeros([idx[-1]]),name="W_flat") #total number of weights i = 0 W_conv = tf.reshape(W_flat[0:idx[i]],[5,5,1,16]); b_conv = tf.reshape(W_flat[idx[i]:idx[i+1]],[16]); i += 1 W_fc = tf.reshape(W_flat[idx[i]:idx[i+1]],[14*14*16, 1]); i += 1 b_fc = tf.reshape(W_flat[idx[i]:],[1]); x = tf.placeholder(tf.float32, [None, X_train.shape[1]],name="x") conv1a = tf.reshape(x, shape=[-1, 28, 28, 1]) conv1b = conv2d(conv1a, W_conv, b_conv) conv1c = maxpool2d(conv1b, k=2) conv1d = tf.reshape(conv1c, [-1, n_mult]) y = tf.nn.sigmoid(tf.matmul(conv1d, W_fc) + b_fc) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 1],name="y_") cross_entropy = tf.reduce_sum(tf.squared_difference(y_, y)) #yes, I know this isn't cross entropy... train_step = tf.train.AdamOptimizer().minimize(cross_entropy) correct_prediction = tf.equal(tf.round(y), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session() sess.run(tf.global_variables_initializer()) # summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph()) # Train for _ in range(10): for i in range(15): batch_xs = X_train[100*i:100*(i+1)] batch_ys = y_train[100*i:100*(i+1)] _, acc = sess.run([train_step, accuracy], feed_dict={x: batch_xs, y_: batch_ys}) print('\r',end=str(i)+' '+str(acc)+' ') batch_xs, batch_ys = mnist.test.next_batch(1000) print("\nTest Accuracy:",sess.run(accuracy, feed_dict={x: X_test,y_: y_test})) return sess, W_flat, cross_entropy, x, y, y_, X_train, y_train def retrain_VGG_on_cats_dogs(seed=22, verbose=True): global train_shuffle_idx, valid_shuffle_idx np.random.seed(seed) label_names = ['Cat','Dog'] # dimensions of our images. img_width, img_height = 150, 150 top_model_weights_path = 'vgg16_weights.h5' train_data_dir = 'data/train' validation_data_dir = 'data/validation' nb_train_samples = 2000 nb_validation_samples = 800 epochs = 10 batch_size = 16 train_shuffle_idx = np.random.permutation(nb_train_samples) train_data = np.load('bottleneck_features_train.npy').reshape(-1,4*4*512)[train_shuffle_idx] train_labels = np.array([0] * int(nb_train_samples / 2) + [1] * int(nb_train_samples / 2)).reshape(-1,1)[train_shuffle_idx] valid_shuffle_idx = np.random.permutation(nb_validation_samples) validation_data = np.load('bottleneck_features_validation.npy').reshape(-1,4*4*512)[valid_shuffle_idx] validation_labels = np.array([0] * int(nb_validation_samples / 2) + [1] * int(nb_validation_samples / 2)).reshape(-1,1)[valid_shuffle_idx] tf.reset_default_graph() g = tf.Graph() with g.as_default(): X = tf.placeholder(tf.float32, shape=(None, 4*4*512)) W_flat = tf.Variable(tf.zeros([train_data.shape[1]+1]),name="W_flat") W = tf.reshape(W_flat[:-1], [train_data.shape[1], 1]) b = W_flat[-1] y = tf.nn.sigmoid(tf.matmul(X, W) + b) y_ = tf.placeholder(tf.float32, [None, 1],name="y_") cross_entropy = tf.reduce_sum(tf.squared_difference(y_, y)) #yes, I know this isn't cross entropy... train_step = tf.train.AdamOptimizer().minimize(cross_entropy) correct_prediction = tf.equal(tf.round(y), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session() sess.run(tf.global_variables_initializer()) for j in range(epochs): for i in range(20): batch_xs = train_data[100*i:100*(i+1)] batch_ys = train_labels[100*i:100*(i+1)] _, acc, cp = sess.run([train_step, accuracy, correct_prediction], feed_dict={X: batch_xs, y_: batch_ys}) if verbose: print('Epoch '+str(j) + ', Batch Acc=' + str(acc)) print("Test Accuracy:",sess.run(accuracy, feed_dict={X: validation_data,y_: validation_labels})) return g, sess, W_flat, cross_entropy, X, y, y_, train_data, train_labels, train_shuffle_idx, valid_shuffle_idx class ImageLoader(): def __init__(self, model_name='Inception'): K.clear_session() if model_name=='Inception': base_model = applications.inception_v3.InceptionV3(include_top=False, weights='imagenet') out = base_model.output out = GlobalAveragePooling2D()(out) self.model = Model(inputs=base_model.input, outputs=out) elif model_name=='VGG': self.model = applications.VGG16(include_top=False, weights='imagenet') else: raise ValueError("Invalid model") self.session = K.get_session() def load_candidate_image(self, idx,img_folder='validation', noise=0, mode='gaussian', dataset='cats_dogs', model='VGG', array_of_pics=False): from skimage.util import random_noise from PIL import Image if dataset=='cats_dogs': filenames_train = np.load('filenames_train.npy') filenames_validation = np.load('filenames_validation.npy') img_width, img_height = 150, 150 root_path = 'data/' size = [1,8192] model = 'VGG' print('Using VGG Model') elif dataset=='flowers' and model=='Squeeze': filenames_train = np.load('data/flower_photos/filenames_train-squeeze.npy') filenames_validation = np.load('data/flower_photos/filenames_validation-squeeze.npy') img_width, img_height = 227, 227 root_path = 'data/flower_photos/' size = [1,13,13,512] elif dataset=='flowers' and model=='Inception': filenames_train = np.load('data/flower_photos/filenames_train-inception.npy') filenames_validation = np.load('data/flower_photos/filenames_validation-inception.npy') img_width, img_height = 227, 227 root_path = 'data/flower_photos/' size = [1,2048] else: raise ValueError("Invalid dataset or model") if (array_of_pics): padding = 10 paths = [root_path+'train'+"/"+filenames_train[i] for i in idx] images = [Image.open(p).resize((img_width, img_height)) for p in paths] widths, heights = zip(*(i.size for i in images)) total_width = sum(widths)+2*padding max_height = max(heights) new_im = Image.new('RGB', (total_width, max_height),"white") x_offset = 0 for im in images: new_im.paste(im, (x_offset,0)) x_offset += im.size[0]+padding return new_im else: if (img_folder=='train'): filename = filenames_train[idx] elif (img_folder=='validation'): filename = filenames_validation[idx] else: raise ValueError("Invalid argument for paraemter: folder") #print("Opening file:"+root_path+img_folder+"/"+filename) pic = Image.open(root_path+img_folder+"/"+filename) pic = pic.resize((img_width, img_height)) pic = np.array(pic)/255 #pic = np.array(pic) if (mode=='binary'): pic += np.random.randint(2, size=pic.shape)*noise pic = np.minimum(np.maximum(pic,0),1) else: pic = random_noise(pic, mode=mode, var=noise, clip=True) pic = pic.reshape(-1,img_width, img_height, 3) features = self.get_bottleneck_representation(pic,model_name=model) return pic.squeeze(), features.reshape(size) def pop_layer(self, model): if not model.outputs: raise Exception('Sequential model cannot be popped: model is empty.') model.layers.pop() if not model.layers: model.outputs = [] model.inbound_nodes = [] model.outbound_nodes = [] else: model.layers[-1].outbound_nodes = [] model.outputs = [model.layers[-1].output] model.built = False def get_bottleneck_representation(self, pic, model_name='VGG'): from keras.preprocessing.image import ImageDataGenerator img_width, img_height = 299, 299 datagen = ImageDataGenerator(rescale=1. / 255) K.set_session(self.session) #features = self.model.predict(pic) for x_batch in datagen.flow(pic, None, batch_size=1): #print(x_batch.shape) features = self.model.predict(x_batch*255) #print(np.allclose(x_batch, pic)) #print(np.allclose(x_batch, pic/255)) break K.clear_session() return features #sess2 = tf.Session() #if (model_name=='VGG'): # model = applications.VGG16(include_top=False, weights='imagenet') #if (model_name=='Inception'): # base_model = applications.inception_v3.InceptionV3(include_top=False, weights='imagenet') # out = base_model.output # out = GlobalAveragePooling2D()(out) # model = Model(inputs=base_model.input, outputs=out) #elif (model_name=='Squeeze'): # model = SqueezeNet(include_top=False) #the include_top doesn't actually seem to do anything # pop_layer(model) # pop_layer(model) # pop_layer(model) # pop_layer(model) #else: # raise ValueError("Invalid argument for paraemter: model_name") def pgti(self,grads, pic, model='Inception'): from keras import backend as K K.set_session(self.session) #K.set_learning_phase(1) pic = pic.reshape(1, 227, 227, 3) grads = grads.reshape(2048) with K.get_session().graph.as_default(): gradient_wrt_features = tf.placeholder(tf.float32, shape=[2048]) base_model = applications.inception_v3.InceptionV3(include_top=False, weights='imagenet') out = base_model.output out = GlobalAveragePooling2D()(out) model = Model(inputs=base_model.input, outputs=out) flattened_features = tf.reshape(model.output, [-1]) product_of_gradient_and_features = tf.multiply(gradient_wrt_features, flattened_features) product_of_gradient_and_features = tf.reduce_sum(product_of_gradient_and_features) gradient_op = tf.gradients(product_of_gradient_and_features, model.input) K.set_learning_phase(0) gradient = self.session.run(gradient_op, feed_dict={model.input:pic, gradient_wrt_features:grads}) K.clear_session() return gradient def propagate_gradients_to_input(grads, pic, model='Inception'): from keras import backend as K #set learning phase #tf.reset_default_graph() sess2 = tf.Session() K.set_session(sess2) #K.set_learning_phase(0) pic = pic.reshape(1, 227, 227, 3) grads = grads.reshape(2048) gradient_wrt_features = tf.placeholder(tf.float32, shape=[2048]) base_model = applications.inception_v3.InceptionV3(include_top=False, weights='imagenet') out = base_model.output out = GlobalAveragePooling2D()(out) model = Model(inputs=base_model.input, outputs=out) flattened_features = tf.reshape(model.output, [-1]) product_of_gradient_and_features = tf.multiply(gradient_wrt_features, flattened_features) product_of_gradient_and_features = tf.reduce_sum(product_of_gradient_and_features) gradient_op = tf.gradients(product_of_gradient_and_features, model.input) K.set_learning_phase(0) gradient = sess2.run(gradient_op, feed_dict={model.input:pic, gradient_wrt_features:grads}) K.clear_session() del model return gradient def make_prediction(sess, X, y, features): prob = sess.run(y, feed_dict={X:features}) if (prob<0.5): return prob, 0 else: return prob, 1 def get_nearest_neighbors(X_train, X_test, N): #X_test = X_test.flatten() dist_2 = np.sum((X_train - X_test)**2, axis=1) idxs_most =
np.argpartition(dist_2, -N, axis=0)
numpy.argpartition
import os import numpy as np import random import torch import torch.utils.data as dataf import torch.nn as nn import matplotlib.pyplot as plt from scipy import io from sklearn.decomposition import PCA # setting parameters DataPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/Houston.mat' TRPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TRLabel.mat' TSPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TSLabel.mat' savepath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/W3-DLSection/HU2013/2DCNN-14.mat' patchsize = 16 # input spatial size for 2D-CNN batchsize = 128 # select from [16, 32, 64, 128], the best is 64 EPOCH = 200 LR = 0.001 # load data Data = io.loadmat(DataPath) TrLabel = io.loadmat(TRPath) TsLabel = io.loadmat(TSPath) Data = Data['Houston'] Data = Data.astype(np.float32) TrLabel = TrLabel['TRLabel'] TsLabel = TsLabel['TSLabel'] # without dimensionality reduction pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) # normalization method 2: map to zero mean and one std [m, n, l] = np.shape(Data) # x2 = np.empty((m+pad_width*2, n+pad_width*2, l), dtype='float32') for i in range(l): mean = np.mean(Data[:, :, i]) std = np.std(Data[:, :, i]) Data[:, :, i] = (Data[:, :, i] - mean)/std # x2[:, :, i] = np.pad(Data[:, :, i], pad_width, 'symmetric') # # extract the first principal component # x = np.reshape(Data, (m*n, l)) # pca = PCA(n_components=0.995, copy=True, whiten=False) # x = pca.fit_transform(x) # _, l = x.shape # x = np.reshape(x, (m, n, l)) # # print x.shape # # plt.figure() # # plt.imshow(x) # # plt.show() x = Data # boundary interpolation temp = x[:,:,0] pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) temp2 = np.pad(temp, pad_width, 'symmetric') [m2,n2] = temp2.shape x2 = np.empty((m2, n2, l), dtype='float32') for i in range(l): temp = x[:,:,i] pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) temp2 = np.pad(temp, pad_width, 'symmetric') x2[:,:,i] = temp2 # construct the training and testing set [ind1, ind2] = np.where(TrLabel != 0) TrainNum = len(ind1) TrainPatch = np.empty((TrainNum, l, patchsize, patchsize), dtype='float32') TrainLabel = np.empty(TrainNum) ind3 = ind1 + pad_width ind4 = ind2 + pad_width for i in range(len(ind1)): # patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width + 1), (ind4[i] - pad_width):(ind4[i] + pad_width + 1), :] patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width), (ind4[i] - pad_width):(ind4[i] + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) TrainPatch[i, :, :, :] = patch patchlabel = TrLabel[ind1[i], ind2[i]] TrainLabel[i] = patchlabel [ind1, ind2] = np.where(TsLabel != 0) TestNum = len(ind1) TestPatch = np.empty((TestNum, l, patchsize, patchsize), dtype='float32') TestLabel = np.empty(TestNum) ind3 = ind1 + pad_width ind4 = ind2 + pad_width for i in range(len(ind1)): patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width), (ind4[i] - pad_width):(ind4[i] + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) TestPatch[i, :, :, :] = patch patchlabel = TsLabel[ind1[i], ind2[i]] TestLabel[i] = patchlabel print('Training size and testing size are:', TrainPatch.shape, 'and', TestPatch.shape) # step3: change data to the input type of PyTorch TrainPatch = torch.from_numpy(TrainPatch) TrainLabel = torch.from_numpy(TrainLabel)-1 TrainLabel = TrainLabel.long() dataset = dataf.TensorDataset(TrainPatch, TrainLabel) train_loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True) TestPatch = torch.from_numpy(TestPatch) TestLabel = torch.from_numpy(TestLabel)-1 TestLabel = TestLabel.long() Classes = len(np.unique(TrainLabel)) OutChannel = 32 # construct the network class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d( in_channels = l, out_channels = OutChannel, kernel_size = 3, stride = 1, padding = 1, ), nn.BatchNorm2d(OutChannel), nn.ReLU(), nn.MaxPool2d(kernel_size=2), ) self.conv2 = nn.Sequential( nn.Conv2d(OutChannel, OutChannel*2, 3, 1, 1), nn.BatchNorm2d(OutChannel*2), nn.ReLU(), nn.MaxPool2d(2), # nn.Dropout(0.5), ) self.conv3 = nn.Sequential( nn.Conv2d(OutChannel*2, OutChannel*4, 3, 1, 1), nn.BatchNorm2d(OutChannel*4), nn.ReLU(), nn.AdaptiveMaxPool2d(1), # nn.Dropout(0.5), ) self.out = nn.Linear(OutChannel*4, Classes) # fully connected layer, output 16 classes def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7) output = self.out(x) return output cnn = CNN() print('The structure of the designed network', cnn) # move model to GPU cnn.cuda() optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted BestAcc = 0 # train and test the designed model for epoch in range(EPOCH): for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader # move train data to GPU b_x = b_x.cuda() b_y = b_y.cuda() output = cnn(b_x) # cnn output loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if step % 50 == 0: cnn.eval() pred_y = np.empty((len(TestLabel)), dtype='float32') number = len(TestLabel) // 5000 for i in range(number): temp = TestPatch[i * 5000:(i + 1) * 5000, :, :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[i * 5000:(i + 1) * 5000] = temp3.cpu() del temp, temp2, temp3 if (i + 1) * 5000 < len(TestLabel): temp = TestPatch[(i + 1) * 5000:len(TestLabel), :, :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[(i + 1) * 5000:len(TestLabel)] = temp3.cpu() del temp, temp2, temp3 pred_y = torch.from_numpy(pred_y).long() accuracy = torch.sum(pred_y == TestLabel).type(torch.FloatTensor) / TestLabel.size(0) # test_output = rnn(TestData) # pred_y = torch.max(test_output, 1)[1].cuda().data.squeeze() # accuracy = torch.sum(pred_y == TestDataLabel).type(torch.FloatTensor) / TestDataLabel.size(0) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy(), '| test accuracy: %.2f' % accuracy) # save the parameters in network if accuracy > BestAcc: torch.save(cnn.state_dict(), 'W3-DLSection/HU2013/net_params_2DCNN.pkl') BestAcc = accuracy cnn.train() # # test each class accuracy # # divide test set into many subsets cnn.load_state_dict(torch.load('W3-DLSection/HU2013/net_params_2DCNN.pkl')) cnn.eval() pred_y = np.empty((len(TestLabel)), dtype='float32') number = len(TestLabel)//5000 for i in range(number): temp = TestPatch[i*5000:(i+1)*5000, :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[i*5000:(i+1)*5000] = temp3.cpu() del temp, temp2, temp3 if (i+1)*5000 < len(TestLabel): temp = TestPatch[(i+1)*5000:len(TestLabel), :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[(i+1)*5000:len(TestLabel)] = temp3.cpu() del temp, temp2, temp3 pred_y = torch.from_numpy(pred_y).long() OA = torch.sum(pred_y == TestLabel).type(torch.FloatTensor) / TestLabel.size(0) Classes = np.unique(TestLabel) EachAcc = np.empty(len(Classes)) for i in range(len(Classes)): cla = Classes[i] right = 0 sum = 0 for j in range(len(TestLabel)): if TestLabel[j] == cla: sum += 1 if TestLabel[j] == cla and pred_y[j] == cla: right += 1 EachAcc[i] = right.__float__()/sum.__float__() print(OA) print(EachAcc) del TestPatch, TrainPatch, TrainLabel, b_x, b_y, dataset, train_loader # show the whole image # The whole data is too big to test in one time; So dividing it into several parts part = 5000 pred_all = np.empty((m*n, 1), dtype='float32') number = m*n//part for i in range(number): D = np.empty((part, l, patchsize, patchsize), dtype='float32') count = 0 for j in range(i*part, (i+1)*part): row = j//n col = j - row*n row2 = row + pad_width col2 = col + pad_width patch = x2[(row2 - pad_width):(row2 + pad_width), (col2 - pad_width):(col2 + pad_width), :] patch =
np.reshape(patch, (patchsize * patchsize, l))
numpy.reshape
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data =
np.array([])
numpy.array
import scipy.io import numpy as np import argparse from scipy.stats import mode from tqdm import tqdm parser = argparse.ArgumentParser(description="hsi few-shot classification") parser.add_argument("--data_folder", type=str, default='../data/') parser.add_argument("--data_name", type=str, default='sar_train') parser.add_argument("--labels_name", type=str, default='train_label') args = parser.parse_args() data_load = scipy.io.loadmat(args.data_folder + str(args.data_name) + '.mat') label_load = scipy.io.loadmat(args.data_folder + str(args.labels_name) + '.mat') data_key = list(data_load.keys()) label_key = list(label_load.keys()) print(data_key) print("*"*100) print(label_key) input() feature_1 = data_load['sar_1']; labels_1 = label_load['label_1'] feature_2 = data_load['sar_2']; labels_2 = label_load['label_2'] feature_3 = data_load['sar_3']; labels_3 = label_load['label_3'] print(feature_1.shape) print(labels_1.shape) old_feature = np.asarray([feature_1, feature_2, feature_3], dtype=float) # (3,1200,900) old_labels = np.asarray([labels_1, labels_2, labels_3]) # (3,1200,900) # scipy.io.savemat('./data/sar_train_nopool.mat', mdict={"feature": old_feature,"labels": old_labels}) pool_size = 2 h_size = feature_1.shape[0] // pool_size v_size = feature_1.shape[1] // pool_size new_feature = np.empty((old_feature.shape[0], h_size, v_size)) # (3,240,180) new_labels = np.empty((old_feature.shape[0], h_size, v_size)) # (3,240,180) print(new_feature.shape, new_labels.shape) for i in range(new_feature.shape[0]): for j in tqdm(range(h_size)): for k in range(v_size): new_feature[i][j, k] =
np.mean(old_feature[i][j*pool_size:(j+1)*pool_size, k*pool_size:(k+1)*pool_size])
numpy.mean
#!/usr/bin/env python3 # -*- coding=utf-8 -*- # Project: dspus # injections.py # Created by @wenchieh on <1/12/2020> __author__ = 'wenchieh' # sys from random import sample # third-part libs import numpy as np from scipy import linalg from scipy.sparse import * # parameters in injection - # spike(M, N, Dspike, C), # gap(M, N, D0, Dgap, C) def injectSpike(Nall, M, N, Dspike, C): Nstart, i = Nall, Nall injectEs = list() injectUs, injectVs = range(Nall, Nall + M, 1), range(Nall, Nall + N, 1) for m in range(M): # standard normal distribution v1, v2, w = 0.0, 0.0, 2.0 while w > 1.0: v1 = random.random() * 2.0 - 1.0 v2 = random.random() * 2.0 - 1.0 w = v1 * v1 + v2 * v2 outd = int(Dspike + v1 * np.sqrt(-2.0 * np.log(w) / w)) if outd < 0: outd = Dspike outdC = int(outd * C) outdN = outd - outdC Ns, Cs = set(), set() for d in range(outdN): Ns.add(Nstart + M + random.randint(N)) for d in range(outdC): Cs.add(random.randint(Nall)) for j in Ns: injectEs.append([i, j]) for j in Cs: injectEs.append([i, j]) i += 1 return len(injectEs), injectEs, injectUs, injectVs def injectGap(Nall, M, N, D0, Dgap, C): injectEs = list() injectUs, injectVs = range(Nall, Nall + M, 1), range(Nall, Nall + N, 1) Nstart, i = Nall, Nall Md = int(1.0 * M / (Dgap - D0 + 1)) for outd in range(D0, Dgap, 1): for m in range(Md): outdC = int(outd * C) outdN = outd - outdC Ns, Cs = set(), set() for d in range(outdN): Ns.add(Nstart + M + random.randint(N)) for d in range(outdC): Cs.add(random.randint(Nall)) for j in Ns: injectEs.append([i, j]) for j in Cs: injectEs.append([i, j]) i += 1 return len(injectEs), injectEs, injectUs, injectVs def genEvenDenseBlock(A, B, p): m = [] for i in range(A): a = np.random.binomial(1, p, B) m.append(a) return np.array(m) def genHyperbolaDenseBlock(A, B, alpha, tau): 'this is from hyperbolic paper: i^\alpha * j^\alpha > \tau' m = np.empty([A, B], dtype=int) for i in range(A): for j in range(B): if (i+1)**alpha * (j+1)**alpha > tau: m[i,j] = 1 else: m[i,j] = 0 return m def genDiHyperRectBlocks(A1, B1, A2, B2, alpha=-0.5, tau=None, p=1): if tau is None: tau = A1**alpha * B1**alpha m1 = genEvenDenseBlock(A1, B1, p=p) m2 = genHyperbolaDenseBlock(A2, B2, alpha, tau) M = linalg.block_diag(m1, m2) return M def addnosie(M, A, B, p, black=True, A0=0, B0=0): v = 1 if black else 0 for i in range(A-A0): a = np.random.binomial(1, p, B-B0) for j in a.nonzero()[0]: M[A0+i,B0+j]=v return M # inject a clique of size m0 by n0 with density p. # the last parameter `testIdx` determines the camouflage type. # testIdx = 1: random camouflage, with camouflage density set so each fraudster outputs approximately equal number of fraudulent and camouflage edges # testIdx = 2: random camouflage, with double the density as in the precious setting # testIdx = 3: biased camouflage, more likely to add camouflage to high degree column # # def injectCliqueCamo(M, m0, n0, p, testIdx): # (m,n) = M.shape # M2 = M.copy().tolil() # # colSum = np.squeeze(M2.sum(axis = 0).A) # colSumPart = colSum[n0:n] # colSumPartPro = np.int_(colSumPart) # colIdx = np.arange(n0, n, 1) # population = np.repeat(colIdx, colSumPartPro, axis = 0) # # for i in range(m0): # # inject clique # for j in range(n0): # if random.random() < p: # M2[i,j] = 1 # # inject camo # if testIdx == 1: # thres = p * n0 / (n - n0) # for j in range(n0, n): # if random.random() < thres: # M2[i,j] = 1 # if testIdx == 2: # thres = 2 * p * n0 / (n - n0) # for j in range(n0, n): # if random.random() < thres: # M2[i,j] = 1 # # biased camo # if testIdx == 3: # colRplmt = random.sample(population, int(n0 * p)) # M2[i,colRplmt] = 1 # # return M2.tocsc() # inject a clique of size m0 by n0 with density p. # the last parameter `testIdx` determines the camouflage type. # testIdx = 1: random camouflage, with camouflage density set so each fraudster outputs approximately equal number of fraudulent and camouflage edges # testIdx = 2: random camouflage, with double the density as in the precious setting # testIdx = 3: biased camouflage, more likely to add camouflage to high degree column def injectCliqueCamo(M, m0, n0, p, testIdx): (m, n) = M.shape injectEs = list() injectUs, injectVs = np.arange(m0), np.arange(n0) if testIdx in [3, 4]: # popular biased camouflage colSum = np.squeeze(M.sum(axis = 0).A) colSumPart = colSum[n0:n] colSumPartPro = np.int_(colSumPart) colIdx = np.arange(n0, n, 1) population = np.repeat(colIdx, colSumPartPro, axis = 0) for i in range(m0): # inject clique for j in range(n0): if np.random.random() < p: injectEs.append([i,j]) if testIdx == 0: continue # inject random camo if testIdx == 1: thres = p * n0 / (n - n0) for j in range(n0, n): if np.random.random() < thres: injectEs.append([i,j]) if testIdx == 2: thres = 2 * p * n0 / (n - n0) for j in range(n0, n): if
np.random.random()
numpy.random.random
''' dyn_prog.py implements a scheme similar to solving valuation of american options for the life cycle model this is a kind of dynamic programming scheme ''' import math import gym from gym import spaces, logger, utils, error from gym.utils import seeding import numpy as np from fin_benefits import Benefits import gym_unemployment import matplotlib.pyplot as plt import h5py from tqdm import tqdm_notebook as tqdm from lifecycle_rl import Lifecycle from scipy.interpolate import interpn,interp1d,interp2d,RectBivariateSpline,PchipInterpolator from scipy.integrate import quad,trapz from scipy.special import softmax import time from scipy.stats import gaussian_kde class DynProgLifecycleRev(Lifecycle): def __init__(self,minimal=True,env=None,timestep=1.0,ansiopvraha_kesto300=None,min_retirementage=None, ansiopvraha_kesto400=None,karenssi_kesto=None,osittainen_perustulo=None, ansiopvraha_toe=None,plotdebug=False,mortality=None,max_wage_old=None,max_empwage_old=None, gamma=None,n_palkka=None,n_palkka_old=None,n_elake=None,n_tis=None,n_palkka_future=None, n_emppalkka=None,n_emppalkka_old=None, max_pension=None,min_wage=None,max_wage=None,max_empwage=None,perustulo=None,perustulomalli=None, perustulo_korvaa_toimeentulotuen=None,startage=None): super().__init__(minimal=minimal,env=env,timestep=timestep,ansiopvraha_kesto300=ansiopvraha_kesto300, ansiopvraha_kesto400=ansiopvraha_kesto400,karenssi_kesto=karenssi_kesto,min_retirementage=min_retirementage, ansiopvraha_toe=ansiopvraha_toe,mortality=mortality,plotdebug=plotdebug, gamma=gamma,perustulo=perustulo,perustulomalli=perustulomalli,osittainen_perustulo=osittainen_perustulo, perustulo_korvaa_toimeentulotuen=perustulo_korvaa_toimeentulotuen,startage=startage) ''' Alusta muuttujat ''' #self.min_salary=1000 #self.hila_palkka0 = 1000 # = self.min_salary # 0 self.spline=True self.extrapolate=True self.pw_bivariate=True if True: self.spline_approx='cubic' #'cubic' self.pw_maxspline=3 # 1 = linear, 3 = cubic else: self.spline_approx='linear' self.pw_maxspline=1 # 1 = linear, 3 = cubic self.minspline=True # rajoita splineille alarajaa self.minbispline=True # rajoita splineille alarajaa self.monotone_spline=False #True self.oamonotone_spline=False #self.spline_approx='quadratic' #self.spline_approx='linear' self.integmethod=0 # compare self.n_employment=3 self.epsabs=1e-6 # dynaamisen ohjelmoinnin parametrejä self.n_palkka = 20 self.n_palkka_old = 10 self.n_emppalkka = 20 self.n_emppalkka_old = 10 self.n_palkka_future = 21 self.n_palkka_future_tr = 201 self.n_elake = 40 self.n_oapension = 1000 self.n_tis = 2 # ei vaikutusta palkkaan self.min_wage=1_000 self.max_wage=85_000 self.max_wage_old=self.max_wage self.max_empwage=self.max_wage self.max_empwage_old=self.max_wage_old self.min_pension=0 # for active self.max_pension=50_000 # for active self.min_oapension=500*12 # for retired self.max_oapension=80_000 # for retired #self.factor_future_wage=8 if n_palkka is not None: self.n_palkka=n_palkka if n_palkka_old is not None: self.n_palkka_old=n_palkka_old if n_emppalkka is not None: self.n_emppalkka=n_emppalkka if n_emppalkka_old is not None: self.n_emppalkka_old=n_emppalkka_old if n_palkka_future is not None: self.n_palkka_future=n_palkka_future if n_elake is not None: self.n_elake=n_elake if n_tis is not None: self.n_tis=n_tis if max_wage is not None: self.max_wage=max_wage if max_wage_old is not None: self.max_wage_old=max_wage_old if max_empwage is not None: self.max_empwage=max_empwage if max_empwage_old is not None: self.max_empwage_old=max_empwage_old if min_wage is not None: self.min_wage=min_wage if max_pension is not None: self.max_pension=max_pension #if factor_future_wage is not None: # self.factor_future_wage=factor_future_wage self.deltapalkka = (self.max_wage-self.min_wage)/(self.n_palkka-1) self.deltapalkka_old = (self.max_wage_old-self.min_wage)/(self.n_palkka_old-1) self.deltaemppalkka = (self.max_empwage-self.min_wage)/(self.n_emppalkka-1) self.deltaemppalkka_old = (self.max_empwage_old-self.min_wage)/(self.n_emppalkka_old-1) self.deltaelake = (self.max_pension-self.min_pension)/(self.n_elake-1) self.delta_oapension = (self.max_oapension-self.min_oapension)/(self.n_oapension-1) self.deltatis = 1 self.include_pt=False #self.midfuture=int(np.floor(self.n_palkka_future/2)) #self.deltafuture=self.factor_future_wage*0.07*0.5/self.midfuture self.min_grid_age=self.min_age self.max_grid_age=self.max_age print('min',self.min_retirementage) if False: self.unemp_wageshock=1.0 #0.95 else: self.unemp_wageshock=0.95 if self.spline: self.get_V=self.get_V_spline self.get_V_vector=self.get_V_vector_spline self.get_actV=self.get_actV_spline self.get_actReward=self.get_actReward_spline self.get_act=self.get_act_spline else: self.get_V=self.get_V_nospline self.get_V_vector=self.get_V_vector_nospline self.get_actV=self.get_actV_nospline self.get_actReward=self.get_actReward_nospline self.get_act=self.get_act_nospline def init_grid(self): self.unempHila = np.zeros((self.n_time+1,self.n_palkka_old,self.n_elake,self.n_tis,self.n_palkka)) self.unempActHila = np.zeros((self.n_time+1,self.n_palkka_old,self.n_elake,self.n_tis,self.n_palkka,self.n_acts)) self.unempActReward = np.zeros((self.n_time+1,self.n_palkka_old,self.n_elake,self.n_tis,self.n_palkka,self.n_acts)) self.empHila = np.zeros((self.n_time+1,self.n_emppalkka_old,self.n_elake,self.n_emppalkka)) self.empActHila = np.zeros((self.n_time+1,self.n_emppalkka_old,self.n_elake,self.n_emppalkka,self.n_acts)) self.empActReward = np.zeros((self.n_time+1,self.n_emppalkka_old,self.n_elake,self.n_emppalkka,self.n_acts)) self.oaHila = np.zeros((self.n_time+1,self.n_oapension)) self.oaactHila = np.zeros((self.n_time+1,self.n_oapension)) self.oaactReward = np.zeros((self.n_time+1,self.n_oapension)) def explain(self): print(f'n_palkka {self.n_palkka}\nn_palkka_old {self.n_palkka_old}\nn_elake {self.n_elake}\nn_palkka_future {self.n_palkka_future}') print(f'n_emppalkka {self.n_emppalkka}\nn_emppalkka_old {self.n_emppalkka_old}\nn_elake {self.n_elake}') print(f'n_oapension {self.n_oapension}') print(f'min_wage {self.min_wage} max_wage {self.max_wage} max_wage_old {self.max_wage_old}') print(f'min_empwage {self.min_wage} max_empwage {self.max_empwage} max_empwage_old {self.max_empwage_old}') print(f'min_pension {self.min_pension} max_pension {self.max_pension}') print(f'min_oapension {self.min_oapension} max_oapension {self.max_oapension}') print(f'deltapalkka {self.deltapalkka} deltapalkka_old {self.deltapalkka_old} deltaelake {self.deltaelake}') print(f'delta_oapension {self.delta_oapension}') print(f'n_tis {self.n_tis} deltatis {self.deltatis}') print(f'gamma {self.gamma} timestep {self.timestep}') self.env.explain() def map_elake(self,v,emp=1): if emp==2: return self.min_oapension+self.delta_oapension*v # pitäisikö käyttää exp-hilaa? else: return self.min_pension+self.deltaelake*v # pitäisikö käyttää exp-hilaa? def inv_elake(self,v,emp=1): if emp==2: vmin=max(0,min(self.n_oapension-2,int(np.floor((v-self.min_oapension)/self.delta_oapension)))) vmax=vmin+1 w=max(0,v-self.min_oapension)/self.delta_oapension-vmin # lin.approximaatio else: vmin=max(0,min(self.n_elake-2,int(np.floor((v-self.min_pension)/self.deltaelake)))) vmax=vmin+1 w=max(0,v-self.min_pension)/self.deltaelake-vmin # lin.approximaatio if w<0: print(f'w<0: {w} {v} {vmin}') w=0 #raise ValueError('A very specific bad thing happened.') return vmin,vmax,w # def map_exp_elake(self,v): # return self.min_pension+self.deltaelake*(np.exp(v*self.expelakescale)-1) # # def inv_exp_elake(self,v): # vmin=max(0,min(self.n_elake-2,int((np.log(v-self.min_pension)+1)/self.deltaelake))) # vmax=vmin+1 # vmin_value=self.map_exp_elake(vmin) # vmax_value=self.map_exp_elake(vmax) # w=(v-vmin_value)/(self.vmax_value-vmin_value) # lin.approximaatio # # return vmin,vmax,w def map_palkka_old(self,v,emp,midpoint=False): if emp==0: deltapalkka_old=self.deltapalkka_old elif emp==1: deltapalkka_old=self.deltaemppalkka_old if midpoint: return self.min_wage+max(0,deltapalkka_old*(v+0.5)) else: return self.min_wage+max(0,deltapalkka_old*v) def inv_palkka_old(self,v,emp): if emp==0: deltapalkka_old=self.deltapalkka_old n_palkka_old=self.n_palkka_old elif emp==1: deltapalkka_old=self.deltaemppalkka_old n_palkka_old=self.n_emppalkka_old q=int(np.floor((v-self.min_wage)/deltapalkka_old)) vmin=int(max(0,min(n_palkka_old-2,q))) vmax=vmin+1 w=max(0,v-self.min_wage)/deltapalkka_old-vmin # lin.approximaatio if w<0: print(f'w<0: {w} {v} {vmin}') w=0 #raise ValueError('A very specific bad thing happened.') return vmin,vmax,w def map_palkka(self,v,emp,midpoint=False): if emp==0: deltapalkka=self.deltapalkka elif emp==1: deltapalkka=self.deltaemppalkka if midpoint: return self.min_wage+max(0,deltapalkka*(v+0.5)) else: return self.min_wage+max(0,deltapalkka*v) def inv_palkka(self,v,emp): if emp==0: deltapalkka=self.deltapalkka n_palkka=self.n_palkka elif emp==1: deltapalkka=self.deltaemppalkka n_palkka=self.n_emppalkka q=int(np.floor((v-self.min_wage)/deltapalkka)) vmin=int(max(0,min(n_palkka-2,q))) vmax=vmin+1 w=max(0,v-self.min_wage)/deltapalkka-vmin # lin.approximaatio if w<0: print(f'w<0: {w} {v} {vmin}') w=0 #raise ValueError('A very specific bad thing happened.') return vmin,vmax,w def test_map_palkka_old(self): ''' debug function ''' for k in range(1000,100000,1000): vmin,vmax,w=self.inv_elake(k,emp=2) p2=(1-w)*self.map_elake(vmin,emp=2)+w*self.map_elake(vmax,emp=2) print(k,p2,vmin,vmax,w) for p in range(self.n_palkka): palkka=self.map_palkka(p) print(palkka) def test_map_palkka(self,emp=1): print('palkka') wage=np.linspace(self.min_wage, self.max_wage, self.n_palkka) wage_old=np.linspace(self.min_wage, self.max_wage_old, self.n_palkka_old) pension=np.linspace(0, self.max_pension, self.n_elake) for x in np.arange(self.min_wage-10_000,self.max_wage+10_000,1_000): vmin,vmax,w=self.inv_palkka(x,emp) p2=(1-w)*self.map_palkka(vmin,emp)+w*self.map_palkka(vmax,emp) p3=(1-w)*wage[vmin]+w*wage[vmax] print(x,p2,p3) print('palkka_old') for x in np.arange(self.min_wage-10_000,self.max_wage_old+10_000,1_000): vmin,vmax,w=self.inv_palkka_old(x,emp) p2=(1-w)*self.map_palkka_old(vmin,emp)+w*self.map_palkka_old(vmax,emp) p3=(1-w)*wage_old[vmin]+w*wage_old[vmax] print(x,p2,p3) print('elake') for x in np.arange(self.min_pension-10_000,self.max_pension+10_000,1_000): vmin,vmax,w=self.inv_elake(x,emp=emp) p2=(1-w)*self.map_elake(vmin,emp=emp)+w*self.map_elake(vmax,emp=emp) p3=(1-w)*pension[vmin]+w*pension[vmax] print(x,p2,p3) # def map_palkka_future(self,palkka,v,med,state=1,midpoint=False): # #if state==0: # # kerroin=self.unemp_wageshock # #else: # # kerroin=1.0 # if midpoint: # return med*(1+(v+0.5-self.midfuture)*self.deltafuture) # else: # return med*(1+(v-self.midfuture)*self.deltafuture) def map_palkka_future_v4(self,palkka,age,state=1,midpoints=None): midp=[1.0*(v+1)/self.n_palkka_future for v in range(self.n_palkka_future)] midp_w=self.env.wage_process_map(midp,palkka,age,state=state) rho=1.0/self.n_palkka_future #print(midp_w,rho) w=np.zeros(self.n_palkka_future) for pnext in range(self.n_palkka_future-1): w[pnext]=self.env.wage_process_expect(midp_w[pnext],midp_w[pnext+1],palkka,age,state=state)/rho w[self.n_palkka_future-1]=self.env.wage_process_expect(midp_w[self.n_palkka_future-1],1e6,palkka,age,state=state)/rho #w=self.env.wage_process_map(x,palkka,age,state=state) return midp_w,w def map_palkka_future_v2(self,palkka,age,state=1,midpoint=False): def f(x): if x>self.n_palkka_future/2: return (0.49+x)/self.n_palkka_future else: return (0.51+x)/self.n_palkka_future if midpoint: x=[1.0*(v+1)/self.n_palkka_future for v in range(self.n_palkka_future)] else: if state==1: # in the large limit, it does not really matter which addition here is as long as x\in (0,1) x=[f(v) for v in range(self.n_palkka_future)] else: #x=[1.0*(0.50+v)/self.n_palkka_future for v in range(self.n_palkka_future)] x=[f(v) for v in range(self.n_palkka_future)] w=self.env.wage_process_map(x,palkka,age,state=state) return w def map_palkka_future_v3(self,palkka,age,state=1,midpoint=False): x=0.0001+np.array([0.9998*v/self.n_palkka_future for v in range(self.n_palkka_future+1)]) w=self.env.wage_process_map(x,palkka,age,state=state) return w def test_palkka_future(self): for s in range(2): for palkka in range(1000,50000,5000): for v in range(self.n_palkka_future): p=self.map_palkka_future(palkka,v,s) qmin,qmax,ql=self.inv_palkka_future(palkka,p,s) print(f'{palkka}: {p} {qmin} {qmax} {ql} {v}') def map_tis(self,v): return v def inv_tis(self,v): return int(min(self.n_tis-1,v)) # lineaarinen approksimaatio def get_V_spline(self,s=None,emp=None,elake=None,old_wage=None,time_in_state=None,wage=None,show=False,age=None): ''' hae hilasta tilan s arvo hetkelle t ''' if emp is None: emp,elake,old_wage,age,time_in_state,wage=self.env.state_decode(s) t = self.map_grid_age(age) if age>self.max_age: return 0.0 tismax=self.inv_tis(time_in_state) if emp==2: tismax=0 x = np.linspace(self.min_oapension,self.max_oapension,self.n_oapension) y = self.oaHila[t,:] if self.oamonotone_spline: f = PchipInterpolator(x,y,extrapolate=True) else: f = interp1d(x,y,fill_value="extrapolate",kind=self.spline_approx) if self.minspline: V1=max(y[0],f(max(self.min_oapension,elake))) # max tarkoittaa käytännössä takuueläkettä else: V1=max(0,f(max(self.min_oapension,elake))) # max tarkoittaa käytännössä takuueläkettä else: emin,emax,we=self.inv_elake(elake,emp=emp) pmin,pmax,wp=self.inv_palkka_old(old_wage,emp) if self.pw_bivariate: if emp==0: values=(1-wp)*self.unempHila[t,pmin,:,tismax,:]+wp*self.unempHila[t,pmax,:,tismax,:] elif emp==1: values=(1-wp)*self.empHila[t,pmin,:,:]+wp*self.empHila[t,pmax,:,:] else: if emp==0: values=(1-we)*self.unempHila[t,:,emin,tismax,:]+we*self.unempHila[t,:,emax,tismax,:] elif emp==1: values=(1-we)*self.empHila[t,:,emin,:]+we*self.empHila[t,:,emax,:] V1=self.get_V_values(emp,elake,wage,old_wage,values) #if show: # print(f'getV({emp},{elake},{old_wage},{wage}): p2min {p2min} p2max {p2max} wp2 {wp2})') # print(self.Hila[t,pmin,emin,emp,tismax,p2min],self.Hila[t,pmin,emin,emp,tismax,p2max]) V=np.maximum(0,V1) return V # lineaarinen approksimaatio def get_V_vector_spline(self,s=None,emp=None,elake=None,old_wage=None,time_in_state=None,wages=None,show=False,age=None,debug=False): ''' hae hilasta tilan s arvo hetkelle t ''' #if t>self.n_time: # return 0 Vs=np.zeros(wages.shape) if emp is None: emp,elake,old_wage,age,time_in_state,wage=self.env.state_decode(s) t=self.map_grid_age(age) if emp==2: tismax=0 x = np.linspace(self.min_oapension,self.max_oapension, self.n_oapension) y = self.oaHila[t,:] if self.oamonotone_spline: f = PchipInterpolator(x,y,extrapolate=True) else: f = interp1d(x, y,fill_value="extrapolate",kind=self.spline_approx) if self.minspline: Vs[:]=np.maximum(y[0],f(elake)) else: Vs[:]=np.maximum(0,f(elake)) else: emin,emax,we=self.inv_elake(elake,emp=emp) pmin,pmax,wp=self.inv_palkka_old(old_wage,emp) tismax=self.inv_tis(time_in_state) p = np.linspace(0, self.max_pension, self.n_elake) if emp==0: max_wage=self.max_wage max_wage_old=self.max_wage_old n_palkka=self.n_palkka n_palkka_old=self.n_palkka_old elif emp==1: max_wage=self.max_empwage max_wage_old=self.max_empwage_old n_palkka=self.n_emppalkka n_palkka_old=self.n_emppalkka_old w = np.linspace(self.min_wage, max_wage, n_palkka) w_old = np.linspace(self.min_wage, max_wage_old, n_palkka_old) if self.pw_bivariate: if emp==0: values=(1-wp)*self.unempHila[t,pmin,:,tismax,:]+wp*self.unempHila[t,pmax,:,tismax,:] elif emp==1: values=(1-wp)*self.empHila[t,pmin,:,:]+wp*self.empHila[t,pmax,:,:] else: error(1) g=RectBivariateSpline(p,w, values,kx=self.pw_maxspline,ky=self.pw_maxspline) if self.monotone_spline: g_extra = PchipInterpolator(w,g(elake,w)[0,:],extrapolate=True) else: g_extra = interp1d(w,g(elake,w),fill_value="extrapolate",kind='linear') for ind,wage in enumerate(wages): if elake>self.max_pension and self.extrapolate: if wage>max_wage and self.extrapolate: vh=np.zeros(n_palkka) for k,wg in enumerate(w): gw=interp1d(p,values[:,k],fill_value="extrapolate",kind='linear') #self.spline_approx) vh[k]=gw(elake) h=interp1d(w,vh,fill_value="extrapolate",kind='linear') #self.spline_approx) if self.minbispline: Vs[ind] = max(values[0,0],np.squeeze(h(wage))) else: Vs[ind] = max(0.0,np.squeeze(h(wage))) else: gq=interp1d(p,g(p,wage)[:,0],fill_value="extrapolate",kind='linear') #self.spline_approx) if self.minbispline: Vs[ind] = max(values[0,0],np.squeeze(gq(elake))) else: Vs[ind] = max(0.0,np.squeeze(gq(elake))) else: if wage>max_wage and self.extrapolate: # entä jos old_wage>max_wage?? #g_extra=interp1d(w,g(elake,w),fill_value="extrapolate",kind='linear') #self.spline_approx) V1 = np.squeeze(g_extra(wage)) else: V1 = np.squeeze(g(elake,wage)) if self.minbispline: Vs[ind]=max(values[0,0],V1) else: Vs[ind]=max(0,V1) else: if emp==0: values=(1-we)*self.unempHila[t,:,emin,tismax,:]+we*self.unempHila[t,:,emax,tismax,:] elif emp==1: values=(1-we)*self.empHila[t,:,emin,:]+we*self.empHila[t,:,emax,:] else: error(1) g=RectBivariateSpline(w_old,w,values,kx=self.pw_maxspline,ky=self.pw_maxspline) if self.monotone_spline: g_extra = PchipInterpolator(w,g(old_wage,w)[0,:],extrapolate=True) else: g_extra = interp1d(w,g(old_wage,w),fill_value="extrapolate",kind='linear') num=0 for ind,wage in enumerate(wages): if old_wage>max_wage_old and self.extrapolate: if wage>max_wage: num=num+1 #print(num) vh=np.zeros(n_palkka) for k,wg in enumerate(w): gw=interp1d(w_old,values[:,k],fill_value="extrapolate",kind='linear') #self.spline_approx) vh[k]=gw(old_wage) h=interp1d(w,vh,fill_value="extrapolate",kind='linear') #self.spline_approx) if self.minbispline: Vs[ind] = max(values[0,0],np.squeeze(h(wage))) else: Vs[ind] = max(0.0,np.squeeze(h(wage))) else: if self.monotone_spline: hwx = PchipInterpolator(w_old,g(w_old,wage)[:,0],extrapolate=True) else: hwx=interp1d(w_old,g(w_old,wage)[:,0],fill_value="extrapolate",kind='linear') #self.spline_approx) if self.minbispline: Vs[ind] = max(values[0,0],np.squeeze(hwx(old_wage))) else: Vs[ind] = max(0.0,np.squeeze(hwx(old_wage))) else: if wage>max_wage and self.extrapolate: if self.minbispline: Vs[ind] = max(values[0,0],np.squeeze(g_extra(wage))) else: Vs[ind] = max(0.0,np.squeeze(g_extra(wage))) else: V1 = np.squeeze(g(old_wage,wage)) if self.minbispline: Vs[ind]=max(values[0,0],V1) else: Vs[ind]=max(0.0,V1) #if debug: # print(f'w {wage} V1 {V1}') #if show: # print(f'getV({emp},{elake},{old_wage},{wage}): p2min {p2min} p2max {p2max} wp2 {wp2})') # print(self.Hila[t,pmin,emin,emp,tismax,p2min],self.Hila[t,pmin,emin,emp,tismax,p2max]) return Vs def map_grid_age(self,age): return int(np.round(age-self.min_grid_age)) def plot_Hila(self,age,emp=1,time_in_state=1,diff=False): x=
np.arange(self.min_wage,100000,1000)
numpy.arange
from __future__ import print_function import unittest from SimPEG import Mesh, Utils import numpy as np import SimPEG.EM.Static.DC as DC try: from pymatsolver import Pardiso as Solver except ImportError: from SimPEG import SolverLU as Solver from geoana.em import fdem from scipy.constants import mu_0, epsilon_0 class DC_CC_DipoleFullspaceTests(unittest.TestCase): def setUp(self): cs = 0.5 npad = 11 hx = [(cs, npad, -1.5), (cs, 15), (cs, npad, 1.5)] hy = [(cs, npad, -1.5), (cs, 15), (cs, npad, 1.5)] hz = [(cs, npad, -1.5), (cs, 15), (cs, npad, 1.5)] mesh = Mesh.TensorMesh([hx, hy, hz], x0="CCC") sigma = np.ones(mesh.nC)*1e-2 # Set up survey parameters for numeric solution x = mesh.vectorCCx[(mesh.vectorCCx > -75.) & (mesh.vectorCCx < 75.)] y = mesh.vectorCCy[(mesh.vectorCCy > -75.) & (mesh.vectorCCy < 75.)] Aloc = np.r_[1.0, 0., 0.] Bloc = np.r_[-1.0, 0., 0.] M = Utils.ndgrid(x-25., y, np.r_[0.]) N = Utils.ndgrid(x+25., y, np.r_[0.]) rx = DC.Rx.Dipole(M, N) src = DC.Src.Dipole([rx], Aloc, Bloc) survey = DC.Survey([src]) # Create Dipole Obj for Analytic Solution edipole = fdem.ElectricDipoleWholeSpace( sigma=1e-2, # conductivity of 1 S/m mu=mu_0, # permeability of free space (this is the default) epsilon=epsilon_0, # permittivity of free space (this is the default) location=np.r_[0., 0., 0.], # location of the dipole orientation='X', # horizontal dipole (can also be a unit-vector) quasistatic=True, # don't use the quasistatic assumption frequency=0.0, # DC length=2.0 # length of dipole ) # evaluate the electric field and current density Ex_analytic = np.zeros_like([mesh.nFx,1]) Ey_analytic = np.zeros_like([mesh.nFy,1]) Ez_analytic = np.zeros_like([mesh.nFz,1]) Ex_analytic = np.real(edipole.electric_field(mesh.gridFx))[:,0] Ey_analytic = np.real(edipole.electric_field(mesh.gridFy))[:,1] Ez_analytic = np.real(edipole.electric_field(mesh.gridFz))[:,2] E_analytic = np.hstack([Ex_analytic,Ey_analytic,Ez_analytic]) Jx_analytic = np.zeros_like([mesh.nFx,1]) Jy_analytic = np.zeros_like([mesh.nFy,1]) Jz_analytic = np.zeros_like([mesh.nFz,1]) Jx_analytic = np.real(edipole.current_density(mesh.gridFx))[:,0] Jy_analytic = np.real(edipole.current_density(mesh.gridFy))[:,1] Jz_analytic = np.real(edipole.current_density(mesh.gridFz))[:,2] J_analytic = np.hstack([Jx_analytic,Jy_analytic,Jz_analytic]) # Find faces at which to compare solutions faceGrid = np.vstack([mesh.gridFx,mesh.gridFy,mesh.gridFz]) # print(faceGrid.shape) ROI_large_BNW = np.array([-75,75,-75]) ROI_large_TSE = np.array([75,-75,75]) ROI_largeInds = Utils.ModelBuilder.getIndicesBlock(ROI_large_BNW,ROI_large_TSE,faceGrid)[0] # print(ROI_largeInds.shape) ROI_small_BNW = np.array([-4,4,-4]) ROI_small_TSE = np.array([4,-4,4]) ROI_smallInds = Utils.ModelBuilder.getIndicesBlock(ROI_small_BNW,ROI_small_TSE,faceGrid)[0] # print(ROI_smallInds.shape) ROIfaceInds = np.setdiff1d(ROI_largeInds,ROI_smallInds) # print(ROIfaceInds.shape) # print(len(ROI_largeInds) - len(ROI_smallInds)) self.survey = survey self.mesh = mesh self.sigma = sigma self.E_analytic = E_analytic self.J_analytic = J_analytic self.ROIfaceInds = ROIfaceInds def test_Problem3D_CC_Dirchlet(self, tolerance=0.1): problem = DC.Problem3D_CC( self.mesh, sigma=self.sigma, bc_type='Dirchlet' ) problem.Solver = Solver problem.pair(self.survey) f = problem.fields() eNumeric = Utils.mkvc(f[self.survey.srcList,'e']) jNumeric = Utils.mkvc(f[self.survey.srcList,'j']) errE = ( np.linalg.norm(jNumeric[self.ROIfaceInds] - self.J_analytic[self.ROIfaceInds]) /
np.linalg.norm(self.J_analytic[self.ROIfaceInds])
numpy.linalg.norm
import numpy as np import numpy.linalg as la from io import StringIO def print_mat(mat): stream = StringIO() np.savetxt(stream, mat, fmt="%.3f") print( stream.getvalue() ) # ----------------------------------- def get_convergent_vector(L, r_0, threshold=0.01): ''' :param L: transition matrix :param r_0: initial vector :param threshold: parameter for convergence condition :return: convergent vector ''' r_cur = r_0 while True: r_next = np.matmul(L, r_cur) if la.norm(r_next - r_cur) < threshold: # check convergence condition is met or not break r_cur = r_next return r_cur # ----------------------------------- def get_matrix_with_damping(matrix, damping=0.5): # get the size of matrix n, _ = matrix.shape return matrix * damping + ( 1 - damping ) * np.ones((n, n)) / n # ----------------------------------- # get the size n = int( input() ) # get the name of website websites = input().split() # get transition matrix matrix = [ [ 0.0 for x in range(n)] for y in range(n) ] for y in range(n): matrix[y] = [ *map( float, input().split() ) ] # get the name of target website target = input() # convert to numpy array matrix =
np.array(matrix)
numpy.array
from numba import njit import numpy as np from numpy import pi, inf, NINF, float64, finfo from numpy.random import rand import math from math import isnan, cos, log, exp import random from tpg.utils import flip import uuid import copy """ A program that is executed to help obtain the bid for a learner. """ class ConfProgram: def init_def(self, instructions=None, maxProgramLength=128, nOperations=5, nDestinations=8, inputSize=30720, initParams=None): if instructions is not None: # copy from existing self.instructions = np.array(instructions, dtype=np.int32) else: # create random new self.instructions = np.array([ (random.randint(0,1), random.randint(0, nOperations-1), random.randint(0, nDestinations-1), random.randint(0, inputSize-1)) for _ in range(random.randint(1, maxProgramLength))], dtype=np.int32) self.id = uuid.uuid4() """ Executes the program which returns a single final value. """ @njit def execute_def(inpt, regs, modes, ops, dsts, srcs): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) if math.isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == np.inf: regs[dest] = np.finfo(np.float64).max elif regs[dest] == np.NINF: regs[dest] = np.finfo(np.float64).min """ Executes the program which returns a single final value using shared memory. """ @njit def execute_mem(inpt, regs, modes, ops, dsts, srcs, memMatrix, memRows, memCols, memWriteProbFunc): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: index = srcs[i] index %= (memRows*memCols) row = int(index / memRows) col = index % memCols regs[dest] = memMatrix[row, col] elif op == 6: # row offset (start from center, go to edges) halfRows = int(memRows/2) # halfRows for i in range(halfRows): # probability to write (gets smaller as i increases) # TODO: swap out write prob func by passing in an array of values for that row. writeProb = memWriteProbFunc(i) # column to maybe write corresponding value into for col in range(memCols): # try write to lower half if rand(1)[0] < writeProb: row = (halfRows - i) - 1 memMatrix[row,col] = regs[col] # try write to upper half if rand(1)[0] < writeProb: row = halfRows + i memMatrix[row,col] = regs[col] if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] = finfo(float64).max elif regs[dest] == NINF: regs[dest] = finfo(float64).min """ Executes the program which returns a single final value. """ @njit def execute_full(inpt, regs, modes, ops, dsts, srcs): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: regs[dest] = cos(y) elif op == 6: if y > 0: regs[dest] = log(y) elif op == 7: regs[dest] = exp(y) if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] =
finfo(float64)
numpy.finfo
""" Code to calculate spin-orbit spillage. Modified from JARVIS-Tools https://www.nature.com/articles/s41598-019-45028-y https://www.nature.com/articles/s41524-020-0319-4 """ import numpy as np from pymatgen.io.vasp.outputs import Wavecar class SOCSpillage: """ Spin-orbit spillage criteria to predict whether a material is topologically non-trival. The spillage criteria physically signifies number of band-inverted electrons. A non-zero, high value (generally >0.5) suggests non-trivial behavior """ def __init__(self, wf_noso="", wf_so=""): """ Requires path to WAVECAR files with and without LSORBIT = .TRUE. Args: wf_noso : WAVECAR without spin-orbit coupling wf_so : WAVECAR with spin-orbit coupling """ self.wf_noso = wf_noso self.wf_so = wf_so @staticmethod def isclose(n1, n2, rel_tol=1e-7): """ Checking if the numbers are close enough """ return abs(n1 - n2) < rel_tol @staticmethod def orth(A): """ Helper function to create orthonormal basis """ u, s, vh = np.linalg.svd(A, full_matrices=False) M, N = A.shape eps = np.finfo(float).eps tol = max(M, N) * np.amax(s) * eps num = np.sum(s > tol, dtype=int) Q = u[:, :num] return Q, num def overlap_so_spinpol(self): """ Main function to calculate SOC spillage """ noso = Wavecar(self.wf_noso) so = Wavecar(self.wf_so) bcell = np.linalg.inv(noso.a).T tmp = np.linalg.norm(np.dot(np.diff(noso.kpoints, axis=0), bcell), axis=1) noso_k = np.concatenate(([0], np.cumsum(tmp))) noso_bands = np.array(noso.band_energy)[:, :, :, 0] noso_kvecs = np.array(noso.kpoints) noso_occs =
np.array(noso.band_energy)
numpy.array
"""Helper functions.""" from dataclasses import dataclass from importlib import import_module from numbers import Integral import shutil from typing import ( Any, Callable, cast, Iterable, List, Literal, Optional, overload, Sequence, Union, ) import numpy as np from scipy.sparse import csr_matrix from scipy.sparse.csgraph import connected_components import scipy.spatial from morfeus.data import ( atomic_numbers, atomic_symbols, cov_radii_pyykko, radii_alvarez, radii_bondi, radii_crc, radii_rahm, radii_truhlar, ) from morfeus.typing import Array2D, ArrayLike1D, ArrayLike2D def get_excluded_from_connectivity( connectivity_matrix: ArrayLike2D, center_atoms: ArrayLike1D, connected_atoms: ArrayLike1D, ) -> List[int]: """Get atom indices to exclude bassed on connectivity and fragmentation. Convenience function that determines atoms to exclude from a calculation of a larger structure with multiple fragments. Connected atoms belong to the fragment of interest, e.g., a ligand. Center atoms are those of e.g. a central metal atom that. By default, the center atoms are added to the excluded ones. Args: connectivity_matrix: Connectivity matrix center_atoms: Atoms of central unit which connects to fragment (1-indexed) connected_atoms: Atoms of fragment (1-indexed) Returns: excluded_atoms: Atom indices to exclude Raises: ValueError: When connected atoms belong to different fragments or when connected atoms belong to same fragment as other neighbors of center atoms (1-indexed) """ connectivity_matrix = np.array(connectivity_matrix) center_atoms = np.array(center_atoms).reshape(-1) - 1 connected_atoms = np.array(connected_atoms).reshape(-1) - 1 # Determine other neihgbors to the central atoms other_neighbors = set( connectivity_matrix[center_atoms].reshape(-1).nonzero()[0] ).difference(connected_atoms) # Calculate fragment labels mask = np.ones(len(connectivity_matrix), dtype=bool) mask[center_atoms] = False graph = csr_matrix(connectivity_matrix)[mask, :][:, mask] n_components, labels = connected_components( csgraph=graph, directed=False, return_labels=True ) # Take out labels and check for errors connected_labels = set([labels[i] for i in connected_atoms]) if len(connected_labels) > 1: raise ValueError("Connected atoms belong to different fragments.") neighbor_labels = set([labels[i] for i in other_neighbors]) if len(neighbor_labels.intersection(connected_labels)) > 0: raise ValueError( "Connected atoms belong to same fragment as other neighbor of center atoms." ) ref_label = list(connected_labels)[0] excluded_atoms = list(np.where(labels != ref_label)[0] + 1) return excluded_atoms def check_distances( elements: Union[Iterable[int], Iterable[str]], coordinates: ArrayLike2D, check_atom: int, radii: Optional[ArrayLike1D] = None, check_radius: float = 0, excluded_atoms: Optional[Sequence[int]] = None, epsilon: float = 0, radii_type: str = "crc", ) -> List[int]: """Check which atoms are within clashing vdW radii distances. Args: elements: Elements as atomic symbols or numbers coordinates: Coordinates (Å) check_atom: Index of atom to check against (1-indexed) radii: vdW radii (Å) check_radius: Radius to use for check_atom (Å) excluded_atoms: Atom indices to exclude (1-indexed) epsilon: Numeric term add to the radii (Å) radii_type: Radii type: 'alvarez', 'bondi', 'crc', 'pyykko', 'rahm' or 'truhlar' Returns: within_list: Atom indices within vdW distance of check atom. """ # Convert elements to atomic numbers if the are symbols elements = convert_elements(elements, output="numbers") # Get radii if they are not supplied if radii is None: radii = get_radii(elements, radii_type=radii_type) radii =
np.array(radii)
numpy.array
"""Implements the bilateral filter for images.""" from numpy import ceil, exp, dot, ogrid, arange def bilateral_filter(im, size=None, sigma_r=None, sigma_d=1, **kwargs): """ Bilaterally filter an image. Uses Gaussian kernels for the spatial and intensity filters. im is the image to filter, must be grayscale but can be any dimension size is the kernel size, must be odd and >=3, defaults to int(max(5, 2*ceil(3*sigma_d)+1)). sigma_r is the range/intensity standard deviation, defaults to image standard deviation. sigma_d is the domain/spatial standard deviation, default to 1. other keyword arguments are passed to scipy.ndimage.generic_filter. This attempts to use a Cython optimized function if possible. Additionally in common cases many parts are computed to greatly speed up the function. REFERENCES 1. <NAME> and <NAME>, 1998, "Bilateral filtering for gray and color images". Sixth International Conference on Computer Vision. pp. 839–846. 2. <NAME> and <NAME>, 2008, "Enhancing Contrast in Color Images Using Bilateral Filter and Histogram Equalization Using Wavelet Coefficients", 2008 Second International Conference on Future Generation Communication and Networking Symposia. """ from scipy.ndimage import generic_filter if sigma_r is None: sigma_r = im.std() if size is None: size = int(max(5, 2*ceil(3*sigma_d)+1)) elif size < 3 or size%2 != 1: raise ValueError(size) # Calculate the kernels spatial, scale, inten_lut = __bilateral_kernels(im.dtype, im.ndim, size, sigma_r, sigma_d) try: # Try to import Cython optimized code - 20 to 75x faster from scipy import LowLevelCallable import hist.exact.__bilateral_cy as cy _bilateral_filter = LowLevelCallable.from_cython( cy, 'bilateral_filter' if inten_lut is None else 'bilateral_filter_inten_lut', cy.get_user_data(spatial, scale, inten_lut)) # pylint: disable=c-extension-no-member except ImportError: # Fallback to pure Python function # Note: it seems the pure Python function actually gets slower with the intensity LUT def _bilateral_filter(data): diff = data - data[data.size // 2] weight = exp(diff*diff*scale) * spatial return dot(data, weight) / weight.sum() return generic_filter(im, _bilateral_filter, size, **kwargs) def __bilateral_kernels(dt, ndim, size, sigma_r, sigma_d): """ Computes the spatial kernel and the intensity kernel scale. Also computes the intensity LUT if it makes sense. If not None is returned in its place. """ from ..util import get_dtype_min_max # Calculate the fixed spatial kernel scale = -1/(2*sigma_d*sigma_d) dist2 = sum(x*x for x in ogrid[(slice(-(size//2), size//2+1),)*ndim]) spatial = (dist2*scale).ravel() exp(spatial, spatial) spatial /= spatial.sum() # Calculate the complete intensity LUT kernel if it makes sense # Don't do this for 32-bit+ integral images or floating-point images scale = -1/(2*sigma_r*sigma_r) intensity_lut = None if dt.kind in 'uib' and dt.itemsize <= 2: mn, mx = get_dtype_min_max(dt) intensity_lut = arange(0, mx-mn+1) intensity_lut *= intensity_lut intensity_lut = intensity_lut * scale
exp(intensity_lut, intensity_lut)
numpy.exp
import logging import numpy as np import pandas as pd def feature_position(hdim1_indices,hdim2_indeces,region,track_data,threshold_i,position_threshold, target): ''' function to determine feature position Input: hdim1_indices: list hdim2_indeces: list region: list list of 2-element tuples track_data: numpy.ndarray 2D numpy array containing the data threshold_i: float position_threshold: str target: str Output: hdim1_index: float feature position along 1st horizontal dimension hdim2_index: float feature position along 2nd horizontal dimension ''' if position_threshold=='center': # get position as geometrical centre of identified region: hdim1_index=np.mean(hdim1_indices) hdim2_index=np.mean(hdim2_indeces) elif position_threshold=='extreme': #get position as max/min position inside the identified region: if target == 'maximum': index=np.argmax(track_data[region]) hdim1_index=hdim1_indices[index] hdim2_index=hdim2_indeces[index] if target == 'minimum': index=np.argmin(track_data[region]) hdim1_index=hdim1_indices[index] hdim2_index=hdim2_indeces[index] elif position_threshold=='weighted_diff': # get position as centre of identified region, weighted by difference from the threshold: weights=abs(track_data[region]-threshold_i) if sum(weights)==0: weights=None hdim1_index=np.average(hdim1_indices,weights=weights) hdim2_index=
np.average(hdim2_indeces,weights=weights)
numpy.average
from typing import Callable, Tuple, List, Union # anaconda API import numpy as np from numpy.random import RandomState from scipy.signal import lfilter # custom types from numpy import ndarray from pandas import Series # API from tsoracle.API import Generator from tsoracle import plotting, factor # functional API def noise(var: Union[float, int], size: int, random_state: float = None) -> ndarray: """ Generate sequential noise from a random normal . Parameters ---------- var: scalar float Nosie variance level. size: scalar int Number of samples to generate, strictly positive. random_state: scalar int, optional Seed the random number generator Returns ------- noise: np.ndarray Sequential noise. """ if size < 1: raise ValueError('The value for size must be strictly positive') if var == 0: noise_signal = np.zeros(size) else: noise_signal = RandomState(random_state).normal(scale = np.sqrt(var), size = size) return noise_signal def linear(intercept: float, slope: float, size: int, var: float = 0.01, random_state: float = None): """ Generate linear signal plus noise. Parameters ---------- intercept: scalar float Intercept of linear signal. slope: scalar float Slope of linear signal. size: scalar int Number of samples to generate. var: scalar float, optional Nosie variance level. random_state: scalar int, optional Seed the random number generator Returns ------- signal: np.ndarray Sequential linear signal. """ # check for input errors if size < 1: raise ValueError('The value for size must be strictly positive') # generate time samples time_index = np.arange(size) # get noise sig_noise = noise(var = var, size = time_index.size, random_state = random_state) # calculate signal signal = slope * time_index + intercept return signal + sig_noise def sinusoidal(mag: Union[float, ndarray, Series, List], freq: Union[float, ndarray, Series, List], shift: Union[float, ndarray, Series, List], size: int, var: float = 0.01, random_state: float = None): """ Generate sinusoidal signal plus noise. Parameters ---------- mag: scalar or list-like Signal magnitudes(ies). freq: scalar or list-like Signal frequency(ies). shift: scalar or list-like Phase shift(s). size: scalar int Number of samples to generate. var: scalar float, optional Nosie variance level. random_state: scalar int, optional Seed the random number generator. Returns ------- signal: np.ndarray Sequential sinusoidal signal. """ mag = np.array(mag).reshape(np.array(mag).size, 1) freq = np.array(freq).reshape(
np.array(freq)
numpy.array
# BSD 3-Clause License; see https://github.com/jpivarski/awkward-1.0/blob/master/LICENSE from __future__ import absolute_import import numpy import awkward1._util import awkward1._connect._numpy import awkward1.layout import awkward1.operations.convert def count(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] + reduce(xs[1:]) return reduce([numpy.size(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.count(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.count_nonzero) def count_nonzero(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] + reduce(xs[1:]) return reduce([numpy.count_nonzero(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.count_nonzero(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.sum) def sum(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] + reduce(xs[1:]) return reduce([
numpy.sum(x)
numpy.sum
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import math as m import numpy as np import pandas as pd import tensorflow_probability as tfp import matplotlib.pyplot as plt import math from tensorflow import keras from tensorflow.keras import layers from random import shuffle from keras import backend as K import numpy as np import keras.datasets from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential from sklearn import model_selection import scipy import time from footprints_and_cutouts import preprocess_scenes (train_cutouts_blended_allScenes, train_cutouts_unblended_allScenes, train_blended_mag_filters_allScenes, train_unblended_mag_filters_allScenes) = preprocess_scenes(train=True,use_pipeline_segmap=True) (test_cutouts_blended_allScenes, test_cutouts_unblended_allScenes, test_blended_mag_filters_allScenes, test_unblended_mag_filters_allScenes) = preprocess_scenes(train=False,use_pipeline_segmap=True) train_cutouts_allScenes = [] train_cutouts_labels = [] train_mag_filter = [] count=0 for i in train_cutouts_unblended_allScenes: train_cutouts_allScenes.append(i) train_cutouts_labels.append([1,0]) if train_unblended_mag_filters_allScenes[21.5][count]: train_mag_filter.append(21.5) elif train_unblended_mag_filters_allScenes[22.5][count]: train_mag_filter.append(22.5) elif train_unblended_mag_filters_allScenes[23.5][count]: train_mag_filter.append(23.5) elif train_unblended_mag_filters_allScenes[24.5][count]: train_mag_filter.append(24.5) elif train_unblended_mag_filters_allScenes[25.5][count]: train_mag_filter.append(25.5) elif train_unblended_mag_filters_allScenes[26.5][count]: train_mag_filter.append(26.5) else: train_mag_filter.append(0) count+=1 count = 0 for i in train_cutouts_blended_allScenes: train_cutouts_allScenes.append(i) train_cutouts_labels.append([0,1]) if train_blended_mag_filters_allScenes[21.5][count]: train_mag_filter.append(21.5) elif train_blended_mag_filters_allScenes[22.5][count]: train_mag_filter.append(22.5) elif train_blended_mag_filters_allScenes[23.5][count]: train_mag_filter.append(23.5) elif train_blended_mag_filters_allScenes[24.5][count]: train_mag_filter.append(24.5) elif train_blended_mag_filters_allScenes[25.5][count]: train_mag_filter.append(25.5) elif train_blended_mag_filters_allScenes[26.5][count]: train_mag_filter.append(26.5) else: train_mag_filter.append(0) count+=1 test_cutouts_allScenes = [] test_cutouts_labels = [] test_mag_filter = [] count=0 for i in test_cutouts_unblended_allScenes: test_cutouts_allScenes.append(i) test_cutouts_labels.append([1,0]) if test_unblended_mag_filters_allScenes[21.5][count]: test_mag_filter.append(21.5) elif test_unblended_mag_filters_allScenes[22.5][count]: test_mag_filter.append(22.5) elif test_unblended_mag_filters_allScenes[23.5][count]: test_mag_filter.append(23.5) elif test_unblended_mag_filters_allScenes[24.5][count]: test_mag_filter.append(24.5) elif test_unblended_mag_filters_allScenes[25.5][count]: test_mag_filter.append(25.5) elif test_unblended_mag_filters_allScenes[26.5][count]: test_mag_filter.append(26.5) else: test_mag_filter.append(0) count+=1 count = 0 for i in test_cutouts_blended_allScenes: test_cutouts_allScenes.append(i) test_cutouts_labels.append([0,1]) if test_blended_mag_filters_allScenes[21.5][count]: test_mag_filter.append(21.5) elif test_blended_mag_filters_allScenes[22.5][count]: test_mag_filter.append(22.5) elif test_blended_mag_filters_allScenes[23.5][count]: test_mag_filter.append(23.5) elif test_blended_mag_filters_allScenes[24.5][count]: test_mag_filter.append(24.5) elif test_blended_mag_filters_allScenes[25.5][count]: test_mag_filter.append(25.5) elif test_blended_mag_filters_allScenes[26.5][count]: test_mag_filter.append(26.5) else: test_mag_filter.append(0) count+=1 for _ in np.arange(23): trainx,testx,trainy,testy,trainmag,testmag = train_cutouts_allScenes,test_cutouts_allScenes,train_cutouts_labels,test_cutouts_labels,train_mag_filter,test_mag_filter trainx2 = np.log10(np.array(trainx)+10**-8) testx2 = np.log10(np.array(testx)+10**-8) trainxnorm = (trainx2 - np.min(trainx2))/(np.max(trainx2)-np.min(trainx2)) testxnorm = (testx2 - np.min(testx2))/(np.max(testx2)-np.min(testx2)) input_shape = (23, 23, 1) num_classes=2 model = keras.Sequential() model.add(Conv2D(128, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(800,activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(400,activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(200,activation = 'relu')) model.add(Dense(num_classes, activation="softmax")) epochs=20 model.compile(loss="binary_crossentropy", optimizer='adam', metrics=["accuracy"]) time_start = time.time() model.fit(np.reshape(trainxnorm,(len(trainx),23,23,1)), np.array(trainy), epochs=15,verbose=True,batch_size=200,validation_split = .1) train_time = time.time()-time_start mean_loss_xxx = model.evaluate(np.array(np.reshape(testxnorm,(len(testx),23,23,1))),np.array(testy)) bce=[] count = 0 for i in testxnorm: bce.append(model.evaluate(np.array(np.reshape(i,(1,23,23,1))),np.array([testy[count]]))[0]) count+=1 standard_error_bce = scipy.stats.sem(bce) classified = [] blended_predict = [] count = [] for i in model.predict(np.reshape(testxnorm,(len(testx),23,23,1))): if i[0]>i[1]: classified.append([1,0]) else: classified.append([0,1]) blended_predict.append(i[1]) blended_predict arr_21 = [] arr_22 = [] arr_23 = [] arr_24 = [] arr_25 = [] arr_26 = [] count = 0 for i in np.array(testy)==classified: if testmag[count] == 21.5: arr_21.append([i[0],testy[count]]) if testmag[count] == 22.5: arr_22.append([i[0],testy[count]]) if testmag[count] == 23.5: arr_23.append([i[0],testy[count]]) if testmag[count] == 24.5: arr_24.append([i[0],testy[count]]) if testmag[count] == 25.5: arr_25.append([i[0],testy[count]]) if testmag[count] == 26.5: arr_26.append([i[0],testy[count]]) count+=1 arr_21_unblended = [] arr_21_blended = [] for i in arr_21: if i[1] == [1,0]: arr_21_unblended.append(i[0]) else: arr_21_blended.append(i[0]) arr_22_unblended = [] arr_22_blended = [] for i in arr_22: if i[1] == [1,0]: arr_22_unblended.append(i[0]) else: arr_22_blended.append(i[0]) arr_23_unblended = [] arr_23_blended = [] for i in arr_23: if i[1] == [1,0]: arr_23_unblended.append(i[0]) else: arr_23_blended.append(i[0]) arr_24_unblended = [] arr_24_blended = [] for i in arr_24: if i[1] == [1,0]: arr_24_unblended.append(i[0]) else: arr_24_blended.append(i[0]) arr_25_unblended = [] arr_25_blended = [] for i in arr_25: if i[1] == [1,0]: arr_25_unblended.append(i[0]) else: arr_25_blended.append(i[0]) arr_26_unblended = [] arr_26_blended = [] for i in arr_26: if i[1] == [1,0]: arr_26_unblended.append(i[0]) else: arr_26_blended.append(i[0]) unblended = [['accuracy','# of samples', 'variance of # of accurately classified samples'],[np.count_nonzero(arr_21_unblended)/len(arr_21_unblended),len(arr_21_unblended)], [np.count_nonzero(arr_22_unblended)/len(arr_22_unblended),len(arr_22_unblended)], [np.count_nonzero(arr_23_unblended)/len(arr_23_unblended),len(arr_23_unblended)], [np.count_nonzero(arr_24_unblended)/len(arr_24_unblended),len(arr_24_unblended)], [np.count_nonzero(arr_25_unblended)/len(arr_25_unblended),len(arr_25_unblended)], [np.count_nonzero(arr_26_unblended)/len(arr_26_unblended),len(arr_26_unblended)]] blended = [['accuracy','# of samples', 'variance of # of accurately classified samples'],[np.count_nonzero(arr_21_blended)/len(arr_21_blended),len(arr_21_blended)], [np.count_nonzero(arr_22_blended)/len(arr_22_blended),len(arr_22_blended)], [np.count_nonzero(arr_23_blended)/len(arr_23_blended),len(arr_23_blended)], [np.count_nonzero(arr_24_blended)/len(arr_24_blended),len(arr_24_blended)], [np.count_nonzero(arr_25_blended)/len(arr_25_blended),len(arr_25_blended)], [np.count_nonzero(arr_26_blended)/len(arr_26_blended),len(arr_26_blended)]] for i in unblended[1:]: i.append(np.sqrt(i[0]*i[1]*(1-i[0]))) for i in blended[1:]: i.append(np.sqrt(i[0]*i[1]*(1-i[0]))) unblended = np.array(unblended) blended = np.array(blended) overall_blended_accuracy = np.sum(i[0].astype(float)*i[1].astype(float) for i in blended[1:].astype(float))/np.sum(i[1].astype(float) for i in blended[1:].astype(float)) overall_unblended_accuracy = np.sum(i[0].astype(float)*i[1].astype(float) for i in unblended[1:].astype(float))/np.sum(i[1].astype(float) for i in unblended[1:].astype(float)) blended_predict_0 = [] blended_predict_1 = [] blended_predict_2 = [] blended_predict_3 = [] blended_predict_4 = [] blended_predict_5 = [] blended_predict_6 = [] blended_predict_7 = [] blended_predict_8 = [] blended_predict_9 = [] count = 0 for i in blended_predict: if i <.1: blended_predict_0.append([[0,1]==testy[count],blended_predict[count]]) if i >=.1 and i<.2: blended_predict_1.append([[0,1]==testy[count],blended_predict[count]]) if i >=.2 and i<.3: blended_predict_2.append([[0,1]==testy[count],blended_predict[count]]) if i >=.3 and i<.4: blended_predict_3.append([[0,1]==testy[count],blended_predict[count]]) if i >=.4 and i<.5: blended_predict_4.append([[0,1]==testy[count],blended_predict[count]]) if i >=.5 and i<.6: blended_predict_5.append([[0,1]==testy[count],blended_predict[count]]) if i >=.6 and i<.7: blended_predict_6.append([[0,1]==testy[count],blended_predict[count]]) if i >=.7 and i<.8: blended_predict_7.append([[0,1]==testy[count],blended_predict[count]]) if i >=.8 and i<.9: blended_predict_8.append([[0,1]==testy[count],blended_predict[count]]) if i >=.9: blended_predict_9.append([[0,1]==testy[count],blended_predict[count]]) count+=1 blended_predict_0 = np.array(blended_predict_0) blended_predict_1 = np.array(blended_predict_1) blended_predict_2 = np.array(blended_predict_2) blended_predict_3 = np.array(blended_predict_3) blended_predict_4 = np.array(blended_predict_4) blended_predict_5 = np.array(blended_predict_5) blended_predict_6 = np.array(blended_predict_6) blended_predict_7 = np.array(blended_predict_7) blended_predict_8 = np.array(blended_predict_8) blended_predict_9 = np.array(blended_predict_9) cal_0 = np.count_nonzero(blended_predict_0[:,0])/len(blended_predict_0) cal_1 = np.count_nonzero(blended_predict_1[:,0])/len(blended_predict_1) cal_2 = np.count_nonzero(blended_predict_2[:,0])/len(blended_predict_2) cal_3 = np.count_nonzero(blended_predict_3[:,0])/len(blended_predict_3) cal_4 = np.count_nonzero(blended_predict_4[:,0])/len(blended_predict_4) cal_5 = np.count_nonzero(blended_predict_5[:,0])/len(blended_predict_5) cal_6 = np.count_nonzero(blended_predict_6[:,0])/len(blended_predict_6) cal_7 = np.count_nonzero(blended_predict_7[:,0])/len(blended_predict_7) cal_8 = np.count_nonzero(blended_predict_8[:,0])/len(blended_predict_8) cal_9 = np.count_nonzero(blended_predict_9[:,0])/len(blended_predict_9) mean_0 = np.mean(blended_predict_0[:,1]) mean_1 = np.mean(blended_predict_1[:,1]) mean_2 = np.mean(blended_predict_2[:,1]) mean_3 = np.mean(blended_predict_3[:,1]) mean_4 = np.mean(blended_predict_4[:,1]) mean_5 = np.mean(blended_predict_5[:,1]) mean_6 = np.mean(blended_predict_6[:,1]) mean_7 = np.mean(blended_predict_7[:,1]) mean_8 = np.mean(blended_predict_8[:,1]) mean_9 = np.mean(blended_predict_9[:,1]) percentile_0 = [np.percentile(blended_predict_0[:,1],16),np.percentile(blended_predict_0[:,1],84)] percentile_1 = [np.percentile(blended_predict_1[:,1],16),np.percentile(blended_predict_1[:,1],84)] percentile_2 = [np.percentile(blended_predict_2[:,1],16),np.percentile(blended_predict_2[:,1],84)] percentile_3 = [
np.percentile(blended_predict_3[:,1],16)
numpy.percentile
""" Functions to map between the coordinates in image pixel space and geographical coordinates. """ import logging from typing import Tuple from types import MethodType # for binding a method dynamically to a class import numpy from . import geocoords from ..io.complex.sicd_elements.blocks import Poly2DType, XYZPolyType from ..io.DEM.DEM import DTEDList, GeoidHeight, DTEDInterpolator __classification__ = "UNCLASSIFIED" __author__ = ("<NAME>", "<NAME>") ############# # Ground-to-Image (aka Scene-to-Image) projection. # noinspection PyUnusedLocal def _validate_coords(coords, sicd): if not isinstance(coords, numpy.ndarray): coords = numpy.array(coords, dtype=numpy.float64) orig_shape = coords.shape if len(orig_shape) == 1: coords = numpy.reshape(coords, (1, -1)) if coords.shape[-1] != 3: raise ValueError( 'The coords array must represent an array of points in ECF coordinates, ' 'so the final dimension of coords must have length 3. Have coords.shape = {}'.format(coords.shape)) # TODO: possibly check for coordinates too far from the sicd box? return coords, orig_shape def _ground_to_image(coords, coa_proj, uGPN, SCP, SCP_Pixel, uIPN, sf, row_ss, col_ss, uProj, row_col_transform, ipp_transform, delta_gp_max, max_iterations): """ Basic level helper function. Parameters ---------- coords : numpy.ndarray|tuple|list coa_proj : COAProjection uGPN : numpy.ndarray SCP : numpy.ndarray SCP_Pixel : numpy.ndarray uIPN : numpy.ndarray sf : float row_ss : float col_ss : float uProj : numpy.ndarray row_col_transform : numpy.ndarray ipp_transform : numpy.ndarray delta_gp_max : float max_iterations : int Returns ------- Tuple[numpy.ndarray, float, int] * `image_points` - the determined image point array, of size `N x 2`. Following SICD convention, the upper-left pixel is [0, 0]. * `delta_gpn` - residual ground plane displacement (m). * `iterations` - the number of iterations performed. """ g_n = coords.copy() im_points = numpy.zeros((coords.shape[0], 2), dtype=numpy.float64) delta_gpn = numpy.zeros((coords.shape[0],), dtype=numpy.float64) cont = True iteration = 0 matrix_transform = numpy.dot(row_col_transform, ipp_transform) # (3 x 2)*(2 x 2) = (3 x 2) while cont: # TODO: is there any point in progressively stopping iteration? # It doesn't really save much computation time. # I set it to iterate over everything or nothing. # project ground plane to image plane iteration iteration += 1 dist_n = numpy.dot(SCP - g_n, uIPN)/sf # (N, ) i_n = g_n + numpy.outer(dist_n, uProj) # (N, 3) delta_ipp = i_n - SCP # (N, 3) ip_iter = numpy.dot(delta_ipp, matrix_transform) # (N, 2) im_points[:, 0] = ip_iter[:, 0]/row_ss + SCP_Pixel[0] im_points[:, 1] = ip_iter[:, 1]/col_ss + SCP_Pixel[1] # transform to ground plane containing the scene points and check how it compares p_n = _image_to_ground_plane(im_points, coa_proj, g_n, uGPN) # compute displacement between scene point and this new projected point diff_n = coords - p_n disp_pn = numpy.linalg.norm(diff_n, axis=1) # should we continue iterating? cont = numpy.any(disp_pn > delta_gp_max) or (iteration <= max_iterations) if cont: g_n += diff_n return im_points, delta_gpn, iteration def ground_to_image(coords, sicd, delta_gp_max=None, max_iterations=10, block_size=50000, delta_arp=None, delta_varp=None, range_bias=None, adj_params_frame='ECF'): """ Transforms a 3D ECF point to pixel (row/column) coordinates. This is implemented in accordance with the SICD Image Projections Description Document. **Really Scene-To-Image projection.**" Parameters ---------- coords : numpy.ndarray|tuple|list ECF coordinate to map to scene coordinates, of size `N x 3`. sicd : sarpy.io.complex.sicd_elements.SICD.SICDType SICD meta data structure. delta_gp_max : float|None Ground plane displacement tol (m). Defaults to 0.1*pixel. max_iterations : int maximum number of iterations to perform block_size : int|None size of blocks of coordinates to transform at a time delta_arp : None|numpy.ndarray|list|tuple ARP position adjustable parameter (ECF, m). Defaults to 0 in each coordinate. delta_varp : None|numpy.ndarray|list|tuple VARP position adjustable parameter (ECF, m/s). Defaults to 0 in each coordinate. range_bias : float|int Range bias adjustable parameter (m), defaults to 0. adj_params_frame : str One of ['ECF', 'RIC_ECF', 'RIC_ECI'], specifying the coordinate frame used for expressing `delta_arp` and `delta_varp` parameters. Returns ------- Tuple[numpy.ndarray, float, int] * `image_points` - the determined image point array, of size `N x 2`. Following the SICD convention, he upper-left pixel is [0, 0]. * `delta_gpn` - residual ground plane displacement (m). * `iterations` - the number of iterations performed. """ coords, orig_shape = _validate_coords(coords, sicd) row_ss = sicd.Grid.Row.SS col_ss = sicd.Grid.Col.SS pixel_size = numpy.sqrt(row_ss*row_ss + col_ss*col_ss) if delta_gp_max is None: delta_gp_max = 0.1*pixel_size delta_gp_max = float(delta_gp_max) if delta_gp_max < 0.01*pixel_size: delta_gp_max = 0.01*pixel_size logging.warning('delta_gp_max was less than 0.01*pixel_size, ' 'and has been reset to {}'.format(delta_gp_max)) coa_proj = COAProjection(sicd, delta_arp, delta_varp, range_bias, adj_params_frame) # establishing the basic projection components SCP_Pixel = sicd.ImageData.SCPPixel.get_array() uRow = sicd.Grid.Row.UVectECF.get_array() # unit normal in row direction uCol = sicd.Grid.Col.UVectECF.get_array() # unit normal in column direction uIPN = numpy.cross(uRow, uCol) # image plane unit normal uIPN /= numpy.linalg.norm(uIPN) # NB: uRow/uCol may not be perpendicular cos_theta = numpy.dot(uRow, uCol) sin_theta = numpy.sqrt(1 - cos_theta*cos_theta) ipp_transform = numpy.array([[1, -cos_theta], [-cos_theta, 1]], dtype=numpy.float64)/(sin_theta*sin_theta) row_col_transform = numpy.zeros((3, 2), dtype=numpy.float64) row_col_transform[:, 0] = uRow row_col_transform[:, 1] = uCol SCP = sicd.GeoData.SCP.ECF.get_array() uGPN = sicd.PFA.FPN.get_array() if sicd.ImageFormation.ImageFormAlgo == 'PFA' \ else geocoords.wgs_84_norm(SCP) ARP_SCP_COA = sicd.SCPCOA.ARPPos.get_array() VARP_SCP_COA = sicd.SCPCOA.ARPVel.get_array() uSPN = sicd.SCPCOA.look*numpy.cross(VARP_SCP_COA, SCP-ARP_SCP_COA) uSPN /= numpy.linalg.norm(uSPN) # uSPN - defined in section 3.1 as normal to instantaneous slant plane that contains SCP at SCP COA is # tangent to R/Rdot contour at SCP. Points away from center of Earth. Use look to establish sign. sf = float(numpy.dot(uSPN, uIPN)) # scale factor # prepare the work space coords_view = numpy.reshape(coords, (-1, 3)) # possibly or make 2-d flatten num_points = coords_view.shape[0] if block_size is None or num_points <= block_size: image_points, delta_gpn, iters = _ground_to_image( coords_view, coa_proj, uGPN, SCP, SCP_Pixel, uIPN, sf, row_ss, col_ss, uSPN, row_col_transform, ipp_transform, delta_gp_max, max_iterations) else: image_points = numpy.zeros((num_points, 2), dtype=numpy.float64) delta_gpn = numpy.zeros((num_points, ), dtype=numpy.float64) iters = numpy.zeros((num_points, ), dtype=numpy.int16) # proceed with block processing start_block = 0 while start_block < num_points: end_block = min(start_block+block_size, num_points) image_points[start_block:end_block, :], delta_gpn[start_block:end_block], \ iters[start_block:end_block] = _ground_to_image( coords_view[start_block:end_block, :], coa_proj, uGPN, SCP, SCP_Pixel, uIPN, sf, row_ss, col_ss, uSPN, row_col_transform, ipp_transform, delta_gp_max, max_iterations) start_block = end_block if len(orig_shape) == 1: image_points = numpy.reshape(image_points, (-1,)) elif len(orig_shape) > 1: image_points = numpy.reshape(image_points, orig_shape[:-1]+(2, )) delta_gpn = numpy.reshape(delta_gpn, orig_shape[:-1]) iters = numpy.reshape(iters, orig_shape[:-1]) return image_points, delta_gpn, iters def ground_to_image_geo(coords, sicd, **kwargs): """ Transforms a 3D Lat/Lon/HAE point to pixel (row/column) coordinates. This is implemented in accordance with the SICD Image Projections Description Document. Parameters ---------- coords : numpy.ndarray|tuple|list Lat/Lon/HAE coordinate to map to scene coordinates, of size `N x 3`. sicd : sarpy.io.complex.sicd_elements.SICD.SICDType SICD meta data structure. kwargs : dict See the key word arguments of :func:`ground_to_image` Returns ------- Tuple[numpy.ndarray, float, int] * `image_points` - the determined image point array, of size `N x 2`. Following SICD convention, the upper-left pixel is [0, 0]. * `delta_gpn` - residual ground plane displacement (m). * `iterations` - the number of iterations performed. """ return ground_to_image(geocoords.geodetic_to_ecf(coords), sicd, **kwargs) ############ # Image-To-Ground projections def _ric_ecf_mat(rarp, varp, frame_type): """ Computes the ECF transformation matrix for RIC frame. Parameters ---------- rarp : numpy.ndarray varp : numpy.ndarray frame_type : str the final three characters should be one of ['ECI', 'ECF'] Returns ------- numpy.ndarray the RIC transform matrix (array) """ # Angular velocity of earth in radians/second, not including precession w = 7292115.1467E-11 typ = frame_type.upper()[-3:] vi = varp if typ == 'ECF' else varp + numpy.cross([0, 0, w], rarp) r = rarp/numpy.linalg.norm(rarp) c = numpy.cross(r, vi) c /= numpy.linalg.norm(c) # NB: perpendicular to r i = numpy.cross(c, r) # this is the cross of two perpendicular normal vectors, so normal return numpy.array([r, i, c], dtype=numpy.float64) class COAProjection(object): """ The COA projection object - provide common projection functionality for all Image-to-R/Rdot projection. """ def __init__(self, sicd, delta_arp=None, delta_varp=None, range_bias=None, adj_params_frame='ECF'): """ Parameters ---------- sicd : sarpy.io.complex.sicd_elements.SICD.SICDType The SICD metadata structure. delta_arp : None|numpy.ndarray|list|tuple ARP position adjustable parameter (ECF, m). Defaults to 0 in each coordinate. delta_varp : None|numpy.ndarray|list|tuple VARP position adjustable parameter (ECF, m/s). Defaults to 0 in each coordinate. range_bias : float|int Range bias adjustable parameter (m), defaults to 0. adj_params_frame : str One of ['ECF', 'RIC_ECF', 'RIC_ECI'], specifying the coordinate frame used for expressing `delta_arp` and `delta_varp` parameters. """ if not sicd.can_project_coordinates(): raise ValueError('Insufficient metadata populated to formulate projection.') time_coa_poly = sicd.Grid.TimeCOAPoly # fall back to approximation if TimeCOAPoly is not populated if time_coa_poly is None: time_coa_poly = Poly2DType(Coefs=[[sicd.Timeline.CollectDuration/2, ], ]) logging.warning( 'Using (constant) approximation to TimeCOAPoly, which may result in poor projection results.') self.time_coa_poly = time_coa_poly # type: Poly2DType self.arp_poly = sicd.Position.ARPPoly # type: XYZPolyType self.varp_poly = self.arp_poly.derivative(der_order=1, return_poly=True) # type: XYZPolyType self.row_ss = sicd.Grid.Row.SS # type: float self.col_ss = sicd.Grid.Col.SS # type: float self.first_row = sicd.ImageData.FirstRow # type: int self.first_col = sicd.ImageData.FirstCol # type: int self.scp_row = sicd.ImageData.SCPPixel.Row # type: int self.scp_col = sicd.ImageData.SCPPixel.Col # type: int if delta_arp is None: delta_arp = numpy.array([0, 0, 0], dtype=numpy.float64) if not isinstance(delta_arp, numpy.ndarray): delta_arp = numpy.array(delta_arp, dtype=numpy.float64) if delta_arp.shape != (3, ): raise ValueError('delta_arp must have shape (3, ). Got {}'.format(delta_arp.shape)) if delta_varp is None: delta_varp = numpy.array([0, 0, 0], dtype=numpy.float64) if not isinstance(delta_varp, numpy.ndarray): delta_varp = numpy.array(delta_varp, dtype=numpy.float64) if delta_varp.shape != (3, ): raise ValueError('delta_varp must have shape (3, ). Got {}'.format(delta_varp.shape)) if adj_params_frame in ['RIC_ECI', 'RIC_ECF']: if sicd.SCPCOA.ARPPos is None or sicd.SCPCOA.ARPVel is None: raise ValueError( 'The adj_params_frame is of RIC type, but one of SCPCOA.ARPPos or ' 'SCPCOA.ARPVel is not populated.') ARP_SCP_COA = sicd.SCPCOA.ARPPos.get_array() VARP_SCP_COA = sicd.SCPCOA.ARPVel.get_array() ric_matrix = _ric_ecf_mat(ARP_SCP_COA, VARP_SCP_COA, adj_params_frame) delta_arp = ric_matrix.dot(delta_arp) delta_varp = ric_matrix.dot(delta_varp) self.delta_arp = delta_arp # type: numpy.ndarray self.delta_varp = delta_varp # type: numpy.ndarray if range_bias is None: range_bias = 0.0 else: range_bias = float(range_bias) self.range_bias = range_bias # type: float # bind the method specific intermediate projection method self._method_proj = MethodType(_get_type_specific_projection(sicd), self) def _init_proj(self, im_points): """ Parameters ---------- im_points : numpy.ndarray Returns ------- Tuple[numpy.ndarray,...] """ row_meters = (im_points[:, 0] + self.first_row - self.scp_row)*self.row_ss col_meters = (im_points[:, 1] + self.first_col - self.scp_col)*self.col_ss t_coa = self.time_coa_poly(row_meters, col_meters) # calculate aperture reference position and velocity at target time arp_coa = self.arp_poly(t_coa) varp_coa = self.varp_poly(t_coa) return row_meters, col_meters, t_coa, arp_coa, varp_coa def projection(self, im_points): """ Perform the projection from image coordinates to R/Rdot coordinates. Parameters ---------- im_points : numpy.ndarray This array of image point coordinates, **expected to have shape (N, 2)**. Returns ------- Tuple[numpy.ndarray,numpy.ndarray,numpy.ndarray,numpy.ndarray,numpy.ndarray] * `r_tgt_coa` - range to the ARP at COA * `r_dot_tgt_coa` - range rate relative to the ARP at COA * `t_coa` - center of aperture time since CDP start for input ip * `arp_coa` - aperture reference position at t_coa * `varp_coa` - velocity at t_coa """ row_meters, col_meters, t_coa, arp_coa, varp_coa = self._init_proj(im_points) r_tgt_coa, r_dot_tgt_coa = self._method_proj(row_meters, col_meters, t_coa, arp_coa, varp_coa) # adjust parameters (TODO: after all the calculations?) arp_coa += self.delta_arp varp_coa += self.delta_varp r_tgt_coa += self.range_bias return r_tgt_coa, r_dot_tgt_coa, t_coa, arp_coa, varp_coa def _get_type_specific_projection(sicd): """ Gets an intermediate method specific projection method with six required calling arguments (self, row_meters, col_meters, t_coa, arp_coa, varp_coa). Parameters ---------- sicd : sarpy.io.complex.sicd_elements.SICD.SICDType Returns ------- callable """ # triple-nested function - it was conceptually clearest... def pfa_projection(): SCP = sicd.GeoData.SCP.ECF.get_array() pfa = sicd.PFA polar_ang_poly = pfa.PolarAngPoly spatial_freq_sf_poly = pfa.SpatialFreqSFPoly polar_ang_poly_der = polar_ang_poly.derivative(der_order=1, return_poly=True) spatial_freq_sf_poly_der = spatial_freq_sf_poly.derivative(der_order=1, return_poly=True) polar_ang_poly_der = polar_ang_poly.derivative(der_order=1, return_poly=True) spatial_freq_sf_poly_der = spatial_freq_sf_poly.derivative(der_order=1, return_poly=True) # noinspection PyUnusedLocal, PyIncorrectDocstring def method_projection(instance, row_meters, col_meters, t_coa, arp_coa, varp_coa): """ PFA specific intermediate projection. Parameters ---------- row_meters : numpy.ndarray col_meters : numpy.ndarray t_coa : numpy.ndarray arp_coa : numpy.ndarray varp_coa : numpy.ndarray Returns ------- Tuple[numpy.ndarray, numpy.ndarray] """ ARP_minus_SCP = arp_coa - SCP rSCPTgtCoa = numpy.linalg.norm(ARP_minus_SCP, axis=-1) rDotSCPTgtCoa = numpy.sum(varp_coa * ARP_minus_SCP, axis=-1) / rSCPTgtCoa thetaTgtCoa = polar_ang_poly(t_coa) dThetaDtTgtCoa = polar_ang_poly_der(t_coa) # Compute polar aperture scale factor (KSF) and derivative wrt polar angle ksfTgtCoa = spatial_freq_sf_poly(thetaTgtCoa) dKsfDThetaTgtCoa = spatial_freq_sf_poly_der(thetaTgtCoa) # Compute spatial frequency domain phase slopes in Ka and Kc directions # NB: sign for the phase may be ignored as it is cancelled in a subsequent computation. dPhiDKaTgtCoa = row_meters * numpy.cos(thetaTgtCoa) + col_meters * numpy.sin(thetaTgtCoa) dPhiDKcTgtCoa = -row_meters * numpy.sin(thetaTgtCoa) + col_meters * numpy.cos(thetaTgtCoa) # Compute range relative to SCP deltaRTgtCoa = ksfTgtCoa * dPhiDKaTgtCoa # Compute derivative of range relative to SCP wrt polar angle. # Scale by derivative of polar angle wrt time. dDeltaRDThetaTgtCoa = dKsfDThetaTgtCoa * dPhiDKaTgtCoa + ksfTgtCoa * dPhiDKcTgtCoa deltaRDotTgtCoa = dDeltaRDThetaTgtCoa * dThetaDtTgtCoa return rSCPTgtCoa + deltaRTgtCoa, rDotSCPTgtCoa + deltaRDotTgtCoa return method_projection def rgazcomp_projection(): SCP = sicd.GeoData.SCP.ECF.get_array() az_sf = sicd.RgAzComp.AzSF # noinspection PyUnusedLocal, PyIncorrectDocstring def method_projection(instance, row_meters, col_meters, t_coa, arp_coa, varp_coa): """ RgAzComp specific intermediate projection. Parameters ---------- row_meters : numpy.ndarray col_meters : numpy.ndarray t_coa : numpy.ndarray arp_coa : numpy.ndarray varp_coa : numpy.ndarray Returns ------- Tuple[numpy.ndarray, numpy.ndarray] """ ARP_minus_SCP = arp_coa - SCP rSCPTgtCoa = numpy.linalg.norm(ARP_minus_SCP, axis=-1) rDotSCPTgtCoa = numpy.sum(varp_coa*ARP_minus_SCP, axis=-1)/rSCPTgtCoa deltaRTgtCoa = row_meters deltaRDotTgtCoa = -numpy.linalg.norm(varp_coa, axis=-1)*az_sf*col_meters return rSCPTgtCoa + deltaRTgtCoa, rDotSCPTgtCoa + deltaRDotTgtCoa return method_projection def inca_projection(): inca = sicd.RMA.INCA r_ca_scp = inca.R_CA_SCP time_ca_poly = inca.TimeCAPoly drate_sf_poly = inca.DRateSFPoly # noinspection PyUnusedLocal, PyIncorrectDocstring def method_projection(instance, row_meters, col_meters, t_coa, arp_coa, varp_coa): """ INCA specific intermediate projection. Parameters ---------- row_meters : numpy.ndarray col_meters : numpy.ndarray t_coa : numpy.ndarray arp_coa : numpy.ndarray varp_coa : numpy.ndarray Returns ------- Tuple[numpy.ndarray, numpy.ndarray] """ # compute range/time of closest approach R_CA_TGT = r_ca_scp + row_meters # Range at closest approach t_CA_TGT = time_ca_poly(col_meters) # Time of closest approach # Compute ARP velocity magnitude (actually squared, since that's how it's used) at t_CA_TGT VEL2_CA_TGT = numpy.sum(instance.varp_poly(t_CA_TGT)**2, axis=-1) # Compute the Doppler Rate Scale Factor for image Grid location DRSF_TGT = drate_sf_poly(row_meters, col_meters) # Difference between COA time and CA time dt_COA_TGT = t_coa - t_CA_TGT r_tgt_coa = numpy.sqrt(R_CA_TGT*R_CA_TGT + DRSF_TGT*VEL2_CA_TGT*dt_COA_TGT*dt_COA_TGT) r_dot_tgt_coa = (DRSF_TGT/r_tgt_coa)*VEL2_CA_TGT*dt_COA_TGT return r_tgt_coa, r_dot_tgt_coa return method_projection def plane_projection(): SCP = sicd.GeoData.SCP.ECF.get_array() uRow = sicd.Grid.Row.UVectECF.get_array() uCol = sicd.Grid.Row.UVectECF.get_array() # noinspection PyUnusedLocal, PyIncorrectDocstring def method_projection(instance, row_meters, col_meters, t_coa, arp_coa, varp_coa): """ Plane specific intermediate projection. Parameters ---------- row_meters : numpy.ndarray col_meters : numpy.ndarray t_coa : numpy.ndarray arp_coa : numpy.ndarray varp_coa : numpy.ndarray Returns ------- Tuple[numpy.ndarray, numpy.ndarray] """ ARP_minus_IPP = arp_coa - (SCP + numpy.outer(row_meters, uRow) + numpy.outer(col_meters, uCol)) r_tgt_coa = numpy.linalg.norm(ARP_minus_IPP, axis=-1) r_dot_tgt_coa = numpy.sum(varp_coa * ARP_minus_IPP, axis=-1)/r_tgt_coa return r_tgt_coa, r_dot_tgt_coa return method_projection # NB: sicd.can_project_coordinates() has been called, so all required attributes # must be populated if sicd.Grid.Type == 'RGAZIM': if sicd.ImageFormation.ImageFormAlgo == 'PFA': return pfa_projection() elif sicd.ImageFormation.ImageFormAlgo == 'RGAZCOMP': return rgazcomp_projection() elif sicd.Grid.Type == 'RGZERO': return inca_projection() elif sicd.Grid.Type in ['XRGYCR', 'XCTYAT', 'PLANE']: return plane_projection() else: # NB: this will have been noted by sicd.can_project_coordinates(), but is # here for completeness raise ValueError('Unhandled Grid.Type'.format(sicd.Grid.Type)) def _validate_im_points(im_points, sicd): """ Parameters ---------- im_points : numpy.ndarray|list|tuple sicd : sarpy.io.complex.sicd_elements.SICD.SICDType Returns ------- numpy.ndarray """ if im_points is None: raise ValueError('The argument cannot be None') if not isinstance(im_points, numpy.ndarray): im_points = numpy.array(im_points, dtype=numpy.float64) orig_shape = im_points.shape if len(im_points.shape) == 1: im_points = numpy.reshape(im_points, (1, -1)) if im_points.shape[-1] != 2: raise ValueError( 'The im_points array must represent an array of points in pixel coordinates, ' 'so the final dimension of im_points must have length 2. Have im_points.shape = {}'.format(im_points.shape)) # check to ensure that the entries of im_points are not ridiculous rows = sicd.ImageData.NumRows cols = sicd.ImageData.NumCols row_bounds = (-rows/2, 3*rows/2) col_bounds = (-cols/2, 3*cols/2) if numpy.any( (im_points[:, 0] < row_bounds[0]) | (im_points[:, 0] > row_bounds[1]) | (im_points[:, 1] < col_bounds[0]) | (im_points[:, 1] > col_bounds[1])): raise ValueError( 'The sicd is has {} rows and {} cols. image_to_ground projection effort ' 'requires row coordinates in the range {} and column coordinates ' 'in the range {}'.format(rows, cols, row_bounds, col_bounds)) return im_points, orig_shape def image_to_ground(im_points, sicd, block_size=50000, projection_type='HAE', **kwargs): """ Transforms image coordinates to ground plane ECF coordinate via the algorithm(s) described in SICD Image Projections document. Parameters ---------- im_points : numpy.ndarray|list|tuple (row, column) coordinates of N points in image (or subimage if FirstRow/FirstCol are nonzero). Following SICD convention, the upper-left pixel is [0, 0]. sicd : sarpy.io.complex.sicd_elements.SICD.SICDType SICD meta data structure. block_size : None|int Size of blocks of coordinates to transform at a time. The entire array will be transformed as a single block if `None`. projection_type : str One of ['PLANE', 'HAE', 'DEM']. kwargs : dict keyword arguments relevant for the given projection type. See image_to_ground_plane/hae/dem methods. Returns ------- numpy.ndarray Physical coordinates (in ECF) corresponding input image coordinates. The interpretation or meaning of the physical coordinates depends on `projection_type` chosen. """ p_type = projection_type.upper() if p_type == 'PLANE': return image_to_ground_plane(im_points, sicd, block_size=block_size, **kwargs) elif p_type == 'HAE': return image_to_ground_hae(im_points, sicd, block_size=block_size, **kwargs) elif p_type == 'DEM': return image_to_ground_dem(im_points, sicd, block_size=block_size, **kwargs) else: raise ValueError('Got unrecognized projection type {}'.format(projection_type)) def image_to_ground_geo(im_points, sicd, **kwargs): """ Transforms image coordinates to ground plane Lat/Lon/HAE coordinate via the algorithm(s) described in SICD Image Projections document. Parameters ---------- im_points : numpy.ndarray|list|tuple (row, column) coordinates of N points in image (or subimage if FirstRow/FirstCol are nonzero). Following SICD convention, the upper-left pixel is [0, 0]. sicd : sarpy.io.complex.sicd_elements.SICD.SICDType SICD meta data structure. kwargs : dict See the keyword arguments in :func:`image_to_ground`. Returns ------- numpy.ndarray Ground Plane Point (in Lat/Lon/HAE coordinates) along the R/Rdot contour. """ return geocoords.ecf_to_geodetic(image_to_ground(im_points, sicd, **kwargs)) ##### # Image-to-Ground Plane def _image_to_ground_plane_perform(r_tgt_coa, r_dot_tgt_coa, arp_coa, varp_coa, gref, uZ): """ Parameters ---------- r_tgt_coa : numnpy.ndarray r_dot_tgt_coa : numnpy.ndarray arp_coa : numnpy.ndarray varp_coa : numnpy.ndarray gref : numnpy.ndarray uZ : numnpy.ndarray Returns ------- numpy.ndarray """ # Solve for the intersection of a R/Rdot contour and a ground plane. arpZ = numpy.sum((arp_coa - gref)*uZ, axis=-1) arpZ[arpZ > r_tgt_coa] = numpy.nan # ARP ground plane nadir aGPN = arp_coa - numpy.outer(arpZ, uZ) # Compute ground plane distance (gd) from ARP nadir to circle of const range gd = numpy.sqrt(r_tgt_coa*r_tgt_coa - arpZ*arpZ) # Compute sine and cosine of grazing angle cosGraz = gd/r_tgt_coa sinGraz = arpZ/r_tgt_coa # Velocity components normal to ground plane and parallel to ground plane. vMag = numpy.linalg.norm(varp_coa, axis=-1) vZ = numpy.dot(varp_coa, uZ) vX = numpy.sqrt(vMag*vMag - vZ*vZ) # Note: For Vx = 0, no Solution # Orient X such that Vx > 0 and compute unit vectors uX and uY uX = ((varp_coa - numpy.outer(vZ, uZ)).T/vX).T uY = numpy.cross(uZ, uX) # Compute cosine of azimuth angle to ground plane point cosAz = (-r_dot_tgt_coa+vZ*sinGraz) / (vX * cosGraz) cosAz[numpy.abs(cosAz) > 1] = numpy.nan # R/Rdot combination not possible in given plane # Compute sine of azimuth angle. Use LOOK to establish sign. look = numpy.sign(numpy.dot(numpy.cross(arp_coa-gref, varp_coa), uZ)) sinAz = look * numpy.sqrt(1-cosAz*cosAz) # Compute Ground Plane Point in ground plane and along the R/Rdot contour return aGPN + (uX.T*gd*cosAz + uY.T*gd*sinAz).T def _image_to_ground_plane(im_points, coa_projection, gref, uZ): """ Parameters ---------- im_points : numpy.ndarray coa_projection : COAProjection gref : numpy.ndarray uZ : numpy.ndarray Returns ------- numpy.ndarray """ r_tgt_coa, r_dot_tgt_coa, t_coa, arp_coa, varp_coa = coa_projection.projection(im_points) return _image_to_ground_plane_perform(r_tgt_coa, r_dot_tgt_coa, arp_coa, varp_coa, gref, uZ) def image_to_ground_plane(im_points, sicd, block_size=50000, gref=None, ugpn=None, **coa_args): """ Transforms image coordinates to ground plane ECF coordinate via the algorithm(s) described in SICD Image Projections document. Parameters ---------- im_points : numpy.ndarray|list|tuple the image coordinate array sicd : sarpy.io.complex.sicd_elements.SICD.SICDType the SICD metadata structure. block_size : None|int Size of blocks of coordinates to transform at a time. The entire array will be transformed as a single block if `None`. gref : None|numpy.ndarray|list|tuple Ground plane reference point ECF coordinates (m). The default is the SCP ugpn : None|numpy.ndarray|list|tuple Vector normal to the plane to which we are projecting. coa_args : dict keyword arguments for COAProjection constructor. Returns ------- numpy.ndarray Ground Plane Point (in ECF coordinates) corresponding to the input image coordinates. """ # method parameter validation if gref is None: gref = sicd.GeoData.SCP.ECF.get_array() if ugpn is None: ugpn = sicd.PFA.FPN.get_array() if sicd.ImageFormation.ImageFormAlgo == 'PFA' \ else geocoords.wgs_84_norm(gref) if len(ugpn.shape) == 2: ugpn = numpy.reshape(ugpn, (3, )) uZ = ugpn/numpy.linalg.norm(ugpn) # coa projection creation im_points, orig_shape = _validate_im_points(im_points, sicd) coa_proj = COAProjection(sicd, **coa_args) # prepare workspace im_points_view = numpy.reshape(im_points, (-1, 2)) # possibly or make 2-d flatten num_points = im_points_view.shape[0] if block_size is None or num_points <= block_size: coords = _image_to_ground_plane(im_points_view, coa_proj, gref, uZ) else: coords = numpy.zeros((num_points, 3), dtype=numpy.float64) # proceed with block processing start_block = 0 while start_block < num_points: end_block = min(start_block + block_size, num_points) coords[start_block:end_block, :] = _image_to_ground_plane( im_points_view[start_block:end_block], coa_proj, gref, uZ) start_block = end_block if len(orig_shape) == 1: coords = numpy.reshape(coords, (-1, )) elif len(orig_shape) > 1: coords = numpy.reshape(coords, orig_shape[:-1] + (3,)) return coords ##### # Image-to-HAE def _image_to_ground_hae_perform( r_tgt_coa, r_dot_tgt_coa, arp_coa, varp_coa, SCP, ugpn, hae0, delta_hae_max, hae_nlim, scp_hae): """ Intermediate helper method. Parameters ---------- r_tgt_coa : numpy.ndarray r_dot_tgt_coa : numpy.ndarray arp_coa : numpy.ndarray varp_coa : numpy.ndarray SCP : numpy.ndarray ugpn : numpy.ndarray hae0 : float delta_hae_max : float hae_nlim : int scp_hae : float Returns ------- numpy.ndarray """ # Compute the geodetic ground plane normal at the SCP. look = numpy.sign(numpy.sum(numpy.cross(arp_coa, varp_coa)*(SCP-arp_coa), axis=1)) gref = SCP - (scp_hae - hae0)*ugpn # iteration variables gpp = None delta_hae = None cont = True iters = 0 while cont: iters += 1 # Compute the precise projection along the R/Rdot contour to Ground Plane. gpp = _image_to_ground_plane_perform(r_tgt_coa, r_dot_tgt_coa, arp_coa, varp_coa, gref, ugpn) # check our hae value versus hae0 gpp_llh = geocoords.ecf_to_geodetic(gpp) delta_hae = gpp_llh[:, 2] - hae0 abs_delta_hae =
numpy.abs(delta_hae)
numpy.abs
""" Module that uses CMAC 2.0 to remove and correct second trip returns, correct velocity and more. A new radar object is then created with all CMAC 2.0 products. """ import copy import json import sys import netCDF4 import numpy as np import pyart from .cmac_processing import ( do_my_fuzz, get_melt, get_texture, fix_phase_fields, gen_clutter_field_from_refl, beam_block) from .config import get_cmac_values, get_field_names, get_metadata def cmac(radar, sonde, config, geotiff=None, flip_velocity=False, meta_append=None, verbose=True): """ Corrected Moments in Antenna Coordinates Parameters ---------- radar : Radar Radar object to use in the CMAC calculation. sonde : Object Object containing all the sonde data. config : str A string pointing to dictionaries containing values for CMAC 2.0 specific to a radar. Other Parameters ---------------- geotiff : str Filepath for a geotiff, if provided, will generate a beam blockage gate id. meta_append : dict, json and None Value key pairs to attend to global attributes. If None, a default metadata will be created. The metadata can also be created by providing a dictionary or a json file. verbose : bool If True, this will display more statistics. Returns ------- radar : Radar Radar object with new CMAC added fields. """ # Retrieve values from the configuration file. cmac_config = get_cmac_values(config) field_config = get_field_names(config) meta_config = get_metadata(config) # Over write site altitude if 'site_alt' in cmac_config.keys(): radar.altitude['data'][0] = cmac_config['site_alt'] # Obtaining variables needed for fuzzy logic. radar_start_date = netCDF4.num2date( radar.time['data'][0], radar.time['units'], only_use_cftime_datetimes=False, only_use_python_datetimes=True) print('##', str(radar_start_date)) temp_field = field_config['temperature'] alt_field = field_config['altitude'] vel_field = field_config['velocity'] if 'gen_clutter_from_refl' not in cmac_config.keys(): cmac_config['gen_clutter_from_refl'] = False if cmac_config['gen_clutter_from_refl']: new_clutter_field = gen_clutter_field_from_refl( radar, field_config['input_clutter_corrected_reflectivity'], field_config['reflectivity'], diff_dbz=cmac_config['gen_clutter_from_refl_diff'], max_h=cmac_config['gen_clutter_from_refl_alt']) radar.add_field( field_config['clutter'], new_clutter_field, replace_existing=True) radar.fields[field_config['clutter']]['units'] = '1' radar.fields[field_config['clutter']]['valid_max'] = 1 radar.fields[field_config['clutter']]['valid_min'] = 0 # ZDR offsets if 'zdr_offset' in cmac_config.keys(): if 'offset_zdrs' in cmac_config.keys(): for fld in cmac_config['offset_zdrs']: radar.fields[fld]['data'] += cmac_config['zdr_offset'] else: radar.fields[ field_config['input_zdr']]['data'] += cmac_config['zdr_offset'] # flipping phidp if 'flip_phidp' not in cmac_config.keys(): cmac_config['flip_phidp'] = False if cmac_config['flip_phidp']: # user specifies fields to flip if 'phidp_flipped' in cmac_config.keys(): for fld in cmac_config['phidp_flipped']: radar.fields[fld]['data'] = radar.fields[fld]['data'] * -1.0 else: # just flip defined phidp field radar.fields[ field_config['input_phidp_field']]['data'] = radar.fields[ field_config['input_phidp_field']]['data']*-1.0 if flip_velocity: radar.fields[vel_field]['data'] = radar.fields[ vel_field]['data'] * -1.0 z_dict, temp_dict = pyart.retrieve.map_profile_to_gates( sonde.variables[temp_field][:], sonde.variables[alt_field][:], radar) if 'clutter_mask_z_for_texture' not in cmac_config.keys(): cmac_config['clutter_mask_z_for_texture'] = False if cmac_config['clutter_mask_z_for_texture']: masked_vr = copy.deepcopy(radar.fields[vel_field]) if 'ground_clutter' in radar.fields.keys(): masked_vr['data'] = np.ma.masked_where(radar.fields['ground_clutter']['data'] == 1, masked_vr['data']) masked_vr['data'][radar.fields['ground_clutter']['data'] == 1] = np.nan radar.add_field('clutter_masked_velocity', masked_vr, replace_existing=True) texture = get_texture(radar, 'clutter_masked_velocity') texture['data'][np.isnan(texture['data'])] = 0.0 else: texture = get_texture(radar, vel_field) snr = pyart.retrieve.calculate_snr_from_reflectivity(radar) if not verbose: print('## Adding radar fields...') if verbose: print('##') print('## These radar fields are being added:') temp_dict['units'] = 'degC' z_dict['units'] = 'm' radar.add_field('sounding_temperature', temp_dict, replace_existing=True) radar.add_field('height', z_dict, replace_existing=True) radar.add_field('signal_to_noise_ratio', snr, replace_existing=True) radar.add_field('velocity_texture', texture, replace_existing=True) if verbose: print('## sounding_temperature') print('## height') print('## signal_to_noise_ratio') print('## velocity_texture') # Performing fuzzy logic to obtain the gate ids. rhv_field = field_config['cross_correlation_ratio'] ncp_field = field_config['normalized_coherent_power'] if 'mbfs' not in cmac_config: cmac_config['mbfs'] = None if 'hard_const' not in cmac_config: cmac_config['hard_const'] = None # Specifically for dealing with the ingested C-SAPR2 data my_fuzz, _ = do_my_fuzz(radar, rhv_field, ncp_field, verbose=verbose, custom_mbfs=cmac_config['mbfs'], custom_hard_constraints=cmac_config['hard_const']) radar.add_field('gate_id', my_fuzz, replace_existing=True) if 'ground_clutter' in radar.fields.keys(): # Adding fifth gate id, clutter. clutter_data = radar.fields['ground_clutter']['data'] gate_data = radar.fields['gate_id']['data'].copy() radar.fields['gate_id']['data'][clutter_data == 1] = 5 notes = radar.fields['gate_id']['notes'] radar.fields['gate_id']['notes'] = notes + ',5:clutter' radar.fields['gate_id']['valid_max'] = 5 radar.fields['gate_id']['valid_max'] = 0 if 'classification_mask' in radar.fields.keys(): clutter_data = radar.fields['classification_mask']['data'] gate_data = radar.fields['gate_id']['data'].copy() radar.fields['gate_id']['data'][clutter_data == 8] = 5 radar.fields['gate_id']['data'][clutter_data == 16] = 5 radar.fields['gate_id']['data'][clutter_data == 4] = 5 radar.fields['gate_id']['data'][clutter_data == 1] = 0 radar.fields['gate_id']['data'][clutter_data == 2] = 0 radar.fields['gate_id']['data'][gate_data == 0] = 0 notes = radar.fields['gate_id']['notes'] radar.fields['gate_id']['notes'] = notes + ',5:clutter' radar.fields['gate_id']['valid_max'] = 5 radar.fields['gate_id']['valid_max'] = 0 if geotiff is not None: pbb_all, cbb_all = beam_block( radar, geotiff, cmac_config['radar_height_offset'], cmac_config['beam_width']) radar.fields['gate_id']['data'][cbb_all > 0.30] = 6 notes = radar.fields['gate_id']['notes'] radar.fields['gate_id']['notes'] = notes + ',6:terrain_blockage' radar.fields['gate_id']['valid_max'] = 6 pbb_dict = pbb_to_dict(pbb_all) cbb_dict = cbb_to_dict(cbb_all) radar.add_field('partial_beam_blockage', pbb_dict) radar.add_field('cumulative_beam_blockage', cbb_dict) cat_dict = {} for pair_str in radar.fields['gate_id']['notes'].split(','): cat_dict.update( {pair_str.split(':')[1]:int(pair_str.split(':')[0])}) if verbose: print('## gate_id') # Corrected velocity using pyart's region dealiaser. cmac_gates = pyart.correct.GateFilter(radar) cmac_gates.exclude_all() cmac_gates.include_equal('gate_id', cat_dict['rain']) cmac_gates.include_equal('gate_id', cat_dict['melting']) cmac_gates.include_equal('gate_id', cat_dict['snow']) # Create a simulated velocity field from the sonde object. u_field = field_config['u_wind'] v_field = field_config['v_wind'] u_wind = sonde.variables[u_field][:] v_wind = sonde.variables[v_field][:] alt_field = field_config['altitude'] sonde_alt = sonde.variables[alt_field][:] profile = pyart.core.HorizontalWindProfile.from_u_and_v( sonde_alt, u_wind, v_wind) sim_vel = pyart.util.simulated_vel_from_profile(radar, profile) radar.add_field('simulated_velocity', sim_vel, replace_existing=True) # Create the corrected velocity field from the region dealias algorithm. corr_vel = pyart.correct.dealias_region_based( radar, vel_field=vel_field, ref_vel_field='simulated_velocity', keep_original=False, gatefilter=cmac_gates, centered=True) radar.add_field('corrected_velocity', corr_vel, replace_existing=True) if verbose: print('## corrected_velocity') print('## simulated_velocity') fzl = get_melt(radar) # Is the freezing level realistic? If not, assume ref_offset = cmac_config['ref_offset'] self_const = cmac_config['self_const'] # Calculating differential phase fields. radar.fields['differential_phase']['data'][ radar.fields['differential_phase']['data']<0] += 360.0 phidp, kdp = pyart.correct.phase_proc_lp_gf( radar, gatefilter=cmac_gates, offset=ref_offset, debug=True, nowrap=50, fzl=fzl, self_const=self_const) phidp_filt, kdp_filt = fix_phase_fields( copy.deepcopy(kdp), copy.deepcopy(phidp), radar.range['data'], cmac_gates) radar.add_field('corrected_differential_phase', phidp, replace_existing=True) radar.fields['corrected_differential_phase']['long_name'] = 'Corrected differential propagation phase shift' radar.add_field('filtered_corrected_differential_phase', phidp_filt, replace_existing=True) radar.fields[ 'filtered_corrected_differential_phase']['long_name'] = 'Filtered corrected differential propagation phase shift' radar.add_field('corrected_specific_diff_phase', kdp, replace_existing=True) radar.add_field('filtered_corrected_specific_diff_phase', kdp_filt, replace_existing=True) radar.fields[ 'filtered_corrected_specific_diff_phase']['long_name'] = 'Filtered Corrected Specific differential phase (KDP)' radar.fields['filtered_corrected_differential_phase']['long_name'] = 'Filtered Corrected Differential Phase' if 'clutter_masked_velocity' in radar.fields.keys(): radar.fields['clutter_masked_velocity']['long_name'] = 'Radial mean Doppler velocity, positive for motion away from the instrument, clutter removed' if verbose: print('## corrected_specific_diff_phase') print('## filtered_corrected_specific_diff_phase') print('## corrected_differential_phase') print('## filtered_corrected_differential_phase') # Calculating attenuation by using pyart. refl_field = field_config['reflectivity'] attenuation_a_coef = cmac_config['attenuation_a_coef'] c_coef = cmac_config['c_coef'] d_coef = cmac_config['d_coef'] beta_coef = cmac_config['beta_coef'] rr_a = cmac_config['rain_rate_a_coef'] rr_b = cmac_config['rain_rate_b_coef'] zdr_field = field_config['differential_reflectivity'] radar.fields['corrected_differential_reflectivity'] = copy.deepcopy( radar.fields[zdr_field]) radar.fields['corrected_reflectivity'] = copy.deepcopy( radar.fields[refl_field]) radar.fields['corrected_reflectivity']['data'] = np.ma.masked_where( cmac_gates.gate_excluded, radar.fields['corrected_reflectivity']['data']) # Get specific differential attenuation. # Need height over 0C isobar. iso0 = np.ma.mean(radar.fields['height']['data'][ np.where(np.abs(radar.fields['sounding_temperature']['data']) < 0.1)]) radar.fields['height_over_iso0'] = copy.deepcopy(radar.fields['height']) radar.fields['height_over_iso0']['data'] -= iso0 radar.fields['height_over_iso0']['long_name'] = 'Height of radar beam over freezing level' phidp_field = field_config['phidp_field'] (spec_at, pia_dict, cor_z, spec_diff_at, pida_dict, cor_zdr) = pyart.correct.calculate_attenuation_zphi( radar, temp_field='sounding_temperature', iso0_field='height_over_iso0', zdr_field=field_config['zdr_field'], pia_field=field_config['pia_field'], phidp_field=field_config['phidp_field'], refl_field=field_config['refl_field'], c=c_coef, d=d_coef, a_coef=attenuation_a_coef, beta=beta_coef, gatefilter=cmac_gates) # cor_zdr['data'] += cmac_config['zdr_offset'] Now taken care of at start radar.add_field('specific_attenuation', spec_at, replace_existing=True) radar.add_field('path_integrated_attenuation', pia_dict, replace_existing=True) radar.add_field('corrected_reflectivity', cor_z, replace_existing=True) radar.add_field('specific_differential_attenuation', spec_diff_at, replace_existing=True) radar.add_field('path_integrated_differential_attenuation', pida_dict, replace_existing=True) radar.add_field('corrected_differential_reflectivity', cor_zdr, replace_existing=True) radar.fields['corrected_velocity']['units'] = 'm/s' radar.fields['corrected_velocity']['valid_min'] = np.round( radar.fields['corrected_velocity']['valid_min'], 4) radar.fields['corrected_velocity']['valid_max'] = np.round( radar.fields['corrected_velocity']['valid_max'], 4) radar.fields['simulated_velocity']['units'] = 'm/s' radar.fields['velocity_texture']['units'] = 'm/s' radar.fields['unfolded_differential_phase']['long_name'] = 'Unfolded differential propagation phase shift' cat_dict = {} for pair_str in radar.fields['gate_id']['notes'].split(','): if verbose: print(pair_str) cat_dict.update({pair_str.split(':')[1]: int(pair_str.split(':')[0])}) rain_gates = pyart.correct.GateFilter(radar) rain_gates.exclude_all() rain_gates.include_equal('gate_id', cat_dict['rain']) # Calculating rain rate. R = rr_a * (radar.fields['specific_attenuation']['data']) ** rr_b rainrate = copy.deepcopy(radar.fields['specific_attenuation']) rainrate['data'] = R rainrate['valid_min'] = 0.0 rainrate['valid_max'] = 400.0 rainrate['standard_name'] = 'rainfall_rate' rainrate['long_name'] = 'rainfall_rate' rainrate['least_significant_digit'] = 1 rainrate['units'] = 'mm/hr' radar.fields.update({'rain_rate_A': rainrate}) # This needs to be updated to a gatefilter. mask = radar.fields['reflectivity']['data'].mask radar.fields['rain_rate_A'].update({ 'comment': 'Rain rate calculated from specific_attenuation,' + ' R=51.3*specific_attenuation**0.81, note R=0.0 where' + ' norm coherent power < 0.4 or rhohv < 0.8'}) if verbose: print('## Rainfall rate as a function of A ##') print('##') print('## All CMAC fields have been added to the radar object.') print('##') # Adding the metadata to the cmac radar object. print('## Appending metadata') command_line = '' for item in sys.argv: command_line = command_line + ' ' + item if meta_append is None: meta = { 'site_id': None, 'data_level': 'sgp', 'comment': 'This is highly experimental and initial data. ' + 'There are many known and unknown issues. Please do ' + 'not use before contacting the Translator responsible ' + '<EMAIL>', 'attributions': 'This data is collected by the ARM Climate Research ' + 'facility. Radar system is operated by the radar ' + 'engineering team <EMAIL> and the data is ' + 'processed by the precipitation radar products ' + 'team. LP code courtesy of <NAME>, BNL.', 'version': '2.0 lite', 'vap_name': 'cmac', 'known_issues': 'False phidp jumps in insect regions. Still uses ' + 'old Giangrande code.', 'developers': '<NAME>, ANL. <NAME>, ANL.', 'translator': '<NAME>, ANL.', 'mentors': '<NAME>, PNNL., <NAME>, PNNL.', 'Conventions': 'CF/Radial instrument_parameters ARM-1.3'} else: if meta_append.lower().endswith('.json'): with open(meta_append, 'r') as infile: meta = json.load(infile) elif meta_append == 'config': meta = meta_config else: raise RuntimeError('Must provide the file name of the json file', 'or say config to use the meta data from', 'config.py') radar.metadata.clear() radar.metadata.update(meta) radar.metadata['command_line'] = command_line return radar def area_coverage(radar, precip_threshold=10.0, convection_threshold=40.0): """ Returns percent coverage of precipitation and convection. """ temp_radar = radar.extract_sweeps([0]) ref = temp_radar.fields['corrected_reflectivity']['data'] total_len = len(ref.flatten()) ref_10_len = len(np.argwhere(ref >= precip_threshold)) ref_40_len = len(
np.argwhere(ref >= convection_threshold)
numpy.argwhere
from __future__ import print_function, division import sys import os import torch import numpy as np import random import csv import json from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from torch.utils.data.sampler import Sampler #from pycocotools.coco import COCO import skimage.io import skimage.transform import skimage.color import skimage from PIL import Image class CocoDataset(Dataset): """Coco dataset.""" def __init__(self, root_dir, set_name='train2017', transform=None): """ Args: root_dir (string): COCO directory. transform (callable, optional): Optional transform to be applied on a sample. """ self.root_dir = root_dir self.set_name = set_name self.transform = transform self.coco = COCO(os.path.join(self.root_dir, 'annotations', 'instances_' + self.set_name + '.json')) self.image_ids = self.coco.getImgIds() self.load_classes() def load_classes(self): # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) self.classes[c['name']] = len(self.classes) # also load the reverse (label -> name) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key def __len__(self): return len(self.image_ids) def __getitem__(self, idx): img = self.load_image(idx) annot = self.load_annotations(idx) sample = {'img': img, 'annot': annot} if self.transform: sample = self.transform(sample) return sample def load_image(self, image_index): image_info = self.coco.loadImgs(self.image_ids[image_index])[0] path = os.path.join(self.root_dir, 'images', self.set_name, image_info['file_name']) img = skimage.io.imread(path) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img.astype(np.float32)/255.0 def load_annotations(self, image_index): # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = np.zeros((0, 5)) # some images appear to miss annotations (like image with id 257034) if len(annotations_ids) == 0: return annotations # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for idx, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotation = np.zeros((1, 5)) annotation[0, :4] = a['bbox'] annotation[0, 4] = self.coco_label_to_label(a['category_id']) annotations = np.append(annotations, annotation, axis=0) # transform from [x, y, w, h] to [x1, y1, x2, y2] annotations[:, 2] = annotations[:, 0] + annotations[:, 2] annotations[:, 3] = annotations[:, 1] + annotations[:, 3] return annotations def coco_label_to_label(self, coco_label): return self.coco_labels_inverse[coco_label] def label_to_coco_label(self, label): return self.coco_labels[label] def image_aspect_ratio(self, image_index): image = self.coco.loadImgs(self.image_ids[image_index])[0] return float(image['width']) / float(image['height']) def num_classes(self): return 80 class CSVDataset(Dataset): """CSV dataset.""" def __init__(self, train_file, class_list,img_dir, transform=None): """ Args: train_file (string): CSV file with training annotations annotations (string): CSV file with class list test_file (string, optional): CSV file with testing annotations """ self.train_file = train_file self.class_list = class_list self.transform = transform self.img_dir = img_dir # parse the provided class file try: with self._open_for_csv(self.class_list) as file: self.classes = self.load_classes(csv.reader(file, delimiter=',')) except ValueError as e: raise_from(ValueError('invalid CSV class file: {}: {}'.format(self.class_list, e)), None) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key # csv with img_path, x1, y1, x2, y2, class_name try: with self._open_for_csv(self.train_file) as file: self.image_data = self._read_annotations(csv.reader(file, delimiter=','), self.classes) except ValueError as e: raise_from(ValueError('invalid CSV annotations file: {}: {}'.format(self.train_file, e)), None) self.image_names = list(self.image_data.keys()) def _parse(self, value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _open_for_csv(self, path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='') def load_classes(self, csv_reader): result = {} for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None) class_id = self._parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def __len__(self): return len(self.image_names) def __getitem__(self, idx): img = self.load_image(idx) annot = self.load_annotations(idx) sample = {'img_fname':self.image_names[idx],'img': img, 'annot': annot} if self.transform: sample = self.transform(sample) return sample def load_image(self, image_index): img = skimage.io.imread(self.image_names[image_index]) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img.astype(np.float32)/255.0 def load_annotations(self, image_index): # get ground truth annotations annotation_list = self.image_data[self.image_names[image_index]] annotations = np.zeros((0, 5)) # some images appear to miss annotations (like image with id 257034) if len(annotation_list) == 0: return annotations # parse annotations for idx, a in enumerate(annotation_list): # some annotations have basically no width / height, skip them x1 = a['x1'] x2 = a['x2'] y1 = a['y1'] y2 = a['y2'] if (x2-x1) < 1 or (y2-y1) < 1: continue annotation = np.zeros((1, 5)) annotation[0, 0] = x1 annotation[0, 1] = y1 annotation[0, 2] = x2 annotation[0, 3] = y2 annotation[0, 4] = self.name_to_label(a['class']) annotations = np.append(annotations, annotation, axis=0) return annotations def _read_annotations(self, csv_reader, classes): result = {} for line, row in enumerate(csv_reader): line += 1 try: img_file, x1, y1, x2, y2, class_name = row[:6] except ValueError: raise_from(ValueError('line {}: format should be \'img_file,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''.format(line)), None) img_file = self.img_dir+img_file if img_file not in result: result[img_file] = [] # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''): continue x1 = self._parse(x1, int, 'line {}: malformed x1: {{}}'.format(line)) y1 = self._parse(y1, int, 'line {}: malformed y1: {{}}'.format(line)) x2 = self._parse(x2, int, 'line {}: malformed x2: {{}}'.format(line)) y2 = self._parse(y2, int, 'line {}: malformed y2: {{}}'.format(line)) # Check that the bounding box is valid. if x2 <= x1: raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1)) if y2 <= y1: raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1)) # check if the current class name is correctly present if class_name not in classes: raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes)) result[img_file].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name}) return result def name_to_label(self, name): return self.classes[name] def label_to_name(self, label): return self.labels[label] def num_classes(self): return max(self.classes.values()) + 1 def image_aspect_ratio(self, image_index): image = Image.open(self.image_names[image_index]) return float(image.width) / float(image.height) class CustomDataset(Dataset): """Img folder with .json for each img""" def __init__(self, img_list,class_list, transform=None): """ Args: train_file (string): CSV file with training annotations annotations (string): CSV file with class list test_file (string, optional): CSV file with testing annotations """ self.class_list = class_list self.transform = transform self.img_list = img_list # parse the provided class file try: with self._open_for_csv(self.class_list) as file: self.classes = self.load_classes(csv.reader(file, delimiter=',')) except ValueError as e: raise_from(ValueError('invalid CSV class file: {}: {}'.format(self.class_list, e)), None) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key try: self.image_data = self._read_annotations(self.img_list, self.classes) except ValueError as e: raise_from(ValueError('invalid CSV annotations file: {}: {}'.format(self.train_file, e)), None) self.image_names = list(self.image_data.keys()) def _parse(self, value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _open_for_csv(self, path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='') def load_classes(self, csv_reader): result = {} for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None) class_id = self._parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def __len__(self): return len(self.image_names) def __getitem__(self, idx): img = self.load_image(idx) annot = self.load_annotations(idx) sample = {'img_fname':self.image_names[idx],'img': img, 'annot': annot} if self.transform: sample = self.transform(sample) return sample def load_image(self, image_index): img = skimage.io.imread(self.image_names[image_index]) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img.astype(np.float32)/255.0 def load_annotations(self, image_index): # get ground truth annotations annotation_list = self.image_data[self.image_names[image_index]] annotations = np.zeros((0, 5)) # some images appear to miss annotations (like image with id 257034) if len(annotation_list) == 0: return annotations # parse annotations for idx, a in enumerate(annotation_list): # some annotations have basically no width / height, skip them x1 = a['x1'] x2 = a['x2'] y1 = a['y1'] y2 = a['y2'] if (x2-x1) < 1 or (y2-y1) < 1: continue annotation = np.zeros((1, 5)) annotation[0, 0] = x1 annotation[0, 1] = y1 annotation[0, 2] = x2 annotation[0, 3] = y2 annotation[0, 4] = self.name_to_label(a['class']) annotations = np.append(annotations, annotation, axis=0) return annotations def _read_annotations(self, img_list, classes): result = {} for idx,img_fname in enumerate(img_list): annotations_fname = img_fname[:-3]+'json' if img_fname not in result: result[img_fname] = [] try: with open(annotations_fname) as f: annotations = json.load(f) #img_file, x1, y1, x2, y2, class_name = row[:6] except: continue bboxes = annotations['bboxes'] if len(bboxes)==0: continue for i,bbox in enumerate(bboxes): x1, y1, x2, y2, class_name= bbox[0],bbox[1],bbox[2],bbox[3],annotations['class_name'][i] # x1 = self._parse(x1, int, 'line {}: malformed x1: {{}}'.format(line)) # y1 = self._parse(y1, int, 'line {}: malformed y1: {{}}'.format(line)) # x2 = self._parse(x2, int, 'line {}: malformed x2: {{}}'.format(line)) # y2 = self._parse(y2, int, 'line {}: malformed y2: {{}}'.format(line)) # Check that the bounding box is valid. if x2 <= x1: raise ValueError('bbox {}: x2 ({}) must be higher than x1 ({})'.format(i, x2, x1)) if y2 <= y1: raise ValueError('bbox {}: y2 ({}) must be higher than y1 ({})'.format(i, y2, y1)) # check if the current class name is correctly present if class_name not in classes: raise ValueError('bbox {}: unknown class name: \'{}\' (classes: {})'.format(i, class_name, classes)) result[img_fname].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name}) return result def name_to_label(self, name): return self.classes[name] def label_to_name(self, label): return self.labels[label] def num_classes(self): return max(self.classes.values()) + 1 def image_aspect_ratio(self, image_index): image = Image.open(self.image_names[image_index]) return float(image.width) / float(image.height) def collater(data): img_fnames = [s['img_fname'] for s in data] imgs = [s['img'] for s in data] annots = [s['annot'] for s in data] scales = [s['scale'] for s in data] widths = [int(s.shape[0]) for s in imgs] heights = [int(s.shape[1]) for s in imgs] batch_size = len(imgs) max_width = np.array(widths).max() max_height =
np.array(heights)
numpy.array
# plotting import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns # numpy import numpy as np # scipy import scipy as sp import scipy.interpolate from scipy.special import erfinv, erf from scipy.stats import poisson as pss import scipy.fftpack import scipy.sparse # jit from numba import jit import ctypes import astropy import astropy as ap from astropy.convolution import convolve_fft, AiryDisk2DKernel import pickle # multiprocessing import multiprocessing as mp from copy import deepcopy # utilities import os, time, sys, glob, fnmatch, inspect, traceback, functools # HealPix import healpy as hp # ignore warnings if not in diagnostic mode import warnings #seterr(divide='raise', over='raise', invalid='raise') #seterr(all='raise') #seterr(under='ignore') #warnings.simplefilter('ignore') #np.set_printoptions(linewidth=180) #sns.set(context='poster', style='ticks', color_codes=True) import h5py # utilities # secondaries ## Symbolic Jacobian calculation #import sympy # tdpy import tdpy from tdpy.util import summgene # photometry related ### find the spectra of sources def retr_spec(gdat, flux, sind=None, curv=None, expc=None, sindcolr=None, elin=None, edisintp=None, sigm=None, gamm=None, spectype='powr', plot=False): if gdat.numbener == 1: spec = flux[None, :] else: if plot: meanener = gdat.meanpara.enerplot else: meanener = gdat.meanpara.ener if gmod.spectype == 'gaus': spec = 1. / edis[None, :] / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis[None, :])**2) if gmod.spectype == 'voig': args = (gdat.meanpara.ener[:, None] + 1j * gamm[None, :]) / np.sqrt(2.) / sigm[None, :] spec = 1. / sigm[None, :] / np.sqrt(2. * pi) * flux[None, :] * real(scipy.special.wofz(args)) if gmod.spectype == 'edis': edis = edisintp(elin)[None, :] spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'pvoi': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'lore': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'powr': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) if gmod.spectype == 'colr': if plot: spec = np.zeros((gdat.numbenerplot, flux.size)) else: spec = np.empty((gdat.numbener, flux.size)) for i in gdat.indxener: if i < gdat.indxenerpivt: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i]) elif i == gdat.indxenerpivt: spec[i, :] = flux else: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i-1]) if gmod.spectype == 'curv': spec = flux[None, :] * meanener[:, None]**(-sind[None, :] - gdat.factlogtenerpivt[:, None] * curv[None, :]) if gmod.spectype == 'expc': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) * np.exp(-(meanener - gdat.enerpivt)[:, None] / expc[None, :]) return spec ### find the surface brightness due to one point source def retr_sbrtpnts(gdat, lgal, bgal, spec, psfnintp, indxpixlelem): # calculate the distance to all pixels from each point source dist = retr_angldistunit(gdat, lgal, bgal, indxpixlelem) # interpolate the PSF onto the pixels if gdat.kernevaltype == 'ulip': psfntemp = psfnintp(dist) if gdat.kernevaltype == 'bspx': pass # scale by the PS spectrum sbrtpnts = spec[:, None, None] * psfntemp return sbrtpnts def retr_psfnwdth(gdat, psfn, frac): ''' Return the PSF width ''' wdth = np.zeros((gdat.numbener, gdat.numbevtt)) for i in gdat.indxener: for m in gdat.indxevtt: psfntemp = psfn[i, :, m] indxanglgood = np.argsort(psfntemp) intpwdth = max(frac * np.amax(psfntemp), np.amin(psfntemp)) if intpwdth >= np.amin(psfntemp[indxanglgood]) and intpwdth <= np.amax(psfntemp[indxanglgood]): wdthtemp = sp.interpolate.interp1d(psfntemp[indxanglgood], gdat.binspara.angl[indxanglgood], fill_value='extrapolate')(intpwdth) else: wdthtemp = 0. wdth[i, m] = wdthtemp return wdth # lensing-related def samp_lgalbgalfromtmpl(gdat, probtmpl): indxpixldraw = np.random.choice(gdat.indxpixl, p=probtmpl) lgal = gdat.lgalgrid[indxpixldraw] + randn(gdat.sizepixl) bgal = gdat.bgalgrid[indxpixldraw] + randn(gdat.sizepixl) return lgal, bgal ## custom random variables, pdfs, cdfs and icdfs ### probability distribution functions def retr_lprbpois(data, modl): lprb = data * np.log(modl) - modl - sp.special.gammaln(data + 1) return lprb ### probability density functions def pdfn_self(xdat, minm, maxm): pdfn = 1. / (maxm - minm) return pdfn def pdfn_expo(xdat, maxm, scal): if (xdat > maxm).any(): pdfn = 0. else: pdfn = 1. / scal / (1. - np.exp(-maxm / scal)) * np.exp(-xdat / scal) return pdfn def pdfn_dexp(xdat, maxm, scal): pdfn = 0.5 * pdfn_expo(np.fabs(xdat), maxm, scal) return pdfn def pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr): if np.isscalar(xdat): xdat = np.array([xdat]) faca = 1. / (brek**(sloplowr - slopuppr) * (brek**(1. - sloplowr) - minm**(1. - sloplowr)) / \ (1. - sloplowr) + (maxm**(1. - slopuppr) - brek**(1. - slopuppr)) / (1. - slopuppr)) facb = faca * brek**(sloplowr - slopuppr) / (1. - sloplowr) pdfn = np.empty_like(xdat) indxlowr = np.where(xdat <= brek)[0] indxuppr = np.where(xdat > brek)[0] if indxlowr.size > 0: pdfn[indxlowr] = faca * brek**(sloplowr - slopuppr) * xdat[indxlowr]**(-sloplowr) if indxuppr.size > 0: pdfn[indxuppr] = faca * xdat[indxuppr]**(-slopuppr) return pdfn def pdfn_powr(xdat, minm, maxm, slop): norm = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) pdfn = norm * xdat**(-slop) return pdfn def pdfn_logt(xdat, minm, maxm): pdfn = 1. / (np.log(maxm) - np.log(minm)) / xdat return pdfn def pdfn_igam(xdat, slop, cutf): pdfn = sp.stats.invgamma.pdf(xdat, slop - 1., scale=cutf) return pdfn def pdfn_lnor(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_gaus(xdat, mean, stdv): pdfn = 1. / np.sqrt(2. * pi) / stdv * np.exp(-0.5 * ((xdat - mean) / stdv)**2) return pdfn def pdfn_lgau(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_atan(para, minmpara, maxmpara): pdfn = 1. / (para**2 + 1.) / (np.arctan(maxmpara) - np.arctan(minmpara)) return pdfn def cdfn_paragenrscalbase(gdat, strgmodl, paragenrscalbase, thisindxparagenrbase): gmod = getattr(gdat, strgmodl) scalparagenrbase = gmod.scalpara.genrbase[thisindxparagenrbase] if scalparagenrbase == 'self' or scalparagenrbase == 'logt' or scalparagenrbase == 'atan': listminmparagenrscalbase = gmod.minmpara.genrbase[thisindxparagenrbase] factparagenrscalbase = gmod.factparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'self': paragenrscalbaseunit = cdfn_self(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'logt': paragenrscalbaseunit = cdfn_logt(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'atan': gmod.listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[thisindxparagenrbase] paragenrscalbaseunit = cdfn_atan(paragenrscalbase, listminmparagenrscalbase, gmod.listmaxmparagenrscalbase) elif scalparagenrbase == 'gaus' or scalparagenrbase == 'eerr': gmod.listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[thisindxparagenrbase] gmod.liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'eerr': gmod.cdfnlistminmparagenrscalbaseunit = gmod.cdfnlistminmparagenrscalbaseunit[thisindxparagenrbase] gmod.listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[thisindxparagenrbase] paragenrscalbaseunit = cdfn_eerr(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase, \ gmod.cdfnlistminmparagenrscalbaseunit, gmod.listparagenrscalbaseunitdiff) else: paragenrscalbaseunit = cdfn_gaus(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase) elif scalparagenrbase == 'pois': paragenrscalbaseunit = paragenrscalbase if gdat.booldiagmode: if paragenrscalbaseunit == 0: print('Warning. CDF is zero.') return paragenrscalbaseunit def icdf_paragenrscalfull(gdat, strgmodl, paragenrunitfull, indxparagenrfullelem): gmod = getattr(gdat, strgmodl) # tobechanged # temp -- change zeros to empty paragenrscalfull = np.zeros_like(paragenrunitfull) for scaltype in gdat.listscaltype: listindxparagenrbasescal = gmod.listindxparagenrbasescal[scaltype] if len(listindxparagenrbasescal) == 0: continue paragenrscalfull[listindxparagenrbasescal] = icdf_paragenrscalbase(gdat, strgmodl, paragenrunitfull[listindxparagenrbasescal], scaltype, listindxparagenrbasescal) if not np.isfinite(paragenrscalfull).all(): raise Exception('') if indxparagenrfullelem is not None: for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: indxparagenrfulltemp = indxparagenrfullelem[l][gmod.namepara.genrelem[l][g]] if indxparagenrfulltemp.size == 0: continue paragenrscalfull[indxparagenrfulltemp] = icdf_trap(gdat, strgmodl, paragenrunitfull[indxparagenrfulltemp], paragenrscalfull, \ gmod.listscalparagenrelem[l][g], gmod.namepara.genrelem[l][g], l) if gdat.booldiagmode: if not np.isfinite(paragenrscalfull[indxparagenrfulltemp]).all(): raise Exception('') if not np.isfinite(paragenrscalfull).all(): raise Exception('') return paragenrscalfull def icdf_paragenrscalbase(gdat, strgmodl, paragenrunitbase, scaltype, indxparagenrbasescal): gmod = getattr(gdat, strgmodl) if scaltype == 'self' or scaltype == 'logt' or scaltype == 'atan': minmparagenrscalbase = gmod.minmpara.genrbase[indxparagenrbasescal] factparagenrscalbase = gmod.factpara.genrbase[indxparagenrbasescal] if scaltype == 'self': paragenrscalbase = tdpy.icdf_self(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'logt': paragenrscalbase = tdpy.icdf_logt(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'atan': listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_atan(paragenrunitbase, minmparagenrscalbase, listmaxmparagenrscalbase) elif scaltype == 'gaus' or scaltype == 'eerr': listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[indxparagenrbasescal] liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[indxparagenrbasescal] if scaltype == 'eerr': cdfnminmparagenrscalbaseunit = gmod.cdfnminmparagenrscalbaseunit[indxparagenrbasescal] listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_eerr(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase, cdfnminmparagenrscalbaseunit, listparagenrscalbaseunitdiff) else: paragenrscalbase = tdpy.icdf_gaus(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase) elif scaltype == 'pois': paragenrscalbase = paragenrunitbase if gdat.booldiagmode: if not np.isfinite(paragenrscalbase).all(): print('scaltype') print(scaltype) print('paragenrscalbase') print(paragenrscalbase) print('type(paragenrscalbase)') print(type(paragenrscalbase)) print('paragenrscalbase.dtype') print(paragenrscalbase.dtype) raise Exception('') return paragenrscalbase def icdf_trap(gdat, strgmodl, cdfn, paragenrscalfull, scalcomp, nameparagenrelem, l): gmod = getattr(gdat, strgmodl) if scalcomp == 'self' or scalcomp == 'powr' or scalcomp == 'dpowslopbrek' or scalcomp == 'logt': minm = getattr(gmod.minmpara, nameparagenrelem) if scalcomp != 'self': maxm = getattr(gmod.maxmpara, nameparagenrelem) if scalcomp == 'powr': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio%spop%d' % (nameparagenrelem, l))] if gdat.booldiagmode: if not np.isfinite(slop): raise Exception('') if maxm < minm: raise Exception('') icdf = tdpy.icdf_powr(cdfn, minm, maxm, slop) if scalcomp == 'dpowslopbrek': distbrek = paragenrscalfull[getattr(gmod.indxpara, 'brekprio' + nameparagenrelem)[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + nameparagenrelem)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + nameparagenrelem)[l]] icdf = tdpy.icdf_dpow(cdfn, minm, maxm, distbrek, sloplowr, slopuppr) if scalcomp == 'expo': sexp = getattr(gmod, nameparagenrelem + 'distsexppop%d' % l) icdf = tdpy.icdf_expo(cdfn, maxm, sexp) if scalcomp == 'self': fact = getattr(gmod.factpara, nameparagenrelem) icdf = tdpy.icdf_self_fact(cdfn, minm, fact) if scalcomp == 'logt': icdf = tdpy.icdf_logt(cdfn, minm, fact) if scalcomp == 'dexp': scal = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] icdf = tdpy.icdf_dexp(cdfn, maxm, scal) if scalcomp == 'lnormeanstdv': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_lnor(cdfn, distmean, diststdv) if scalcomp == 'igam': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem)[l]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) icdf = tdpy.icdf_igam(cdfn, slop, cutf) if scalcomp == 'gaus': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_gaus(cdfn, distmean, diststdv) if gdat.booldiagmode: if not np.isfinite(icdf).all(): print('icdf') print(icdf) raise Exception('') return icdf def cdfn_trap(gdat, gdatmodi, strgmodl, icdf, indxpoplthis): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmod.listscalparagenrelem = gmod.listscalparagenrelem[indxpoplthis] cdfn = np.empty_like(icdf) for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[indxpoplthis]): if gmod.listscalparagenrelem[k] == 'self' or gmod.listscalparagenrelem[k] == 'dexp' or gmod.listscalparagenrelem[k] == 'expo' \ or gmod.listscalparagenrelem[k] == 'powr' or gmod.listscalparagenrelem[k] == 'dpowslopbrek': minm = getattr(gdat.fitt.minm, nameparagenrelem) if gmod.listscalparagenrelem[k] == 'powr': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) slop = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cdfn[k] = cdfn_powr(icdf[k], minm, maxm, slop) elif gmod.listscalparagenrelem[k] == 'dpowslopbrek': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) brek = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[indxpoplthis]] sloplowr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[indxpoplthis]] slopuppr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[indxpoplthis]] cdfn[k] = cdfn_dpow(icdf[k], minm, maxm, brek, sloplowr, slopuppr) else: fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) cdfn[k] = cdfn_self(icdf[k], minm, fact) if gmod.listscalparagenrelem[k] == 'lnormeanstdv': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_lnor(icdf[k], distmean, slop) if gmod.listscalparagenrelem[k] == 'igam': slop = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) cdfn[k] = cdfn_igam(icdf[k], slop, cutf) if gmod.listscalparagenrelem[k] == 'gaus': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_gaus(icdf[k], distmean, diststdv) return cdfn ### update sampler state def updt_stat(gdat, gdatmodi): if gdat.typeverb > 1: print('updt_stat()') # update the sample and the unit sample vectors gdatmodi.this.lpritotl = gdatmodi.next.lpritotl gdatmodi.this.lliktotl = gdatmodi.next.lliktotl gdatmodi.this.lpostotl = gdatmodi.next.lpostotl gdatmodi.this.paragenrscalfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrscalfull[gdatmodi.indxsampmodi]) gdatmodi.this.paragenrunitfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrunitfull[gdatmodi.indxsampmodi]) if gdatmodi.this.indxproptype > 0: gdatmodi.this.indxelemfull = deepcopy(gdatmodi.next.indxelemfull) gdatmodi.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdatmodi.this.indxelemfull, 'fitt') def initcompfromstat(gdat, gdatmodi, namerefr): for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): minm = getattr(gdat.fitt.minmpara, nameparagenrelem) maxm = getattr(gdat.fitt.maxmpara, nameparagenrelem) try: comp = getattr(gdat, namerefr + nameparagenrelem)[l][0, :] if gmod.listscalparagenrelem[l][g] == 'self' or gmod.listscalparagenrelem[l][g] == 'logt': fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) if gmod.listscalparagenrelem[l][g] == 'self': compunit = cdfn_self(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'logt': compunit = cdfn_logt(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'expo': scal = getattr(gdat.fitt, 'gangdistsexp') maxm = getattr(gdat.fitt.maxm, nameparagenrelem) compunit = cdfn_expo(icdf, maxm, scal) if gmod.listscalparagenrelem[l][g] == 'powr' or gmod.listscalparagenrelem[l][g] == 'igam': slop = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[l]] if gmod.listscalparagenrelem[l][g] == 'powr': compunit = cdfn_powr(comp, minm, maxm, slop) if gmod.listscalparagenrelem[l][g] == 'igam': cutf = getattr(gdat, 'cutf' + nameparagenrelem) compunit = cdfn_igam(comp, slop, cutf) if gmod.listscalparagenrelem[l][g] == 'dpowslopbrek': brek = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[l]] sloplowr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[l]] slopuppr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[l]] compunit = cdfn_powr(comp, minm, maxm, brek, sloplowr, slopuppr) if gmod.listscalparagenrelem[l][g] == 'gaus': distmean = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[l]] diststdv = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[l]] compunit = cdfn_gaus(comp, distmean, diststdv) except: if gdat.typeverb > 0: print('Initialization from the reference catalog failed for %s. Sampling randomly...' % nameparagenrelem) compunit = np.random.rand(gdatmodi.this.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int)) gdatmodi.this.paragenrunitfull[gdatmodi.this.indxparagenrfullelem[l][nameparagenrelem]] = compunit ### find the set of pixels in proximity to a position on the map def retr_indxpixlelemconc(gdat, strgmodl, dictelem, l): gmod = getattr(gdat, strgmodl) lgal = dictelem[l]['lgal'] bgal = dictelem[l]['bgal'] varbampl = dictelem[l][gmod.nameparagenrelemampl[l]] if gmod.typeelemspateval[l] == 'locl': listindxpixlelem = [[] for k in range(lgal.size)] for k in range(lgal.size): indxpixlpnts = retr_indxpixl(gdat, bgal[k], lgal[k]) indxfluxproxtemp = np.digitize(varbampl[k], gdat.binspara.prox) if indxfluxproxtemp > 0: indxfluxproxtemp -= 1 if indxfluxproxtemp == gdat.binspara.prox.size - 1: print('Warning! Index of the proximity pixel list overflew. Taking the largest list...') indxfluxproxtemp -= 1 indxpixlelem = gdat.indxpixlprox[indxfluxproxtemp][indxpixlpnts] if isinstance(indxpixlelem, int): indxpixlelem = gdat.indxpixl listindxpixlelem[k] = indxpixlelem listindxpixlelemconc = np.unique(np.concatenate(listindxpixlelem)) else: listindxpixlelemconc = gdat.indxpixl listindxpixlelem = gdat.indxpixl return listindxpixlelem, listindxpixlelemconc ### find the distance between two points on the map def retr_angldistunit(gdat, lgal, bgal, indxpixlelem, retranglcosi=False): if gdat.typepixl == 'heal': xdat, ydat, zaxi = retr_unit(lgal, bgal) anglcosi = gdat.xdatgrid[indxpixlelem] * xdat + gdat.ydatgrid[indxpixlelem] * ydat + gdat.zaxigrid[indxpixlelem] * zaxi if retranglcosi: return anglcosi else: angldist = np.arccos(anglcosi) return angldist else: angldist = np.sqrt((lgal - gdat.lgalgrid[indxpixlelem])**2 + (bgal - gdat.bgalgrid[indxpixlelem])**2) return angldist ### find the pixel index of a point on the map def retr_indxpixl(gdat, bgal, lgal): if gdat.typepixl == 'heal': indxpixl = gdat.pixlcnvt[hp.ang2pix(gdat.numbsideheal, np.pi / 2. - bgal, lgal)] if gdat.booldiagmode: if (indxpixl == -1).any(): raise Exception('pixlcnvt went negative!') if gdat.typepixl == 'cart': indxlgcr = np.floor(gdat.numbsidecart * (lgal - gdat.minmlgaldata) / 2. / gdat.maxmgangdata).astype(int) indxbgcr = np.floor(gdat.numbsidecart * (bgal - gdat.minmbgaldata) / 2. / gdat.maxmgangdata).astype(int) if np.isscalar(indxlgcr): if indxlgcr < 0: indxlgcr = 0 if indxlgcr >= gdat.numbsidecart: indxlgcr = gdat.numbsidecart - 1 else: indxlgcr[np.where(indxlgcr < 0)] = 0 indxlgcr[np.where(indxlgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 if np.isscalar(indxbgcr): if indxbgcr < 0: indxbgcr = 0 if indxbgcr >= gdat.numbsidecart: indxbgcr = gdat.numbsidecart - 1 else: indxbgcr[np.where(indxbgcr < 0)] = 0 indxbgcr[np.where(indxbgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 indxpixl = indxlgcr * gdat.numbsidecart + indxbgcr # convert to an index of non-zero exposure pixels #indxpixl = gdat.indxpixlroficnvt[indxpixl] return indxpixl ## obtain count maps def retr_cntp(gdat, sbrt): cntp = sbrt * gdat.expo * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] return cntp ## plotting ### construct path for plots def retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgplot, nameinte=''): if strgmodl == 'true' or strgstat == '': path = gdat.pathinit + nameinte + strgplot + '.pdf' elif strgstat == 'pdfn' or strgstat == 'mlik': path = gdat.pathplotrtag + strgpdfn + '/finl/' + nameinte + strgstat + strgplot + '.pdf' elif strgstat == 'this': path = gdat.pathplotrtag + strgpdfn + '/fram/' + nameinte + strgstat + strgplot + '_swep%09d.pdf' % gdatmodi.cntrswep return path ### determine the marker size def retr_mrkrsize(gdat, strgmodl, compampl, nameparagenrelemampl): gmod = getattr(gdat, strgmodl) minm = getattr(gdat.minmpara, nameparagenrelemampl) maxm = getattr(gdat.maxmpara, nameparagenrelemampl) mrkrsize = (np.sqrt(compampl) - np.sqrt(minm)) / (np.sqrt(maxm) - np.sqrt(minm)) * (gdat.maxmmrkrsize - gdat.minmmrkrsize) + gdat.minmmrkrsize return mrkrsize ## experiment specific def retr_psfphubb(gmod): # temp gmod.psfpexpr = np.array([0.080, 0.087]) / gdat.anglfact def retr_psfpchan(gmod): # temp #gmod.psfpexpr = np.array([0.25, 0.3, 0.4, 0.6, 0.7]) / gdat.anglfact if gdat.numbenerfull == 5: gmod.psfpexpr = np.array([0.424 / gdat.anglfact, 2.75, 0.424 / gdat.anglfact, 2.59, 0.440 / gdat.anglfact, 2.47, 0.457 / gdat.anglfact, 2.45, 0.529 / gdat.anglfact, 3.72]) if gdat.numbenerfull == 2: gmod.psfpexpr = np.array([0.427 / gdat.anglfact, 2.57, 0.449 / gdat.anglfact, 2.49]) #gdat.psfpchan = gmod.psfpexpr[(2 * gdat.indxenerincl[:, None] + np.arange(2)[None, :]).flatten()] #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, # 0.30 / gdat.anglfacti\ # 0.40 / gdat.anglfacti\ # 0.60 / gdat.anglfacti\ # 0.70 / gdat.anglfacti #gmod.psfpexpr = np.array([0.35 / gdat.anglfact, 2e-1, 1.9, 0.5 / gdat.anglfact, 1.e-1, 2.]) #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, 2.0e-1, 1.9, \ # 0.30 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.40 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.60 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.70 / gdat.anglfact, 1.0e-1, 2.0]) def retr_psfpsdyn(gmod): gmod.psfpexpr = np.array([0.05]) def retr_psfpferm(gmod): if gdat.anlytype.startswith('rec8'): path = gdat.pathdata + 'expr/irfn/psf_P8R2_SOURCE_V6_PSF.fits' else: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' irfn = astropy.io.fits.getdata(path, 1) minmener = irfn['energ_lo'].squeeze() * 1e-3 # [GeV] maxmener = irfn['energ_hi'].squeeze() * 1e-3 # [GeV] enerirfn = np.sqrt(minmener * maxmener) numbpsfpscal = 3 numbpsfpform = 5 fermscal = np.zeros((gdat.numbevtt, numbpsfpscal)) fermform = np.zeros((gdat.numbener, gdat.numbevtt, numbpsfpform)) strgpara = ['score', 'gcore', 'stail', 'gtail', 'ntail'] for m in gdat.indxevtt: if gdat.anlytype.startswith('rec8'): irfn = astropy.io.fits.getdata(path, 1 + 3 * gdat.indxevttincl[m]) fermscal[m, :] = astropy.io.fits.getdata(path, 2 + 3 * gdat.indxevttincl[m])['PSFSCALE'] else: if m == 1: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_front.fits' elif m == 0: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' else: continue irfn = astropy.io.fits.getdata(path, 1) fermscal[m, :] = astropy.io.fits.getdata(path, 2)['PSFSCALE'] for k in range(numbpsfpform): fermform[:, m, k] = sp.interpolate.interp1d(enerirfn, np.mean(irfn[strgpara[k]].squeeze(), axis=0), fill_value='extrapolate')(gdat.meanpara.ener) # convert N_tail to f_core for m in gdat.indxevtt: for i in gdat.indxener: fermform[i, m, 4] = 1. / (1. + fermform[i, m, 4] * fermform[i, m, 2]**2 / fermform[i, m, 0]**2) # calculate the scale factor gdat.fermscalfact = np.sqrt((fermscal[None, :, 0] * (10. * gdat.meanpara.ener[:, None])**fermscal[None, :, 2])**2 + fermscal[None, :, 1]**2) # store the fermi PSF parameters gmod.psfpexpr = np.zeros(gdat.numbener * gdat.numbevtt * numbpsfpform) for m in gdat.indxevtt: for k in range(numbpsfpform): indxfermpsfptemp = m * numbpsfpform * gdat.numbener + gdat.indxener * numbpsfpform + k gmod.psfpexpr[indxfermpsfptemp] = fermform[:, m, k] def retr_refrchaninit(gdat): gdat.indxrefr = np.arange(gdat.numbrefr) gdat.dictrefr = [] for q in gdat.indxrefr: gdat.dictrefr.append(dict()) gdat.refr.namepara.elemsign = ['flux', 'magt'] gdat.refr.lablelem = ['Xue+2011', 'Wolf+2008'] gdat.listnamerefr += ['xu11', 'wo08'] setattr(gdat, 'plotminmotyp', 0.) setattr(gdat, 'plottmaxmotyp', 1.) setattr(gmod.lablrootpara, 'otyp', 'O') setattr(gdat, 'scalotypplot', 'self') setattr(gmod.lablrootpara, 'otypxu11', 'O') for name in gdat.listnamerefr: setattr(gdat, 'plotminmotyp' + name, 0.) setattr(gdat, 'plotmaxmotyp' + name, 1.) if gdat.strgcnfg == 'pcat_chan_inpt_home4msc': with open(gdat.pathinpt + 'ECDFS_Cross_ID_Hsu2014.txt', 'r') as thisfile: for k, line in enumerate(thisfile): if k < 18: continue rasccand =line[2] declcand =line[2] gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'otyp', 'lumi'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'magt', 'reds', 'otyp'] def retr_refrchanfinl(gdat): booltemp = False if gdat.anlytype.startswith('extr'): if gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] = 1490 gdat.numbpixlbgalshft[0] = 1430 else: booltemp = True elif gdat.anlytype.startswith('home'): gdat.numbpixllgalshft[0] = 0 gdat.numbpixlbgalshft[0] = 0 if gdat.numbsidecart == 600: pass elif gdat.numbsidecart == 100: indxtile = int(gdat.anlytype[-4:]) numbsidecntr = int(gdat.anlytype[8:12]) numbtileside = numbsidecntr / gdat.numbsidecart indxtilexaxi = indxtile // numbtileside indxtileyaxi = indxtile % numbtileside gdat.numbpixllgalshft[0] += indxtilexaxi * gdat.numbsidecart gdat.numbpixlbgalshft[0] += indxtileyaxi * gdat.numbsidecart elif gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] += 150 gdat.numbpixlbgalshft[0] += 150 else: booltemp = True else: booltemp = True if booltemp: raise Exception('Reference elements cannot be aligned with the spatial axes!') ## WCS object for rotating reference elements into the ROI if gdat.numbener == 2: gdat.listpathwcss[0] = gdat.pathinpt + 'CDFS-4Ms-0p5to2-asca-im-bin1.fits' else: gdat.listpathwcss[0] = gdat.pathinpt + '0.5-0.91028_flux_%sMs.img' % gdat.anlytype[4] # Xue et al. (2011) #with open(gdat.pathinpt + 'chancatl.txt', 'r') as thisfile: pathfile = gdat.pathinpt + 'Xue2011.fits' hdun = pf.open(pathfile) hdun.info() lgalchan = hdun[1].data['_Glon'] / 180. * pi bgalchan = hdun[1].data['_Glat'] / 180. * pi fluxchansoft = hdun[1].data['SFlux'] fluxchanhard = hdun[1].data['HFlux'] objttypechan = hdun[1].data['Otype'] gdat.refrlumi[0][0] = hdun[1].data['Lx'] # position gdat.refr.dictelem[0]['lgal'] = lgalchan gdat.refr.dictelem[0]['bgal'] = bgalchan # spectra gdat.refrspec = [[np.zeros((3, gdat.numbener, lgalchan.size))]] if gdat.numbener == 2: gdat.refrspec[0][0, 0, :] = fluxchansoft * 0.624e9 gdat.refrspec[0][0, 1, :] = fluxchanhard * 0.624e9 / 16. else: gdat.refrspec[0][0, :, :] = 2. * fluxchansoft[None, :] * 0.624e9 gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] # fluxes gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] # spectral indices if gdat.numbener > 1: gdat.refrsind[0] = -np.log(gdat.refrspec[0][0, 1, :] / gdat.refrspec[0][0, 0, :]) / np.log(np.sqrt(7. / 2.) / np.sqrt(0.5 * 2.)) ## object type objttypechantemp = np.zeros(lgalchan.size) - 1. indx = np.where(objttypechan == 'AGN')[0] objttypechantemp[indx] = 0.165 indx = np.where(objttypechan == 'Galaxy')[0] objttypechantemp[indx] = 0.495 indx = np.where(objttypechan == 'Star')[0] objttypechantemp[indx] = 0.835 gdat.refrotyp[0][0] = objttypechantemp # Wolf et al. (2011) path = gdat.pathdata + 'inpt/Wolf2008.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['_Glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - pi) % (2. * pi)) - pi gdat.refrbgal[1] = np.deg2rad(data['_Glat']) gdat.refrmagt[1][0] = data['Rmag'] gdat.refrreds[1][0] = data['MCz'] #listname = [] #for k in range(data['MCclass'].size): # if not data['MCclass'][k] in listname: # listname.append(data['MCclass'][k]) listname = ['Galaxy', 'Galaxy (Uncl!)', 'QSO (Gal?)', 'Galaxy (Star?)', 'Star', 'Strange Object', 'QSO', 'WDwarf'] gdat.refrotyp[1][0] = np.zeros_like(gdat.refrreds[1][0]) - 1. for k, name in enumerate(listname): indx = np.where(data['MCclass'] == name)[0] gdat.refrotyp[1][0][indx] = k / 10. # error budget for name in ['lgal', 'bgal', 'sind', 'otyp', 'lumi', 'magt', 'reds']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_refrferminit(gdat): gdat.listnamerefr += ['ac15', 'ma05'] gdat.indxrefr = np.arange(gdat.numbrefr) gdat.refr.lablelem = ['Acero+2015', 'Manchester+2005'] gdat.refr.namepara.elemsign = ['flux', 'flux0400'] setattr(gmod.lablrootpara, 'curvac15', '%s_{3FGL}' % gdat.lablcurv) setattr(gmod.lablrootpara, 'expcac15', 'E_{c,3FGL}') for name in gdat.listnamerefr: setattr(gdat.minmpara, 'curv' + name, -1.) setattr(gdat.maxmpara, 'curv' + name, 1.) setattr(gdat.minmpara, 'expc' + name, 0.1) setattr(gdat.maxmpara, 'expc' + name, 10.) gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'curv', 'expc', 'tvar', 'etag', 'styp', 'sindcolr0001', 'sindcolr0002'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'flux0400', 'per0', 'per1'] def retr_refrfermfinl(gdat): gdat.minmstyp = -0.5 gdat.maxmstyp = 3.5 gdat.lablstyp = 'S' gmod.scalstypplot = 'self' gdat.minmtvar = 0. gdat.maxmtvar = 400. gdat.labltvar = 'T' gmod.scaltvarplot = 'logt' # Acero+2015 path = gdat.pathdata + 'expr/pnts/gll_psc_v16.fit' fgl3 = astropy.io.fits.getdata(path) gdat.refr.dictelem[0]['lgal'] = np.deg2rad(fgl3['glon']) gdat.refr.dictelem[0]['lgal'] = np.pi - ((gdat.refr.dictelem[0]['lgal'] - np.pi) % (2. * np.pi)) gdat.refr.dictelem[0]['bgal'] = np.deg2rad(fgl3['glat']) gdat.refr.numbelemfull = gdat.refr.dictelem[0]['lgal'].size gdat.refrspec = [np.empty((3, gdat.numbener, gdat.refr.dictelem[0]['lgal'].size))] gdat.refrspec[0][0, :, :] = np.stack((fgl3['Flux300_1000'], fgl3['Flux1000_3000'], fgl3['Flux3000_10000']))[gdat.indxenerincl, :] / gdat.deltener[:, None] fgl3specstdvtemp = np.stack((fgl3['Unc_Flux100_300'], fgl3['Unc_Flux300_1000'], fgl3['Unc_Flux1000_3000'], fgl3['Unc_Flux3000_10000'], \ fgl3['Unc_Flux10000_100000']))[gdat.indxenerincl, :, :] / gdat.deltener[:, None, None] gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 0] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 1] gdat.refrspec[0][np.where(np.isfinite(gdat.refrspec[0]) == False)] = 0. gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] gdat.refrsindcolr0001[0] = -np.log(gdat.refrspec[0][:, 1, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[1] / gdat.enerpivt) gdat.refrsindcolr0002[0] = -np.log(gdat.refrspec[0][:, 2, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[2] / gdat.enerpivt) fgl3axisstdv = (fgl3['Conf_68_SemiMinor'] + fgl3['Conf_68_SemiMajor']) * 0.5 fgl3anglstdv = np.deg2rad(fgl3['Conf_68_PosAng']) # [rad] fgl3lgalstdv = fgl3axisstdv * abs(np.cos(fgl3anglstdv)) fgl3bgalstdv = fgl3axisstdv * abs(np.sin(fgl3anglstdv)) gdat.refretag[0] = np.zeros(gdat.refr.dictelem[0]['lgal'].size, dtype=object) for k in range(gdat.refr.dictelem[0]['lgal'].size): gdat.refretag[0][k] = '%s, %s, %s' % (fgl3['Source_Name'][k], fgl3['CLASS1'][k], fgl3['ASSOC1'][k]) gdat.refrtvar[0] = fgl3['Variability_Index'] gdat.refrstyp[0] = np.zeros_like(gdat.refr.dictelem[0]['lgal']) - 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PowerLaw ')] = 0 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'LogParabola ')] = 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLExpCutoff ')] = 2 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLSuperExpCutoff')] = 3 indx = np.where(gdat.refrstyp[0] == -1)[0] if indx.size > 0: raise Exception('') gdat.refrsind[0] = fgl3['Spectral_Index'] gdat.refrcurv[0] = fgl3['beta'] gdat.refrexpc[0] = fgl3['Cutoff'] * 1e-3 gdat.refrcurv[0][np.where(np.logical_not(np.isfinite(gdat.refrcurv[0])))] = -10. gdat.refrexpc[0][np.where(np.logical_not(np.isfinite(gdat.refrexpc[0])))] = 0. gdat.refrsind[0] = np.tile(gdat.refrsind[0], (3, 1)) gdat.refrcurv[0] = np.tile(gdat.refrcurv[0], (3, 1)) gdat.refrexpc[0] = np.tile(gdat.refrexpc[0], (3, 1)) # Manchester+2005 path = gdat.pathdata + 'inpt/Manchester2005.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - np.pi) % (2. * np.pi)) - np.pi gdat.refrbgal[1] = np.deg2rad(data['glat']) gdat.refrper0[1] = data['P0'] gdat.refrper1[1] = data['P1'] gdat.refrflux0400[1] = data['S400'] #gdat.refrdism[1] = data['DM'] #gdat.refrdlos[1] = data['Dist'] # error budget for name in ['lgal', 'bgal', 'per0', 'per1', 'flux0400', 'tvar', 'styp']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_singgaus(scaldevi, sigc): psfn = 1. / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_singking(scaldevi, sigc, gamc): psfn = 1. / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) return psfn def retr_doubgaus(scaldevi, frac, sigc, sigt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_gausking(scaldevi, frac, sigc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_doubking(scaldevi, frac, sigc, gamc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) + \ (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_lgalbgal(gang, aang): lgal = gang * np.cos(aang) bgal = gang * np.sin(aang) return lgal, bgal def retr_gang(lgal, bgal): gang = np.arccos(np.cos(lgal) * np.cos(bgal)) return gang def retr_aang(lgal, bgal): aang = np.arctan2(bgal, lgal) return aang def show_paragenrscalfull(gdat, gdatmodi, strgstat='this', strgmodl='fitt', indxsampshow=None): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) print('strgmodl: ' + strgmodl) print('strgstat: ' + strgstat) print('%5s %20s %30s %30s %15s' % ('index', 'namepara', 'paragenrunitfull', 'paragenrscalfull', 'scalpara')) for k in gmod.indxparagenrfull: if indxsampshow is not None and not k in indxsampshow: continue if gmod.numbparaelem > 0: booltemp = False for l in gmod.indxpopl: if k == gmod.indxparagenrelemsing[l][0]: booltemp = True if booltemp: print('') print('%5d %20s %30g %30g %15s' % (k, gmod.namepara.genrfull[k], gmodstat.paragenrunitfull[k], gmodstat.paragenrscalfull[k], gmod.scalpara.genrfull[k])) def prop_stat(gdat, gdatmodi, strgmodl, thisindxelem=None, thisindxpopl=None, brth=False, deth=False): if gdat.typeverb > 1: print('prop_stat()') #indxproptype # within, birth, death, split, merge # 0, 1, 2, 3, 4 gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodthis = getattr(gdatobjt, 'this') gmodnext = getattr(gdatobjt, 'next') if gmod.numbparaelem > 0: if gdat.booldiagmode: for l in gmod.indxpopl: if len(gmodthis.indxelemfull[l]) > len(set(gmodthis.indxelemfull[l])): raise Exception('Repeating entry in the element index list!') thisindxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodthis.indxelemfull, strgmodl) setattr(gmodthis, 'indxparagenrfullelem', thisindxparagenrfullelem) else: thisindxparagenrfullelem = None gdatmodi.this.boolpropfilt = True # index of the population in which a transdimensional proposal will be attempted if gmod.numbparaelem > 0: if thisindxpopl is None: gdatmodi.indxpopltran = np.random.choice(gmod.indxpopl) else: gdatmodi.indxpopltran = thisindxpopl numbelemtemp = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # forced death or birth does not check for the prior on the dimensionality on purpose! if gmod.numbparaelem > 0 and (deth or brth or np.random.rand() < gdat.probtran) and \ not (numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if brth or deth or np.random.rand() < gdat.probbrde or \ numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == 1 or numbelemtemp == 0: ## births and deaths if numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] or deth: gdatmodi.this.indxproptype = 2 elif numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or brth: gdatmodi.this.indxproptype = 1 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 1 else: gdatmodi.this.indxproptype = 2 else: ## splits and merges if numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or numbelemtemp < 2: gdatmodi.this.indxproptype = 3 elif numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]: gdatmodi.this.indxproptype = 4 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 3 else: gdatmodi.this.indxproptype = 4 else: if gdat.booldiagmode and (gdatmodi.stdp > 1e2).any(): raise Exception('') thisindxparagenrfullelemconc = [] for l in gmod.indxpopl: thisindxparagenrfullelemconc.append(thisindxparagenrfullelem[l]['full']) # get the indices of the current parameter vector if gmod.numbparaelem > 0: thisindxsampfull = np.concatenate([gmod.indxparagenrbasestdv] + thisindxparagenrfullelemconc) else: thisindxsampfull = gmod.indxparagenrbasestdv thisstdp = gdatmodi.stdp[gdat.indxstdppara[thisindxsampfull]] if not np.isfinite(thisstdp).all(): raise Exception('') gdatmodi.this.indxproptype = 0 if gdat.booldiagmode and gdat.probspmr == 0 and gdatmodi.this.indxproptype > 2: raise Exception('') if gdat.typeverb > 1: print('gdatmodi.this.indxproptype') print(gdatmodi.this.indxproptype) if gdatmodi.this.indxproptype == 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = gmodthis.indxelemfull if gdatmodi.this.indxproptype > 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) gmodnext.paragenrscalfull = np.copy(gmodthis.paragenrscalfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = deepcopy(gmodthis.indxelemfull) if gdatmodi.this.indxproptype == 0: ## proposal scale if False: # amplitude-dependent proposal scale for l in gmod.indxpopl: thiscompampl = gmodthis.paragenrscalfull[thisindxparagenrfullelem[indxelemfull][gmod.nameparagenrelemampl[l]][l]] compampl = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] minmcompampl = getattr(gmod.minmpara, gmod.nameparagenrelemampl[l]) thiscompunit = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] compunit = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] if nameparagenrelem == gmod.nameparagenrelemampl[l]: # temp -- this only works if compampl is powr distributed gdatmodi.this.stdp = stdpcomp / (thiscompampl / minmcompampl)**2. gdatmodi.this.stdv = stdpcomp / (compampl / minmcompampl)**2. gdatmodi.this.ltrp += np.sum(0.5 * (nextcompunit - thiscompunit)**2 * (1. / gdatmodi.this.stdv**2 - 1. / gdatmodi.this.stdv**2)) else: gdatmodi.this.stdp = stdpcomp / (np.minimum(thiscompampl, compampl) / minmcompampl)**0.5 ## propose a step diffparagenrunitfull = np.random.normal(size=thisindxsampfull.size) * thisstdp gmodnext.paragenrunitfull[thisindxsampfull] = gmodthis.paragenrunitfull[thisindxsampfull] + diffparagenrunitfull if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') indxsamplowr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] < 0.)[0] if indxsamplowr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr] = abs(gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr]) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') indxsampuppr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] > 1.)[0] if indxsampuppr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] = (gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] - 1.) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') gmodnext.paragenrscalfull = icdf_paragenrscalfull(gdat, strgmodl, gmodnext.paragenrunitfull, thisindxparagenrfullelem) if gdat.booldiagmode: if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') if np.amin(gmodnext.paragenrunitfull[gmod.numbpopl:]) < 0.: raise Exception('') if np.amax(gmodnext.paragenrunitfull[gmod.numbpopl:]) > 1.: raise Exception('') if not np.isfinite(gmodnext.paragenrscalfull).all(): raise Exception('') if gdatmodi.this.indxproptype > 0: gdatmodi.indxsamptran = [] if gdatmodi.this.indxproptype == 1: gdatmodi.this.auxipara = np.random.rand(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) elif gdatmodi.this.indxproptype != 2: gdatmodi.this.auxipara = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: # find an empty slot in the element list for u in range(gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if not u in gdatmodi.this.indxelemfull[gdatmodi.indxpopltran]: break gdatmodi.indxelemmodi = [u] gdatmodi.indxelemfullmodi = [gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)] # sample indices to add the new element gdatmodi.indxparagenrfullelemaddd = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemaddd) gmodnext.indxelemfull[gdatmodi.indxpopltran].append(gdatmodi.indxelemmodi[0]) if gdatmodi.this.indxproptype == 1: # sample auxiliary variables gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.this.auxipara # death if gdatmodi.this.indxproptype == 2: # occupied element index to be killed if thisindxelem is None: dethindxindxelem = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) else: dethindxindxelem = thisindxelem # element index to be killed gdatmodi.indxelemmodi = [] gdatmodi.indxelemfullmodi = [] if gdat.typeverb > 1: print('dethindxindxelem') print(dethindxindxelem) gdatmodi.indxelemmodi.append(gmodthis.indxelemfull[gdatmodi.indxpopltran][dethindxindxelem]) gdatmodi.indxelemfullmodi.append(dethindxindxelem) # parameter indices to be killed indxparagenrfullelemdeth = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(indxparagenrfullelemdeth) gdatmodi.this.auxipara = gmodthis.paragenrscalfull[indxparagenrfullelemdeth] if gdatmodi.this.indxproptype > 2: gdatmodi.comppare = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compfrst = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compseco = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) # split if gdatmodi.this.indxproptype == 3: # find the probability of splitting elements gdatmodi.indxelemfullsplt = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) gdatmodi.indxelemsplt = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullsplt] gdatmodi.indxelemfullmodi.insert(0, gdatmodi.indxelemfullsplt) gdatmodi.indxelemmodi.insert(0, gdatmodi.indxelemsplt) # sample indices for the first element gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.insert(0, gdatmodi.indxparagenrfullelemfrst) # sample indices for the second element gdatmodi.indxsampseco = gdatmodi.indxparagenrfullelemaddd # take the parent element parameters for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gdatmodi.comppare[k] = np.copy(gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]]) # draw the auxiliary parameters for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.auxipara[g] = np.random.randn() * gdat.radispmr elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = np.random.rand() else: gdatmodi.this.auxipara[g] = icdf_trap(gdat, strgmodl, np.random.rand(), gmodthis.paragenrscalfull, gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], l) # determine the new parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[1]) * gdatmodi.this.auxipara[0] else: gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[0] gdatmodi.compfrst[1] = gdatmodi.comppare[1] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[1] gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[1] * gdatmodi.this.auxipara[0] else: gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[0] gdatmodi.compseco[1] = gdatmodi.comppare[1] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[1] gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] for g in range(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.compfrst[g] = gdatmodi.comppare[g] gdatmodi.compseco[g] = gdatmodi.this.auxipara[g] # place the new parameters into the sample vector gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compfrst, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.compfrst gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compseco, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = gdatmodi.compseco # check for prior boundaries if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): if np.fabs(gdatmodi.compfrst[0]) > gdat.maxmelin or np.fabs(gdatmodi.compseco[0]) > gdat.maxmelin: gdatmodi.this.boolpropfilt = False else: if np.fabs(gdatmodi.compfrst[0]) > maxmlgal or np.fabs(gdatmodi.compseco[0]) > maxmlgal or \ np.fabs(gdatmodi.compfrst[1]) > maxmbgal or np.fabs(gdatmodi.compseco[1]) > maxmbgal: gdatmodi.this.boolpropfilt = False if gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]) or \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: if not gdatmodi.this.boolpropfilt: print('Rejecting the proposal due to a split that falls out of the prior...') if gdatmodi.this.indxproptype == 4: # determine the index of the primary element to be merged (in the full element list) gdatmodi.indxelemfullmergfrst = np.random.choice(np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran]))) ## first element index to be merged gdatmodi.mergindxelemfrst = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergfrst] # find the probability of merging this element with the others probmerg = retr_probmerg(gdat, gdatmodi, gmodthis.paragenrscalfull, thisindxparagenrfullelem, gdatmodi.indxpopltran, 'seco', typeelem=gmod.typeelem) indxelemfulltemp = np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran])) if gdat.booldiagmode: if indxelemfulltemp.size < 2: raise Exception('') gdatmodi.indxelemfullmergseco = np.random.choice(np.setdiff1d(indxelemfulltemp, np.array([gdatmodi.indxelemfullmergfrst])), p=probmerg) gdatmodi.indxelemfullmodi = np.sort(np.array([gdatmodi.indxelemfullmergfrst, gdatmodi.indxelemfullmergseco])) # parameters of the first element to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## first gdatmodi.compfrst[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]] # determine indices of the modified elements in the sample vector ## first element # temp -- this would not work for multiple populations ! gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemfrst) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemfrst) ## second element index to be merged gdatmodi.mergindxelemseco = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergseco] ## second element gdatmodi.indxparagenrfullelemseco = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemseco) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemseco) # parameters of the elements to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## second gdatmodi.compseco[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[1]]] # indices of the element to be merged gdatmodi.indxelemmodi = [gdatmodi.mergindxelemfrst, gdatmodi.mergindxelemseco] # auxiliary parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] else: gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] gdatmodi.this.auxipara[1] = gdatmodi.compseco[1] - gdatmodi.compfrst[1] gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] / \ (gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = gdatmodi.compseco[g] # merged element gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] > getattr(gdat, 'maxm' + gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: print('Proposal rejected due to falling outside the prior.') return if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[1]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) else: gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) gdatmodi.comppare[1] = gdatmodi.compfrst[1] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[1] - gdatmodi.compfrst[1]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ (gdatmodi.compseco[g] - gdatmodi.compfrst[g]) elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + gdatmodi.compseco[g] else: gdatmodi.comppare[g] = gdatmodi.compfrst[g] gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.comppare, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.comppare # calculate the proposed list of pairs if gdat.typeverb > 1: print('mergindxfrst: ', gdatmodi.mergindxelemfrst) print('gdatmodi.indxelemfullmergfrst: ', gdatmodi.indxelemfullmergfrst) print('mergindxseco: ', gdatmodi.mergindxelemseco) print('gdatmodi.indxelemfullmergseco: ', gdatmodi.indxelemfullmergseco) print('indxparagenrfullelemfrst: ', gdatmodi.indxparagenrfullelemfrst) print('indxparagenrfullelemseco: ', gdatmodi.indxparagenrfullelemseco) if gdat.typeverb > 1 and (gdatmodi.this.indxproptype == 3 or gdatmodi.this.boolpropfilt and gdatmodi.this.indxproptype == 4): if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): print('elinfrst: ', gdatmodi.compfrst[0]) print('amplfrst: ', gdatmodi.compfrst[1]) print('elinseco: ', gdatmodi.compseco[0]) print('amplseco: ', gdatmodi.compseco[1]) print('elinpare: ', gdatmodi.comppare[0]) print('fluxpare: ', gdatmodi.comppare[1]) print('auxipara[0][0]: ', gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdatmodi.this.auxipara[1]) else: print('lgalfrst: ', gdat.anglfact * gdatmodi.compfrst[0]) print('bgalfrst: ', gdat.anglfact * gdatmodi.compfrst[1]) print('amplfrst: ', gdatmodi.compfrst[2]) print('lgalseco: ', gdat.anglfact * gdatmodi.compseco[0]) print('bgalseco: ', gdat.anglfact * gdatmodi.compseco[1]) print('amplseco: ', gdatmodi.compseco[2]) print('lgalpare: ', gdat.anglfact * gdatmodi.comppare[0]) print('bgalpare: ', gdat.anglfact * gdatmodi.comppare[1]) print('fluxpare: ', gdatmodi.comppare[2]) print('auxipara[0][0]: ', gdat.anglfact * gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdat.anglfact * gdatmodi.this.auxipara[1]) print('auxipara[0][2]: ', gdatmodi.this.auxipara[2]) if gmod.numbparaelem > 0 and gdatmodi.this.indxproptype > 0 and gdatmodi.this.boolpropfilt: # change the number of elements if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] + 1 if gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] - 1 gmodnext.paragenrunitfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # remove the element from the occupied element list if (gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4): for a, indxelem in enumerate(gdatmodi.indxelemmodi): if a == 0 and gdatmodi.this.indxproptype == 2 or a == 1 and gdatmodi.this.indxproptype == 4: gmodnext.indxelemfull[gdatmodi.indxpopltran].remove(indxelem) if gdatmodi.this.indxproptype == 0: gdatmodi.indxsampmodi = thisindxsampfull else: if gdatmodi.this.indxproptype == 1: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gdatmodi.this.indxproptype == 2: gdatmodi.indxsampmodi = [gmod.indxpara.numbelem[gdatmodi.indxpopltran]] if gdatmodi.this.indxproptype == 3: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), \ gdatmodi.indxsamptran[0], gdatmodi.indxsamptran[1])) if gdatmodi.this.indxproptype == 4: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gmod.numbparaelem > 0: if gdatmodi.this.indxproptype == 0: indxparagenrfullelem = thisindxparagenrfullelem else: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodnext.indxelemfull, strgmodl) if gdat.typeverb > 1: print('gdatmodi.indxsampmodi') print(gdatmodi.indxsampmodi) if gmod.numbparaelem > 0: print('gmodthis.indxelemfull') print(gmodthis.indxelemfull) print('gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)') print(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)) if gdatmodi.this.indxproptype > 0: print('gdatmodi.indxelemmodi') print(gdatmodi.indxelemmodi) print('gdatmodi.indxelemfullmodi') print(gdatmodi.indxelemfullmodi) print('gdatmodi.this.boolpropfilt') print(gdatmodi.this.boolpropfilt) print('indxparagenrfullelem') print(indxparagenrfullelem) if gdatmodi.this.indxproptype == 1: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0][g]] = icdf_trap(gdat, strgmodl, gdatmodi.this.auxipara[g], gmodthis.paragenrscalfull, \ gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gdatmodi.indxpopltran) if gdat.booldiagmode: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]]): print('l') print(l) print('gmod.indxpara.numbelem') print(gmod.indxpara.numbelem) print('gmodthis.paragenrunitfull') print(gmodthis.paragenrunitfull) raise Exception('') if gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if strgmodl == 'fitt': diffparagenrscalfull = abs(gmodnext.paragenrscalfull - gmodthis.paragenrscalfull) #size = np.where(((gmodthis.paragenrscalfull == 0.) & (diffparagenrscalfull > 0.)) | ((gmodthis.paragenrscalfull != 0.) & (diffparagenrscalfull / gmodthis.paragenrscalfull > 0)))[0].size size = np.where(diffparagenrscalfull != 0.)[0].size if gdatmodi.this.indxproptype == 1: if size - 1 != gmod.numbparagenrelemsing[gdatmodi.indxpopltran]: raise Exception('') def calc_probprop(gdat, gdatmodi): gmod = gdat.fitt # calculate the factor to multiply the acceptance rate, i.e., ## probability of the auxiliary parameters, if gdatmodi.this.indxproptype == 0: gdatmodi.this.lpau = 0. elif gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau = gdatmodi.next.lpritotl - gdatmodi.this.lpritotl lpautemp = 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[gdatmodi.indxpopltran] if gdatmodi.this.indxproptype == 1: gdatmodi.this.lpau += lpautemp if gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau -= lpautemp elif gdatmodi.this.indxproptype == 3 or gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau = 0. dictelemtemp = [dict()] for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.lpau += -0.5 * np.log(2. * np.pi * gdat.radispmr**2) - 0.5 * (gdatmodi.this.auxipara[g] / gdat.radispmr)**2 elif g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: dictelemtemp[0][nameparagenrelem] = gdatmodi.this.auxipara[g] gdatmodi.this.lpau += retr_lprielem(gdat, 'fitt', gdatmodi.indxpopltran, g, \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gdatmodi.this.paragenrscalfull, dictelemtemp, [1]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau *= -1. if gdatmodi.this.indxproptype > 2 and gdatmodi.this.boolpropfilt: ## the ratio of the probability of the reverse and forward proposals, and if gdatmodi.this.indxproptype == 3: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.next.paragenrscalfull, gdatmodi.next.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran] + 1) + np.log(gdatmodi.this.probmergtotl) else: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.this.paragenrscalfull, gdatmodi.this.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = -np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran]) - np.log(gdatmodi.this.probmergtotl) ## Jacobian if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.ljcb = np.log(gdatmodi.comppare[1]) else: gdatmodi.this.ljcb = np.log(gdatmodi.comppare[2]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.ljcb *= -1. else: gdatmodi.this.ljcb = 0. gdatmodi.this.ltrp = 0. for l in gmod.indxpopl: if gdatmodi.this.indxproptype > 0: setattr(gdatmodi, 'auxiparapop%d' % l, gdatmodi.this.auxipara) def retr_indxparagenrfullelem(gdat, indxelemfull, strgmodl): gmod = getattr(gdat, strgmodl) ## element parameters if gmod.numbparaelem > 0: indxparagenrfullelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: indxparagenrfulltemp = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + np.array(indxelemfull[l], dtype=int) * gmod.numbparagenrelemsing[l] cntr = tdpy.cntr() indxparagenrfullelem[l] = dict() for nameparagenrelem in gmod.namepara.genrelem[l]: indxparagenrfullelem[l][nameparagenrelem] = indxparagenrfulltemp + cntr.incr() indxparagenrfullelem[l]['full'] = np.repeat(indxparagenrfulltemp, gmod.numbparagenrelemsing[l]) + np.tile(gmod.indxparagenrelemsing[l], len(indxelemfull[l])) if gdat.booldiagmode: for l in gmod.indxpopl: if len(indxparagenrfullelem[l]['full']) > 0: if np.amax(indxparagenrfullelem[l]['full']) > gmod.numbparagenrelem[l] + gmod.numbparagenrbase: print('strgmodl') print(strgmodl) print('strgstat') print(strgstat) print('gmod.numbparagenrbase') print(gmod.numbparagenrbase) print('gmod.numbparagenrelem[l]') print(gmod.numbparagenrelem[l]) print('indxparagenrfullelem[l][full]') summgene(indxparagenrfullelem[l]['full']) print('gdat.fitt.minmpara.numbelempop0') print(gdat.fitt.minmpara.numbelempop0) print('gdat.fitt.maxmpara.numbelempop0') print(gdat.fitt.maxmpara.numbelempop0) raise Exception('Element parameter indices are bad.') else: indxparagenrfullelem = None return indxparagenrfullelem def retr_weigmergodim(gdat, elin, elinothr): weigmerg = np.exp(-0.5 * ((elin - elinothr) / gdat.radispmr)**2) return weigmerg def retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr): weigmerg = np.exp(-0.5 * (((lgal - lgalothr) / gdat.radispmr)**2 + ((bgal - bgalothr) / gdat.radispmr)**2)) return weigmerg def retr_probmerg(gdat, gdatmodi, paragenrscalfull, indxparagenrfullelem, indxpopltran, strgtype, typeelem=None): # calculate the weights if strgtype == 'seco': numb = 1 if strgtype == 'pair': numb = 2 listweigmerg = [] for a in range(numb): if gmod.typeelem[indxpopltran].startswith('lghtline'): elintotl = paragenrscalfull[indxparagenrfullelem['elin'][indxpopltran]] elin = elintotl[gdatmodi.indxelemfullmodi[0]] elinothr = np.concatenate((elintotl[:gdatmodi.indxelemfullmodi[0]], elintotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergodim(gdat, elin, elinothr) else: lgaltotl = paragenrscalfull[indxparagenrfullelem['lgal'][indxpopltran]] bgaltotl = paragenrscalfull[indxparagenrfullelem['bgal'][indxpopltran]] lgal = lgaltotl[gdatmodi.indxelemfullmodi[0]] bgal = bgaltotl[gdatmodi.indxelemfullmodi[0]] lgalothr = np.concatenate((lgaltotl[:gdatmodi.indxelemfullmodi[0]], lgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) bgalothr = np.concatenate((bgaltotl[:gdatmodi.indxelemfullmodi[0]], bgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr) listweigmerg.append(weigmerg) # determine the probability of merging the second element given the first element if strgtype == 'seco': probmerg = listweigmerg[0] / np.sum(listweigmerg[0]) # determine the probability of merging the pair if strgtype == 'pair': if gmod.typeelem[indxpopltran].startswith('lghtline'): weigpair = retr_weigmergtdim(gdat, elin, elintotl[gdatmodi.indxelemfullmodi[1]]) else: weigpair = retr_weigmergtdim(gdat, lgal, lgaltotl[gdatmodi.indxelemfullmodi[1]], bgal, bgaltotl[gdatmodi.indxelemfullmodi[1]]) probmerg = weigpair / np.sum(listweigmerg[0]) + weigpair / np.sum(listweigmerg[1]) if gdat.booldiagmode: if not np.isfinite(probmerg).all(): raise Exception('Merge probability is infinite.') return probmerg def retr_indxparaelem(gmod, l, u): indxsamppnts = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + u * gmod.numbparagenrelemsing[l] + gmod.indxparagenrelemsing[l] return indxsamppnts def gang_detr(): gang, aang, lgal, bgal = sympy.symbols('gang aang lgal bgal') AB = sympy.matrices.Matrix([[a1*b1,a1*b2,a1*b3],[a2*b1,a2*b2,a2*b3],[a3*b1,a3*b2,a3*b3]]) def retr_psfn(gdat, psfp, indxenertemp, thisangl, typemodlpsfn, strgmodl): gmod = getattr(gdat, strgmodl) indxpsfpinit = gmod.numbpsfptotl * (indxenertemp[:, None] + gdat.numbener * gdat.indxevtt[None, :]) if gdat.typeexpr == 'ferm': scalangl = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(thisangl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] scalanglnorm = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(gdat.binspara.angl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] else: scalangl = thisangl[None, :, None] if typemodlpsfn == 'singgaus': sigc = psfp[indxpsfpinit] sigc = sigc[:, None, :] psfn = retr_singgaus(scalangl, sigc) elif typemodlpsfn == 'singking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigc = sigc[:, None, :] gamc = gamc[:, None, :] psfn = retr_singking(scalangl, sigc, gamc) elif typemodlpsfn == 'doubking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigt = psfp[indxpsfpinit+2] gamt = psfp[indxpsfpinit+3] frac = psfp[indxpsfpinit+4] sigc = sigc[:, None, :] gamc = gamc[:, None, :] sigt = sigt[:, None, :] gamt = gamt[:, None, :] frac = frac[:, None, :] psfn = retr_doubking(scalangl, frac, sigc, gamc, sigt, gamt) if gdat.typeexpr == 'ferm': psfnnorm = retr_doubking(scalanglnorm, frac, sigc, gamc, sigt, gamt) # normalize the PSF if gdat.typeexpr == 'ferm': fact = 2. * np.pi * np.trapz(psfnnorm * np.sin(gdat.binspara.angl[None, :, None]), gdat.binspara.angl, axis=1)[:, None, :] psfn /= fact return psfn def retr_unit(lgal, bgal): xdat = np.cos(bgal) * np.cos(lgal) ydat = -np.cos(bgal) * np.sin(lgal) zaxi = np.sin(bgal) return xdat, ydat, zaxi def retr_psec(gdat, conv): # temp conv = conv.reshape((gdat.numbsidecart, gdat.numbsidecart)) psec = (abs(scipy.fftpack.fft2(conv))**2)[:gdat.numbsidecarthalf, :gdat.numbsidecarthalf] * 1e-3 psec = psec.flatten() return psec def retr_psecodim(gdat, psec): psec = psec.reshape((gdat.numbsidecarthalf, gdat.numbsidecarthalf)) psecodim = np.zeros(gdat.numbsidecarthalf) for k in gdat.indxmpolodim: indxmpol = np.where((gdat.meanpara.mpol > gdat.binspara.mpolodim[k]) & (gdat.meanpara.mpol < gdat.binspara.mpolodim[k+1])) psecodim[k] = np.mean(psec[indxmpol]) psecodim *= gdat.meanpara.mpolodim**2 return psecodim def retr_eerrnorm(minmvarb, maxmvarb, meanvarb, stdvvarb): cdfnminm = 0.5 * (sp.special.erf((minmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfnmaxm = 0.5 * (sp.special.erf((maxmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfndiff = cdfnmaxm - cdfnminm return cdfnminm, cdfndiff def retr_condcatl(gdat): # setup ## number of stacked samples numbstks = 0 indxtupl = [] indxstks = [] indxstksparagenrscalfull = [] for n in gdat.indxsamptotl: indxstks.append([]) indxstkssamptemp = [] for l in gmod.indxpopl: indxstks[n].append([]) for k in range(len(gdat.listpostindxelemfull[n][l])): indxstks[n][l].append(numbstks) indxstkssamptemp.append(numbstks) indxtupl.append([n, l, k]) numbstks += 1 indxstkssamp.append(np.array(indxstkssamptemp)) if gdat.typeverb > 1: print('indxstks') print(indxstks) print('indxtupl') print(indxtupl) print('indxstkssamp') print(indxstksparagenrscalfull) print('numbstks') print(numbstks) cntr = 0 arrystks = np.zeros((numbstks, gmod.numbparagenrelemtotl)) for n in gdat.indxsamptotl: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdat.listpostindxelemfull[n], 'fitt') for l in gmod.indxpopl: for k in np.arange(len(gdat.listpostindxelemfull[n][l])): for m, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): arrystks[indxstks[n][l][k], m] = gdat.listpostparagenrscalfull[n, gmodstat.indxparagenrfullelem[l][nameparagenrelem][k]] if gdat.typeverb > 0: print('Constructing the distance matrix for %d stacked samples...' % arrystks.shape[0]) timeinit = gdat.functime() gdat.distthrs = np.empty(gmod.numbparagenrelemtotl) for k, nameparagenrelem in enumerate(gmod.namepara.elem): # temp l = 0 gdat.distthrs[k] = gdat.stdp[getattr(gdat, 'indxstdppop%d' % l + nameparagenrelem)] # construct lists of samples for each proposal type listdisttemp = [[] for k in range(gmod.numbparagenrelemtotl)] indxstksrows = [[] for k in range(gmod.numbparagenrelemtotl)] indxstkscols = [[] for k in range(gmod.numbparagenrelemtotl)] thisperc = 0 cntr = 0 for k in gmod.indxparagenrelemtotl: for n in range(numbstks): dist = np.fabs(arrystks[n, k] - arrystks[:, k]) indxstks = np.where(dist < gdat.distthrs[k])[0] if indxstks.size > 0: for j in indxstks: cntr += 1 listdisttemp[k].append(dist[j]) indxstksrows[k].append(n) indxstkscols[k].append(j) nextperc = np.floor(100. * float(k * numbstks + n) / numbstks / gmod.numbparagenrelemtotl) if nextperc > thisperc: thisperc = nextperc if cntr > 1e6: break listdisttemp[k] = np.array(listdisttemp[k]) indxstksrows[k] = np.array(indxstksrows[k]) indxstkscols[k] = np.array(indxstkscols[k]) if cntr > 1e6: break listdist = [[] for k in range(gmod.numbparagenrelemtotl)] for k, nameparagenrelem in enumerate(gmod.namepara.elem): listdist[k] = scipy.sparse.csr_matrix((listdisttemp[k], (indxstksrows[k], indxstkscols[k])), shape=(numbstks, numbstks)) listindxstkspair = [] indxstksleft = [] if gdat.typeverb > 0: timefinl = gdat.functime() indxstksleft = range(numbstks) # list of sample lists of the labeled element indxstksassc = [] cntr = 0 gdat.prvlthrs = 0.05 while len(indxstksleft) > 0: # count number of associations numbdist = np.zeros(numbstks, dtype=int) - 1 for p in range(len(indxstksleft)): indxindx = np.where((listdist[0][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmlgal < gdat.anglassc) & \ (listdist[1][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmbgal < gdat.anglassc))[0] numbdist[indxstksleft[p]] = indxindx.size prvlmaxmesti = np.amax(numbdist) / float(gdat.numbsamptotl) if prvlmaxmesti < gdat.prvlthrs: break # determine the element with the highest number of neighbors indxstkscntr = np.argmax(numbdist) indxsamptotlcntr = indxtupl[indxstkscntr][0] indxpoplcntr = indxtupl[indxstkscntr][1] indxelemcntr = indxtupl[indxstkscntr][2] # add the central element sample indxstksassc.append([]) indxstksassc[cntr].append(indxstkscntr) indxstksleft.remove(indxstkscntr) if gdat.typeverb > 1: print('Match step %d' % cntr) print('numbdist') print(numbdist) print('indxstkscntr') print(indxstkscntr) print('indxstksleft') print(indxstksleft) # add the associated element samples if len(indxstksleft) > 0: for n in gdat.indxsamptotl: indxstkstemp = np.intersect1d(np.array(indxstksleft), indxstksparagenrscalfull[n]) if n == indxsamptotlcntr: continue if indxstkstemp.size > 0: totl = np.zeros_like(indxstkstemp) for k in gmod.indxparagenrelemtotl: temp = listdist[k][indxstkscntr, indxstkstemp].tonp.array()[0] totl = totl + temp**2 indxleft = np.argsort(totl)[0] indxstksthis = indxstkstemp[indxleft] thisbool = True for k in gmod.indxparagenrelemtotl: if listdist[k][indxstkscntr, indxstksthis] > gdat.distthrs[k]: thisbool = False if thisbool: indxstksassc[cntr].append(indxstksthis) indxstksleft.remove(indxstksthis) # temp #if gdat.makeplot: # gdatmodi = tdpy.gdatstrt() # gdatmodi.this.indxelemfull = deepcopy(listindxelemfull[n]) # for r in range(len(indxstksassc)): # calc_poststkscond(gdat, indxstksassc) # gdatmodi.this.indxelemfull = [[] for l in gmod.indxpopl] # for indxstkstemp in indxstksleft: # indxsamptotlcntr = indxtupl[indxstkstemp][0] # indxpoplcntr = indxtupl[indxstkstemp][1] # indxelemcntr = indxtupl[indxstkstemp][2] # gdatmodi.this.paragenrscalfull = gdat.listparagenrscalfull[indxsamptotlcntr, :] # gdatmodi.this.indxelemfull[].append() # plot_genemaps(gdat, gdatmodi, 'this', 'cntpdata', strgpdfn, indxenerplot=0, indxevttplot=0, cond=True) cntr += 1 gdat.dictglob['poststkscond'] = [] gdat.dictglob['liststkscond'] = [] # for each condensed element for r in range(len(indxstksassc)): gdat.dictglob['liststkscond'].append([]) gdat.dictglob['liststkscond'][r] = {} gdat.dictglob['poststkscond'].append([]) gdat.dictglob['poststkscond'][r] = {} for strgfeat in gmod.namepara.genrelem: gdat.dictglob['liststkscond'][r][strgfeat] = [] # for each associated sample associated with the central stacked sample for k in range(len(indxstksassc[r])): indxsamptotlcntr = indxtupl[indxstksassc[r][k]][0] indxpoplcntr = indxtupl[indxstksassc[r][k]][1] indxelemcntr = indxtupl[indxstksassc[r][k]][2] for strgfeat in gmod.namepara.genrelem: temp = getattr(gdat, 'list' + strgfeat) if temp[indxsamptotlcntr][indxpoplcntr].size > 0: temp = temp[indxsamptotlcntr][indxpoplcntr][..., indxelemcntr] gdat.dictglob['liststkscond'][r][strgfeat].append(temp) for r in range(len(gdat.dictglob['liststkscond'])): for strgfeat in gmod.namepara.genrelem: arry = np.stack(gdat.dictglob['liststkscond'][r][strgfeat], axis=0) gdat.dictglob['poststkscond'][r][strgfeat] = np.zeros(([3] + list(arry.shape[1:]))) gdat.dictglob['poststkscond'][r][strgfeat][0, ...] = median(arry, axis=0) gdat.dictglob['poststkscond'][r][strgfeat][1, ...] = percennp.tile(arry, 16., axis=0) gdat.dictglob['poststkscond'][r][strgfeat][2, ...] = percennp.tile(arry, 84., axis=0) gdat.numbstkscond = len(gdat.dictglob['liststkscond']) gdat.indxstkscond = np.arange(gdat.numbstkscond) gdat.prvl = np.empty(gdat.numbstkscond) for r in gdat.indxstkscond: gdat.prvl[r] = len(gdat.dictglob['liststkscond'][r]['deltllik']) gdat.prvl /= gdat.numbsamptotl gdat.minmprvl = 0. gdat.maxmprvl = 1. retr_axis(gdat, 'prvl') gdat.histprvl = np.histogram(gdat.prvl, bins=gdat.binspara.prvl)[0] if gdat.makeplot: pathcond = getattr(gdat, 'path' + strgpdfn + 'finlcond') for k, nameparagenrelem in enumerate(gmod.namepara.elem): path = pathcond + 'histdist' + nameparagenrelem listtemp = np.copy(listdist[k].tonp.array()).flatten() listtemp = listtemp[np.where(listtemp != 1e20)[0]] tdpy.mcmc.plot_hist(path, listtemp, r'$\Delta \tilde{' + getattr(gmod.lablrootpara, nameparagenrelem) + '}$') path = pathcond + 'histprvl' tdpy.mcmc.plot_hist(path, gdat.prvl, r'$p$') gdat.prvlthrs = 0.1 gdat.indxprvlhigh = np.where(gdat.prvl > gdat.prvlthrs)[0] gdat.numbprvlhigh = gdat.indxprvlhigh.size def retr_conv(gdat, defl): defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) # temp conv = abs(np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0) + np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) / 2. conv = conv.flatten() return conv def retr_invm(gdat, defl): # temp defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) invm = (1. - np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0)) * (1. - np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) - \ np.gradient(defl[:, :, 0], gdat.sizepixl, axis=1) * np.gradient(defl[:, :, 1], gdat.sizepixl, axis=0) invm = invm.flatten() return invm def setp_indxswepsave(gdat): gdat.indxswep = np.arange(gdat.numbswep) gdat.boolsave = np.zeros(gdat.numbswep, dtype=bool) gdat.indxswepsave = np.arange(gdat.numbburn, gdat.numbburn + gdat.numbsamp * gdat.factthin, gdat.factthin) gdat.boolsave[gdat.indxswepsave] = True gdat.indxsampsave = np.zeros(gdat.numbswep, dtype=int) - 1 gdat.indxsampsave[gdat.indxswepsave] = np.arange(gdat.numbsamp) def retr_cntspnts(gdat, listposi, spec): cnts = np.zeros((gdat.numbener, spec.shape[1])) if gdat.boolbinsspat: lgal = listposi[0] bgal = listposi[1] indxpixlpnts = retr_indxpixl(gdat, bgal, lgal) else: elin = listposi[0] indxpixlpnts = np.zeros_like(elin, dtype=int) for k in range(spec.shape[1]): cnts[:, k] += spec[:, k] * gdat.expototl[:, indxpixlpnts[k]] if gdat.enerdiff: cnts *= gdat.deltener[:, None] cnts = np.sum(cnts, axis=0) return cnts def retr_mdencrit(gdat, adissour, adishost, adishostsour): mdencrit = gdat.factnewtlght / 4. / np.pi * adissour / adishostsour / adishost return mdencrit def retr_massfrombein(gdat, adissour, adishost, adishostsour): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) massfrombein = np.pi * adishost**2 * mdencrit return massfrombein def retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) fracacutasca = acut / asca factmcutfromdefs = np.pi * adishost**2 * mdencrit * asca * retr_mcutfrommscl(fracacutasca) return factmcutfromdefs def retr_mcut(gdat, defs, asca, acut, adishost, mdencrit): mscl = defs * np.pi * adishost**2 * mdencrit * asca fracacutasca = acut / asca mcut = mscl * retr_mcutfrommscl(fracacutasca) return mcut def retr_mcutfrommscl(fracacutasca): mcut = fracacutasca**2 / (fracacutasca**2 + 1.)**2 * ((fracacutasca**2 - 1.) * np.log(fracacutasca) + fracacutasca * np.pi - (fracacutasca**2 + 1.)) return mcut def retr_negalogt(varb): negalogt = sign(varb) * np.log10(np.fabs(varb)) return negalogt def retr_gradmaps(gdat, maps): # temp -- this does not work with vanishing exposure maps = maps.reshape((gdat.numbsidecart, gdat.numbsidecart)) grad = np.dstack((np.gradient(maps, gdat.sizepixl, axis=0), np.gradient(maps, gdat.sizepixl, axis=1))).reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) grad = grad.reshape((gdat.numbpixlcart, 2)) return grad def retr_spatmean(gdat, inpt, boolcntp=False): listspatmean = [[] for b in gdat.indxspatmean] listspatstdv = [[] for b in gdat.indxspatmean] for b, namespatmean in enumerate(gdat.listnamespatmean): if boolcntp: cntp = inpt[gdat.listindxcubespatmean[b]] else: cntp = inpt[gdat.listindxcubespatmean[b]] * gdat.expo[gdat.listindxcubespatmean[b]] * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] spatmean = np.mean(np.sum(cntp, 2), axis=1) / gdat.apix spatstdv = np.sqrt(np.sum(cntp, axis=(1, 2))) / gdat.numbdata / gdat.apix if gdat.boolcorrexpo: spatmean /= gdat.expototlmean spatstdv /= gdat.expototlmean if gdat.enerdiff: spatmean /= gdat.deltener spatstdv /= gdat.deltener listspatmean[b] = spatmean listspatstdv[b] = spatstdv return listspatmean, listspatstdv def retr_rele(gdat, maps, lgal, bgal, defs, asca, acut, indxpixlelem, absv=True, cntpmodl=None): grad = retr_gradmaps(gdat, maps) defl = retr_defl(gdat, indxpixlelem, lgal, bgal, defs, asca=asca, acut=acut) prod = grad * defl if cntpmodl is not None: prod /= cntpmodl[:, None] dotstemp = np.sum(prod, 1) if absv: dotstemp = np.fabs(dotstemp) else: dotstemp = dotstemp dots = np.mean(dotstemp) return dots def retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn, strgmome='pmea', indxvarb=None, indxlist=None): if strgvarb.startswith('cntpdata'): varb = getattr(gdat, strgvarb) elif strgvarb.startswith('histcntpdata'): varb = getattr(gdat, strgvarb) else: if strgmodl == 'true': gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) varb = getattr(gmodstat, strgvarb) if strgmodl == 'fitt': if strgstat == 'this': if strgmome == 'errr': varb = getattr(gdatmodi, strgstat + 'errr' + strgvarb) else: varb = getattr(gdatmodi, strgstat + strgvarb) if strgstat == 'pdfn': varb = getattr(gdat, strgmome + strgpdfn + strgvarb) if indxlist is not None: varb = varb[indxlist] if indxvarb is not None: if strgmome == 'errr': varb = varb[[slice(None)] + indxvarb] else: varb = varb[indxvarb] return np.copy(varb) def setp_indxpara(gdat, typesetp, strgmodl='fitt'): print('setp_indxpara(): Building parameter indices for model %s with type %s...' % (strgmodl, typesetp)) gmod = getattr(gdat, strgmodl) if typesetp == 'init': if strgmodl == 'fitt': gmod.lablmodl = 'Model' if strgmodl == 'true': gmod.lablmodl = 'True' # transdimensional element populations gmod.numbpopl = len(gmod.typeelem) gmod.indxpopl = np.arange(gmod.numbpopl) if gdat.typeexpr != 'user': # background component gmod.numbback = 0 gmod.indxback = [] for c in range(len(gmod.typeback)): if isinstance(gmod.typeback[c], str): if gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): namebfun = gmod.typeback[c][:8] ordrexpa = int(gmod.typeback[c][8:]) numbexpa = 4 * ordrexpa**2 indxexpa = np.arange(numbexpa) del gmod.typeback[c] for k in indxexpa: gmod.typeback.insert(c+k, namebfun + '%04d' % k) gmod.numbback = len(gmod.typeback) gmod.indxback = np.arange(gmod.numbback) gmod.numbbacktotl = np.sum(gmod.numbback) gmod.indxbacktotl = np.arange(gmod.numbbacktotl) # galaxy components gmod.indxsersfgrd = np.arange(gmod.numbsersfgrd) # name of the generative element parameter used for the amplitude gmod.nameparagenrelemampl = [[] for l in gmod.indxpopl] gmod.indxparagenrelemampl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmod.nameparagenrelemampl[l] = 'per0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.nameparagenrelemampl[l] = 'lum0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtline'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 1 elif gmod.typeelem[l].startswith('lghtpnts'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtgausbgrd'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l].startswith('clus'): gmod.nameparagenrelemampl[l] = 'nobj' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' if gmod.typeelem[l] == 'clus': gmod.nameparagenrelemampl[l] = 'nobj' if len(gmod.nameparagenrelemampl[l]) == 0: raise Exception('Amplitude feature undefined.') for featpara in gdat.listfeatpara: for strggrop in gdat.liststrggroppara: setattr(gmod, 'list' + featpara + 'para' + strggrop, []) if typesetp == 'finl': # number of elements in the current state of the true model if strgmodl == 'true': gmod.numbelem = np.zeros(gmod.numbpopl) for l in gmod.indxpopl: gmod.numbelem[l] += getattr(gmod.maxmpara, 'numbelempop%d' % l) gmod.numbelemtotl = np.sum(gmod.numbelem) # element setup ## flag to calculate the kernel approximation errors boolcalcerrr = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelemspateval[l] == 'locl' and gdat.numbpixlfull < 1e5: # temp boolcalcerrr[l] = False else: boolcalcerrr[l] = False setp_varb(gdat, 'boolcalcerrr', valu=boolcalcerrr, strgmodl=strgmodl) # maximum number of elements for each population gmod.maxmpara.numbelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = getattr(gmod.maxmpara, 'numbelempop%d' % l) # maximum number of elements summed over all populations gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) ## sorting feature nameparaelemsort = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # feature to be used to sort elements if gmod.typeelem[l].startswith('lght'): nameparaelemsort[l] = 'flux' if gmod.typeelem[l] == 'lens': nameparaelemsort[l] = 'defs' if gmod.typeelem[l].startswith('clus'): nameparaelemsort[l] = 'nobj' ## label extensions gmod.lablelemextn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{fps}' if gmod.typeelem[l] == 'lghtgausbgrd': gmod.lablelemextn[l] = r'\rm{bgs}' else: if gmod.typeelem[l].startswith('lghtpntspuls'): gmod.lablelemextn[l] = r'\rm{pul}' if gmod.typeelem[l].startswith('lghtpntsagnn'): gmod.lablelemextn[l] = r'\rm{agn}' elif gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{pts}' if gmod.typeelem[l] == 'lens': gmod.lablelemextn[l] = r'\rm{sub}' if gmod.typeelem[l].startswith('clus'): gmod.lablelemextn[l] = r'\rm{cls}' if gmod.typeelem[l].startswith('lghtline'): gmod.lablelemextn[l] = r'\rm{lin}' gmod.indxpoplgrid = [[] for y in gdat.indxgrid] for y in gdat.indxgrid: for indx, typeelemtemp in enumerate(gmod.typeelem): # foreground grid (image plane) -- the one np.where the data is measured if y == 0: if typeelemtemp.startswith('lght') and not typeelemtemp.endswith('bgrd') or typeelemtemp.startswith('clus'): gmod.indxpoplgrid[y].append(indx) # foreground mass grid if y == 1: if typeelemtemp.startswith('lens'): gmod.indxpoplgrid[y].append(indx) # background grid (source plane) if y == 2: if typeelemtemp.endswith('bgrd'): gmod.indxpoplgrid[y].append(indx) indxgridpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for y in gdat.indxgrid: if l in gmod.indxpoplgrid[y]: indxgridpopl[l] = y calcelemsbrt = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts'): calcelemsbrt = True if 'lghtgausbgrd' in gmod.typeelem: calcelemsbrtbgrd = True else: calcelemsbrtbgrd = False if gmod.boollenssubh: calcelemdefl = True else: calcelemdefl = False ## element Boolean flags gmod.boolelemlght = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.boolelemlght[l] = True else: gmod.boolelemlght[l] = False gmod.boolelemlghtanyy = True in gmod.boolelemlght gmod.boolelemlens = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lens'): gmod.boolelemlens = True gmod.boolelemsbrtdfnc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0 and (gmod.typeelem[l].startswith('lght') and not gmod.typeelem[l].endswith('bgrd') or gmod.typeelem[l].startswith('clus')): gmod.boolelemsbrtdfnc[l] = True else: gmod.boolelemsbrtdfnc[l] = False gmod.boolelemsbrtdfncanyy = True in gmod.boolelemsbrtdfnc gmod.boolelemdeflsubh = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': gmod.boolelemdeflsubh[l] = True else: gmod.boolelemdeflsubh[l] = False gmod.boolelemdeflsubhanyy = True in gmod.boolelemdeflsubh gmod.boolelemsbrtextsbgrd = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l].endswith('bgrd'): gmod.boolelemsbrtextsbgrd[l] = True else: gmod.boolelemsbrtextsbgrd[l] = False gmod.boolelemsbrtextsbgrdanyy = True in gmod.boolelemsbrtextsbgrd if gmod.boolelemsbrtextsbgrdanyy: gmod.indxpopllens = 1 else: gmod.indxpopllens = 0 gmod.boolelemsbrtpnts = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l] != 'lghtline' or gmod.typeelem[l] == 'clus': gmod.boolelemsbrtpnts[l] = True else: gmod.boolelemsbrtpnts[l] = False gmod.boolelemsbrtpntsanyy = True in gmod.boolelemsbrtpnts # temp -- because there is currently no extended source gmod.boolelemsbrt = gmod.boolelemsbrtdfnc gmod.boolelempsfn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts') or gmod.typeelem[l] == 'clus': gmod.boolelempsfn[l] = True else: gmod.boolelempsfn[l] = False gmod.boolelempsfnanyy = True in gmod.boolelempsfn spectype = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.boolelemlght[l]: spectype[l] = 'powr' else: spectype[l] = 'none' setp_varb(gdat, 'spectype', valu=spectype, strgmodl=strgmodl) minmgwdt = 2. * gdat.sizepixl maxmgwdt = gdat.maxmgangdata / 4. setp_varb(gdat, 'gwdt', minm=minmgwdt, maxm=maxmgwdt, strgmodl=strgmodl) setp_varb(gdat, 'aerr', minm=-100, maxm=100, strgmodl=strgmodl, popl='full') if gmod.boolelemlghtanyy: # flux if gdat.typeexpr == 'ferm': minmflux = 1e-9 maxmflux = 1e-6 if gdat.typeexpr == 'tess': minmflux = 1. maxmflux = 1e3 if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': minmflux = 1e4 maxmflux = 1e7 else: minmflux = 3e-9 maxmflux = 1e-6 if gdat.typeexpr == 'gene': minmflux = 0.1 maxmflux = 100. if gdat.typeexpr == 'hubb': minmflux = 1e-20 maxmflux = 1e-17 if gdat.typeexpr == 'fire': minmflux = 1e-20 maxmflux = 1e-17 setp_varb(gdat, 'flux', limt=[minmflux, maxmflux], strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'brekprioflux', limt=[3e-9, 1e-6], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'sloplowrprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'slopupprprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) if gdat.boolbinsener: ### spectral parameters if gdat.typeexpr == 'ferm': sind = [1., 3.] minmsind = 1. maxmsind = 3. if gdat.typeexpr == 'chan': minmsind = 0.4 maxmsind = 2.4 sind = [0.4, 2.4] if gdat.typeexpr == 'hubb': minmsind = 0.5 maxmsind = 2.5 sind = [0.4, 2.4] if gdat.typeexpr != 'fire': setp_varb(gdat, 'sind', limt=[minmsind, maxmsind], strgmodl=strgmodl) setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) setp_varb(gdat, 'expc', limt=[0.1, 10.], strgmodl=strgmodl) setp_varb(gdat, 'sinddistmean', limt=sind, popl='full', strgmodl=strgmodl) #### standard deviations should not be too small setp_varb(gdat, 'sinddiststdv', limt=[0.3, 2.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdistmean', limt=[-1., 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdiststdv', limt=[0.1, 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdistmean', limt=[1., 8.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdiststdv', limt=[0.01 * gdat.maxmener, gdat.maxmener], popl='full', strgmodl=strgmodl) for i in gdat.indxenerinde: setp_varb(gdat, 'sindcolr0001', limt=[-2., 6.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr0002', limt=[0., 8.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr%04d' % i, limt=[-5., 10.], strgmodl=strgmodl) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': setp_varb(gdat, 'gang', limt=[1e-1 * gdat.sizepixl, gdat.maxmgangdata], strgmodl=strgmodl) setp_varb(gdat, 'geff', limt=[0., 0.4], strgmodl=strgmodl) setp_varb(gdat, 'dglc', limt=[10., 3e3], strgmodl=strgmodl) setp_varb(gdat, 'phii', limt=[0., 2. * np.pi], strgmodl=strgmodl) setp_varb(gdat, 'thet', limt=[0., np.pi], strgmodl=strgmodl) setp_varb(gdat, 'per0distmean', limt=[5e-4, 1e1], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdistmean', limt=[1e7, 1e16], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'per0diststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdiststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'gangslop', limt=[0.5, 4.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'dglcslop', limt=[0.5, 2.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'spatdistcons', limt=[1e-4, 1e-2], popl='full') setp_varb(gdat, 'bgaldistscal', limt=[0.5 / gdat.anglfact, 5. / gdat.anglfact], popl='full', strgmodl=strgmodl) if gmod.typeelem[l] == 'lghtpntsagnntrue': setp_varb(gdat, 'dlos', limt=[1e7, 1e9], strgmodl=strgmodl) setp_varb(gdat, 'dlosslop', limt=[-0.5, -3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0', limt=[1e43, 1e46], strgmodl=strgmodl) setp_varb(gdat, 'lum0distbrek', limt=[1e42, 1e46], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0sloplowr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0slopuppr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) # construct background surface brightness templates from the user input gmod.sbrtbacknorm = [[] for c in gmod.indxback] gmod.boolunifback = np.ones(gmod.numbback, dtype=bool) for c in gmod.indxback: gmod.sbrtbacknorm[c] = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gmod.typeback[c] == 'data': gmod.sbrtbacknorm[c] = np.copy(gdat.sbrtdata) gmod.sbrtbacknorm[c][np.where(gmod.sbrtbacknorm[c] == 0.)] = 1e-100 elif isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c] elif isinstance(gmod.typeback[c], list) and isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = retr_spec(gdat, np.array([gmod.typeback[c]]), sind=np.array([gmod.typeback[c]]))[:, 0, None, None] elif isinstance(gmod.typeback[c], np.ndarray) and gmod.typeback[c].ndim == 1: gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c][:, None, None] elif gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): indxexpatemp = int(gmod.typeback[c][8:]) indxterm = indxexpatemp // ordrexpa**2 indxexpaxdat = (indxexpatemp % ordrexpa**2) // ordrexpa + 1 indxexpaydat = (indxexpatemp % ordrexpa**2) % ordrexpa + 1 if namebfun == 'bfunfour': ampl = 1. func = gdat.meanpara.bgalcart if namebfun == 'bfunwfou': functemp = np.exp(-0.5 * (gdat.meanpara.bgalcart / (1. / gdat.anglfact))**2) ampl = np.sqrt(functemp) func = functemp argslgal = 2. * np.pi * indxexpaxdat * gdat.meanpara.lgalcart / gdat.maxmgangdata argsbgal = 2. * np.pi * indxexpaydat * func / gdat.maxmgangdata if indxterm == 0: termfrst = np.sin(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 1: termfrst = np.sin(argslgal) termseco = ampl * np.cos(argsbgal) if indxterm == 2: termfrst = np.cos(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 3: termfrst = np.cos(argslgal) termseco = ampl * np.cos(argsbgal) gmod.sbrtbacknorm[c] = (termfrst[None, :] * termseco[:, None]).flatten()[None, :, None] * \ np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) else: path = gdat.pathinpt + gmod.typeback[c] gmod.sbrtbacknorm[c] = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': if not gdat.boolforccart: if gmod.sbrtbacknorm[c].shape[2] != gdat.numbsidecart: raise Exception('Provided background template must have the chosen image dimensions.') gmod.sbrtbacknorm[c] = gmod.sbrtbacknorm[c].reshape((gmod.sbrtbacknorm[c].shape[0], -1, gmod.sbrtbacknorm[c].shape[-1])) if gdat.typepixl == 'cart' and gdat.boolforccart: sbrtbacknormtemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtbacknormtemp[i, :, m] = tdpy.retr_cart(gmod.sbrtbacknorm[c][i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gmod.sbrtbacknorm[c] = sbrtbacknormtemp # determine spatially uniform background templates for i in gdat.indxenerfull: for m in gdat.indxevttfull: if np.std(gmod.sbrtbacknorm[c][i, :, m]) > 1e-6: gmod.boolunifback[c] = False boolzero = True gmod.boolbfun = False for c in gmod.indxback: if np.amin(gmod.sbrtbacknorm[c]) < 0. and isinstance(gmod.typeback[c], str) and not gmod.typeback[c].startswith('bfun'): booltemp = False raise Exception('Background templates must be positive-definite every where.') if not np.isfinite(gmod.sbrtbacknorm[c]).all(): raise Exception('Background template is not finite.') if np.amin(gmod.sbrtbacknorm[c]) > 0. or gmod.typeback[c] == 'data': boolzero = False if isinstance(gmod.typeback[c], str) and gmod.typeback[c].startswith('bfun'): gmod.boolbfun = True if boolzero and not gmod.boolbfun: raise Exception('At least one background template must be positive everynp.where.') # temp -- does not take into account dark hosts gmod.boolhost = gmod.typeemishost != 'none' # type of PSF evaluation if gmod.maxmpara.numbelemtotl > 0 and gmod.boolelempsfnanyy: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'full' else: # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'kern' else: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is convolved by a kernel, no point source exists typeevalpsfn = 'conv' else: # the background is not convolved by a kernel, no point source exists typeevalpsfn = 'none' setp_varb(gdat, 'typeevalpsfn', valu=typeevalpsfn, strgmodl=strgmodl) if gdat.typeverb > 1: print('gmod.typeevalpsfn') print(gmod.typeevalpsfn) gmod.boolapplpsfn = gmod.typeevalpsfn != 'none' ### PSF model if gmod.typeevalpsfn != 'none': if gmod.typemodlpsfn == 'singgaus': numbpsfpform = 1 elif gmod.typemodlpsfn == 'singking': numbpsfpform = 2 elif gmod.typemodlpsfn == 'doubgaus': numbpsfpform = 3 elif gmod.typemodlpsfn == 'gausking': numbpsfpform = 4 elif gmod.typemodlpsfn == 'doubking': numbpsfpform = 5 gmod.numbpsfptotl = numbpsfpform if gdat.boolpriopsfninfo: for i in gdat.indxener: for m in gdat.indxevtt: meansigc = gmod.psfpexpr[i * gmod.numbpsfptotl + m * gmod.numbpsfptotl * gdat.numbener] stdvsigc = meansigc * 0.1 setp_varb(gdat, 'sigcen%02devt%d' % (i, m), mean=meansigc, stdv=stdvsigc, lablroot='$\sigma$', scal='gaus', \ strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': meangamc = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 1] stdvgamc = meangamc * 0.1 setp_varb(gdat, 'gamcen%02devt%d' % (i, m), mean=meangamc, stdv=stdvgamc, strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking': meansigt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 2] stdvsigt = meansigt * 0.1 setp_varb(gdat, 'sigten%02devt%d' % (i, m), mean=meansigt, stdv=stdvsigt, strgmodl=strgmodl) meangamt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 3] stdvgamt = meangamt * 0.1 setp_varb(gdat, 'gamten%02devt%d' % (i, m), mean=meangamt, stdv=stdvgamt, strgmodl=strgmodl) meanpsff = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 4] stdvpsff = meanpsff * 0.1 setp_varb(gdat, 'psffen%02devt%d' % (i, m), mean=meanpsff, stdv=stdvpsff, strgmodl=strgmodl) else: if gdat.typeexpr == 'gene': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'ferm': minmsigm = 0.1 maxmsigm = 10. if gdat.typeexpr == 'hubb': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'chan': minmsigm = 0.1 / gdat.anglfact maxmsigm = 2. / gdat.anglfact minmgamm = 1.5 maxmgamm = 20. setp_varb(gdat, 'sigc', minm=minmsigm, maxm=maxmsigm, lablroot='$\sigma_c$', ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'sigt', minm=minmsigm, maxm=maxmsigm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamc', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamt', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'psff', minm=0., maxm=1., ener='full', evtt='full', strgmodl=strgmodl) # background ## number of background parameters numbbacp = 0 for c in gmod.indxback: if gmod.boolspecback[c]: numbbacp += 1 else: numbbacp += gdat.numbener ## background parameter indices gmod.indxbackbacp = np.zeros(numbbacp, dtype=int) indxenerbacp = np.zeros(numbbacp, dtype=int) cntr = 0 for c in gmod.indxback: if gmod.boolspecback[c]: gmod.indxbackbacp[cntr] = c cntr += 1 else: for i in gdat.indxener: indxenerbacp[cntr] = i gmod.indxbackbacp[cntr] = c cntr += 1 # indices of background parameters for each background component gmod.indxbacpback = [[] for c in gmod.indxback] for c in gmod.indxback: gmod.indxbacpback[c] = np.where((gmod.indxbackbacp == c))[0] # list of names of diffuse components gmod.listnamediff = [] for c in gmod.indxback: gmod.listnamediff += ['back%04d' % c] if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: gmod.listnamediff += ['hostisf%d' % e] if gmod.boollens: gmod.listnamediff += ['lens'] # list of names of emission components listnameecom = deepcopy(gmod.listnamediff) for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: if strgmodl == 'true' and gmod.numbelem[l] > 0 or strgmodl == 'fitt' and gmod.maxmpara.numbelem[l] > 0: if not 'dfnc' in listnameecom: listnameecom += ['dfnc'] if not 'dfncsubt' in listnameecom: listnameecom += ['dfncsubt'] gmod.listnameecomtotl = listnameecom + ['modl'] for c in gmod.indxback: setp_varb(gdat, 'cntpback%04d' % c, lablroot='$C_{%d}$' % c, minm=1., maxm=100., scal='logt', strgmodl=strgmodl) gmod.listnamegcom = deepcopy(gmod.listnameecomtotl) if gmod.boollens: gmod.listnamegcom += ['bgrd'] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: gmod.listnamegcom += ['bgrdgalx', 'bgrdexts'] numbdiff = len(gmod.listnamediff) convdiff = np.zeros(numbdiff, dtype=bool) for k, namediff in enumerate(gmod.listnamediff): if not (gdat.boolthindata or gmod.typeevalpsfn == 'none' or gmod.typeevalpsfn == 'kern'): if namediff.startswith('back'): indx = int(namediff[-4:]) convdiff[k] = not gmod.boolunifback[indx] else: convdiff[k] = True # element parameters that correlate with the statistical significance of the element gmod.namepara.elemsign = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.namepara.elemsign[l] = 'flux' if gmod.typeelem[l] == 'lens': gmod.namepara.elemsign[l] = 'defs' if gmod.typeelem[l].startswith('clus'): gmod.namepara.elemsign[l] = 'nobj' if gdat.typeverb > 0: if strgmodl == 'true': strgtemp = 'true' if strgmodl == 'fitt': strgtemp = 'fitting' print('Building elements for the %s model...' % strgtemp) # define the names and scalings of element parameters gmod.namepara.genrelem = [[] for l in gmod.indxpopl] gmod.listscalparagenrelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] = ['elin'] gmod.listscalparagenrelem[l] = ['logt'] elif gmod.typespatdist[l] == 'diskscal': gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'dexp'] elif gmod.typespatdist[l] == 'gangexpo': gmod.namepara.genrelem[l] = ['gang', 'aang'] gmod.listscalparagenrelem[l] = ['expo', 'self'] elif gmod.typespatdist[l] == 'glc3': gmod.namepara.genrelem[l] = ['dglc', 'thet', 'phii'] gmod.listscalparagenrelem[l] = ['powr', 'self', 'self'] else: gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'self'] # amplitude if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['lum0'] gmod.listscalparagenrelem[l] += ['dpowslopbrek'] elif gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['per0'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] elif gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['flux'] gmod.listscalparagenrelem[l] += [gmod.typeprioflux[l]] elif gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['defs'] gmod.listscalparagenrelem[l] += ['powr'] elif gmod.typeelem[l].startswith('clus'): gmod.namepara.genrelem[l] += ['nobj'] gmod.listscalparagenrelem[l] += ['powr'] # shape if gmod.typeelem[l] == 'lghtgausbgrd' or gmod.typeelem[l] == 'clusvari': gmod.namepara.genrelem[l] += ['gwdt'] gmod.listscalparagenrelem[l] += ['powr'] if gmod.typeelem[l] == 'lghtlinevoig': gmod.namepara.genrelem[l] += ['sigm'] gmod.listscalparagenrelem[l] += ['logt'] gmod.namepara.genrelem[l] += ['gamm'] gmod.listscalparagenrelem[l] += ['logt'] # others if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['magf'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] gmod.namepara.genrelem[l] += ['geff'] gmod.listscalparagenrelem[l] += ['self'] elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['dlos'] gmod.listscalparagenrelem[l] += ['powr'] if gdat.numbener > 1 and gmod.typeelem[l].startswith('lghtpnts'): if gmod.spectype[l] == 'colr': for i in gdat.indxener: if i == 0: continue gmod.namepara.genrelem[l] += ['sindcolr%04d' % i] gmod.listscalparagenrelem[l] += ['self'] else: gmod.namepara.genrelem[l] += ['sind'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'curv': gmod.namepara.genrelem[l] += ['curv'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'expc': gmod.namepara.genrelem[l] += ['expc'] gmod.listscalparagenrelem[l] += ['self'] if gmod.typeelem[l] == 'lens': if gdat.variasca: gmod.namepara.genrelem[l] += ['asca'] gmod.listscalparagenrelem[l] += ['self'] if gdat.variacut: gmod.namepara.genrelem[l] += ['acut'] gmod.listscalparagenrelem[l] += ['self'] # names of element parameters for each scaling gmod.namepara.genrelemscal = [{} for l in gmod.indxpopl] for l in gmod.indxpopl: for scaltype in gdat.listscaltype: gmod.namepara.genrelemscal[l][scaltype] = [] for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if scaltype == gmod.listscalparagenrelem[l][k]: gmod.namepara.genrelemscal[l][scaltype].append(nameparagenrelem) # variables for which whose marginal distribution and pair-correlations will be plotted gmod.namepara.derielemodim = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.derielemodim[l] = deepcopy(gmod.namepara.genrelem[l]) gmod.namepara.derielemodim[l] += ['deltllik'] if gdat.boolbinsspat: if not 'lgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['lgal'] if not 'bgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['bgal'] if not 'gang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['gang'] if not 'aang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['aang'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.derielemodim[l] += ['cnts'] if gdat.typeexpr == 'ferm': gmod.namepara.derielemodim[l] + ['sbrt0018'] if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.derielemodim[l] += ['reds'] gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] gmod.namepara.derielemodim[l] += ['mass'] gmod.namepara.derielemodim[l] += ['dlos'] if gmod.typeelem[l] == 'lens': gmod.namepara.derielemodim[l] += ['mcut', 'diss', 'rele', 'reln', 'relk', 'relf', 'relm', 'reld', 'relc'] #for k in range(len(gmod.namepara.derielemodim[l])): # gmod.namepara.derielemodim[l][k] += 'pop%d' % l # check later # temp #if strgmodl == 'fitt': # for q in gdat.indxrefr: # if gmod.nameparagenrelemampl[l] in gdat.refr.namepara.elem[q]: # gmod.namepara.derielemodim[l].append('aerr' + gdat.listnamerefr[q]) if gdat.typeverb > 1: print('gmod.namepara.derielemodim') print(gmod.namepara.derielemodim) # derived element parameters gmod.namepara.derielem = gmod.namepara.derielemodim[:] if gdat.typeverb > 1: print('gmod.namepara.derielem') print(gmod.namepara.derielem) # derived parameters gmod.listnameparaderitotl = [temptemp for temp in gmod.namepara.derielem for temptemp in temp] #gmod.listnameparaderitotl += gmod.namepara.scal for namediff in gmod.listnamediff: gmod.listnameparaderitotl += ['cntp' + namediff] if gdat.typeverb > 1: print('gmod.listnameparaderitotl') print(gmod.listnameparaderitotl) if strgmodl == 'fitt': # add reference element parameters that are not available in the fitting model gdat.refr.namepara.elemonly = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] gmod.namepara.extrelem = [[] for l in gmod.indxpopl] for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for name in gdat.refr.namepara.elem[q]: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and (name == 'defs' or name == 'acut' or name == 'asca' or name == 'mass'): continue if gmod.typeelem[l] == ('lens') and (name == 'cnts' or name == 'flux' or name == 'spec' or name == 'sind'): continue if not name in gmod.namepara.derielemodim[l]: nametotl = name + gdat.listnamerefr[q] if name == 'etag': continue gmod.namepara.derielemodim[l].append(nametotl) if gdat.refr.numbelem[q] == 0: continue gdat.refr.namepara.elemonly[q][l].append(name) if not nametotl in gmod.namepara.extrelem[l]: gmod.namepara.extrelem[l].append(nametotl) #if name == 'reds': # for nametemp in ['lumi', 'dlos']: # nametemptemp = nametemp + gdat.listnamerefr[q] # if not nametemptemp in gmod.namepara.extrelem[l]: # gmod.namepara.derielemodim[l].append(nametemp + gdat.listnamerefr[q]) # gmod.namepara.extrelem[l].append(nametemptemp) if gdat.typeverb > 1: print('gdat.refr.namepara.elemonly') print(gdat.refr.namepara.elemonly) if gdat.typeexpr == 'chan' and gdat.typedata == 'inpt': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpnts': gmod.namepara.extrelem[l].append('lumiwo08') gmod.namepara.derielemodim[l].append('lumiwo08') if gdat.typeverb > 1: print('gmod.namepara.extrelem') print(gmod.namepara.extrelem) # defaults gmod.liststrgpdfnmodu = [[] for l in gmod.indxpopl] gmod.namepara.genrelemmodu = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0.: if l == 1: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] if l == 2: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for liststrg in [gmod.namepara.genrelem[l], gmod.namepara.derielemodim[l]]: for strgthis in liststrg: if not strgthis in gmod.namepara.elem[l]: gmod.namepara.elem[l].append(strgthis) # temp for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] += ['spec'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['spec', 'specplot'] if gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['deflprof'] #gmod.namepara.genrelemeval = [[] for l in gmod.indxpopl] #for l in gmod.indxpopl: # if gmod.typeelem[l].startswith('clus'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'nobj'] # if gmod.typeelem[l] == 'clusvari': # gmod.namepara.genrelemeval[l] += ['gwdt'] # if gmod.typeelem[l] == 'lens': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'defs', 'asca', 'acut'] # if gmod.typeelem[l].startswith('lghtline'): # gmod.namepara.genrelemeval[l] = ['elin', 'spec'] # elif gmod.typeelem[l] == 'lghtgausbgrd': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'gwdt', 'spec'] # elif gmod.typeelem[l].startswith('lght'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'spec'] ## element legends lablpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': lablpopl[l] = 'FPS' if gmod.typeelem[l] == 'lghtgausbgrd': lablpopl[l] = 'BGS' else: if gmod.typeelem[l] == 'lghtpntspuls': lablpopl[l] = 'Pulsar' elif gmod.typeelem[l].startswith('lghtpntsagnn'): lablpopl[l] = 'AGN' elif gmod.typeelem[l].startswith('lghtpnts'): lablpopl[l] = 'PS' if gmod.typeelem[l] == 'lens': lablpopl[l] = 'Subhalo' if gmod.typeelem[l].startswith('clus'): lablpopl[l] = 'Cluster' if gmod.typeelem[l].startswith('lghtline'): lablpopl[l]= 'Line' setp_varb(gdat, 'lablpopl', valu=lablpopl, strgmodl=strgmodl) if strgmodl == 'true': gmod.indxpoplassc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.numbpopl == 3 and gmod.typeelem[1] == 'lens': gmod.indxpoplassc[l] = [l] else: gmod.indxpoplassc[l] = gmod.indxpopl # variables for which two dimensional histograms will be calculated gmod.namepara.genrelemcorr = [[] for l in gmod.indxpopl] if gdat.boolplotelemcorr: for l in gmod.indxpopl: for strgfeat in gmod.namepara.derielemodim[l]: gmod.namepara.genrelemcorr[l].append(strgfeat) # number of element parameters if gmod.numbpopl > 0: gmod.numbparagenrelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcuml = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcumr = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: # number of generative element parameters for a single element of a specific population gmod.numbparagenrelemsing[l] = len(gmod.namepara.genrelem[l]) # number of derived element parameters for a single element of a specific population gmod.numbparaderielemsing[l] = len(gmod.namepara.derielem[l]) # number of element parameters for a single element of a specific population gmod.numbparaelemsing[l] = len(gmod.namepara.elem[l]) # number of generative element parameters for all elements of a specific population gmod.numbparagenrelem[l] = gmod.numbparagenrelemsing[l] * gmod.maxmpara.numbelem[l] # number of generative element parameters up to the beginning of a population gmod.numbparagenrelemcuml[l] = np.sum(gmod.numbparagenrelem[:l]) # number of generative element parameters up to the end of a population gmod.numbparagenrelemcumr[l] = np.sum(gmod.numbparagenrelem[:l+1]) # number of derived element parameters for all elements of a specific population gmod.numbparaderielem[l] = gmod.numbparaderielemsing[l] * gmod.numbelem[l] # number of element parameters for all elements of a specific population gmod.numbparaelem[l] = gmod.numbparaelemsing[l] * gmod.numbelem[l] # number of generative element parameters summed over all populations gmod.numbparagenrelemtotl = np.sum(gmod.numbparagenrelem) # number of derived element parameters summed over all populations gmod.numbparaderielemtotl = np.sum(gmod.numbparaderielem) # number of element parameters summed over all populations gmod.numbparaelemtotl = np.sum(gmod.numbparaderielem) gmod.indxparagenrelemsing = [] for l in gmod.indxpopl: gmod.indxparagenrelemsing.append(np.arange(gmod.numbparagenrelemsing[l])) gmod.indxparaderielemsing = [] for l in gmod.indxpopl: gmod.indxparaderielemsing.append(np.arange(gmod.numbparaderielemsing[l])) gmod.indxparaelemsing = [] for l in gmod.indxpopl: gmod.indxparaelemsing.append(np.arange(gmod.numbparaelemsing[l])) # size of the auxiliary variable propobability density vector if gmod.maxmpara.numbelemtotl > 0: gmod.numblpri = 3 + gmod.numbparagenrelem * gmod.numbpopl else: gmod.numblpri = 0 if gdat.penalpridiff: gmod.numblpri += 1 indxlpri = np.arange(gmod.numblpri) # append the population tags to element parameter names #for l in gmod.indxpopl: # gmod.namepara.genrelem[l] = [gmod.namepara.genrelem[l][g] + 'pop%d' % l for g in gmod.indxparagenrelemsing[l]] gmod.boolcompposi = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.boolcompposi[l] = np.zeros(gmod.numbparagenrelemsing[l], dtype=bool) if gmod.typeelem[l].startswith('lghtline'): gmod.boolcompposi[l][0] = True else: gmod.boolcompposi[l][0] = True gmod.boolcompposi[l][1] = True # list of strings across all populations ## all (generative and derived) element parameters gmod.numbparaelem = len(gmod.namepara.elem) gmod.indxparaelem = np.arange(gmod.numbparaelem) # flattened list of generative element parameters gmod.listnameparagenfelem = [] for l in gmod.indxpopl: for nameparagenrelem in gmod.namepara.genrelem[l]: gmod.listnameparagenfelem.append(nameparagenrelem + 'pop%d' % l) # concatenated list of flattened generative and derived element parameters gmod.listnameparatotlelem = gmod.listnameparagenfelem + gmod.namepara.derielem gmod.numbparaelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.numbparaelem[l] = len(gmod.namepara.elem[l]) numbdeflsubhplot = 2 numbdeflsingplot = numbdeflsubhplot if gmod.numbparaelem > 0: numbdeflsingplot += 3 gmod.convdiffanyy = True in convdiff cntr = tdpy.cntr() if gmod.boollens: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost massfrombein = retr_massfrombein(gdat, adissour, adishost, adishostsour) mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) # object of parameter indices gmod.indxpara = tdpy.gdatstrt() # define parameter indices if gmod.numbparaelem > 0: # number of elements #gmod.indxpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: indx = cntr.incr() setattr(gmod.indxpara, 'numbelempop%d' % l, indx) #gmod.indxpara.numbelem[l] = indx # hyperparameters ## mean number of elements if gmod.typemodltran == 'pois': #gmod.indxpara.meanelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: indx = cntr.incr() setattr(gmod.indxpara, 'meanelempop%d' % l, indx) #gmod.indxpara.meanelem[l] = indx ## parameters parametrizing priors on element parameters liststrgvarb = [] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: for strgpdfnelemgenr, strgfeat in zip(gmod.listscalparagenrelem[l], gmod.namepara.genrelem[l]): if strgpdfnelemgenr == 'expo' or strgpdfnelemgenr == 'dexp': liststrgvarb += [strgfeat + 'distscal'] if strgpdfnelemgenr == 'powr': liststrgvarb += ['slopprio' + strgfeat + 'pop%d' % l] if strgpdfnelemgenr == 'dpow': liststrgvarb += [strgfeat + 'distbrek'] liststrgvarb += [strgfeat + 'sloplowr'] liststrgvarb += [strgfeat + 'slopuppr'] if strgpdfnelemgenr == 'gausmean' or strgpdfnelemgenr == 'lnormean': liststrgvarb += [strgfeat + 'distmean'] if strgpdfnelemgenr == 'gausstdv' or strgpdfnelemgenr == 'lnorstdv': liststrgvarb += [strgfeat + 'diststdv'] if strgpdfnelemgenr == 'gausmeanstdv' or strgpdfnelemgenr == 'lnormeanstdv': liststrgvarb += [nameparagenrelem + 'distmean', nameparagenrelem + 'diststdv'] for strgvarb in liststrgvarb: setattr(gmod.indxpara, strgvarb, np.zeros(gmod.numbpopl, dtype=int) - 1) for l in gmod.indxpopl: strgpopl = 'pop%d' % l if gmod.maxmpara.numbelem[l] > 0: for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if gmod.listscalparagenrelem[l][k] == 'self': continue indx = cntr.incr() if gmod.listscalparagenrelem[l][k] == 'dpow': for nametemp in ['brek', 'sloplowr', 'slopuppr']: strg = '%s' % nametemp + nameparagenrelem setattr(gmod.indxpara, strg, indx) setattr(gmod.indxpara, strg, indx) else: if gmod.listscalparagenrelem[l][k] == 'expo' or gmod.listscalparagenrelem[l][k] == 'dexp': strghypr = 'scal' if gmod.listscalparagenrelem[l][k] == 'powr': strghypr = 'slop' if gmod.listscalparagenrelem[l][k] == 'gausmean' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnormean' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'mean' if gmod.listscalparagenrelem[l][k] == 'gausstdv' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnorstdv' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'stdv' strg = strghypr + 'prio' + nameparagenrelem + 'pop%d' % l setattr(gmod.indxpara, strg, indx) # group PSF parameters if gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full': for m in gdat.indxevtt: for i in gdat.indxener: setattr(gmod.indxpara, 'sigcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': setattr(gmod.indxpara, 'gamcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking': setattr(gmod.indxpara, 'sigten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'gamten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'ffenen%02devt%d' % (i, m), cntr.incr()) gmod.indxpara.psfp = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith('sigce') or strg.startswith('sigte') or strg.startswith('gamce') or strg.startswith('gamte') or strg.startswith('psffe'): gmod.indxpara.psfp.append(valu) gmod.indxpara.psfp = np.array(gmod.indxpara.psfp) gmod.numbpsfptotlevtt = gdat.numbevtt * gmod.numbpsfptotl gmod.numbpsfptotlener = gdat.numbener * gmod.numbpsfptotl numbpsfp = gmod.numbpsfptotl * gdat.numbener * gdat.numbevtt indxpsfpform = np.arange(numbpsfpform) indxpsfptotl = np.arange(gmod.numbpsfptotl) indxpsfp = np.arange(numbpsfp) gmod.indxpara.psfp = np.sort(gmod.indxpara.psfp) gmod.indxparapsfpinit = gmod.indxpara.psfp[0] # group background parameters gmod.indxpara.bacp = [] for c in gmod.indxback: if gmod.boolspecback[c]: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04d' % c, indx) gmod.indxpara.bacp.append(indx) else: for i in gdat.indxener: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04den%02d' % (c, i), indx) gmod.indxpara.bacp.append(indx) gmod.indxpara.bacp = np.array(gmod.indxpara.bacp) # temp #gmod.indxpara.anglsour = [] #gmod.indxpara.anglhost = [] #gmod.indxpara.angllens = [] if gmod.typeemishost != 'none': gmod.indxpara.specsour = [] gmod.indxpara.spechost = [] if gmod.boollens: gmod.indxpara.lgalsour = cntr.incr() gmod.indxpara.bgalsour = cntr.incr() gmod.indxpara.fluxsour = cntr.incr() if gdat.numbener > 1: gmod.indxpara.sindsour = cntr.incr() gmod.indxpara.sizesour = cntr.incr() gmod.indxpara.ellpsour = cntr.incr() gmod.indxpara.anglsour = cntr.incr() if gmod.typeemishost != 'none' or gmod.boollens: for e in gmod.indxsersfgrd: if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'lgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'bgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'fluxhostisf%d' % e, cntr.incr()) if gdat.numbener > 1: setattr(gmod.indxpara, 'sindhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'sizehostisf%d' % e, cntr.incr()) if gmod.boollens: setattr(gmod.indxpara, 'beinhostisf%d' % e, cntr.incr()) if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'ellphostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'anglhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'serihostisf%d' % e, cntr.incr()) if gmod.boollens: gmod.indxpara.sherextr = cntr.incr() gmod.indxpara.sangextr = cntr.incr() gmod.indxpara.sour = [] if gmod.boollens and gmod.typeemishost == 'none': raise Exception('Lensing cannot be modeled without host galaxy emission.') # collect groups of parameters if gdat.typeexpr == 'hubb': gmod.listnamecomplens = ['hostlght', 'hostlens', 'sour', 'extr'] for namecomplens in gmod.listnamecomplens: setattr(gmod, 'liststrg' + namecomplens, []) setattr(gmod.indxpara, namecomplens, []) if gmod.boollens or gmod.typeemishost != 'none': gmod.liststrghostlght += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] gmod.liststrghostlens += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] if gmod.typeemishost != 'none': gmod.liststrghostlght += ['fluxhost', 'sizehost', 'serihost'] if gdat.numbener > 1: gmod.liststrghostlght += ['sindhost'] if gmod.boollens: gmod.liststrghostlens += ['beinhost'] gmod.liststrgextr += ['sherextr', 'sangextr'] gmod.liststrgsour += ['lgalsour', 'bgalsour', 'fluxsour', 'sizesour', 'ellpsour', 'anglsour'] if gdat.numbener > 1: gmod.liststrgsour += ['sindsour'] for strg, valu in gmod.__dict__.items(): if isinstance(valu, list) or isinstance(valu, np.ndarray): continue if gdat.typeexpr == 'hubb': for namecomplens in gmod.listnamecomplens: for strgtemp in getattr(gmod, 'liststrg' + namecomplens): if strg[12:].startswith(strgtemp): if isinstance(valu, list): for valutemp in valu: gmod['indxparagenr' + namecomplens].append(valutemp) else: gmod['indxparagenr' + namecomplens].append(valu) # remove indxpara. from strg strg = strg[12:] if strg.startswith('fluxsour') or strg.startswith('sindsour'): gmod.indxpara.specsour.append(valu) if strg.startswith('fluxhost') or strg.startswith('sindhost'): gmod.indxpara.spechost.append(valu) if gmod.boollens or gmod.boolhost: gmod.indxpara.host = gmod.indxparahostlght + gmod.indxparahostlens gmod.indxpara.lens = gmod.indxpara.host + gmod.indxpara.sour + gmod.indxpara.extr ## number of model spectral parameters for each population #numbspep = np.empty(gmod.numbpopl, dtype=int) #liststrgspep = [[] for l in range(gmod.numbpopl)] #for l in gmod.indxpopl: # if gdat.numbener > 1: # liststrgspep[l] += ['sind'] # if gmod.spectype[l] == 'expc': # liststrgspep[l] += ['expc'] # if gmod.spectype[l] == 'curv': # liststrgspep[l] = ['curv'] # numbspep[l] = len(liststrgspep[l]) def setp_paragenrscalbase(gdat, strgmodl='fitt'): ''' Setup labels and scales for base parameters ''' print('setp_paragenrscalbase(): Building the %s model base paremeter names and scales...' % strgmodl) gmod = getattr(gdat, strgmodl) listlablback = [] listlablback = [] for nameback in gmod.listnameback: if nameback == 'isot': listlablback.append('Isotropic') listlablback.append(r'$\mathcal{I}$') if nameback == 'fdfm': listlablback.append('FDM') listlablback.append(r'$\mathcal{D}$') if nameback == 'dark': listlablback.append('NFW') listlablback.append(r'$\mathcal{D}_{dark}$') if nameback == 'part': listlablback.append('Particle Back.') listlablback.append(r'$\mathcal{I}_p$') # background templates listlablsbrt = deepcopy(listlablback) numblablsbrt = 0 for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: listlablsbrt.append(gmod.lablpopl[l]) listlablsbrt.append(gmod.lablpopl[l] + ' subt') numblablsbrt += 2 if gmod.boollens: listlablsbrt.append('Source') numblablsbrt += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listlablsbrt.append('Host %d' % e) numblablsbrt += 1 if gmod.numbpopl > 0: if 'clus' in gmod.typeelem or 'clusvari' in gmod.typeelem: listlablsbrt.append('Uniform') numblablsbrt += 1 listlablsbrtspec = ['Data'] listlablsbrtspec += deepcopy(listlablsbrt) if len(listlablsbrt) > 1: listlablsbrtspec.append('Total Model') numblablsbrtspec = len(listlablsbrtspec) # number of generative parameters per element, depends on population #numbparaelem = gmod.numbparagenrelem + numbparaelemderi # maximum total number of parameters #numbparagenrfull = gmod.numbparagenrbase + gmod.numbparaelem #numbparaelemkind = gmod.numbparagenrbase #for l in gmod.indxpopl: # numbparaelemkind += gmod.numbparagenrelemsing[l] #nameparagenrbase #gmod.namepara.genrelem #listnameparaderifixd #listnameparaderielem #gmod.namepara.genrelemextd = gmod.namepara.genrelem * maxm.numbelem #listnameparaderielemextd = gmod.namepara.genrelem * maxm.numbelem gmod.listindxparakindscal = {} for scaltype in gdat.listscaltype: gmod.listindxparakindscal[scaltype] = np.where(scaltype == gmod.listscalparakind)[0] # ## stack ## gmod.listnameparastck #gmod.listnameparastck = np.zeros(gmod.maxmnumbpara, dtype=object) #gmod.listscalparastck = np.zeros(gmod.maxmnumbpara, dtype=object) # #gmod.listnameparastck[gmod.indxparagenrbase] = gmod.nameparagenrbase #gmod.listscalparastck[gmod.indxparagenrbase] = gmod.listscalparagenrbase #for k in range(gmod.numbparaelem): # for l in gmod.indxpopl: # if k >= gmod.numbparagenrelemcuml[l]: # indxpopltemp = l # indxelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) // gmod.numbparagenrelemsing[indxpopltemp] # gmod.indxparagenrelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) % gmod.numbparagenrelemsing[indxpopltemp] # break # gmod.listnameparastck[gmod.numbparagenrbase+k] = '%spop%d%04d' % (gmod.namepara.genrelem[indxpopltemp][gmod.indxparagenrelemtemp], indxpopltemp, indxelemtemp) # gmod.listscalparastck[gmod.numbparagenrbase+k] = gmod.listscalparagenrelem[indxpopltemp][gmod.indxparagenrelemtemp] # # #if np.where(gmod.listscalpara == 0)[0].size > 0: # print('gmod.listscalpara[gmod.indxparagenrbase]') # print(gmod.listscalpara[gmod.indxparagenrbase]) # raise Exception('') # ## labels and scales for variables if gmod.boollens: setattr(gmod.lablrootpara, 'masssubhintg', r'$M_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhdelt', r'$\rho_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhintgbein', r'$M_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhdeltbein', r'$\rho_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhintgunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'masssubhintgbeinunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltbeinunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'fracsubhintg', r'f_{\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhdelt', r'f_{\rho,\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhintgbein', r'$f_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'fracsubhdeltbein', r'$f_{\rho,\rm{sub,E}}$') for e in gmod.indxsersfgrd: setattr(gmod.lablrootpara, 'masshostisf%dbein' % e, r'$M_{\rm{hst,%d,C}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintg' % e, r'$M_{\rm{hst,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddelt' % e, r'$M_{\rm{hst,%d}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintgbein' % e, r'$M_{\rm{hst,E,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddeltbein' % e, r'$M_{\rm{hst,E,%d}}$' % e) for namevarb in ['fracsubh', 'masssubh']: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scal' + namevarb + strgcalcmasssubh + nameeval, 'logt') for e in gmod.indxsersfgrd: setattr(gdat, 'scalmasshostisf%d' % e + 'bein', 'logt') for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scalmasshostisf%d' % e + strgcalcmasssubh + nameeval, 'logt') # scalar variable setup gdat.lablhistcntplowrdfncsubten00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncsubten00evt0 = 'N_{pix,h}' gdat.lablhistcntplowrdfncen00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncen00evt0 = 'N_{pix,h}' gdat.lablbooldfncsubt = 'H' gdat.lablpriofactdoff = r'$\alpha_{p}$' gmod.scalpriofactdoff = 'self' gdat.minmreds = 0. gdat.maxmreds = 1.5 gdat.minmmagt = 19. gdat.maxmmagt = 28. gmod.scalpara.numbelem = 'logt' gmod.scalpara.lliktotl = 'logt' gdat.lablener = 'E' #gdat.lablenertotl = '$%s$ [%s]' % (gdat.lablener, gdat.strgenerunit) # width of the Gaussian clusters gdat.lablgwdt = r'\sigma_G' gdat.lablgang = r'\theta' gdat.lablaang = r'\phi' gdat.labllgalunit = gdat.lablgangunit gdat.lablbgalunit = gdat.lablgangunit gdat.lablanglfromhost = r'\theta_{\rm{0,hst}}' gdat.lablanglfromhostunit = gdat.lablgangunit gdat.labldefs = r'\alpha_s' gdat.lablflux = 'f' gdat.lablnobj = 'p' gdat.lablelin = r'\mathcal{E}' gdat.lablsbrt = r'\Sigma' gdat.labldeflprof = r'\alpha_a' gdat.labldeflprofunit = u'$^{\prime\prime}$' gdat.strgenerkevv = 'keV' gdat.strgenergevv = 'GeV' gdat.strgenerergs = 'erg' gdat.strgenerimum = '\mu m^{-1}' gdat.labldefsunit = u'$^{\prime\prime}$' gdat.lablprat = 'cm$^{-2}$ s$^{-1}$' ### labels for derived fixed dimensional parameters if gdat.boolbinsener: for i in gdat.indxener: setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubten%02d' % i, 'f_{D/ST,%d}' % i) else: gmod.lablrootpara.fracsdenmeandarkdfncsubt = 'f_{D/ST}' setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubt', 'f_{D/ST}') ### labels for background units if gdat.typeexpr == 'ferm': for nameenerscaltype in ['en00', 'en01', 'en02', 'en03']: for labltemptemp in ['flux', 'sbrt']: # define the label if nameenerscaltype == 'en00': strgenerscal = '%s' % labltemp if nameenerscaltype == 'en01': strgenerscal = 'E%s' % labltemp if nameenerscaltype == 'en02': strgenerscal = 'E^2%s' % labltemp if nameenerscaltype == 'en03': strgenerscal = '%s' % labltemp labl = '%s' % strgenerscal for nameenerunit in ['gevv', 'ergs', 'kevv', 'imum']: strgenerunit = getattr(gdat, 'strgener' + nameenerunit) if nameenerscaltype == 'en00': strgenerscalunit = '%s$^{-1}$' % strgenerunit if nameenerscaltype == 'en01': strgenerscalunit = '' if nameenerscaltype == 'en02': strgenerscalunit = '%s' % strgenerunit if nameenerscaltype == 'en03': strgenerscalunit = '%s' % strgenerunit # define the label unit for namesoldunit in ['ster', 'degr']: if labltemptemp == 'flux': lablunit = '%s %s' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'lablflux' + nameenerscaltype + nameenerunit + 'unit', lablunit) else: if namesoldunit == 'ster': lablunit = '%s %s sr$^{-1}$' % (strgenerscalunit, gdat.lablprat) if namesoldunit == 'degr': lablunit = '%s %s deg$^{-2}$' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'sbrt' + nameenerscaltype + nameenerunit + namesoldunit + 'unit', lablunit) if gdat.boolbinsener: gdat.lablfluxunit = getattr(gmod.lablunitpara, 'fluxen00' + gdat.nameenerunit + 'unit') gdat.lablsbrtunit = getattr(gmod.lablunitpara, 'sbrten00' + gdat.nameenerunit + 'sterunit') gdat.lablexpo = r'$\epsilon$' gdat.lablexpounit = 'cm$^2$ s' gdat.lablprvl = '$p$' gdat.lablreds = 'z' gdat.lablmagt = 'm_R' gdat.lablper0 = 'P_0' gmod.scalper0plot = 'logt' gdat.labldglc = 'd_{gc}' gmod.scaldglcplot = 'logt' gdat.labldlos = 'd_{los}' gmod.scaldlosplot = 'logt' if gdat.typeexpr == 'ferm': gdat.labldlosunit = 'kpc' gdat.labllumi = r'L_{\gamma}' if gdat.typeexpr == 'chan': gdat.labldlosunit = 'Mpc' gdat.labllumi = r'L_{X}' gdat.labllum0 = r'L_{X, 0}' gdat.lablgeff = r'\eta_{\gamma}' gmod.scalgeffplot = 'logt' gmod.scallumiplot = 'logt' gdat.labllumiunit = 'erg s$^{-1}$' gdat.labllum0unit = 'erg s$^{-1}$' gdat.lablthet = r'\theta_{gc}' gmod.scalthetplot = 'self' gdat.lablphii = r'\phi_{gc}' gmod.scalphiiplot = 'self' setattr(gmod.lablrootpara, 'magf', 'B') setattr(gdat, 'scalmagfplot', 'logt') setattr(gmod.lablrootpara, 'per1', 'P_1') if gdat.typedata == 'inpt': gdat.minmpara.per0 = 1e-3 gdat.maxmpara.per0 = 1e1 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.flux0400 = 1e-1 gdat.maxmpara.flux0400 = 1e4 setattr(gdat, 'scalper1plot', 'logt') setattr(gmod.lablrootpara, 'flux0400', 'S_{400}') setattr(gdat, 'scalflux0400plot', 'logt') for q in gdat.indxrefr: setattr(gmod.lablrootpara, 'aerr' + gdat.listnamerefr[q], '\Delta_{%d}' % q) gdat.lablsigm = '\sigma_l' gdat.lablgamm = '\gamma_l' gdat.lablbcom = '\eta' gdat.lablinfopost = 'D_{KL}' gdat.lablinfopostunit = 'nat' gdat.lablinfoprio = 'D_{KL,pr}' gdat.lablinfopriounit = 'nat' gdat.labllevipost = '\ln P(D)' gdat.labllevipostunit = 'nat' gdat.lablleviprio = '\ln P_{pr}(D)' gdat.labllevipriounit = 'nat' gdat.lablsind = 's' if gdat.boolbinsener: for i in gdat.indxenerinde: setattr(gmod.lablrootpara, 'sindcolr%04d' % i, 's_%d' % i) gdat.lablexpcunit = gdat.strgenerunit gdat.labllliktotl = r'\ln P(D|M)' gdat.labllpripena = r'\ln P(N)' gdat.lablasca = r'\theta_s' gdat.lablascaunit = gdat.lablgangunit gdat.lablacut = r'\theta_c' gdat.lablacutunit = gdat.lablgangunit gdat.lablmcut = r'M_{c,n}' gdat.lablmcutunit = r'$M_{\odot}$' gdat.lablmcutcorr = r'\bar{M}_{c,n}' gdat.lablmcutcorrunit = r'$M_{\odot}$' gdat.lablspec = gdat.lablflux gdat.lablspecunit = gdat.lablfluxunit gdat.lablspecplot = gdat.lablflux gdat.lablspecplotunit = gdat.lablfluxunit gdat.lablcnts = 'C' gdat.labldeltllik = r'\Delta_n \ln P(D|M)' gdat.labldiss = r'\theta_{sa}' gdat.labldissunit = gdat.lablgangunit gdat.lablrele = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_l| \rangle' gdat.lablrelc = r'\langle\vec{\alpha}_n \cdot \vec{\nabla} k_l \rangle' gdat.lablreld = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_d| \rangle' gdat.lablreln = r'\langle \Delta \theta_{pix} |\hat{\alpha}_n \cdot \vec{\nabla} k_l| / \alpha_{s,n} \rangle' gdat.lablrelm = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelk = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelf = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle / k_m' for q in gdat.indxrefr: for l in gmod.indxpopl: setp_varb(gdat, 'fdispop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$F_{%d%d}$' % (l, q)) setp_varb(gdat, 'cmplpop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$C_{%d%d}$' % (l, q)) if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.minmspec = 1e-2 gdat.maxmspec = 1e1 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 if gdat.typeexpr == 'ferm': gdat.minmlumi = 1e32 gdat.maxmlumi = 1e36 elif gdat.typeexpr == 'chan': if gdat.typedata == 'inpt': gdat.minmlum0 = 1e42 gdat.maxmlum0 = 1e46 gdat.minmlumi = 1e41 gdat.maxmlumi = 1e45 try: gdat.minmdlos except: if gdat.typeexpr == 'chan': gdat.minmdlos = 1e7 gdat.maxmdlos = 1e9 else: gdat.minmdlos = 6e3 gdat.maxmdlos = 1.1e4 if gdat.typeexpr == 'ferm': gdat.minmcnts = 1e1 gdat.maxmcnts = 1e5 if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: gdat.minmcnts = 1e4 gdat.maxmcnts = 1e8 else: gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'hubb': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'fire': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 gdat.minmspecplot = gdat.minmspec gdat.maxmspecplot = gdat.maxmspec gdat.minmdeltllik = 1. gdat.maxmdeltllik = 1e3 gdat.minmdiss = 0. gdat.maxmdiss = gdat.maxmgangdata * np.sqrt(2.) gdat.minmrele = 1e-3 gdat.maxmrele = 1e1 gdat.minmreln = 1e-3 gdat.maxmreln = 1. gdat.minmrelk = 1e-3 gdat.maxmrelk = 1. gdat.minmrelf = 1e-5 gdat.maxmrelf = 1e-1 gdat.minmrelm = 1e-3 gdat.maxmrelm = 1e1 gdat.minmreld = 1e-3 gdat.maxmreld = 1e1 gdat.minmrelc = 1e-3 gdat.maxmrelc = 1. gdat.minmmcut = 3e7 gdat.maxmmcut = 2e9 gdat.minmmcutcorr = gdat.minmmcut gdat.maxmmcutcorr = gdat.maxmmcut if gdat.boolbinsspat: gdat.minmbein = 0. gdat.maxmbein = 1. / gdat.anglfact # scalar variables if gdat.boolbinsspat: gdat.minmdeflprof = 1e-3 / gdat.anglfact gdat.maxmdeflprof = 0.1 / gdat.anglfact #gdat.minmfracsubh = 0. #gdat.maxmfracsubh = 0.3 #gmod.scalfracsubh = 'self' #gdat.minmmasshost = 1e10 #gdat.maxmmasshost = 1e13 #gmod.scalmasshost = 'self' # #gdat.minmmasssubh = 1e8 #gdat.maxmmasssubh = 1e10 #gmod.scalmasssubh = 'self' # collect groups of parameter indices into lists ## labels and scales for base parameters gmod.nameparagenrbase = [] for name, k in gmod.indxpara.__dict__.items(): if not np.isscalar(k): print('name') print(name) print('temp: no nonscalar should be here!') continue gmod.nameparagenrbase.append(name) gmod.numbparagenrbase = len(gmod.nameparagenrbase) gmod.indxparagenrbase = np.arange(gmod.numbparagenrbase) gmod.indxparagenrbasestdv = gmod.indxparagenrbase[gmod.numbpopl:] ## list of scalar variable names gmod.namepara.scal = list(gmod.nameparagenrbase) gmod.namepara.scal += ['lliktotl'] # derived parameters print('Determining the list of derived, fixed-dimensional parameter names...') gmod.namepara.genrelemextd = [[[] for g in gmod.indxparagenrelemsing[l]] for l in gmod.indxpopl] gmod.namepara.derielemextd = [[[] for k in gmod.indxparaderielemsing[l]] for l in gmod.indxpopl] gmod.namepara.genrelemflat = [] gmod.namepara.derielemflat = [] gmod.namepara.genrelemextdflat = [] gmod.namepara.derielemextdflat = [] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: gmod.namepara.genrelemflat.append(gmod.namepara.genrelem[l][g] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.genrelemextd[l][g].append(gmod.namepara.genrelem[l][g] + 'pop%d' % l + '%04d' % d) gmod.namepara.genrelemextdflat.append(gmod.namepara.genrelemextd[l][g][d]) for k in gmod.indxparaderielemsing[l]: gmod.namepara.derielemflat.append(gmod.namepara.derielem[l][k] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.derielemextd[l][k].append(gmod.namepara.derielem[l][k] + 'pop%d' % l + '%04d' % d) gmod.namepara.derielemextdflat.append(gmod.namepara.derielemextd[l][k][d]) # list of element parameter names (derived and generative), counting label-degenerate element parameters only once gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.elem[l].extend(gmod.namepara.genrelem[l]) gmod.namepara.elem[l].extend(gmod.namepara.derielem[l]) gmod.namepara.elemflat = [] for l in gmod.indxpopl: gmod.namepara.elemflat.extend(gmod.namepara.elem[l]) gmod.namepara.genrelemdefa = deepcopy(gmod.namepara.elemflat) if gmod.boolelemlghtanyy: for strgfeat in ['sind', 'curv', 'expc'] + ['sindcolr%04d' % i for i in gdat.indxenerinde]: if not strgfeat in gmod.namepara.genrelemdefa: gmod.namepara.genrelemdefa.append(strgfeat) # list of flattened generative element parameter names, counting label-degenerate element parameters only once gmod.namepara.genrelemkind = gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparagenrelemkind = len(gmod.namepara.genrelemkind) #gmod.inxparagenrscalelemkind = np.arange(gmod.numbparagenrelemkind) gmod.inxparagenrscalelemkind = tdpy.gdatstrt() gmod.numbparagenrelemextdflat = len(gmod.namepara.genrelemextdflat) gmod.indxparagenrelemextdflat = np.arange(gmod.numbparagenrelemextdflat) # list of parameter names (derived and generative), counting label-degenerate element parameters only once, element lists flattened gmod.namepara.kind = gmod.nameparagenrbase + gmod.listnameparaderitotl + gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparakind = len(gmod.namepara.kind) gmod.indxparakind = np.arange(gmod.numbparakind) # list of generative parameter names, separately including all label-degenerate element parameters, element lists flattened gmod.namepara.genrscalfull = gmod.nameparagenrbase + gmod.namepara.genrelemextdflat gmod.namepara.genrscalfull = np.array(gmod.namepara.genrscalfull) gmod.numbparagenrfull = len(gmod.namepara.genrscalfull) gmod.indxparagenrfull = np.arange(gmod.numbparagenrfull) # list of generative parameter names, counting label-degenerate element parameters only once, element lists flattened gmod.listnameparagenrscal = gmod.nameparagenrbase + gmod.namepara.genrelemflat gmod.numbparagenr = len(gmod.listnameparagenrscal) gmod.indxparagenr = np.arange(gmod.numbparagenr) # list of parameter names (derived and generative), element lists flattened gmod.listnameparatotl = gmod.nameparagenrbase + gmod.listnameparaderitotl + \ gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.nameparagenrbase = np.array(gmod.nameparagenrbase) for e in gmod.indxsersfgrd: gmod.namepara.scal += ['masshost' + strgsersfgrd + 'bein'] for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masshost' + strgsersfgrd + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: if gmod.boollenssubh: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masssubh' + strgcalcmasssubh + 'bein', 'fracsubh' + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: gmod.namepara.scal += ['lpripena'] if False and gmod.boolelemsbrtdfncanyy: for strgbins in ['lowr', 'higr']: gmod.namepara.scal += ['histcntp%sdfncen00evt0' % strgbins] gmod.namepara.scal += ['histcntp%sdfncsubten00evt0' % strgbins] for i in gdat.indxener: gmod.namepara.scal += ['fracsdenmeandarkdfncsubten%02d' % i] gmod.namepara.scal += ['booldfncsubt'] if gmod.numbparaelem > 0: for q in gdat.indxrefr: if gdat.boolasscrefr[q]: for l in gmod.indxpopl: gmod.namepara.scal += ['cmplpop%dpop%d' % (l, q)] gmod.namepara.scal += ['fdispop%dpop%d' % (q, l)] gmod.numbvarbscal = len(gmod.namepara.scal) gmod.indxvarbscal = np.arange(gmod.numbvarbscal) # determine total label gmod.listnameparaglob = gmod.namepara.kind + gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.listnameparaglob += ['cntpmodl'] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: if not gmod.namepara.genrelem[l][g] in gmod.listnameparaglob: gmod.listnameparaglob.append(gmod.namepara.genrelem[l][g]) gmod.listnameparaglob.append(gmod.namepara.derielem[l][g]) for name in gmod.listnameparaglob: lablroot = getattr(gmod.lablrootpara, name) lablunit = getattr(gmod.lablunitpara, name) labltotl = tdpy.retr_labltotlsing(lablroot, lablunit) setattr(gmod.labltotlpara, name, labltotl) # define fact for l in gmod.indxpopl: for k in gmod.indxparakind: name = gmod.namepara.kind[k] scal = getattr(gmod.scalpara, name) if scal == 'self' or scal == 'logt': minm = getattr(gmod.minmpara, name) maxm = getattr(gmod.maxmpara, name) if scal == 'self': fact = maxm - minm if scal == 'logt': fact = np.log(maxm / minm) if fact == 0: print('name') print(name) raise Exception('') setattr(gmod.factpara, name, fact) if gmod.numbparaelem > 0: gmod.indxparagenrfulleleminit = gmod.indxparagenrbase[-1] + 1 else: gmod.indxparagenrfulleleminit = -1 ## arrays of parameter features (e.g., minm, maxm, labl, scal, etc.) for featpara in gdat.listfeatparalist: gmodfeat = getattr(gmod, featpara + 'para') ### elements #for strgtypepara in gdat.liststrgtypepara: # listname = getattr(gmod.namepara, strgtypepara + 'elem') # listfeat = [[] for l in gmod.indxpopl] # listfeatflat = [] # for l in gmod.indxpopl: # # numb = getattr(gmod, 'numbpara' + strgtypepara + 'elemsing')[l] # listfeat[l] = [[] for k in range(numb)] # for k in range(numb): # scal = getattr(gmod.scalpara, listname[l][k]) # if featpara == 'fact' and not (scal == 'self' or scal == 'logt'): # continue # if featpara == 'mean' and (scal != 'gaus' and scal != 'lnor'): # continue # if featpara == 'stdv' and (scal != 'gaus' and scal != 'lnor'): # continue # # if strgtypepara == 'genr': # strgextn = 'pop%d' % l # else: # strgextn = '' # print('featpara') # print(featpara) # print('listname') # print(listname) # listfeat[l][k] = getattr(gmodfeat, listname[l][k] + strgextn) # listfeatflat.append(listfeat[l][k]) # setattr(gmodfeat, strgtypepara + 'elem', listfeat) # setattr(gmodfeat, strgtypepara + 'elemflat', listfeatflat) ### groups of parameters inside the parameter vector ### 'base': all fixed-dimensional generative parameters ### 'full': all generative parameters for strggroppara in ['base', 'full']: indx = getattr(gmod, 'indxparagenr' + strggroppara) feat = [0. for k in indx] for attr, valu in gmod.indxpara.__dict__.items(): if not np.isscalar(valu): continue scal = getattr(gmod.scalpara, attr) if not (scal == 'self' or scal == 'logt') and featpara == 'fact': continue if scal != 'gaus' and (featpara == 'mean' or featpara == 'stdv'): print('Mean or Std for non-Gaussian') continue if featpara == 'name': feat[valu] = attr else: feat[valu] = getattr(gmodfeat, attr) feat = np.array(feat) setattr(gmodfeat, 'genr' + strggroppara, feat) #print('gmod.minmpara') #for attr, varb in gmod.minmpara.__dict__.items(): # print(attr, varb) #print('gmod.maxmpara') #for attr, varb in gmod.maxmpara.__dict__.items(): # print(attr, varb) #print('gmod.scalpara') #for attr, varb in gmod.scalpara.__dict__.items(): # print(attr, varb) #raise Exception('') ## population groups ### number of elements for strgvarb in ['numbelem', 'meanelem']: listindxpara = [] if strgmodl == 'true': listpara = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith(strgvarb + 'p'): listindxpara.append(valu) if strgmodl == 'true': listpara.append(getattr(gmod.this, strg)) listindxpara = np.array(listindxpara) setattr(gmod.indxpara, strgvarb, listindxpara) if strgmodl == 'true': listpara = np.array(listpara) setattr(gmod, strgvarb, listpara) ### parameters of priors for element parameters gmod.indxpara.prioelem = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg == 'dist' and np.isscalar(valu): gmod.indxpara.prioelem.append(valu) gmod.indxpara.prioelem = np.array(gmod.indxpara.prioelem) ### hyperparameters if gmod.typemodltran == 'pois': gmod.indxpara.hypr = np.array(list(gmod.indxpara.prioelem) + list(gmod.indxpara.meanelem)) else: gmod.indxpara.hypr = gmod.indxpara.prioelem ## generative base parameter indices for each scaling gmod.listindxparagenrbasescal = dict() for scaltype in gdat.listscaltype: gmod.listindxparagenrbasescal[scaltype] = np.where(np.array(gmod.scalpara.genrbase) == scaltype)[0] if gdat.booldiagmode: if np.where(gmod.scalpara.genrfull == 0)[0].size > 0: raise Exception('') def plot_lens(gdat): if gmod.boolelemdeflsubh: xdat = gdat.binspara.angl[1:] * gdat.anglfact lablxdat = gdat.labltotlpara.gang listdeflscal = np.array([4e-2, 4e-2, 4e-2]) / gdat.anglfact listanglscal = np.array([0.05, 0.1, 0.05]) / gdat.anglfact listanglcutf = np.array([1., 1., 10.]) / gdat.anglfact listasym = [False, False, False] listydat = [] for deflscal, anglscal, anglcutf, asym in zip(listdeflscal, listanglscal, listanglcutf, listasym): listydat.append(retr_deflcutf(gdat.binspara.angl[1:], deflscal, anglscal, anglcutf, asym=asym) * gdat.anglfact) for scalxdat in ['self', 'logt']: path = gdat.pathinitintr + 'deflcutf' + scalxdat + '.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat=scalxdat, scalydat='logt', lablxdat=lablxdat, \ lablydat=r'$\alpha_n$ [$^{\prime\prime}$]', limtydat=[1e-3, 1.5e-2], limtxdat=[None, 2.]) # pixel-convoltuion of the Sersic profile # temp -- y axis labels are wrong, should be per solid angle xdat = gdat.binspara.lgalsers * gdat.anglfact for n in range(gdat.numbindxsers + 1): for k in range(gdat.numbhalfsers + 1): if k != 5: continue path = gdat.pathinitintr + 'sersprofconv%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, gdat.sersprof[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) #path = gdat.pathinitintr + 'sersprofcntr%04d%04d.pdf' % (n, k) #tdpy.plot_gene(path, xdat, gdat.sersprofcntr[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], scalxdat='logt', \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) xdat = gdat.binspara.angl * gdat.anglfact listspec = np.array([1e-19, 1e-18, 1e-18, 1e-18]) / gdat.anglfact listsize = np.array([0.3, 1., 1., 1.]) / gdat.anglfact listindx = np.array([4., 2., 4., 10.]) listydat = [] listlabl = [] for spec, size, indx in zip(listspec, listsize, listindx): listydat.append(spec * retr_sbrtsersnorm(gdat.binspara.angl, size, indxsers=indx)) listlabl.append('$R_e = %.3g ^{\prime\prime}, n = %.2g$' % (size * gdat.anglfact, indx)) path = gdat.pathinitintr + 'sersprof.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, \ listlegd=listlegd, listhlin=1e-7, limtydat=[1e-8, 1e0]) minmredshost = 0.01 maxmredshost = 0.4 minmredssour = 0.01 maxmredssour = 2. numbreds = 200 retr_axis(gdat, 'redshost') retr_axis(gdat, 'redssour') gdat.meanpara.adishost = np.empty(numbreds) for k in range(numbreds): gdat.meanpara.adishost[k] = gdat.adisobjt(gdat.meanpara.redshost[k]) asca = 0.1 / gdat.anglfact acut = 1. / gdat.anglfact minmmass = np.zeros((numbreds + 1, numbreds + 1)) maxmmass = np.zeros((numbreds + 1, numbreds + 1)) for k, redshost in enumerate(gdat.binspara.redshost): for n, redssour in enumerate(gdat.binspara.redssour): if redssour > redshost: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) minmmass[n, k] = np.log10(factmcutfromdefs * gdat.minmdefs) maxmmass[n, k] = np.log10(factmcutfromdefs * gdat.maxmdefs) #valulevl = np.linspace(7.5, 9., 5) valulevl = [7.0, 7.3, 7.7, 8., 8.6] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, minmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=20, fmt='%.3g') axis.set_xlabel(r'$z_{\rm{hst}}$') axis.set_ylabel(r'$z_{\rm{src}}$') axis.set_title(r'$M_{c,min}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsminm.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) valulevl = np.linspace(9., 11., 20) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.imshow(maxmmass, extent=[minmredshost, maxmredshost, minmredssour, maxmredssour], aspect='auto', vmin=9., vmax=11.) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, maxmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=15, fmt='%.3g') axis.set_xlabel('$z_{hst}$') axis.set_ylabel('$z_{src}$') axis.set_title(r'$M_{c,max}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsmaxm.pdf' plt.colorbar(imag) plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * gdat.sizepixl * 1e-3) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * 2. * gdat.maxmgangdata * 1e-3) axis.set_xlabel('$z_h$') axis.set_yscale('log') axis.set_ylabel(r'$\lambda$ [kpc]') path = gdat.pathinitintr + 'wlenreds.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) fracacutasca = np.logspace(-1., 2., 20) mcut = retr_mcutfrommscl(fracacutasca) axis.lognp.log(fracacutasca, mcut) axis.set_xlabel(r'$\tau_n$') axis.set_ylabel(r'$M_{c,n} / M_{0,n}$') axis.axhline(1., ls='--') path = gdat.pathinitintr + 'mcut.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) def retr_listrtagprev(strgcnfg, pathpcat): # list of PCAT run plot outputs pathimag = pathpcat + '/imag/' listrtag = fnmatch.filter(os.listdir(pathimag), '2*') listrtagprev = [] for rtag in listrtag: strgstat = pathpcat + '/data/outp/' + rtag if chec_statfile(pathpcat, rtag, 'gdatmodipost', typeverb=0) and strgcnfg + '_' + rtag[16:].split('_')[-1] == rtag[16:]: listrtagprev.append(rtag) listrtagprev.sort() return listrtagprev def make_legd(axis, offs=None, loca=1, numbcols=1, ptch=None, line=None): hand, labl = axis.get_legend_handles_labels() legd = axis.legend(hand, labl, fancybox=True, frameon=True, bbox_to_anchor=offs, bbox_transform=axis.transAxes, ncol=numbcols, loc=loca, labelspacing=1, handlelength=2) legd.get_frame().set_fill(True) legd.get_frame().set_facecolor('white') def setp_namevarbsing(gdat, gmod, strgmodl, strgvarb, popl, ener, evtt, back, isfr, iele): if popl == 'full': indxpopltemp = gmod.indxpopl elif popl != 'none': indxpopltemp = [popl] if ener == 'full': indxenertemp = gdat.indxener elif ener != 'none': indxenertemp = [ener] if evtt == 'full': indxevtttemp = gdat.indxevtt elif evtt != 'none': indxevtttemp = [evtt] if back == 'full': gmod.indxbacktemp = gmod.indxback elif isinstance(back, int): gmod.indxbacktemp = np.array([back]) liststrgvarb = [] if iele != 'none': for l in gmod.indxpopl: if iele == 'full': listiele = np.arange(gmod.maxmpara.numbelem) else: listiele = [iele] for k in listiele: liststrgvarb.append(strgvarb + 'pop%d%04d' % (l, k)) if popl != 'none' and ener == 'none' and evtt == 'none' and back == 'none' and iele == 'none': for l in indxpopltemp: liststrgvarb.append(strgvarb + 'pop%d' % l) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr != 'none': for e in indxisfrtemp: liststrgvarb.append(strgvarb + 'isf%d' % e) if popl == 'none' and ener != 'none' and evtt != 'none' and back == 'none': for i in indxenertemp: for m in indxevtttemp: liststrgvarb.append(strgvarb + 'en%02devt%d' % (i, m)) if popl == 'none' and ener != 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: for i in indxenertemp: liststrgvarb.append(strgvarb + 'back%04den%02d' % (c, i)) if popl == 'none' and ener == 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: liststrgvarb.append(strgvarb + 'back%04d' % c) if popl == 'none' and ener != 'none' and evtt == 'none' and back == 'none': for i in indxenertemp: liststrgvarb.append(strgvarb + 'en%02d' % i) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr == 'none': liststrgvarb.append(strgvarb) if gdat.booldiagmode: for strgvarb in liststrgvarb: if liststrgvarb.count(strgvarb) != 1: print('liststrgvarb') print(liststrgvarb) print('popl') print(popl) print('ener') print(ener) print('evtt') print(evtt) print('back') print(back) print('isfr') print(isfr) print('iele') print(iele) raise Exception('') return liststrgvarb def setp_varb(gdat, strgvarbbase, valu=None, minm=None, maxm=None, scal='self', lablroot=None, lablunit='', mean=None, stdv=None, cmap=None, numbbins=10, \ popl='none', ener='none', evtt='none', back='none', isfr='none', iele='none', \ boolinvr=False, \ strgmodl=None, strgstat=None, \ ): ''' Set up variable values across all models (true and fitting) as well as all populations, energy bins, event bins, background components, and Sersic components ''' # determine the list of models if strgmodl is None: if gdat.typedata == 'mock': liststrgmodl = ['true', 'fitt', 'plot'] else: liststrgmodl = ['fitt', 'plot'] else: if strgmodl == 'true' or strgmodl == 'plot' or strgmodl == 'refr': liststrgmodl = [strgmodl] else: liststrgmodl = ['fitt', 'plot'] print('liststrgmodl') print(liststrgmodl) for strgmodl in liststrgmodl: if strgmodl == 'plot': gmod = gdat.fitt gmodoutp = gdat else: gmod = getattr(gdat, strgmodl) gmodoutp = gmod # get the list of names of the variable liststrgvarbnone = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, 'none') if iele != 'none': liststrgvarb = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, iele) else: liststrgvarb = liststrgvarbnone # set the values of each variable in the list for strgvarb in liststrgvarb: if minm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.minmpara, strgvarb, minm) if maxm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.maxmpara, strgvarb, maxm) if mean is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, mean) if stdv is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, stdv) if valu is not None: if strgstat is None: print('strgvarb') print(strgvarb) print('strgmodl') print(strgmodl) print('valu') print(valu) print('') setp_varbcore(gdat, strgmodl, gmodoutp, strgvarb, valu) elif strgstat == 'this': setp_varbcore(gdat, strgmodl, gmodoutp.this, strgvarb, valu) if scal is not None: setp_varbcore(gdat, strgmodl, gmodoutp.scalpara, strgvarb, scal) if lablroot is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablrootpara, strgvarb, lablroot) if lablunit is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablunitpara, strgvarb, lablunit) if cmap is not None: setp_varbcore(gdat, strgmodl, gmodoutp.cmappara, strgvarb, cmap) setp_varbcore(gdat, strgmodl, gmodoutp.numbbinspara, strgvarb, numbbins) # create limt, bins, mean, and delt if minm is not None and maxm is not None or mean is not None and stdv is not None: # determine minima and maxima for Gaussian or log-Gaussian distributed parameters if mean is not None: minm = mean - gdat.numbstdvgaus * stdv maxm = mean + gdat.numbstdvgaus * stdv # uniformly-distributed if scal == 'self' or scal == 'pois' or scal == 'gaus': binsunif = np.linspace(minm, maxm, numbbins + 1) if scal == 'logt' or scal == 'powr': binsunif = np.linspace(np.log10(minm), np.log10(maxm), numbbins + 1) if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsunif = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numbbins + 1) if boolinvr: binsunif = binsunif[::-1] meanparaunif = (binsunif[1:] + binsunif[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanpara = meanparaunif bins = binsunif minmunif = minm maxmunif = maxm if scal == 'logt' or scal == 'powr': meanpara = 10**meanparaunif bins = 10**binsunif minmunif = np.log10(minm) maxmunif = np.log10(maxm) if scal == 'asnh': meanpara = np.sinh(meanparaunif) bins = np.sinh(binsunif) minmunif = np.arcsinh(minm) maxmunif = np.arcsinh(maxm) delt = np.diff(bins) limt = np.array([minm, maxm]) # 'self' is not yet defined if scal == 'asnh' or scal == 'logt' or scal == 'powr': listvalutickmajr, listlabltickmajr, listvalutickminr, listlabltickminr = tdpy.retr_valulabltick(minm, maxm, scal) setattr(gmodoutp.labltickmajrpara, strgvarb, listlabltickmajr) setattr(gmodoutp.valutickmajrpara, strgvarb, listvalutickmajr) setattr(gmodoutp.labltickminrpara, strgvarb, listlabltickminr) setattr(gmodoutp.valutickminrpara, strgvarb, listvalutickminr) #labltick = np.empty(gdat.numbtickcbar, dtype=object) #for k in range(gdat.numbtickcbar): # if scal == 'asnh': # valutick[k] = np.sinh(tickunif[k]) # if scal == 'logt' or scal == 'powr': # valutick[k] = 10**(tickunif[k]) # # avoid very small, but nonzero central values in the residual count color maps # if strgcbar == 'cntpresi' and np.fabs(valutick[k]) < 1e-5: # valutick[k] = 0. # if strgcbar == 'cntpdata' and np.amax(valutick) > 1e3: # labltick[k] = '%d' % valutick[k] # else: # labltick[k] = '%.3g' % valutick[k] setattr(gmodoutp.limtpara, strgvarb, limt) setattr(gmodoutp.binspara, strgvarb, bins) setattr(gmodoutp.meanpara, strgvarb, meanpara) setattr(gmodoutp.deltpara, strgvarb, delt) def retr_ticklabltemp(gdat, strgcbar): minm = getattr(gdat.minmpara, strgcbar) maxm = getattr(gdat.maxmpara, strgcbar) scal = getattr(gdat.scalpara, strgcbar) numb = gdat.numbtickcbar - 1 retr_axis(gdat, strgcbar, numb=numb) minmscal = minm if scal == 'asnh': minmscal = np.arcsinh(minmscal) if scal == 'logt': minmscal = np.log10(minmscal) maxmscal = maxm if scal == 'asnh': maxmscal = np.arcsinh(maxmscal) if scal == 'logt': maxmscal = np.log10(maxmscal) tickscal = np.linspace(minmscal, maxmscal, gdat.numbtickcbar) labl = np.empty(gdat.numbtickcbar, dtype=object) tick = np.copy(tickscal) for k in range(gdat.numbtickcbar): if scal == 'asnh': tick[k] = np.sinh(tickscal[k]) elif scal == 'logt': tick[k] = 10**(tickscal[k]) # avoid very small, but nonzero central values in the residual count color maps if strgcbar == 'cntpresi' and np.fabs(tick[k]) < 1e-5: tick[k] = 0. if strgcbar == 'cntpdata' and np.amax(tick) > 1e3: labl[k] = '%d' % tick[k] else: labl[k] = '%.3g' % tick[k] setattr(gdat.tickpara, strgcbar, tick) def retr_axistemp(gdat, strgvarb, strgmodl=None, boolinvr=False): if strgmodl is None: listgdattemp = [gdat] for strgmodl in gdat.liststrgmodl: listgdattemp.append(getattr(gdat, strgmodl)) elif strgmodl == 'fitt' or strgmodl == 'true': listgdattemp = [getattr(gdat, strgmodl)] elif strgmodl == 'allm': listgdattemp = [] for strgmodl in gdat.liststrgmodl: listgdattemp = getattr(gdat, strgmodl) for gdattemp in listgdattemp: minm = getattr(gdattemp.minmpara, strgvarb) maxm = getattr(gdattemp.maxmpara, strgvarb) numb = getattr(gdattemp.numbbinspara, strgvarb) scal = getattr(gdattemp.scalpara, strgvarb) if scal == 'self' or scal == 'pois' or scal == 'gaus': binsscal = np.linspace(minm, maxm, numb + 1) if scal == 'logt': print('minm') print(minm) print('maxm') print(maxm) print('strgvarb') print(strgvarb) binsscal = np.linspace(np.log10(minm), np.log10(maxm), numb + 1) print('') if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsscal = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numb + 1) if boolinvr: binsscal = binsscal[::-1] meanvarbscal = (binsscal[1:] + binsscal[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanvarb = meanvarbscal bins = binsscal if scal == 'logt': meanvarb = 10**meanvarbscal bins = 10**binsscal if scal == 'asnh': meanvarb = np.sinh(meanvarbscal) bins = np.sinh(binsscal) delt = np.diff(bins) limt = np.array([np.amin(bins), np.amax(bins)]) setattr(gdattemp.limtpara, strgvarb, limt) setattr(gdattemp.binspara, strgvarb, bins) setattr(gdattemp.meanpara, strgvarb, meanvarb) setattr(gdattemp.deltpara, strgvarb, delt) def setp_varbcore(gdat, strgmodl, gdattemp, strgvarbtemp, valu): # check if the variable is defined by the user try: valutemp = getattr(gdattemp, strgvarbtemp) if valutemp is None: raise if gdat.typeverb > 0: print('Received custom value for %s, %s: %s' % (strgvarbtemp, strgmodl, valutemp)) # if not defined or defined as None, define it except: setattr(gdattemp, strgvarbtemp, valu) def intp_sinc(gdat, lgal, bgal): intpsinc = 4. * gdat.numbsidepsfn**2 * np.sum(gdat.temppsfn * sinc(gdat.numbsidepsfn * (gdat.gridpsfnlgal + lgal) - gdat.gridpsfnlgal) * \ sinc(gdat.numbsidepsfn * (gdat.gridpsfnbgal + bgal) - gdat.gridpsfnbgal)) return intpsinc def retr_fluxbrgt(gdat, lgal, bgal, flux): if lgal.size == 0: fluxbrgt = np.array([0.]) fluxbrgtassc = np.array([0.]) else: indxbrgt = np.argmax(flux) fluxbrgt = flux[indxbrgt] return fluxbrgt, fluxbrgtassc def init_figr(gdat, gdatmodi, strgpdfn, strgplot, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot): figrsize = (gdat.sizeimag, gdat.sizeimag) figr, axis = plt.subplots(figsize=figrsize) nameplot = strgplot if gdat.numbener > 1: nameplot += 'en%02d' % gdat.indxenerincl[indxenerplot] if gdat.numbener > 1: if indxevttplot == -1: nameplot += 'evtA' else: nameplot += 'evt%d' % gdat.indxevttincl[indxevttplot] if gdat.fitt.numbpopl > 1: if indxpoplplot == -1: nameplot += 'popA' else: nameplot += 'pop%d' % indxpoplplot path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, nameplot) print('gdat.fitt.labltotlpara.lgalpop0') print(gdat.fitt.labltotlpara.lgalpop0) print('gdat.fitt.labltotlpara.bgalpop0') print(gdat.fitt.labltotlpara.bgalpop0) axis.set_xlabel(gdat.fitt.labltotlpara.lgalpop0) axis.set_ylabel(gdat.fitt.labltotlpara.bgalpop0) titl = '' if indxenerplot is not None and gdat.numbener > 1 and strgplot.endswith('cnts'): titl = gdat.strgener[indxenerplot] if indxevttplot is not None and gdat.numbevtt > 1 and strgplot.endswith('cnts'): titl += ' ' + gdat.strgevtt[indxevttplot] axis.set_title(titl) return figr, axis, path def draw_frambndr(gdat, axis): outr = max(gdat.frambndrmodl, gdat.frambndrdata) axis.set_xlim([-outr, outr]) axis.set_ylim([-outr, outr]) innr = min(gdat.frambndrmodl, gdat.frambndrdata) axis.axvline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axvline(-innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(-innr, ls='--', alpha=gdat.alphbndr, color='black') def retr_imag(gdat, axis, maps, strgstat, strgmodl, strgcbar, indxenerplot=None, indxevttplot=-1, booltdim=False, imag=None): draw_frambndr(gdat, axis) # take the relevant energy and PSF bins if indxenerplot is not None: if indxevttplot == -1: maps = np.sum(maps[indxenerplot, ...], axis=1) else: maps = maps[indxenerplot, :, indxevttplot] # project the map to 2D if gdat.typepixl == 'heal': maps = tdpy.retr_cart(maps, indxpixlrofi=gdat.indxpixlrofi, numbsideinpt=gdat.numbsideheal, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata) if gdat.typepixl == 'cart': shap = [gdat.numbsidecart] + list(maps.shape) shap[1] = gdat.numbsidecart shapflat = list(maps.shape) shapflat[0] = gdat.numbpixlfull mapstemp = np.zeros(shapflat) if maps.size == gdat.indxpixlrofi.size: mapstemp[gdat.indxpixlrofi, ...] = maps else: mapstemp[:, ...] = maps maps = mapstemp.reshape(shap).swapaxes(0, 1) # temp -- this is needed to bring the Fermi-LAT map to the right direction #maps = fliplr(maps) # rescale the map if strgmodl is not None: gmod = getattr(gdat, strgmodl) else: gmod = gdat scal = getattr(gdat.scalpara, strgcbar) cmap = getattr(gdat.cmappara, strgcbar) vmin = getattr(gdat.minmpara, strgcbar) vmax = getattr(gdat.maxmpara, strgcbar) if scal == 'asnh': maps = np.arcsinh(maps) if scal == 'logt': maps = np.log10(maps) if imag is None: imag = axis.imshow(maps, cmap=cmap, origin='lower', extent=gdat.exttrofi, interpolation='nearest', vmin=vmin, vmax=vmax, alpha=gdat.alphmaps) return imag else: imag.set_data(maps) def make_cbar(gdat, axis, imag, strgvarb): # make a color bar valutickmajr = getattr(gdat.valutickmajrpara, strgvarb) labltickmajr = getattr(gdat.labltickmajrpara, strgvarb) print('valutickmajr') print(valutickmajr) print('labltickmajr') print(labltickmajr) cbar = plt.colorbar(imag, ax=axis, fraction=0.05, aspect=15) cbar.set_ticks(valutickmajr) cbar.set_ticklabels(labltickmajr) return cbar def make_legdmaps(gdat, strgstat, strgmodl, axis, mosa=False, assc=False): gmod = getattr(gdat, strgmodl) # transdimensional elements if strgmodl == 'fitt' and (strgstat == 'pdfn' and gdat.boolcondcatl or strgstat == 'this') and gmod.numbparaelem > 0: for l in gmod.indxpopl: colr = retr_colr(gdat, strgstat, strgmodl, l) if strgstat == 'pdfn': labl = 'Condensed %s %s' % (gmod.legd, gmod.legdpopl[l]) else: labl = 'Sample %s %s' % (gmod.legd, gmod.legdpopl[l]) if not gmod.maxmpara.numbelem[l] == 0: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=labl, marker=gmod.listelemmrkr[l], lw=gdat.mrkrlinewdth, color=colr) for q in gdat.indxrefr: if not np.amax(gdat.refr.numbelem[q]) == 0: if assc: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=gdat.refr.lablhits[q], marker=gdat.refr.listmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablmiss[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) else: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablelem[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) # fixed-dimensional objects if strgmodl == 'fitt': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gmod.lablmodl, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gmod.lablmodl, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gdat.typedata == 'mock': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gdat.refr.labl, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gdat.refr.labl, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) temphand, temp = axis.get_legend_handles_labels() numblabl = len(temp) if numblabl == 4: numbcols = 2 else: numbcols = 3 if mosa: axis.legend(bbox_to_anchor=[1., 1.15], loc='center', ncol=numbcols) else: axis.legend(bbox_to_anchor=[0.5, 1.15], loc='center', ncol=numbcols) def supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis, indxpoplplot=-1, assc=False): gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) # associations with the reference elements for q in gdat.indxrefr: if gdat.refr.numbelem[q] > 0: if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: reframpl = gdat.refr.dictelem[q][gdat.refr.nameparagenrelemampl[q]][0, :] mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl, gdat.refr.nameparagenrelemampl[q]) lgal = np.copy(gdat.refr.dictelem[q]['lgal'][0, :]) bgal = np.copy(gdat.refr.dictelem[q]['bgal'][0, :]) numbelem = int(gdat.refr.numbelem[q]) if gdatmodi is not None and gmod.numbparaelem > 0 and assc: ### hit indx = gdatmodi.this.indxelemrefrasschits[q][l] if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, label=gdat.refr.lablhits, \ marker=gdat.refrlistmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) ### missed indx = gdatmodi.this.indxelemrefrasscmiss[q][l] else: indx = np.arange(lgal.size) if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.listlablmiss, marker=gdat.refr.listmrkrmiss[q], \ lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) sizexoff = gdat.maxmgangdata * 0.05 * gdat.anglfact sizeyoff = gdat.maxmgangdata * 0.05 * gdat.anglfact if 'etag' in gdat.refr.namepara.elem[q]: for k in range(indx.size): axis.text(gdat.anglfact * lgal[indx[k]] + sizexoff, gdat.anglfact * bgal[indx[k]] + sizeyoff, gdat.refretag[q][indx[k]], \ verticalalignment='center', horizontalalignment='center', \ color='red', fontsize=1) # temp -- generalize this to input refrlgalhost vs. if gdat.typedata == 'mock': ## host galaxy position if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: lgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost, gdat.anglfact * bgalhost, facecolor='none', alpha=0.7, \ label='%s Host %d' % (gdat.refr.labl, e), s=300, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.boollens: ## host galaxy Einstein radius for e in gmod.indxsersfgrd: truelgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] truebgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] truebeinhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * truelgalhost, \ gdat.anglfact * truebgalhost), \ gdat.anglfact * truebeinhost, \ edgecolor=gdat.refr.colr, facecolor='none', lw=gdat.mrkrlinewdth)) if gmod.boollens: ## source galaxy position axis.scatter(gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.lgalsour], \ gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.bgalsour], \ facecolor='none', \ alpha=0.7, \ #alpha=gdat.alphelem, \ label='%s Source' % gdat.refr.labl, s=300, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) # model catalog if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: if gdatmodi is not None: if gmod.numbparaelem > 0: colr = retr_colr(gdat, strgstat, strgmodl, l) mrkrsize = retr_mrkrsize(gdat, strgmodl, gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[gmod.nameparagenrelemampl[l]][l]], gmod.nameparagenrelemampl[l]) if 'lgal' in gdatmodi.this.indxparagenrfullelem: lgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['lgal']] bgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['bgal']] else: gang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['gang']] aang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['aang']] lgal, bgal = retr_lgalbgal(gang, aang) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, alpha=gdat.alphelem, label='Sample', marker=gmod.listelemmrkr[l], \ lw=gdat.mrkrlinewdth, color=colr) ## source if gmod.boollens: lgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.bgalsour] axis.scatter(gdat.anglfact * lgalsour, gdat.anglfact * bgalsour, facecolor='none', \ alpha=gdat.alphelem, \ label='%s Source' % gmod.lablpara, s=300, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': ## host lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e], facecolor='none', \ alpha=gdat.alphelem, \ label='%s Host' % gmod.lablpara, s=300, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.boollens: beinhost = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e]), \ gdat.anglfact * beinhost, edgecolor=gmod.colr, facecolor='none', \ lw=gdat.mrkrlinewdth, ls='--')) # temp if strgstat == 'pdfn' and gdat.boolcondcatl and gmod.numbparaelem > 0: lgal = np.zeros(gdat.numbprvlhigh) bgal = np.zeros(gdat.numbprvlhigh) ampl = np.zeros(gdat.numbprvlhigh) cntr = 0 for r in gdat.indxstkscond: if r in gdat.indxprvlhigh: lgal[cntr] = gdat.dictglob['poststkscond'][r]['lgal'][0] bgal[cntr] = gdat.dictglob['poststkscond'][r]['bgal'][0] # temp -- this does not allow sources with different spectra to be assigned to the same stacked sample ampl[cntr] = gdat.dictglob['poststkscond'][r][gmod.nameparagenrelemampl[l]][0] cntr += 1 mrkrsize = retr_mrkrsize(gdat, strgmodl, ampl, gmod.nameparagenrelemampl[l]) colr = retr_colr(gdat, strgstat, strgmodl, l) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ label='Condensed', marker=gmod.listelemmrkr[l], color='black', lw=gdat.mrkrlinewdth) for r in gdat.indxstkscond: lgal = np.array([gdat.dictglob['liststkscond'][r]['lgal']]) bgal = np.array([gdat.dictglob['liststkscond'][r]['bgal']]) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ marker=gmod.listelemmrkr[l], color='black', alpha=0.1, lw=gdat.mrkrlinewdth) def retr_colr(gdat, strgstat, strgmodl, indxpopl=None): if strgmodl == 'true': if indxpopl is None: colr = gdat.refr.colr else: colr = gdat.refr.colrelem[indxpopl] if strgmodl == 'fitt': if strgstat == 'this' or strgstat == 'pdfn': if indxpopl is None: colr = gmod.colr else: colr = gmod.colrelem[indxpopl] if strgstat == 'mlik': colr = 'r' return colr def retr_levipost(listllik): minmlistllik = np.amin(listllik) levipost = np.log(np.mean(1. / np.exp(listllik - minmlistllik))) + minmlistllik return levipost def retr_infofromlevi(pmeallik, levi): info = pmeallik - levi return info def retr_jcbn(): fluxpare, lgalpare, bgalpare, fluxauxi, lgalauxi, bgalauxi = sympy.symbols('fluxpare lgalpare bgalpare fluxauxi lgalauxi bgalauxi') matr = sympy.Matrix([[ fluxpare, fluxauxi, 0, 0, 0, 0], \ [-fluxpare, 1 - fluxauxi, 0, 0, 0, 0], \ [-lgalauxi, 0, 1, 1 - fluxauxi, 0, 0], \ [-lgalauxi, 0, 1, -fluxauxi, 0, 0], \ [-bgalauxi, 0, 0, 0, 1, 1 - fluxauxi], \ [-bgalauxi, 0, 0, 0, 1, -fluxauxi]]) jcbn = matr.det() return jcbn # f1 = uf f0 # f2 = (1 - uf) f0 # x1 = x0 + (1 - uf) ux # x2 = x0 - uf ux # y1 = y0 + (1 - uf) uy # y2 = y0 - uf uy # f1/uf f1/f0 f1/x0 f1/ux f1/y0 f1/uy # f2/uf f2/f0 f2/x0 f2/ux f2/y0 f2/uy # x1/uf x1/f0 x1/x0 x1/ux x1/y0 x1/uy # x2/uf x2/f0 x2/x0 x2/ux x2/y0 x2/uy # y1/uf y1/f0 y1/x0 y1/ux y1/y0 y1/uy # y2/uf y2/f0 y2/x0 y2/ux y2/y0 y2/uy # f0 uf 0 0 0 0 # -f0 1 - uf 0 0 0 0 # -ux 0 1 1 - uf 0 0 # -ux 0 1 -uf 0 0 # -uy 0 0 0 1 1 - uf # -uy 0 0 0 1 -uf # f0 #retr_jcbn() def retr_angldist(gdat, lgalfrst, bgalfrst, lgalseco, bgalseco): # temp -- heal does not work when the dimension of lgalfrst is 1 if gdat.typepixl == 'heal': dir1 = np.array([lgalfrst, bgalfrst]) dir2 = np.array([lgalseco, bgalseco]) angldist = hp.rotator.angdist(dir1, dir2) else: angldist = np.sqrt((lgalfrst - lgalseco)**2 + (bgalfrst - bgalseco)**2) return angldist def retr_deflextr(gdat, indxpixlelem, sher, sang): factcosi = sher * np.cos(2. * sang) factsine = sher * np.cos(2. * sang) defllgal = factcosi * gdat.lgalgrid[indxpixlelem] + factsine * gdat.bgalgrid[indxpixlelem] deflbgal = factsine * gdat.lgalgrid[indxpixlelem] - factcosi * gdat.bgalgrid[indxpixlelem] return np.vstack((defllgal, deflbgal)).T def readfile(path): print('Reading %s...' % path) filepick = open(path + '.p', 'rb') filearry = h5py.File(path + '.h5', 'r') gdattemptemp = pickle.load(filepick) for attr in filearry: setattr(gdattemptemp, attr, filearry[attr][()]) filepick.close() filearry.close() if 'gdatfinl' in path or 'gdatinit' in path: if hasattr(gdattemptemp, 'edis') and gdattemptemp.edis is not None and hasattr(gdattemptemp, 'binsener'): gdattemptemp.edisintp = sp.interpolate.interp1d(gdattemptemp.binsener, gdattemptemp.edis, fill_value='extrapolate') gdattemptemp.adisobjt = sp.interpolate.interp1d(gdattemptemp.redsintp, gdattemptemp.adisintp, fill_value='extrapolate') gdattemptemp.redsfromdlosobjt = sp.interpolate.interp1d(gdattemptemp.adisintp * gdattemptemp.redsintp, \ gdattemptemp.redsintp, fill_value='extrapolate') return gdattemptemp def init_stat(gdat): # construct the initial state if gdat.typeverb > 0: print('Initializing the sampler state...') print('inittype') print(gdat.inittype) gmod = gdat.fitt ## initialization ### initialize the unit sample vector randomly gmod.this.paragenrunitfull = np.random.rand(gmod.numbparagenrfull) gmod.this.paragenrscalfull = np.empty(gmod.numbparagenrfull) ## impose user-specified initial state ### number of elements ## create dummy indxparagenrfullelem gmod.this.indxparagenrfullelem = None if gmod.numbparaelem > 0: if gdat.inittype == 'refr': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] else: for l in gmod.indxpopl: if gmod.typemodltran == 'pois': meanelemtemp = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, \ gmod.this.indxparagenrfullelem)[gmod.indxpara.meanelem[l]] print('temp -- user input is not working for numbelem') #namevarb = 'numbelempop%d' % l #initvalu = getattr(gmod.init, namevarb) #if initvalu > gmod.maxmpara.numbelem[l] or initvalu < gmod.minmpara.numbelem[l]: # raise Exception('Bad initial number of elements...') #gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = initvalu if gmod.typemodltran == 'pois': gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = np.random.poisson(meanelemtemp) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = round(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ min(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.maxmpara.numbelem[l]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ max(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.minmpara.numbelem[l]) gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] = gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] if gdat.booldiagmode: if gdat.typedata == 'mock' and gdat.inittype == 'refr': for l in gmod.indxpopl: if gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] > gmod.maxmpara.numbelem[l]: raise Exception('') if gmod.numbparaelem > 0: gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.inittype == 'reco': if gdat.namerecostat is not None: strgcnfg = gdat.namerecostat else: strgcnfg = gdat.strgcnfg path = gdat.pathoutp + 'stat_' + strgcnfg + '.h5' if os.path.exists(path): boolinitreco = True thisfile = h5py.File(path, 'r') if gdat.typeverb > 0: print('Initializing from the state %s...' % path) print('Likelihood:') print(thisfile['lliktotl'][...]) # find the number of populations provided maxmindxpopl = 0 for l in range(10): for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) if gmod.indxpopl > maxmindxpopl: maxmindxpopl = gmod.indxpopl numbpoplinpt = maxmindxpopl + 1 if numbpoplinpt != gmod.numbpopl: print('State file and fitting metamodel have different number of populations.') # find the number of elements provided cntr = np.zeros(gmod.numbpoplinpt, dtype=int) for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) cntr[indxpopl] += 1 if gdat.typeverb > 0: print('Number of elements found:') print(cntr) for attr in thisfile: for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase == attr: if gmod.nameparagenrbase.startswith('numbelem'): try: indxpopltemp = int(gmod.nameparagenrbase[-1]) initnumbelem = getattr(gdat, 'initnumbelempop%d' % indxpopltemp) print('Initial condition for the number of elements conflicts with the state file. Defaulting to the argument...') except: initnumbelem = thisfile[attr][()] gmod.this.paragenrunitfull[k] = initnumbelem else: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', thisfile[attr][()], k) if gmod.this.paragenrunitfull[k] == 0.: print('Warning CDF is zero.') if not np.isfinite(thisfile[attr][()]): raise Exception('Retreived state parameter is not finite.') if (gmod.numbparaelem == 0 or gmod.numbparaelem > 0 and not k in gmod.indxpara.numbelem) and \ (not np.isfinite(gmod.this.paragenrunitfull[k]) or gmod.this.paragenrunitfull[k] < 0. or \ gmod.this.paragenrunitfull[k] > 1.): raise Exception('CDF of the retreived state parameter is bad.') if gmod.numbparaelem > 0: for l in gmod.indxpopl: maxm.numbelem = getattr(gdat.fitt.maxm, 'numbelempop%d' % l) if gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] > maxm.numbelem: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = maxm.numbelem if gdat.typeverb > 0: print('Tapering off the element list...') gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) if gdat.typeverb > 0: print('gmod.this.paragenrunitfull[gmod.indxpara.numbelem]') print(gmod.this.paragenrunitfull[gmod.indxpara.numbelem]) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if (gmod.this.paragenrunitfull == 0).all(): raise Exception('Bad initialization.') if gmod.numbparaelem > 0 and gmod.this.indxparagenrfullelem is not None: for nameparagenrelem in gmod.namepara.elem: initcomp = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: initcomp[l] = np.empty(len(gmod.this.indxelemfull[l])) for k in range(len(gmod.this.indxelemfull[l])): namefiel = '%spop%d%04d' % (nameparagenrelem, l, k) for attr in thisfile: if namefiel == attr: initcomp[l][k] = thisfile[namefiel][()] setattr(gdat, 'init' + nameparagenrelem, initcomp) initcompfromstat(gdat, gdatmodi, 'init') thisfile.close() else: boolinitreco = False if gdat.typeverb > 0: print('Could not find the state file, %s, to initialize the sampler.' % path) if gdat.inittype == 'refr': if gdat.typedata == 'inpt': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gdat.refr.numbelem[l] if gdat.typedata == 'mock': for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if not (gdat.inittype == 'pert' and gmod.nameparagenrbase.startswith('numbelem')) and \ gmod.nameparagenrbase in gmod.nameparagenrbase: gmod.indxpara.true = np.where(gmod.nameparagenrbase == gmod.nameparagenrbase)[0] gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmodstat.paragenrscalfull[gmod.indxpara.true], k) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.typeverb > 1: show_paragenrscalfull(gdat, gdatmodi) if gmod.this.indxparagenrfullelem is not None: print('Initializing elements from the reference element parameters...') show_paragenrscalfull(gdat, gdatmodi) gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) show_paragenrscalfull(gdat, gdatmodi) initcompfromstat(gdat, gdatmodi, 'refr') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) ## impose user-specified individual initial values for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase.startswith('numbelem'): continue if gdat.inittype == 'reco' or gdat.inittype == 'refr' or gdat.inittype == 'pert': try: getattr(gdat, 'init' + gmod.nameparagenrbase) print('Conflicting initial state arguments detected, init keyword takes precedence.') except: pass try: raise Exception('') initvalu = getattr(gdat, 'init' + gmod.nameparagenrbase) gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', initvalu, k) if gdat.typeverb > 0: print('Received initial condition for %s: %.3g' % (gmod.nameparagenrbase, initvalu)) except: pass ## PSF if gdat.initpsfp is not None: print('Initializing the metamodel PSF from the provided initial state...') if gdat.initpsfp.size != gmod.indxpara.psfp.size: raise Exception('') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gdat.initpsfp[k-gmod.indxpara.psfp[0]], k) if gdat.initpsfprefr: print('Initializing the metamodel PSF from the reference state...') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmod.psfpexpr[k-gmod.indxpara.psfp[0]], k) if gdat.inittype == 'rand' or gdat.inittype == 'reco' and not boolinitreco: if gdat.typeverb > 0: print('Initializing from a random state...') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') # check the initial unit sample vector for bad entries if gmod.numbparaelem > 0: indxsampdiff = np.setdiff1d(gmod.indxparagenrfull, gmod.indxpara.numbelem) if np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])).any(): raise Exception('') indxsampbaddlowr = np.where((gmod.this.paragenrunitfull[indxsampdiff] <= 0.) | np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])))[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull[indxsampdiff] >= 1.)[0] indxsampbaddlowr = indxsampdiff[indxsampbaddlowr] indxsampbadduppr = indxsampdiff[indxsampbadduppr] else: indxsampbaddlowr = np.where(gmod.this.paragenrunitfull <= 0.)[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull >= 1.)[0] indxsampbadd = np.concatenate((indxsampbaddlowr, indxsampbadduppr)) if indxsampbadd.size > 0: print('Initial value caused unit sample vector to go outside the unit interval...') show_paragenrscalfull(gdat, gdatmodi, indxsampshow=indxsampbadd) gmod.this.paragenrunitfull[indxsampbadd] = np.random.rand(indxsampbadd.size) raise Exception('') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) indxbadd = np.where(np.logical_not(np.isfinite(gmod.this.paragenrscalfull)))[0] if indxbadd.size > 0: raise Exception('') def writfile(gdattemp, path): filepick = open(path + '.p', 'wb') filearry = h5py.File(path + '.h5', 'w') gdattemptemp = tdpy.gdatstrt() for attr, valu in gdattemp.__dict__.items(): if attr.endswith('psfnintp'): continue if isinstance(valu, np.ndarray) and valu.dtype != np.dtype('O') and valu.dtype != np.dtype('<U4'):# or isinstance(valu, str) or \ #isinstance(valu, float) or isinstance(valu, bool) or isinstance(valu, int) or isinstance(valu, np.float): filearry.create_dataset(attr, data=valu) else: # temp -- make sure interpolation objects are not written. if attr != 'adisobjt' and attr != 'redsfromdlosobjt' and attr != 'edisintp': setattr(gdattemptemp, attr, valu) print('Writing to %s...' % path) pickle.dump(gdattemptemp, filepick, protocol=pickle.HIGHEST_PROTOCOL) filepick.close() filearry.close() def retr_deflcutf(angl, defs, asca, acut, asym=False): fracanglasca = angl / asca deflcutf = defs / fracanglasca # second term in the NFW deflection profile fact = np.ones_like(fracanglasca) indxlowr = np.where(fracanglasca < 1.)[0] indxuppr = np.where(fracanglasca > 1.)[0] fact[indxlowr] = np.arccosh(1. / fracanglasca[indxlowr]) / np.sqrt(1. - fracanglasca[indxlowr]**2) fact[indxuppr] = np.arccos(1. / fracanglasca[indxuppr]) / np.sqrt(fracanglasca[indxuppr]**2 - 1.) if asym: deflcutf *= np.log(fracanglasca / 2.) + fact else: fracacutasca = acut / asca factcutf = fracacutasca**2 / (fracacutasca**2 + 1)**2 * ((fracacutasca**2 + 1. + 2. * (fracanglasca**2 - 1.)) * fact + \ np.pi * fracacutasca + (fracacutasca**2 - 1.) * np.log(fracacutasca) + np.sqrt(fracanglasca**2 + fracacutasca**2) * (-np.pi + (fracacutasca**2 - 1.) / fracacutasca * \ np.log(fracanglasca / (np.sqrt(fracanglasca**2 + fracacutasca**2) + fracacutasca)))) deflcutf *= factcutf return deflcutf def initchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime()) def stopchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime() - getattr(gdatmodi.this, 'chro' + name)) def retr_defl(gdat, indxpixlelem, lgal, bgal, angllens, ellp=None, angl=None, rcor=None, asca=None, acut=None): # translate the grid lgaltran = gdat.lgalgrid[indxpixlelem] - lgal bgaltran = gdat.bgalgrid[indxpixlelem] - bgal if acut is not None: defs = angllens angl = np.sqrt(lgaltran**2 + bgaltran**2) defl = retr_deflcutf(angl, defs, asca, acut) defllgal = lgaltran / angl * defl deflbgal = bgaltran / angl * defl else: bein = angllens # rotate the grid lgalrttr = np.cos(angl) * lgaltran - np.sin(angl) * bgaltran bgalrttr = np.sin(angl) * lgaltran + np.cos(angl) * bgaltran axisrati = 1. - ellp facteccc = np.sqrt(1. - axisrati**2) factrcor = np.sqrt(axisrati**2 * lgalrttr**2 + bgalrttr**2) defllgalrttr = bein * axisrati / facteccc * np.arctan(facteccc * lgalrttr / factrcor) deflbgalrttr = bein * axisrati / facteccc * np.arctanh(facteccc * bgalrttr / factrcor) # totate back vector to original basis defllgal = np.cos(angl) * defllgalrttr + np.sin(angl) * deflbgalrttr deflbgal = -np.sin(angl) * defllgalrttr + np.cos(angl) * deflbgalrttr defl = np.vstack((defllgal, deflbgal)).T return defl def retr_lpriselfdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_self(feat, minm, maxm))) return lpri def retr_lprilogtdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_logt(feat, minm, maxm))) return lpri def retr_lpripowrdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): gmod = getattr(gdat, strgmodl) minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + strgfeat + 'pop%d' % l)] lpri = np.sum(np.log(pdfn_powr(feat, minm, maxm, slop))) return lpri def retr_lpridpowdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) brek = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distbrek')[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + strgfeat)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + strgfeat)[l]] lpri = np.sum(np.log(pdfn_dpow(feat, minm, maxm, brek, sloplowr, slopuppr))) return lpri def retr_lprigausdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): distmean = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'diststdv')[l]] lpri = np.sum(np.log(pdfn_gaus(feat, distmean, diststdv))) return lpri def retr_lpriigamdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): slop = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'slop')[l]] cutf = getattr(gmod, 'cutf' + strgfeat) lpri = np.sum(np.log(pdfn_igam(feat, slop, cutf))) return lpri def traptdim(gdat, arry): s1 = arry[0, 0] + arry[-1, 0] + arry[0, -1] + arry[-1, -1] s2 = np.sum(arry[1:-1, 0]) + np.sum(arry[1:-1, -1]) + np.sum(arry[0, 1:-1]) + np.sum(arry[-1, 1:-1]) s3 = np.sum(arry[1:-1, 1:-1]) summ = (s1 + 2*s2 + 4*s3) * gdat.apix return summ def retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons=None): pdfnspatprio = pdfnspatpriotemp if spatdistcons is not None: pdfnspatprio += spatdistcons summ = traptdim(gdat, pdfnspatprio) pdfnspatprio /= summ lpdfspatprio = np.log(pdfnspatprio) lpdfspatprioobjt = sp.interpolate.RectBivariateSpline(gdat.binspara.bgalcart, gdat.binspara.lgalcart, lpdfspatprio) return lpdfspatprio, lpdfspatprioobjt def retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=False): if strgmodl == 'true': gdatobjt = gdat.true elif strgmodl == 'fitt' and boolinit: gdatobjt = gdat.fitt else: gdatobjt = gdatmodi return gdatobjt def proc_samp(gdat, gdatmodi, strgstat, strgmodl, fast=False, boolinit=False): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=boolinit) gmodstat = getattr(gdatobjt, strgstat) initchro(gdat, gdatmodi, 'pars') # grab the sample vector indxpara = np.arange(gmodstat.paragenrscalfull.size) if gdat.booldiagmode: if not np.isfinite(gmodstat.paragenrscalfull).all(): raise Exception('') if gmod.typeevalpsfn != 'none' and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): psfp = gmodstat.paragenrscalfull[gmod.indxpara.psfp] if gdat.booldiagmode: if np.where(psfp == 0)[0].size == psfp.size: raise Exception('') setattr(gmodstat, 'psfp', psfp) bacp = gmodstat.paragenrscalfull[gmod.indxpara.bacp] if gmod.numbparaelem > 0: # temp -- this may slow down execution gmodstat.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodstat.indxelemfull, strgmodl) gmodstat.numbelem = np.empty(gmod.numbpopl, dtype=int) indxelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) indxelem[l] = np.arange(gmodstat.numbelem[l]) gmodstat.numbelem[l] = np.sum(gmodstat.numbelem[l]) gmodstat.numbelemtotl = np.sum(gmodstat.numbelem) gmodstat.dictelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.dictelem[l] = dict() for strgfeat in gmod.namepara.genrelemdefa: gmodstat.dictelem[l][strgfeat] = [] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem] = gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]] if gdat.booldiagmode: if ((abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) < 1e-100 ) & (abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) > 0.)).any(): raise Exception('') if gmodstat.numbelem[l] != len(gmodstat.dictelem[l][nameparagenrelem]): print('l') print(l) print('numbelem') print(numbelem) print('gmodstat.dictelem') print(gmodstat.dictelem) print('nameparagenrelem') print(nameparagenrelem) raise Exception('') if gdat.boolbinsener: if gdat.typeverb > 2: print('Calculating element spectra...') initchro(gdat, gdatmodi, 'spec') for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], \ edisintp=gdat.edisintp, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'spec') if gdat.typeverb > 2: print('Element features:') for l in gmod.indxpopl: print('l') print(l) for strgfeat in gmod.namepara.genrelem[l]: print(strgfeat) print(gmodstat.dictelem[l][strgfeat]) if gdat.booldiagmode: for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if (gmod.listscalparagenrelem[l][g] != 'gaus' and not gmod.listscalparagenrelem[l][g].startswith('lnor')) and \ (gmod.listscalparagenrelem[l][g] != 'expo' and (gmodstat.dictelem[l][nameparagenrelem] < getattr(gmod.minmpara, nameparagenrelem)).any()) or \ (gmodstat.dictelem[l][nameparagenrelem] > getattr(gmod.maxmpara, nameparagenrelem)).any(): print('l, g') print(l, g) print('nameparagenrelem') print(nameparagenrelem) print('gmodstat.dictelem[l][nameparagenrelem]') summgene(gmodstat.dictelem[l][nameparagenrelem]) print('getattr(gmod, minm + nameparagenrelem)') print(getattr(gmod.minmpara, nameparagenrelem)) print('getattr(gmod, maxm + nameparagenrelem)') print(getattr(gmod.maxmpara, nameparagenrelem)) print('gmod.listscalparagenrelem[l][g]') print(gmod.listscalparagenrelem[l][g]) raise Exception('') # calculate element spectra # temp if gdat.booldiagmode: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gdat.variasca: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['acut']] < 0.)[0] if indx.size > 0: raise Exception('') if gdat.variacut: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['asca']] < 0.)[0] if indx.size > 0: raise Exception('') for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): # evaluate horizontal and vertical position for elements whose position is a power law in image-centric radius if gmod.typespatdist[l] == 'glc3': gmodstat.dictelem[l]['dlos'], gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'] = retr_glc3(gmodstat.dictelem[l]['dglc'], \ gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii']) if gmod.typespatdist[l] == 'gangexpo': gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], = retr_lgalbgal(gmodstat.dictelem[l]['gang'], \ gmodstat.dictelem[l]['aang']) if gdat.booldiagmode: if gmodstat.numbelem[l] > 0: if np.amin(gmodstat.dictelem[l]['lgal']) < gmod.minmlgal or \ np.amax(gmodstat.dictelem[l]['lgal']) > gmod.maxmlgal or \ np.amin(gmodstat.dictelem[l]['bgal']) < gmod.minmbgal or \ np.amax(gmodstat.dictelem[l]['bgal']) > gmod.maxmbgal: raise Exception('Bad coordinates!') if gmod.typespatdist[l] == 'los3': gmodstat.dictelem[l]['dglc'], gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii'] = retr_los3(gmodstat.dictelem[l]['dlos'], \ gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) # evaluate flux for pulsars if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['lumi'] = retr_lumipuls(gmodstat.dictelem[l]['geff'], gmodstat.dictelem[l]['magf'], gmodstat.dictelem[l]['per0']) if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) gmodstat.dictelem[l]['lumi'] = gmodstat.dictelem[l]['lum0'] * (1. + gmodstat.dictelem[l]['reds'])**4 if gmod.typeelem[l] == 'lghtpntspuls' or gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['flux'] = retr_flux(gdat, gmodstat.dictelem[l]['lumi'], gmodstat.dictelem[l]['dlos']) # evaluate spectra if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], edisintp=gdat.edisintp, spectype=gmod.spectype[l]) else: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'pars') ### loglikelihood initchro(gdat, gdatmodi, 'modl') if gmod.boollens: lgalsour = gmodstat.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gmodstat.paragenrscalfull[gmod.indxpara.bgalsour] if gdat.typeverb > 2: print('Evaluating the likelihood...') # process a sample vector and the occupancy list to calculate secondary variables if gmod.boollens: fluxsour = gmodstat.paragenrscalfull[gmod.indxpara.fluxsour] if gdat.numbener > 1: sindsour = gmodstat.paragenrscalfull[gmod.indxpara.sindsour] sizesour = gmodstat.paragenrscalfull[gmod.indxpara.sizesour] ellpsour = gmodstat.paragenrscalfull[gmod.indxpara.ellpsour] anglsour = gmodstat.paragenrscalfull[gmod.indxpara.anglsour] if gmod.typeemishost != 'none': lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] fluxhost = [[] for e in gmod.indxsersfgrd] if gdat.numbener > 1: sindhost = [[] for e in gmod.indxsersfgrd] sizehost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % e)] bgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % e)] fluxhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'fluxhostisf%d' % e)] if gdat.numbener > 1: sindhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sindhostisf%d' % e)] sizehost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sizehostisf%d' % e)] if gmod.boollens: beinhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: beinhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % e)] if gmod.typeemishost != 'none': ellphost = [[] for e in gmod.indxsersfgrd] anglhost = [[] for e in gmod.indxsersfgrd] serihost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: ellphost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'ellphostisf%d' % e)] anglhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'anglhostisf%d' % e)] serihost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'serihostisf%d' % e)] if gmod.boollens: numbpixltemp = gdat.numbpixlcart defl = np.zeros((numbpixltemp, 2)) # determine the indices of the pixels over which element kernels will be evaluated if gdat.boolbinsspat: if gmod.numbparaelem > 0: listindxpixlelem = [[] for l in gmod.indxpopl] listindxpixlelemconc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: listindxpixlelem[l], listindxpixlelemconc[l] = retr_indxpixlelemconc(gdat, strgmodl, gmodstat.dictelem, l) if gmod.boollens: sherextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sherextr')] sangextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sangextr')] ## host halo deflection initchro(gdat, gdatmodi, 'deflhost') deflhost = [[] for e in gmod.indxsersfgrd] indxpixlmiss = gdat.indxpixlcart for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the deflection field due to host galaxy %d' % e) print('lgalhost[e]') print(lgalhost[e]) print('bgalhost[e]') print(bgalhost[e]) print('beinhost[e]') print(beinhost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) deflhost[e] = retr_defl(gdat, indxpixlmiss, lgalhost[e], bgalhost[e], beinhost[e], ellp=ellphost[e], angl=anglhost[e]) if gdat.booldiagmode: indxpixltemp = slice(None) setattr(gmodstat, 'deflhostisf%d' % e, deflhost[e]) if gdat.typeverb > 2: print('deflhost[e]') summgene(deflhost[e]) defl += deflhost[e] if gdat.typeverb > 2: print('After adding the host deflection...') print('defl') summgene(defl) if gdat.booldiagmode: if not np.isfinite(deflhost).all(): raise Exception('') stopchro(gdat, gdatmodi, 'deflhost') ## external shear initchro(gdat, gdatmodi, 'deflextr') deflextr = [] indxpixltemp = gdat.indxpixlcart deflextr = retr_deflextr(gdat, indxpixltemp, sherextr, sangextr) defl += deflextr if gdat.typeverb > 2: print('After adding the external deflection...') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'deflextr') # Boolean flag to indicate that the object to convolve the image will be needed boolneedpsfnconv = gdat.typepixl == 'cart' and (gmod.typeevalpsfn == 'conv' or gmod.typeevalpsfn == 'full') ## Boolean flag to indicate that the object to convolve the image will be constructed boolcalcpsfnconv = strgmodl == 'true' or boolinit or gdat.boolmodipsfn # get the convolution object if boolneedpsfnconv and boolcalcpsfnconv: initchro(gdat, gdatmodi, 'psfnconv') if gdat.typeverb > 2: print('Evaluating the PSF convolution kernel...') psfnconv = [[[] for i in gdat.indxener] for m in gdat.indxevtt] if gdat.typepixl == 'cart': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) for mm, m in enumerate(gdat.indxevtt): for ii, i in enumerate(gdat.indxener): if gmod.typemodlpsfn == 'singgaus': sigm = psfp[i+m*gdat.numbener] else: sigm = fwhm[i, m] / 2.355 gmodstat.psfnconv[mm][ii] = AiryDisk2DKernel(sigm / gdat.sizepixl) stopchro(gdat, gdatmodi, 'psfnconv') if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and gmod.numbparaelem > 0: if strgmodl == 'true' or boolinit or gdat.boolmodipsfn: if gdat.typepixl == 'heal': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gdat.typepixl == 'cart': if gdat.kernevaltype == 'ulip': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') if gdat.booldiagmode: if not np.isfinite(gmodstat.psfnintp(0.05)).all(): raise Exception('') if gdat.kernevaltype == 'bspx': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.anglcart.flatten(), gmod.typemodlpsfn, strgmodl) # side length of the upsampled kernel gdat.numbsidekernusam = 100 # side length of the original kernel gdat.numbsidekern = gdat.numbsidekernusam / factkernusam gdat.indxsidekern = np.arange(gdat.numbsidekern) # pad by one row and one column #psf = np.zeros((gdat.numbsidekernusam+1, gdat.numbsidekernusam+1)) #psf[0:gdat.numbsidekernusam, 0:gdat.numbsidekernusam] = psf0 # make design matrix for each factkernusam x factkernusam region nx = factkernusam + 1 y, x = mgrid[0:nx, 0:nx] / float(factkernusam) x = x.flatten() y = y.flatten() kernmatrdesi = np.array([full(nx*nx, 1), x, y, x*x, x*y, y*y, x*x*x, x*x*y, x*y*y, y*y*y]).T # output np.array of coefficients gmodstat.psfnintp = np.empty((gdat.numbsidekern, gdat.numbsidekern, kernmatrdesi.shape[1])) # solve p = kernmatrdesi psfnintp for psfnintp for iy in gdat.indxsidekern: for ix in gdat.indxsidekern: p = psf[iy*factkernusam:(iy+1)*factkernusam+1, ix*factkernusam:(ix+1)*factkernusam+1].flatten() gmodstat.psfnintp[iy, ix, :] = dot(linalg.inv(dot(kernmatrdesi.T, kernmatrdesi)), dot(kernmatrdesi.T, p)) else: gmodstat.psfnintp = gdat.fitt.this.psfnintp sbrt = dict() for name in gmod.listnamediff: sbrt[name] = [] if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: sbrtdfnc = [] if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = [] if gmod.boolelemdeflsubhanyy: deflsubh = [] # retrieve or initialize state variable if gmod.boolelemsbrtdfncanyy: sbrtdfnc = np.zeros_like(gdat.expo) if gmod.boolelemdeflsubhanyy: deflsubh = np.zeros((gdat.numbpixl, 2)) if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = np.zeros_like(gdat.expo) # element kernel evaluation if gmod.boolelemsbrtdfncanyy: initchro(gdat, gdatmodi, 'elemsbrtdfnc') sbrt['dfnc'] = [] for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: for k in range(gmodstat.numbelem[l]): if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] if gmod.typeelem[l] == 'clusvari': sbrtdfnc[0, listindxpixlelem[l][k], 0] += gmodstat.dictelem[l]['nobj'][k] / 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[listindxpixlelem[l][k]])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[listindxpixlelem[l][k]])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) if gmod.boolelempsfn[l]: print('sbrtdfnc') summgene(sbrtdfnc) sbrtdfnc[:, listindxpixlelem[l][k], :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) if gmod.typeelem[l].startswith('lghtline'): sbrtdfnc[:, 0, 0] += gmodstat.dictelem[l]['spec'][:, k] sbrt['dfnc'] = sbrtdfnc if gdat.booldiagmode: if not np.isfinite(sbrtdfnc).all(): raise Exception('Element delta function brightness not finite.') setattr(gmodstat, 'sbrtdfnc', sbrt['dfnc']) if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['dfnc']) numbelemtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: numbelemtemp += np.sum(gmodstat.numbelem[l]) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtdfnc') if gmod.boolelemdeflsubhanyy: initchro(gdat, gdatmodi, 'elemdeflsubh') if gdat.typeverb > 2: print('Perturbing subhalo deflection field') for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': for kk, k in enumerate(indxelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] if gmod.typeelemspateval[l] == 'locl': indxpixl = listindxpixlelem[l][kk] else: indxpixl = gdat.indxpixl deflsubh[indxpixl, :] += retr_defl(gdat, indxpixl, \ gmodstat.dictelem[l]['lgal'][kk], gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['defs'][kk], \ asca=asca, acut=acut) # temp -- find out what is causing the features in the element convergence maps #for kk, k in enumerate(indxelem[l]): # indxpixlpnts = retr_indxpixl(gdat, gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['lgal'][kk]) # if deflsubh[listindxpixlelem[l][kk], :] if gdat.typeverb > 2: print('deflsubh') summgene(deflsubh) setattr(gmodstat, 'deflsubh', deflsubh) if gdat.booldiagmode: if not np.isfinite(deflsubh).all(): raise Exception('Element deflection is not finite.') defl += deflsubh if gdat.typeverb > 2: print('After adding subhalo deflection to the total deflection') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'elemdeflsubh') if gmod.boolelemsbrtextsbgrdanyy: initchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if strgstat == 'this': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtgausbgrd': for k in range(gmodstat.numbelem[l]): sbrtextsbgrd[:, listindxpixlelem[l][k], :] += gmodstat.dictelem[l]['spec'][:, k, None, None] / \ 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[None, listindxpixlelem[l][k], None])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[None, listindxpixlelem[l][k], None])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) setattr(gmodstat, 'sbrtextsbgrd', sbrtextsbgrd) sbrt['extsbgrd'] = [] sbrt['extsbgrd'] = sbrtextsbgrd if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['extsbgrd']) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if gdat.typeverb > 2: print('Element related state variables after perturbations...') if gmod.boolelemsbrtdfncanyy: print('sbrtdfnc') summgene(sbrtdfnc) if gmod.boolelemdeflsubhanyy: print('deflsubh') summgene(deflsubh) if gmod.boolelemsbrtextsbgrdanyy: print('sbrtextsbgrd') summgene(sbrtextsbgrd) if gmod.boollens: # lensed surface brightness initchro(gdat, gdatmodi, 'sbrtlens') if gdat.typeverb > 2: print('Evaluating lensed surface brightness...') if strgstat == 'this' or gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrd'] = [] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrdgalx'] = [] if gdat.numbener > 1: specsour = retr_spec(gdat, np.array([fluxsour]), sind=np.array([sindsour])) if gdat.typeverb > 2: print('sindsour') print(sindsour) else: specsour = np.array([fluxsour]) if gdat.typeverb > 2: print('lgalsour') print(lgalsour) print('bgalsour') print(bgalsour) print('sizesour') print(sizesour) print('ellpsour') print(ellpsour) print('anglsour') print(anglsour) print('fluxsour') print(fluxsour) print('specsour') print(specsour) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.typeverb > 2: print('Interpolating the background emission...') sbrt['bgrdgalx'] = retr_sbrtsers(gdat, gdat.lgalgrid[indxpixlelem[0]], gdat.bgalgrid[indxpixlelem[0]], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) if gdat.typeverb > 2: print('sbrt[bgrdgalx]') summgene(sbrt['bgrdgalx']) print('sbrtextsbgrd') summgene(sbrtextsbgrd) sbrt['bgrd'] = sbrt['bgrdgalx'] + sbrtextsbgrd sbrt['lens'] = np.empty_like(gdat.cntpdata) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): sbrtbgrdobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ sbrt['bgrd'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) bgalprim = gdat.bgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 1] lgalprim = gdat.lgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 0] # temp -- T? sbrt['lens'][ii, :, m] = sbrtbgrdobjt(bgalprim, lgalprim, grid=False).flatten() else: if gdat.typeverb > 2: print('Not interpolating the background emission...') sbrt['lens'] = retr_sbrtsers(gdat, gdat.lgalgrid - defl[gdat.indxpixl, 0], \ gdat.bgalgrid - defl[gdat.indxpixl, 1], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) sbrt['bgrd'] = retr_sbrtsers(gdat, gdat.lgalgrid, \ gdat.bgalgrid, \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) setattr(gmodthis, 'sbrtlens', sbrt['lens']) if gdat.booldiagmode: if not np.isfinite(sbrt['lens']).all(): raise Exception('Lensed emission is not finite.') if (sbrt['lens'] == 0).all(): raise Exception('Lensed emission is zero everynp.where.') stopchro(gdat, gdatmodi, 'sbrtlens') ### background surface brightness sbrtback = [] # temp #sbrtback = np.empty((numbback, gdat.numbener, indxpixlelem[yy].size, gdat.numbevtt)) # evaluate host galaxy surface brightness if gmod.typeemishost != 'none': initchro(gdat, gdatmodi, 'sbrthost') for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the host galaxy surface brightness...') if gdat.numbener > 1: spechost = retr_spec(gdat, np.array([fluxhost[e]]), sind=np.array([sindhost[e]])) else: spechost = np.array([fluxhost[e]]) if gdat.typeverb > 2: print('lgalhost[e]') print(lgalhost[e] * gdat.anglfact) print('bgalhost[e]') print(bgalhost[e] * gdat.anglfact) print('spechost') print(spechost) print('sizehost[e]') print(sizehost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) print('serihost[e]') print(serihost[e]) sbrt['hostisf%d' % e] = retr_sbrtsers(gdat, gdat.lgalgrid, gdat.bgalgrid, lgalhost[e], \ bgalhost[e], spechost, sizehost[e], ellphost[e], anglhost[e], serihost[e]) setattr(gmodstat, 'sbrthostisf%d' % e, sbrt['hostisf%d' % e]) #sbrthost = sbrt['host'] if gdat.typeverb > 2: for e in gmod.indxsersfgrd: print('e') print(e) print('sbrt[hostisf%d]') summgene(sbrt['hostisf%d' % e]) stopchro(gdat, gdatmodi, 'sbrthost') ## model emission initchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('Summing up the model emission...') sbrt['modlraww'] = np.zeros((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt)) for name in gmod.listnamediff: if name.startswith('back'): gmod.indxbacktemp = int(name[4:8]) if gdat.typepixl == 'heal' and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv') and not gmod.boolunifback[gmod.indxbacktemp]: sbrttemp = getattr(gmod, 'sbrtbackhealfull')[gmod.indxbacktemp] else: sbrttemp = gmod.sbrtbacknorm[gmod.indxbacktemp] if gmod.boolspecback[gmod.indxbacktemp]: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp]] else: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp][gdat.indxener]][:, None, None] sbrt['modlraww'] += sbrt[name] if gdat.booldiagmode: if np.amax(sbrttemp) == 0.: raise Exception('') if gdat.typeverb > 2: print('name') print(name) print('sbrt[name]') summgene(sbrt[name]) if gdat.typeverb > 2: for ii, i in enumerate(gdat.indxener): print('ii, i') print(ii, i) for mm, m in enumerate(gdat.indxevtt): print('mm, m') print(mm, m) print('sbrt[modlraww][ii, :, mm]') summgene(sbrt['modlraww'][ii, :, mm]) # convolve the model with the PSF if gmod.convdiffanyy and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv'): sbrt['modlconv'] = [] # temp -- isotropic background proposals are unnecessarily entering this clause if gdat.typeverb > 2: print('Convolving the model image with the PSF...') sbrt['modlconv'] = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): if gdat.strgcnfg == 'pcat_ferm_igal_mock_test': print('Convolving ii, i, mm, m') print(ii, i, mm, m) if gdat.typepixl == 'cart': if gdat.numbpixl == gdat.numbpixlcart: sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrt['modlraww'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)), \ psfnconv[mm][ii]).flatten() else: sbrtfull = np.zeros(gdat.numbpixlcart) sbrtfull[gdat.indxpixlrofi] = sbrt['modlraww'][ii, :, mm] sbrtfull = sbrtfull.reshape((gdat.numbsidecart, gdat.numbsidecart)) sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrtfull, psfnconv[mm][ii]).flatten()[gdat.indxpixlrofi] indx = np.where(sbrt['modlconv'][ii, :, mm] < 1e-50) sbrt['modlconv'][ii, indx, mm] = 1e-50 if gdat.typepixl == 'heal': sbrt['modlconv'][ii, :, mm] = hp.smoothing(sbrt['modlraww'][ii, :, mm], fwhm=fwhm[i, m])[gdat.indxpixlrofi] sbrt['modlconv'][ii, :, mm][np.where(sbrt['modlraww'][ii, :, mm] <= 1e-50)] = 1e-50 setattr(gmodstat, 'sbrtmodlconv', sbrt['modlconv']) # temp -- this could be made faster -- need the copy() statement because sbrtdfnc gets added to sbrtmodl afterwards sbrt['modl'] = np.copy(sbrt['modlconv']) else: if gdat.typeverb > 2: print('Skipping PSF convolution of the model...') sbrt['modl'] = np.copy(sbrt['modlraww']) if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ## add PSF-convolved delta functions to the model if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gdat.typeverb > 2: print('Adding delta functions into the model...') print('sbrt[dfnc]') summgene(sbrt['dfnc']) sbrt['modl'] += sbrt['dfnc'] stopchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ### count map initchro(gdat, gdatmodi, 'expo') cntp = dict() cntp['modl'] = retr_cntp(gdat, sbrt['modl']) if gdat.booldiagmode: setattr(gmodstat, 'cntpmodl', cntp['modl']) stopchro(gdat, gdatmodi, 'expo') # mock data specific if strgmodl == 'true' and strgstat == 'this': # generate count data cntptemp = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for i in gdat.indxener: for j in gdat.indxpixl: for m in gdat.indxevtt: cntptemp[i, j, m] = np.random.poisson(cntp['modl'][i, j, m]) setattr(gdat, 'cntpdata', cntptemp) if not gdat.boolsqzeexpo and np.amax(cntptemp) == 0: print('cntp[modl]') summgene(cntp['modl']) print('gdat.boolsqzeexpo') print(gdat.boolsqzeexpo) print('cntptemp') summgene(cntptemp) raise Exception('Data is zero.') proc_cntpdata(gdat) ## diagnostics if gdat.booldiagmode: frac = cntp['modl'] / np.mean(cntp['modl']) if np.amin(frac) < -1e-3 and np.amin(cntp['modl']) < -0.1: raise Exception('') indxcubebadd = np.where(cntp['modl'] < 0.)[0] if indxcubebadd.size > 0: print('Warning! Model prediction is negative. Correcting to 1e-20...') cntp['modl'][indxcubebadd] = 1e-20 stopchro(gdat, gdatmodi, 'modl') # log-prior initchro(gdat, gdatmodi, 'lpri') if gdat.typeverb > 2: print('Evaluating the prior...') lpri = np.zeros(gmod.numblpri) if gmod.numbparaelem > 0: for l in gmod.indxpopl: lpri[0] -= 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[l] * gmodstat.numbelem[l] if gdat.penalpridiff: sbrtdatapnts = gdat.sbrtdata - sbrt['dfnc'] if gdat.typepixl == 'heal': raise Exception('') if gdat.typepixl == 'cart': psecodimdatapnts = np.empty((gdat.numbener, gdat.numbsidecarthalf, gdat.numbevtt)) psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) sigm = fwhm / 2.355 psecodimdatapntsprio = np.exp(-2. * gdat.meanpara.mpolodim[None, :, None] / (0.1 / sigm[:, None, :])) lpridiff = 0. for i in gdat.indxener: for m in gdat.indxevtt: psecdatapnts = retr_psec(gdat, sbrtdatapnts[i, :, m]) psecodimdatapnts[i, :, m] = retr_psecodim(gdat, psecdatapnts) psecodimdatapnts[i, :, m] /= psecodimdatapnts[i, 0, m] lpridiff += -0.5 * np.sum((psecodimdatapnts[i, :, m] - psecodimdatapntsprio[i, :, m])**2) setattr(gmodstat, 'psecodimdatapntsen%02devt%d' % (i, m), psecodimdatapnts[i, :, m]) setattr(gmodstat, 'psecodimdatapntsprioen%02devt%d'% (i, m), psecodimdatapntsprio[i, :, m]) lpri[1] = lpridiff setattr(gmodstat, 'lpridiff', lpridiff) if gmod.typemodltran == 'pois': meanelem = gmodstat.paragenrscalfull[gmod.indxpara.meanelem] for l in gmod.indxpopl: lpri[2] += retr_lprbpois(gmodstat.numbelem[l], meanelem[l]) for l in gmod.indxpopl: for g, (strgfeat, strgpdfn) in enumerate(zip(gmod.namepara.genrelem[l], gmod.listscalparagenrelem[l])): indxlpritemp = 3 + l * gmod.numbparagenrelem + g lpri[indxlpritemp] = retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, gmodstat.paragenrscalfull, gmodstat.dictelem, gmodstat.numbelem) lpritotl = np.sum(lpri) if gdat.typeverb > 1: print('lpritotl') print(lpritotl) ### log-likelihood initchro(gdat, gdatmodi, 'llik') llik = retr_llik(gdat, strgmodl, cntp['modl']) if gdat.typeverb > 2: print('cntp[modl]') summgene(cntp['modl']) print('np.sum(cntp[modl], (1, 2))') print(np.sum(cntp['modl'], (1, 2))) print('np.sum(gdat.cntpdata, (1, 2))') print(np.sum(gdat.cntpdata, (1, 2))) if gdat.booldiagmode: if not np.isfinite(llik).all(): raise Exception('Likelihood is not finite.') gmodstat.lliktotl = np.sum(llik) if gdat.booldiagmode: if isinstance(gmodstat.lliktotl, np.ndarray): raise Exception('') if not np.isfinite(gmodstat.lliktotl).all(): raise Exception('') numbdoff = gdat.numbdata - gmod.numbparagenrbase if gmod.numbparaelem > 0: for l in gmod.indxpopl: numbdoff -= len(gmodstat.indxparagenrfullelem[l]['full']) setattr(gmodstat, 'llik', llik) setattr(gmodstat, 'llikmean', gmodstat.lliktotl / gdat.numbdata) setattr(gmodstat, 'llikcmea', gmodstat.lliktotl / (gdat.numbdata - numbdoff)) if gdat.typeverb > 2: print('llik') summgene(llik) if gdat.typeverb > 1: print('gmodstat.lliktotl') print(gmodstat.lliktotl) stopchro(gdat, gdatmodi, 'llik') lpostotl = lpritotl + gmodstat.lliktotl if gdat.typeverb > 1: print('lpostotl') print(lpostotl) setattr(gmodstat, 'lpritotl', lpritotl) setattr(gmodstat, 'gmodstat.lliktotl', gmodstat.lliktotl) setattr(gmodstat, 'lpostotl', lpostotl) stopchro(gdat, gdatmodi, 'lpri') if strgstat == 'next': return initchro(gdat, gdatmodi, 'tert') setattr(gmodstat, 'lpri', lpri) if gmod.numbparaelem > 0: setattr(gmodstat, 'lpripena', lpri[0]) dicttert = {} ## load necessary variables ## derived variables ## residual count map cntp['resi'] = [] cntp['resi'] = gdat.cntpdata - cntp['modl'] setattr(gmodstat, 'cntpmodl', cntp['modl']) setattr(gmodstat, 'cntpresi', cntp['resi']) setattr(gmodstat, 'llik', llik) #if gmod.boollens: # setattr(gmodstat, 'deflhost', deflhost) if gmod.boollens: setattr(gmodstat, 'defl', defl) for e in gmod.indxsersfgrd: masshostbein = massfrombein * beinhost[e]**2 setattr(gmodstat, 'masshostisf%dbein' % e, masshostbein) ### sort with respect to deflection at scale radius if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: indxelemsortampl = np.argsort(gmodstat.dictelem[l][nameparaelemsort[l]])[::-1] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem + 'sort'] = gmodstat.dictelem[l][nameparagenrelem][indxelemsortampl] deflsing = np.zeros((gdat.numbpixlcart, 2, numbdeflsingplot)) conv = np.zeros((gdat.numbpixlcart)) convpsec = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecodim = np.zeros((gdat.numbsidecarthalf)) if gmod.numbparaelem > 0: if boolelemlens: gmod.indxpopllens = gmod.typeelem.index('lens') numbdeflsing = 2 if gmod.numbparaelem > 0: if boolelemlens: if numbelem[indxpopllens] > 0: numbdeflsing += min(numbdeflsubhplot, numbelem[indxpopllens]) numbdeflsing += 1 for k in range(numbdeflsing): indxpixltemp = gdat.indxpixlcart if k == 0: # temp -- should take other sersics into account deflsing[indxpixltemp, :, k] = deflhost[0] elif k == 1: deflsing[indxpixltemp, :, k] = deflextr elif k == 2: deflsing[indxpixltemp, :, k] = defl - deflextr - deflhost[0] else: asca = gmodstat.dictelem[indxpopllens]['ascasort'][None, k-3] acut = gmodstat.dictelem[indxpopllens]['acutsort'][None, k-3] deflsing[listindxpixlelem[indxpopllens][k], :, k] = retr_defl(gdat, listindxpixlelem[indxpopllens][k], \ gmodstat.dictelem[indxpopllens]['lgalsort'][None, k-3], gmodstat.dictelem[indxpopllens]['bgalsort'][None, k-3], \ gmodstat.dictelem[indxpopllens]['defssort'][None, k-3], asca=asca, acut=acut) # convergence ## total conv[:] = retr_conv(gdat, defl) convhost = np.zeros((gmod.numbsersfgrd, gdat.numbpixlcart)) for e in gmod.indxsersfgrd: convhost[e, :] = retr_conv(gdat, deflhost[e]) ### power spectrum #### two dimensional convpsec[:] = retr_psec(gdat, conv[:]) #### one dimensional convpsecodim[:] = retr_psecodim(gdat, convpsec[:]) setattr(gmodstat, 'convpsec', convpsec) setattr(gmodstat, 'convpsecodim', convpsecodim) setattr(gmodstat, 'conv', conv[...]) for e in gmod.indxsersfgrd: setattr(gmodstat, 'convisf%d' % e, convhost[e, ...]) ## subhalos if gmod.numbparaelem > 0: if boolelemlens: convelem = np.zeros((gdat.numbpixl)) convpsecelem = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecelemodim = np.zeros((gdat.numbsidecarthalf)) ### convergence convelem[:] = retr_conv(gdat, deflsubh) ### power spectrum ##### two dimensional convpsecelem[:] = retr_psec(gdat, convelem[:]) ##### one dimensional convpsecelemodim[:] = retr_psecodim(gdat, convpsecelem[:]) setattr(gmodstat, 'convpsecelem', convpsecelem) setattr(gmodstat, 'convpsecelemodim', convpsecelemodim) setattr(gmodstat, 'convelem', convelem[...]) setattr(gmodstat, 'defl', defl) ### magnification magn = np.empty((gdat.numbpixlcart)) histdefl = np.empty((gdat.numbdefl)) if gmod.numbparaelem > 0 and boolelemlens: histdeflsubh = np.empty((gdat.numbdefl)) deflsingmgtd = np.zeros((gdat.numbpixlcart, numbdeflsingplot)) magn[:] = 1. / retr_invm(gdat, defl) histdefl[:] = np.histogram(defl, bins=gdat.binspara.defl)[0] if gmod.numbparaelem > 0: if boolelemlens: histdeflsubh[:] = np.histogram(deflsubh, bins=gdat.binspara.deflsubh)[0] deflsingmgtd[:, :] = np.sqrt(np.sum(deflsing[...]**2, axis=1)) if gmod.numbparaelem > 0: if boolelemlens: setattr(gmodstat, 'histdeflsubh', histdeflsubh) setattr(gmodstat, 'histdefl', histdefl) setattr(gmodstat, 'magn', magn[...]) setattr(gmodstat, 'deflsing', deflsing[...]) setattr(gmodstat, 'deflsingmgtd', deflsingmgtd[...]) ## element related if gmod.numbparaelem > 0: if gdat.numbpixl == 1: for l in gmod.indxpopl: for k in range(gmodstat.numbelem[l]): setattr(gmodstat, 'speclinepop%d%04d' % (l, k), gmodstat.dictelem[l]['spec'][:, k]) if gdat.typedata == 'mock' and strgmodl == 'true' and gdat.numbpixl > 1: gdat.refrlgal = [[] for l in gmod.indxpopl] gdat.refrbgal = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gdat.refrlgal[l] = np.tile(gmodstat.dictelem[l]['lgal'], [3] + list(np.ones(gmodstat.dictelem[l]['lgal'].ndim, dtype=int))) gdat.refrbgal[l] = np.tile(gmodstat.dictelem[l]['bgal'], [3] + list(np.ones(gmodstat.dictelem[l]['bgal'].ndim, dtype=int))) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['per1'] = retr_per1(gmodstat.dictelem[l]['per0'], gmodstat.dictelem[l]['magf']) if gmod.numbparaelem > 0: if strgstat == 'this' or gdat.boolrefeforc and strgmodl == 'fitt': # correlate the fitting model elements with the reference elements if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: indxelemrefrasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] == 0: continue indxelemfittmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) indxelemrefrmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) matrdist = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l])) for k in range(gmodstat.numbelem[l]): # construct a matrix of angular distances between reference and fitting elements if gmod.typeelem[l].startswith('lghtline'): matrdist[:, k] = abs(gdat.refrelin[q][0, :] - gmodstat.dictelem[l]['elin'][k]) / gdat.refrelin[q][0, :] else: matrdist[:, k] = retr_angldist(gdat, gdat.refr.dictelem[q]['lgal'][0, :], gdat.refr.dictelem[q]['bgal'][0, :], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k]) indxelemrefrmatr[:, k] = np.arange(gdat.refr.numbelem[q]) indxelemfittmatr[:, k] = k matrdist = matrdist.flatten() indxelemrefrmatr = indxelemrefrmatr.flatten() indxelemfittmatr = indxelemfittmatr.flatten() # take only angular separations smaller than some threshold indxmatrthrs = np.where(matrdist < gdat.anglassc) matrdist = matrdist[indxmatrthrs] indxelemrefrmatr = indxelemrefrmatr[indxmatrthrs] indxelemfittmatr = indxelemfittmatr[indxmatrthrs] # sort the remaining associations with respect to distance indxmatrsort = np.argsort(matrdist) matrdist = matrdist[indxmatrsort] indxelemrefrmatr = indxelemrefrmatr[indxmatrsort] indxelemfittmatr = indxelemfittmatr[indxmatrsort] for c in range(matrdist.size): if indxelemrefrmatr[c] in indxelemrefrasschits[q][l] or indxelemfittmatr[c] in indxelemfittasschits[q][l]: continue indxelemrefrasschits[q][l].append(indxelemrefrmatr[c]) indxelemfittasschits[q][l].append(indxelemfittmatr[c]) indxelemrefrasschits[q][l] = np.array(indxelemrefrasschits[q][l]) indxelemfittasschits[q][l] = np.array(indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasschits', indxelemrefrasschits) setattr(gmodstat, 'indxelemfittasschits', indxelemfittasschits) indxelemrefrasscmiss = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasscfals = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: # indices of the reference elements not associated with the fitting model elements if gdat.refr.numbelem[q] > 0: indxelemrefrasscmiss[q][l] = np.setdiff1d(np.arange(gdat.refr.numbelem[q]), indxelemrefrasschits[q][l]) # indices of the fitting model elements not associated with the reference elements if gmodstat.numbelem[l] > 0: indxelemfittasscfals[q][l] = np.setdiff1d(np.arange(gmodstat.numbelem[l]), indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasscmiss', indxelemrefrasscmiss) setattr(gmodstat, 'indxelemfittasscfals', indxelemfittasscfals) for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for l in gmod.indxpopl: # collect the associated reference element parameter for each fitting element for strgfeat in gdat.refr.namepara.elemonly[q][l]: name = strgfeat + gdat.listnamerefr[q] if strgfeat != 'spec' and strgfeat != 'specplot': refrfeat = getattr(gdat.refr, strgfeat) gmodstat.dictelem[l][name] = np.zeros(gmodstat.numbelem[l]) if len(refrfeat[q]) > 0 and len(indxelemrefrasschits[q][l]) > 0: gmodstat.dictelem[l][name][indxelemfittasschits[q][l]] = refrfeat[q][0, indxelemrefrasschits[q][l]] print('temp') continue # collect the error in the associated reference element amplitude for strgfeat in gdat.listnameparaetotlelemcomm[q][l]: refrfeat = getattr(gdat.refr, strgfeat) if strgfeat == gmod.nameparagenrelemampl[l] and len(indxelemfittasschits[q][l]) > 0: gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]] = np.zeros(gmodstat.numbelem[l]) fittfeattemp = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] refrfeattemp = refrfeat[q][0, indxelemrefrasschits[q][l]] if gdat.booldiagmode: if not np.isfinite(refrfeattemp).all(): raise Exception('') gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]][indxelemfittasschits[q][l]] = 100. * (fittfeattemp - refrfeattemp) / refrfeattemp if gdat.boolrefeforc and strgmodl == 'fitt': for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat in gdat.refr.namepara.elem[gdat.indxrefrforc[l]]: if len(indxelemrefrasschits[gdat.indxrefrforc[l]][l]) == 0: continue refrfeat = getattr(gdat.refr, strgfeat)[gdat.indxrefrforc[l]][0, indxelemrefrasschits[gdat.indxrefrforc[l]][l]] if len(gmodstat.dictelem[l][strgfeat]) == 0: continue lpritotl += -2. * np.sum(1e6 * (gmodstat.dictelem[l][strgfeat][indxelemfittasschits[gdat.indxrefrforc[l]][l]] - refrfeat)**2 / refrfeat**2) # other tertiary variables continues ## number of degrees of freedom chi2doff = np.sum(cntp['resi']**2 / gdat.varidata) / numbdoff if gdat.booldiagmode: if not np.isfinite(cntp['resi']).all(): raise Exception('') if not np.isfinite(numbdoff): raise Exception('') if not np.isfinite(chi2doff): raise Exception('') setattr(gmodstat, 'numbdoff', numbdoff) setattr(gmodstat, 'chi2doff', chi2doff) if gmod.boolelempsfn and gmod.numbparaelem > 0: gmodstat.fwhmpsfn = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gmod.numbparaelem > 0: ### derived parameters for l in gmod.indxpopl: # luminosity if gmod.boolelemlght[l] and 'flux' in gmod.namepara.genrelem[l]: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat.startswith('reds') and strgfeat != 'reds': namerefr = strgfeat[-4:] gmodstat.dictelem[l]['lumi' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan gmodstat.dictelem[l]['dlos' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan reds = gmodstat.dictelem[l]['reds' + namerefr] indxgood = np.where(np.isfinite(gmodstat.dictelem[l]['reds' + namerefr]))[0] if indxgood.size > 0: # temp -- these units only work for energy units of keV dlos = gdat.adisobjt(reds) gmodstat.dictelem[l]['dlos' + namerefr][indxgood] = dlos lumi = retr_lumi(gdat, gmodstat.dictelem[l]['flux'], dlos, reds) gmodstat.dictelem[l]['lumi' + namerefr][indxgood] = lumi if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['mass'] = full([numbelem[l]], 3.) if gdat.typeverb > 2: print('l') print(l) if gdat.boolbinsspat: #### radial and angular coordinates gmodstat.dictelem[l]['gang'] = retr_gang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) gmodstat.dictelem[l]['aang'] = retr_aang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) if gmod.boolelemlght[l]: #### number of expected counts if gdat.boolbinsspat: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']], gmodstat.dictelem[l]['spec']) else: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['elin']], gmodstat.dictelem[l]['spec']) #### delta log-likelihood gmodstat.dictelem[l]['deltllik'] = np.zeros(gmodstat.numbelem[l]) if not (strgmodl == 'true' and gdat.checprio): if gdat.typeverb > 2: print('Calculating log-likelihood differences when removing elements from the model.') for k in range(gmodstat.numbelem[l]): # construct gdatmodi gdatmoditemp = tdpy.gdatstrt() gdatmoditemp.this = tdpy.gdatstrt() gdatmoditemp.next = tdpy.gdatstrt() gdatmoditemp.this.indxelemfull = gmodstat.indxelemfull gdatmoditemp.this.paragenrscalfull = gmodstat.paragenrscalfull gdatmoditemp.this.paragenrunitfull = gmodstat.paragenrunitfull prop_stat(gdat, gdatmoditemp, strgmodl, deth=True, thisindxpopl=l, thisindxelem=k) proc_samp(gdat, gdatmoditemp, 'next', strgmodl)#, boolinit=boolinit) if gdat.booldiagmode: if not np.isfinite(gmodstat.lliktotl): raise Exception('') gdatobjttemp = retr_gdatobjt(gdat, gdatmoditemp, strgmodl)#, boolinit=boolinit) nextlliktotl = gdatobjttemp.next.lliktotl gmodstat.dictelem[l]['deltllik'][k] = gmodstat.lliktotl - nextlliktotl if gdat.typeverb > 2: print('deltllik calculation ended.') # more derived parameters if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): ### PSF FWHM if gdat.typepixl == 'cart': fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) setattr(gmodstat, 'fwhm', fwhm) if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gmod.numbparaelem > 0: sbrt['dfnctotl'] = np.zeros_like(gdat.expo) sbrt['dfncsubt'] = np.zeros_like(gdat.expo) sbrt['dfncsupt'] = np.zeros_like(gdat.expo) for l in gmod.indxpopl: if gmod.boolcalcerrr[l]: sbrt['dfncfull'] = np.zeros_like(gdat.expo) if gmod.boolelemsbrt[l]: for k in range(gmodstat.numbelem[l]): # read normalization from the element dictionary if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] # calculate imprint on the element surface brightness state variable if gmod.boolelempsfn[l]: sbrttemp = retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) indxpixltemp = listindxpixlelem[l][k] if gmod.typeelem[l].startswith('lghtline'): sbrttemp = gmodstat.dictelem[l]['spec'][:, k, None, None] # add it to the state variable depending on the significance sbrt['dfnctotl'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] > 35: sbrt['dfncsupt'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] < 35: sbrt['dfncsubt'][:, indxpixltemp, :] += sbrttemp # calculate imprint without PSF truncation to calculate approximation errors if gmod.boolcalcerrr[l]: sbrt['dfncfull'][:, :, :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, gdat.indxpixl) setattr(gmodstat, 'sbrtdfncsubtpop%d' % l, sbrt['dfncsubt']) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.booldiagmode: numbtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtextsbgrd[l]: numbtemp += np.sum(gmodstat.numbelem[l]) if numbtemp > 0 and (sbrtextsbgrd == 0.).all(): raise Exception('') sbrt['bgrdexts'] = sbrtextsbgrd #### count maps cntp = dict() for name in gmod.listnamegcom: cntp[name] = retr_cntp(gdat, sbrt[name]) setattr(gmodstat, 'cntp' + name, cntp[name]) ### spatial averages sbrtmean = dict() sbrtstdv = dict() for name in gmod.listnamegcom: sbrtmean[name], sbrtstdv[name] = retr_spatmean(gdat, sbrt[name]) for b in gdat.indxspatmean: setattr(gmodstat, 'sbrt%smea%d' % (name, b), sbrtmean[name][b]) setattr(gmodstat, 'sbrt%sstd%d' % (name, b), sbrtstdv[name][b]) if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: for i in gdat.indxener: if 'dark' in gmod.listnamegcom: fracsdenmeandarkdfncsubt = sbrtmean['dfncsubt'][0][0][i] / (sbrtmean['dfncsubt'][0][0][i] + sbrtmean['dark'][0][0][i]) else: fracsdenmeandarkdfncsubt = 1. setattr(gmodstat, 'fracsdenmeandarkdfncsubten%02d' % i, np.array([fracsdenmeandarkdfncsubt])) if 'dark' in gmod.listnamegcom: booldfncsubt = float(np.where(sbrtmean['dfncsubt'][0][0] > sbrtmean['dark'][0][0])[0].any()) else: booldfncsubt = 1. setattr(gmodstat, 'booldfncsubt', np.array([booldfncsubt])) # find the 1-point function of the count maps of all emission components including the total emission for name in gmod.listnamegcom: namehistcntp = 'histcntp' + name for m in gdat.indxevtt: if gdat.numbevtt > 1: namehistcntp += 'evt%d' % m for i in gdat.indxener: if gdat.numbener > 1: namehistcntp += 'en%02d' % i histcntp = np.histogram(cntp[name][i, :, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, namehistcntp, histcntp) if False and i == 0 and m == 0 and (name == 'dfnc' or name == 'dfncsubt'): for strgbins in ['lowr', 'higr']: strgtemp = 'histcntp' + strgbins + name + 'en%02devt%d' % (i, m) if strgbins == 'lowr': setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[:gdat.numbtickcbar-1]))])) else: setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[gdat.numbtickcbar-1:]))])) else: histcntp = np.histogram(cntp[name][:, 0, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, 'histcntp' + name + 'evt%d' % m, histcntp) if gmod.boollens: if strgmodl == 'true': s2nr = [] s2nr = cntp['lens'] / np.sqrt(cntp['modl']) setattr(gmodstat, 's2nr', s2nr) cntplensgrad = np.empty((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt, 2)) for i in gdat.indxener: for m in gdat.indxevtt: cntplenstemp = np.zeros(gdat.numbpixlcart) cntplenstemp[gdat.indxpixlrofi] = cntp['lens'][i, :, m] cntplensgrad[i, :, m, :] = retr_gradmaps(gdat, cntplenstemp) * gdat.sizepixl cntplensgradmgtd = np.sqrt(np.sum(cntplensgrad**2, axis=3)) cntplensgrad *= gdat.sizepixl indx = np.where(np.fabs(cntplensgrad) > 1. * gdat.sizepixl) cntplensgrad[indx] = np.sign(cntplensgrad[indx]) * 1. * gdat.sizepixl deflmgtd = np.sqrt(np.sum(defl**2, axis=1)) setattr(gmodstat, 'deflmgtd', deflmgtd) setattr(gmodstat, 'cntplensgrad', cntplensgrad) setattr(gmodstat, 'cntplensgradmgtd', cntplensgradmgtd) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.boolelemlght[l]: #### spectra if gdat.boolbinsspat: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['specplot'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], \ curv=gmodstat.dictelem[l]['curv'], expc=gmodstat.dictelem[l]['expc'], \ sindcolr=sindcolr, spectype=gmod.spectype[l], plot=True) if gdat.typedata == 'inpt': if gdat.typeexpr == 'ferm': # temp try: gmodstat.dictelem[l]['sbrt0018'] = gdat.sbrt0018objt(gmodstat.dictelem[l]['bgal'], gmodstat.dictelem[l]['lgal']) except: gmodstat.dictelem[l]['sbrt0018'] = gmodstat.dictelem[l]['bgal'] * 0. if gmod.typeelem[l] == 'lens': #### distance to the source if gmod.boollens: gmodstat.dictelem[l]['diss'] = retr_angldist(gdat, gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], lgalsour, bgalsour) if gmod.boollenssubh: gmodstat.dictelem[l]['deflprof'] = np.empty((gdat.numbanglfull, gmodstat.numbelem[l])) gmodstat.dictelem[l]['mcut'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['rele'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reln'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relk'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relf'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reld'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relc'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relm'] = np.empty(gmodstat.numbelem[l]) # temp -- this can be placed earlier in the code cntplensobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ cntp['lens'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) for k in np.arange(gmodstat.numbelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] #### deflection profiles gmodstat.dictelem[l]['deflprof'][:, k] = retr_deflcutf(gdat.meanpara.anglfull, gmodstat.dictelem[l]['defs'][k], asca, acut) ### truncated mass gmodstat.dictelem[l]['mcut'][k] = retr_mcut(gdat, gmodstat.dictelem[l]['defs'][k], asca, acut, adishost, mdencrit) #### dot product with the source flux gradient # temp -- weigh the energy and PSF bins gmodstat.dictelem[l]['rele'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relf'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, cntpmodl=cntp['modl'][0, :, 0]) deflelem = retr_defl(gdat, gdat.indxpixl, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], gmodstat.dictelem[l]['defs'][k], asca=asca, acut=acut) bgalprim = gdat.bgalgrid - deflelem[:, 1] lgalprim = gdat.lgalgrid - deflelem[:, 0] gmodstat.dictelem[l]['relm'][k] = np.mean(abs(cntp['lens'][0, :, 0] - cntplensobjt(bgalprim, lgalprim, grid=False).flatten())) gmodstat.dictelem[l]['relk'][k] = gmodstat.dictelem[l]['relm'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reln'][k] = gmodstat.dictelem[l]['rele'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reld'][k] = retr_rele(gdat, gdat.cntpdata[0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relc'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, absv=False) / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl ### distribution of element parameters and features #### calculate the model filter listindxelemfilt = [[[] for l in gmod.indxpopl] for namefilt in gdat.listnamefilt] for k, namefilt in enumerate(gdat.listnamefilt): for l in gmod.indxpopl: if namefilt == '': listindxelemfilt[k][l] = np.arange(gmodstat.numbelem[l]) if namefilt == 'imagbndr': listindxelemfilt[k][l] = np.where((np.fabs(gmodstat.dictelem[l]['lgal']) < gdat.maxmgangdata) & (np.fabs(gmodstat.dictelem[l]['bgal']) < gdat.maxmgangdata))[0] if namefilt == 'deltllik': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['deltllik'] > 0.5 * gmod.numbparagenrelemsing[l])[0] if namefilt == 'nrel': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['reln'] > 0.3)[0] for l in gmod.indxpopl: # histograms of element parameters for namefrst in gmod.namepara.elem[l]: ## one dimensional if namefrst[:-4] == 'etag': continue if namefrst == 'specplot' or namefrst == 'deflprof': continue elif namefrst == 'spec': histfrst = np.zeros((gdat.numbbinsplot, gdat.numbener)) for i in gdat.indxener: histfrst[:, i] = np.histogram(gmodstat.dictelem[l]['spec'][i, listindxelemfilt[0][l]], gdat.binspara.spec)[0] elif namefrst == 'cnts': histfrst = np.histogram(gmodstat.dictelem[l]['cnts'][listindxelemfilt[0][l]], gdat.binspara.cnts)[0] else: #elif not (namefrst == 'curv' and gmod.spectype[l] != 'curv' or namefrst == 'expc' \ # and gmod.spectype[l] != 'expc' or namefrst.startswith('sindarry') and \ # gmod.spectype[l] != 'colr'): binsfrst = getattr(gdat.binspara, namefrst) #if len(gmodstat.dictelem[l][namefrst]) > 0 and len(listindxelemfilt[0][l]) > 0: histfrst = np.histogram(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], binsfrst)[0] strgvarb = 'hist' + namefrst + 'pop%d' % l setattr(gmodstat, strgvarb, histfrst) #### two dimensional for nameseco in gmod.namepara.elem[l]: if namefrst == 'spec' or namefrst == 'specplot' or namefrst == 'deflprof' or \ nameseco == 'spec' or nameseco == 'specplot' or nameseco == 'deflprof': continue if not checstrgfeat(namefrst, nameseco): continue binsseco = getattr(gdat.binspara, nameseco) histtdim = np.histogram2d(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], \ gmodstat.dictelem[l][nameseco][listindxelemfilt[0][l]], [binsfrst, binsseco])[0] setattr(gmodstat, 'hist' + namefrst + nameseco + 'pop%d' % l, histtdim) ### priors on element parameters and features for nameparagenrelem in gmod.namepara.genrelem[l]: xdat = gmodstat.dictelem[l][nameparagenrelem] minm = getattr(gmod.minmpara, nameparagenrelem + 'pop%d' % l) maxm = getattr(gmod.maxmpara, nameparagenrelem + 'pop%d' % l) scal = getattr(gmod.scalpara, nameparagenrelem + 'pop%d' % l) booltemp = False if scal.startswith('expo') or scal.startswith('dexp'): if scal.startswith('expo'): if scal == 'expo': sexp = getattr(gmod, 'gangdistsexppop%d' % l) else: sexp = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] pdfn = pdfn_expo(xdat, maxm, sexp) if scal.startswith('dexp'): pdfn = pdfn_dnp.exp(xdat, maxm, scal) booltemp = True if scal.startswith('self') or scal.startswith('logt'): if scal.startswith('self'): pdfn = 1. / (maxm - minm) + np.zeros_like(xdat) else: pdfn = 1. / (np.log(maxm) - np.log(minm)) + np.zeros_like(xdat) booltemp = True # temp if scal.startswith('powr'): slop = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem + 'pop%d' % l)] pdfn = pdfn_powr(xdat, minm, maxm, slop) booltemp = True if scal.startswith('dpowslopbrek'): pdfn = pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr) booltemp = True if scal == 'lnormeanstdv': pdfn = pdfn_lnor(xdat, meanlnor, stdvlnor) booltemp = True if scal.startswith('igam'): cutf = getattr(gdat, 'cutf' + nameparagenrelem) pdfn = pdfn_igam(xdat, slop, cutf) booltemp = True if scal.startswith('gaus'): # this does not work for mismodeling meanvarb = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] stdv = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] if nameparagenrelem == 'expc' and gmod.spectype[l] == 'expc': pdfn = pdfn_gaus(xdat, meanvarb, stdv) else: pdfn = pdfn_gaus(xdat, meanvarb, stdv) booltemp = True # temp -- meanelem will not be defined #if booltemp: # gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio'] = gmodstat.numbelem[l] * pdfn * np.interp(xdat, xdatplot, delt) #setattr(gmodstat, 'hist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) #if strgmodl == 'true': # setattr(gmodstat, 'refrhist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gmodstat.numbelem[l] > 0: ## total truncated mass of the subhalo as a cross check # temp -- generalize asca = gmodstat.dictelem[l]['asca'] acut = gmodstat.dictelem[l]['acut'] factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) masssubh = np.array([np.sum(factmcutfromdefs * gmodstat.dictelem[l]['defs'])]) ## derived variables as a function of other derived variables if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpntspuls'): massshel = np.empty(gdat.numbanglhalf) for k in gdat.indxanglhalf: indxelemshel = np.where((gdat.binspara.anglhalf[k] < gmodstat.dictelem[l]['gang']) & (gmodstat.dictelem[l]['gang'] < gdat.binspara.anglhalf[k+1])) massshel[k] = np.sum(gmodstat.dictelem[l]['mass'][indxelemshel]) setattr(gmodstat, 'massshelpop%d' % l, massshel) if gmod.boollens or gmod.numbparaelem > 0 and gmod.boollenssubh: # find the host, subhalo masses and subhalo mass fraction as a function of halo-centric radius listnametemp = gdat.liststrgcalcmasssubh listnamevarbmass = [] listnamevarbmassscal = [] listnamevarbmassvect = [] for e in gmod.indxsersfgrd: if boolllenshost: listnamevarbmassscal += ['masshosttotl'] for strgtemp in listnametemp: listnamevarbmassvect.append('masshostisf%d' % e + strgtemp) listnamevarbmassscal.append('masshostisf%d' % e + strgtemp + 'bein') if gmod.numbparaelem > 0 and gmod.boollenssubh: listnamevarbmassscal.append('masssubhtotl') listnamevarbmassscal.append('fracsubhtotl') for strgtemp in listnametemp: listnamevarbmassvect.append('masssubh' + strgtemp) listnamevarbmassvect.append('fracsubh' + strgtemp) listnamevarbmassscal.append('masssubh' + strgtemp + 'bein') listnamevarbmassscal.append('fracsubh' + strgtemp + 'bein') for name in listnamevarbmassvect: dicttert[name] = np.zeros(gdat.numbanglhalf) if 'isf' in name: indxisfrtemp = int(name.split('isf')[1][0]) angl = np.sqrt((gdat.meanpara.lgalcartmesh - lgalhost[indxisfrtemp])**2 + (gdat.meanpara.bgalcartmesh - bgalhost[indxisfrtemp])**2).flatten() for k in gdat.indxanglhalf: if name[4:8] == 'host': convtemp = conv[:] if name[4:8] == 'subh': convtemp = convelem[:] if name.endswith('delt'): indxpixl = np.where((gdat.binspara.anglhalf[k] < angl) & (angl < gdat.binspara.anglhalf[k+1]))[0] dicttert[name][k] = 1e6 * np.sum(convtemp[indxpixl]) * mdencrit * \ gdat.apix * adishost**2 / 2. / np.pi * gdat.deltanglhalf[k] / gdat.meanpara.anglhalf[k] if name.endswith('intg'): indxpixl = np.where(angl < gdat.meanpara.anglhalf[k])[0] dicttert[name][k] = np.sum(convtemp[indxpixl]) * mdencrit * gdat.apix * adishost**2 if name[:4] == 'frac': masshosttotl = 0. for e in gmod.indxsersfgrd: masshosttotl += dicttert['masshostisf%d' % e + name[-4:]][k] if masshosttotl != 0.: dicttert['fracsubh' + name[8:]][k] = dicttert['masssubh' + name[8:]][k] / masshosttotl setattr(gmodstat, name, dicttert[name]) # interpolate the host, subhalo masses and subhalo mass fraction at the Einstein radius and save it as a scalar variable dicttert[name + 'bein'] = np.interp(beinhost, gdat.meanpara.anglhalf, dicttert[name]) setattr(gmodstat, name + 'bein', dicttert[name + 'bein']) #if gmod.numbparaelem > 0: # ## copy element parameters to the global object # feat = [[] for l in gmod.indxpopl] # for l in gmod.indxpopl: # feat[l] = dict() # for strgfeat in gmod.namepara.genrelem[l]: # if strgfeat[:-4] == 'etag': # continue # if len(gmodstat.dictelem[l][strgfeat]) > 0: # if strgmodl == 'true': # shap = list(np.ones(gmodstat.dictelem[l][strgfeat].ndim, dtype=int)) # feat[l][strgfeat] = np.tile(gmodstat.dictelem[l][strgfeat], [3] + shap) # if strgmodl == 'fitt': # feat[l][strgfeat] = gmodstat.dictelem[l][strgfeat] # # #for strgfeat in gmod.namepara.elem: # # feattemp = [[] for l in gmod.indxpopl] # # for l in gmod.indxpopl: # # if strgfeat in gmod.namepara.genrelem[l]: # # if strgfeat in feat[l]: # # feattemp[l] = feat[l][strgfeat] # # else: # # feattemp[l] = np.array([]) # # setattr(gmodstat, strgfeat, feattemp) # copy true state to the reference state #if strgmodl == 'true': # for name, valu in deepcopy(gdat.__dict__).items(): # if name.startswith('true'): # #indx = name.find('pop') # #if indx != -1 and not name.endswith('pop') and name[indx+3].isdigit(): # # namerefr = name.replace('pop%s' % name[indx+3], 'ref%s' % name[indx+3]) # #else: # # namerefr = name # #namerefr = name # #namerefr = namerefr.replace('true', 'refr') # name = name.replace('true', 'refr') # setattr(gdat, name, valu) if gmod.numbparaelem > 0 and gdat.priofactdoff != 0.: if strgmodl == 'true': for q in gdat.indxrefr: for strgfeat in gdat.refr.namepara.elem[q]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof': continue reca = np.zeros(gdat.numbbinsplot) - 1. indxelempars = np.where(gmodstat.dictelem[q]['deltllik'] > 2.5)[0] refrhistpars = np.zeros(gdat.numbbinsplot) - 1. histparaelem = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) indxrefrgood = np.where(histparaelem > 0)[0] reca[indxrefrgood] = 0. refrhistpars[indxrefrgood] = 0. refrhist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) bins = getattr(gdat.binspara, strgfeat) if len(indxelempars) > 0: refrhistpars = np.histogram(gmodstat.dictelem[q][strgfeat][indxelempars], bins=bins)[0].astype(float) if indxrefrgood.size > 0: reca[indxrefrgood] = refrhistpars[indxrefrgood] / refrhist[indxrefrgood] setattr(gmodstat, 'histpars' + strgfeat + 'pop%d' % q, refrhistpars) setattr(gmodstat, 'reca' + strgfeat + 'pop%d' % q, reca) print('gdat.rtagmock') print(gdat.rtagmock) if gdat.rtagmock is not None: if gmod.numbparaelem > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof':# or strgfeat.startswith('aerr'): continue if strgfeat in gmod.namepara.genrelem[l]: hist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % l) reca = getattr(gdat.true.this, 'reca' + strgfeat + 'pop%d' % l) histcorrreca = hist / reca setattr(gmodstat, 'histcorrreca' + strgfeat + 'pop%d' % l, histcorrreca) ### Exculusive comparison with the true state if strgmodl == 'fitt' and gdat.typedata == 'mock': if gmod.boollens: numbsingcomm = min(deflsing.shape[2], gmod.deflsing.shape[2]) deflsingresi = deflsing[0, ..., :numbsingcomm] - gmod.deflsing[..., :numbsingcomm] deflsingresimgtd = np.sqrt(np.sum(deflsingresi**2, axis=1)) deflsingresiperc = 100. * deflsingresimgtd / gmod.deflsingmgtd[..., :numbsingcomm] setattr(gmodstat, 'numbsingcomm', numbsingcomm) setattr(gmodstat, 'deflsingresi', deflsingresi) truedeflmgtd = getattr(gdat.true.this, 'deflmgtd') truedefl = getattr(gdat.true.this, 'defl') deflresi = defl - truedefl deflresimgtd = np.sqrt(np.sum(deflresi**2, axis=1)) deflresiperc = 100. * deflresimgtd / truedeflmgtd setattr(gmodstat, 'deflresi', deflresi) setattr(gmodstat, 'deflresimgtd', deflresimgtd) if gmod.numbparaelem > 0: trueconvelem = getattr(gdat.true.this, 'convelem') convelemresi = convelem[:] - trueconvelem convelemresiperc = 100. * convelemresi / trueconvelem setattr(gmodstat, 'convelemresi', convelemresi) setattr(gmodstat, 'convelemresiperc', convelemresiperc) truemagn = getattr(gdat.true.this, 'magn') magnresi = magn[:] - truemagn magnresiperc = 100. * magnresi / truemagn setattr(gmodstat, 'magnresi', magnresi) setattr(gmodstat, 'magnresiperc', magnresiperc) if gmod.numbparaelem > 0: # correlate the catalog sample with the reference catalog if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] > 0: cmpl = np.array([float(len(indxelemrefrasschits[q][l])) / gdat.refr.numbelem[q]]) if gdat.booldiagmode: if cmpl > 1. or cmpl < 0.: raise Exception('') else: cmpl = np.array([-1.]) setattr(gmodstat, 'cmplpop%dpop%d' % (l, q), cmpl) if gmodstat.numbelem[l] > 0: fdis = np.array([float(indxelemfittasscfals[q][l].size) / gmodstat.numbelem[l]]) if gdat.booldiagmode: if fdis > 1. or fdis < 0.: raise Exception('') else: fdis = np.array([-1.]) setattr(gmodstat, 'fdispop%dpop%d' % (q, l), fdis) # collect the associated fitting element parameter for each reference element featrefrassc = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: featrefrassc[q][l] = dict() for strgfeat in gdat.refr.namepara.elem[q]: if not strgfeat in gmod.namepara.genrelem[l] or strgfeat in gdat.refr.namepara.elemonly[q][l]: continue if isinstance(gmodstat.dictelem[l][strgfeat], np.ndarray) and gmodstat.dictelem[l][strgfeat].ndim > 1: continue featrefrassc[q][l][strgfeat] = np.zeros(gdat.refr.numbelem[q]) + np.nan if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][strgfeat]) > 0: featrefrassc[q][l][strgfeat][indxelemrefrasschits[q][l]] = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] name = strgfeat + 'asscpop%dpop%d' % (q, l) setattr(gmodstat, name, featrefrassc[q][l][strgfeat]) # completeness for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue l = gdat.refr.indxpoplfittassc[q] for nameparaelemfrst in gdat.refr.namepara.elem[q]: if nameparaelemfrst.startswith('etag'): continue if nameparaelemfrst == 'spec' or nameparaelemfrst == 'specplot': continue refrfeatfrst = gdat.refr.dictelem[q][nameparaelemfrst][0, :] binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gdat.refr.namepara.elem[q]: if nameparaelemfrst == nameparaelemseco: continue if nameparaelemseco.startswith('etag'): continue if nameparaelemseco == 'spec' or nameparaelemseco == 'specplot': continue if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the cmpl np.array should depend on strgmodl cmpltdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeattdim = getattr(gdat.refr, 'hist%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q)) refrfeatseco = gdat.refr.dictelem[q][nameparaelemseco][0, :] binsfeatseco = getattr(gdat.binspara, nameparaelemseco) refrhistfeattdimassc = np.histogram2d(refrfeatfrst[indxelemrefrasschits[q][l]], \ refrfeatseco[indxelemrefrasschits[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(refrhistfeattdim != 0.) if indxgood[0].size > 0: cmpltdim[indxgood] = refrhistfeattdimassc[indxgood].astype(float) / refrhistfeattdim[indxgood] if gdat.booldiagmode: if np.where((cmpltdim[indxgood] > 1.) | (cmpltdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q), cmpltdim) cmplfrst = np.zeros(gdat.numbbinsplot) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeatfrst = getattr(gdat.refr, 'hist' + nameparaelemfrst + 'pop%d' % q) binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) refrhistfeatfrstassc = np.histogram(refrfeatfrst[indxelemrefrasschits[q][l]], bins=binsfeatfrst)[0] indxgood = np.where(refrhistfeatfrst != 0.)[0] if indxgood.size > 0: cmplfrst[indxgood] = refrhistfeatfrstassc[indxgood].astype(float) / refrhistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((cmplfrst[indxgood] > 1.) | (cmplfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%spop%d' % (nameparaelemfrst, q), cmplfrst) # false discovery rate for l in gmod.indxpopl: q = gmod.indxpoplrefrassc[l] for nameparaelemfrst in gmod.namepara.elem[l]: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gmod.namepara.elem[l]: if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the fdis np.array should depend on strgmodl fdistdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemseco]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: strgfeattdim = nameparaelemfrst + nameparaelemseco + 'pop%d' % l fitthistfeattdim = getattr(gmodstat, 'hist' + strgfeattdim) binsfeatseco = getattr(gdat.binspara, nameparaelemseco) fitthistfeattdimfals = np.histogram2d(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], \ gmodstat.dictelem[l][nameparaelemseco][indxelemfittasscfals[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(fitthistfeattdim != 0.) if indxgood[0].size > 0: fdistdim[indxgood] = fitthistfeattdimfals[indxgood].astype(float) / fitthistfeattdim[indxgood] if gdat.booldiagmode: if np.where((fdistdim[indxgood] > 1.) | (fdistdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%s%spop%d' % (nameparaelemfrst, nameparaelemseco, l), fdistdim) fdisfrst = np.zeros(gdat.numbbinsplot) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) fitthistfeatfrstfals = np.histogram(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], bins=binsfeatfrst)[0] fitthistfeatfrst = getattr(gmodstat, 'hist' + nameparaelemfrst + 'pop%d' % l) indxgood = np.where(fitthistfeatfrst != 0.)[0] if indxgood.size > 0: fdisfrst[indxgood] = fitthistfeatfrstfals[indxgood].astype(float) / fitthistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((fdisfrst[indxgood] > 1.) | (fdisfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%spop%d' % (nameparaelemfrst, l), fdisfrst) # temp if strgmodl == 'true' and gdat.typeverb > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) if np.where(minm > gmodstat.dictelem[l][strgfeat])[0].size > 0 or np.where(maxm < gmodstat.dictelem[l][strgfeat])[0].size > 0: print('Warning: element parameter outside the plot limits.') print('l') print(l) print('Feature: ') print(strgfeat) print('Plot minmimum') print(minm) print('Plot maxmimum') print(maxm) if strgfeat == gmod.nameparagenrelemampl[l] and strgfeat in gmod.namepara.genrelem[l]: gmod.indxparagenrelemtemp = gmod.namepara.genrelem[l].index(strgfeat) if (gmod.listscalparagenrelem[l][gmod.indxparagenrelemtemp] != 'gaus' and not gmod.listscalparagenrelem[l][gmod.indxparagenrelemtemp].startswith('lnor')): raise Exception('') stopchro(gdat, gdatmodi, 'tert') def retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, paragenrscalfull, dictelem, numbelem): gmod = getattr(gdat, strgmodl) if strgpdfn == 'self': minmfeat = getattr(gmod.minmpara, strgfeat) maxmfeat = getattr(gmod.maxmpara, strgfeat) lpri = numbelem[l] * np.log(1. / (maxmfeat - minmfeat)) if strgpdfn == 'logt': lpri = retr_lprilogtdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'gaus': lpri = retr_lprigausdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dexp': maxmbgal = getattr(gmod, 'maxmbgal') gmod.indxpara.bgaldistscal = getattr(gmod.indxpara, 'bgaldistscalpop%d' % l) lpri = np.sum(np.log(pdfn_dnp.exp(dictelem[l]['bgal'], maxmbgal, paragenrscalfull[gmod.indxpara.bgaldistscal]))) if strgpdfn == 'expo': maxmgang = getattr(gmod, 'maxmgang') gang = retr_gang(dictelem[l]['lgal'], dictelem[l]['bgal']) gmod.indxpara.gangdistscal = getattr(gmod.indxpara, 'gangdistscalpop%d' % l) lpri = np.sum(np.log(pdfn_expo(gang, maxmgang, paragenrscalfull[gmod.indxpara.gangdistscal]))) lpri = -numbelem[l] * np.log(2. * pi) if strgpdfn == 'tmpl': lpri = np.sum(lpdfspatprioobjt(dictelem[l]['bgal'], dictelem[l]['lgal'], grid=False)) if strgpdfn == 'powr': lpri = retr_lpripowrdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dpowslopbrek': lpri = retr_lpridpowdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dsrcexpo': lpri += -np.sum(np.sqrt((dictelem[l]['lgal'] - lgalsour)**2 + (dictelem[l]['bgal'] - bgalsour)**2) / \ getattr(gmod, 'dsrcdistsexppop%d' % l)) if strgpdfn == 'tmpl': if strgpdfn.endswith('cons'): pdfnspatpriotemp = getattr(gmod, 'pdfnspatpriotemp') spatdistcons = paragenrscalfull[getattr(gmod.indxpara, 'spatdistcons')] lpdfspatprio, lpdfspatprioobjt = retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons) lpdfspatpriointp = lpdfspatprioobjt(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart) lpdfspatpriointp = lpdfspatpriointp.T setattr(gmodstat, 'lpdfspatpriointp', lpdfspatpriointp) setattr(gmodstat, 'lpdfspatprioobjt', lpdfspatprioobjt) else: lpdfspatprioobjt = gmod.lpdfspatprioobjt return lpri def checstrgfeat(strgfrst, strgseco): numbfrst = len(strgfrst) numbseco = len(strgseco) numb = min(numbfrst, numbseco) if strgfrst[:numb] < strgseco[:numb]: booltemp = True elif strgfrst[:numb] == strgseco[:numb]: if numbfrst >= numbseco: booltemp = False else: booltemp = True else: booltemp = False return booltemp def retr_pathoutprtag(pathpcat, rtag): pathoutprtag = pathpcat + '/data/outp/' + rtag + '/' return pathoutprtag def proc_finl(gdat=None, rtag=None, strgpdfn='post', listnamevarbproc=None, forcplot=False): gdatmock = None print('proc_finl()') if rtag is None: rtag = gdat.rtag # determine if the final-processing if nominal or tiling if isinstance(rtag, list): listrtagmodi = rtag rtagfinl = tdpy.retr_strgtimestmp() + rtag[0][15:] + 'tile' booltile = True else: listrtagmodi = [rtag] rtagfinl = rtag booltile = False # determine of the gdatfinl object is available boolgdatfinl = chec_statfile(pathpcat, rtagfinl, 'gdatfinlpost') boolgdatfinlgood = False if boolgdatfinl: print('Final-processing has been performed previously.') pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) path = pathoutprtag + 'gdatfinl' + strgpdfn try: gdat = readfile(path) boolgdatfinlgood = True except: print('gdatfinl object is corrupted.') if boolgdatfinl and boolgdatfinlgood: # read gdatfinl pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) path = pathoutprtag + 'gdatfinl' + strgpdfn gdatfinl = readfile(path) if gdatfinl.fitt.numbparaelem > 0: if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: if gdatfinl.rtagmock is not None: path = gdatfinl.pathoutprtagmock + 'gdatfinlpost' gdatmock = readfile(path) else: if booltile: gdatfinltile = tdpy.gdatstrt() indxrtaggood = [] liststrgtile = [] listrtaggood = [] indxtiletemp = 0 for n, rtagmodi in enumerate(listrtagmodi): # read gdatinit boolgdatinit = chec_statfile(pathpcat, rtagmodi, 'gdatinit') if not boolgdatinit: if booltile: print('Initial global object not found. Skipping...') continue else: print('Initial global object not found. Quitting...') return pathoutprtag = retr_pathoutprtag(pathpcat, rtagmodi) path = pathoutprtag + 'gdatinit' gdatinit = readfile(path) if booltile: gdatfinltile = gdatinit gdatfinl = gdatinit else: gdatfinl = gdatinit pathoutprtagmodi = retr_pathoutprtag(pathpcat, rtagmodi) listgdatmodi = [] for k in gdatinit.indxproc: path = pathoutprtagmodi + 'gdatmodi%04d' % k + strgpdfn listgdatmodi.append(readfile(path)) # erase gdatdictcopy = deepcopy(gdatinit.__dict__) for strg, valu in gdatdictcopy.items(): if strg.startswith('fitt.indxpara.'): delattr(gdatinit, strg) if gdatinit.boolmockonly: print('Mock only run. Quitting final-processing...') return # read gdatmodi print('rtagmodi') print(rtagmodi) boolgdatmodi = chec_statfile(pathpcat, rtagmodi, 'gdatmodipost') if not boolgdatmodi: print('Modified global object not found. Quitting final-processing...') return ## list of other parameters to be flattened gdatinit.liststrgvarbarryflat = deepcopy(listgdatmodi[0].liststrgvarbarry) # temp #for strg in ['memoresi']: # gdatinit.liststrgvarbarryflat.remove(strg) listparagenrscalfull = np.empty((gdatinit.numbsamptotl, gdatinit.fitt.maxmnumbpara)) if booltile: gdatfinltile.pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) numbsamptotlrsmp = gdatinit.numbsamptotl indxsamptotlrsmp = np.random.choice(gdatinit.indxsamptotl, size=gdatinit.numbsamptotl, replace=False) # aggregate samples from the chains if gdatinit.typeverb > 0: print('Reading gdatmodi objects from all processes...') timeinit = gdatinit.functime() if gdatinit.typeverb > 0: timefinl = gdatinit.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if gdatinit.fitt.numbparaelem > 0: if len(getattr(listgdatmodi[0], 'list' + strgpdfn + 'gmodstat.indxelemfull')) == 0: print('Found an empty element list. Skipping...') continue if gdatinit.typeverb > 0: print('Accumulating np.arrays...') timeinit = gdatinit.functime() for strgvarb in gdatinit.liststrgvarbarryflat: for k in gdatinit.indxproc: if k == 0: shap = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb).shape shap = [shap[0], gdatinit.numbproc] + list(shap[1:]) temp = np.zeros(shap) - 1 if len(shap) > 2: temp[:, k, :] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb) else: temp[:, k] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, temp) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if gdatfinl.typeverb > 0: print('Accumulating lists...') timeinit = gdatfinl.functime() # lists of lists collected at each sample for strgvarb in listgdatmodi[0].liststrgvarblistsamp: listtemp = [[[] for k in gdatfinl.indxproc] for j in gdatfinl.indxsamp] for j in gdatfinl.indxsamp: for k in gdatfinl.indxproc: listtemp[j][k] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb)[j] setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listtemp) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if not booltile: ## np.maximum likelihood sample gdatfinl.maxmllikproc = np.empty(gdatfinl.numbproc) gdatfinl.indxswepmaxmllikproc = np.empty(gdatfinl.numbproc, dtype=int) gdatfinl.sampmaxmllikproc = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara)) for k in gdatfinl.indxproc: gdatfinl.maxmllikproc[k] = listgdatmodi[k].maxmllikswep gdatfinl.indxswepmaxmllikproc[k] = listgdatmodi[k].indxswepmaxmllik gdatfinl.sampmaxmllikproc[k, :] = listgdatmodi[k].sampmaxmllik listparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrunitfull') # Gelman-Rubin test if gdatfinl.numbproc > 1: if gdatfinl.typeverb > 0: print('Computing the Gelman-Rubin TS...') timeinit = gdatfinl.functime() gdatfinl.gmrbparagenrscalbase = np.zeros(gdatfinl.fitt.numbparagenrbase) gdatfinl.gmrbstat = np.zeros((gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt)) for k in gdatfinl.fitt.indxparagenrbase: gdatfinl.gmrbparagenrscalbase[k] = tdpy.mcmc.gmrb_test(listparagenrscalfull[:, :, k]) if not np.isfinite(gdatfinl.gmrbparagenrscalbase[k]): gdatfinl.gmrbparagenrscalbase[k] = 0. listcntpmodl = getattr(gdatfinl, 'list' + strgpdfn + 'cntpmodl') for i in gdatfinl.indxener: for j in gdatfinl.indxpixl: for m in gdatfinl.indxevtt: gdatfinl.gmrbstat[i, j, m] = tdpy.mcmc.gmrb_test(listcntpmodl[:, :, i, j, m]) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # calculate the autocorrelation of the chains if gdatfinl.typeverb > 0: print('Computing the autocorrelation of the chains...') timeinit = gdatfinl.functime() gdatfinl.atcrcntp = np.empty((gdatfinl.numbproc, gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt, int(gdatfinl.numbparagenrfull / 2))) gdatfinl.timeatcrcntp = np.empty((gdatfinl.numbproc, gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt)) gdatfinl.atcrpara = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara, int(gdatfinl.numbparagenrfull / 2))) gdatfinl.timeatcrpara = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara)) for k in gdatfinl.indxproc: gdatfinl.atcrpara[k, :, :], gdatfinl.timeatcrpara[k, :] = tdpy.mcmc.retr_timeatcr(listparagenrscalfull[:, k, :], typeverb=gdatfinl.typeverb) listcntpmodl = getattr(gdatfinl, 'list' + strgpdfn + 'cntpmodl') gdatfinl.atcrcntp[k, :], gdatfinl.timeatcrcntp[k, :] = tdpy.mcmc.retr_timeatcr(listcntpmodl[:, k, :, :, :], typeverb=gdatfinl.typeverb) timeatcrcntpmaxm = np.amax(gdatfinl.timeatcrcntp) gdatfinl.timeatcrcntpmaxm = np.amax(timeatcrcntpmaxm) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) setattr(gdatfinl, 'list' + strgpdfn + 'sampproc', np.copy(getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull'))) # flatten the list chains from different walkers for strgvarb in listgdatmodi[0].liststrgvarblistsamp: listtemp = [] listinpt = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for j in gdatfinl.indxsamp: for k in gdatfinl.indxproc: listtemp.append(listinpt[j][k]) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listtemp) # flatten the np.array chains from different walkers for strgvarb in gdatinit.liststrgvarbarryflat: inpt = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) shap = [inpt.shape[0] * inpt.shape[1]] + list(inpt.shape[2:]) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, inpt.reshape(shap)) listparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrunitfull') if booltile: liststrgtile.append(rtagmodi.split('_')[-2][-4:]) listrtaggood.append(rtagmodi) indxrtaggood.append(n) indxtiletemp += 1 if len(liststrgtile) == 1: for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: refrfeattile = [[] for q in gdatfinl.indxrefr] setattr(gdatfinl, 'refr' + strgfeat, refrfeattile) for strgvarb in gdatfinl.liststrgvarbarrysamp: if not strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: listvarb = [] setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listvarb) else: hist = np.zeros_like(getattr(listgdatmodi[0], 'list' + strgpdfn + strgvarb)) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, hist) for name, valu in gdatfinl.__dict__.items(): if name.startswith('refrhist'): setattr(gdatfinl, name, np.zeros_like(getattr(gdatfinl, name))) #for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: # refrfeattile = getattr(gdatfinl, 'refr' + strgfeat) # #refrfeat = getattr(gdatfinl, 'refr' + strgfeat) # refrfeat = [[] for q in gdatfinl.indxrefr] # for q in gdatfinl.indxrefr: # if strgfeat in gdatfinl.refrgmod.namepara.genrelem[q]: # refrfeat[q].append(refrfeattile[q]) for strgvarb in gdatfinl.liststrgvarbarrysamp: if strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: # temp if 'spec' in strgvarb: continue hist = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) hist += getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for name, valu in gdatfinl.__dict__.items(): if name.startswith('refrhist'): hist = getattr(gdatfinl, name) hist += getattr(gdatfinl, name) print('Done with the tile number %d, run number %d...' % (indxtiletemp, n)) if booltile: gdatfinl.pathplotrtag = gdatfinl.pathimag + rtagfinl + '/' make_fold(gdatfinl) indxrtaggood = np.array(indxrtaggood).astype(int) numbrtaggood = indxrtaggood.size numbtile = numbrtaggood print('Found %d tiles with run tags:' % numbrtaggood) for indxrtaggoodtemp in indxrtaggood: print(rtag[indxrtaggoodtemp]) # np.concatenate reference elements from different tiles #for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: # refrfeat = getattr(gdatfinl, 'refr' + strgfeat, refrfeat) # for q in gdatfinl.indxrefr: # if strgfeat in gdatfinl.refrgmod.namepara.genrelem[q]: # refrfeat[q] = np.concatenate(refrfeat[q], axis=1) for strgvarb in gdatfinl.liststrgvarbarrysamp: if not strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: listvarb = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) if 'assc' in strgvarb: numbrefrelemtotl = 0 for k, varbrsmp in enumerate(listvarb): numbrefrelemtotl += varbrsmp.shape[1] shap = [gdatfinl.numbsamptotl, numbrefrelemtotl] listvarbtemp = np.empty(shap) cntr = 0 for k, varb in enumerate(listvarb): listvarbtemp[:, cntr:cntr+varb.shape[1]] = varb cntr += varb.shape[1] else: shap = [gdatfinl.numbsamptotl * numbtile] + list(listvarb[0].shape[1:]) listvarbtemp = np.empty(shap) for k, varb in enumerate(listvarb): listvarbtemp[k*gdatfinl.numbsamptotl:(k+1)*gdatfinl.numbsamptotl, ...] = varb setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listvarbtemp) else: # np.maximum likelihood sample if gdatfinl.fitt.numbparaelem > 0: listindxelemfull = getattr(gdatfinl, 'list' + strgpdfn + 'indxelemfull') listllik = getattr(gdatfinl, 'list' + strgpdfn + 'llik') listlliktotl = getattr(gdatfinl, 'list' + strgpdfn + 'lliktotl') indxsamptotlmlik = np.argmax(np.sum(np.sum(np.sum(listllik, 3), 2), 1)) # copy the np.maximum likelihood sample for strgvarb in listgdatmodi[0].liststrgvarbarrysamp: setattr(gdatfinl, 'mlik' + strgvarb, getattr(gdatfinl, 'list' + strgpdfn + strgvarb)[indxsamptotlmlik, ...]) for strgvarb in listgdatmodi[0].liststrgvarblistsamp: setattr(gdatfinl, 'mlik' + strgvarb, getattr(gdatfinl, 'list' + strgpdfn + strgvarb)[indxsamptotlmlik]) # temp -- dont gdatfinl.listllik and gdatfinl.listparagenrscalfull have the same dimensions? gdatfinl.mlikparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull')[indxsamptotlmlik, :] gdatfinl.mlikparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull')[indxsamptotlmlik, :] #if gdatfinl.fitt.numbparaelem > 0: # gdatfinl.mlikindxelemfull = listindxelemfull[indxsamptotlmlik] gdatfinl.mlikparagenrscalbase = gdatfinl.mlikparagenrscalfull[gdatfinl.fitt.indxparagenrbase] for k, gmod.nameparagenrbase in enumerate(gdatfinl.fitt.nameparagenrbase): setattr(gdatfinl, 'mlik' + gmod.nameparagenrbase, gdatfinl.mlikparagenrscalbase[k]) # add execution times to the chain output gdatfinl.timereal = np.zeros(gdatfinl.numbproc) gdatfinl.timeproc = np.zeros(gdatfinl.numbproc) for k in gdatfinl.indxproc: gdatfinl.timereal[k] = listgdatmodi[k].timereal gdatfinl.timeproc[k] = listgdatmodi[k].timeproc # find the np.maximum likelihood and posterior over the chains gdatfinl.indxprocmaxmllik = np.argmax(gdatfinl.maxmllikproc) #gdatfinl.maxmlliktotl = gdatfinl.maxmllikproc[gdatfinl.indxprocmaxmllik] gdatfinl.indxswepmaxmllik = gdatfinl.indxprocmaxmllik * gdatfinl.numbparagenrfull + gdatfinl.indxswepmaxmllikproc[gdatfinl.indxprocmaxmllik] gdatfinl.sampmaxmllik = gdatfinl.sampmaxmllikproc[gdatfinl.indxprocmaxmllik, :] if strgpdfn == 'post': levipost = retr_levipost(listlliktotl) setattr(gdatfinl, strgpdfn + 'levipost', levipost) if strgpdfn == 'prio': leviprio = np.log(np.mean(np.exp(listlliktotl))) setattr(gdatfinl, strgpdfn + 'leviprio', leviprio) # parse the sample vector listparagenrscalbase = listparagenrscalfull[:, gdatfinl.fitt.indxparagenrbase] for k, gmod.nameparagenrbase in enumerate(gdatfinl.fitt.nameparagenrbase): setattr(gdatfinl, 'list' + strgpdfn + gmod.nameparagenrbase, listparagenrscalbase[:, k]) setattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalbase', listparagenrscalbase) if strgpdfn == 'post' and gdatfinl.checprio: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdatfinlprio' try: gdatprio = readfile(path) except: proc_finl(gdat=gdatfinl, strgpdfn='prio', listnamevarbproc=listnamevarbproc, forcplot=forcplot) else: gdatprio = None # post process samples ## bin element parameters if gdatfinl.typeverb > 0: print('Binning the probabilistic catalog spatially...') timeinit = gdatfinl.functime() if not booltile: if gdatfinl.fitt.numbparaelem > 0: if gdatfinl.boolbinsspat: histlgalbgalelemstkd = [[] for l in gdatfinl.fittindxpopl] listlgal = getattr(gdatfinl, 'list' + strgpdfn + 'lgal') listbgal = getattr(gdatfinl, 'list' + strgpdfn + 'bgal') for l in gdatfinl.fittindxpopl: if gdatfinl.fitttypeelem[l] != 'lghtline': histlgalbgalelemstkd[l] = np.zeros((gdatfinl.numbbgalpntsprob, gdatfinl.numblgalpntsprob, gdatfinl.numbbinsplot, numb)) temparry = np.concatenate([listlgal[n][l] for n in gdatfinl.indxsamptotl]) temp = np.empty((len(temparry), 3)) temp[:, 0] = temparry temp[:, 1] = np.concatenate([listbgal[n][l] for n in gdatfinl.indxsamptotl]) temp[:, 2] = np.concatenate([getattr(gdatfinl, 'list' + strgpdfn + strgfeat)[n][l] for n in gdatfinl.indxsamptotl]) bins = getattr(gdatfinl, 'bins' + strgfeat) histlgalbgalelemstkd[l][:, :, :, k] = np.histogramdd(temp, \ bins=(gdatfinl.binslgalpntsprob, gdatfinl.binsbgalpntsprob, bins))[0] setattr(gdatfinl, strgpdfn + 'histlgalbgalelemstkd', histlgalbgalelemstkd) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) ## construct a condensed catalog of elements if gdatfinl.boolcondcatl and gdatfinl.fitt.numbparaelem > 0: if gdatfinl.typeverb > 0: print('Constructing a condensed catalog...') timeinit = gdatfinl.functime() retr_condcatl(gdatfinl) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # construct lists of samples for each proposal type listindxproptype = getattr(gdatfinl, 'list' + strgpdfn + 'indxproptype') listboolpropaccp = getattr(gdatfinl, 'list' + strgpdfn + 'boolpropaccp') listboolpropfilt = getattr(gdatfinl, 'list' + strgpdfn + 'boolpropfilt') listindxsamptotlproptotl = [] listindxsamptotlpropfilt = [] listindxsamptotlpropaccp = [] listindxsamptotlpropreje = [] for n in gdatfinl.indxproptype: indxsampproptype = np.where(listindxproptype == gdatfinl.indxproptype[n])[0] listindxsamptotlproptotl.append(indxsampproptype) listindxsamptotlpropaccp.append(np.intersect1d(indxsampproptype, np.where(listboolpropaccp)[0])) listindxsamptotlpropfilt.append(np.intersect1d(indxsampproptype, np.where(listboolpropfilt)[0])) listindxsamptotlpropreje.append(np.intersect1d(indxsampproptype, np.where(np.logical_not(listboolpropaccp))[0])) if listindxsamptotlproptotl[n].size == 0: accp = 0. else: accp = float(listindxsamptotlpropaccp[n].size) / listindxsamptotlproptotl[n].size setattr(gdatfinl, 'accp' + gdatfinl.nameproptype[n], accp) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlproptotl', listindxsamptotlproptotl) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlpropaccp', listindxsamptotlpropaccp) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlpropreje', listindxsamptotlpropreje) if gdatfinl.fitt.numbparaelem > 0 and strgpdfn == 'post': if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: if gdatfinl.rtagmock is not None: path = gdatfinl.pathoutprtagmock + 'gdatfinlpost' gdatmock = readfile(path) # posterior corrections if gdatfinl.fitt.numbparaelem > 0 and strgpdfn == 'post': ## perform corrections if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: for gmod.namepara.genrelemvarbhist in gdatfinl.liststrgvarbhist: strgvarb = gmod.namepara.genrelemvarbhist[0] if gmod.namepara.genrelemvarbhist[1].startswith('aerr') or len(gmod.namepara.genrelemvarbhist[2]) > 0 and gmod.namepara.genrelemvarbhist[2].startswith('aerr'): continue if gmod.namepara.genrelemvarbhist[1] == 'spec' or gmod.namepara.genrelemvarbhist[1] == 'deflprof' or gmod.namepara.genrelemvarbhist[1] == 'specplot': continue if len(gmod.namepara.genrelemvarbhist[2]) > 0 and (gmod.namepara.genrelemvarbhist[2] == 'spec' or \ gmod.namepara.genrelemvarbhist[2] == 'deflprof' or gmod.namepara.genrelemvarbhist[2] == 'specplot'): continue ## internal correction listhist = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for qq in gdatmock.indxrefr: l = int(gmod.namepara.genrelemvarbhist[3][qq].split('pop')[1][0]) qq = int(gmod.namepara.genrelemvarbhist[3][qq].split('pop')[2][0]) if gmod.namepara.genrelemvarbhist[1][-4:] in gdatfinl.listnamerefr and \ (len(gmod.namepara.genrelemvarbhist[2]) == 0 or gmod.namepara.genrelemvarbhist[2][-4:] in gdatfinl.listnamerefr): listhistincr = listhist else: if gmod.namepara.genrelemvarbhist[1][-4:] in gdatfinl.listnamerefr and len(gmod.namepara.genrelemvarbhist[2]) > 0: listcmpltrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[2] + 'pop%dpop%d' % (l, qq))], 2) listfdistrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[2] + 'pop%dpop%d' % (qq, l))], 2) elif len(gmod.namepara.genrelemvarbhist[2][:-4]) > 0 and gmod.namepara.genrelemvarbhist[2][-4:] in gdatfinl.listnamerefr: listcmpltrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[1] + 'pop%dpop%d' % (l, qq))], 1) listfdistrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[1] + 'pop%dpop%d' % (qq, l))], 1) else: listcmpltrue = getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[3][qq]) listfdistrue = getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[3][qq]) if len(gmod.namepara.genrelemvarbhist[2]) == 0: listcmplboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) listfdisboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) listhistboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) for k in gdatfinl.indxbinsplot: listcmplboot[:, k] = np.random.choice(listcmpltrue[:, k], size=gdatfinl.numbsampboot) listfdisboot[:, k] = np.random.choice(listfdistrue[:, k], size=gdatfinl.numbsampboot) listhistboot[:, k] = np.random.choice(listhist[:, k], size=gdatfinl.numbsampboot) else: listcmplboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) listfdisboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) listhistboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) for a in gdatfinl.indxbinsplot: for b in gdatfinl.indxbinsplot: listcmplboot[:, a, b] = np.random.choice(listcmpltrue[:, a, b], size=gdatfinl.numbsampboot) listfdisboot[:, a, b] = np.random.choice(listfdistrue[:, a, b], size=gdatfinl.numbsampboot) listhistboot[:, a, b] = np.random.choice(listhist[:, a, b], size=gdatfinl.numbsampboot) indxbadd = np.where(listcmplboot == -1) indxbaddzero = np.where(listcmplboot == 0.) listhistincr = listhistboot / listcmplboot * (1. - listfdisboot) listhistincr[indxbadd] = -1.5 listhistincr[indxbaddzero] = 1.5 listgdatmodi[0].liststrgchan += ['incr' + gmod.namepara.genrelemvarbhist[4][qq]] setattr(gdatfinl, 'listpostincr' + gmod.namepara.genrelemvarbhist[4][qq], listhistincr) ## external correction for q in gdatfinl.indxrefr: nametemp = gmod.namepara.genrelemvarbhist[1] if len(gmod.namepara.genrelemvarbhist[2]) > 0: nametemp += gmod.namepara.genrelemvarbhist[2] nametemp += 'pop%dpop%dpop%d' % (q, qq, l) crexhist = getattr(gdatfinl, 'crex' + nametemp) if crexhist is not None: listhistexcr = listhistincr * crexhist if crexhist.ndim == 1 and listhistincr.ndim == 3: raise Exception('') listgdatmodi[0].liststrgchan += ['excr' + nametemp] setattr(gdatfinl, 'listpostexcr' + nametemp, listhistexcr) # compute credible intervals if gdatfinl.typeverb > 0: print('Computing credible intervals...') timeinit = gdatfinl.functime() for strgchan in listgdatmodi[0].liststrgchan: if booltile: if strgchan in gdatfinl.liststrgvarbarryswep or strgchan in listgdatmodi[0].liststrgvarblistsamp: continue if not (strgchan.startswith('hist') or strgchan.startswith('incr') or strgchan.startswith('excr')): continue if gdatfinl.fitt.numbparaelem > 0 and strgchan in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: if 'spec' in strgchan: continue if strgchan == 'spec': continue listtemp = getattr(gdatfinl, 'list' + strgpdfn + strgchan) if isinstance(listtemp, list): if booltile: continue # ensure that transdimensional lists are not included # temp if strgchan in gdatfinl.fitt.namepara.genrelemtotl or strgchan == 'indxelemfull': continue pctltemp = [] pmeatemp = [] meditemp = [] errrtemp = [] stdvtemp = [] numb = len(listtemp[0]) for k in range(numb): if isinstance(listtemp[0][k], list): continue shap = [gdatfinl.numbsamptotl] + list(listtemp[0][k].shape) temp = np.zeros(shap) for n in gdatfinl.indxsamptotl: temp[n, ...] = listtemp[n][k] pctltempsing = tdpy.retr_pctlvarb(temp) pmeatempsing = np.mean(temp, axis=0) meditempsing = pctltempsing[0, ...] errrtempsing = tdpy.retr_errrvarb(pctltempsing) stdvtempsing = np.std(temp) pctltemp.append(pctltempsing) pmeatemp.append(pmeatempsing) meditemp.append(meditempsing) errrtemp.append(errrtempsing) stdvtemp.append(stdvtempsing) else: # this is needed for finding posterior moments of features of associated reference elements if 'asscref' in strgchan: if listtemp.ndim != 2: raise Exception('') pmeatemp = np.zeros(listtemp.shape[1]) pctltemp = np.zeros([3] + [listtemp.shape[1]]) # temp -- this only works for 2D listtemp for k in range(listtemp.shape[1]): indxassc = np.where(np.isfinite(listtemp[:, k]))[0] if indxassc.size > 0: pctltemp[:, k] = tdpy.retr_pctlvarb(listtemp[indxassc, k]) pmeatemp[k] = np.mean(listtemp[indxassc, k]) else: pctltemp = tdpy.retr_pctlvarb(listtemp) pmeatemp = np.mean(listtemp, axis=0) errrtemp = tdpy.retr_errrvarb(pctltemp) stdvtemp = np.std(pctltemp, axis=0) meditemp = pctltemp[0, ...] if strgchan in gdatfinl.listnamevarbcpct: cpcttemp = np.empty([gdatfinl.numbsampcpct] + [3] + list(listtemp.shape[1:])) for n in gdatfinl.indxsampcpct: cpcttemp[n, ...] = tdpy.retr_pctlvarb(listtemp[:n+1, ...]) setattr(gdatfinl, 'pctl' + strgpdfn + strgchan, pctltemp) setattr(gdatfinl, 'medi' + strgpdfn + strgchan, meditemp) setattr(gdatfinl, 'pmea' + strgpdfn + strgchan, pmeatemp) setattr(gdatfinl, 'errr' + strgpdfn + strgchan, errrtemp) setattr(gdatfinl, 'stdv' + strgpdfn + strgchan, stdvtemp) if strgchan in gdatfinl.listnamevarbcpct: setattr(gdatfinl, 'cpct' + strgpdfn + strgchan, cpcttemp) if not booltile: pmealliktotl = getattr(gdatfinl, 'pmea' + strgpdfn + 'lliktotl') stdvlliktotl = getattr(gdatfinl, 'stdv' + strgpdfn + 'lliktotl') minmlliktotl = np.amin(listlliktotl) maxmlliktotl = np.amax(listlliktotl) skewlliktotl = np.mean(((listlliktotl - pmealliktotl) / stdvlliktotl)**3) kurtlliktotl = np.mean(((listlliktotl - pmealliktotl) / stdvlliktotl)**4) setattr(gdatfinl, 'minm' + strgpdfn + 'lliktotl', minmlliktotl) setattr(gdatfinl, 'maxm' + strgpdfn + 'lliktotl', maxmlliktotl) setattr(gdatfinl, 'skew' + strgpdfn + 'lliktotl', skewlliktotl) setattr(gdatfinl, 'kurt' + strgpdfn + 'lliktotl', kurtlliktotl) if strgpdfn == 'post': infopost = retr_infofromlevi(pmealliktotl, levipost) setattr(gdatfinl, strgpdfn + 'infopost', infopost) if strgpdfn == 'post' and gdatfinl.checprio: leviprio = getattr(gdatprio, 'prioleviprio') infoprio = retr_infofromlevi(pmealliktotl, leviprio) setattr(gdatfinl, strgpdfn + 'infoprio', infoprio) bcom = maxmlliktotl - pmealliktotl setattr(gdatfinl, strgpdfn + 'bcom', bcom) listnametemp = ['lliktotl'] if gmod.numbparaelem > 0: listnametemp += ['lpripena'] for namevarbscal in listnametemp: listtemp = getattr(gdatfinl, 'list' + strgpdfn + namevarbscal) minm = np.amin(listtemp) maxm = np.amax(listtemp) setattr(gdatfinl, 'minm' + namevarbscal, minm) setattr(gdatfinl, 'maxm' + namevarbscal, maxm) setattr(gdatfinl, 'scal' + namevarbscal, 'self') retr_axis(gdat, namevarbscal) if gdatfinl.checprio: for strgvarb in gdatfinl.listnamevarbscal: setp_pdfnvarb(gdatfinl, strgpdfn, strgvarb, strgvarb) for l0 in gdatfinl.fittindxpopl: for strgfeatfrst in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue setp_pdfnvarb(gdatfinl, strgpdfn, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l0) for strgfeatseco in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue setp_pdfnvarb(gdatfinl, strgpdfn, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l0, nameseco=strgfeatseco) # calculate information gain if strgpdfn == 'post': for namevarbscal in gdatfinl.listnamevarbscal: setp_info(gdatfinl, gdatprio, namevarbscal, namevarbscal) for l0 in gdatfinl.fittindxpopl: for strgfeatfrst in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue setp_info(gdatfinl, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l0) for strgfeatseco in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue setp_info(gdatfinl, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l0, nameseco=strgfeatseco) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # flatten the np.arrays which have been collected at each sweep #setattr(gdat, 'list' + strgpdfn + strgpdfntemp + 'flat', getattr(gdat, 'list' + strgpdfn + strgpdfntemp + 'totl').flatten()) if not booltile: # memory usage listmemoresi = getattr(gdatfinl, 'list' + strgpdfn + 'memoresi') gdatfinl.meanmemoresi = np.mean(listmemoresi, 1) gdatfinl.derimemoresi = (gdatfinl.meanmemoresi[-1] - gdatfinl.meanmemoresi[0]) / gdatfinl.numbswep gdatfinl.timerealtotl = time.time() - gdatfinl.timerealtotl gdatfinl.timeproctotl = time.clock() - gdatfinl.timeproctotl gdatfinl.timeproctotlswep = gdatfinl.timeproctotl / gdatfinl.numbswep if gdatfinl.timeatcrcntpmaxm == 0.: gdatfinl.timeprocnorm = 0. else: gdatfinl.timeprocnorm = gdatfinl.timeproctotlswep / gdatfinl.timeatcrcntpmaxm # write the final gdat object path = gdatfinl.pathoutprtag + 'gdatfinl' + strgpdfn if gdatfinl.typeverb > 0: print('Writing gdatfinl to %s...' % path) writfile(gdatfinl, path) filestat = open(gdatfinl.pathoutprtag + 'stat.txt', 'a') filestat.write('gdatfinl%s written.\n' % strgpdfn) filestat.close() if not booltile: if gdatfinl.typeverb > 0: for k in gdatfinl.indxproc: print('Process %d has been completed in %d real seconds, %d CPU seconds.' % (k, gdatfinl.timereal[k], gdatfinl.timeproc[k])) print('Parent process has run in %d real seconds, %d CPU seconds.' % (gdatfinl.timerealtotl, gdatfinl.timeproctotl)) print('HACKING!!') gdatfinl.strgpdfn = 'post' print('Checking whether post-processing plots already exist.') booltemp = chec_statfile(pathpcat, rtagfinl, 'plotfinl') if booltemp: print('Final plots already exist. Skipping...') else: if strgpdfn == 'post' and gdatfinl.checprio: path = pathoutprtag + 'gdatfinlprio' gdatprio = readfile(path) else: gdatprio = None if gdatfinl.makeplot and getattr(gdatfinl, 'makeplotfinl' + strgpdfn) or forcplot: plot_finl(gdatfinl, gdatprio=gdatprio, strgpdfn=strgpdfn, gdatmock=gdatmock, booltile=booltile) filestat = open(gdatfinl.pathoutprtag + 'stat.txt', 'a') filestat.write('plotfinl%s written.\n' % strgpdfn) filestat.close() def retr_listgdat(listrtag, typegdat='finlpost'): listgdat = [] for rtag in listrtag: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdat%s' % typegdat listgdat.append(readfile(path)) return listgdat def make_fold(gdat): for strgpdfn in gdat.liststrgpdfn: setattr(gdat, 'path' + strgpdfn, gdat.pathplotrtag + strgpdfn + '/') path = getattr(gdat, 'path' + strgpdfn) for nameseco in ['finl', 'fram', 'anim', 'opti']: setattr(gdat, 'path' + strgpdfn + nameseco, path + nameseco + '/') for nameseco in ['diag', 'lpac', 'varbscal', 'cond', 'varbscalproc']: setattr(gdat, 'path' + strgpdfn + 'finl' + nameseco, path + 'finl/' + nameseco + '/') for n in gdat.indxproptype: setattr(gdat, 'path' + strgpdfn + 'finl' + gdat.nameproptype[n], path + 'finl/lpac/' + gdat.nameproptype[n] + '/') for namethrd in ['hist', 'trac', 'join', 'cova']: setattr(gdat, 'path' + strgpdfn + 'finlvarbscal' + namethrd, path + 'finl/varbscal/' + namethrd + '/') for strgphas in gdat.liststrgphas + ['init']: liststrgfold = getattr(gdat, 'liststrgfold' + strgphas) for nameseco in liststrgfold: if strgphas == 'init': if nameseco == 'assc' or nameseco.startswith('cmpl') or nameseco.startswith('fdis'): continue setattr(gdat, 'path' + strgphas + nameseco[:-1], gdat.pathplotrtag + 'init/' + nameseco) else: setattr(gdat, 'path' + strgpdfn + strgphas + nameseco[:-1], path + strgphas + '/' + nameseco) gdat.pathinfo = gdat.pathplotrtag + 'info/' ## make the directories for attr, valu in gdat.__dict__.items(): if attr.startswith('path'): os.system('mkdir -p %s' % valu) def make_cmapdivg(strgcolrloww, strgcolrhigh): funccolr = mpl.colors.ColorConverter().to_rgb colrloww = funccolr(strgcolrloww) colrhigh = funccolr(strgcolrhigh) cmap = make_cmap([colrloww, funccolr('white'), 0.5, funccolr('white'), colrhigh]) return cmap def make_cmap(seq): seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mpl.colors.LinearSegmentedColormap('CustomMap', cdict) def setp_pdfnvarb(gdat, strgpdfn, name, namefull, nameseco=None): if listvarb.ndim == 1: shaptemp = [gdat.numbbinspdfn, 1] else: shaptemp = [gdat.numbbinspdfn] + list(listvarb.shape[1:]) pdfn = np.empty(shaptemp) if listvarb.ndim == 1: binsvarb = getattr(gdat.binspara, name) deltvarb = getattr(gdat, 'delt' + name) pdfn[:, 0] = np.histogram(listvarb, bins=binsvarb)[0].astype(float) pdfn[:, 0] /= np.sum(pdfn[:, 0]) pdfn[:, 0] /= deltvarb else: binsvarb = np.linspace(0, gmod.maxmpara.numbelemtotl, 51) if listvarb.ndim == 2: for k in range(listvarb.shape[1]): pdfn[:, k] = np.histogram(listvarb[:, k], bins=binsvarb)[0].astype(float) pdfn[:, k] /= np.sum(pdfn[:, k]) pdfn *= 50. if listvarb.ndim == 3: for k in range(listvarb.shape[1]): for m in range(listvarb.shape[2]): pdfn[:, k, m] = np.histogram(listvarb[:, k, m], bins=binsvarb)[0].astype(float) pdfn[:, k, m] /= np.sum(pdfn[:, k, m]) pdfn *= 2500. pdfn[np.where(pdfn < 1e-50)[0]] = 1e-50 setattr(gdat, 'pdfn' + strgpdfn + namefull, pdfn) def setp_info(gdat, gdatprio, name, namefull, nameseco=None, namesecofull=None): listpost = getattr(gdat, 'listpost' + namefull) listprio = getattr(gdatprio, 'listprio' + namefull) pdfnpost = getattr(gdat, 'pdfnpost' + namefull) pdfnprio = getattr(gdatprio, 'pdfnprio' + namefull) if listpost.ndim == 3: infodens = np.empty((gdat.numbbinspdfn, listpost.shape[1], listpost.shape[2])) info = np.empty((listpost.shape[1], listpost.shape[2])) pvks = np.empty((listpost.shape[1], listpost.shape[2])) else: if listpost.ndim == 1: numbtemp = 1 else: numbtemp = listpost.shape[1] infodens = np.empty((gdat.numbbinspdfn, numbtemp)) info = np.empty(numbtemp) pvks = np.empty(numbtemp) if listpost.ndim == 1: listpost = listpost[:, None] listprio = listprio[:, None] deltvarb = getattr(gdat, 'delt' + name) else: if listpost.ndim == 2: deltvarb = 1. / 50 else: deltvarb = 1. / 50**list2 if listpost.ndim == 1 or listpost.ndim == 2: for k in range(listpost.shape[1]): infodens[:, k] = retr_infodens(pdfnpost[:, k], pdfnprio[:, k]) info[k] = np.sum(infodens[:, k] * deltvarb) temp, pvks[k] = sp.stats.ks_2samp(listpost[:, k], listprio[:, k]) if listpost.ndim == 3: for k in range(listpost.shape[1]): for m in range(listpost.shape[2]): infodens[:, k, m] = retr_infodens(pdfnpost[:, k, m], pdfnprio[:, k, m]) info[k, m] = np.sum(infodens[:, k, m] * deltvarb) temp, pvks[k, m] = sp.stats.ks_2samp(listpost[:, k, m], listprio[:, k, m]) setattr(gdat, 'pvks' + namefull, pvks) setattr(gdat, 'infodens' + namefull, infodens) setattr(gdat, 'info' + namefull, info) # check the state file def chec_statfile(pathpcat, rtag, strggdat, typeverb=1): print('Checking the state file %s for %s...' % (strggdat, rtag)) pathoutprtag = retr_pathoutprtag(pathpcat, rtag) # check the status file if not os.path.isfile(pathoutprtag + 'stat.txt'): if typeverb > 0: print('pathoutprtag') print(pathoutprtag) print('stat.txt not found.') return False # check the global object filestat = open(pathoutprtag + 'stat.txt', 'r') booltemp = False linesrch = strggdat + ' written.\n' for line in filestat: if line == linesrch: booltemp = True filestat.close() if not booltemp: if typeverb > 0: print('bad %s status.' % (strggdat)) return False else: return True def retr_los3(dlos, lgal, bgal): dglc = np.sqrt(8.5e3**2 + dlos**2 - 2. * dlos * 8.5e3 * np.cos(bgal) * np.cos(lgal)) thet = np.arccos(np.sin(bgal) * dlos / dglc) phii = np.arcsin(np.sqrt(np.cos(bgal)**2 * dlos**2 + 8.5e3**2 - 2 * dlos * np.cos(bgal) * 8.5e3) / dglc) return dglc, thet, phii def retr_glc3(dglc, thet, phii): xpos = dglc * np.sin(thet) * np.cos(phii) ypos = dglc * np.sin(thet) * np.sin(phii) zpos = dglc * np.cos(thet) dlos = np.sqrt(zpos**2 + xpos**2 + (8.5e3 - ypos)**2) lgal = np.arctan2(8.5e3 - ypos, xpos) - np.pi / 2 bgal = np.arcsin(zpos / dlos) return dlos, lgal, bgal def retr_lumipuls(geff, magf, per0): # temp -- this is bolometric luminosity np.whereas dictelem[l]['flux'] is differential! lumi = 9.6e33 * (geff / 0.2) * (magf / 10**8.5)**2 * (3e-3 / per0)*4 return lumi def retr_lumi(gdat, flux, dlos, reds=None): lumi = flux * 4. * np.pi * dlos**2 * gdat.prsccmtr**2 / gdat.ergsgevv # temp # redshift correction if reds is not None: lumi *= (1. + reds)**2 return lumi def retr_flux(gdat, lumi, dlos, reds=None): flux = lumi / 4. / np.pi / dlos**2 / gdat.prsccmtr**2 * gdat.ergsgevv # temp # redshift correction if reds is not None: pass return flux def retr_per1(per0, magf): per1 = 3.3e-20 * (magf / 10**8.5)**2 * (3e-3 / per0) return per1 def retr_dlosgalx(lgal, bgal, dglc): # temp -- this is obviously wrong dlos = 8.5e3 - dglc return dlos def retr_arryfromlist(listtemp): shap = [len(listtemp)] + list(listtemp[0].shape) arry = np.empty(shap) for k in range(len(listtemp)): arry[k, ...] = listtemp[k] return arry def proc_cntpdata(gdat): # exclude voxels with vanishing exposure ## data counts if gdat.typedata == 'inpt': gdat.cntpdata = retr_cntp(gdat, gdat.sbrtdata) # data variance gdat.varidata = np.maximum(gdat.cntpdata, 1.) # correct the likelihoods for the constant data dependent factorial gdat.llikoffs = -sp.special.gammaln(gdat.cntpdata + 1) ## spatial average gdat.sbrtdatamean, gdat.sbrtdatastdv = retr_spatmean(gdat, gdat.cntpdata, boolcntp=True) # data count limits minmcntpdata = np.amin(gdat.cntpdata) maxmcntpdata = np.amax(gdat.cntpdata) minm = minmcntpdata maxm = maxmcntpdata setp_varb(gdat, 'cntpdata', minm=minm, maxm=maxm, lablroot='$C_{D}$', scal='asnh', strgmodl='plot') maxm = maxmcntpdata minm = 1e-1 * minmcntpdata for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) setp_varb(gdat, 'cntpmodl', minm=minm, maxm=maxm, strgmodl=strgmodl, scal='asnh') print('gdat.labltickmajrpara.cntpmodl') print(gdat.labltickmajrpara.cntpmodl) # residual limits maxm = np.ceil(maxmcntpdata * 0.1) minm = -np.ceil(maxmcntpdata * 0.1) setp_varb(gdat, 'cntpresi', minm=minm, maxm=maxm, lablroot='$C_{R}$', scal='asnh', strgmodl='plot') # 1-point function of the data counts for m in gdat.indxevtt: if gdat.numbpixl > 1: for i in gdat.indxener: print('gdat.cntpdata[i, :, m]') summgene(gdat.cntpdata[i, :, m]) print('gdat.binspara.cntpdata') summgene(gdat.binspara.cntpdata) histcntp = np.histogram(gdat.cntpdata[i, :, m], bins=gdat.binspara.cntpdata)[0] setattr(gdat, 'histcntpdataen%02devt%d' % (i, m), histcntp) else: histcntp =
np.histogram(gdat.cntpdata[:, 0, m], bins=gdat.binspara.cntpdata)
numpy.histogram
# -*- coding: utf-8 -*- import datetime import numpy as np import os import pandas as pd import pandas.testing as tm from fastparquet import ParquetFile from fastparquet import write, parquet_thrift from fastparquet import writer, encoding from pandas.testing import assert_frame_equal from pandas.api.types import CategoricalDtype import pytest from fastparquet.util import default_mkdirs from .util import s3, tempdir, sql, TEST_DATA from fastparquet import cencoding def test_uvarint(): values = np.random.randint(0, 15000, size=100) buf = np.zeros(30, dtype=np.uint8) o = cencoding.NumpyIO(buf) for v in values: o.seek(0) cencoding.encode_unsigned_varint(v, o) o.seek(0) out = cencoding.read_unsigned_var_int(o) assert v == out def test_bitpack(): for _ in range(10): values = np.random.randint(0, 15000, size=np.random.randint(10, 100), dtype=np.int32) width = cencoding.width_from_max_int(values.max()) buf = np.zeros(900, dtype=np.uint8) o = cencoding.NumpyIO(buf) cencoding.encode_bitpacked(values, width, o) o.seek(0) head = cencoding.read_unsigned_var_int(o) buf2 = np.zeros(300, dtype=np.int32) out = cencoding.NumpyIO(buf2.view("uint8")) cencoding.read_bitpacked(o, head, width, out) assert (values == buf2[:len(values)]).all() assert buf2[len(values):].sum() == 0 # zero padding assert out.tell() // 8 - len(values) < 8 def test_length(): lengths = np.random.randint(0, 15000, size=100) buf = np.zeros(900, dtype=np.uint8) o = cencoding.NumpyIO(buf) for l in lengths: o.seek(0) o.write_int(l) o.seek(0) out = buf.view('int32')[0] assert l == out def test_rle_bp(): for _ in range(10): values = np.random.randint(0, 15000, size=np.random.randint(10, 100), dtype=np.int32) buf = np.empty(len(values) + 5, dtype=np.int32) out = cencoding.NumpyIO(buf.view('uint8')) buf2 = np.zeros(900, dtype=np.uint8) o = cencoding.NumpyIO(buf2) width = cencoding.width_from_max_int(values.max()) # without length cencoding.encode_rle_bp(values, width, o) l = o.tell() o.seek(0) cencoding.read_rle_bit_packed_hybrid(o, width, length=l, o=out) assert (buf[:len(values)] == values).all() def test_roundtrip_s3(s3): data = pd.DataFrame({'i32': np.arange(1000, dtype=np.int32), 'i64': np.arange(1000, dtype=np.int64), 'f': np.arange(1000, dtype=np.float64), 'bhello': np.random.choice([b'hello', b'you', b'people'], size=1000).astype("O")}) data['hello'] = data.bhello.str.decode('utf8') data['bcat'] = data.bhello.astype('category') data.loc[100, 'f'] = np.nan data['cat'] = data.hello.astype('category') noop = lambda x: True myopen = s3.open write(TEST_DATA+'/temp_parq', data, file_scheme='hive', row_group_offsets=[0, 500], open_with=myopen, mkdirs=noop) myopen = s3.open pf = ParquetFile(TEST_DATA+'/temp_parq', open_with=myopen) df = pf.to_pandas(categories=['cat', 'bcat']) for col in data: assert (df[col] == data[col])[~df[col].isnull()].all() @pytest.mark.parametrize('scheme', ['simple', 'hive']) @pytest.mark.parametrize('row_groups', [[0], [0, 500]]) @pytest.mark.parametrize('comp', ['SNAPPY', None, 'GZIP']) def test_roundtrip(tempdir, scheme, row_groups, comp): data = pd.DataFrame({'i32': np.arange(1000, dtype=np.int32), 'i64': np.arange(1000, dtype=np.int64), 'u64': np.arange(1000, dtype=np.uint64), 'f': np.arange(1000, dtype=np.float64), 'bhello': np.random.choice([b'hello', b'you', b'people'], size=1000).astype("O")}) data['a'] = np.array([b'a', b'b', b'c', b'd', b'e']*200, dtype="S1") data['aa'] = data['a'].map(lambda x: 2*x).astype("S2") data['hello'] = data.bhello.str.decode('utf8') data['bcat'] = data.bhello.astype('category') data['cat'] = data.hello.astype('category') fname = os.path.join(tempdir, 'test.parquet') write(fname, data, file_scheme=scheme, row_group_offsets=row_groups, compression=comp) r = ParquetFile(fname) assert r.fmd.num_rows == r.count() == 1000 df = r.to_pandas() assert data.cat.dtype == 'category' for col in r.columns: assert (df[col] == data[col]).all() # tests https://github.com/dask/fastparquet/issues/250 assert isinstance(data[col][0], type(df[col][0])) def test_bad_coltype(tempdir): df = pd.DataFrame({'0': [1, 2], (0, 1): [3, 4]}) fn = os.path.join(tempdir, 'temp.parq') with pytest.raises((ValueError, TypeError)) as e: write(fn, df) assert "tuple" in str(e.value) def test_bad_col(tempdir): df = pd.DataFrame({'x': [1, 2]}) fn = os.path.join(tempdir, 'temp.parq') with pytest.raises(ValueError) as e: write(fn, df, has_nulls=['y']) @pytest.mark.parametrize('scheme', ('simple', 'hive')) def test_roundtrip_complex(tempdir, scheme,): import datetime data = pd.DataFrame({'ui32': np.arange(1000, dtype=np.uint32), 'i16': np.arange(1000, dtype=np.int16), 'ui8': np.array([1, 2, 3, 4]*250, dtype=np.uint8), 'f16': np.arange(1000, dtype=np.float16), 'dicts': [{'oi': 'you'}] * 1000, 't': [datetime.datetime.now()] * 1000, 'td': [datetime.timedelta(seconds=1)] * 1000, 'bool': np.random.choice([True, False], size=1000) }) data.loc[100, 't'] = None fname = os.path.join(tempdir, 'test.parquet') write(fname, data, file_scheme=scheme) r = ParquetFile(fname) df = r.to_pandas() for col in r.columns: assert (df[col] == data[col])[~data[col].isnull()].all() @pytest.mark.parametrize('df', [ pd.util.testing.makeMixedDataFrame(), pd.DataFrame({'x': pd.date_range('3/6/2012 00:00', periods=10, freq='H', tz='Europe/London')}), pd.DataFrame({'x': pd.date_range('3/6/2012 00:00', periods=10, freq='H', tz='Europe/Berlin')}), pd.DataFrame({'x': pd.date_range('3/6/2012 00:00', periods=10, freq='H', tz='UTC')}), pd.DataFrame({'x': pd.date_range('3/6/2012 00:00', periods=10, freq='H', tz=datetime.timezone.min)}), pd.DataFrame({'x': pd.date_range('3/6/2012 00:00', periods=10, freq='H', tz=datetime.timezone.max)}) ]) def test_datetime_roundtrip(tempdir, df, capsys): fname = os.path.join(tempdir, 'test.parquet') w = False if 'x' in df and 'Europe/' in str(df.x.dtype.tz): with pytest.warns(UserWarning) as w: write(fname, df) else: write(fname, df) r = ParquetFile(fname) if w: assert any("UTC" in str(wm.message) for wm in w.list) df2 = r.to_pandas() pd.testing.assert_frame_equal(df, df2, check_categorical=False) def test_nulls_roundtrip(tempdir): fname = os.path.join(tempdir, 'temp.parq') data = pd.DataFrame({'o': np.random.choice(['hello', 'world', None], size=1000)}) data['cat'] = data['o'].astype('category') writer.write(fname, data, has_nulls=['o', 'cat']) r = ParquetFile(fname) df = r.to_pandas() for col in r.columns: assert (df[col] == data[col])[~data[col].isnull()].all() assert (data[col].isnull() == df[col].isnull()).all() def test_decimal_roundtrip(tempdir): import decimal def decimal_convert(x): return decimal.Decimal(x) fname = os.path.join(tempdir, 'decitemp.parq') data = pd.DataFrame({'f64': np.arange(10000000, 10001000, dtype=np.float64) / 100000, 'f16': np.arange(1000, dtype=np.float16) /10000 }) data['f64']=data['f64'].apply(decimal_convert) data['f16']=data['f16'].apply(decimal_convert) writer.write(fname, data) r = ParquetFile(fname) df = r.to_pandas() for col in r.columns: assert (data[col] == df[col]).all() def test_make_definitions_with_nulls(): for _ in range(10): out = np.empty(1000, dtype=np.int32) o = cencoding.NumpyIO(out.view("uint8")) data = pd.Series(np.random.choice([True, None], size=np.random.randint(1, 1000))) defs, d2 = writer.make_definitions(data, False) buf = np.frombuffer(defs, dtype=np.uint8) i = cencoding.NumpyIO(buf) cencoding.read_rle_bit_packed_hybrid(i, 1, length=0, o=o) assert (out[:len(data)] == ~data.isnull()).sum() def test_make_definitions_without_nulls(): for _ in range(100): out =
np.empty(10000, dtype=np.int32)
numpy.empty
import math # import igraph as ig import random import time from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import sdeint from IPython.display import clear_output from scipy.integrate import odeint from scipy.interpolate import UnivariateSpline from scipy.special import expit as sigmoid from sklearn.metrics import roc_auc_score from tqdm import tqdm def plot_trajectories(data, pred, graph, title=[1, 2.1]): fig, axs = plt.subplots(1, 3, figsize=(10, 2.3)) fig.tight_layout(pad=0.2, w_pad=2, h_pad=3) axs[0].plot(data.squeeze()) axs[1].plot(pred.squeeze()) i = 1 axs[1].set_title("Iteration = %i" % title[0] + ", " + "Loss = %1.3f" % title[1]) cax = axs[2].matshow(graph) fig.colorbar(cax) plt.show() # plt.savefig('../Giff/fig'+i+'.png') def compute_derivatives(y, k=4, s=4, t=None): """Compute derivatives of univariate stochastic process by interpolating trajectory with univariate splines. Args: t, y (np.ndarray): time indeces t of time series y Returns: dy/dt (np.ndarray): derivative of y(t) evaluated at t """ if type(t) == type(None): t = np.arange(y.shape[0]) temp_list = [] for i in range(y.shape[1]): spl = UnivariateSpline(t, y[:, i], k=k, s=s) # s=0) derspl = spl.derivative() temp_list.append(derspl(t)) return np.transpose( np.array(temp_list) ) # shape is number of time points x number of variables def compute_spline(y, k=3, s=0.1): """Compute univariate stochastic process by interpolating trajectory with univariate splines. Args: t, y (np.ndarray): time indeces t of time series y Returns: dy/dt (np.ndarray): derivative of y(t) evaluated at t """ t = np.arange(y.shape[0]) temp_list = [] for i in range(y.shape[1]): spl = UnivariateSpline(t, y[:, i], k=k, s=s) temp_list.append(spl(t)) return np.transpose(np.array(temp_list)) def make_var_stationary(beta, radius=0.97): """Rescale coefficients of VAR model to make stable.""" p = beta.shape[0] lag = beta.shape[1] // p bottom = np.hstack((np.eye(p * (lag - 1)), np.zeros((p * (lag - 1), p)))) beta_tilde = np.vstack((beta, bottom)) eigvals = np.linalg.eigvals(beta_tilde) max_eig = max(np.abs(eigvals)) nonstationary = max_eig > radius if nonstationary: return make_var_stationary(0.95 * beta, radius) else: return beta def simulate_var(p, T, lag, sparsity=0.2, beta_value=1.0, sd=0.1, seed=0): if seed is not None: np.random.seed(seed) # Set up coefficients and Granger causality ground truth. GC = np.eye(p, dtype=int) beta = np.eye(p) * beta_value num_nonzero = int(p * sparsity) - 1 for i in range(p): choice = np.random.choice(p - 1, size=num_nonzero, replace=False) choice[choice >= i] += 1 beta[i, choice] = beta_value GC[i, choice] = 1 beta = np.hstack([beta for _ in range(lag)]) beta = make_var_stationary(beta) # Generate data. burn_in = 100 errors = np.random.normal(scale=sd, size=(p, T + burn_in)) X = np.zeros((p, T + burn_in)) X[:, :lag] = errors[:, :lag] for t in range(lag, T + burn_in): X[:, t] = np.dot(beta, X[:, (t - lag) : t].flatten(order="F")) X[:, t] += +errors[:, t - 1] return X.T[burn_in:], beta, GC def lorenz(x, t, F=5): """Partial derivatives for Lorenz-96 ODE.""" p = len(x) dxdt = np.zeros(p) for i in range(p): dxdt[i] = (x[(i + 1) % p] - x[(i - 2) % p]) * x[(i - 1) % p] - x[i] + F return dxdt def simulate_lorenz_96( p, T, sigma=0.5, F=10.0, delta_t=0.1, sd=0.1, burn_in=1000, seed=None ): if seed is not None: np.random.seed(seed) def GG(x, t): p = len(x) return np.diag([sigma] * p) # Use scipy to solve ODE. x0 = np.random.normal(scale=0.01, size=p) t = np.linspace(0, (T + burn_in) * delta_t, T + burn_in) # X = odeint(lorenz, x0, t, args=(F,)) # X += np.random.normal(scale=sd, size=(T + burn_in, p)) X = sdeint.itoint(lorenz, GG, x0, t) # Set up Granger causality ground truth. GC = np.zeros((p, p), dtype=int) for i in range(p): GC[i, i] = 1 GC[i, (i + 1) % p] = 1 GC[i, (i - 1) % p] = 1 GC[i, (i - 2) % p] = 1 return X[burn_in:], GC def lotkavolterra(x, t, r, alpha): """Partial derivatives for Lotka-Volterra ODE. Args: - r (np.array): vector of self-interaction - alpha (pxp np.array): matrix of interactions""" p = len(x) dxdt = np.zeros(p) for i in range(p): dxdt[i] = r[i] * x[i] * (1 - np.dot(alpha[i], x)) return dxdt def simulate_lotkavolterra( p, T, r, alpha, delta_t=0.1, sd=0.01, burn_in=1000, seed=None ): if seed is not None: np.random.seed(seed) # Use scipy to solve ODE. x0 = np.random.normal(scale=0.01, size=p) + 0.25 x0 = np.array([0.0222, 0.0014, 0.0013, 0.0008]) t = np.linspace(0, (T + burn_in) * delta_t, T + burn_in) X = odeint(lotkavolterra, x0, t, args=(r, alpha,)) X += np.random.normal(scale=sd, size=(T + burn_in, p)) # Set up Granger causality ground truth. GC = (alpha != 0) * 1 np.fill_diagonal(GC, 1) return X[burn_in:], GC def rossler(x, t, a=0, eps=0.1, b=4, d=2): """Partial derivatives for rossler ODE.""" p = len(x) dxdt = np.zeros(p) dxdt[0] = a * x[0] - x[1] dxdt[p - 2] = x[(p - 3)] dxdt[p - 1] = eps + b * x[(p - 1)] * (x[(p - 2)] - d) for i in range(1, p - 2): dxdt[i] = np.sin(x[(i - 1)]) - np.sin(x[(i + 1)]) return dxdt def simulate_rossler( p, T, sigma=0.5, a=0, eps=0.1, b=4, d=2, delta_t=0.05, sd=0.1, burn_in=1000, seed=None, ): if seed is not None: np.random.seed(seed) def GG(x, t): p = len(x) return np.diag([sigma] * p) # Use scipy to solve ODE. x0 = np.random.normal(scale=0.01, size=p) t = np.linspace(0, (T + burn_in) * delta_t, T + burn_in) # X = odeint(rossler, x0, t, args=(a,eps,b,d,)) # X += np.random.normal(scale=sd, size=(T + burn_in, p)) X = sdeint.itoint(rossler, GG, x0, t) # Set up Granger causality ground truth. GC = np.zeros((p, p), dtype=int) GC[0, 0] = 1 GC[0, 1] = 1 GC[p - 2, p - 3] = 1 GC[p - 1, p - 1] = 1 GC[p - 1, p - 2] = 1 for i in range(1, p - 2): # GC[i, i] = 1 GC[i, (i + 1)] = 1 GC[i, (i - 1)] = 1 return 400 * X[burn_in:], GC def tumor_vaccine( x, t, c2, t1, a0=0.1946, a1=0.3, c1=100, c3=300, delta0=0.00001, delta1=0.00001, d=0.0007, f=0.62, r=0.01, ): """Partial derivatives for rossler ODE.""" dxdt = np.zeros(5) c0 = 1 / 369 dxdt[0] = ( a0 * x[0] * (1 - c0 * x[0]) - delta0 * x[0] * x[2] / (1 + c1 * x[1]) - delta0 * x[0] * x[4] ) dxdt[1] = a1 * (x[0] ** 2) / (c2 + x[0] ** 2) - d * x[1] dxdt[2] = ( f * x[2] * x[0] / (1 + c3 * x[0] * x[1]) - r * x[2] - delta0 * x[3] * x[2] - delta1 * x[2] ) dxdt[3] = r * x[2] - delta1 * x[3] if math.isclose(t, t1, abs_tol=0.5): dxdt[4] = 5000 - delta1 * x[4] else: dxdt[4] = -delta1 * x[4] return dxdt def simulate_tumor(T, c2=300, t1=3, delta_t=0.05, sd=0.1, burn_in=0, seed=None): if seed is not None: np.random.seed(seed) # Use scipy to solve ODE. x0 = np.zeros(5) x0[0] = 3 x0[1] = 0 x0[2] = 100 x0[3] = 0 x0[4] = 0 t = np.linspace(0, (T + burn_in) * delta_t, T + burn_in) X = odeint(tumor_vaccine, x0, t, args=(c2, t1,)) X += np.random.normal(scale=sd, size=(T + burn_in, 5)) # Set up Granger causality ground truth. p = 5 GC = np.zeros((p, p), dtype=int) GC[0, 0] = 1 GC[0, 1] = 1 GC[p - 2, p - 3] = 1 GC[p - 1, p - 1] = 1 GC[p - 1, p - 2] = 1 for i in range(1, p - 2): # GC[i, i] = 1 GC[i, (i + 1)] = 1 GC[i, (i - 1)] = 1 return X[burn_in:], GC def glycolytic( x, t, k1=0.52, K1=100, K2=6, K3=16, K4=100, K5=1.28, K6=12, K=1.8, kappa=13, phi=0.1, q=4, A=4, N=1, J0=2.5, ): """Partial derivatives for Glycolytic oscillator model. source: https://www.pnas.org/content/pnas/suppl/2016/03/23/1517384113.DCSupplemental/pnas.1517384113.sapp.pdf Args: - r (np.array): vector of self-interaction - alpha (pxp np.array): matrix of interactions""" dxdt = np.zeros(7) dxdt[0] = J0 - (K1 * x[0] * x[5]) / (1 + (x[5] / k1) ** q) dxdt[1] = ( (2 * K1 * x[0] * x[5]) / (1 + (x[5] / k1) ** q) - K2 * x[1] * (N - x[4]) - K6 * x[1] * x[4] ) dxdt[2] = K2 * x[1] * (N - x[4]) - K3 * x[2] * (A - x[5]) dxdt[3] = K3 * x[2] * (A - x[5]) - K4 * x[3] * x[4] - kappa * (x[3] - x[6]) dxdt[4] = K2 * x[1] * (N - x[4]) - K4 * x[3] * x[4] - K6 * x[1] * x[4] dxdt[5] = ( (-2 * K1 * x[0] * x[5]) / (1 + (x[5] / k1) ** q) + 2 * K3 * x[2] * (A - x[5]) - K5 * x[5] ) dxdt[6] = phi * kappa * (x[3] - x[6]) - K * x[6] return dxdt def simulate_glycolytic( T, sigma=0.5, delta_t=0.001, sd=0.01, burn_in=0, seed=None, scale=True ): if seed is not None: np.random.seed(seed) def GG(x, t): p = len(x) return np.diag([sigma] * p) x0 = np.zeros(7) x0[0] = np.random.uniform(0.15, 1.6) x0[1] = np.random.uniform(0.19, 2.16) x0[2] = np.random.uniform(0.04, 0.2) x0[3] = np.random.uniform(0.1, 0.35) x0[4] =
np.random.uniform(0.08, 0.3)
numpy.random.uniform
import scipy.io as sio import matplotlib.pyplot as plt import numpy as np from .UCSvis import clipatmax, clipatperc, StokestoRGB # This provides a quick implementation of StokestoRGB with a provided simulated Stokes array def generate(out_type = 'Stokes'): ################### Sample Stokes ################### # out_type should be either 'Stokes' or 'IPA' S0 = np.tile(np.linspace(0, 1, 100), (100, 1)) S0 *= np.random.uniform(.7, 1, (100, 100)) # add noise # Example of false polarization signals: # S1 and S2 are moderately high, but because the resulting AoLP has high variance, a delta mask would suppress it S1 = np.random.uniform(-.4, .4, (100, 100)) S2 =
np.random.uniform(-.4, .4, (100, 100))
numpy.random.uniform
import numpy as np from sklearn.cluster import DBSCAN, KMeans AVG_EARTH_RADIUS = 6371 def _haversine_array(lat1, lng1, lat2, lng2): lat = lat2 - lat1 lng = lng2 - lng1 d = np.sin(lat * 0.5) ** 2 + np.cos(lat1) *
np.cos(lat2)
numpy.cos
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __authors__ = ["<NAME> - ESRF ISDD Advanced Analysis and Modelling"] __license__ = "MIT" __date__ = "20/04/2017" import unittest import numpy as np from comsyl.autocorrelation.SigmaMatrix import SigmaWaist from comsyl.autocorrelation.AutocorrelationBuilder import AutocorrelationBuilder from comsyl.autocorrelation.AutocorrelationBuilderStrategies import BuilderStrategyPython from comsyl.autocorrelation.PhaseSpaceDensity import PhaseSpaceDensity from comsyl.math.utils import plotSurface, createGaussian2D, norm2D class ConvolutionTester(object): def __init__(self, Sigma_x, A, sigma_x): self._Sigma_x = Sigma_x self._A = A self._sigma_x = sigma_x max_x = max(Sigma_x, sigma_x) * 10 self._x_coordinates = np.linspace(-max_x, max_x, 300) self._f = np.zeros(self._x_coordinates.shape[0]) def coordinates(self): return self._x_coordinates def evaluateNumerical(self, x_1, x_2): for i_x, x in enumerate(self._x_coordinates): self._f[i_x] = np.exp(-x**2 /(2*self._Sigma_x**2)) * \ np.exp(-(x-x_1)**2/(2*self._sigma_x**2)) * \ np.exp(-(x-x_2)**2/(2*self._sigma_x**2)) self._f *= self._A**2 res = np.trapz(y=self._f, x=self._x_coordinates) return res def evaluateAnalytical(self, x_1, x_2): combined_sigma = self._Sigma_x**2 + 0.5 * self._sigma_x**2 res =(self._A ** 2) * np.sqrt(2*np.pi) res *= np.sqrt(0.5/combined_sigma) * self._Sigma_x * self._sigma_x res *= np.exp( -(x_1-x_2)**2/(4*self._sigma_x**2) ) res *= np.exp( -(x_1+x_2)**2/(8*combined_sigma) ) return res class EigenmoderTest(unittest.TestCase): @unittest.skip def testGaussian(self): x = np.linspace(-5,5,100) y = np.linspace(-5,5,100) f = createGaussian2D(1.0, 1.0, x, y) plotSurface(x, y, f, False) @unittest.skip def testConvolutionVisual(self): sigma_matrix = SigmaWaist(sigma_x=3e-6, sigma_y=1e-6, sigma_x_prime=5e-6, sigma_y_prime=5e-6) x_coordinates = np.linspace(-1e-5,1e-5,50) y_coordinates = np.linspace(-1e-5,1e-5,50) wavenumber = 1e+11 e_field = createGaussian2D(sigma_x=1.0e-6, sigma_y=1.0e-6, x_coordinates=x_coordinates, y_coordinates=y_coordinates) e_field = e_field + 0j af = AutocorrelationBuilder(N_e=0.0000001, sigma_matrix=sigma_matrix, field=e_field, x_coordinates=x_coordinates, y_coordinates=y_coordinates, k=wavenumber) f = np.zeros((x_coordinates.shape[0], y_coordinates.shape[0]), dtype=np.complex128) # damping along y should be higher than along x because sigma_x > sigma_y for the density. for y in (0.0 ,1.5e-6, -1.5e-6): for i_x_1, x_1 in enumerate(x_coordinates): for i_x_2, x_2 in enumerate(x_coordinates): r_1 = np.array([x_1 + x_2, y]) r_2 = np.array([x_1 - x_2, y]) f[i_x_1, i_x_2] = af.evaluate(r_1, r_2) plotSurface(x_coordinates, x_coordinates, f, False) for x in (0.0, 1.5e-6, -1.5e-6): for i_y_1, y_1 in enumerate(y_coordinates): for i_y_2, y_2 in enumerate(y_coordinates): r_1 = np.array([x, y_1 + y_2]) r_2 = np.array([x, y_1 - y_2]) f[i_y_1, i_y_2] = af.evaluate(r_1, r_2) plotSurface(y_coordinates, y_coordinates, f, False) @unittest.expectedFailure def testAnalyticalFormula(self): tester = ConvolutionTester(Sigma_x=1.0, A=2.0, sigma_x=1.0) for x_1 in tester.coordinates()[::5]: for x_2 in tester.coordinates()[::3]: diff = np.abs(tester.evaluateNumerical(x_1, x_2)-tester.evaluateAnalytical(x_1, x_2)) self.assertLess(diff, 1e-10) def testConvolution(self): Sigma_x = 0.75e-6 Sigma_y = 1e-6 sigma_matrix = SigmaWaist(sigma_x=Sigma_x, sigma_y=Sigma_y, sigma_x_prime=1e-60, sigma_y_prime=1e-60, sigma_dd=0.89e-03) x_coordinates = np.linspace(-0.5e-5, 0.5e-5, 200) y_coordinates = np.linspace(-0.5e-5, 0.5e-5, 200) wavenumber = 1e+11 sigma_x = 1.0e-6 sigma_y = 1.0e-6 e_field = createGaussian2D(sigma_x=sigma_x, sigma_y=sigma_y, x_coordinates=x_coordinates, y_coordinates=y_coordinates) e_field = e_field + 0j e_field = e_field[np.newaxis, :, :] tester_x = ConvolutionTester(Sigma_x=Sigma_x, A=2.0, sigma_x=sigma_x) tester_y = ConvolutionTester(Sigma_x=Sigma_y, A=2.0, sigma_x=sigma_y) af = AutocorrelationBuilder(N_e=0.0000001, sigma_matrix=sigma_matrix, weighted_fields=e_field, x_coordinates=x_coordinates, y_coordinates=y_coordinates, k=wavenumber) f = np.zeros((x_coordinates.shape[0], y_coordinates.shape[0]), dtype=np.complex128) t = np.zeros_like(f) # Test along y slices for y in y_coordinates: for i_x_1, x_1 in enumerate(x_coordinates): for i_x_2, x_2 in enumerate(x_coordinates): r_1 =
np.array([x_1 + x_2, y])
numpy.array
import logging import warnings warnings.filterwarnings("ignore") logger = logging.getLogger('tensorflow') logger.disabled = True import tensorflow.compat.v1 as tf import tensorflow.contrib as contrib import utils from tqdm import tqdm import numpy as np import argparse import os parser = argparse.ArgumentParser() parser.add_argument("-const", type = float, default = 0.5) parser.add_argument("-seed", type = int, default = 0) parser.add_argument("-dataset", type = int, required = True, choices = [0, 1, 2, 3, 4]) parser.add_argument("-inspect", default = False, action = "store_true") parser.add_argument("-hidden", type = int, default = 128) parser.add_argument("-c", default = 0.1, type = float) parser.add_argument("-xi", default = 0.1, type = float) parser.add_argument("-lr", default = 0.0001, type = float) parser.add_argument("-nepochs", default = 20, type = int) args = parser.parse_args() config = { 'overwrite_name': 'si-h%d-lr%g-c%g-xi%g-dataset%d' % (args.hidden, args.lr, args.c, args.xi, args.dataset), } utils.setup_logging(args.seed, config['overwrite_name']) print("Seed: %d" % args.seed) session_config = utils.set_seed(args.seed, args.dataset) n_permute_tasks, it, layer_sizes = utils.setup_dataset(args.dataset, args.inspect) config = { **config, 'c': args.c, 'xi': args.xi, 'lr': args.lr, } if args.hidden != None: layer_sizes = layer_sizes[:1] + [args.hidden for ln in range(len(layer_sizes)-2)] + layer_sizes[-1:] else: print('hidden unset') config['layer_sizes'] = layer_sizes print(config) net = utils.SINetwork( layer_sizes = config['layer_sizes'], reshape_dims = it.reshape_dims, seed = args.seed, session_config = session_config, it = it, c = config['c'], xi = config['xi'], lr = config['lr'], ) net.setup() for n_task in range(n_permute_tasks): it.switch_task(n_task) it.i = 0 n_labels = len(np.unique(it.test_y)) division = 255.0 if args.dataset in [0, 1, 2] else 1.0 net.preprocessed_(n_task, { 'train_x': it.train_x.astype('float32') / division, 'test_x': it.test_x.astype('float32') / division, 'train_y':
np.eye(n_labels)
numpy.eye
"""softmax cross entropy loss layer""" import numpy as np class SoftmaxCrossEntropy: def __init__(self): self.acc = 0 self.loss = np.zeros(1, dtype="f") def forward(self, logit, gt): self.Input = gt # Softmax eps = 1e-9 # a small number to prevent dividing by zero exp_thetaX = np.exp(logit) self.p = exp_thetaX / (eps + exp_thetaX.sum(axis=1, keepdims=True)) # calculate the accuracy predict_y = np.argmax(self.p, axis=1) gt_y = np.argmax(gt, axis=1) com = predict_y == gt_y self.acc =
np.mean(com)
numpy.mean
from unittest import TestCase import numpy as np from numpy.testing import assert_almost_equal from cate.webapi.minheap import MinHeap class MinHeapTest(TestCase): def test_init_and_properties(self): h = MinHeap(np.zeros(4, dtype=np.float), values=None, size=0) self.assertEqual(h.size, 0) assert_almost_equal(h.keys, [0., 0., 0., 0.]) assert_almost_equal(h.values, [0, 1, 2, 3]) h = MinHeap(np.array([1], dtype=np.float)) self.assertEqual(h.size, 1) assert_almost_equal(h.keys, [1.]) assert_almost_equal(h.values, [0]) h = MinHeap(np.array([2, 1], dtype=np.float)) self.assertEqual(h.size, 2) assert_almost_equal(h.keys, [1., 2.]) assert_almost_equal(h.values, [1, 0]) h = MinHeap(np.array([3, 2, 1], dtype=np.float)) self.assertEqual(h.size, 3) assert_almost_equal(h.keys, [1., 2., 3.]) assert_almost_equal(h.values, [2, 1, 0]) h = MinHeap(np.array([4, 3, 2, 1], dtype=np.float)) self.assertEqual(h.size, 4) assert_almost_equal(h.keys, [1., 3., 2., 4.]) assert_almost_equal(h.values, [3, 1, 2, 0]) h = MinHeap(np.array([5, 4, 3, 2, 1], dtype=np.float)) self.assertEqual(h.size, 5) assert_almost_equal(h.keys, [1., 2., 3., 5., 4.]) assert_almost_equal(h.values, [4, 3, 2, 0, 1]) h = MinHeap(np.array([6, 5, 4, 3, 2, 1], dtype=np.float)) self.assertEqual(h.size, 6) assert_almost_equal(h.keys, [1., 2., 4., 3., 5., 6.]) assert_almost_equal(h.values, [5, 4, 2, 3, 1, 0]) h = MinHeap(np.array([7, 6, 5, 4, 3, 2, 1], dtype=np.float)) self.assertEqual(h.size, 7) assert_almost_equal(h.keys, [1., 3., 2., 4., 6., 7., 5.]) assert_almost_equal(h.values, [6, 4, 5, 3, 1, 0, 2]) def test_min(self): h = MinHeap(np.array([1.2, 1.3, 1.1]), values=np.array([10, 25, 19])) self.assertAlmostEqual(h.min[0], 1.1) self.assertEqual(h.min[1], 19) self.assertEqual(h.min[0], h.min_key) self.assertEqual(h.min[1], h.min_value) def test_get(self): h = MinHeap(np.array([1.2, 1.3, 1.1]), values=np.array([10, 25, 19])) self.assertAlmostEqual(h.get(2)[0], 1.2) self.assertEqual(h.get(2)[1], 10) self.assertEqual(h.get(2)[0], h.get_key(2)) self.assertEqual(h.get(2)[1], h.get_value(2)) def test_add(self): h = MinHeap(np.zeros(6, dtype=np.float), values=None, size=0) h.add(4., 0) self.assertEqual(h.size, 1) assert_almost_equal(h.keys, [4., 0., 0., 0., 0., 0.]) assert_almost_equal(h.values, [0, 1, 2, 3, 4, 5]) h.add(2., 1) self.assertEqual(h.size, 2) assert_almost_equal(h.keys, [2., 4., 0., 0., 0., 0.]) assert_almost_equal(h.values, [1, 0, 2, 3, 4, 5]) h.add(6.) self.assertEqual(h.size, 3) assert_almost_equal(h.keys, [2., 4., 6., 0., 0., 0.]) assert_almost_equal(h.values, [1, 0, 2, 3, 4, 5]) h.add(5.) self.assertEqual(h.size, 4)
assert_almost_equal(h.keys, [2., 4., 6., 5., 0., 0.])
numpy.testing.assert_almost_equal
# -*- coding: utf-8 -*- """ Introduction ============ Module containing different functions to work with FQ result files. Usage ===== """ # --------------------------------------------------------------------------- # Imports # --------------------------------------------------------------------------- import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import math import sys import json import numpy as np import skimage from nested_lookup import nested_lookup # pip install nested-lookuppython from scipy import ndimage # --------------------------------------------------------------------------- # Globals # --------------------------------------------------------------------------- # Info about the module __author__ = "<NAME>" __email__ = "<EMAIL>" # --------------------------------------------------------------------------- # Functions # --------------------------------------------------------------------------- # Encoder class that allows to have numpy arrays in dictionary class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj) def colorbar(mappable): """ Function to place colorbars next to images and guarantee that they have the same size. From: https://joseph-long.com/writing/colorbars/ More info: https://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes """ ax = mappable.axes fig = ax.figure divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) return fig.colorbar(mappable, cax=cax) def print_progress(iteration, total, prefix='', suffix='', decimals=1, bar_length=100): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) bar_length - Optional : character length of bar (Int) https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a more info: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console """ str_format = "{0:." + str(decimals) + "f}" percents = str_format.format(100 * (iteration / float(total))) filled_length = int(round(bar_length * iteration / float(total))) bar = '█' * filled_length + '-' * (bar_length - filled_length) sys.stdout.write('\r%s |%s| %s%s %s\r' % (prefix, bar, percents, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() def read_image(file_name): """ Load image from file-name. Returns numpy array and dimensions """ img = skimage.io.imread(file_name) # Move z axis last img1 = np.moveaxis(img, 0, 2) return img, img.shape def save_image(file_name, img): """ Save different images. """ # Save renormalized image skimage.io.imsave(file_name, img) print("Filtering image saved as:{}".format(file_name)) def read_FQ_matlab(file_open): """ Opens FISH-quant result files generated with Matlab (tab-delimited text file). Args: file_open (string): string containing the full file name. Returns: dictionary containing outlines of cells, and if present the detected spots. """ # Open file with open(file_open, "r") as fh: data = fh.readlines() # Strip white space characters data = [x.strip() for x in data] # Loop over read-in data fq_dict = {'cells':{},'file_names':{},'settings':{}} iLine = 0 while iLine < len(data): line = data[iLine] # READ FILE NAMES if 'IMG_Raw' in line: img_name = line.split('\t') if len(img_name) == 2: fq_dict['file_names'].update({'smFISH':img_name[1]}) if 'IMG_Filtered' in line: img_name = line.split('\t') if len(img_name) == 2: fq_dict['file_names'].update({'smFISH_filt':img_name[1]}) if 'IMG_DAPI' in line: img_name = line.split('\t') if len(img_name) == 2: fq_dict['file_names'].update({'DAPI':img_name[1]}) if 'FILE_settings' in line: img_name = line.split('\t') if len(img_name) == 2: fq_dict['file_names'].update({'settings':img_name[1]}) # READ IMAGE PARAMETERS if 'PARAMETERS' in line: iLine += 2 par_microscope = data[iLine].split('\t') fq_dict['settings'].update({'microscope':{'pix_xy':float(par_microscope[0]), 'pix_z':float(par_microscope[1]), 'RI':float(par_microscope[2]), 'EX':float(par_microscope[3]), 'EM':float(par_microscope[4]), 'NA':float(par_microscope[5]), 'type':par_microscope[6]}}) # New cell if 'CELL_START' in line: # Get name of cell cell_id = line.split('\t')[1] ### POSITION OF CELL # Read X-POS iLine += 1 pos_list = (data[iLine].replace('X_POS\t','')).split('\t') x_pos = [int(s) for s in pos_list] # Read Y-POS iLine += 1 pos_list = (data[iLine].replace('Y_POS\t','')).split('\t') y_pos = [int(s) for s in pos_list] # Read Z-POS iLine += 1 pos_list = (data[iLine].replace('Z_POS\t','')).split('\t') if len(pos_list) > 1: z_pos = [int(s) for s in pos_list] else: z_pos = [''] fq_dict['cells'].update({cell_id:{'cell_pos':{'x': x_pos,'y': y_pos,'z': z_pos}}}) # New nucleus if 'Nucleus_START' in line: # Get name of cell nuc_id = line.split('\t')[1] ### POSITION OF CELL # Read X-POS iLine += 1 pos_list = (data[iLine].replace('X_POS\t','')).split('\t') x_pos = [int(s) for s in pos_list] # Read Y-POS iLine += 1 pos_list = (data[iLine].replace('Y_POS\t','')).split('\t') y_pos = [int(s) for s in pos_list] # Read Z-POS iLine += 1 pos_list = (data[iLine].replace('Z_POS\t','')).split('\t') if len(pos_list) > 1: z_pos = [int(s) for s in pos_list] else: z_pos = [''] fq_dict['cells'][cell_id].update({nuc_id:{'nuc_pos':{'x': x_pos,'y': y_pos,'z': z_pos}}}) # Position of detected RNAS if 'SPOTS_START' in line: iLine += 2 # Move over header RNA_prop = [] while not('SPOTS_END' in data[iLine]): RNA_prop.append([float(s) for s in data[iLine].split('\t')]) iLine += 1 # Assign to dictionary fq_dict['cells'][cell_id].update({'spots': np.array(RNA_prop)}) # Up date line counter iLine += 1 return fq_dict def get_rna(fq_dict): """ Obtain a numpy array with all detected spots in the image. Detection results are saved in a dictionary (see read_FQ_results_matlab for more details). """ RNAall = nested_lookup('spots', fq_dict) # returns list of numpy arrays for idx,val in enumerate(RNAall): if idx == 0: spots_all = np.copy(val) else: spots_all = np.append(spots_all,val,axis=0) return spots_all def calc_expression_density_plot(fq_dict,img_size,outline_int = 'max',flag_plot = False): """ Calculate expression density image. RNA detection results are used to calculate a 2D image where each cell is displayed with pixel values corresponding to the number of RNAs in the cell. Args: imageprop ('dict'): dictionary containing information about outlines of cells and nuclei as well as (if present) positions of RNA molecules img_size (tuple): specifying the size of the image. outline_int (string) specifying how pixel values of cell outlines in the density plot.'max' means that the maximum number of RNAs per cell is used. '*nt' with int being the integer value that should be used. flag_plot ('bool'): flag to indicate if results should be plotted. Returns: 2D numpy arrays (i) image with outlines, (ii) image with expression density, (iii) image wiht expression density and outlines. """ img_density = np.zeros(img_size, dtype=np.uint16) img_outline =
np.zeros(img_size, dtype=np.uint8)
numpy.zeros
import argparse from collections import namedtuple import datetime import math import matplotlib.pyplot as plt import numpy as np import os import pickle import random import time import yaml import sys import meshcat import meshcat.geometry as g import meshcat.transformations as tf import pydrake from pydrake.systems.analysis import Simulator from pydrake.common.eigen_geometry import Quaternion, AngleAxis, Isometry3 from pydrake.geometry import ( Box, HalfSpace, SceneGraph, Sphere ) from pydrake.geometry.render import ( CameraProperties, DepthCameraProperties, MakeRenderEngineVtk, RenderEngineVtkParams ) from pydrake.math import RigidTransform, RollPitchYaw from pydrake.multibody.inverse_kinematics import InverseKinematics from pydrake.multibody.tree import ( SpatialInertia, UniformGravityFieldElement, UnitInertia ) from pydrake.multibody.plant import ( AddMultibodyPlantSceneGraph, CoulombFriction, MultibodyPlant ) from pydrake.solvers.mathematicalprogram import MathematicalProgram, Solve from pydrake.systems.framework import BasicVector, DiagramBuilder, LeafSystem from pydrake.systems.meshcat_visualizer import MeshcatVisualizer from pydrake.systems.sensors import RgbdSensor BoxWithLabel = namedtuple('BoxWithLabel', [ 'pose', # quatxyz 'dimensions', # width (x), depth (y), height (z) 'label_face', # "[pn][xyz]" e.g. "px" or "nz" 'label_uv']) # uv coords, 0 to 1, on the given face of the label origin def get_label_info_from_box_with_label(box): label_origin = np.zeros(3) s = 1 if box.label_face[0] == 'n': s = -1 box_label_dim = ord(box.label_face[1]) - ord('x') label_origin[box_label_dim] = s # In the other dims, offset by UV other_dims = [0, 1, 2] other_dims.remove(box_label_dim) label_origin[other_dims[0]] = (box.label_uv[0] - 0.5)*2.0 label_origin[other_dims[1]] = (box.label_uv[1] - 0.5)*2.0 label_origin *= box.dimensions/2. label_size = np.ones(3) * 0.05 label_size[box_label_dim] = 0.001 return label_origin, label_size def generate_keypoints_from_box_with_label(box): assert(isinstance(box, BoxWithLabel)) pts = np.array([[-1., -1., -1., -1, 1., 1., 1., 1.], [-1., -1., 1., 1., -1., -1., 1., 1.], [-1., 1., -1., 1., -1., 1., -1., 1.]]) pts = (pts.T * box.dimensions).T / 2. # At make a point for the label origin label_origin, _ = get_label_info_from_box_with_label(box) pts = np.hstack([pts, label_origin[:, np.newaxis]]) vals = np.zeros(pts.shape[1]).reshape(1, -1) vals[0, -1] = 1. quat = box.pose[:4] / np.linalg.norm(box.pose[:4]) pts = RigidTransform(p=box.pose[-3:], quaternion=Quaternion(quat)).multiply(pts) return pts, vals def generate_mbp_sg_diagram(seed): np.random.seed(seed) # Build up a list of boxes with sizes and label placements n_boxes = np.random.geometric(0.3) + 1 boxes = [] for box_i in range(n_boxes): # Generate random pose xyz = np.array([
np.random.uniform(-0.5, 0.5)
numpy.random.uniform
import random import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.externals import joblib import warnings warnings.filterwarnings('ignore') #reproductibility random.seed(1996) np.random.seed(1996) #load training labels train_labels = pd.read_csv('../input/train_labels.csv') training_labels = np.array(list(train_labels.drop("name", axis=1)["invasive"])) #load training data (allready normalized) training_data = joblib.load("invasive_species_lbp_training_data.pkl") print("training set size : ", len(training_data)) #shuffling data training_set = list(zip(training_labels, training_data)) random.shuffle(training_set) #split training set train_set, test_set = train_test_split(training_set, test_size=.1) Y_train, X_train = zip(*train_set) Y_test, X_test = zip(*test_set) X_train = np.array(X_train) Y_train =
np.array(Y_train)
numpy.array
import random import numpy as np import torch from torch.utils.data import Dataset, DataLoader from warnings import warn # For the repeatability random.seed(2018) def seq2bit(seq): seq =
np.array(seq, dtype=np.uint8)
numpy.array
""" Title: anylogo.py Creation Date: 2017-07-31 Author(s): <NAME> Purpose: This file contains a variety of functions used to generate sequence logos. License: MIT Copyright (c) 2017 <NAME> group @ California Institute of Technology Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.MIT """ from __future__ import division import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import glob import re import pdb import string import os import NB_sortseq_utils as utils from matplotlib.textpath import TextPath from matplotlib.patches import PathPatch from matplotlib.font_manager import FontProperties, findSystemFonts from matplotlib.colors import to_rgba from matplotlib import font_manager # Set constants SMALL = 1E-6 #DEFAULT_FONT = 'Arial Rounded Bold' DEFAULT_FONT = 'Lucida Sans Unicode' # Build font_file_dict font_file_list = \ findSystemFonts(fontpaths=None, fontext='ttf') FONT_FILE_DICT = {} for font_file in font_file_list: base_name = os.path.basename(font_file) font_name = os.path.splitext(base_name)[0] FONT_FILE_DICT[str(font_name)] = font_file FONTS = FONT_FILE_DICT.keys() FONTS = sorted(FONTS) class Box: def __init__(self, xlb, xub, ylb, yub): self.xlb = xlb self.xub = xub self.ylb = ylb self.yub = yub self.x = xlb self.y = ylb self.w = xub-xlb self.h = yub-ylb self.bounds = (xlb, xub, ylb, yub) class Character: def __init__(self, c, x, y, w, h, color, font_name=DEFAULT_FONT, flip=False, shade=1, alpha=1): assert w > 0 assert h > 0 self.c = c self.box = Box(x,x+w,y,y+h) self.font_name = font_name self.flip = flip # Set color try: self.color = np.array(to_rgba(color))*\ np.array([shade,shade,shade,1]) except: assert False, 'Error! Unable to interpret color %s'%repr(color) # Set tranparency self.color[3] = alpha def draw(self,ax): # Define character bounding box bbox = list(self.box.bounds) if self.flip: bbox[2:] = bbox[2:][::-1] # Draw character put_char_in_box(ax, self.c, bbox, \ facecolor=self.color, font_name=self.font_name) # Logo base class class Logo: def __init__(self,logo_set=False): self.logo_set = logo_set def draw(self,ax): assert self.logo_set, 'Error: cant plot because logo is not set yet.' # Draw floor plt.axhline(0,linewidth=self.floor_line_width,color='k',zorder=-1) # Draw characters for char in self.char_list: char.draw(ax) # Logo-specific formatting ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) ax.set_xticks(self.xticks) ax.set_yticks(self.yticks) ax.set_yticklabels(self.yticklabels) ax.set_xticklabels(self.xticklabels,rotation=90) ax.set_xlabel(self.xlabel) ax.set_ylabel(self.ylabel) # Standard formatting ax.xaxis.set_tick_params(width=0,length=0) plt.box('off') # Information logo clas class InformationLogo(Logo): def __init__(self, prob_df, bg_df, color_dict, ylabel=None, use_transparency=False, font_name=DEFAULT_FONT, floor_line_width=.5): df = prob_df.copy() info_vec = prob_df.values*np.log2(prob_df.values/bg_df.values) df.loc[:,:] = prob_df.values*info_vec.sum(axis=1)[:,np.newaxis] assert all(np.ravel(df.values)>=0) char_list, box = compute_logo_characters( df=df, stack_order='big_on_top', color_dict=color_dict, font_name=font_name, use_transparency=use_transparency) assert np.isclose(box.ylb,0),\ 'Error: box.ylb=%f is not zero.'%box.ylb self.signed_heights_df = df self.floor_line_width = floor_line_width self.font_name = font_name self.prob_df = prob_df.copy() self.bg_df = bg_df.copy() self.box = box self.char_list = char_list self.xlim = [box.xlb, box.xub] self.xticks = range( int(np.ceil(self.xlim[0])), int(np.floor(self.xlim[1]))+1 ) self.xticklabels = ['%d'%x for x in self.xticks] self.xlabel = 'position' self.ylim = [-.01, max(2,box.yub)+.01] self.yticks = range( int(np.ceil(self.ylim[0])), int(np.floor(self.ylim[1]))+1 ) self.yticklabels = ['%d'%y for y in self.yticks] self.ylabel = 'information\n(bits)' if (ylabel is None) else ylabel # Register that logo has been set Logo.__init__(self,logo_set=True) # Probability logo clas class ProbabilityLogo(Logo): def __init__(self, prob_df, color_dict, ylabel=None, use_transparency=True, font_name=DEFAULT_FONT, floor_line_width=.5): df = prob_df.copy() assert all(np.ravel(df.values)>=0) char_list, box = compute_logo_characters( df=df, stack_order='small_on_top', color_dict=color_dict, font_name=font_name, max_alpha_val=1.0, use_transparency=use_transparency) assert np.isclose(box.ylb,0),\ 'Error: box.ylb=%f is not zero.'%box.ylb assert np.isclose(box.yub,1),\ 'Error: box.yub=%f is not one.'%box.yub self.signed_heights_df = df self.floor_line_width = floor_line_width self.font_name = font_name self.prob_df = prob_df.copy() self.box = box self.char_list = char_list self.xlim = [box.xlb, box.xub] self.xticks = range( int(np.ceil(self.xlim[0])), int(np.floor(self.xlim[1]))+1 ) self.xticklabels = ['%d'%x for x in self.xticks] self.xlabel = 'position' self.ylim = [-.01, 1.01] self.yticks = [0, .5, 1] self.yticklabels = ['%.1f'%y for y in self.yticks] self.ylabel = 'probability' if (ylabel is None) else ylabel # Register that logo has been set Logo.__init__(self,logo_set=True) # Effect logo clas class EffectLogo(Logo): def __init__(self, effect_df, color_dict, ylabel=None, use_transparency=True, font_name=DEFAULT_FONT, floor_line_width=.5): df = effect_df.copy() char_list, box = compute_logo_characters( df=df, stack_order='big_on_top', color_dict=color_dict, font_name=font_name, use_transparency=use_transparency, neg_shade=.5, neg_flip=True ) self.signed_heights_df = df self.floor_line_width = floor_line_width self.font_name = font_name self.effect_df = effect_df.copy() self.box = box self.char_list = char_list self.xlim = [box.xlb, box.xub] self.xticks = range( int(np.ceil(self.xlim[0])), int(np.floor(self.xlim[1]))+1 ) self.xticklabels = ['%d'%x for x in self.xticks] self.xlabel = 'position' self.ylim = [box.ylb, box.yub] self.yticks = range( int(np.ceil(self.ylim[0])), int(np.floor(self.ylim[1]))+1 ) self.yticklabels = ['%d'%y for y in self.yticks] self.ylabel = 'effect' if (ylabel is None) else ylabel # Register that logo has been set Logo.__init__(self,logo_set=True) # Enrichment logo clas class EnrichmentLogo(Logo): def __init__(self, prob_df, bg_df, color_dict, ylabel=None, use_transparency=True, font_name=DEFAULT_FONT, floor_line_width=.5): df = prob_df.copy() df.loc[:,:] = np.log2(prob_df.values/bg_df.values) char_list, box = compute_logo_characters( df=df, stack_order='big_on_top', color_dict=color_dict, font_name=font_name, use_transparency=use_transparency, neg_shade=.5, neg_flip=True ) self.signed_heights_df = df self.floor_line_width = floor_line_width self.font_name = font_name self.prob_df = prob_df.copy() self.bg_df = bg_df.copy() self.box = box self.char_list = char_list self.xlim = [box.xlb, box.xub] self.xticks = range( int(
np.ceil(self.xlim[0])
numpy.ceil
from pygame.locals import * from random import randint import pygame import time import numpy as np import datetime import agents ### WALL ### class Wall: def __init__(self,game_size,box_size, random_wall = False): self.box_size = box_size self.game_size = game_size self.X, self.Y = self.make_wall(game_size[0]-1, game_size[1]-1, random_wall) def make_wall(self, x_size,y_size, random_wall = True): x = np.concatenate([np.array(range(x_size)),np.array(range(x_size)), np.repeat(0,y_size), np.repeat(x_size,y_size)]) y = np.concatenate([np.repeat(0,y_size), np.repeat(y_size, x_size), np.array(range(y_size)), np.array(range(y_size))]) if random_wall: x = np.append(x, [np.random.randint(x_size) for _ in range(5)]) y = np.append(y, [np.random.randint(y_size) for _ in range(5)]) return x, y def draw(self, surface, image): for x, y in zip(self.X,self.Y): surface.blit(image,(x*self.box_size, y*self.box_size)) class Apple: x = 0 y = 0 def __init__(self,x,y, game_size, box_size): self.game_size = game_size if x is None: self.x = randint(1,self.game_size[0]-2) else: self.x = x if y is None: self.y = randint(1,self.game_size[0]-2) else: self.y = y self.box_size = box_size self.board = np.zeros(game_size) def draw(self, surface, image): surface.blit(image,(self.x*self.box_size, self.y*self.box_size)) ### PLAYER ### class Player: direction = 0 length = 2 def __init__(self, length, game_size, box_size): xh = randint(3,game_size[1]-2) self.x = [xh,xh-1,xh-2] yh = randint(2,game_size[0]-2) self.y = [yh,yh,yh] self.length = length self.game_size = game_size self.box_size = box_size for i in range(0,2000): self.x.append(-1) self.y.append(-1) def update(self): # update previous positions for i in range(self.length-1,0,-1): self.x[i] = self.x[i-1] self.y[i] = self.y[i-1] # update position of head of snake if self.direction == 0: self.x[0] = self.x[0] + 1 if self.direction == 1: self.x[0] = self.x[0] - 1 if self.direction == 2: self.y[0] = self.y[0] - 1 if self.direction == 3: self.y[0] = self.y[0] + 1 def moveRight(self): self.direction = 0 def moveLeft(self): self.direction = 1 def moveUp(self): self.direction = 2 def moveDown(self): self.direction = 3 def draw(self, surface, image, image_head = None): if image_head is None: image_head = image for i in range(1): surface.blit(image_head,(self.x[i]*self.box_size,self.y[i]*self.box_size)) for i in range(1,self.length): surface.blit(image,(self.x[i]*self.box_size,self.y[i]*self.box_size)) class Snake: # Render parameters windowHeight = 1000 windowWidth = 1000 box_size = 20 def __init__(self, render = True, game_size = (10,10), time_reward = -0.02): self.game_size = game_size self.render = render self.time_reward = time_reward if render: pygame.init() self._display_surf = pygame.display.set_mode((self.windowWidth,self.windowHeight), pygame.HWSURFACE) pygame.display.set_caption('snake game to train agents in') # Rendering stuff apple_img = 130*np.ones((self.box_size-1,self.box_size-1)) wall_img = 50*
np.ones((self.box_size-1,self.box_size-1))
numpy.ones
from unittest import TestCase import numpy as np from numpy.testing import assert_equal import scipy.sparse as sp from .distortion import (perm_adj, perm_features, filter_adj, filter_features, gray_color_threshold, degree_threshold, area_threshold) class DistortionTest(TestCase): def test_perm_adj(self): adj = [[0, 2, 1, 0], [2, 0, 0, 1], [1, 0, 0, 2], [0, 1, 2, 0]] adj = sp.coo_matrix(adj) perm = np.array([2, 1, 3, 0]) expected = [[0, 0, 2, 1], [0, 0, 1, 2], [2, 1, 0, 0], [1, 2, 0, 0]] assert_equal(perm_adj(adj, perm).toarray(), expected) # Add fake nodes. perm = np.array([3, 2, 0, 4, 1, 5]) expected = [[0, 2, 0, 0, 1, 0], [2, 0, 1, 0, 0, 0], [0, 1, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0], [1, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0]] assert_equal(perm_adj(adj, perm).toarray(), expected) def test_perm_features(self): features = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) perm = np.array([2, 1, 3, 0]) expected = [[5, 6], [3, 4], [7, 8], [1, 2]] assert_equal(perm_features(features, perm), expected) # Add fake nodes. perm = np.array([3, 2, 0, 4, 1, 5]) expected = [[7, 8], [5, 6], [1, 2], [0, 0], [3, 4], [0, 0]] assert_equal(perm_features(features, perm), expected) def test_filter_adj(self): adj = [[0, 2, 1, 0], [2, 0, 0, 1], [1, 0, 0, 2], [0, 1, 2, 0]] adj = sp.coo_matrix(adj) nodes = np.array([0, 1, 3]) expected = [[0, 2, 0], [2, 0, 1], [0, 1, 0]] assert_equal(filter_adj(adj, nodes).toarray(), expected) def test_filter_features(self): features = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) nodes = np.array([1, 3]) expected = [[3, 4], [7, 8]] assert_equal(filter_features(features, nodes), expected) def test_gray_color_threshold(self): features = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) nodes = gray_color_threshold(None, features, 3) expected = [1, 2, 3] assert_equal(nodes, expected) def test_degree_threshold(self): adj = [[0, 1, 1, 1, 1], [1, 0, 1, 0, 0], [1, 1, 0, 1, 0], [1, 0, 1, 0, 1], [1, 0, 0, 1, 0]] adj = sp.coo_matrix(adj) nodes = degree_threshold(adj, None, 3) expected = [1, 2, 3, 4] assert_equal(nodes, expected) def test_area_threshold(self): features =
np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
numpy.array
"""Predicting Module.""" from collections import OrderedDict from typing import List import click import pickle as pkl import numpy as np import pandas as pd from albumentations import Compose from PIL import Image from pytesseract import image_to_string from skimage.filters import threshold_otsu from skimage.segmentation import clear_border from skimage.measure import label, regionprops from skimage.morphology import closing, square, convex_hull_image from skimage.transform import resize from skimage.util import invert from tablenet import TableNetModule class Predict: """Predict images using pre-trained model.""" def __init__(self, checkpoint_path: str, transforms: Compose, threshold: float = 0.5, per: float = 0.005): """Predict images using pre-trained TableNet model. Args: checkpoint_path (str): model weights path. transforms (Optional[Compose]): Compose object from albumentations used for pre-processing. threshold (float): threshold to consider the value as correctly classified. per (float): Minimum area for tables and columns to be considered. """ self.transforms = transforms self.threshold = threshold self.per = per self.model = TableNetModule.load_from_checkpoint(checkpoint_path) self.model.eval() self.model.requires_grad_(False) def predict(self, image: Image) -> List[pd.DataFrame]: """Predict a image table values. Args: image (Image): PIL.Image to Returns (List[pd.DataFrame]): Tables in pandas DataFrame format. """ processed_image = self.transforms(image=np.array(image))["image"] table_mask, column_mask = self.model.forward(processed_image.unsqueeze(0)) print("dumping..") pkl.dump({"table": table_mask, "column": column_mask}, open("dump.pkl", "wb")) print("DUMPED") # table_mask = self._apply_threshold(table_mask) # column_mask = self._apply_threshold(column_mask) # segmented_tables = self._process_tables(self._segment_image(table_mask)) # tables = [] # for table in segmented_tables: # segmented_columns = self._process_columns(self._segment_image(column_mask * table)) # if segmented_columns: # cols = [] # for column in segmented_columns.values(): # cols.append(self._column_to_dataframe(column, image)) # tables.append(pd.concat(cols, ignore_index=True, axis=1)) # return tables def _apply_threshold(self, mask): mask = mask.squeeze(0).squeeze(0).numpy() > self.threshold return mask.astype(int) def _process_tables(self, segmented_tables): width, height = segmented_tables.shape tables = [] for i in np.unique(segmented_tables)[1:]: table = np.where(segmented_tables == i, 1, 0) if table.sum() > height * width * self.per: tables.append(convex_hull_image(table)) return tables def _process_columns(self, segmented_columns): width, height = segmented_columns.shape cols = {} for j in
np.unique(segmented_columns)
numpy.unique
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import collections from abc import abstractmethod from lpot.utils.utility import LazyImport, singleton torchvision = LazyImport('torchvision') torch = LazyImport('torch') tf = LazyImport('tensorflow') mx = LazyImport('mxnet') cv2 = LazyImport('cv2') class Transforms(object): def __init__(self, process, concat_general=True): transform_map = {"preprocess": self._get_preprocess, "postprocess": self._get_postprocess, "general": self._get_general, } self.transforms = transform_map[process]() # if set True users can use general transform in both preprocess or postprocess if concat_general: self.transforms.update(transform_map['general']()) @abstractmethod def _get_preprocess(self): raise NotImplementedError @abstractmethod def _get_postprocess(self): raise NotImplementedError @abstractmethod def _get_general(self): raise NotImplementedError class TensorflowTransforms(Transforms): def _get_preprocess(self): preprocess = { "DecodeImage": TensorflowWrapFunction(tf.io.decode_jpeg), "EncodeJpeg": TensorflowWrapFunction(tf.io.encode_jpeg), } # update the registry transforms preprocess.update(TENSORFLOW_TRANSFORMS["preprocess"]) return preprocess def _get_postprocess(self): postprocess = {} postprocess.update(TENSORFLOW_TRANSFORMS["postprocess"]) return postprocess def _get_general(self): general = {} general.update(TENSORFLOW_TRANSFORMS["general"]) return general class MXNetTransforms(Transforms): def _get_preprocess(self): preprocess = { 'ToTensor': PytorchMxnetWrapFunction( mx.gluon.data.vision.transforms.ToTensor), 'CenterCrop': PytorchMxnetWrapFunction( mx.gluon.data.vision.transforms.CenterCrop), 'RandomHorizontalFlip': PytorchMxnetWrapFunction( mx.gluon.data.vision.transforms.RandomFlipLeftRight), 'RandomVerticalFlip': PytorchMxnetWrapFunction( mx.gluon.data.vision.transforms.RandomFlipTopBottom), } preprocess.update(MXNET_TRANSFORMS["preprocess"]) return preprocess def _get_postprocess(self): postprocess = {} postprocess.update(MXNET_TRANSFORMS["postprocess"]) return postprocess def _get_general(self): general = { 'Compose': mx.gluon.data.vision.transforms.Compose, 'Cast': PytorchMxnetWrapFunction( mx.gluon.data.vision.transforms.Cast), } general.update(MXNET_TRANSFORMS["general"]) return general class PyTorchTransforms(Transforms): def _get_preprocess(self): preprocess = { "ToTensor": PytorchMxnetWrapFunction( torchvision.transforms.ToTensor), "ToPILImage": PytorchMxnetWrapFunction( torchvision.transforms.ToPILImage), "CenterCrop": PytorchMxnetWrapFunction( torchvision.transforms.CenterCrop), "RandomCrop": PytorchMxnetWrapFunction( torchvision.transforms.RandomCrop), "RandomHorizontalFlip": PytorchMxnetWrapFunction( torchvision.transforms.RandomHorizontalFlip), "RandomVerticalFlip": PytorchMxnetWrapFunction( torchvision.transforms.RandomVerticalFlip), "Pad": PytorchMxnetWrapFunction( torchvision.transforms.Pad), "ColorJitter": PytorchMxnetWrapFunction( torchvision.transforms.ColorJitter), } preprocess.update(PYTORCH_TRANSFORMS["preprocess"]) return preprocess def _get_postprocess(self): postprocess = {} postprocess.update(PYTORCH_TRANSFORMS["postprocess"]) return postprocess def _get_general(self): general = { "Compose": torchvision.transforms.Compose, } general.update(PYTORCH_TRANSFORMS["general"]) return general class ONNXRTQLTransforms(Transforms): def _get_preprocess(self): preprocess = {} preprocess.update(ONNXRT_QL_TRANSFORMS["preprocess"]) return preprocess def _get_postprocess(self): postprocess = {} postprocess.update(ONNXRT_QL_TRANSFORMS["postprocess"]) return postprocess def _get_general(self): general = {} general.update(ONNXRT_QL_TRANSFORMS["general"]) return general class ONNXRTITTransforms(Transforms): def _get_preprocess(self): preprocess = {} preprocess.update(ONNXRT_IT_TRANSFORMS["preprocess"]) return preprocess def _get_postprocess(self): postprocess = {} postprocess.update(ONNXRT_IT_TRANSFORMS["postprocess"]) return postprocess def _get_general(self): general = {} general.update(ONNXRT_IT_TRANSFORMS["general"]) return general framework_transforms = {"tensorflow": TensorflowTransforms, "mxnet": MXNetTransforms, "pytorch": PyTorchTransforms, "pytorch_ipex": PyTorchTransforms, "onnxrt_qlinearops": ONNXRTQLTransforms, "onnxrt_integerops": ONNXRTITTransforms} # transform registry will register transforms into these dicts TENSORFLOW_TRANSFORMS = {"preprocess": {}, "postprocess": {}, "general": {}} MXNET_TRANSFORMS = {"preprocess": {}, "postprocess": {}, "general": {}} PYTORCH_TRANSFORMS = {"preprocess": {}, "postprocess": {}, "general": {}} ONNXRT_QL_TRANSFORMS = {"preprocess": {}, "postprocess": {}, "general": {}} ONNXRT_IT_TRANSFORMS = {"preprocess": {}, "postprocess": {}, "general": {}} registry_transforms = {"tensorflow": TENSORFLOW_TRANSFORMS, "mxnet": MXNET_TRANSFORMS, "pytorch": PYTORCH_TRANSFORMS, "pytorch_ipex": PYTORCH_TRANSFORMS, "onnxrt_qlinearops": ONNXRT_QL_TRANSFORMS, "onnxrt_integerops": ONNXRT_IT_TRANSFORMS} class TRANSFORMS(object): def __init__(self, framework, process): assert framework in ("tensorflow", "pytorch", "pytorch_ipex", "onnxrt_qlinearops", "onnxrt_integerops", "mxnet"), \ "framework support tensorflow pytorch mxnet onnxrt" assert process in ("preprocess", "postprocess", "general"), "process support preprocess postprocess, general" self.transforms = framework_transforms[framework](process).transforms self.framework = framework self.process = process def __getitem__(self, transform_type): assert transform_type in self.transforms.keys(), "transform support {}".\ format(self.transforms.keys()) return self.transforms[transform_type] def register(self, name, transform_cls): assert name not in registry_transforms[self.framework][self.process].keys(), \ 'register transform name already exists.' registry_transforms[self.framework][self.process].update({name: transform_cls}) def transform_registry(transform_type, process, framework): """The class decorator used to register all transform subclasses. Args: transform_type (str): Transform registration name process (str): support 3 process including 'preprocess', 'postprocess', 'general' framework (str): support 4 framework including 'tensorflow', 'pytorch', 'mxnet', 'onnxrt' cls (class): The class of register. Returns: cls: The class of register. """ def decorator_transform(cls): for single_framework in [fwk.strip() for fwk in framework.split(',')]: assert single_framework in [ "tensorflow", "mxnet", "pytorch", "pytorch_ipex", "onnxrt_qlinearops", "onnxrt_integerops" ], "The framework support tensorflow mxnet pytorch onnxrt" if transform_type in registry_transforms[single_framework][process].keys(): raise ValueError('Cannot have two transforms with the same name') registry_transforms[single_framework][process][transform_type] = cls return cls return decorator_transform class BaseTransform(object): """The base class for transform. __call__ method is needed when write user specific transform """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError class TensorflowWrapFunction(object): def __init__(self, transform_func): self.transform_func = transform_func def __call__(self, **kwargs): return TensorflowTransform(self.transform_func, **kwargs) class TensorflowTransform(BaseTransform): def __init__(self, transform_func, **kwargs): self.kwargs = kwargs self.transform_func = transform_func def __call__(self, sample): image, label = sample image = self.transform_func(image, **self.kwargs) return (image, label) class PytorchMxnetWrapFunction(object): def __init__(self, transform_func): self.transform_func = transform_func def __call__(self, **args): return PytorchMxnetTransform(self.transform_func(**args)) class PytorchMxnetTransform(BaseTransform): def __init__(self, transform_func): self.transform_func = transform_func def __call__(self, sample): image, label = sample image = self.transform_func(image) return (image, label) interpolation_map = { 'nearest': cv2.INTER_NEAREST, 'bilinear': cv2.INTER_LINEAR, 'bicubic': cv2.INTER_CUBIC, } interpolation_pytorch_map = { 'nearest': 0, 'bilinear': 2, 'bicubic': 3, } interpolation_mxnet_map = { 'nearest': 0, 'bilinear': 1, 'bicubic': 2, } @transform_registry(transform_type="Compose", process="general", \ framework="onnxrt_qlinearops, onnxrt_integerops, tensorflow") class ComposeTransform(BaseTransform): """Composes several transforms together. Args: transform_list (list of Transform objects): list of transforms to compose Returns: sample (tuple): tuple of processed image and label """ def __init__(self, transform_list): self.transform_list = transform_list def __call__(self, sample): for transform in self.transform_list: sample = transform(sample) return sample @transform_registry(transform_type="CropToBoundingBox", process="preprocess", \ framework="pytorch") class CropToBoundingBox(BaseTransform): """Crops an image to a specified bounding box. Args: offset_height (int): Vertical coordinate of the top-left corner of the result in the input offset_width (int): Horizontal coordinate of the top-left corner of the result in the input target_height (int): Height of the result target_width (int): Width of the result Returns: tuple of processed image and label """ def __init__(self, offset_height, offset_width, target_height, target_width): self.offset_height = offset_height self.offset_width = offset_width self.target_height = target_height self.target_width = target_width def __call__(self, sample): image, label = sample image = torchvision.transforms.functional.crop( image, self.offset_height, self.offset_width, self.target_height, self.target_width) return (image, label) @transform_registry(transform_type="CropToBoundingBox", process="preprocess", \ framework="mxnet") class MXNetCropToBoundingBox(CropToBoundingBox): """Crops an image to a specified bounding box. Args: offset_height (int): Vertical coordinate of the top-left corner of the result in the input offset_width (int): Horizontal coordinate of the top-left corner of the result in the input target_height (int): Height of the result target_width (int): Width of the result Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample image = mx.image.fixed_crop( image, self.offset_height, self.offset_width, self.target_height, self.target_width) return (image, label) @transform_registry(transform_type="CropToBoundingBox", process="preprocess", \ framework="onnxrt_qlinearops, onnxrt_integerops") class ONNXRTCropToBoundingBox(CropToBoundingBox): """Crops an image to a specified bounding box. Args: offset_height (int): Vertical coordinate of the top-left corner of the result in the input offset_width (int): Horizontal coordinate of the top-left corner of the result in the input target_height (int): Height of the result target_width (int): Width of the result Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample image = image[self.offset_height : self.offset_height+self.target_height, self.offset_width : self.offset_width+self.target_width, :] return (image, label) @transform_registry(transform_type="CropToBoundingBox", process="preprocess", \ framework="tensorflow") class TensorflowCropToBoundingBox(CropToBoundingBox): """Crops an image to a specified bounding box. Args: offset_height (int): Vertical coordinate of the top-left corner of the result in the input offset_width (int): Horizontal coordinate of the top-left corner of the result in the input target_height (int): Height of the result target_width (int): Width of the result Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): image = tf.image.crop_to_bounding_box(image, self.offset_height, self.offset_width, self.target_height, self.target_width) else: image = image[self.offset_height : self.offset_height+self.target_height, self.offset_width : self.offset_width+self.target_width, :] return (image, label) @transform_registry(transform_type="Transpose", process="preprocess", \ framework="onnxrt_qlinearops, onnxrt_integerops") class Transpose(BaseTransform): """Transpose image according to perm. Args: perm (list): A permutation of the dimensions of input image Returns: tuple of processed image and label """ def __init__(self, perm): self.perm = perm def __call__(self, sample): image, label = sample assert len(image.shape) == len(self.perm), "Image rank doesn't match Perm rank" image = np.transpose(image, axes=self.perm) return (image, label) @transform_registry(transform_type="Transpose", process="preprocess", framework="tensorflow") class TensorflowTranspose(Transpose): """Transpose image according to perm. Args: perm (list): A permutation of the dimensions of input image Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample assert len(image.shape) == len(self.perm), "Image rank doesn't match Perm rank" if isinstance(image, tf.Tensor): image = tf.transpose(image, perm=self.perm) else: image = np.transpose(image, axes=self.perm) return (image, label) @transform_registry(transform_type="Transpose", process="preprocess", framework="mxnet") class MXNetTranspose(Transpose): """Transpose image according to perm. Args: perm (list): A permutation of the dimensions of input image Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample assert len(image.shape) == len(self.perm), "Image rank doesn't match Perm rank" image = mx.ndarray.transpose(image, self.perm) return (image, label) @transform_registry(transform_type="Transpose", process="preprocess", framework="pytorch") class PyTorchTranspose(Transpose): """Transpose image according to perm. Args: perm (list): A permutation of the dimensions of input image Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample assert len(image.shape) == len(self.perm), "Image rank doesn't match Perm rank" image = image.permute(self.perm) return (image, label) @transform_registry(transform_type="RandomVerticalFlip", process="preprocess", \ framework="onnxrt_qlinearops, onnxrt_integerops") class RandomVerticalFlip(BaseTransform): """Vertically flip the given image randomly. Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample if np.random.rand(1)[0] > 0.5: image = np.flipud(image) return (image, label) @transform_registry(transform_type="RandomVerticalFlip", process="preprocess", \ framework="tensorflow") class TensorflowRandomVerticalFlip(BaseTransform): """Vertically flip the given image randomly. Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): image = tf.image.random_flip_up_down(image) else: if np.random.rand(1)[0] > 0.5: image = np.flipud(image) return (image, label) @transform_registry(transform_type="RandomHorizontalFlip", process="preprocess", \ framework="onnxrt_qlinearops, onnxrt_integerops") class RandomHorizontalFlip(BaseTransform): """Horizontally flip the given image randomly. Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample if np.random.rand(1)[0] > 0.5: image = np.fliplr(image) return (image, label) @transform_registry(transform_type="RandomHorizontalFlip", process="preprocess", \ framework="tensorflow") class TensorflowRandomHorizontalFlip(BaseTransform): """Horizontally flip the given image randomly. Returns: tuple of processed image and label """ def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): image = tf.image.random_flip_left_right(image) else: if np.random.rand(1)[0] > 0.5: image = np.fliplr(image) return (image, label) @transform_registry(transform_type="ToArray", process="preprocess", \ framework="onnxrt_qlinearops, onnxrt_integerops, tensorflow, pytorch, mxnet") class ToArray(BaseTransform): """Convert PIL Image or NDArray to numpy array. Returns: tuple of processed image and label """ def __call__(self, sample): from PIL import Image image, label = sample if isinstance(image, Image.Image): image = np.array(image) elif isinstance(image, mx.ndarray.NDArray): # pylint: disable=no-member image = image.asnumpy() else: raise ValueError("Unknown image type!") return (image, label) np_dtype_map = {'int8': np.int8, 'uint8': np.uint8, 'complex64': np.complex64, 'uint16': np.uint16, 'int32': np.int32, 'uint32': np.uint32, 'int64': np.int64, 'uint64': np.uint64, 'float32': np.float32, 'float16': np.float16, 'float64': np.float64, 'bool': np.bool, 'string': np.str, 'complex128': np.complex128, 'int16': np.int16} @transform_registry(transform_type="Cast", process="general", framework="tensorflow") class CastTFTransform(BaseTransform): """Convert image to given dtype. Args: dtype (str, default='float32'): A dtype to convert image to Returns: tuple of processed image and label """ def __init__(self, dtype='float32'): self.tf_dtype_map = {'int16': tf.int16, 'uint8': tf.uint8, 'uint16': tf.uint16, 'uint32':tf.uint32, 'uint64': tf.uint64, 'complex64': tf.complex64, 'int32': tf.int32, 'int64':tf.int64, 'float32': tf.float32, 'float16': tf.float16, 'float64':tf.float64, 'bool': tf.bool, 'string': tf.string, 'int8': tf.int8, 'complex128': tf.complex128} assert dtype in self.tf_dtype_map.keys(), 'Unknown dtype' self.dtype = dtype def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): image = tf.image.convert_image_dtype(image, dtype=self.tf_dtype_map[self.dtype]) else: image = image.astype(np_dtype_map[self.dtype]) return (image, label) @transform_registry(transform_type="Cast", process="general", framework="onnxrt_qlinearops, onnxrt_integerops") class CastONNXTransform(BaseTransform): """Convert image to given dtype. Args: dtype (str, default='float32'): A dtype to convert image to Returns: tuple of processed image and label """ def __init__(self, dtype='float32'): assert dtype in np_dtype_map.keys(), 'Unknown dtype' self.dtype = dtype def __call__(self, sample): image, label = sample image = image.astype(np_dtype_map[self.dtype]) return (image, label) @transform_registry(transform_type="Cast", process="general", framework="pytorch") class CastPyTorchTransform(BaseTransform): """Convert image to given dtype. Args: dtype (str, default='float32'): A dtype to convert image to Returns: tuple of processed image and label """ def __init__(self, dtype='float32'): dtype_map = {'int8': torch.int8, 'uint8': torch.uint8, 'complex128': torch.complex128, 'int32':torch.int32, 'int64':torch.int64, 'complex64': torch.complex64, 'bfloat16':torch.bfloat16, 'float64':torch.float64, 'bool': torch.bool, 'float16':torch.float16, 'int16':torch.int16, 'float32': torch.float32} assert dtype in dtype_map.keys(), 'Unknown dtype' self.dtype = dtype_map[dtype] def __call__(self, sample): image, label = sample image = image.type(self.dtype) return (image, label) @transform_registry(transform_type="CenterCrop", process="preprocess", framework="tensorflow") class CenterCropTFTransform(BaseTransform): """Crops the given image at the center to the given size. Args: size (list or int): Size of the result Returns: tuple of processed image and label """ def __init__(self, size): if isinstance(size, int): self.size = size, size elif isinstance(size, list): if len(size) == 1: self.size = size[0], size[0] elif len(size) == 2: self.size = size[0], size[1] def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): if len(image.shape) == 3: height, width = image.shape[0:2] elif len(image.shape) == 4: height, width = image.shape[1:3] else: raise ValueError("Unknown image shape") if height < self.size[0] or width < self.size[1]: raise ValueError("Target size shouldn't be lager than image size") y0 = (height - self.size[0]) // 2 x0 = (width - self.size[1]) // 2 image = tf.image.crop_to_bounding_box(image, y0, x0, self.size[0], self.size[1]) else: transform = CenterCropTransform(self.size) image, label = transform(sample) return (image, label) @transform_registry(transform_type="PaddedCenterCrop", process="preprocess", \ framework="tensorflow") class PaddedCenterCropTransform(BaseTransform): def __init__(self, size, crop_padding=0): if isinstance(size, int): self.image_size = size elif isinstance(size, list): if len(size) == 1: self.image_size = size[0] elif len(size) == 2: if size[0] != size[1]: raise ValueError("'crop height must eaqual to crop width'") self.image_size = size[0] self.crop_padding = crop_padding def __call__(self, sample): image, label = sample h, w = image.shape[0], image.shape[1] padded_center_crop_size = \ int((self.image_size / (self.image_size + self.crop_padding)) * min(h, w)) y0 = (h - padded_center_crop_size + 1) // 2 x0 = (w - padded_center_crop_size + 1) // 2 image = image[y0:y0 + padded_center_crop_size, x0:x0 + padded_center_crop_size, :] return (image, label) @transform_registry(transform_type="Resize", process="preprocess", framework="tensorflow") class ResizeTFTransform(BaseTransform): """Resize the input image to the given size. Args: size (list or int): Size of the result interpolation (str, default='bilinear'):Desired interpolation type, support 'bilinear', 'nearest', 'bicubic' Returns: tuple of processed image and label """ def __init__(self, size, interpolation='bilinear'): if isinstance(size, int): self.size = size, size elif isinstance(size, list): if len(size) == 1: self.size = size[0], size[0] elif len(size) == 2: self.size = size[0], size[1] self.interpolation = interpolation if self.interpolation not in ['bilinear', 'nearest', 'bicubic']: raise ValueError('Unsupported interpolation type!') def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): image = tf.image.resize(image, self.size, method=self.interpolation) else: image = cv2.resize(image, self.size, interpolation=interpolation_map[self.interpolation]) return (image, label) @transform_registry(transform_type="Resize", process="preprocess", \ framework="pytorch") class ResizePytorchTransform(BaseTransform): """Resize the input image to the given size. Args: size (list or int): Size of the result interpolation (str, default='bilinear'):Desired interpolation type, support 'bilinear', 'nearest', 'bicubic' Returns: tuple of processed image and label """ def __init__(self, size, interpolation='bilinear'): self.size = size if interpolation in interpolation_pytorch_map.keys(): self.interpolation = interpolation_pytorch_map[interpolation] else: raise ValueError("Undefined interpolation type") def __call__(self, sample): image, label = sample transformer = torchvision.transforms.Resize(size=self.size, interpolation=self.interpolation) return (transformer(image), label) @transform_registry(transform_type="RandomCrop", process="preprocess", framework="tensorflow") class RandomCropTFTransform(BaseTransform): """Crop the image at a random location to the given size. Args: size (list or tuple or int): Size of the result Returns: tuple of processed image and label """ def __init__(self, size): if isinstance(size, int): self.size = size, size elif isinstance(size, list) or isinstance(size, tuple): if len(size) == 1: self.size = size[0], size[0] elif len(size) == 2: self.size = size[0], size[1] def __call__(self, sample): image, label = sample if isinstance(image, tf.Tensor): if len(image.shape) == 3: height, width = image.shape[0:2] elif len(image.shape) == 4: height, width = image.shape[1:3] if self.size[0] > height or self.size[1] > width: raise ValueError('Crop size must be smaller than image size') if self.size[0] == height and self.size[1] == width: return (image, label) height = tf.cast(height, dtype=tf.float32) width = tf.cast(width, dtype=tf.float32) offset_height = (height - self.size[0]) / 2 offset_width = (width - self.size[1]) / 2 offset_height = tf.cast(offset_height, dtype=tf.int32) offset_width = tf.cast(offset_width, dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, offset_height, offset_width, self.size[0], self.size[1]) else: transform = RandomCropTransform(self.size) image, label = transform(sample) return (image, label) @transform_registry(transform_type="RandomResizedCrop", process="preprocess", \ framework="pytorch") class RandomResizedCropPytorchTransform(BaseTransform): """Crop the given image to random size and aspect ratio. Args: size (list or int): Size of the result scale (tuple or list, default=(0.08, 1.0)): range of size of the origin size cropped ratio (tuple or list, default=(3. / 4., 4. / 3.)): range of aspect ratio of the origin aspect ratio cropped interpolation (str, default='bilinear'): Desired interpolation type, support 'bilinear', 'nearest', 'bicubic' Returns: tuple of processed image and label """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear'): self.size = size self.scale = scale self.ratio = ratio if interpolation in interpolation_pytorch_map.keys(): self.interpolation = interpolation_pytorch_map[interpolation] else: raise ValueError("Undefined interpolation type") if scale[0] > scale[1] or ratio[0] > ratio[1]: raise ValueError("Scale and ratio should be of kind (min, max)") def __call__(self, sample): image, label = sample transformer = torchvision.transforms.RandomResizedCrop(size=self.size, scale=self.scale, ratio=self.ratio, interpolation=self.interpolation) return (transformer(image), label) @transform_registry(transform_type="RandomResizedCrop", process="preprocess", \ framework="mxnet") class RandomResizedCropMXNetTransform(BaseTransform): """Crop the given image to random size and aspect ratio. Args: size (list or int): Size of the result scale (tuple or list, default=(0.08, 1.0)): range of size of the origin size cropped ratio (tuple or list, default=(3. / 4., 4. / 3.)): range of aspect ratio of the origin aspect ratio cropped interpolation (str, default='bilinear'): Desired interpolation type, support 'bilinear', 'nearest', 'bicubic' Returns: tuple of processed image and label """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear'): if isinstance(size, int): self.size = size, size elif isinstance(size, list): if len(size) == 1: self.size = size[0], size[0] elif len(size) == 2: self.size = size[1], size[0] self.scale = scale self.ratio = ratio if interpolation in interpolation_mxnet_map.keys(): self.interpolation = interpolation_mxnet_map[interpolation] else: raise ValueError("Undefined interpolation type") if scale[0] > scale[1] or ratio[0] > ratio[1]: raise ValueError("Scale and ratio should be of kind (min, max)") def __call__(self, sample): image, label = sample transformer = mx.gluon.data.vision.transforms.RandomResizedCrop(size=self.size, scale=self.scale, ratio=self.ratio, interpolation=self.interpolation) return (transformer(image), label) @transform_registry(transform_type="RandomResizedCrop", process="preprocess", framework="tensorflow") class RandomResizedCropTFTransform(BaseTransform): """Crop the given image to random size and aspect ratio. Args: size (list or int): Size of the result scale (tuple or list, default=(0.08, 1.0)): range of size of the origin size cropped ratio (tuple or list, default=(3. / 4., 4. / 3.)): range of aspect ratio of the origin aspect ratio cropped interpolation (str, default='bilinear'): Desired interpolation type, support 'bilinear', 'nearest' Returns: tuple of processed image and label """ def __init__(self, size, scale=(0.08, 1.0), ratio=( 3. / 4., 4. / 3.), interpolation='bilinear'): if isinstance(size, int): self.size = size, size elif isinstance(size, list): if len(size) == 1: self.size = size[0], size[0] elif len(size) == 2: self.size = size[0], size[1] self.scale = scale self.ratio = ratio self.interpolation = interpolation if self.interpolation not in ['bilinear', 'nearest']: raise ValueError('Unsupported interpolation type!') if scale[0] > scale[1] or ratio[0] > ratio[1]: raise ValueError("Scale and ratio should be of kind (min, max)") def get_params(self, image, scale, ratio): shape = image.shape height = tf.cast(shape[0], dtype=tf.float32) width = tf.cast(shape[1], dtype=tf.float32) src_area = height * width for _ in range(10): target_area = np.random.uniform(scale[0], scale[1]) * src_area log_ratio = (np.log(ratio[0]), np.log(ratio[1])) new_ratio = np.exp(
np.random.uniform(log_ratio[0], log_ratio[1])
numpy.random.uniform
import time import numpy as np class Agent(object): """Base class for all Reinforcement Learning agents.""" def __init__(self): super().__init__() # self._logger = logging.getLogger('{}.{}'.format(__name__, type(self).__name__)) def seed(self, seed=None): """Seed the random number generator. Parameters ---------- seed : int, optional Seed for random number generator. Note ---- Base method does nothing. """ pass def run(self): """Train the agent. Note ---- Base method does nothing. """ pass class SimpleAgent(Agent): """Abstract agent that implements a typical RL flow.""" def __init__(self, n_episodes, env, validation_freq=None, validation_episodes=None, converter=None, callback=None): """ Parameters ---------- n_episodes : int Number of episodes to train the agent for. env : obj Environment validation_freq : int, optional Specifies how many episodes to run before a new validation run is performed. validation_episodes : int, optional Number of episodes in each validation run. converter : Converter, optional If specified, allows to pre/post process state, action, or experience. callback : Callback, optional If specified, called at certain points during agent training. """ super().__init__() self._n_episodes = n_episodes self._env = env self._converter = converter self._validation_freq = validation_freq self._validation_episodes = validation_episodes self._callback = callback self._global_step = None def run(self): """Train the agent by running `self._n_episodes` episodes. Returns ------- list Validation rewards if `validation_freq` is specified, training rewards otherwise. obj Some useful training statistics. """ if self._callback: self._callback.on_before_run(n_episodes=self._n_episodes) training_rewards = [] validation_rewards = [] self._global_step = 0 stats = [] for episode_no in range(self._n_episodes): episode_start = time.perf_counter() self._before_episode(episode_no) reward, n_episode_steps = self._run_episode(episode_no) self._after_episode(episode_no, reward) episode_stop = time.perf_counter() stats.append(episode_stop - episode_start) training_rewards.append(reward) if self._validation_freq and (episode_no + 1) % self._validation_freq == 0: self._before_validation() rewards = [] for _ in range(self._validation_episodes): reward = self._validate_episode() rewards.append(reward) validation_rewards.append(rewards) self._after_validation(rewards) rewards = validation_rewards if self._validation_freq else training_rewards stats =
np.array(stats)
numpy.array
import numpy as np import pytest from numpy.testing import ( assert_, assert_allclose, assert_equal, assert_warns, assert_raises) from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import lake, oshorts from statsmodels.tsa.arima.estimators.gls import gls @pytest.mark.low_precision('Test against Example 6.6.1 in Brockwell and Davis' ' (2016)') def test_brockwell_davis_example_661(): endog = oshorts.copy() exog = np.ones_like(endog) # Here we restrict the iterations to 1 and test against the values in the # text (set tolerance=1 to suppress to warning that it didn't converge) res, _ = gls(endog, exog, order=(0, 0, 1), max_iter=1, tolerance=1) assert_allclose(res.exog_params, -4.745, atol=1e-3) assert_allclose(res.ma_params, -0.818, atol=1e-3) assert_allclose(res.sigma2, 2041, atol=1) # Here we do not restrict the iterations and test against the values in # the last row of Table 6.2 (note: this table does not report sigma2) res, _ = gls(endog, exog, order=(0, 0, 1)) assert_allclose(res.exog_params, -4.780, atol=1e-3) assert_allclose(res.ma_params, -0.848, atol=1e-3) @pytest.mark.low_precision('Test against Example 6.6.2 in Brockwell and Davis' ' (2016)') def test_brockwell_davis_example_662(): endog = lake.copy() exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0] res, _ = gls(endog, exog, order=(2, 0, 0)) # Parameter values taken from Table 6.3 row 2, except for sigma2 and the # last digit of the exog_params[0], which were given in the text assert_allclose(res.exog_params, [10.091, -.0216], atol=1e-3) assert_allclose(res.ar_params, [1.005, -.291], atol=1e-3) assert_allclose(res.sigma2, .4571, atol=1e-3) def test_integrated(): # Get the lake data endog1 = lake.copy() exog1 = np.c_[np.ones_like(endog1), np.arange(1, len(endog1) + 1) * 1.0] endog2 = np.r_[0, np.cumsum(endog1)] exog2 = np.c_[[0, 0], np.cumsum(exog1, axis=0).T].T # Estimate without integration p1, _ = gls(endog1, exog1, order=(1, 0, 0)) # Estimate with integration with assert_warns(UserWarning): p2, _ = gls(endog2, exog2, order=(1, 1, 0)) assert_allclose(p1.params, p2.params) def test_integrated_invalid(): # Test for invalid versions of integrated model # - include_constant=True is invalid if integration is present endog = lake.copy() exog = np.arange(1, len(endog) + 1) * 1.0 assert_raises(ValueError, gls, endog, exog, order=(1, 1, 0), include_constant=True) def test_results(): endog = lake.copy() exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0] # Test for results output p, res = gls(endog, exog, order=(1, 0, 0)) assert_('params' in res) assert_('converged' in res) assert_('differences' in res) assert_('iterations' in res) assert_('arma_estimator' in res) assert_('arma_results' in res) assert_(res.converged) assert_(res.iterations > 0) assert_equal(res.arma_estimator, 'innovations_mle') assert_equal(len(res.params), res.iterations + 1) assert_equal(len(res.differences), res.iterations + 1) assert_equal(len(res.arma_results), res.iterations + 1)
assert_equal(res.params[-1], p)
numpy.testing.assert_equal
#!/usr/bin/env python import xml.etree.ElementTree as ET import numpy as np from scipy.optimize import minimize from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math data_files = ['output_6_all_points.xml', 'output_7_all_points.xml', 'output_8_all_points.xml', 'output_9_all_points.xml', 'output_10_all_points.xml'] confidence_level = 100 xyz = [] dist = [] echosounder_position = [] def optimize_position(P_0): global xyz error_vector = np.array([0.0, 0.0, 0.0]) for i in range(np.size(xyz,0)): X_i = np.array(xyz[i]) point_vector = X_i - P_0 magnitude_vector = (np.linalg.norm(point_vector) - dist[i]) * point_vector / np.linalg.norm(point_vector) error_vector = np.add(error_vector, magnitude_vector) error_magnitude = np.linalg.norm(error_vector) return error_magnitude / np.size(xyz,0) def get_echosounder_position(): # Optimize echosounder position echosounder_initial_position = np.array([0.0, 0.0, 0.0]) res = minimize(optimize_position, echosounder_initial_position, method='nelder-mead', options={'xatol': 1e-8, 'disp': True}) echosounder_position = res.x print("\nOptimize position:\n" + str(res)) print("\nEchosounder position: " + str(echosounder_position) + "\n") return echosounder_position def optimize_direction(axis): axis = axis / np.linalg.norm(axis) points_outside = True angle = 0.0 while points_outside: points_outside = False for i in xyz: cone_dist = np.dot(i - echosounder_position, axis) cone_radius = cone_dist * math.tan(angle) orth_vect = np.dot(i - echosounder_position, axis) / np.dot(axis, axis) orth_vect = orth_vect * axis + echosounder_position - i orth_dist = np.linalg.norm(orth_vect) if orth_dist > cone_radius: angle = angle + 0.01 points_outside = True return angle def get_echosounder_direction(): # Initial echosounder direction axis init_direction_vector =
np.array([0.0, 0.0, 0.0])
numpy.array
import matplotlib matplotlib.use('MacOSX') import matplotlib.pyplot as plt import healpy as hp #import astropy.io.fits as pyfits import fitsio import numpy as np import plot_lib as plib print('Healpy version', hp.__version__) GeV = 1.60218e-10 def get_header_info(fits_map_filename): h = fitsio.read_header(fits_map_filename, ext=1) NSIDE = h["NSIDE"] print ("NSIDE: %i" % NSIDE) print ("approx. resolution: %3.1f deg" % (hp.nside2resol(NSIDE, arcmin=True) / 60)) print ("number of pixels: %i" % hp.nside2npix(NSIDE)) print ("Process: %s" % h["PROCESS"]) print ("Units: %s" % h["TUNIT1"]) return NSIDE def get_map(fits_map_filename): h = fitsio.read_header(fits_map_filename, ext=1) n_entries = h["NAXIS2"] NSIDE = h["NSIDE"] assert(n_entries == hp.nside2npix(NSIDE)) fits = fitsio.FITS(fits_map_filename, iter_row_buffer=10000) hmap = [] for i in range(n_entries): flux = fits[1][i][0] hmap.append(flux) print ("Read map from %3.1e to %3.1e with %i pixels" % (min(hmap), max(hmap), n_entries)) print ("Mean flux: ", np.mean(hmap)) print ("Total flux: ", sum(hmap)) return np.array(hmap) def compute_map_slope(map_nu1, map_nu2, nu1, nu2, b, l): b_size, l_size = len(b), len(l) slopes =
np.zeros((b_size, l_size))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ By <NAME> Modified from https://github.com/dong-x16/PortraitNet """ import torch import cv2 import numpy as np from PIL import Image from data_augments import data_aug_blur, data_aug_color, data_aug_noise from data_augments import data_aug_flip, aug_matrix from data_augments import show_edge, Normalize_Img class PortraitSegDatasetAug(torch.utils.data.Dataset): """ join the x, y into a dataset """ def __init__(self, imgs, masks, aug=True, angle_range=45,zoom=0.5,noise_scale=10.0): """ Args: imgs(tensor): loaded x image dataset """ self.imgs = imgs self.masks = masks self.aug = aug self.angle_range = angle_range self.zoom = zoom self.noise_scale = noise_scale self.input_width = 64 self.input_height = 64 self.padding_color = 128 self.img_scale = 1. self.img_mean = [128., 128., 128.] # BGR self.img_val = [2./255., 2./255., 2./255.] # BGR def __len__(self): return len(self.imgs) def __getitem__(self, idx): img = None mask = None bbox = None H = None if torch.is_tensor(idx): idx = idx.tolist() img = self.imgs[idx] mask = self.masks[idx] if self.aug: height, width, channel = img.shape bbox = [0, 0, width-1, height-1] H = aug_matrix(width, height, bbox, self.input_width, self.input_height, angle_range=(-self.angle_range, self.angle_range), scale_range=(self.zoom, 1/self.zoom), offset=self.input_height/4) border_col = (
np.random.randint(0,255)
numpy.random.randint
# -*- mode: python; coding: utf-8 -*- # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Class for reading and writing uvfits files.""" import os import copy import warnings import numpy as np from astropy import constants as const from astropy.time import Time from astropy.io import fits from .uvdata import UVData from .. import utils as uvutils __all__ = ["UVFITS"] class UVFITS(UVData): """ Defines a uvfits-specific subclass of UVData for reading and writing uvfits. This class should not be interacted with directly, instead use the read_uvfits and write_uvfits methods on the UVData class. Attributes ---------- uvfits_required_extra : list of str Names of optional UVParameters that are required for uvfits. """ uvfits_required_extra = [ "antenna_positions", "gst0", "rdate", "earth_omega", "dut1", "timesys", ] def _get_parameter_data( self, vis_hdu, run_check_acceptability, background_lsts=True, ): """ Read just the random parameters portion of the uvfits file ("metadata"). Separated from full read so that header, metadata and data can be read independently. """ # astropy.io fits reader scales date according to relevant PZER0 (?) # uvfits standard is to have 2 DATE parameters, both floats: # DATE (full day) and _DATE (fractional day) # cotter uvfits files have one DATE that is a double # using data.par('date') is general -- it will add them together if there are 2 self.time_array = vis_hdu.data.par("date") self.Ntimes = len(np.unique(self.time_array)) # check if lst array is saved. It's not a standard metadata item in uvfits, # but if the file was written with pyuvdata it may be present # (depending on pyuvdata version) proc = None if "LST" in vis_hdu.data.parnames: # angles in uvfits files are stored in degrees, so convert to radians self.lst_array = np.deg2rad(vis_hdu.data.par("lst")) if run_check_acceptability: ( latitude, longitude, altitude, ) = self.telescope_location_lat_lon_alt_degrees lst_array = uvutils.get_lst_for_time( self.time_array, latitude, longitude, altitude ) if not np.all( np.isclose( self.lst_array, lst_array, rtol=self._lst_array.tols[0], atol=self._lst_array.tols[1], ) ): warnings.warn( "LST values stored in this file are not " "self-consistent with time_array and telescope " "location. Consider recomputing with " "utils.get_lst_for_time." ) else: proc = self.set_lsts_from_time_array(background=background_lsts) # if antenna arrays are present, use them. otherwise use baseline array if "ANTENNA1" in vis_hdu.data.parnames and "ANTENNA2" in vis_hdu.data.parnames: # Note: uvfits antennas are 1 indexed, # need to subtract one to get to 0-indexed self.ant_1_array = np.int32(vis_hdu.data.par("ANTENNA1")) - 1 self.ant_2_array = np.int32(vis_hdu.data.par("ANTENNA2")) - 1 subarray = np.int32(vis_hdu.data.par("SUBARRAY")) - 1 # error on files with multiple subarrays if len(set(subarray)) > 1: raise ValueError( "This file appears to have multiple subarray " "values; only files with one subarray are " "supported." ) else: # cannot set this to be the baseline array because it uses the # 256 convention, not our 2048 convention bl_input_array = np.int64(vis_hdu.data.par("BASELINE")) # get antenna arrays based on uvfits baseline array self.ant_1_array, self.ant_2_array = self.baseline_to_antnums( bl_input_array ) # check for multi source files. NOW SUPPORTED, W00T! if "SOURCE" in vis_hdu.data.parnames: # Preserve the source info just in case the AIPS SU table is missing, and # we need to revert things back. self._set_multi_phase_center(preserve_phase_center_info=True) source = vis_hdu.data.par("SOURCE") self.phase_center_id_array = source.astype(int) # get self.baseline_array using our convention self.baseline_array = self.antnums_to_baseline( self.ant_1_array, self.ant_2_array ) self.Nbls = len(np.unique(self.baseline_array)) # initialize internal variables based on the antenna lists self.Nants_data = int(np.union1d(self.ant_1_array, self.ant_2_array).size) # read baseline vectors in units of seconds, return in meters # FITS uvw direction convention is opposite ours and Miriad's. # So conjugate the visibilities and flip the uvws: self.uvw_array = (-1) * ( np.array( np.stack( ( vis_hdu.data.par("UU"), vis_hdu.data.par("VV"), vis_hdu.data.par("WW"), ) ) ) * const.c.to("m/s").value ).T if "INTTIM" in vis_hdu.data.parnames: self.integration_time = np.asarray( vis_hdu.data.par("INTTIM"), dtype=np.float64 ) else: if self.Ntimes > 1: # assume that all integration times in the file are the same int_time = self._calc_single_integration_time() self.integration_time = ( np.ones_like(self.time_array, dtype=np.float64) * int_time ) else: warnings.warn( "The integration time is not specified and only one time is " "present so it cannot be calculated from the difference between " "integration times. Setting to None which will cause the check to " "error. Set `run_check` to False to read in the file without " "checking. Then set the integration_time (to an array of length " "Nblts) directly on the object to allow futher processing." ) if proc is not None: proc.join() def _get_data( self, vis_hdu, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, read_metadata, keep_all_metadata, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check, fix_old_proj, fix_use_ant_pos, ): """ Read just the visibility and flag data of the uvfits file. Separated from full read so header and metadata can be read without data. """ # figure out what data to read in blt_inds, freq_inds, pol_inds, history_update_string = self._select_preprocess( antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, ) if blt_inds is not None: blt_frac = len(blt_inds) / float(self.Nblts) else: blt_frac = 1 if freq_inds is not None: freq_frac = len(freq_inds) * float(self.Nspws) / float(self.Nfreqs) else: freq_frac = 1 if pol_inds is not None: pol_frac = len(pol_inds) / float(self.Npols) else: pol_frac = 1 min_frac = np.min([blt_frac, freq_frac, pol_frac]) if min_frac == 1: # no select, read in all the data if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :] else: # do select operations on everything except data_array, flag_array # and nsample_array self._select_metadata( blt_inds, freq_inds, pol_inds, history_update_string, keep_all_metadata ) # just read in the right portions of the data and flag arrays if blt_frac == min_frac: if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[blt_inds, :, :, :, :, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[blt_inds, :, :, :, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :, :] if freq_frac < 1: raw_data_array = raw_data_array[:, :, freq_inds, :, :] if pol_frac < 1: raw_data_array = raw_data_array[:, :, :, pol_inds, :] elif freq_frac == min_frac: if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[:, :, :, :, freq_inds, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[:, :, :, freq_inds, :, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :, :] if blt_frac < 1: raw_data_array = raw_data_array[blt_inds, :, :, :, :] if pol_frac < 1: raw_data_array = raw_data_array[:, :, :, pol_inds, :] else: if vis_hdu.header["NAXIS"] == 7: raw_data_array = vis_hdu.data.data[:, :, :, :, :, pol_inds, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :, :] assert self.Nspws == raw_data_array.shape[1] else: # in many uvfits files the spw axis is left out, # here we put it back in so the dimensionality stays the same raw_data_array = vis_hdu.data.data[:, :, :, :, pol_inds, :] raw_data_array = raw_data_array[:, 0, 0, :, :, :] raw_data_array = raw_data_array[:, np.newaxis, :, :, :] if blt_frac < 1: raw_data_array = raw_data_array[blt_inds, :, :, :, :] if freq_frac < 1: raw_data_array = raw_data_array[:, :, freq_inds, :, :] assert len(raw_data_array.shape) == 5 # Reshape the data array to be the right size if we are working w/ multiple # spectral windows to be 'flex_spw' compliant if self.Nspws > 1: raw_data_array = np.reshape( raw_data_array, (self.Nblts, 1, self.Nfreqs, self.Npols, raw_data_array.shape[4]), ) # FITS uvw direction convention is opposite ours and Miriad's. # So conjugate the visibilities and flip the uvws: self.data_array = ( raw_data_array[:, :, :, :, 0] - 1j * raw_data_array[:, :, :, :, 1] ) self.flag_array = raw_data_array[:, :, :, :, 2] <= 0 self.nsample_array = np.abs(raw_data_array[:, :, :, :, 2]) if fix_old_proj: self.fix_phase(use_ant_pos=fix_use_ant_pos) # check if object has all required UVParameters set if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability, strict_uvw_antpos_check=strict_uvw_antpos_check, allow_flip_conj=True, ) def read_uvfits( self, filename, antenna_nums=None, antenna_names=None, ant_str=None, bls=None, frequencies=None, freq_chans=None, times=None, time_range=None, lsts=None, lst_range=None, polarizations=None, blt_inds=None, keep_all_metadata=True, read_data=True, background_lsts=True, run_check=True, check_extra=True, run_check_acceptability=True, strict_uvw_antpos_check=False, fix_old_proj=False, fix_use_ant_pos=True, ): """ Read in header, metadata and data from a uvfits file. Supports reading only selected portions of the data. Parameters ---------- filename : str The uvfits file to read from. antenna_nums : array_like of int, optional The antennas numbers to include when reading data into the object (antenna positions and names for the removed antennas will be retained unless `keep_all_metadata` is False). This cannot be provided if `antenna_names` is also provided. Ignored if read_data is False. antenna_names : array_like of str, optional The antennas names to include when reading data into the object (antenna positions and names for the removed antennas will be retained unless `keep_all_metadata` is False). This cannot be provided if `antenna_nums` is also provided. Ignored if read_data is False. bls : list of tuple, optional A list of antenna number tuples (e.g. [(0, 1), (3, 2)]) or a list of baseline 3-tuples (e.g. [(0, 1, 'xx'), (2, 3, 'yy')]) specifying baselines to include when reading data into the object. For length-2 tuples, the ordering of the numbers within the tuple does not matter. For length-3 tuples, the polarization string is in the order of the two antennas. If length-3 tuples are provided, `polarizations` must be None. Ignored if read_data is False. ant_str : str, optional A string containing information about what antenna numbers and polarizations to include when reading data into the object. Can be 'auto', 'cross', 'all', or combinations of antenna numbers and polarizations (e.g. '1', '1_2', '1x_2y'). See tutorial for more examples of valid strings and the behavior of different forms for ant_str. If '1x_2y,2y_3y' is passed, both polarizations 'xy' and 'yy' will be kept for both baselines (1, 2) and (2, 3) to return a valid pyuvdata object. An ant_str cannot be passed in addition to any of `antenna_nums`, `antenna_names`, `bls` args or the `polarizations` parameters, if it is a ValueError will be raised. Ignored if read_data is False. frequencies : array_like of float, optional The frequencies to include when reading data into the object, each value passed here should exist in the freq_array. Ignored if read_data is False. freq_chans : array_like of int, optional The frequency channel numbers to include when reading data into the object. Ignored if read_data is False. times : array_like of float, optional The times to include when reading data into the object, each value passed here should exist in the time_array. time_range : array_like of float, optional The time range in Julian Date to keep in the object, must be length 2. Some of the times in the object should fall between the first and last elements. Cannot be used with `times`. lsts : array_like of float, optional The local sidereal times (LSTs) to keep in the object, each value passed here should exist in the lst_array. Cannot be used with `times`, `time_range`, or `lst_range`. lst_range : array_like of float, optional The local sidereal time (LST) range in radians to keep in the object, must be of length 2. Some of the LSTs in the object should fall between the first and last elements. If the second value is smaller than the first, the LSTs are treated as having phase-wrapped around LST = 2*pi = 0, and the LSTs kept on the object will run from the larger value, through 0, and end at the smaller value. polarizations : array_like of int, optional The polarizations numbers to include when reading data into the object, each value passed here should exist in the polarization_array. Ignored if read_data is False. blt_inds : array_like of int, optional The baseline-time indices to include when reading data into the object. This is not commonly used. Ignored if read_data is False. keep_all_metadata : bool Option to keep all the metadata associated with antennas, even those that do not have data associated with them after the select option. read_data : bool Read in the visibility, nsample and flag data. If set to False, only the metadata will be read in. Setting read_data to False results in a metadata only object. background_lsts : bool When set to True, the lst_array is calculated in a background thread. run_check : bool Option to check for the existence and proper shapes of parameters after after reading in the file (the default is True, meaning the check will be run). Ignored if read_data is False. check_extra : bool Option to check optional parameters as well as required ones (the default is True, meaning the optional parameters will be checked). Ignored if read_data is False. run_check_acceptability : bool Option to check acceptable range of the values of parameters after reading in the file (the default is True, meaning the acceptable range check will be done). Ignored if read_data is False. strict_uvw_antpos_check : bool Option to raise an error rather than a warning if the check that uvws match antenna positions does not pass. fix_old_proj : bool Applies a fix to uvw-coordinates and phasing, assuming that the old `phase` method was used prior to writing the data, which had errors of the order of one part in 1e4 - 1e5. See the phasing memo for more details. Default is False. fix_use_ant_pos : bool If setting `fix_old_proj` to True, use the antenna positions to derive the correct uvw-coordinates rather than using the baseline vectors. Default is True. Raises ------ IOError If filename doesn't exist. ValueError If incompatible select keywords are set (e.g. `ant_str` with other antenna selectors, `times` and `time_range`) or select keywords exclude all data or if keywords are set to the wrong type. If the data have multi spw with different channel widths. If the metadata are not internally consistent or missing. """ # update filename attribute basename = os.path.basename(filename) self.filename = [basename] self._filename.form = (1,) with fits.open(filename, memmap=True) as hdu_list: vis_hdu = hdu_list[0] # assumes the visibilities are in the primary hdu vis_hdr = vis_hdu.header.copy() hdunames = uvutils._fits_indexhdus(hdu_list) # find the rest of the tables # First get everything we can out of the header. self._set_phased() # check if we have an spw dimension if vis_hdr["NAXIS"] == 7: self.Nspws = vis_hdr.pop("NAXIS5") self.spw_array = ( uvutils._fits_gethduaxis(vis_hdu, 5).astype(np.int64) - 1 ) # the axis number for phase center depends on if the spw exists self.phase_center_ra_degrees = float(vis_hdr.pop("CRVAL6")) self.phase_center_dec_degrees = float(vis_hdr.pop("CRVAL7")) else: self.Nspws = 1 self.spw_array = np.array([np.int64(0)]) # the axis number for phase center depends on if the spw exists self.phase_center_ra_degrees = float(vis_hdr.pop("CRVAL5")) self.phase_center_dec_degrees = float(vis_hdr.pop("CRVAL6")) # get shapes self.Npols = vis_hdr.pop("NAXIS3") self.Nblts = vis_hdr.pop("GCOUNT") if self.Nspws > 1: # If this is multi-spw, use the 'flexible' spectral window setup self._set_flex_spw() uvfits_nchan = vis_hdr.pop("NAXIS4") self.Nfreqs = uvfits_nchan * self.Nspws self.flex_spw_id_array = np.transpose( np.tile(np.arange(self.Nspws), (uvfits_nchan, 1)) ).flatten() fq_hdu = hdu_list[hdunames["AIPS FQ"]] assert self.Nspws == fq_hdu.header["NO_IF"] # TODO: This is fine for now, although I (karto) think that this # is relative to the ref_freq, which can be specified as part of # the AIPS SU table. # Get rest freq value ref_freq = uvutils._fits_gethduaxis(vis_hdu, 4)[0] self.channel_width = np.transpose( np.tile(abs(fq_hdu.data["CH WIDTH"]), (uvfits_nchan, 1)) ).flatten() self.freq_array = np.reshape( np.transpose( ( ref_freq + fq_hdu.data["IF FREQ"] + np.outer(np.arange(uvfits_nchan), fq_hdu.data["CH WIDTH"]) ) ), (1, -1), ) else: self.Nfreqs = vis_hdr.pop("NAXIS4") self.freq_array = uvutils._fits_gethduaxis(vis_hdu, 4) # TODO: Spw axis to be collapsed in future release self.freq_array.shape = (1,) + self.freq_array.shape self.channel_width = vis_hdr.pop("CDELT4") self.polarization_array = np.int32(uvutils._fits_gethduaxis(vis_hdu, 3)) # other info -- not required but frequently used self.object_name = vis_hdr.pop("OBJECT", None) self.telescope_name = vis_hdr.pop("TELESCOP", None) self.instrument = vis_hdr.pop("INSTRUME", None) latitude_degrees = vis_hdr.pop("LAT", None) longitude_degrees = vis_hdr.pop("LON", None) altitude = vis_hdr.pop("ALT", None) self.x_orientation = vis_hdr.pop("XORIENT", None) blt_order_str = vis_hdr.pop("BLTORDER", None) if blt_order_str is not None: self.blt_order = tuple(blt_order_str.split(", ")) if self.blt_order == ("bda",): self._blt_order.form = (1,) self.history = str(vis_hdr.get("HISTORY", "")) if not uvutils._check_history_version( self.history, self.pyuvdata_version_str ): self.history += self.pyuvdata_version_str self.vis_units = vis_hdr.pop("BUNIT", "uncalib") # Added here as a fix since some previous versions of UVData allowed for # all caps versions of UNCALIB. if self.vis_units == "UNCALIB": self.vis_units = "uncalib" self.phase_center_epoch = vis_hdr.pop("EPOCH", None) # PHSFRAME is not a standard UVFITS keyword, but was used by older # versions of pyuvdata. To ensure backwards compatibility, we look # for it first to determine the coordinate frame for the data self.phase_center_frame = vis_hdr.pop("PHSFRAME", None) # If we don't find the special keyword PHSFRAME, try for the more # FITS-standard RADESYS if self.phase_center_frame is None: self.phase_center_frame = vis_hdr.pop("RADESYS", None) # If we still don't find anything, try the two 'special' variant names # for the coordinate frame that seem to have been documented if self.phase_center_frame is None: self.phase_center_frame = vis_hdr.pop("RADESYSA", None) if self.phase_center_frame is None: self.phase_center_frame = vis_hdr.pop("RADESYSa", None) # If we _still_ can't find anything, take a guess based on the value # listed in the EPOCH. The behavior listed here is based off of the # AIPS task REGRD (http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?REGRD) if self.phase_center_frame is None: if self.phase_center_epoch is None: self.phase_center_frame = "icrs" else: frame = "fk4" if (self.phase_center_epoch == 1950.0) else "fk5" self.phase_center_frame = frame self.extra_keywords = uvutils._get_fits_extra_keywords( vis_hdr, keywords_to_skip=["DATE-OBS"] ) # Next read the antenna table ant_hdu = hdu_list[hdunames["AIPS AN"]] # stuff in the header if self.telescope_name is None: self.telescope_name = ant_hdu.header["ARRNAM"] self.gst0 = ant_hdu.header["GSTIA0"] self.rdate = ant_hdu.header["RDATE"] self.earth_omega = ant_hdu.header["DEGPDY"] self.dut1 = ant_hdu.header["UT1UTC"] if "TIMESYS" in ant_hdu.header.keys(): self.timesys = ant_hdu.header["TIMESYS"] else: # CASA misspells this one self.timesys = ant_hdu.header["TIMSYS"] if "FRAME" in ant_hdu.header.keys(): xyz_telescope_frame = ant_hdu.header["FRAME"] else: warnings.warn( "Required Antenna keyword 'FRAME' not set; " "Assuming frame is 'ITRF'." ) xyz_telescope_frame = "ITRF" # get telescope location and antenna positions. # VLA incorrectly sets ARRAYX/ARRAYY/ARRAYZ to 0, and puts array center # in the antenna positions themselves if ( np.isclose(ant_hdu.header["ARRAYX"], 0) and np.isclose(ant_hdu.header["ARRAYY"], 0) and np.isclose(ant_hdu.header["ARRAYZ"], 0) ): x_telescope = np.mean(ant_hdu.data["STABXYZ"][:, 0]) y_telescope = np.mean(ant_hdu.data["STABXYZ"][:, 1]) z_telescope = np.mean(ant_hdu.data["STABXYZ"][:, 2]) self.antenna_positions = ant_hdu.data.field("STABXYZ") - np.array( [x_telescope, y_telescope, z_telescope] ) else: x_telescope = ant_hdu.header["ARRAYX"] y_telescope = ant_hdu.header["ARRAYY"] z_telescope = ant_hdu.header["ARRAYZ"] # AIPS memo #117 says that antenna_positions should be relative to # the array center, but in a rotated ECEF frame so that the x-axis # goes through the local meridian. rot_ecef_positions = ant_hdu.data.field("STABXYZ") latitude, longitude, altitude = uvutils.LatLonAlt_from_XYZ( np.array([x_telescope, y_telescope, z_telescope]), check_acceptability=run_check_acceptability, ) self.antenna_positions = uvutils.ECEF_from_rotECEF( rot_ecef_positions, longitude ) if xyz_telescope_frame == "ITRF": self.telescope_location = np.array( [x_telescope, y_telescope, z_telescope] ) else: if ( latitude_degrees is not None and longitude_degrees is not None and altitude is not None ): self.telescope_location_lat_lon_alt_degrees = ( latitude_degrees, longitude_degrees, altitude, ) # stuff in columns ant_names = ant_hdu.data.field("ANNAME").tolist() self.antenna_names = [] for ant_ind, name in enumerate(ant_names): # Sometimes CASA writes antnames as bytes not strings. # If the ant name is shorter than 8 characters, the trailing # characters may be non-ascii. # This is technically a FITS violation as FITS requires ascii. # So we just ignore any non-ascii bytes in the decode. if isinstance(name, bytes): ant_name_str = str(name.decode("utf-8", "ignore")) else: ant_name_str = name # remove non-printing ascii characters and exclamation points ant_name_str = ( ant_name_str.replace("\x00", "") .replace("\x07", "") .replace("!", "") ) self.antenna_names.append(ant_name_str) # subtract one to get to 0-indexed values rather than 1-indexed values self.antenna_numbers = ant_hdu.data.field("NOSTA") - 1 self.Nants_telescope = len(self.antenna_numbers) if "DIAMETER" in ant_hdu.columns.names: self.antenna_diameters = ant_hdu.data.field("DIAMETER") try: self.set_telescope_params() except ValueError as ve: warnings.warn(str(ve)) # Now read in the random parameter info self._get_parameter_data( vis_hdu, run_check_acceptability, background_lsts=background_lsts, ) # If we find the source attribute in the FITS random paramter list, # the multi_phase_center attribute will be set to True, and we should also # expect that there must be an AIPS SU table. if self.multi_phase_center and "AIPS SU" not in hdunames.keys(): warnings.warn( "UVFITS file is missing AIPS SU table, which is required when " "SOURCE is one of the `random paramters` in the main binary " "table. Bypassing for now, but note that this file _may_ not " "work correctly in UVFITS-based programs (e.g., AIPS, CASA)." ) name = list(self.phase_center_catalog.keys())[0] self.phase_center_ra = self.phase_center_catalog[name]["cat_lon"] self.phase_center_dec = self.phase_center_catalog[name]["cat_lat"] self.phase_center_frame = self.phase_center_catalog[name]["cat_frame"] self.phase_center_epoch = self.phase_center_catalog[name]["cat_epoch"] self.multi_phase_center = False self._phase_center_id_array.required = False self._Nphase.required = False self._phase_center_catalog.required = False self.object_name = name self.Nphase = None self.phase_center_catalog = None self.phase_center_id_array = None elif self.multi_phase_center: su_hdu = hdu_list[hdunames["AIPS SU"]] # We should have as many entries in the AIPS SU header as we have # unique entries in the SOURCES random paramter (checked in the call # to get_parameter_data above) if len(su_hdu.data) != len(np.unique(self.phase_center_id_array)): raise RuntimeError( "The UVFITS file has a malformed AIPS SU table - number of " "sources do not match the number of unique source IDs in the " "primary data header." ) # pragma: no cover # Reset the catalog, since it has some dummy information stored within # it (that was pulled off the primary table) self._remove_phase_center(list(self.phase_center_catalog.keys())[0]) # Set up these arrays so we can assign values to them self.phase_center_app_ra = np.zeros(self.Nblts) self.phase_center_app_dec = np.zeros(self.Nblts) self.phase_center_app_pa = np.zeros(self.Nblts) # Alright, we are off to the races! for idx in range(len(su_hdu.data)): # Grab the indv source entry sou_info = su_hdu.data[idx] sou_id = sou_info["ID. NO."] sou_name = sou_info["SOURCE"] sou_ra = sou_info["RAEPO"] * (np.pi / 180.0) sou_dec = sou_info["DECEPO"] * (np.pi / 180.0) sou_epoch = sou_info["EPOCH"] sou_frame = "fk5" self._add_phase_center( sou_name, cat_id=sou_id, cat_type="sidereal", cat_lon=sou_ra, cat_lat=sou_dec, cat_frame=sou_frame, cat_epoch=sou_epoch, info_source="uvfits file", ) # Calculate the apparent coordinate values self._set_app_coords_helper() if not read_data: # don't read in the data. This means the object is a metadata # only object but that may not matter for many purposes. return # Now read in the data self._get_data( vis_hdu, antenna_nums, antenna_names, ant_str, bls, frequencies, freq_chans, times, time_range, lsts, lst_range, polarizations, blt_inds, False, keep_all_metadata, run_check, check_extra, run_check_acceptability, strict_uvw_antpos_check, fix_old_proj, fix_use_ant_pos, ) def write_uvfits( self, filename, spoof_nonessential=False, write_lst=True, force_phase=False, run_check=True, check_extra=True, run_check_acceptability=True, strict_uvw_antpos_check=False, ): """ Write the data to a uvfits file. Parameters ---------- filename : str The uvfits file to write to. spoof_nonessential : bool Option to spoof the values of optional UVParameters that are not set but are required for uvfits files. write_lst : bool Option to write the LSTs to the metadata (random group parameters). force_phase : bool Option to automatically phase drift scan data to zenith of the first timestamp. run_check : bool Option to check for the existence and proper shapes of parameters before writing the file. check_extra : bool Option to check optional parameters as well as required ones. run_check_acceptability : bool Option to check acceptable range of the values of parameters before writing the file. strict_uvw_antpos_check : bool Option to raise an error rather than a warning if the check that uvws match antenna positions does not pass. Raises ------ ValueError The `phase_type` of the object is "drift" and the `force_phase` keyword is not set. If the frequencies are not evenly spaced or are separated by more than their channel width. The polarization values are not evenly spaced. Any of ['antenna_positions', 'gst0', 'rdate', 'earth_omega', 'dut1', 'timesys'] are not set on the object and `spoof_nonessential` is False. If the `timesys` parameter is not set to "UTC". TypeError If any entry in extra_keywords is not a single string or number. """ if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability, check_freq_spacing=True, strict_uvw_antpos_check=strict_uvw_antpos_check, ) if self.phase_type == "phased": pass elif self.phase_type == "drift": if force_phase: print( "The data are in drift mode and do not have a " "defined phase center. Phasing to zenith of the first " "timestamp." ) phase_time = Time(self.time_array[0], format="jd") self.phase_to_time(phase_time) else: raise ValueError( "The data are in drift mode. " "Set force_phase to true to phase the data " "to zenith of the first timestamp before " "writing a uvfits file." ) if self.flex_spw: # If we have a 'flexible' spectral window, we will need to evaluate the # frequency axis slightly differently. if self.future_array_shapes: freq_array_use = self.freq_array else: freq_array_use = self.freq_array[0, :] nchan_list = [] start_freq_array = [] delta_freq_array = [] for idx in self.spw_array: chan_mask = self.flex_spw_id_array == idx nchan_list += [np.sum(chan_mask)] start_freq_array += [freq_array_use[chan_mask][0]] # Need the array direction here since channel_width is always supposed # to be > 0, but channels can be in decending freq order freq_dir = np.sign(np.median(np.diff(freq_array_use[chan_mask]))) delta_freq_array += [ np.median(self.channel_width[chan_mask]) * freq_dir ] start_freq_array = np.reshape(np.array(start_freq_array), (1, -1)).astype( np.float64 ) delta_freq_array = np.reshape(np.array(delta_freq_array), (1, -1)).astype( np.float64 ) # We've constructed a couple of lists with relevant values, now time to # check them to make sure that the data will write correctly # Make sure that all the windows are of the same size if len(np.unique(nchan_list)) != 1: raise IndexError( "UVFITS format cannot handle spectral windows of different sizes!" ) # Make sure freq values are greater zero. Note that I think _technically # one could write negative frequencies into the dataset, but I am pretty # sure that reduction packages may balk hard. if np.any(start_freq_array <= 0): raise ValueError("Frequency values must be > 0 for UVFITS!") # Make sure the delta values are non-zero if np.any(delta_freq_array == 0): raise ValueError("Something is wrong, frequency values not unique!") # If we passed all the above checks, then it's time to fill some extra # array values. Note that 'ref_freq' is something of a placeholder for # other exciting things... ref_freq = start_freq_array[0, 0] else: if self.future_array_shapes: ref_freq = self.freq_array[0] # we've already run the check_freq_spacing, so channel widths are the # same to our tolerances delta_freq_array = np.array([[np.median(self.channel_width)]]).astype( np.float64 ) else: ref_freq = self.freq_array[0, 0] delta_freq_array = np.array([[self.channel_width]]).astype(np.float64) if self.Npols > 1: pol_spacing = np.diff(self.polarization_array) pol_indexing = np.argsort(np.abs(self.polarization_array)) polarization_array = self.polarization_array[pol_indexing] pol_spacing = np.diff(polarization_array) if np.min(pol_spacing) < np.max(pol_spacing): raise ValueError( "The polarization values are not evenly spaced (probably " "because of a select operation). The uvfits format " "does not support unevenly spaced polarizations." ) pol_spacing = pol_spacing[0] else: pol_indexing = np.asarray([0]) polarization_array = self.polarization_array pol_spacing = 1 for p in self.extra(): param = getattr(self, p) if param.name in self.uvfits_required_extra: if param.value is None: if spoof_nonessential: param.apply_spoof() setattr(self, p, param) else: raise ValueError( "Required attribute {attribute} " "for uvfits not defined. Define or " "set spoof_nonessential to True to " "spoof this attribute.".format(attribute=p) ) # check for unflagged data with nsample = 0. Warn if any found wh_nsample0 = np.where(self.nsample_array == 0) if np.any(~self.flag_array[wh_nsample0]): warnings.warn( "Some unflagged data has nsample = 0. Flags and " "nsamples are combined in uvfits files such that " "these data will appear to be flagged." ) uvfits_data_shape = ( self.Nblts, 1, 1, self.Nspws, self.Nfreqs // self.Nspws, self.Npols, 1, ) # Reshape the arrays so that they match the uvfits conventions # FITS uvw direction convention is opposite ours and Miriad's. # So conjugate the visibilities and flip the uvws: data_array = np.reshape(np.conj(self.data_array), uvfits_data_shape) weights_array = np.reshape( self.nsample_array * np.where(self.flag_array, -1, 1), uvfits_data_shape, ) data_array = data_array[:, :, :, :, :, pol_indexing, :] weights_array = weights_array[:, :, :, :, :, pol_indexing, :] uvfits_array_data = np.concatenate( [data_array.real, data_array.imag, weights_array], axis=6 ) # FITS uvw direction convention is opposite ours and Miriad's. # So conjugate the visibilities and flip the uvws: uvw_array_sec = -1 * self.uvw_array / const.c.to("m/s").value # uvfits convention is that there are two float32 time_arrays and the # float64 sum of them + relevant PZERO = actual JD # a common practice is to set the PZERO to the JD at midnight of the first time jd_midnight = np.floor(self.time_array[0] - 0.5) + 0.5 time_array1 = np.float32(self.time_array - jd_midnight) time_array2 = np.float32( self.time_array - jd_midnight - np.float64(time_array1) ) int_time_array = self.integration_time baselines_use = self.antnums_to_baseline( self.ant_1_array, self.ant_2_array, attempt256=True ) # Set up dictionaries for populating hdu # Note that uvfits antenna arrays are 1-indexed so we add 1 # to our 0-indexed arrays group_parameter_dict = { "UU ": uvw_array_sec[:, 0], "VV ": uvw_array_sec[:, 1], "WW ": uvw_array_sec[:, 2], "DATE ": time_array1, "DATE2 ": time_array2, "BASELINE": baselines_use, "SOURCE ": None, "FREQSEL ": np.ones_like(self.time_array, dtype=np.float32), "ANTENNA1": self.ant_1_array + 1, "ANTENNA2": self.ant_2_array + 1, "SUBARRAY": np.ones_like(self.ant_1_array), "INTTIM ": int_time_array, } if self.multi_phase_center: id_offset = np.any( [ temp_dict["cat_id"] == 0 for temp_dict in self.phase_center_catalog.values() ] ) group_parameter_dict["SOURCE "] = self.phase_center_id_array + id_offset pscal_dict = { "UU ": 1.0, "VV ": 1.0, "WW ": 1.0, "DATE ": 1.0, "DATE2 ": 1.0, "BASELINE": 1.0, "SOURCE ": 1.0, "FREQSEL ": 1.0, "ANTENNA1": 1.0, "ANTENNA2": 1.0, "SUBARRAY": 1.0, "INTTIM ": 1.0, } pzero_dict = { "UU ": 0.0, "VV ": 0.0, "WW ": 0.0, "DATE ": jd_midnight, "DATE2 ": 0.0, "BASELINE": 0.0, "SOURCE ": 0.0, "FREQSEL ": 0.0, "ANTENNA1": 0.0, "ANTENNA2": 0.0, "SUBARRAY": 0.0, "INTTIM ": 0.0, } if write_lst: # lst is a non-standard entry (it's not in the AIPS memo) # but storing it can be useful (e.g. can avoid recalculating it on read) # need to store it in 2 parts to get enough accuracy # angles in uvfits files are stored in degrees, so first convert to degrees lst_array_deg = np.rad2deg(self.lst_array) lst_array_1 = np.float32(lst_array_deg) lst_array_2 = np.float32(lst_array_deg - np.float64(lst_array_1)) group_parameter_dict["LST "] = lst_array_1 pscal_dict["LST "] = 1.0 pzero_dict["LST "] = 0.0 # list contains arrays of [u,v,w,date,baseline]; # each array has shape (Nblts) parnames_use = ["UU ", "VV ", "WW ", "DATE ", "DATE2 "] if np.max(self.ant_1_array) < 255 and np.max(self.ant_2_array) < 255: # if the number of antennas is less than 256 then include both the # baseline array and the antenna arrays in the group parameters. # Otherwise just use the antenna arrays parnames_use.append("BASELINE") if self.multi_phase_center: parnames_use.append("SOURCE ") parnames_use += ["ANTENNA1", "ANTENNA2", "SUBARRAY", "INTTIM "] if write_lst: parnames_use.append("LST ") group_parameter_list = [ group_parameter_dict[parname] for parname in parnames_use ] if write_lst: # add second LST array part parnames_use.append("LST ") group_parameter_list.append(lst_array_2) parnames_use_datefix = copy.deepcopy(parnames_use) parnames_use_datefix[parnames_use_datefix.index("DATE2 ")] = "DATE " hdu = fits.GroupData( uvfits_array_data, parnames=parnames_use_datefix, pardata=group_parameter_list, bitpix=-32, ) hdu = fits.GroupsHDU(hdu) for i, key in enumerate(parnames_use): hdu.header["PSCAL" + str(i + 1) + " "] = pscal_dict[key] hdu.header["PZERO" + str(i + 1) + " "] = pzero_dict[key] # ISO string of first time in self.time_array hdu.header["DATE-OBS"] = Time(self.time_array[0], scale="utc", format="jd").isot hdu.header["CTYPE2 "] = "COMPLEX " hdu.header["CRVAL2 "] = 1.0 hdu.header["CRPIX2 "] = 1.0 hdu.header["CDELT2 "] = 1.0 # Note: This axis is called STOKES to comply with the AIPS memo 117 # However, this confusing because it is NOT a true Stokes axis, # it is really the polarization axis. hdu.header["CTYPE3 "] = "STOKES " hdu.header["CRVAL3 "] = float(polarization_array[0]) hdu.header["CRPIX3 "] = 1.0 hdu.header["CDELT3 "] = float(pol_spacing) hdu.header["CTYPE4 "] = "FREQ " hdu.header["CRVAL4 "] = ref_freq hdu.header["CRPIX4 "] = 1.0 hdu.header["CDELT4 "] = delta_freq_array[0, 0] hdu.header["CTYPE5 "] = "IF " hdu.header["CRVAL5 "] = 1.0 hdu.header["CRPIX5 "] = 1.0 hdu.header["CDELT5 "] = 1.0 hdu.header["CTYPE6 "] = "RA" hdu.header["CRVAL6 "] = self.phase_center_ra_degrees hdu.header["CTYPE7 "] = "DEC" hdu.header["CRVAL7 "] = self.phase_center_dec_degrees hdu.header["BUNIT "] = self.vis_units hdu.header["BSCALE "] = 1.0 hdu.header["BZERO "] = 0.0 name = "MULTI" if self.multi_phase_center else self.object_name hdu.header["OBJECT "] = name hdu.header["TELESCOP"] = self.telescope_name hdu.header["LAT "] = self.telescope_location_lat_lon_alt_degrees[0] hdu.header["LON "] = self.telescope_location_lat_lon_alt_degrees[1] hdu.header["ALT "] = self.telescope_location_lat_lon_alt[2] hdu.header["INSTRUME"] = self.instrument if self.phase_center_epoch is not None: hdu.header["EPOCH "] = float(self.phase_center_epoch) # TODO: This is a keyword that should at some point get added for velocity # reference stuff, although for right now pyuvdata doesn't do any sort of # handling of this, so stub this out for now. # hdu.header["SPECSYS "] = "TOPOCENT" if self.phase_center_frame is not None: # Previous versions of pyuvdata wrote this header as PHSFRAME hdu.header["RADESYS"] = self.phase_center_frame if self.x_orientation is not None: hdu.header["XORIENT"] = self.x_orientation if self.blt_order is not None: blt_order_str = ", ".join(self.blt_order) hdu.header["BLTORDER"] = blt_order_str for line in self.history.splitlines(): hdu.header.add_history(line) # end standard keywords; begin user-defined keywords for key, value in self.extra_keywords.items(): # header keywords have to be 8 characters or less if len(str(key)) > 8: warnings.warn( "key {key} in extra_keywords is longer than 8 " "characters. It will be truncated to 8 as required " "by the uvfits file format.".format(key=key) ) keyword = key[:8].upper() if isinstance(value, (dict, list, np.ndarray)): raise TypeError( "Extra keyword {keyword} is of {keytype}. " "Only strings and numbers are " "supported in uvfits.".format(keyword=key, keytype=type(value)) ) if keyword == "COMMENT": for line in value.splitlines(): hdu.header.add_comment(line) else: hdu.header[keyword] = value # ADD the ANTENNA table staxof = np.zeros(self.Nants_telescope) # 0 specifies alt-az, 6 would specify a phased array mntsta = np.zeros(self.Nants_telescope) # beware, X can mean just about anything poltya = np.full((self.Nants_telescope), "X", dtype=np.object_) polaa = [90.0] + np.zeros(self.Nants_telescope) poltyb = np.full((self.Nants_telescope), "Y", dtype=np.object_) polab = [0.0] + np.zeros(self.Nants_telescope) col1 = fits.Column(name="ANNAME", format="8A", array=self.antenna_names) # AIPS memo #117 says that antenna_positions should be relative to # the array center, but in a rotated ECEF frame so that the x-axis # goes through the local meridian. longitude = self.telescope_location_lat_lon_alt[1] rot_ecef_positions = uvutils.rotECEF_from_ECEF( self.antenna_positions, longitude ) col2 = fits.Column(name="STABXYZ", format="3D", array=rot_ecef_positions) # col3 = fits.Column(name="ORBPARAM", format="0D", array=Norb) # convert to 1-indexed from 0-indexed indicies col4 = fits.Column(name="NOSTA", format="1J", array=self.antenna_numbers + 1) col5 = fits.Column(name="MNTSTA", format="1J", array=mntsta) col6 = fits.Column(name="STAXOF", format="1E", array=staxof) col7 = fits.Column(name="POLTYA", format="1A", array=poltya) col8 = fits.Column(name="POLAA", format="1E", array=polaa) # col9 = fits.Column(name='POLCALA', format='0E', array=Npcal, Nspws) col10 = fits.Column(name="POLTYB", format="1A", array=poltyb) col11 = fits.Column(name="POLAB", format="1E", array=polab) # col12 = fits.Column(name='POLCALB', format='0E', array=Npcal, Nspws) col_list = [col1, col2, col4, col5, col6, col7, col8, col10, col11] # The commented out entires are up above to help check for consistency with the # UVFITS format. ORBPARAM, POLCALA, and POLCALB are all technically required, # but are all of zero length. Added here to help with debugging. if self.antenna_diameters is not None: col12 = fits.Column( name="DIAMETER", format="1E", array=self.antenna_diameters ) col_list.append(col12) cols = fits.ColDefs(col_list) ant_hdu = fits.BinTableHDU.from_columns(cols) ant_hdu.header["EXTNAME"] = "AIPS AN" ant_hdu.header["EXTVER"] = 1 # write XYZ coordinates ant_hdu.header["ARRAYX"] = self.telescope_location[0] ant_hdu.header["ARRAYY"] = self.telescope_location[1] ant_hdu.header["ARRAYZ"] = self.telescope_location[2] ant_hdu.header["FRAME"] = "ITRF" ant_hdu.header["GSTIA0"] = self.gst0 # TODO Karto: Do this more intelligently in the future if self.future_array_shapes: ant_hdu.header["FREQ"] = self.freq_array[0] else: ant_hdu.header["FREQ"] = self.freq_array[0, 0] ant_hdu.header["RDATE"] = self.rdate ant_hdu.header["UT1UTC"] = self.dut1 ant_hdu.header["TIMESYS"] = self.timesys if self.timesys != "UTC": raise ValueError( "This file has a time system {tsys}. " 'Only "UTC" time system files are supported'.format(tsys=self.timesys) ) ant_hdu.header["ARRNAM"] = self.telescope_name ant_hdu.header["NO_IF"] = self.Nspws ant_hdu.header["DEGPDY"] = self.earth_omega # This is just a statically defined value ant_hdu.header["IATUTC"] = 37.0 # set mandatory parameters which are not supported by this object # (or that we just don't understand) ant_hdu.header["NUMORB"] = 0 # note: Bart had this set to 3. We've set it 0 after aips 117. -jph ant_hdu.header["NOPCAL"] = 0 ant_hdu.header["POLTYPE"] = "X-Y LIN" # note: we do not support the concept of "frequency setups" # -- lists of spws given in a SU table. # Karto: Here might be a place to address freq setup? ant_hdu.header["FREQID"] = 1 # if there are offsets in images, this could be the culprit ant_hdu.header["POLARX"] = 0.0 ant_hdu.header["POLARY"] = 0.0 ant_hdu.header["DATUTC"] = 0 # ONLY UTC SUPPORTED # we always output right handed coordinates ant_hdu.header["XYZHAND"] = "RIGHT" # At some point, we can fill these in more completely using astropy IERS # utilities, since CASA/AIPS doesn't want to be told what the apparent coords # are, but rather wants to calculate them itself. # ant_hdu.header["RDATE"] = '2020-07-24T16:35:39.144087' # ant_hdu.header["POLARX"] = 0.0 # ant_hdu.header["POLARY"] = 0.0 fits_tables = [hdu, ant_hdu] # If needed, add the FQ table if self.Nspws > 1: fmt_d = "%iD" % self.Nspws fmt_e = "%iE" % self.Nspws fmt_j = "%iJ" % self.Nspws # TODO Karto: Temp implementation until we fix some other things in UVData if_freq = start_freq_array - ref_freq ch_width = delta_freq_array tot_bw = (self.Nfreqs // self.Nspws) * np.abs(delta_freq_array) sideband = np.sign(delta_freq_array) * np.ones((1, self.Nspws)) # FRQSEL is hardcoded at the moment, could think about doing this # at least somewhat more intelligently... col_list = [ fits.Column(name="FRQSEL", format="1J", array=[1]), fits.Column(name="IF FREQ", unit="HZ", format=fmt_d, array=if_freq), fits.Column(name="CH WIDTH", unit="HZ", format=fmt_e, array=ch_width), fits.Column( name="TOTAL BANDWIDTH", unit="HZ", format=fmt_e, array=tot_bw ), fits.Column(name="SIDEBAND", format=fmt_j, array=sideband), ] fq_hdu = fits.BinTableHDU.from_columns(fits.ColDefs(col_list)) fq_hdu.header["EXTNAME"] = "AIPS FQ" fq_hdu.header["NO_IF"] = self.Nspws fits_tables.append(fq_hdu) # If needed, add the SU table if self.multi_phase_center: fmt_d = "%iD" % self.Nspws fmt_e = "%iE" % self.Nspws fmt_j = "%iJ" % self.Nspws int_zeros = np.zeros(self.Nphase, dtype=int) flt_zeros = np.zeros(self.Nphase, dtype=np.float64) zero_arr = np.zeros((self.Nphase, self.Nspws)) sou_ids = np.zeros(self.Nphase) name_arr = np.array(list(self.phase_center_catalog.keys())) cal_code = [" "] * self.Nphase # These are things we need to flip through on a source-by-source basis ra_arr = np.zeros(self.Nphase, dtype=np.float64) app_ra = np.zeros(self.Nphase, dtype=np.float64) dec_arr = np.zeros(self.Nphase, dtype=np.float64) app_dec = np.zeros(self.Nphase, dtype=np.float64) epo_arr = np.zeros(self.Nphase, dtype=np.float64) pm_ra = np.zeros(self.Nphase, dtype=np.float64) pm_dec = np.zeros(self.Nphase, dtype=np.float64) rest_freq = np.zeros((self.Nphase, self.Nspws), dtype=np.float64) for idx, name in enumerate(name_arr): phase_dict = self.phase_center_catalog[name] # This is a stub for something smarter in the future sou_ids[idx] = self.phase_center_catalog[name]["cat_id"] + id_offset rest_freq[idx][:] =
np.mean(self.freq_array)
numpy.mean
# DNN (prediction) import numpy as np import tensorflow as tf import datetime import ctr_funcs as func import config_deepmcp as cfg import os import shutil # config str_txt = cfg.output_file_name base_path = './tmp' model_saving_addr = base_path + '/dnn_' + str_txt + '/' output_file_name = base_path + '/dnn_' + str_txt + '.txt' num_csv_col = cfg.num_csv_col train_file_name = cfg.train_file_name val_file_name = cfg.val_file_name test_file_name = cfg.test_file_name batch_size = cfg.batch_size n_ft = cfg.n_ft k = cfg.k kp_prob = cfg.kp_prob n_epoch = cfg.n_epoch max_num_lower_ct = cfg.max_num_lower_ct record_step_size = cfg.record_step_size layer_dim = cfg.layer_dim layer_dim_match = cfg.layer_dim_match eta = cfg.eta # learning rate opt_alg = cfg.opt_alg n_one_hot_slot = cfg.n_one_hot_slot n_mul_hot_slot = cfg.n_mul_hot_slot max_len_per_slot = cfg.max_len_per_slot label_col_idx = 0 record_defaults = [[0]] * num_csv_col record_defaults[0] = [0.0] total_num_ft_col = num_csv_col - 1 # create dir if not os.path.exists(base_path): os.mkdir(base_path) # remove dir if os.path.isdir(model_saving_addr): shutil.rmtree(model_saving_addr) # for DNN idx_1 = n_one_hot_slot idx_2 = idx_1 + n_mul_hot_slot * max_len_per_slot ########################################################### ########################################################### print('Loading data start!') tf.set_random_seed(123) # load training data train_ft, train_label = func.tf_input_pipeline(train_file_name, batch_size, n_epoch, label_col_idx, record_defaults) n_val_inst = func.count_lines(val_file_name[0]) val_ft, val_label = func.tf_input_pipeline(val_file_name, n_val_inst, 1, label_col_idx, record_defaults) n_val_batch = n_val_inst // batch_size # load test data test_ft, test_label = func.tf_input_pipeline_test(test_file_name, batch_size, 1, label_col_idx, record_defaults) print('Loading data set 1 done!') ######################################################################## # add mask def get_masked_one_hot(x_input_one_hot): data_mask = tf.cast(tf.greater(x_input_one_hot, 0), tf.float32) data_mask = tf.expand_dims(data_mask, axis=2) data_mask = tf.tile(data_mask, (1, 1, k)) # output: (?, n_one_hot_slot, k) data_embed_one_hot = tf.nn.embedding_lookup(emb_mat, x_input_one_hot) data_embed_one_hot_masked = tf.multiply(data_embed_one_hot, data_mask) return data_embed_one_hot_masked def get_masked_mul_hot(x_input_mul_hot): data_mask = tf.cast(tf.greater(x_input_mul_hot, 0), tf.float32) data_mask = tf.expand_dims(data_mask, axis=3) data_mask = tf.tile(data_mask, (1, 1, 1, k)) # output: (?, n_mul_hot_slot, max_len_per_slot, k) data_embed_mul_hot = tf.nn.embedding_lookup(emb_mat, x_input_mul_hot) data_embed_mul_hot_masked = tf.multiply(data_embed_mul_hot, data_mask) # output: (?, n_mul_hot_slot, k) data_embed_mul_hot_masked = tf.reduce_sum(data_embed_mul_hot_masked, 2) return data_embed_mul_hot_masked # output: (?, n_one_hot_slot + n_mul_hot_slot, k) def get_concate_embed(x_input_one_hot, x_input_mul_hot): data_embed_one_hot = get_masked_one_hot(x_input_one_hot) data_embed_mul_hot = get_masked_mul_hot(x_input_mul_hot) data_embed_concat = tf.concat([data_embed_one_hot, data_embed_mul_hot], 1) return data_embed_concat # input: (?, n_slot*k) # output: (?, 1) def get_pred_output(data_embed_concat): # include output layer n_layer = len(layer_dim) data_embed_dnn = tf.reshape(data_embed_concat, [-1, (n_one_hot_slot + n_mul_hot_slot) * k]) cur_layer = data_embed_dnn # loop to create DNN struct for i in range(0, n_layer): # output layer, linear activation if i == n_layer - 1: cur_layer = tf.matmul(cur_layer, weight_dict[i]) + bias_dict[i] else: cur_layer = tf.nn.relu(tf.matmul(cur_layer, weight_dict[i]) + bias_dict[i]) cur_layer = tf.nn.dropout(cur_layer, keep_prob) y_hat = cur_layer return y_hat ########################################################### ########################################################### # input for prediction loss x_input = tf.placeholder(tf.int32, shape=[None, total_num_ft_col]) # shape=[None, n_one_hot_slot] x_input_one_hot = x_input[:, 0:idx_1] x_input_mul_hot = x_input[:, idx_1:idx_2] # shape=[None, n_mul_hot_slot, max_len_per_slot] x_input_mul_hot = tf.reshape(x_input_mul_hot, (-1, n_mul_hot_slot, max_len_per_slot)) # target vec for l1 y_target = tf.placeholder(tf.float32, shape=[None, 1]) # dropout keep prob keep_prob = tf.placeholder(tf.float32) # emb_mat dim add 1 -> for padding (idx = 0) with tf.device('/cpu:0'): emb_mat = tf.Variable(tf.random_normal([n_ft + 1, k], stddev=0.01)) ################################ # prediction subnet FC layers, including output layer n_layer = len(layer_dim) in_dim = (n_one_hot_slot + n_mul_hot_slot) * k weight_dict = {} bias_dict = {} # loop to create DNN vars for i in range(0, n_layer): out_dim = layer_dim[i] weight_dict[i] = tf.Variable(tf.random_normal(shape=[in_dim, out_dim], stddev=np.sqrt(2.0 / (in_dim + out_dim)))) bias_dict[i] = tf.Variable(tf.constant(0.1, shape=[out_dim])) in_dim = layer_dim[i] ################################ data_embed_concat = get_concate_embed(x_input_one_hot, x_input_mul_hot) y_hat = get_pred_output(data_embed_concat) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_hat, labels=y_target)) ############################# # prediction ############################# pred_score = tf.sigmoid(y_hat) if opt_alg == 'Adam': optimizer = tf.train.AdamOptimizer(eta).minimize(loss) else: # default optimizer = tf.train.AdagradOptimizer(eta).minimize(loss) ######################################## # Launch the graph. config = tf.ConfigProto(log_device_placement=False) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.3 with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) saver_val = tf.train.Saver() train_loss_list = [] val_auc_list = [] best_n_round = 0 best_val_auc = 0 lower_ct = 0 early_stop_flag = 0 val_ft_inst, val_label_inst = sess.run([val_ft, val_label]) func.print_time() print('Start train loop') epoch = -1 try: while not coord.should_stop(): epoch += 1 train_ft_inst, train_label_inst = sess.run([train_ft, train_label]) train_label_inst = np.transpose([train_label_inst]) # training sess.run(optimizer, feed_dict={x_input: train_ft_inst, y_target: train_label_inst, \ keep_prob: kp_prob}) # record loss and accuracy every step_size generations if (epoch + 1) % record_step_size == 0: train_loss_temp = sess.run(loss, feed_dict={ \ x_input: train_ft_inst, y_target: train_label_inst, \ keep_prob: 1.0}) train_loss_list.append(train_loss_temp) val_pred_score_all = [] val_label_all = [] for iii in range(n_val_batch): # get batch start_idx = iii * batch_size end_idx = (iii + 1) * batch_size cur_val_ft = val_ft_inst[start_idx: end_idx] cur_val_label = val_label_inst[start_idx: end_idx] # pred score cur_val_pred_score = sess.run(pred_score, feed_dict={ \ x_input: cur_val_ft, keep_prob: 1.0}) val_pred_score_all.append(cur_val_pred_score.flatten()) val_label_all.append(cur_val_label) # calculate auc val_pred_score_re = func.list_flatten(val_pred_score_all) val_label_re = func.list_flatten(val_label_all) val_auc_temp, _, _ = func.cal_auc(val_pred_score_re, val_label_re) # record all val results val_auc_list.append(val_auc_temp) # record best and save models if val_auc_temp > best_val_auc: best_val_auc = val_auc_temp best_n_round = epoch # Save the variables to disk save_path = saver_val.save(sess, model_saving_addr) print("Model saved in: %s" % save_path) # count of consecutive lower if val_auc_temp < best_val_auc: lower_ct += 1 # once higher or equal, set to 0 else: lower_ct = 0 if lower_ct >= max_num_lower_ct: early_stop_flag = 1 auc_and_loss = [epoch + 1, train_loss_temp, val_auc_temp] # round to given number of decimals auc_and_loss = [np.round(xx, 4) for xx in auc_and_loss] func.print_time() print('Generation # {}. Train Loss: {:.4f}. Val Avg AUC: {:.4f}.' \ .format(*auc_and_loss)) # stop while loop if early_stop_flag == 1: break except tf.errors.OutOfRangeError: func.print_time() print('Done training -- epoch limit reached') # restore model saver_val.restore(sess, model_saving_addr) print("Model restored.") # load test data test_pred_score_all = [] test_label_all = [] test_loss_all = [] try: while True: test_ft_inst, test_label_inst = sess.run([test_ft, test_label]) cur_test_pred_score = sess.run(pred_score, feed_dict={ \ x_input: test_ft_inst, keep_prob: 1.0}) test_pred_score_all.append(cur_test_pred_score.flatten()) test_label_all.append(test_label_inst) cur_test_loss = sess.run(loss, feed_dict={ \ x_input: test_ft_inst, \ y_target: np.transpose([test_label_inst]), keep_prob: 1.0}) test_loss_all.append(cur_test_loss) except tf.errors.OutOfRangeError: func.print_time() print('Done testing -- epoch limit reached') finally: coord.request_stop() coord.join(threads) # calculate auc test_pred_score_re = func.list_flatten(test_pred_score_all) test_label_re = func.list_flatten(test_label_all) test_auc, _, _ = func.cal_auc(test_pred_score_re, test_label_re) test_rmse = func.cal_rmse(test_pred_score_re, test_label_re) test_loss = np.mean(test_loss_all) # rounding test_auc =
np.round(test_auc, 4)
numpy.round
#!/usr/bin/env python """ @author: cdeline bifacial_radiance.py - module to develop radiance bifacial scenes, including gendaylit and gencumulativesky 7/5/2016 - test script based on G173_journal_height 5/1/2017 - standalone module Pre-requisites: This software is written for Python >3.6 leveraging many Anaconda tools (e.g. pandas, numpy, etc) *RADIANCE software should be installed from https://github.com/NREL/Radiance/releases *If you want to use gencumulativesky, move 'gencumulativesky.exe' from 'bifacial_radiance\data' into your RADIANCE source directory. *If using a Windows machine you should download the Jaloxa executables at http://www.jaloxa.eu/resources/radiance/radwinexe.shtml#Download * Installation of bifacial_radiance from the repo: 1. Clone the repo 2. Navigate to the directory using the command prompt 3. run `pip install -e . ` Overview: Bifacial_radiance includes several helper functions to make it easier to evaluate different PV system orientations for rear bifacial irradiance. Note that this is simply an optical model - identifying available rear irradiance under different conditions. For a detailed demonstration example, look at the .ipnyb notebook in \docs\ There are two solar resource modes in bifacial_radiance: `gendaylit` uses hour-by-hour solar resource descriptions using the Perez diffuse tilted plane model. `gencumulativesky` is an annual average solar resource that combines hourly Perez skies into one single solar source, and computes an annual average. bifacial_radiance includes five object-oriented classes: RadianceObj: top level class to work on radiance objects, keep track of filenames, sky values, PV module type etc. GroundObj: details for the ground surface and reflectance SceneObj: scene information including array configuration (row spacing, clearance or hub height) MetObj: meteorological data from EPW (energyplus) file. Future work: include other file support including TMY files AnalysisObj: Analysis class for plotting and reporting """ import logging logging.basicConfig() LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.DEBUG) import os, datetime from subprocess import Popen, PIPE # replacement for os.system() import pandas as pd import numpy as np import warnings #from input import * # Mutual parameters across all processes #daydate=sys.argv[1] global DATA_PATH # path to data files including module.json. Global context #DATA_PATH = os.path.abspath(pkg_resources.resource_filename('bifacial_radiance', 'data/') ) DATA_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data')) def _findme(lst, a): #find string match in a list. script from stackexchange return [i for i, x in enumerate(lst) if x == a] def _missingKeyWarning(dictype, missingkey, newvalue): # prints warnings if type(newvalue) is bool: valueunit = '' else: valueunit = 'm' print("Warning: {} Dictionary Parameters passed, but {} is missing. ".format(dictype, missingkey)) print("Setting it to default value of {} {} to continue\n".format(newvalue, valueunit)) def _normRGB(r, g, b): #normalize by each color for human vision sensitivity return r*0.216+g*0.7152+b*0.0722 def _popen(cmd, data_in, data_out=PIPE): """ Helper function subprocess.popen replaces os.system - gives better input/output process control usage: pass <data_in> to process <cmd> and return results based on rgbeimage.py (<NAME> 2010) """ if type(cmd) == str: cmd = str(cmd) # gets rid of unicode oddities shell=True else: shell=False p = Popen(cmd, bufsize=-1, stdin=PIPE, stdout=data_out, stderr=PIPE, shell=shell) #shell=True required for Linux? quick fix, but may be security concern data, err = p.communicate(data_in) #if err: # return 'message: '+err.strip() #if data: # return data. in Python3 this is returned as `bytes` and needs to be decoded if err: if data: returntuple = (data.decode('latin1'), 'message: '+err.decode('latin1').strip()) else: returntuple = (None, 'message: '+err.decode('latin1').strip()) else: if data: returntuple = (data.decode('latin1'), None) #Py3 requires decoding else: returntuple = (None, None) return returntuple def _interactive_load(title=None): # Tkinter file picker import tkinter from tkinter import filedialog root = tkinter.Tk() root.withdraw() #Start interactive file input root.attributes("-topmost", True) #Bring window into foreground return filedialog.askopenfilename(parent=root, title=title) #initialdir = data_dir def _interactive_directory(title=None): # Tkinter directory picker. Now Py3.6 compliant! import tkinter from tkinter import filedialog root = tkinter.Tk() root.withdraw() #Start interactive file input root.attributes("-topmost", True) #Bring to front return filedialog.askdirectory(parent=root, title=title) def _modDict(originaldict, moddict, relative=False): ''' Compares keys in originaldict with moddict and updates values of originaldict to moddict if existing. Parameters ---------- originaldict : dictionary Original dictionary calculated, for example frontscan or backscan dictionaries. moddict : dictionary Modified dictinoary, for example modscan['xstart'] = 0 to change position of x. relative : Bool if passing modscanfront and modscanback to modify dictionarie of positions, this sets if the values passed to be updated are relative or absolute. Default is absolute value (relative=False) Returns ------- originaldict : dictionary Updated original dictionary with values from moddict. ''' newdict = originaldict.copy() for key in moddict: try: if relative: newdict[key] = moddict[key] + newdict[key] else: newdict[key] = moddict[key] except: print("Wrong key in modified dictionary") return newdict def _heightCasesSwitcher(sceneDict, preferred='hub_height', nonpreferred='clearance_height'): """ Parameters ---------- sceneDict : dictionary Dictionary that might contain more than one way of defining height for the array: `clearance_height`, `hub_height`, `height`* * height deprecated from sceneDict. This function helps choose * which definition to use. preferred : str, optional When sceneDict has hub_height and clearance_height, or it only has height, it will leave only the preferred option.. The default is 'hub_height'. nonpreferred : TYPE, optional When sceneDict has hub_height and clearance_height, it wil ldelete this nonpreferred option. The default is 'clearance_height'. Returns ------- sceneDict : TYPE Dictionary now containing the appropriate definition for system height. use_clearanceheight : Bool Helper variable to specify if dictionary has only clearancehet for use inside `makeScene1axis`. Will get deprecated once that internal function is streamlined. """ # TODO: When we update to python 3.9.0, this could be a Switch Cases (Structural Pattern Matching): heightCases = '_' if 'height' in sceneDict: heightCases = heightCases+'height__' if 'clearance_height' in sceneDict: heightCases = heightCases+'clearance_height__' if 'hub_height' in sceneDict: heightCases = heightCases+'hub_height__' use_clearanceheight = False # CASES: if heightCases == '_height__': print("sceneDict Warning: 'height' is being deprecated. "+ "Renaming as "+preferred) sceneDict[preferred]=sceneDict['height'] del sceneDict['height'] elif heightCases == '_clearance_height__': #print("Using clearance_height.") use_clearanceheight = True elif heightCases == '_hub_height__': #print("Using hub_height.'") pass elif heightCases == '_height__clearance_height__': print("sceneDict Warning: 'clearance_height and 'height' "+ "(deprecated) are being passed. removing 'height' "+ "from sceneDict for this tracking routine") del sceneDict['height'] use_clearanceheight = True elif heightCases == '_height__hub_height__': print("sceneDict Warning: 'height' is being deprecated. Using 'hub_height'") del sceneDict['height'] elif heightCases == '_height__clearance_height__hub_height__': print("sceneDict Warning: 'hub_height', 'clearance_height'"+ ", and 'height' are being passed. Removing 'height'"+ " (deprecated) and "+ nonpreferred+ ", using "+preferred) del sceneDict[nonpreferred] elif heightCases == '_clearance_height__hub_height__': print("sceneDict Warning: 'hub_height' and 'clearance_height'"+ " are being passed. Using "+preferred+ " and removing "+ nonpreferred) del sceneDict[nonpreferred] else: print ("sceneDict Error! no argument in sceneDict found "+ "for 'hub_height', 'height' nor 'clearance_height'. "+ "Exiting routine.") return sceneDict, use_clearanceheight def _is_leap_and_29Feb(s): # Removes Feb. 29 if it a leap year. return (s.index.year % 4 == 0) & \ ((s.index.year % 100 != 0) | (s.index.year % 400 == 0)) & \ (s.index.month == 2) & (s.index.day == 29) def _subhourlydatatoGencumskyformat(gencumskydata, label='right'): # Subroutine to resample, pad, remove leap year and get data in the # 8760 hourly format # for saving the temporary files for gencumsky in _saveTempTMY and # _makeTrackerCSV #Resample to hourly. Gencumsky wants right-labeled data. gencumskydata = gencumskydata.resample('60T', closed='right', label='right').mean() if label == 'left': #switch from left to right labeled by adding an hour gencumskydata.index = gencumskydata.index + pd.to_timedelta('1H') # Padding tzinfo = gencumskydata.index.tzinfo padstart = pd.to_datetime('%s-%s-%s %s:%s' % (gencumskydata.index.year[0],1,1,1,0 ) ).tz_localize(tzinfo) padend = pd.to_datetime('%s-%s-%s %s:%s' % (gencumskydata.index.year[0]+1,1,1,0,0) ).tz_localize(tzinfo) gencumskydata.iloc[0] = 0 # set first datapt to zero to forward fill w zeros gencumskydata.iloc[-1] = 0 # set last datapt to zero to forward fill w zeros # check if index exists. I'm sure there is a way to do this backwards. if any(gencumskydata.index.isin([padstart])): print("Data starts on Jan. 01") else: #gencumskydata=gencumskydata.append(pd.DataFrame(index=[padstart])) gencumskydata=pd.concat([gencumskydata,pd.DataFrame(index=[padstart])]) if any(gencumskydata.index.isin([padend])): print("Data ends on Dec. 31st") else: #gencumskydata=gencumskydata.append(pd.DataFrame(index=[padend])) gencumskydata=pd.concat([gencumskydata, pd.DataFrame(index=[padend])]) gencumskydata.loc[padstart]=0 gencumskydata.loc[padend]=0 gencumskydata=gencumskydata.sort_index() # Fill empty timestamps with zeros gencumskydata = gencumskydata.resample('60T').asfreq().fillna(0) # Mask leap year leapmask = ~(_is_leap_and_29Feb(gencumskydata)) gencumskydata = gencumskydata[leapmask] if (gencumskydata.index.year[-1] == gencumskydata.index.year[-2]+1) and len(gencumskydata)>8760: gencumskydata = gencumskydata[:-1] return gencumskydata # end _subhourlydatatoGencumskyformat class RadianceObj: """ The RadianceObj top level class is used to work on radiance objects, keep track of filenames, sky values, PV module configuration, etc. Parameters ---------- name : text to append to output files filelist : list of Radiance files to create oconv nowstr : current date/time string path : working directory with Radiance materials and objects Methods ------- __init__ : initialize the object _setPath : change the working directory """ def __repr__(self): return str(self.__dict__) def __init__(self, name=None, path=None, hpc=False): ''' initialize RadianceObj with path of Radiance materials and objects, as well as a basename to append to Parameters ---------- name: string, append temporary and output files with this value path: location of Radiance materials and objects hpc: Keeps track if User is running simulation on HPC so some file reading routines try reading a bit longer and some writing routines (makeModule) that overwrite themselves are inactivated. Returns ------- none ''' self.metdata = {} # data from epw met file self.data = {} # data stored at each timestep self.path = "" # path of working directory self.name = "" # basename to append #self.filelist = [] # list of files to include in the oconv self.materialfiles = [] # material files for oconv self.skyfiles = [] # skyfiles for oconv self.radfiles = [] # scene rad files for oconv self.octfile = [] #octfile name for analysis self.Wm2Front = 0 # cumulative tabulation of front W/m2 self.Wm2Back = 0 # cumulative tabulation of rear W/m2 self.backRatio = 0 # ratio of rear / front Wm2 self.nMods = None # number of modules per row self.nRows = None # number of rows per scene self.hpc = hpc # HPC simulation is being run. Some read/write functions are modified now = datetime.datetime.now() self.nowstr = str(now.date())+'_'+str(now.hour)+str(now.minute)+str(now.second) # DEFAULTS if name is None: self.name = self.nowstr # set default filename for output files else: self.name = name self.basename = name # add backwards compatibility for prior versions #self.__name__ = self.name #optional info #self.__str__ = self.__name__ #optional info if path is None: self._setPath(os.getcwd()) else: self._setPath(path) # load files in the /materials/ directory self.materialfiles = self.returnMaterialFiles('materials') def _setPath(self, path): """ setPath - move path and working directory """ self.path = os.path.abspath(path) print('path = '+ path) try: os.chdir(self.path) except OSError as exc: LOGGER.error('Path doesn''t exist: %s' % (path)) LOGGER.exception(exc) raise(exc) # check for path in the new Radiance directory: def _checkPath(path): # create the file structure if it doesn't exist if not os.path.exists(path): os.makedirs(path) print('Making path: '+path) _checkPath('images'); _checkPath('objects') _checkPath('results'); _checkPath('skies'); _checkPath('EPWs') # if materials directory doesn't exist, populate it with ground.rad # figure out where pip installed support files. from shutil import copy2 if not os.path.exists('materials'): #copy ground.rad to /materials os.makedirs('materials') print('Making path: materials') copy2(os.path.join(DATA_PATH, 'ground.rad'), 'materials') # if views directory doesn't exist, create it with two default views - side.vp and front.vp if not os.path.exists('views'): os.makedirs('views') with open(os.path.join('views', 'side.vp'), 'w') as f: f.write('rvu -vtv -vp -10 1.5 3 -vd 1.581 0 -0.519234 '+ '-vu 0 0 1 -vh 45 -vv 45 -vo 0 -va 0 -vs 0 -vl 0') with open(os.path.join('views', 'front.vp'), 'w') as f: f.write('rvu -vtv -vp 0 -3 5 -vd 0 0.894427 -0.894427 '+ '-vu 0 0 1 -vh 45 -vv 45 -vo 0 -va 0 -vs 0 -vl 0') def getfilelist(self): """ Return concat of matfiles, radfiles and skyfiles """ return self.materialfiles + self.skyfiles + self.radfiles def save(self, savefile=None): """ Pickle the radiance object for further use. Very basic operation - not much use right now. Parameters ---------- savefile : str Optional savefile name, with .pickle extension. Otherwise default to save.pickle """ import pickle if savefile is None: savefile = 'save.pickle' with open(savefile, 'wb') as f: pickle.dump(self, f) print('Saved to file {}'.format(savefile)) #def setHPC(self, hpc=True): # self.hpc = hpc def addMaterial(self, material, Rrefl, Grefl, Brefl, materialtype='plastic', specularity=0, roughness=0, material_file=None, comment=None, rewrite=True): """ Function to add a material in Radiance format. Parameters ---------- material : str DESCRIPTION. Rrefl : str Reflectivity for first wavelength, or 'R' bin. Grefl : str Reflecstrtivity for second wavelength, or 'G' bin. Brefl : str Reflectivity for third wavelength, or 'B' bin. materialtype : str, optional Type of material. The default is 'plastic'. Others can be mirror, trans, etc. See RADIANCe documentation. specularity : str, optional Ratio of reflection that is specular and not diffuse. The default is 0. roughness : str, optional This is the microscopic surface roughness: the more jagged the facets are, the rougher it is and more blurry reflections will appear. material_file : str, optional DESCRIPTION. The default is None. comment : str, optional DESCRIPTION. The default is None. rewrite : str, optional DESCRIPTION. The default is True. Returns ------- None. Just adds the material to the material_file specified or the default in ``materials\ground.rad``. References: See examples of documentation for more materialtype details. http://www.jaloxa.eu/resources/radiance/documentation/docs/radiance_tutorial.pdf page 10 Also, you can use https://www.jaloxa.eu/resources/radiance/colour_picker.shtml to have a sense of how the material would look with the RGB values as well as specularity and roughness. To understand more on reflectivity, specularity and roughness values https://thinkmoult.com/radiance-specularity-and-roughness-value-examples.html """ if material_file is None: material_file = 'ground.rad' matfile = os.path.join('materials', material_file) with open(matfile, 'r') as fp: buffer = fp.readlines() # search buffer for material matching requested addition found = False for i in buffer: if materialtype and material in i: loc = buffer.index(i) found = True break if found: if rewrite: print('Material exists, overwriting...\n') if comment is None: pre = loc - 1 else: pre = loc - 2 # commit buffer without material match with open(matfile, 'w') as fp: for i in buffer[0:pre]: fp.write(i) for i in buffer[loc+4:]: fp.write(i) if (found and rewrite) or (not found): # append -- This will create the file if it doesn't exist file_object = open(matfile, 'a') file_object.write("\n\n") if comment is not None: file_object.write("#{}".format(comment)) file_object.write("\nvoid {} {}".format(materialtype, material)) if materialtype == 'glass': file_object.write("\n0\n0\n3 {} {} {}".format(Rrefl, Grefl, Brefl)) else: file_object.write("\n0\n0\n5 {} {} {} {} {}".format(Rrefl, Grefl, Brefl, specularity, roughness)) file_object.close() print('Added material {} to file {}'.format(material, material_file)) if (found and not rewrite): print('Material already exists\n') def exportTrackerDict(self, trackerdict=None, savefile=None, reindex=None): """ Use :py:func:`~bifacial_radiance.load._exportTrackerDict` to save a TrackerDict output as a csv file. Parameters ---------- trackerdict The tracker dictionary to save savefile : str path to .csv save file location reindex : bool True saves the trackerdict in TMY format, including rows for hours where there is no sun/irradiance results (empty) """ import bifacial_radiance.load if trackerdict is None: trackerdict = self.trackerdict if savefile is None: savefile = _interactive_load(title='Select a .csv file to save to') if reindex is None: if self.cumulativesky is True: # don't re-index for cumulativesky, # which has angles for index reindex = False else: reindex = True if self.cumulativesky is True and reindex is True: # don't re-index for cumulativesky, # which has angles for index print ("\n Warning: For cumulativesky simulations, exporting the " "TrackerDict requires reindex = False. Setting reindex = " "False and proceeding") reindex = False bifacial_radiance.load._exportTrackerDict(trackerdict, savefile, reindex) def loadtrackerdict(self, trackerdict=None, fileprefix=None): """ Use :py:class:`bifacial_radiance.load._loadtrackerdict` to browse the results directory and load back any results saved in there. Parameters ---------- trackerdict fileprefix : str """ from bifacial_radiance.load import loadTrackerDict if trackerdict is None: trackerdict = self.trackerdict (trackerdict, totaldict) = loadTrackerDict(trackerdict, fileprefix) self.Wm2Front = totaldict['Wm2Front'] self.Wm2Back = totaldict['Wm2Back'] def returnOctFiles(self): """ Return files in the root directory with `.oct` extension Returns ------- oct_files : list List of .oct files """ oct_files = [f for f in os.listdir(self.path) if f.endswith('.oct')] #self.oct_files = oct_files return oct_files def returnMaterialFiles(self, material_path=None): """ Return files in the Materials directory with .rad extension appends materials files to the oconv file list Parameters ---------- material_path : str Optional parameter to point to a specific materials directory. otherwise /materials/ is default Returns ------- material_files : list List of .rad files """ if material_path is None: material_path = 'materials' material_files = [f for f in os.listdir(os.path.join(self.path, material_path)) if f.endswith('.rad')] materialfilelist = [os.path.join(material_path, f) for f in material_files] self.materialfiles = materialfilelist return materialfilelist def setGround(self, material=None, material_file=None): """ Use GroundObj constructor class and return a ground object Parameters ------------ material : numeric or str If number between 0 and 1 is passed, albedo input is assumed and assigned. If string is passed with the name of the material desired. e.g. 'litesoil', properties are searched in `material_file`. Default Material names to choose from: litesoil, concrete, white_EPDM, beigeroof, beigeroof_lite, beigeroof_heavy, black, asphalt material_file : str Filename of the material information. Default `ground.rad` Returns ------- self.ground : tuple self.ground.normval : numeric Normalized color value self.ground.ReflAvg : numeric Average reflectance """ if material is None: try: if self.metdata.albedo is not None: material = self.metdata.albedo print(" Assigned Albedo from metdata.albedo") except: pass self.ground = GroundObj(material, material_file) def getEPW(self, lat=None, lon=None, GetAll=False): """ Subroutine to download nearest epw files to latitude and longitude provided, into the directory \EPWs\ based on github/aahoo. .. warning:: verify=false is required to operate within NREL's network. to avoid annoying warnings, insecurerequestwarning is disabled currently this function is not working within NREL's network. annoying! Parameters ---------- lat : decimal Used to find closest EPW file. lon : decimal Longitude value to find closest EPW file. GetAll : boolean Download all available files. Note that no epw file will be loaded into memory """ import requests, re from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) hdr = {'User-Agent' : "Magic Browser", 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' } path_to_save = 'EPWs' # create a directory and write the name of directory here if not os.path.exists(path_to_save): os.makedirs(path_to_save) def _returnEPWnames(): ''' return a dataframe with the name, lat, lon, url of available files''' r = requests.get('https://github.com/NREL/EnergyPlus/raw/develop/weather/master.geojson', verify=False) data = r.json() #metadata for available files #download lat/lon and url details for each .epw file into a dataframe df = pd.DataFrame({'url':[], 'lat':[], 'lon':[], 'name':[]}) for location in data['features']: match = re.search(r'href=[\'"]?([^\'" >]+)', location['properties']['epw']) if match: url = match.group(1) name = url[url.rfind('/') + 1:] lontemp = location['geometry']['coordinates'][0] lattemp = location['geometry']['coordinates'][1] dftemp = pd.DataFrame({'url':[url], 'lat':[lattemp], 'lon':[lontemp], 'name':[name]}) #df = df.append(dftemp, ignore_index=True) df = pd.concat([df, dftemp], ignore_index=True) return df def _findClosestEPW(lat, lon, df): #locate the record with the nearest lat/lon errorvec = np.sqrt(np.square(df.lat - lat) + np.square(df.lon - lon)) index = errorvec.idxmin() url = df['url'][index] name = df['name'][index] return url, name def _downloadEPWfile(url, path_to_save, name): r = requests.get(url, verify=False, headers=hdr) if r.ok: filename = os.path.join(path_to_save, name) # py2 and 3 compatible: binary write, encode text first with open(filename, 'wb') as f: f.write(r.text.encode('ascii', 'ignore')) print(' ... OK!') else: print(' connection error status code: %s' %(r.status_code)) r.raise_for_status() # Get the list of EPW filenames and lat/lon df = _returnEPWnames() # find the closest EPW file to the given lat/lon if (lat is not None) & (lon is not None) & (GetAll is False): url, name = _findClosestEPW(lat, lon, df) # download the EPW file to the local drive. print('Getting weather file: ' + name) _downloadEPWfile(url, path_to_save, name) self.epwfile = os.path.join('EPWs', name) elif GetAll is True: if input('Downloading ALL EPW files available. OK? [y/n]') == 'y': # get all of the EPW files for index, row in df.iterrows(): print('Getting weather file: ' + row['name']) _downloadEPWfile(row['url'], path_to_save, row['name']) self.epwfile = None else: print('Nothing returned. Proper usage: epwfile = getEPW(lat,lon)') self.epwfile = None return self.epwfile def readWeatherFile(self, weatherFile=None, starttime=None, endtime=None, label=None, source=None, coerce_year=None, tz_convert_val=None): """ Read either a EPW or a TMY file, calls the functions :py:class:`~bifacial_radiance.readTMY` or :py:class:`~bifacial_radiance.readEPW` according to the weatherfile extention. Parameters ---------- weatherFile : str File containing the weather information. EPW, TMY or solargis accepted. starttime : str Limited start time option in 'YYYY-mm-dd_HHMM' or 'mm_dd_HH' format endtime : str Limited end time option in 'YYYY-mm-dd_HHMM' or 'mm_dd_HH' format daydate : str DEPRECATED For single day in 'MM/DD' or MM_DD format. Now use starttime and endtime set to the same date. label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position is calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. source : str To help identify different types of .csv files. If None, it assumes it is a TMY3-style formated data. Current options: 'TMY3', 'solargis', 'EPW' coerce_year : int Year to coerce weather data to in YYYY format, ie 2021. If more than one year of data in the weather file, year is NOT coerced. tz_convert_val : int Convert timezone to this fixed value, following ISO standard (negative values indicating West of UTC.) """ #from datetime import datetime import warnings if weatherFile is None: if hasattr(self,'epwfile'): weatherFile = self.epwfile else: try: weatherFile = _interactive_load('Select EPW or TMY3 climate file') except: raise Exception('Interactive load failed. Tkinter not supported'+ 'on this system. Try installing X-Quartz and reloading') if coerce_year is not None: coerce_year = int(coerce_year) if str(coerce_year).__len__() != 4: warnings.warn('Incorrect coerce_year. Setting to None') coerce_year = None def _parseTimes(t, hour, coerce_year): ''' parse time input t which could be string mm_dd_HH or YYYY-mm-dd_HHMM or datetime.datetime object. Return pd.datetime object. Define hour as hour input if not passed directly. ''' import re if type(t) == str: try: tsplit = re.split('-|_| ', t) #mm_dd format if tsplit.__len__() == 2 and t.__len__() == 5: if coerce_year is None: coerce_year = 2021 #default year. tsplit.insert(0,str(coerce_year)) tsplit.append(str(hour).rjust(2,'0')+'00') #mm_dd_hh or YYYY_mm_dd format elif tsplit.__len__() == 3 : if tsplit[0].__len__() == 2: if coerce_year is None: coerce_year = 2021 #default year. tsplit.insert(0,str(coerce_year)) elif tsplit[0].__len__() == 4: tsplit.append(str(hour).rjust(2,'0')+'00') #YYYY-mm-dd_HHMM format if tsplit.__len__() == 4 and tsplit[0].__len__() == 4: t_out = pd.to_datetime(''.join(tsplit).ljust(12,'0') ) else: raise Exception(f'incorrect time string passed {t}.' 'Valid options: mm_dd, mm_dd_HH, ' 'mm_dd_HHMM, YYYY-mm-dd_HHMM') except Exception as e: # Error for incorrect string passed: raise(e) else: #datetime or timestamp try: t_out = pd.to_datetime(t) except pd.errors.ParserError: print('incorrect time object passed. Valid options: ' 'string or datetime.datetime or pd.timeIndex. You ' f'passed {type(t)}.') return t_out, coerce_year # end _parseTimes def _tz_convert(metdata, metadata, tz_convert_val): """ convert metdata to a different local timzone. Particularly for SolarGIS weather files which are returned in UTC by default. ---------- tz_convert_val : int Convert timezone to this fixed value, following ISO standard (negative values indicating West of UTC.) Returns: metdata, metadata """ import pytz if (type(tz_convert_val) == int) | (type(tz_convert_val) == float): metadata['TZ'] = tz_convert_val metdata = metdata.tz_convert(pytz.FixedOffset(tz_convert_val*60)) return metdata, metadata # end _tz_convert if source is None: if weatherFile[-3:].lower() == 'epw': source = 'EPW' else: print('Warning: CSV file passed for input. Assuming it is TMY3'+ 'style format') source = 'TMY3' if label is None: label = 'right' # EPW and TMY are by deffault right-labeled. if source.lower() == 'solargis': if label is None: label = 'center' metdata, metadata = self._readSOLARGIS(weatherFile, label=label) if source.lower() =='epw': metdata, metadata = self._readEPW(weatherFile, label=label) if source.lower() =='tmy3': metdata, metadata = self._readTMY(weatherFile, label=label) metdata, metadata = _tz_convert(metdata, metadata, tz_convert_val) tzinfo = metdata.index.tzinfo tempMetDatatitle = 'metdata_temp.csv' # Parse the start and endtime strings. if starttime is not None: starttime, coerce_year = _parseTimes(starttime, 1, coerce_year) starttime = starttime.tz_localize(tzinfo) if endtime is not None: endtime, coerce_year = _parseTimes(endtime, 23, coerce_year) endtime = endtime.tz_localize(tzinfo) ''' #TODO: do we really need this check? if coerce_year is not None and starttime is not None: if coerce_year != starttime.year or coerce_year != endtime.year: print("Warning: Coerce year does not match requested sampled "+ "date(s)'s years. Setting Coerce year to None.") coerce_year = None ''' tmydata_trunc = self._saveTempTMY(metdata, filename=tempMetDatatitle, starttime=starttime, endtime=endtime, coerce_year=coerce_year, label=label) if tmydata_trunc.__len__() > 0: self.metdata = MetObj(tmydata_trunc, metadata, label = label) else: self.metdata = None raise Exception('Weather file returned zero points for the ' 'starttime / endtime provided') return self.metdata def _saveTempTMY(self, tmydata, filename=None, starttime=None, endtime=None, coerce_year=None, label=None): ''' private function to save part or all of tmydata into /EPWs/ for use in gencumsky -G mode and return truncated tmydata. Gencumsky 8760 starts with Jan 1, 1AM and ends Dec 31, 2400 starttime: tz-localized pd.TimeIndex endtime: tz-localized pd.TimeIndex returns: tmydata_truncated : subset of tmydata based on start & end ''' if filename is None: filename = 'temp.csv' gencumskydata = None gencumdict = None if len(tmydata) == 8760: print("8760 line in WeatherFile. Assuming this is a standard hourly"+ " WeatherFile for the year for purposes of saving Gencumulativesky"+ " temporary weather files in EPW folder.") if coerce_year is None and starttime is not None: coerce_year = starttime.year # SILVANA: If user doesn't pass starttime, and doesn't select # coerce_year, then do we really need to coerce it? elif coerce_year is None: coerce_year = 2021 print(f"Coercing year to {coerce_year}") with warnings.catch_warnings(): warnings.simplefilter("ignore") tmydata.index.values[:] = tmydata.index[:] + pd.DateOffset(year=(coerce_year)) # Correcting last index to next year. tmydata.index.values[-1] = tmydata.index[-1] + pd.DateOffset(year=(coerce_year+1)) # FilterDates filterdates = None if starttime is not None and endtime is not None: starttime filterdates = (tmydata.index >= starttime) & (tmydata.index <= endtime) else: if starttime is not None: filterdates = (tmydata.index >= starttime) if endtime is not None: filterdates = (tmydata.index <= endtime) if filterdates is not None: print("Filtering dates") tmydata[~filterdates] = 0 gencumskydata = tmydata.copy() else: if len(tmydata.index.year.unique()) == 1: if coerce_year: # TODO: check why subhourly data still has 0 entries on the next day on _readTMY3 # in the meantime, let's make Silvana's life easy by just deletig 0 entries tmydata = tmydata[~(tmydata.index.hour == 0)] print(f"Coercing year to {coerce_year}") # TODO: this coercing shows a python warning. Turn it off or find another method? bleh. tmydata.index.values[:] = tmydata.index[:] + pd.DateOffset(year=(coerce_year)) # FilterDates filterdates = None if starttime is not None and endtime is not None: filterdates = (tmydata.index >= starttime) & (tmydata.index <= endtime) else: if starttime is not None: filterdates = (tmydata.index >= starttime) if endtime is not None: filterdates = (tmydata.index <= endtime) if filterdates is not None: print("Filtering dates") tmydata[~filterdates] = 0 gencumskydata = tmydata.copy() gencumskydata = _subhourlydatatoGencumskyformat(gencumskydata, label=label) else: if coerce_year: print("More than 1 year of data identified. Can't do coercing") # Check if years are consecutive l = list(tmydata.index.year.unique()) if l != list(range(min(l), max(l)+1)): print("Years are not consecutive. Won't be able to use Gencumsky"+ " because who knows what's going on with this data.") else: print("Years are consecutive. For Gencumsky, make sure to select"+ " which yearly temporary weather file you want to use"+ " else they will all get accumulated to same hour/day") # FilterDates filterdates = None if starttime is not None and endtime is not None: filterdates = (tmydata.index >= starttime) & (tmydata.index <= endtime) else: if starttime is not None: filterdates = (tmydata.index >= starttime) if endtime is not None: filterdates = (tmydata.index <= endtime) if filterdates is not None: print("Filtering dates") tmydata = tmydata[filterdates] # Reducing years potentially # Checking if filtering reduced to just 1 year to do usual savin. if len(tmydata.index.year.unique()) == 1: gencumskydata = tmydata.copy() gencumskydata = _subhourlydatatoGencumskyformat(gencumskydata, label=label) else: gencumdict = [g for n, g in tmydata.groupby(pd.Grouper(freq='Y'))] for ii in range(0, len(gencumdict)): gencumskydata = gencumdict[ii] gencumskydata = _subhourlydatatoGencumskyformat(gencumskydata, label=label) gencumdict[ii] = gencumskydata gencumskydata = None # clearing so that the dictionary style can be activated. # Let's save files in EPWs folder for Gencumsky if gencumskydata is not None: csvfile = os.path.join('EPWs', filename) print('Saving file {}, # points: {}'.format(csvfile, gencumskydata.__len__())) gencumskydata.to_csv(csvfile, index=False, header=False, sep=' ', columns=['GHI','DHI']) self.gencumsky_metfile = csvfile if gencumdict is not None: self.gencumsky_metfile = [] for ii in range (0, len(gencumdict)): gencumskydata = gencumdict[ii] newfilename = filename.split('.')[0]+'_year_'+str(ii)+'.csv' csvfile = os.path.join('EPWs', newfilename) print('Saving file {}, # points: {}'.format(csvfile, gencumskydata.__len__())) gencumskydata.to_csv(csvfile, index=False, header=False, sep=' ', columns=['GHI','DHI']) self.gencumsky_metfile.append(csvfile) return tmydata def _readTMY(self, tmyfile=None, label = 'right', coerce_year=None): ''' use pvlib to read in a tmy3 file. Note: pvlib 0.7 does not currently support sub-hourly files. Until then, use _readTMYdate() to create the index Parameters ------------ tmyfile : str Filename of tmy3 to be read with pvlib.tmy.readtmy3 label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position is calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. coerce_year : int Year to coerce to. Default is 2021. Returns ------- metdata - MetObj collected from TMY3 file ''' def _convertTMYdate(data, meta): ''' requires pvlib 0.8, updated to handle subhourly timestamps ''' # get the date column as a pd.Series of numpy datetime64 data_ymd = pd.to_datetime(data['Date (MM/DD/YYYY)']) # shift the time column so that midnite is 00:00 instead of 24:00 shifted_hour = data['Time (HH:MM)'].str[:2].astype(int) % 24 minute = data['Time (HH:MM)'].str[3:].astype(int) # shift the dates at midnite so they correspond to the next day data_ymd[shifted_hour == 0] += datetime.timedelta(days=1) # NOTE: as of pandas>=0.24 the pd.Series.array has a month attribute, but # in pandas-0.18.1, only DatetimeIndex has month, but indices are immutable # so we need to continue to work with the panda series of dates `data_ymd` data_index = pd.DatetimeIndex(data_ymd) # use indices to check for a leap day and advance it to March 1st leapday = (data_index.month == 2) & (data_index.day == 29) data_ymd[leapday] += datetime.timedelta(days=1) # shifted_hour is a pd.Series, so use pd.to_timedelta to get a pd.Series of # timedeltas # NOTE: as of pvlib-0.6.3, min req is pandas-0.18.1, so pd.to_timedelta # unit must be in (D,h,m,s,ms,us,ns), but pandas>=0.24 allows unit='hour' data.index = (data_ymd + pd.to_timedelta(shifted_hour, unit='h') + pd.to_timedelta(minute, unit='min') ) data = data.tz_localize(int(meta['TZ'] * 3600)) return data import pvlib #(tmydata, metadata) = pvlib.tmy.readtmy3(filename=tmyfile) #pvlib<=0.6 (tmydata, metadata) = pvlib.iotools.tmy.read_tmy3(filename=tmyfile, coerce_year=coerce_year) try: tmydata = _convertTMYdate(tmydata, metadata) except KeyError: print('PVLib >= 0.8.0 is required for sub-hourly data input') return tmydata, metadata def _readEPW(self, epwfile=None, label = 'right', coerce_year=None): """ Uses readepw from pvlib>0.6.1 but un-do -1hr offset and rename columns to match TMY3: DNI, DHI, GHI, DryBulb, Wspd Parameters ------------ epwfile : str Direction and filename of the epwfile. If None, opens an interactive loading window. label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position is calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. coerce_year : int Year to coerce data to. """ import pvlib #import re ''' NOTE: In PVLib > 0.6.1 the new epw.read_epw() function reads in time with a default -1 hour offset. This is reflected in our existing workflow. ''' #(tmydata, metadata) = readepw(epwfile) # (tmydata, metadata) = pvlib.iotools.epw.read_epw(epwfile, coerce_year=coerce_year) #pvlib>0.6.1 #pvlib uses -1hr offset that needs to be un-done. Why did they do this? tmydata.index = tmydata.index+pd.Timedelta(hours=1) # rename different field parameters to match output from # pvlib.tmy.readtmy: DNI, DHI, DryBulb, Wspd tmydata.rename(columns={'dni':'DNI', 'dhi':'DHI', 'temp_air':'DryBulb', 'wind_speed':'Wspd', 'ghi':'GHI', 'albedo':'Alb' }, inplace=True) return tmydata, metadata def _readSOLARGIS(self, filename=None, label='center'): """ Read solarGIS data file which is timestamped in UTC. rename columns to match TMY3: DNI, DHI, GHI, DryBulb, Wspd Timezone is always returned as UTC. Use tz_convert in readWeatherFile to manually convert to local time Parameters ------------ filename : str filename of the solarGIS file. label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval. SolarGis default style is center, unless user requests a right label. """ # file format: anything with # preceding is in the header header = []; lat = None; lon = None; elev = None; name = None with open(filename, 'r') as result: for line in result: if line.startswith('#'): header.append(line) if line.startswith('#Latitude:'): lat = line[11:] if line.startswith('#Longitude:'): lon = line[12:] if line.startswith('#Elevation:'): elev = line[12:17] if line.startswith('#Site name:'): name = line[12:-1] else: break metadata = {'latitude':float(lat), 'longitude':float(lon), 'altitude':float(elev), 'Name':name, 'TZ':0.0} # read in remainder of data data = pd.read_csv(filename,skiprows=header.__len__(), delimiter=';') # rename different field parameters to match output from # pvlib.tmy.readtmy: DNI, DHI, DryBulb, Wspd data.rename(columns={'DIF':'DHI', 'TEMP':'DryBulb', 'WS':'Wspd', }, inplace=True) # Generate index from Date (DD.HH.YYYY) and Time data.index = pd.to_datetime(data.Date + ' ' + data.Time, dayfirst=True, utc=True, infer_datetime_format = True) return data, metadata def getSingleTimestampTrackerAngle(self, metdata, timeindex, gcr=None, azimuth=180, axis_tilt=0, limit_angle=45, backtrack=True): """ Helper function to calculate a tracker's angle for use with the fixed tilt routines of bifacial_radiance. It calculates tracker angle for sun position at the timeindex passed (no left or right time offset, label = 'center') Parameters ---------- metdata : :py:class:`~bifacial_radiance.MetObj` Meterological object to set up geometry. Usually set automatically by `bifacial_radiance` after running :py:class:`bifacial_radiance.readepw`. Default = self.metdata timeindex : int Index between 0 to 8760 indicating hour to simulate. gcr : float Ground coverage ratio for calculation backtracking. Defualt [1.0/3.0] azimuth : float or int Orientation axis of tracker torque tube. Default North-South (180 deg) axis_tilt : float or int Default 0. Axis tilt -- not implemented in sensors locations so it's pointless at this release to change it. limit_angle : float or int Limit angle (+/-) of the 1-axis tracker in degrees. Default 45 backtrack : boolean Whether backtracking is enabled (default = True) """ ''' elev = metdata.elevation lat = metdata.latitude lon = metdata.longitude timestamp = metdata.datetime[timeindex] ''' import pvlib solpos = metdata.solpos.iloc[timeindex] sunzen = float(solpos.apparent_zenith) sunaz = float(solpos.azimuth) # not substracting the 180 trackingdata = pvlib.tracking.singleaxis(sunzen, sunaz, axis_tilt, azimuth, limit_angle, backtrack, gcr) tracker_theta = float(np.round(trackingdata['tracker_theta'],2)) tracker_theta = tracker_theta*-1 # bifacial_radiance uses East (morning) theta as positive return tracker_theta def gendaylit(self, timeindex, metdata=None, debug=False): """ Sets and returns sky information using gendaylit. Uses PVLIB for calculating the sun position angles instead of using Radiance internal sun position calculation (for that use gendaylit function) Parameters ---------- timeindex : int Index from 0 to ~4000 of the MetObj (daylight hours only) metdata : ``MetObj`` MetObj object with list of dni, dhi, ghi and location debug : bool Flag to print output of sky DHI and DNI Returns ------- skyname : str Sets as a self.skyname and returns filename of sky in /skies/ directory. If errors exist, such as DNI = 0 or sun below horizon, this skyname is None """ import warnings if metdata is None: try: metdata = self.metdata except: print('usage: pass metdata, or run after running ' + 'readWeatherfile() ') return ground = self.ground locName = metdata.city dni = metdata.dni[timeindex] dhi = metdata.dhi[timeindex] ghi = metdata.ghi[timeindex] elev = metdata.elevation lat = metdata.latitude lon = metdata.longitude # Assign Albedos try: if ground.ReflAvg.shape == metdata.dni.shape: groundindex = timeindex elif self.ground.ReflAvg.shape[0] == 1: # just 1 entry groundindex = 0 else: warnings.warn("Shape of ground Albedos and TMY data do not match.") return except: print('usage: make sure to run setGround() before gendaylit()') return if debug is True: print('Sky generated with Gendaylit, with DNI: %0.1f, DHI: %0.1f' % (dni, dhi)) print("Datetime TimeIndex", metdata.datetime[timeindex]) #Time conversion to correct format and offset. #datetime = metdata.sunrisesetdata['corrected_timestamp'][timeindex] #Don't need any of this any more. Already sunrise/sunset corrected and offset by appropriate interval # get solar position zenith and azimuth based on site metadata #solpos = pvlib.irradiance.solarposition.get_solarposition(datetimetz,lat,lon,elev) solpos = metdata.solpos.iloc[timeindex] sunalt = float(solpos.elevation) # Radiance expects azimuth South = 0, PVlib gives South = 180. Must substract 180 to match. sunaz = float(solpos.azimuth)-180.0 sky_path = 'skies' if dhi <= 0: self.skyfiles = [None] return None # We should already be filtering for elevation >0. But just in case... if sunalt <= 0: sunalt = np.arcsin((ghi-dhi)/(dni+.001))*180/np.pi # reverse engineer elevation from ghi, dhi, dni print('Warning: negative sun elevation at '+ '{}. '.format(metdata.datetime[timeindex])+ 'Re-calculated elevation: {:0.2}'.format(sunalt)) # Note - -W and -O1 option is used to create full spectrum analysis in units of Wm-2 #" -L %s %s -g %s \n" %(dni/.0079, dhi/.0079, self.ground.ReflAvg) + \ skyStr = ("# start of sky definition for daylighting studies\n" + \ "# location name: " + str(locName) + " LAT: " + str(lat) +" LON: " + str(lon) + " Elev: " + str(elev) + "\n" "# Sun position calculated w. PVLib\n" + \ "!gendaylit -ang %s %s" %(sunalt, sunaz)) + \ " -W %s %s -g %s -O 1 \n" %(dni, dhi, ground.ReflAvg[groundindex]) + \ "skyfunc glow sky_mat\n0\n0\n4 1 1 1 0\n" + \ "\nsky_mat source sky\n0\n0\n4 0 0 1 180\n" + \ ground._makeGroundString(index=groundindex, cumulativesky=False) time = metdata.datetime[timeindex] #filename = str(time)[2:-9].replace('-','_').replace(' ','_').replace(':','_') filename = time.strftime('%Y-%m-%d_%H%M') skyname = os.path.join(sky_path,"sky2_%s_%s_%s.rad" %(lat, lon, filename)) skyFile = open(skyname, 'w') skyFile.write(skyStr) skyFile.close() self.skyfiles = [skyname] return skyname def gendaylit2manual(self, dni, dhi, sunalt, sunaz): """ Sets and returns sky information using gendaylit. Uses user-provided data for sun position and irradiance. .. warning:: This generates the sky at the sun altitude&azimuth provided, make sure it is the right position relative to how the weather data got created and read (i.e. label right, left or center). Parameters ------------ dni: int or float Direct Normal Irradiance (DNI) value, in W/m^2 dhi : int or float Diffuse Horizontal Irradiance (DHI) value, in W/m^2 sunalt : int or float Sun altitude (degrees) sunaz : int or float Sun azimuth (degrees) Returns ------- skyname : string Filename of sky in /skies/ directory """ print('Sky generated with Gendaylit 2 MANUAL, with DNI: %0.1f, DHI: %0.1f' % (dni, dhi)) sky_path = 'skies' if sunalt <= 0 or dhi <= 0: self.skyfiles = [None] return None # Assign Albedos try: if self.ground.ReflAvg.shape[0] == 1: # just 1 entry groundindex = 0 else: print("Ambiguous albedo entry, Set albedo to single value " "in setGround()") return except: print('usage: make sure to run setGround() before gendaylit()') return # Note: -W and -O1 are used to create full spectrum analysis in units of Wm-2 #" -L %s %s -g %s \n" %(dni/.0079, dhi/.0079, self.ground.ReflAvg) + \ skyStr = ("# start of sky definition for daylighting studies\n" + \ "# Manual inputs of DNI, DHI, SunAlt and SunAZ into Gendaylit used \n" + \ "!gendaylit -ang %s %s" %(sunalt, sunaz)) + \ " -W %s %s -g %s -O 1 \n" %(dni, dhi, self.ground.ReflAvg[groundindex]) + \ "skyfunc glow sky_mat\n0\n0\n4 1 1 1 0\n" + \ "\nsky_mat source sky\n0\n0\n4 0 0 1 180\n" + \ self.ground._makeGroundString(index=groundindex, cumulativesky=False) skyname = os.path.join(sky_path, "sky2_%s.rad" %(self.name)) skyFile = open(skyname, 'w') skyFile.write(skyStr) skyFile.close() self.skyfiles = [skyname] return skyname def genCumSky(self, gencumsky_metfile=None, savefile=None): """ Generate Skydome using gencumsky. .. warning:: gencumulativesky.exe is required to be installed, which is not a standard radiance distribution. You can find the program in the bifacial_radiance distribution directory in \Lib\site-packages\bifacial_radiance\data Use :func:`readWeatherFile(filename, starttime='YYYY-mm-dd_HHMM', endtime='YYYY-mm-dd_HHMM')` to limit gencumsky simulations instead. Parameters ------------ gencumsky_metfile : str Filename with path to temporary created meteorological file usually created in EPWs folder. This csv file has no headers, no index, and two space separated columns with values for GHI and DNI for each hour in the year, and MUST have 8760 entries long otherwise gencumulativesky.exe cries. savefile : string If savefile is None, defaults to "cumulative" Returns -------- skyname : str Filename of the .rad file containing cumulativesky info """ # TODO: error checking and auto-install of gencumulativesky.exe # TODO: add check if readWeatherfile has not be done # TODO: check if it fails if gcc module has been loaded? (common hpc issue) #import datetime if gencumsky_metfile is None: gencumsky_metfile = self.gencumsky_metfile if isinstance(gencumsky_metfile, str): print("Loaded ", gencumsky_metfile) if isinstance(gencumsky_metfile, list): print("There are more than 1 year of gencumsky temporal weather file saved."+ "You can pass which file you want with gencumsky_metfile input. Since "+ "No year was selected, defaulting to using the first year of the list") gencumsky_metfile = gencumsky_metfile[0] print("Loaded ", gencumsky_metfile) if savefile is None: savefile = "cumulative" sky_path = 'skies' lat = self.metdata.latitude lon = self.metdata.longitude timeZone = self.metdata.timezone ''' cmd = "gencumulativesky +s1 -h 0 -a %s -o %s -m %s %s " %(lat, lon, float(timeZone)*15, filetype) +\ "-time %s %s -date %s %s %s %s %s" % (startdt.hour, enddt.hour+1, startdt.month, startdt.day, enddt.month, enddt.day, gencumsky_metfile) ''' cmd = (f"gencumulativesky +s1 -h 0 -a {lat} -o {lon} -m " f"{float(timeZone)*15} -G {gencumsky_metfile}" ) with open(savefile+".cal","w") as f: _,err = _popen(cmd, None, f) if err is not None: print(err) # Assign Albedos try: groundstring = self.ground._makeGroundString(cumulativesky=True) except: raise Exception('Error: ground reflection not defined. ' 'Run RadianceObj.setGround() first') return skyStr = "#Cumulative Sky Definition\n" +\ "void brightfunc skyfunc\n" + \ "2 skybright " + "%s.cal\n" % (savefile) + \ "0\n" + \ "0\n" + \ "\nskyfunc glow sky_glow\n" + \ "0\n" + \ "0\n" + \ "4 1 1 1 0\n" + \ "\nsky_glow source sky\n" + \ "0\n" + \ "0\n" + \ "4 0 0 1 180\n" + \ groundstring skyname = os.path.join(sky_path, savefile+".rad") skyFile = open(skyname, 'w') skyFile.write(skyStr) skyFile.close() self.skyfiles = [skyname]#, 'SunFile.rad' ] return skyname def set1axis(self, metdata=None, azimuth=180, limit_angle=45, angledelta=5, backtrack=True, gcr=1.0 / 3, cumulativesky=True, fixed_tilt_angle=None, useMeasuredTrackerAngle=False, axis_azimuth=None): """ Set up geometry for 1-axis tracking. Pull in tracking angle details from pvlib, create multiple 8760 metdata sub-files where datetime of met data matches the tracking angle. Returns 'trackerdict' which has keys equal to either the tracker angles (gencumsky workflow) or timestamps (gendaylit hourly workflow) Parameters ------------ metdata : :py:class:`~bifacial_radiance.MetObj` Meterological object to set up geometry. Usually set automatically by `bifacial_radiance` after running :py:class:`bifacial_radiance.readepw`. Default = self.metdata azimuth : numeric Orientation axis of tracker torque tube. Default North-South (180 deg). For fixed-tilt configuration, input is fixed azimuth (180 is south) limit_angle : numeric Limit angle (+/-) of the 1-axis tracker in degrees. Default 45 angledelta : numeric Degree of rotation increment to parse irradiance bins. Default 5 degrees. (0.4 % error for DNI). Other options: 4 (.25%), 2.5 (0.1%). Note: the smaller the angledelta, the more simulations must be run. backtrack : bool Whether backtracking is enabled (default = True) gcr : float Ground coverage ratio for calculation backtracking. Defualt [1.0/3.0] cumulativesky : bool [True] Wether individual csv files are created with constant tilt angle for the cumulativesky approach. if false, the gendaylit tracking approach must be used. fixed_tilt_angle : numeric If passed, this changes to a fixed tilt simulation where each hour uses fixed_tilt_angle and axis_azimuth as the tilt and azimuth useMeasuredTrackerAngle: Bool If True, and data for tracker angles has been passed by being included in the WeatherFile object (column name 'Tracker Angle (degrees)'), then tracker angles will be set to these values instead of being calculated. NOTE that the value for azimuth passed to set1axis must be surface azimuth in the morning and not the axis_azimuth (i.e. for a N-S HSAT, azimuth = 90). axis_azimuth : numeric DEPRECATED. returns deprecation warning. Pass the tracker axis_azimuth through to azimuth input instead. Returns ------- trackerdict : dictionary Keys represent tracker tilt angles (gencumsky) or timestamps (gendaylit) and list of csv metfile, and datetimes at that angle trackerdict[angle]['csvfile';'surf_azm';'surf_tilt';'UTCtime'] - or - trackerdict[time]['tracker_theta';'surf_azm';'surf_tilt'] """ # Documentation check: # Removed Internal variables # ------- # metdata.solpos dataframe with solar position data # metdata.surface_azimuth list of tracker azimuth data # metdata.surface_tilt list of tracker surface tilt data # metdata.tracker_theta list of tracker tilt angle import warnings if metdata == None: metdata = self.metdata if metdata == {}: raise Exception("metdata doesnt exist yet. "+ "Run RadianceObj.readWeatherFile() ") if axis_azimuth: azimuth = axis_azimuth warnings.warn("axis_azimuth is deprecated in set1axis; use azimuth " "input instead.", DeprecationWarning) #backtrack = True # include backtracking support in later version #gcr = 1.0/3.0 # default value - not used if backtrack = False. # get 1-axis tracker angles for this location, rounded to nearest 'angledelta' trackerdict = metdata._set1axis(cumulativesky=cumulativesky, azimuth=azimuth, limit_angle=limit_angle, angledelta=angledelta, backtrack=backtrack, gcr=gcr, fixed_tilt_angle=fixed_tilt_angle, useMeasuredTrackerAngle=useMeasuredTrackerAngle ) self.trackerdict = trackerdict self.cumulativesky = cumulativesky return trackerdict def gendaylit1axis(self, metdata=None, trackerdict=None, startdate=None, enddate=None, debug=False): """ 1-axis tracking implementation of gendaylit. Creates multiple sky files, one for each time of day. Parameters ------------ metdata MetObj output from readWeatherFile. Needs to have RadianceObj.set1axis() run on it first. startdate : str DEPRECATED, does not do anything now. Recommended to downselect metdata when reading Weather File. enddate : str DEPRECATED, does not do anything now. Recommended to downselect metdata when reading Weather File. trackerdict : dictionary Dictionary with keys for tracker tilt angles (gencumsky) or timestamps (gendaylit) Returns ------- Updated trackerdict dictionary Dictionary with keys for tracker tilt angles (gencumsky) or timestamps (gendaylit) with the additional dictionary value ['skyfile'] added """ if metdata is None: metdata = self.metdata if trackerdict is None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if startdate is not None or enddate is not None: print("Deprecation Warning: gendyalit1axis no longer downselects"+ " entries by stardate and enddate. Downselect your data"+ " when loading with readWeatherFile") return try: metdata.tracker_theta # this may not exist except AttributeError: print("metdata.tracker_theta doesn't exist. Run RadianceObj.set1axis() first") if debug is False: print('Creating ~%d skyfiles. '%(len(trackerdict.keys()))) count = 0 # counter to get number of skyfiles created, just for giggles trackerdict2={} for i in range(0, len(trackerdict.keys())): try: time = metdata.datetime[i] except IndexError: #out of range error break # #filename = str(time)[5:-12].replace('-','_').replace(' ','_') filename = time.strftime('%Y-%m-%d_%H%M') self.name = filename #check for GHI > 0 #if metdata.ghi[i] > 0: if (metdata.ghi[i] > 0) & (~np.isnan(metdata.tracker_theta[i])): skyfile = self.gendaylit(metdata=metdata,timeindex=i, debug=debug) # trackerdict2 reduces the dict to only the range specified. trackerdict2[filename] = trackerdict[filename] trackerdict2[filename]['skyfile'] = skyfile count +=1 print('Created {} skyfiles in /skies/'.format(count)) self.trackerdict = trackerdict2 return trackerdict2 def genCumSky1axis(self, trackerdict=None): """ 1-axis tracking implementation of gencumulativesky. Creates multiple .cal files and .rad files, one for each tracker angle. Use :func:`readWeatherFile` to limit gencumsky simulations Parameters ------------ trackerdict : dictionary Trackerdict generated as output by RadianceObj.set1axis() Returns ------- trackerdict : dictionary Trackerdict dictionary with new entry trackerdict.skyfile Appends 'skyfile' to the 1-axis dict with the location of the sky .radfile """ if trackerdict == None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') for theta in sorted(trackerdict): # call gencumulativesky with a new .cal and .rad name csvfile = trackerdict[theta]['csvfile'] savefile = '1axis_%s'%(theta) #prefix for .cal file and skies\*.rad file skyfile = self.genCumSky(gencumsky_metfile=csvfile, savefile=savefile) trackerdict[theta]['skyfile'] = skyfile print('Created skyfile %s'%(skyfile)) # delete default skyfile (not strictly necessary) self.skyfiles = None self.trackerdict = trackerdict return trackerdict def makeOct(self, filelist=None, octname=None): """ Combine everything together into a .oct file Parameters ---------- filelist : list Files to include. otherwise takes self.filelist octname : str filename (without .oct extension) Returns ------- octname : str filename of .oct file in root directory including extension err : str Error message returned from oconv (if any) """ if filelist is None: filelist = self.getfilelist() if octname is None: octname = self.name debug = False #JSS. With the way that the break is handled now, this will wait the 10 for all the hours # that were not generated sky files. if self.hpc : import time time_to_wait = 10 time_counter = 0 for file in filelist: if debug: print("HPC Checking for file %s" % (file)) if None in filelist: # are we missing any files? abort! print('Missing files, skipping...') self.octfile = None return None #Filesky is being saved as 'none', so it crashes ! while not os.path.exists(file): time.sleep(1) time_counter += 1 if time_counter > time_to_wait: print ("filenotfound") break #os.system('oconv '+ ' '.join(filelist) + ' > %s.oct' % (octname)) if None in filelist: # are we missing any files? abort! print('Missing files, skipping...') self.octfile = None return None #cmd = 'oconv ' + ' '.join(filelist) filelist.insert(0,'oconv') with open('%s.oct' % (octname), "w") as f: _,err = _popen(filelist, None, f) #TODO: exception handling for no sun up if err is not None: if err[0:5] == 'error': raise Exception(err[7:]) if err[0:7] == 'message': warnings.warn(err[9:], Warning) #use rvu to see if everything looks good. # use cmd for this since it locks out the terminal. #'rvu -vf views\side.vp -e .01 monopanel_test.oct' print("Created %s.oct" % (octname)) self.octfile = '%s.oct' % (octname) return '%s.oct' % (octname) def makeOct1axis(self, trackerdict=None, singleindex=None, customname=None): """ Combine files listed in trackerdict into multiple .oct files Parameters ------------ trackerdict Output from :py:class:`~bifacial_radiance.RadianceObj.makeScene1axis` singleindex : str Single index for trackerdict to run makeOct1axis in single-value mode, format 'YYYY-MM-DD_HHMM'. customname : str Custom text string added to the end of the OCT file name. Returns ------- trackerdict Append 'octfile' to the 1-axis dict with the location of the scene .octfile """ if customname is None: customname = '' if trackerdict is None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if singleindex is None: # loop through all values in the tracker dictionary indexlist = trackerdict.keys() else: # just loop through one single index in tracker dictionary indexlist = [singleindex] print('\nMaking {} octfiles in root directory.'.format(indexlist.__len__())) for index in sorted(indexlist): # run through either entire key list of trackerdict, or just a single value try: filelist = self.materialfiles + [trackerdict[index]['skyfile'], trackerdict[index]['radfile']] octname = '1axis_%s%s'%(index, customname) trackerdict[index]['octfile'] = self.makeOct(filelist, octname) except KeyError as e: print('Trackerdict key error: {}'.format(e)) return trackerdict def makeModule(self, name=None, x=None, y=None, z=None, modulefile=None, text=None, customtext='', xgap=0.01, ygap=0.0, zgap=0.1, numpanels=1, rewriteModulefile=True, glass=False, modulematerial=None, bifi=1, **kwargs): """ pass module generation details into ModuleObj(). See ModuleObj() docstring for more details """ from bifacial_radiance import ModuleObj if name is None: print("usage: makeModule(name,x,y,z, modulefile = '\objects\*.rad', "+ " zgap = 0.1 (module offset)"+ "numpanels = 1 (# of panels in portrait), ygap = 0.05 "+ "(slope distance between panels when arrayed), "+ "rewriteModulefile = True (or False), bifi = 1") print("You can also override module_type info by passing 'text'"+ "variable, or add on at the end for racking details with "+ "'customtext'. See function definition for more details") print("Optional: tubeParams={} (torque tube details including " "diameter (torque tube dia. in meters), tubetype='Round' " "(or 'square', 'hex'), material='Metal_Grey' (or 'black')" ", axisofrotation=True (does scene rotate around tube)") print("Optional: cellModule={} (create cell-level module by "+ " passing in dictionary with keys 'numcellsx'6 (#cells in "+ "X-dir.), 'numcellsy', 'xcell' (cell size in X-dir. in meters),"+ "'ycell', 'xcellgap' (spacing between cells in X-dir.), 'ycellgap'") print("Optional: omegaParams={} (create the support structure omega by "+ "passing in dictionary with keys 'omega_material' (the material of "+ "omega), 'mod_overlap'(the length of the module adjacent piece of"+ " omega that overlaps with the module),'x_omega1', 'y_omega' (ideally same"+ " for all the parts of omega),'z_omega1', 'x_omega2' (X-dir length of the"+ " vertical piece), 'x_omega3', z_omega3") return """ # TODO: check for deprecated torquetube and axisofrotationTorqueTube in kwargs. """ if 'tubeParams' in kwargs: tubeParams = kwargs.pop('tubeParams') else: tubeParams = None if 'torquetube' in kwargs: torquetube = kwargs.pop('torquetube') print("\nWarning: boolean input `torquetube` passed into makeModule" ". Starting in v0.4.0 this boolean parameter is deprecated." " Use module.addTorquetube() with `visible` parameter instead.") if tubeParams: tubeParams['visible'] = torquetube elif (tubeParams is None) & (torquetube is True): tubeParams = {'visible':True} # create default TT if 'axisofrotationTorqueTube' in kwargs: axisofrotation = kwargs.pop('axisofrotationTorqueTube') print("\nWarning: input boolean `axisofrotationTorqueTube` passed " "into makeModule. Starting in v0.4.0 this boolean parameter is" " deprecated. Use module.addTorquetube() with `axisofrotation`" "parameter instead.") if tubeParams: #this kwarg only does somehting if there's a TT. tubeParams['axisofrotation'] = axisofrotation if self.hpc: # trigger HPC simulation in ModuleObj kwargs['hpc']=True self.module = ModuleObj(name=name, x=x, y=y, z=z, bifi=bifi, modulefile=modulefile, text=text, customtext=customtext, xgap=xgap, ygap=ygap, zgap=zgap, numpanels=numpanels, rewriteModulefile=rewriteModulefile, glass=glass, modulematerial=modulematerial, tubeParams=tubeParams, **kwargs) return self.module def makeCustomObject(self, name=None, text=None): """ Function for development and experimenting with extraneous objects in the scene. This function creates a `name.rad` textfile in the objects folder with whatever text that is passed to it. It is up to the user to pass the correct radiance format. For example, to create a box at coordinates 0,0 (with its bottom surface on the plane z=0): .. code-block: name = 'box' text='! genbox black PVmodule 0.5 0.5 0.5 | xform -t -0.25 -0.25 0' Parameters ---------- name : str String input to name the module type text : str Text used in the radfile to generate the module """ customradfile = os.path.join('objects', '%s.rad'%(name)) # update in 0.2.3 to shorten radnames # py2 and 3 compatible: binary write, encode text first with open(customradfile, 'wb') as f: f.write(text.encode('ascii')) print("\nCustom Object Name", customradfile) self.customradfile = customradfile return customradfile def printModules(self): # print available module types from ModuleObj from bifacial_radiance import ModuleObj modulenames = ModuleObj().readModule() print('Available module names: {}'.format([str(x) for x in modulenames])) return modulenames def makeScene(self, module=None, sceneDict=None, radname=None, moduletype=None): """ Create a SceneObj which contains details of the PV system configuration including tilt, row pitch, height, nMods per row, nRows in the system... Parameters ---------- module : str or ModuleObj String name of module created with makeModule() sceneDict : dictionary Dictionary with keys: `tilt`, `clearance_height`*, `pitch`, `azimuth`, `nMods`, `nRows`, `hub_height`*, `height`* * height deprecated from sceneDict. For makeScene (fixed systems) if passed it is assumed it reffers to clearance_height. `clearance_height` recommended for fixed_tracking systems. `hub_height` can also be passed as a possibility. radname : str Gives a custom name to the scene file. Useful when parallelizing. moduletype: DEPRECATED. use the `module` kwarg instead. Returns ------- SceneObj 'scene' with configuration details """ if moduletype is not None: module = moduletype print("Warning: input `moduletype` is deprecated. Use kwarg " "`module` instead") if module is None: try: module = self.module print(f'Using last saved module, name: {module.name}') except AttributeError: print('makeScene(module, sceneDict, nMods, nRows). '+\ 'Available moduletypes: ' ) self.printModules() #print available module types return self.scene = SceneObj(module) self.scene.hpc = self.hpc #pass HPC mode from parent if sceneDict is None: print('makeScene(moduletype, sceneDict, nMods, nRows). '+\ 'sceneDict inputs: .tilt .clearance_height .pitch .azimuth') return self.scene if 'azimuth' not in sceneDict: sceneDict['azimuth'] = 180 if 'nRows' not in sceneDict: sceneDict['nRows'] = 7 if 'nMods' not in sceneDict: sceneDict['nMods'] = 20 # Fixed tilt routine # Preferred: clearance_height, # If only height is passed, it is assumed to be clearance_height. sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred='clearance_height', nonpreferred='hub_height') self.nMods = sceneDict['nMods'] self.nRows = sceneDict['nRows'] self.sceneRAD = self.scene._makeSceneNxR(sceneDict=sceneDict, radname=radname) if 'appendRadfile' not in sceneDict: appendRadfile = False else: appendRadfile = sceneDict['appendRadfile'] if appendRadfile: debug = False try: self.radfiles.append(self.sceneRAD) if debug: print( "Radfile APPENDED!") except: #TODO: Manage situation where radfile was created with #appendRadfile to False first.. self.radfiles=[] self.radfiles.append(self.sceneRAD) if debug: print( "Radfile APPENDAGE created!") else: self.radfiles = [self.sceneRAD] return self.scene def appendtoScene(self, radfile=None, customObject=None, text=''): """ Appends to the `Scene radfile` in folder `\objects` the text command in Radiance lingo created by the user. Useful when using addCustomObject to the scene. Parameters ---------- radfile: str Directory and name of where .rad scene file is stored customObject : str Directory and name of custom object .rad file is stored text : str Command to be appended to the radfile. Do not leave empty spaces at the end. Returns ------- Nothing, the radfile must already be created and assigned when running this. """ #TODO: Add a custom name and replace radfile name # py2 and 3 compatible: binary write, encode text first text2 = '\n' + text + ' ' + customObject debug = False if debug: print (text2) with open(radfile, 'a+') as f: f.write(text2) def makeScene1axis(self, trackerdict=None, module=None, sceneDict=None, cumulativesky=None, moduletype=None): """ Creates a SceneObj for each tracking angle which contains details of the PV system configuration including row pitch, hub_height, nMods per row, nRows in the system... Parameters ------------ trackerdict Output from GenCumSky1axis module : str or ModuleObj Name or ModuleObj created with makeModule() sceneDict : Dictionary with keys:`tilt`, `hub_height`, `pitch`, `azimuth` cumulativesky : bool Defines if sky will be generated with cumulativesky or gendaylit. moduletype: DEPRECATED. use the `module` kwarg instead. Returns -------- trackerdict Append the following keys 'radfile' directory where .rad scene file is stored 'scene' SceneObj for each tracker theta 'clearance_height' Calculated ground clearance based on `hub height`, `tilt` angle and overall collector width `sceney` """ import math if sceneDict is None: print('usage: makeScene1axis(module, sceneDict, nMods, nRows).'+ 'sceneDict inputs: .hub_height .azimuth .nMods .nRows'+ 'and .pitch or .gcr') return # If no nRows or nMods assigned on deprecated variable or dictionary, # assign default. if 'nRows' not in sceneDict: sceneDict['nRows'] = 7 if 'nMods' not in sceneDict: sceneDict['nMods'] = 20 if trackerdict is None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if cumulativesky is None: try: # see if cumulativesky = False was set earlier, # e.g. in RadianceObj.set1axis cumulativesky = self.cumulativesky except AttributeError: # default cumulativesky = true to maintain backward compatibility. cumulativesky = True if moduletype is not None: module = moduletype print("Warning: input `moduletype` is deprecated. Use kwarg " "`module` instead") if module is None: try: module = self.module print(f'Using last saved module, name: {module.name}') except AttributeError: print('usage: makeScene1axis(trackerdict, module, '+ 'sceneDict, nMods, nRows). ') self.printModules() #print available module types return if 'orientation' in sceneDict: raise Exception('\n\n ERROR: Orientation format has been ' 'deprecated since version 0.2.4. If you want to flip your ' 'modules, on makeModule switch the x and y values.\n\n') # 1axis routine # Preferred hub_height sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred='hub_height', nonpreferred='clearance_height') if use_clearanceheight: simplefix = 0 hubheight = sceneDict['clearance_height'] # Not really, but this is the fastest # to make it work with the simplefix as below the actual clearnace height # gets calculated and the 0 sets the cosine correction to 0. # TODO CLEAN THIS UP. else: #the hub height is the tracker height at center of rotation. hubheight = sceneDict['hub_height'] simplefix = 1 if cumulativesky is True: # cumulativesky workflow print('\nMaking .rad files for cumulativesky 1-axis workflow') for theta in trackerdict: scene = SceneObj(module) if trackerdict[theta]['surf_azm'] >= 180: trackerdict[theta]['surf_azm'] = trackerdict[theta]['surf_azm']-180 trackerdict[theta]['surf_tilt'] = trackerdict[theta]['surf_tilt']*-1 radname = '1axis%s_'%(theta,) # Calculating clearance height for this theta. height = hubheight - simplefix*0.5* math.sin(abs(theta) * math.pi / 180) \ * scene.module.sceney + scene.module.offsetfromaxis \ * math.sin(abs(theta)*math.pi/180) # Calculate the ground clearance height based on the hub height. Add abs(theta) to avoid negative tilt angle errors trackerdict[theta]['clearance_height'] = height try: sceneDict2 = {'tilt':trackerdict[theta]['surf_tilt'], 'pitch':sceneDict['pitch'], 'clearance_height':trackerdict[theta]['clearance_height'], 'azimuth':trackerdict[theta]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} except KeyError: #maybe gcr is passed, not pitch sceneDict2 = {'tilt':trackerdict[theta]['surf_tilt'], 'gcr':sceneDict['gcr'], 'clearance_height':trackerdict[theta]['clearance_height'], 'azimuth':trackerdict[theta]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} radfile = scene._makeSceneNxR(sceneDict=sceneDict2, radname=radname) trackerdict[theta]['radfile'] = radfile trackerdict[theta]['scene'] = scene print('{} Radfiles created in /objects/'.format(trackerdict.__len__())) else: #gendaylit workflow print('\nMaking ~%s .rad files for gendaylit 1-axis workflow (this takes a minute..)' % (len(trackerdict))) count = 0 for time in trackerdict: scene = SceneObj(module) if trackerdict[time]['surf_azm'] >= 180: trackerdict[time]['surf_azm'] = trackerdict[time]['surf_azm']-180 trackerdict[time]['surf_tilt'] = trackerdict[time]['surf_tilt']*-1 theta = trackerdict[time]['theta'] radname = '1axis%s_'%(time,) # Calculating clearance height for this time. height = hubheight - simplefix*0.5* math.sin(abs(theta) * math.pi / 180) \ * scene.module.sceney + scene.module.offsetfromaxis \ * math.sin(abs(theta)*math.pi/180) if trackerdict[time]['ghi'] > 0: trackerdict[time]['clearance_height'] = height try: sceneDict2 = {'tilt':trackerdict[time]['surf_tilt'], 'pitch':sceneDict['pitch'], 'clearance_height': trackerdict[time]['clearance_height'], 'azimuth':trackerdict[time]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} except KeyError: #maybe gcr is passed instead of pitch sceneDict2 = {'tilt':trackerdict[time]['surf_tilt'], 'gcr':sceneDict['gcr'], 'clearance_height': trackerdict[time]['clearance_height'], 'azimuth':trackerdict[time]['surf_azm'], 'nMods': sceneDict['nMods'], 'nRows': sceneDict['nRows'], 'modulez': scene.module.z} radfile = scene._makeSceneNxR(sceneDict=sceneDict2, radname=radname) trackerdict[time]['radfile'] = radfile trackerdict[time]['scene'] = scene count+=1 print('{} Radfiles created in /objects/'.format(count)) self.trackerdict = trackerdict self.nMods = sceneDict['nMods'] #assign nMods and nRows to RadianceObj self.nRows = sceneDict['nRows'] self.hub_height = hubheight return trackerdict def analysis1axis(self, trackerdict=None, singleindex=None, accuracy='low', customname=None, modWanted=None, rowWanted=None, sensorsy=9, sensorsx=1, modscanfront = None, modscanback = None, relative=False, debug=False ): """ Loop through trackerdict and runs linescans for each scene and scan in there. Parameters ---------------- trackerdict singleindex : str For single-index mode, just the one index we want to run (new in 0.2.3). Example format '21_06_14_12_30' for 2021 June 14th 12:30 pm accuracy : str 'low' or 'high', resolution option used during _irrPlot and rtrace customname : str Custom text string to be added to the file name for the results .CSV files modWanted : int Module to be sampled. Index starts at 1. rowWanted : int Row to be sampled. Index starts at 1. (row 1) sensorsy : int or list Number of 'sensors' or scanning points along the collector width (CW) of the module(s). If multiple values are passed, first value represents number of front sensors, second value is number of back sensors sensorsx : int or list Number of 'sensors' or scanning points along the length, the side perpendicular to the collector width (CW) of the module(s) for the back side of the module. If multiple values are passed, first value represents number of front sensors, second value is number of back sensors. modscanfront : dict dictionary with one or more of the following key: xstart, ystart, zstart, xinc, yinc, zinc, Nx, Ny, Nz, orient. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. modscanback : dict dictionary with one or more of the following key: xstart, ystart, zstart, xinc, yinc, zinc, Nx, Ny, Nz, orient. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. relative : Bool if passing modscanfront and modscanback to modify dictionarie of positions, this sets if the values passed to be updated are relative or absolute. Default is absolute value (relative=False) debug : Bool Activates internal printing of the function to help debugging. Returns ------- trackerdict with new keys: 'AnalysisObj' : analysis object for this tracker theta 'Wm2Front' : list of front Wm-2 irradiances, len=sensorsy_back 'Wm2Back' : list of rear Wm-2 irradiances, len=sensorsy_back 'backRatio' : list of rear irradiance ratios, len=sensorsy_back RadianceObj with new appended values: 'Wm2Front' : np Array with front irradiance cumulative 'Wm2Back' : np Array with rear irradiance cumulative 'backRatio' : np Array with rear irradiance ratios """ import warnings if customname is None: customname = '' if trackerdict == None: try: trackerdict = self.trackerdict except AttributeError: print('No trackerdict value passed or available in self') if singleindex is None: # run over all values in trackerdict trackerkeys = sorted(trackerdict.keys()) else: # run in single index mode. trackerkeys = [singleindex] if modWanted == None: modWanted = round(self.nMods / 1.99) if rowWanted == None: rowWanted = round(self.nRows / 1.99) frontWm2 = 0 # container for tracking front irradiance across module chord. Dynamically size based on first analysis run backWm2 = 0 # container for tracking rear irradiance across module chord. for index in trackerkeys: # either full list of trackerdict keys, or single index name = '1axis_%s%s'%(index,customname) octfile = trackerdict[index]['octfile'] scene = trackerdict[index]['scene'] if octfile is None: continue # don't run analysis if the octfile is none try: # look for missing data analysis = AnalysisObj(octfile,name) name = '1axis_%s%s'%(index,customname,) frontscanind, backscanind = analysis.moduleAnalysis(scene=scene, modWanted=modWanted, rowWanted=rowWanted, sensorsy=sensorsy, sensorsx=sensorsx, modscanfront=modscanfront, modscanback=modscanback, relative=relative, debug=debug) analysis.analysis(octfile=octfile,name=name,frontscan=frontscanind,backscan=backscanind,accuracy=accuracy) trackerdict[index]['AnalysisObj'] = analysis except Exception as e: # problem with file. TODO: only catch specific error types here. warnings.warn('Index: {}. Problem with file. Error: {}. Skipping'.format(index,e), Warning) return #combine cumulative front and back irradiance for each tracker angle try: #on error, trackerdict[index] is returned empty trackerdict[index]['Wm2Front'] = analysis.Wm2Front trackerdict[index]['Wm2Back'] = analysis.Wm2Back trackerdict[index]['backRatio'] = analysis.backRatio except AttributeError as e: # no key Wm2Front. warnings.warn('Index: {}. Trackerdict key not found: {}. Skipping'.format(index,e), Warning) return if np.sum(frontWm2) == 0: # define frontWm2 the first time through frontWm2 = np.array(analysis.Wm2Front) backWm2 = np.array(analysis.Wm2Back) else: frontWm2 += np.array(analysis.Wm2Front) backWm2 += np.array(analysis.Wm2Back) print('Index: {}. Wm2Front: {}. Wm2Back: {}'.format(index, np.mean(analysis.Wm2Front), np.mean(analysis.Wm2Back))) if np.sum(self.Wm2Front) == 0: self.Wm2Front = frontWm2 # these are accumulated over all indices passed in. self.Wm2Back = backWm2 else: self.Wm2Front += frontWm2 # these are accumulated over all indices passed in. self.Wm2Back += backWm2 self.backRatio = np.mean(backWm2)/np.mean(frontWm2+.001) # Save compiled results using _saveresults if singleindex is None: print ("Saving a cumulative-results file in the main simulation folder." + "This adds up by sensor location the irradiance over all hours " + "or configurations considered." + "\nWarning: This file saving routine does not clean results, so "+ "if your setup has ygaps, or 2+modules or torque tubes, doing "+ "a deeper cleaning and working with the individual results "+ "files in the results folder is highly suggested.") cumfilename = 'cumulative_results_%s.csv'%(customname) if self.cumulativesky is True: frontcum = pd.DataFrame() rearcum = pd.DataFrame() temptrackerdict = trackerdict[list(trackerdict)[0]]['AnalysisObj'] #temptrackerdict = trackerdict[0.0]['AnalysisObj'] frontcum ['x'] = temptrackerdict.x frontcum ['y'] = temptrackerdict.y frontcum ['z'] = temptrackerdict.z frontcum ['mattype'] = temptrackerdict.mattype frontcum ['Wm2'] = self.Wm2Front rearcum ['x'] = temptrackerdict.x rearcum ['y'] = temptrackerdict.x rearcum ['z'] = temptrackerdict.rearZ rearcum ['mattype'] = temptrackerdict.rearMat rearcum ['Wm2'] = self.Wm2Back cumanalysisobj = AnalysisObj() print ("\nSaving Cumulative results" ) cumanalysisobj._saveResultsCumulative(frontcum, rearcum, savefile=cumfilename) else: # trackerkeys are day/hour/min, and there's no easy way to find a # tilt of 0, so making a fake linepoint object for tilt 0 # and then saving. try: cumscene = trackerdict[trackerkeys[0]]['scene'] cumscene.sceneDict['tilt']=0 cumscene.sceneDict['clearance_height'] = self.hub_height cumanalysisobj = AnalysisObj() frontscancum, backscancum = cumanalysisobj.moduleAnalysis(scene=cumscene, modWanted=modWanted, rowWanted=rowWanted, sensorsy=sensorsy, sensorsx=sensorsx, modscanfront=modscanfront, modscanback=modscanback, relative=relative, debug=debug) x,y,z = cumanalysisobj._linePtsArray(frontscancum) x,y,rearz = cumanalysisobj._linePtsArray(backscancum) frontcum = pd.DataFrame() rearcum = pd.DataFrame() frontcum ['x'] = x frontcum ['y'] = y frontcum ['z'] = z frontcum ['mattype'] = trackerdict[trackerkeys[0]]['AnalysisObj'].mattype frontcum ['Wm2'] = self.Wm2Front rearcum ['x'] = x rearcum ['y'] = y rearcum ['z'] = rearz rearcum ['mattype'] = trackerdict[trackerkeys[0]]['AnalysisObj'].rearMat rearcum ['Wm2'] = self.Wm2Back print ("\nSaving Cumulative results" ) cumanalysisobj._saveResultsCumulative(frontcum, rearcum, savefile=cumfilename) except: print("Not able to save a cumulative result for this simulation.") return trackerdict # End RadianceObj definition class GroundObj: """ Class to set and return details for the ground surface materials and reflectance. If 1 albedo value is passed, it is used as default. If 3 albedo values are passed, they are assigned to each of the three wavelength placeholders (RGB), If material type is known, it is used to get reflectance info. if material type isn't known, material_info.list is returned Parameters ------------ materialOrAlbedo : numeric or str If number between 0 and 1 is passed, albedo input is assumed and assigned. If string is passed with the name of the material desired. e.g. 'litesoil', properties are searched in `material_file`. Default Material names to choose from: litesoil, concrete, white_EPDM, beigeroof, beigeroof_lite, beigeroof_heavy, black, asphalt material_file : str Filename of the material information. Default `ground.rad` Returns ------- """ def __init__(self, materialOrAlbedo=None, material_file=None): import warnings from numbers import Number self.normval = None self.ReflAvg = None self.Rrefl = None self.Grefl = None self.Brefl = None self.ground_type = 'custom' if material_file is None: material_file = 'ground.rad' self.material_file = material_file if materialOrAlbedo is None: # Case where it's none. print('\nInput albedo 0-1, or string from ground.printGroundMaterials().' '\nAlternatively, run setGround after readWeatherData()' 'and setGround will read metdata.albedo if available') return if isinstance(materialOrAlbedo, str) : self.ground_type = materialOrAlbedo # Return the RGB albedo for material ground_type materialOrAlbedo = self.printGroundMaterials(self.ground_type) # Check for double and int. if isinstance(materialOrAlbedo, Number): materialOrAlbedo = np.array([[materialOrAlbedo, materialOrAlbedo, materialOrAlbedo]]) if isinstance(materialOrAlbedo, list): materialOrAlbedo = np.asarray(materialOrAlbedo) # By this point, materialOrAlbedo should be a np.ndarray: if isinstance(materialOrAlbedo, np.ndarray): if materialOrAlbedo.ndim == 0: # numpy array of one single value, i.e. np.array(0.62) # after this if, np.array([0.62]) materialOrAlbedo = materialOrAlbedo.reshape([1]) if materialOrAlbedo.ndim == 1: # If np.array is ([0.62]), this repeats it so at the end it's # np.array ([0.62, 0.62, 0.62]) materialOrAlbedo = np.repeat(np.array([materialOrAlbedo]), 3, axis=1).reshape( len(materialOrAlbedo),3) if (materialOrAlbedo.ndim == 2) & (materialOrAlbedo.shape[1] > 3): warnings.warn("Radiance only raytraces 3 wavelengths at " "a time. Trimming albedo np.array input to " "3 wavelengths.") materialOrAlbedo = materialOrAlbedo[:,0:3] # By this point we should have np.array of dim=2 and shape[1] = 3. # Check for invalid values if (materialOrAlbedo > 1).any() or (materialOrAlbedo < 0).any(): print('Warning: albedo values greater than 1 or less than 0. ' 'Constraining to [0..1]') materialOrAlbedo = materialOrAlbedo.clip(min=0, max=1) try: self.Rrefl = materialOrAlbedo[:,0] self.Grefl = materialOrAlbedo[:,1] self.Brefl = materialOrAlbedo[:,2] self.normval = _normRGB(materialOrAlbedo[:,0],materialOrAlbedo[:,1], materialOrAlbedo[:,2]) self.ReflAvg = np.round(np.mean(materialOrAlbedo, axis=1),4) print(f'Loading albedo, {self.ReflAvg.__len__()} value(s), ' f'{self._nonzeromean(self.ReflAvg):0.3f} avg\n' f'{self.ReflAvg[self.ReflAvg != 0].__len__()} nonzero albedo values.') except IndexError as e: print('albedo.shape should be 3 column (N x 3)') raise e def printGroundMaterials(self, materialString=None): """ printGroundMaterials(materialString=None) input: None or materialString. If None, return list of acceptable material types from ground.rad. If valid string, return RGB albedo of the material type selected. """ import warnings material_path = 'materials' f = open(os.path.join(material_path, self.material_file)) keys = [] #list of material key names Rreflall = []; Greflall=[]; Breflall=[] #RGB material reflectance temp = f.read().split() f.close() #return indices for 'plastic' definition index = _findme(temp,'plastic') for i in index: keys.append(temp[i+1])# after plastic comes the material name Rreflall.append(float(temp[i+5]))#RGB reflectance comes a few more down the list Greflall.append(float(temp[i+6])) Breflall.append(float(temp[i+7])) if materialString is not None: try: index = _findme(keys,materialString)[0] except IndexError: warnings.warn('Error - materialString not in ' f'{self.material_file}: {materialString}') return(np.array([[Rreflall[index], Greflall[index], Breflall[index]]])) else: return(keys) def _nonzeromean(self, val): ''' array mean excluding zero. return zero if everything's zero''' tempmean = np.nanmean(val) if tempmean > 0: tempmean = np.nanmean(val[val !=0]) return tempmean def _makeGroundString(self, index=0, cumulativesky=False): ''' create string with ground reflectance parameters for use in gendaylit and gencumsky. Parameters ----------- index : integer Index of time for time-series albedo. Default 0 cumulativesky: Boolean If true, set albedo to average of time series values. Returns ------- groundstring: text with albedo details to append to sky.rad in gendaylit ''' try: if cumulativesky is True: Rrefl = self._nonzeromean(self.Rrefl) Grefl = self._nonzeromean(self.Grefl) Brefl = self._nonzeromean(self.Brefl) normval = _normRGB(Rrefl, Grefl, Brefl) else: Rrefl = self.Rrefl[index] Grefl = self.Grefl[index] Brefl = self.Brefl[index] normval = _normRGB(Rrefl, Grefl, Brefl) # Check for all zero albedo case if normval == 0: normval = 1 groundstring = ( f'\nskyfunc glow ground_glow\n0\n0\n4 ' f'{Rrefl/normval} {Grefl/normval} {Brefl/normval} 0\n' '\nground_glow source ground\n0\n0\n4 0 0 -1 180\n' f'\nvoid plastic {self.ground_type}\n0\n0\n5 ' f'{Rrefl:0.3f} {Grefl:0.3f} {Brefl:0.3f} 0 0\n' f"\n{self.ground_type} ring groundplane\n" '0\n0\n8\n0 0 -.01\n0 0 1\n0 100' ) except IndexError as err: print(f'Index {index} passed to albedo with only ' f'{self.Rrefl.__len__()} values.' ) raise err return groundstring class SceneObj: ''' scene information including PV module type, bifaciality, array info pv module orientation defaults: Azimuth = 180 (south) pv module origin: z = 0 bottom of frame. y = 0 lower edge of frame. x = 0 vertical centerline of module scene includes module details (x,y,bifi, sceney (collector_width), scenex) ''' def __repr__(self): return str(self.__dict__) def __init__(self, module=None): ''' initialize SceneObj ''' from bifacial_radiance import ModuleObj # should sceneDict be initialized here? This is set in _makeSceneNxR if module is None: return elif type(module) == str: self.module = ModuleObj(name=module) elif type(module) == ModuleObj: # try moduleObj self.module = module #self.moduleDict = self.module.getDataDict() #self.scenex = self.module.scenex #self.sceney = self.module.sceney #self.offsetfromaxis = self.moduleDict['offsetfromaxis'] #TODO: get rid of these 4 values self.modulefile = self.module.modulefile self.hpc = False #default False. Set True by makeScene after sceneobj created. def _makeSceneNxR(self, modulename=None, sceneDict=None, radname=None): """ Arrange module defined in :py:class:`bifacial_radiance.SceneObj` into a N x R array. Returns a :py:class:`bifacial_radiance.SceneObj` which contains details of the PV system configuration including `tilt`, `row pitch`, `hub_height` or `clearance_height`, `nMod`s per row, `nRows` in the system. The returned scene has (0,0) coordinates centered at the module at the center of the array. For 5 rows, that is row 3, for 4 rows, that is row 2 also (rounds down). For 5 modules in the row, that is module 3, for 4 modules in the row, that is module 2 also (rounds down) Parameters ------------ modulename: str Name of module created with :py:class:`~bifacial_radiance.RadianceObj.makeModule`. sceneDict : dictionary Dictionary of scene parameters. clearance_height : numeric (meters). pitch : numeric Separation between rows tilt : numeric Valid input ranges -90 to 90 degrees azimuth : numeric A value denoting the compass direction along which the axis of rotation lies. Measured in decimal degrees East of North. [0 to 180) possible. nMods : int Number of modules per row (default = 20) nRows : int Number of rows in system (default = 7) radname : str String for name for radfile. Returns ------- radfile : str Filename of .RAD scene in /objects/ scene : :py:class:`~bifacial_radiance.SceneObj ` Returns a `SceneObject` 'scene' with configuration details """ if modulename is None: modulename = self.module.name if sceneDict is None: print('makeScene(modulename, sceneDict, nMods, nRows). sceneDict' ' inputs: .tilt .azimuth .nMods .nRows' ' AND .tilt or .gcr ; AND .hub_height or .clearance_height') if 'orientation' in sceneDict: raise Exception('\n\n ERROR: Orientation format has been ' 'deprecated since version 0.2.4. If you want to flip your ' 'modules, on makeModule switch the x and y values.\n\n') if 'azimuth' not in sceneDict: sceneDict['azimuth'] = 180 if 'axis_tilt' not in sceneDict: sceneDict['axis_tilt'] = 0 if 'originx' not in sceneDict: sceneDict['originx'] = 0 if 'originy' not in sceneDict: sceneDict['originy'] = 0 if radname is None: radname = str(self.module.name).strip().replace(' ', '_') # loading variables tilt = sceneDict['tilt'] azimuth = sceneDict['azimuth'] nMods = sceneDict['nMods'] nRows = sceneDict['nRows'] axis_tilt = sceneDict['axis_tilt'] originx = sceneDict ['originx'] originy = sceneDict['originy'] # hub_height, clearance_height and height logic. # this routine uses hub_height to move the panels up so it's important # to have a value for that, either obtianing from clearance_height # (if coming from makeScene) or from hub_height itself. # it is assumed that if no clearance_height or hub_height is passed, # hub_height = height. sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred='hub_height', nonpreferred='clearance_height') if use_clearanceheight : hubheight = sceneDict['clearance_height'] + 0.5* np.sin(abs(tilt) * np.pi / 180) \ * self.module.sceney - self.module.offsetfromaxis*np.sin(abs(tilt)*np.pi/180) title_clearance_height = sceneDict['clearance_height'] else: hubheight = sceneDict['hub_height'] # this calculates clearance_height, used for the title title_clearance_height = sceneDict['hub_height'] - 0.5* np.sin(abs(tilt) * np.pi / 180) \ * self.module.sceney + self.module.offsetfromaxis*np.sin(abs(tilt)*np.pi/180) try: if sceneDict['pitch'] >0: pitch = sceneDict['pitch'] else: raise Exception('default to gcr') except: if 'gcr' in sceneDict: pitch = np.round(self.module.sceney/sceneDict['gcr'],3) else: raise Exception('No valid `pitch` or `gcr` in sceneDict') ''' INITIALIZE VARIABLES ''' text = '!xform ' text += '-rx %s -t %s %s %s ' %(tilt, 0, 0, hubheight) # create nMods-element array along x, nRows along y. 1cm module gap. text += '-a %s -t %s 0 0 -a %s -t 0 %s 0 ' %(nMods, self.module.scenex, nRows, pitch) # azimuth rotation of the entire shebang. Select the row to scan here based on y-translation. # Modifying so center row is centered in the array. (i.e. 3 rows, row 2. 4 rows, row 2 too) # Since the array is already centered on row 1, module 1, we need to increment by Nrows/2-1 and Nmods/2-1 text += (f'-i 1 -t {-self.module.scenex*(round(nMods/1.999)*1.0-1)} ' f'{-pitch*(round(nRows / 1.999)*1.0-1)} 0 -rz {180-azimuth} ' f'-t {originx} {originy} 0 ' ) #axis tilt only working for N-S trackers if axis_tilt != 0 and azimuth == 90: print("Axis_Tilt is still under development. The scene will be " "created with the proper axis tilt, and the tracking angle" "will consider the axis_tilt, but the sensors for the " "analysis might not fall in the correct surfaces unless you" " manually position them for this version. Sorry! :D ") text += (f'-rx {axis_tilt} -t 0 0 %s ' %( self.module.scenex*(round(nMods/1.99)*1.0-1)*np.sin( axis_tilt * np.pi/180) ) ) filename = (f'{radname}_C_{title_clearance_height:0.5f}_rtr_{pitch:0.5f}_tilt_{tilt:0.5f}_' f'{nMods}modsx{nRows}rows_origin{originx},{originy}.rad' ) if self.hpc: text += f'"{os.path.join(os.getcwd(), self.modulefile)}"' radfile = os.path.join(os.getcwd(), 'objects', filename) else: text += os.path.join(self.modulefile) radfile = os.path.join('objects',filename ) # py2 and 3 compatible: binary write, encode text first with open(radfile, 'wb') as f: f.write(text.encode('ascii')) self.gcr = self.module.sceney / pitch self.text = text self.radfiles = radfile self.sceneDict = sceneDict # self.hub_height = hubheight return radfile def showScene(self): """ Method to call objview on the scene included in self """ cmd = 'objview %s %s' % (os.path.join('materials', 'ground.rad'), self.radfiles) print('Rendering scene. This may take a moment...') _,err = _popen(cmd,None) if err is not None: print('Error: {}'.format(err)) print('possible solution: install radwinexe binary package from ' 'http://www.jaloxa.eu/resources/radiance/radwinexe.shtml' ' into your RADIANCE binaries path') return # end of SceneObj class MetObj: """ Meteorological data from EPW file. Initialize the MetObj from tmy data already read in. Parameters ----------- tmydata : DataFrame TMY3 output from :py:class:`~bifacial_radiance.RadianceObj.readTMY` or from :py:class:`~bifacial_radiance.RadianceObj.readEPW`. metadata : Dictionary Metadata output from output from :py:class:`~bifacial_radiance.RadianceObj.readTMY`` or from :py:class:`~bifacial_radiance.RadianceObj.readEPW`. label : str label : str 'left', 'right', or 'center'. For data that is averaged, defines if the timestamp refers to the left edge, the right edge, or the center of the averaging interval, for purposes of calculating sunposition. For example, TMY3 data is right-labeled, so 11 AM data represents data from 10 to 11, and sun position should be calculated at 10:30 AM. Currently SAM and PVSyst use left-labeled interval data and NSRDB uses centered. """ def __init__(self, tmydata, metadata, label = 'right'): import pytz import pvlib #import numpy as np #First prune all GHI = 0 timepoints. New as of 0.4.0 # TODO: is this a good idea? This changes default behavior... tmydata = tmydata[tmydata.GHI > 0] # location data. so far needed: # latitude, longitude, elevation, timezone, city self.latitude = metadata['latitude']; lat=self.latitude self.longitude = metadata['longitude']; lon=self.longitude self.elevation = metadata['altitude']; elev=self.elevation self.timezone = metadata['TZ'] try: self.city = metadata['Name'] # readepw version except KeyError: self.city = metadata['city'] # pvlib version #self.location.state_province_region = metadata['State'] # unecessary self.datetime = tmydata.index.tolist() # this is tz-aware. self.ghi = np.array(tmydata.GHI) self.dhi = np.array(tmydata.DHI) self.dni = np.array(tmydata.DNI) try: self.albedo = np.array(tmydata.Alb) except AttributeError: # no TMY albedo data self.albedo = None # Try and retrieve dewpoint and pressure try: self.dewpoint = np.array(tmydata['temp_dew']) except KeyError: self.dewpoint = None try: self.pressure = np.array(tmydata['atmospheric_pressure']) except KeyError: self.pressure = None try: self.temp_air = np.array(tmydata['temp_air']) except KeyError: self.temp_air = None try: self.wind_speed = np.array(tmydata['wind_speed']) except KeyError: self.wind_speed = None # Try and retrieve TrackerAngle try: self.meastracker_angle = np.array(tmydata['Tracker Angle (degrees)']) except KeyError: self.meastracker_angle= None #v0.2.5: initialize MetObj with solpos, sunrise/set and corrected time datetimetz = pd.DatetimeIndex(self.datetime) try: # make sure the data is tz-localized. datetimetz = datetimetz.tz_localize(pytz.FixedOffset(self.timezone*60))# use pytz.FixedOffset (in minutes) except TypeError: # data is tz-localized already. Just put it in local time. datetimetz = datetimetz.tz_convert(pytz.FixedOffset(self.timezone*60)) #check for data interval. default 1h. try: interval = datetimetz[1]-datetimetz[0] except IndexError: interval = pd.Timedelta('1h') # ISSUE: if 1 datapoint is passed, are we sure it's hourly data? print ("WARNING: TMY interval was unable to be defined, so setting it to 1h.") # TODO: Refactor this into a subfunction. first calculate minutedelta # based on label and interval (-30, 0, +30, +7.5 etc) then correct all. if label.lower() == 'center': print("Calculating Sun position for center labeled data, at exact timestamp in input Weather File") sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) #new for pvlib >= 0.6.1 sunup['corrected_timestamp'] = datetimetz else: if interval== pd.Timedelta('1h'): if label.lower() == 'right': print("Calculating Sun position for Metdata that is right-labeled ", "with a delta of -30 mins. i.e. 12 is 11:30 sunpos") sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) #new for pvlib >= 0.6.1 sunup['minutedelta']= int(interval.seconds/2/60) # default sun angle 30 minutes before timestamp # vector update of minutedelta at sunrise sunrisemask = sunup.index.hour-1==sunup['sunrise'].dt.hour sunup['minutedelta'].mask(sunrisemask,np.floor((60-(sunup['sunrise'].dt.minute))/2),inplace=True) # vector update of minutedelta at sunset sunsetmask = sunup.index.hour-1==sunup['sunset'].dt.hour sunup['minutedelta'].mask(sunsetmask,np.floor((60-(sunup['sunset'].dt.minute))/2),inplace=True) # save corrected timestamp sunup['corrected_timestamp'] = sunup.index-pd.to_timedelta(sunup['minutedelta'], unit='m') elif label.lower() == 'left': print("Calculating Sun position for Metdata that is left-labeled ", "with a delta of +30 mins. i.e. 12 is 12:30 sunpos.") sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) sunup['minutedelta']= int(interval.seconds/2/60) # default sun angle 30 minutes after timestamp # vector update of minutedelta at sunrise sunrisemask = sunup.index.hour==sunup['sunrise'].dt.hour sunup['minutedelta'].mask(sunrisemask,np.ceil((60+sunup['sunrise'].dt.minute)/2),inplace=True) # vector update of minutedelta at sunset sunsetmask = sunup.index.hour==sunup['sunset'].dt.hour sunup['minutedelta'].mask(sunsetmask,np.ceil((60+sunup['sunset'].dt.minute)/2),inplace=True) # save corrected timestamp sunup['corrected_timestamp'] = sunup.index+pd.to_timedelta(sunup['minutedelta'], unit='m') else: raise ValueError('Error: invalid weather label passed. Valid inputs: right, left or center') else: minutedelta = int(interval.seconds/2/60) print("Interval in weather data is less than 1 hr, calculating" f" Sun position with a delta of -{minutedelta} minutes.") print("If you want no delta for sunposition, use " "readWeatherFile( label='center').") #datetimetz=datetimetz-pd.Timedelta(minutes = minutedelta) # This doesn't check for Sunrise or Sunset #sunup= pvlib.irradiance.solarposition.get_sun_rise_set_transit(datetimetz, lat, lon) # deprecated in pvlib 0.6.1 sunup= pvlib.irradiance.solarposition.sun_rise_set_transit_spa(datetimetz, lat, lon) #new for pvlib >= 0.6.1 sunup['corrected_timestamp'] = sunup.index-pd.Timedelta(minutes = minutedelta) self.solpos = pvlib.irradiance.solarposition.get_solarposition(sunup['corrected_timestamp'],lat,lon,elev) self.sunrisesetdata=sunup self.label = label def _set1axis(self, azimuth=180, limit_angle=45, angledelta=None, backtrack=True, gcr=1.0/3.0, cumulativesky=True, fixed_tilt_angle=None, axis_tilt=0, useMeasuredTrackerAngle=False): """ Set up geometry for 1-axis tracking cumulativesky. Solpos data already stored in `metdata.solpos`. Pull in tracking angle details from pvlib, create multiple 8760 metdata sub-files where datetime of met data matches the tracking angle. Parameters ------------ cumulativesky : bool Whether individual csv files are created with constant tilt angle for the cumulativesky approach. if false, the gendaylit tracking approach must be used. azimuth : numerical orientation axis of tracker torque tube. Default North-South (180 deg) For fixed tilt simulations this is the orientation azimuth limit_angle : numerical +/- limit angle of the 1-axis tracker in degrees. Default 45 angledelta : numerical Degree of rotation increment to parse irradiance bins. Default 5 degrees (0.4 % error for DNI). Other options: 4 (.25%), 2.5 (0.1%). (the smaller the angledelta, the more simulations) backtrack : bool Whether backtracking is enabled (default = True) gcr : float Ground coverage ratio for calculation backtracking. Defualt [1.0/3.0] axis_tilt : float Tilt of the axis. While it can be considered for the tracking calculation, the scene geometry creation of the trackers does not support tilte axis_trackers yet (but can be done manuallyish. See Tutorials) fixed_tilt_angle : numeric If passed, this changes to a fixed tilt simulation where each hour uses fixed_tilt_angle and azimuth as the tilt and azimuth Returns ------- trackerdict : dictionary Keys for tracker tilt angles and list of csv metfile, and datetimes at that angle trackerdict[angle]['csvfile';'surf_azm';'surf_tilt';'UTCtime'] metdata.solpos : dataframe Dataframe with output from pvlib solar position for each timestep metdata.sunrisesetdata : Pandas dataframe with sunrise, sunset and adjusted time data. metdata.tracker_theta : list Tracker tilt angle from pvlib for each timestep metdata.surface_tilt : list Tracker surface tilt angle from pvlib for each timestep metdata.surface_azimuth : list Tracker surface azimuth angle from pvlib for each timestep """ #axis_tilt = 0 # only support 0 tilt trackers for now self.cumulativesky = cumulativesky # track whether we're using cumulativesky or gendaylit if (cumulativesky is True) & (angledelta is None): angledelta = 5 # round angle to 5 degrees for cumulativesky # get 1-axis tracker angles for this location, # round to nearest 'angledelta' if self.meastracker_angle is not None and useMeasuredTrackerAngle is True: print("Tracking Data: Reading from provided Tracker Angles") elif self.meastracker_angle is None and useMeasuredTrackerAngle is True: useMeasuredTrackerAngle = False print("Warning: Using Measured Tracker Angles was specified but DATA"+ " for trackers has not yet been assigned. "+ " Assign it by making it a column on your Weatherdata File "+ "named 'Tracker Angle (degrees)' and run ReadWeatherFile again") trackingdata = self._getTrackingAngles(azimuth, limit_angle, angledelta, axis_tilt = axis_tilt, backtrack = backtrack, gcr = gcr, fixed_tilt_angle=fixed_tilt_angle, useMeasuredTrackerAngle=useMeasuredTrackerAngle) # get list of unique rounded tracker angles theta_list = trackingdata.dropna()['theta_round'].unique() if cumulativesky is True: # create a separate metfile for each unique tracker theta angle. # return dict of filenames and details trackerdict = self._makeTrackerCSV(theta_list,trackingdata) else: # trackerdict uses timestamp as keys. return azimuth # and tilt for each timestamp #times = [str(i)[5:-12].replace('-','_').replace(' ','_') for i in self.datetime] times = [i.strftime('%Y-%m-%d_%H%M') for i in self.datetime] #trackerdict = dict.fromkeys(times) trackerdict = {} for i,time in enumerate(times) : # remove NaN tracker theta from trackerdict if (self.ghi[i] > 0) & (~np.isnan(self.tracker_theta[i])): trackerdict[time] = { 'surf_azm':self.surface_azimuth[i], 'surf_tilt':self.surface_tilt[i], 'theta':self.tracker_theta[i], 'ghi':self.ghi[i], 'dhi':self.dhi[i] } return trackerdict def _getTrackingAngles(self, azimuth=180, limit_angle=45, angledelta=None, axis_tilt=0, backtrack=True, gcr = 1.0/3.0, fixed_tilt_angle=None, useMeasuredTrackerAngle=False): ''' Helper subroutine to return 1-axis tracker tilt and azimuth data. Parameters ---------- same as pvlib.tracking.singleaxis, plus: angledelta : degrees Angle to round tracker_theta to. This is for cumulativesky simulations. Other input options: None (no rounding of tracker angle) fixed_tilt_angle : (Optional) degrees This changes to a fixed tilt simulation where each hour uses fixed_tilt_angle and azimuth as the tilt and azimuth Returns ------- DataFrame with the following columns: * tracker_theta: The rotation angle of the tracker. tracker_theta = 0 is horizontal, and positive rotation angles are clockwise. * aoi: The angle-of-incidence of direct irradiance onto the rotated panel surface. * surface_tilt: The angle between the panel surface and the earth surface, accounting for panel rotation. * surface_azimuth: The azimuth of the rotated panel, determined by projecting the vector normal to the panel's surface to the earth's surface. * 'theta_round' : tracker_theta rounded to the nearest 'angledelta' If no angledelta is specified, it is rounded to the nearest degree. ''' import pvlib import warnings from pvlib.irradiance import aoi #import numpy as np #import pandas as pd solpos = self.solpos #New as of 0.3.2: pass fixed_tilt_angle and switches to FIXED TILT mode if fixed_tilt_angle is not None: # system with fixed tilt = fixed_tilt_angle surface_tilt=fixed_tilt_angle surface_azimuth=azimuth # trackingdata keys: 'tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt' trackingdata = pd.DataFrame({'tracker_theta':fixed_tilt_angle, 'aoi':aoi(surface_tilt, surface_azimuth, solpos['zenith'], solpos['azimuth']), 'surface_azimuth':azimuth, 'surface_tilt':fixed_tilt_angle}) elif useMeasuredTrackerAngle: # tracked system surface_tilt=self.meastracker_angle surface_azimuth=azimuth trackingdata = pd.DataFrame({'tracker_theta':self.meastracker_angle, 'aoi':aoi(surface_tilt, surface_azimuth, solpos['zenith'], solpos['azimuth']), 'surface_azimuth':azimuth, 'surface_tilt':abs(self.meastracker_angle)}) else: # get 1-axis tracker tracker_theta, surface_tilt and surface_azimuth with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning) trackingdata = pvlib.tracking.singleaxis(solpos['zenith'], solpos['azimuth'], axis_tilt, azimuth, limit_angle, backtrack, gcr) # save tracker tilt information to metdata.tracker_theta, # metdata.surface_tilt and metdata.surface_azimuth self.tracker_theta = np.round(trackingdata['tracker_theta'],2).tolist() self.surface_tilt = np.round(trackingdata['surface_tilt'],2).tolist() self.surface_azimuth = np.round(trackingdata['surface_azimuth'],2).tolist() # undo the timestamp offset put in by solpos. #trackingdata.index = trackingdata.index + pd.Timedelta(minutes = 30) # It may not be exactly 30 minutes any more... trackingdata.index = self.sunrisesetdata.index #this has the original time data in it # round tracker_theta to increments of angledelta for use in cumulativesky def _roundArbitrary(x, base=angledelta): # round to nearest 'base' value. # mask NaN's to avoid rounding error message return base * (x/float(base)).round() if angledelta == 0: raise ZeroDivisionError('Angledelta = 0. Use None instead') elif angledelta is None: # don't round theta trackingdata['theta_round'] = trackingdata['tracker_theta'] else: # round theta trackingdata['theta_round'] = \ _roundArbitrary(trackingdata['tracker_theta'], angledelta) return trackingdata def _makeTrackerCSV(self, theta_list, trackingdata): ''' Create multiple new irradiance csv files with data for each unique rounded tracker angle. Return a dictionary with the new csv filenames and other details, Used for cumulativesky tracking Parameters ----------- theta_list : array Array of unique tracker angle values trackingdata : Pandas Pandas Series with hourly tracker angles from :pvlib.tracking.singleaxis Returns -------- trackerdict : dictionary keys: *theta_round tracker angle (default: -45 to +45 in 5 degree increments). sub-array keys: *datetime: array of datetime strings in this group of angles *count: number of datapoints in this group of angles *surf_azm: tracker surface azimuth during this group of angles *surf_tilt: tilt angle average during this group of angles *csvfile: name of csv met data file saved in /EPWs/ ''' dt = pd.to_datetime(self.datetime) trackerdict = dict.fromkeys(theta_list) for theta in sorted(trackerdict): trackerdict[theta] = {} csvfile = os.path.join('EPWs', '1axis_{}.csv'.format(theta)) tempdata = trackingdata[trackingdata['theta_round'] == theta] #Set up trackerdict output for each value of theta trackerdict[theta]['csvfile'] = csvfile trackerdict[theta]['surf_azm'] = tempdata['surface_azimuth'].median() trackerdict[theta]['surf_tilt'] = abs(theta) datetimetemp = tempdata.index.strftime('%Y-%m-%d %H:%M:%S') #local time trackerdict[theta]['datetime'] = datetimetemp trackerdict[theta]['count'] = datetimetemp.__len__() #Create new temp csv file with zero values for all times not equal to datetimetemp # write 8760 2-column csv: GHI,DHI ghi_temp = [] dhi_temp = [] for g, d, time in zip(self.ghi, self.dhi, dt.strftime('%Y-%m-%d %H:%M:%S')): # is this time included in a particular theta_round angle? if time in datetimetemp: ghi_temp.append(g) dhi_temp.append(d) else: # mask out irradiance at this time, since it # belongs to a different bin ghi_temp.append(0.0) dhi_temp.append(0.0) # save in 2-column GHI,DHI format for gencumulativesky -G savedata = pd.DataFrame({'GHI':ghi_temp, 'DHI':dhi_temp}, index = self.datetime).tz_localize(None) # Fill partial year. Requires 2021 measurement year. savedata = _subhourlydatatoGencumskyformat(savedata, label=self.label) print('Saving file {}, # points: {}'.format( trackerdict[theta]['csvfile'], datetimetemp.__len__())) savedata.to_csv(csvfile, index=False, header=False, sep=' ', columns=['GHI','DHI']) return trackerdict class AnalysisObj: """ Analysis class for performing raytrace to obtain irradiance measurements at the array, as well plotting and reporting results. """ def __repr__(self): return str(self.__dict__) def __init__(self, octfile=None, name=None, hpc=False): """ Initialize AnalysisObj by pointing to the octfile. Scan information is defined separately by passing scene details into AnalysisObj.moduleAnalysis() Parameters ------------ octfile : string Filename and extension of .oct file name : hpc : boolean, default False. Waits for octfile for a longer time if parallel processing. """ self.octfile = octfile self.name = name self.hpc = hpc def makeImage(self, viewfile, octfile=None, name=None): """ Makes a visible image (rendering) of octfile, viewfile """ import time if octfile is None: octfile = self.octfile if name is None: name = self.name #TODO: update this for cross-platform compatibility w/ os.path.join if self.hpc : time_to_wait = 10 time_counter = 0 filelist = [octfile, "views/"+viewfile] for file in filelist: while not os.path.exists(file): time.sleep(1) time_counter += 1 if time_counter > time_to_wait:break print('Generating visible render of scene') #TODO: update this for cross-platform compatibility w os.path.join os.system("rpict -dp 256 -ar 48 -ms 1 -ds .2 -dj .9 -dt .1 "+ "-dc .5 -dr 1 -ss 1 -st .1 -ab 3 -aa .1 "+ "-ad 1536 -as 392 -av 25 25 25 -lr 8 -lw 1e-4 -vf views/" +viewfile+ " " + octfile + " > images/"+name+viewfile[:-3] +".hdr") def makeFalseColor(self, viewfile, octfile=None, name=None): """ Makes a false-color plot of octfile, viewfile .. note:: For Windows requires installation of falsecolor.exe, which is part of radwinexe-5.0.a.8-win64.zip found at http://www.jaloxa.eu/resources/radiance/radwinexe.shtml """ #TODO: error checking for installation of falsecolor.exe if octfile is None: octfile = self.octfile if name is None: name = self.name print('Generating scene in WM-2. This may take some time.') #TODO: update and test this for cross-platform compatibility using os.path.join cmd = "rpict -i -dp 256 -ar 48 -ms 1 -ds .2 -dj .9 -dt .1 "+\ "-dc .5 -dr 1 -ss 1 -st .1 -ab 3 -aa .1 -ad 1536 -as 392 " +\ "-av 25 25 25 -lr 8 -lw 1e-4 -vf views/"+viewfile + " " + octfile WM2_out,err = _popen(cmd,None) if err is not None: print('Error: {}'.format(err)) return # determine the extreme maximum value to help with falsecolor autoscale extrm_out,err = _popen("pextrem",WM2_out.encode('latin1')) # cast the pextrem string as a float and find the max value WM2max = max(map(float,extrm_out.split())) print('Saving scene in false color') #auto scale false color map if WM2max < 1100: cmd = "falsecolor -l W/m2 -m 1 -s 1100 -n 11" else: cmd = "falsecolor -l W/m2 -m 1 -s %s"%(WM2max,) with open(os.path.join("images","%s%s_FC.hdr"%(name,viewfile[:-3]) ),"w") as f: data,err = _popen(cmd,WM2_out.encode('latin1'),f) if err is not None: print(err) print('possible solution: install radwinexe binary package from ' 'http://www.jaloxa.eu/resources/radiance/radwinexe.shtml') def _linePtsArray(self, linePtsDict): """ Helper function to just print the x y and z values in an array format, just like they will show in the .csv result files. """ xstart = linePtsDict['xstart'] ystart = linePtsDict['ystart'] zstart = linePtsDict['zstart'] xinc = linePtsDict['xinc'] yinc = linePtsDict['yinc'] zinc = linePtsDict['zinc'] sx_xinc = linePtsDict['sx_xinc'] sx_yinc = linePtsDict['sx_yinc'] sx_zinc = linePtsDict['sx_zinc'] Nx = int(linePtsDict['Nx']) Ny = int(linePtsDict['Ny']) Nz = int(linePtsDict['Nz']) x = [] y = [] z = [] for iz in range(0,Nz): for ix in range(0,Nx): for iy in range(0,Ny): x . append(xstart+iy*xinc+ix*sx_xinc) y . append(ystart+iy*yinc+ix*sx_yinc) z . append(zstart+iy*zinc+ix*sx_zinc) return x, y, z def _linePtsMakeDict(self, linePtsDict): a = linePtsDict linepts = self._linePtsMake3D(a['xstart'],a['ystart'],a['zstart'], a['xinc'], a['yinc'], a['zinc'], a['sx_xinc'], a['sx_yinc'], a['sx_zinc'], a['Nx'],a['Ny'],a['Nz'],a['orient']) return linepts def _linePtsMake3D(self, xstart, ystart, zstart, xinc, yinc, zinc, sx_xinc, sx_yinc, sx_zinc, Nx, Ny, Nz, orient): #create linepts text input with variable x,y,z. #If you don't want to iterate over a variable, inc = 0, N = 1. linepts = "" # make sure Nx, Ny, Nz are ints. Nx = int(Nx) Ny = int(Ny) Nz = int(Nz) for iz in range(0,Nz): for ix in range(0,Nx): for iy in range(0,Ny): xpos = xstart+iy*xinc+ix*sx_xinc ypos = ystart+iy*yinc+ix*sx_yinc zpos = zstart+iy*zinc+ix*sx_zinc linepts = linepts + str(xpos) + ' ' + str(ypos) + \ ' '+str(zpos) + ' ' + orient + " \r" return(linepts) def _irrPlot(self, octfile, linepts, mytitle=None, plotflag=None, accuracy='low'): """ (plotdict) = _irrPlot(linepts,title,time,plotflag, accuracy) irradiance plotting using rtrace pass in the linepts structure of the view along with a title string for the plots. Parameters ------------ octfile : string Filename and extension of .oct file linepts : Output from :py:class:`bifacial_radiance.AnalysisObj._linePtsMake3D` mytitle : string Title to append to results files plotflag : Boolean Include plot of resulting irradiance accuracy : string Either 'low' (default - faster) or 'high' (better for low light) Returns ------- out : dictionary out.x,y,z - coordinates of point .r,g,b - r,g,b values in Wm-2 .Wm2 - equal-weight irradiance .mattype - material intersected .title - title passed in """ if mytitle is None: mytitle = octfile[:-4] if plotflag is None: plotflag = False if self.hpc : import time time_to_wait = 10 time_counter = 0 while not os.path.exists(octfile): time.sleep(1) time_counter += 1 if time_counter > time_to_wait: print('Warning: OCTFILE NOT FOUND') break if octfile is None: print('Analysis aborted. octfile = None' ) return None keys = ['<KEY>'] out = {key: [] for key in keys} #out = dict.fromkeys(['Wm2','x','y','z','r','g','b','mattype','title']) out['title'] = mytitle print ('Linescan in process: %s' %(mytitle)) #rtrace ambient values set for 'very accurate': #cmd = "rtrace -i -ab 5 -aa .08 -ar 512 -ad 2048 -as 512 -h -oovs "+ octfile if accuracy == 'low': #rtrace optimized for faster scans: (ab2, others 96 is too coarse) cmd = "rtrace -i -ab 2 -aa .1 -ar 256 -ad 2048 -as 256 -h -oovs "+ octfile elif accuracy == 'high': #rtrace ambient values set for 'very accurate': cmd = "rtrace -i -ab 5 -aa .08 -ar 512 -ad 2048 -as 512 -h -oovs "+ octfile else: print('_irrPlot accuracy options: "low" or "high"') return({}) temp_out,err = _popen(cmd,linepts.encode()) if err is not None: if err[0:5] == 'error': raise Exception(err[7:]) else: print(err) # when file errors occur, temp_out is None, and err message is printed. if temp_out is not None: for line in temp_out.splitlines(): temp = line.split('\t') out['x'].append(float(temp[0])) out['y'].append(float(temp[1])) out['z'].append(float(temp[2])) out['r'].append(float(temp[3])) out['g'].append(float(temp[4])) out['b'].append(float(temp[5])) out['mattype'].append(temp[6]) out['Wm2'].append(sum([float(i) for i in temp[3:6]])/3.0) if plotflag is True: import matplotlib.pyplot as plt plt.figure() plt.plot(out['Wm2']) plt.ylabel('Wm2 irradiance') plt.xlabel('variable') plt.title(mytitle) plt.show() else: out = None # return empty if error message. return(out) def _saveResults(self, data=None, reardata=None, savefile=None, RGB = False): """ Function to save output from _irrPlot If rearvals is passed in, back ratio is saved If data = None then only reardata is saved. Returns -------- savefile : str If set to None, will write to default .csv filename in results folder. """ if savefile is None: savefile = data['title'] + '.csv' if data is None and reardata is not None: # only rear data is passed. data = reardata reardata = None # run process like normal but swap labels at the end rearswapflag = True else: rearswapflag = False # make savefile dataframe and set self.attributes if RGB: data_sub = {key:data[key] for key in ['x', 'y', 'z', 'mattype', 'Wm2','r', 'g', 'b' ]} else: data_sub = {key:data[key] for key in ['x', 'y', 'z', 'mattype','Wm2' ]} df = pd.DataFrame(data_sub) df = df.rename(columns={'Wm2':'Wm2Front'}) if reardata is not None: df.insert(3, 'rearZ', reardata['z']) df.insert(5, 'rearMat', reardata['mattype']) df.insert(7, 'Wm2Back', reardata['Wm2']) # add 1mW/m2 to avoid dividebyzero df.insert(8, 'Back/FrontRatio', df['Wm2Back'] / (df['Wm2Front']+.001)) df['backRatio'] = df['Back/FrontRatio'] df['rearX'] = reardata['x'] df['rearY'] = reardata['y'] if RGB: df['rearR'] = reardata['r'] df['rearG'] = reardata['g'] df['rearB'] = reardata['b'] #df = df[['x','y','z','rearZ','mattype','rearMat', # 'Wm2Front','Wm2Back','Back/FrontRatio', # 'r','g','b', 'rearR','rearG','rearB']] #else: #df = df[['x','y','z','rearZ','mattype','rearMat', # 'Wm2Front','Wm2Back','Back/FrontRatio']] #else: # if RGB: # df = df[['x','y','z', 'mattype','Wm2Front', 'r', 'g', 'b']] # # else: # df = df[['x','y','z', 'mattype','Wm2Front']] # rename columns if only rear data was originally passed if rearswapflag: df = df.rename(columns={'Wm2Front':'Wm2Back','mattype':'rearMat'}) # set attributes of analysis to equal columns of df for col in df.columns: setattr(self, col, list(df[col])) # only save a subset df = df.drop(columns=['rearX','rearY','backRatio'], errors='ignore') df.to_csv(os.path.join("results", savefile), sep = ',', index = False) print('Saved: %s'%(os.path.join("results", savefile))) return os.path.join("results", savefile) def _saveResultsCumulative(self, data, reardata=None, savefile=None): """ TEMPORARY FUNCTION -- this is a fix to save ONE cumulative results csv in the main working folder for when doing multiple entries in a tracker dict. Returns -------- savefile : str If set to None, will write to default .csv filename in results folder. """ if savefile is None: savefile = data['title'] + '.csv' # make dataframe from results data_sub = {key:data[key] for key in ['x', 'y', 'z', 'Wm2', 'mattype']} self.x = data['x'] self.y = data['y'] self.z = data['z'] self.mattype = data['mattype'] #TODO: data_sub front values don't seem to be saved to self. if reardata is not None: self.rearX = reardata['x'] self.rearY = reardata['y'] self.rearMat = reardata['mattype'] data_sub['rearMat'] = self.rearMat self.rearZ = reardata['z'] data_sub['rearZ'] = self.rearZ self.Wm2Front = data_sub.pop('Wm2') data_sub['Wm2Front'] = self.Wm2Front self.Wm2Back = reardata['Wm2'] data_sub['Wm2Back'] = self.Wm2Back self.backRatio = [x/(y+.001) for x,y in zip(reardata['Wm2'],data['Wm2'])] # add 1mW/m2 to avoid dividebyzero data_sub['Back/FrontRatio'] = self.backRatio df = pd.DataFrame.from_dict(data_sub) df.to_csv(savefile, sep = ',', columns = ['x','y','z','rearZ','mattype','rearMat', 'Wm2Front','Wm2Back','Back/FrontRatio'], index = False) # new in 0.2.3 else: df = pd.DataFrame.from_dict(data_sub) df.to_csv(savefile, sep = ',', columns = ['x','y','z', 'mattype','Wm2'], index = False) print('Saved: %s'%(savefile)) return (savefile) def moduleAnalysis(self, scene, modWanted=None, rowWanted=None, sensorsy=9, sensorsx=1, frontsurfaceoffset=0.001, backsurfaceoffset=0.001, modscanfront=None, modscanback=None, relative=False, debug=False): """ Handler function that decides how to handle different number of front and back sensors. If number for front sensors is not provided or is the same as for the back, _moduleAnalysis is called only once. Else it is called twice to get the different front and back dictionary. This function defines the scan points to be used in the :py:class:`~bifacial_radiance.AnalysisObj.analysis` function, to perform the raytrace through Radiance function `rtrace` Parameters ------------ scene : ``SceneObj`` Generated with :py:class:`~bifacial_radiance.RadianceObj.makeScene`. modWanted : int Module wanted to sample. If none, defaults to center module (rounding down) rowWanted : int Row wanted to sample. If none, defaults to center row (rounding down) sensorsy : int or list Number of 'sensors' or scanning points along the collector width (CW) of the module(s). If multiple values are passed, first value represents number of front sensors, second value is number of back sensors sensorsx : int or list Number of 'sensors' or scanning points along the length, the side perpendicular to the collector width (CW) of the module(s) for the back side of the module. If multiple values are passed, first value represents number of front sensors, second value is number of back sensors. debug : bool Activates various print statemetns for debugging this function. modscanfront : dict Dictionary to modify the fronstcan values established by this routine and set a specific value. Keys possible are 'xstart', 'ystart', 'zstart', 'xinc', 'yinc', 'zinc', 'Nx', 'Ny', 'Nz', and 'orient'. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. modscanback: dict Dictionary to modify the backscan values established by this routine and set a specific value. Keys possible are 'xstart', 'ystart', 'zstart', 'xinc', 'yinc', 'zinc', 'Nx', 'Ny', 'Nz', and 'orient'. If modifying Nx, Ny or Nz, make sure to modify on modscanback to avoid issues on results writing stage. All of these keys are ints or floats except for 'orient' which takes x y z values as string 'x y z' for example '0 0 -1'. These values will overwrite the internally calculated frontscan dictionary for the module & row selected. relative : Bool if passing modscanfront and modscanback to modify dictionarie of positions, this sets if the values passed to be updated are relative or absolute. Default is absolute value (relative=False) Returns ------- frontscan : dictionary Scan dictionary for module's front side. Used to pass into :py:class:`~bifacial_radiance.AnalysisObj.analysis` function backscan : dictionary Scan dictionary for module's back side. Used to pass into :py:class:`~bifacial_radiance.AnalysisObj.analysis` function """ # Height: clearance height for fixed tilt systems, or torque tube # height for single-axis tracked systems. # Single axis tracked systems will consider the offset to calculate the final height. def _checkSensors(sensors): # Checking Sensors input data for list or tuple if (type(sensors)==tuple or type(sensors)==list): try: sensors_back = sensors[1] sensors_front = sensors[0] except IndexError: # only 1 value passed?? sensors_back = sensors_front = sensors[0] elif (type(sensors)==int or type(sensors)==float): # Ensure sensors are positive int values. if int(sensors) < 1: raise Exception('input sensorsy must be numeric >0') sensors_back = sensors_front = int(sensors) else: print('Warning: invalid value passed for sensors. Setting = 1') sensors_back = sensors_front = 1 return sensors_front, sensors_back sensorsy_front, sensorsy_back = _checkSensors(sensorsy) sensorsx_front, sensorsx_back = _checkSensors(sensorsx) if (sensorsx_back != sensorsx_front) or (sensorsy_back != sensorsy_front): sensors_diff = True else: sensors_diff = False dtor = np.pi/180.0 # Internal scene parameters are stored in scene.sceneDict. Load these into local variables sceneDict = scene.sceneDict azimuth = sceneDict['azimuth'] tilt = sceneDict['tilt'] nMods = sceneDict['nMods'] nRows = sceneDict['nRows'] originx = sceneDict['originx'] originy = sceneDict['originy'] # offset = moduleDict['offsetfromaxis'] offset = scene.module.offsetfromaxis sceney = scene.module.sceney scenex = scene.module.scenex # x needed for sensorsx>1 case x = scene.module.x ## Check for proper input variables in sceneDict if 'pitch' in sceneDict: pitch = sceneDict['pitch'] elif 'gcr' in sceneDict: pitch = sceney / sceneDict['gcr'] else: raise Exception("Error: no 'pitch' or 'gcr' passed in sceneDict" ) if 'axis_tilt' in sceneDict: axis_tilt = sceneDict['axis_tilt'] else: axis_tilt = 0 if hasattr(scene.module,'z'): modulez = scene.module.z else: print ("Module's z not set on sceneDict internal dictionary. Setting to default") modulez = 0.02 if frontsurfaceoffset is None: frontsurfaceoffset = 0.001 if backsurfaceoffset is None: backsurfaceoffset = 0.001 # The Sensor routine below needs a "hub-height", not a clearance height. # The below complicated check checks to see if height (deprecated) is passed, # and if clearance_height or hub_height is passed as well. sceneDict, use_clearanceheight = _heightCasesSwitcher(sceneDict, preferred = 'hub_height', nonpreferred = 'clearance_height') if use_clearanceheight : height = sceneDict['clearance_height'] + 0.5* \ np.sin(abs(tilt) * np.pi / 180) * \ sceney - offset*np.sin(abs(tilt)*np.pi/180) else: height = sceneDict['hub_height'] if debug: print("For debug:\n hub_height, Azimuth, Tilt, nMods, nRows, " "Pitch, Offset, SceneY, SceneX") print(height, azimuth, tilt, nMods, nRows, pitch, offset, sceney, scenex) if modWanted == 0: print( " FYI Modules and Rows start at index 1. " "Reindexing to modWanted 1" ) modWanted = modWanted+1 # otherwise it gives results on Space. if rowWanted ==0: print( " FYI Modules and Rows start at index 1. " "Reindexing to rowWanted 1" ) rowWanted = rowWanted+1 if modWanted is None: modWanted = round(nMods / 1.99) if rowWanted is None: rowWanted = round(nRows / 1.99) if debug is True: print( f"Sampling: modWanted {modWanted}, rowWanted {rowWanted} " "out of {nMods} modules, {nRows} rows" ) x0 = (modWanted-1)*scenex - (scenex*(round(nMods/1.99)*1.0-1)) y0 = (rowWanted-1)*pitch - (pitch*(round(nRows / 1.99)*1.0-1)) x1 = x0 * np.cos ((180-azimuth)*dtor) - y0 * np.sin((180-azimuth)*dtor) y1 = x0 * np.sin ((180-azimuth)*dtor) + y0 * np.cos((180-azimuth)*dtor) z1 = 0 if axis_tilt != 0 and azimuth == 90: print ("fixing height for axis_tilt") z1 = (modWanted-1)*scenex * np.sin(axis_tilt*dtor) # Edge of Panel x2 = (sceney/2.0) * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) y2 = (sceney/2.0) * np.cos((tilt)*dtor) * np.cos((azimuth)*dtor) z2 = -(sceney/2.0) * np.sin(tilt*dtor) # Axis of rotation Offset (if offset is not 0) for the front of the module x3 = (offset + modulez + frontsurfaceoffset) * np.sin(tilt*dtor) * np.sin((azimuth)*dtor) y3 = (offset + modulez + frontsurfaceoffset) * np.sin(tilt*dtor) * np.cos((azimuth)*dtor) z3 = (offset + modulez + frontsurfaceoffset) * np.cos(tilt*dtor) # Axis of rotation Offset, for the back of the module x4 = (offset - backsurfaceoffset) * np.sin(tilt*dtor) * np.sin((azimuth)*dtor) y4 = (offset - backsurfaceoffset) * np.sin(tilt*dtor) * np.cos((azimuth)*dtor) z4 = (offset - backsurfaceoffset) * np.cos(tilt*dtor) xstartfront = x1 + x2 + x3 + originx xstartback = x1 + x2 + x4 + originx ystartfront = y1 + y2 + y3 + originy ystartback = y1 + y2 + y4 + originy zstartfront = height + z1 + z2 + z3 zstartback = height + z1 + z2 + z4 #Adjust orientation of scan depending on tilt & azimuth zdir = np.cos((tilt)*dtor) ydir = np.sin((tilt)*dtor) * np.cos((azimuth)*dtor) xdir = np.sin((tilt)*dtor) * np.sin((azimuth)*dtor) front_orient = '%0.3f %0.3f %0.3f' % (-xdir, -ydir, -zdir) back_orient = '%0.3f %0.3f %0.3f' % (xdir, ydir, zdir) #IF cellmodule: #TODO: Add check for sensorsx_back #temp = scene.moduleDict.get('cellModule') #error-free way to query it #if ((temp is not None) and if ((getattr(scene.module, 'cellModule', None)) and (sensorsy_back == scene.module.cellModule.numcellsy)): ycell = scene.module.cellModule.ycell xinc_back = -((sceney - ycell ) / (scene.module.cellModule.numcellsy-1)) * np.cos((tilt)*dtor) * np.sin((azimuth)*dtor) yinc_back = -((sceney - ycell) / (scene.module.cellModule.numcellsy-1)) *
np.cos((tilt)*dtor)
numpy.cos
""" @package ion_functions.data.perf.test_adcp_performance @file ion_functions/data/perf/test_adcp_performance.py @author <NAME> @brief Performance tests for adcp_functions module """ import numpy as np from nose.plugins.attrib import attr from ion_functions.data.perf.test_performance import PerformanceTestCase from ion_functions.data import flo_functions as fl @attr('PERF', group='func') class TestADCPPerformance(PerformanceTestCase): def setUp(self): # set test inputs ### optical backscatter ### self.scat_counts = 55 self.scat_dark = 47 self.scat_scale = 3.058e-6 self.beta = fl.flo_beta(self.scat_counts, self.scat_dark, self.scat_scale) self.degC = 20.0 self.psu = 32.0 ### chla ### self.chla_counts = 55 self.chla_dark = 45 self.chla_scale = 0.0121 ### cdom ### self.cdom_counts = 55 self.cdom_dark = 48 self.cdom_scale = 0.0848 def test_flo_bback_total(self): stats = [] beta = np.repeat(self.beta, 1000000) degC = np.repeat(self.degC, 1000000) psu = np.repeat(self.psu, 1000000) self.profile(stats, fl.flo_bback_total, beta, degC, psu) def test_flo_beam(self): stats = [] counts = np.repeat(self.scat_counts, 1000000) dark = np.repeat(self.scat_dark, 1000000) scale = np.repeat(self.scat_scale, 1000000) self.profile(stats, fl.flo_beta, counts, dark, scale) def test_flo_cdom(self): stats = [] counts = np.repeat(self.cdom_counts, 1000000) dark = np.repeat(self.cdom_dark, 1000000) scale = np.repeat(self.cdom_scale, 1000000) self.profile(stats, fl.flo_cdom, counts, dark, scale) def test_flo_chla(self): stats = [] counts =
np.repeat(self.chla_counts, 1000000)
numpy.repeat
import pandas as pd import numpy as np import json import os import csv import sys import warnings from datetime import datetime from math import floor from sklearn.preprocessing import LabelBinarizer, LabelEncoder, StandardScaler, MinMaxScaler from sklearn.model_selection import ShuffleSplit, StratifiedShuffleSplit from sklearn.metrics import log_loss, accuracy_score, precision_score, recall_score, f1_score, roc_curve, auc, mean_squared_error, mean_absolute_error, r2_score from sklearn.feature_extraction.text import CountVectorizer import xgboost as xgb def build_encoders(df): """Builds encoders for fields to be used when processing data for the model. All encoder specifications are stored in locally in /encoders as .json files. # Arguments df: A pandas DataFrame containing the data. """ # Pclass pclass_tf = df['Pclass'].values pclass_encoder = LabelBinarizer() pclass_encoder.fit(pclass_tf) with open(os.path.join('encoders', 'pclass_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(pclass_encoder.classes_.tolist(), outfile, ensure_ascii=False) # Sex sex_tf = df['Sex'].values sex_encoder = LabelBinarizer() sex_encoder.fit(sex_tf) with open(os.path.join('encoders', 'sex_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(sex_encoder.classes_.tolist(), outfile, ensure_ascii=False) # Age age_enc = df['Age'] age_encoder = MinMaxScaler() age_encoder_attrs = ['min_', 'scale_'] age_encoder.fit(df['Age'].values.reshape(-1, 1)) age_encoder_dict = {attr: getattr(age_encoder, attr).tolist() for attr in age_encoder_attrs} with open(os.path.join('encoders', 'age_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(age_encoder_dict, outfile, ensure_ascii=False) # Siblings/Spouses Aboard siblings_spouses_aboard_tf = df['Siblings/Spouses Aboard'].values siblings_spouses_aboard_encoder = LabelBinarizer() siblings_spouses_aboard_encoder.fit(siblings_spouses_aboard_tf) with open(os.path.join('encoders', 'siblings_spouses_aboard_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(siblings_spouses_aboard_encoder.classes_.tolist(), outfile, ensure_ascii=False) # Parents/Children Aboard parents_children_aboard_tf = df['Parents/Children Aboard'].values parents_children_aboard_encoder = LabelBinarizer() parents_children_aboard_encoder.fit(parents_children_aboard_tf) with open(os.path.join('encoders', 'parents_children_aboard_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(parents_children_aboard_encoder.classes_.tolist(), outfile, ensure_ascii=False) # Fare fare_enc = df['Fare'] fare_encoder = MinMaxScaler() fare_encoder_attrs = ['min_', 'scale_'] fare_encoder.fit(df['Fare'].values.reshape(-1, 1)) fare_encoder_dict = {attr: getattr(fare_encoder, attr).tolist() for attr in fare_encoder_attrs} with open(os.path.join('encoders', 'fare_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(fare_encoder_dict, outfile, ensure_ascii=False) # Target Field: Survived survived_encoder = LabelEncoder() survived_encoder.fit(df['Survived'].values) with open(os.path.join('encoders', 'survived_encoder.json'), 'w', encoding='utf8') as outfile: json.dump(survived_encoder.classes_.tolist(), outfile, ensure_ascii=False) def load_encoders(): """Loads the encoders built during `build_encoders`. # Returns encoders: A dict of encoder objects/specs. """ encoders = {} # Pclass pclass_encoder = LabelBinarizer() with open(os.path.join('encoders', 'pclass_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: pclass_encoder.classes_ = json.load(infile) encoders['pclass_encoder'] = pclass_encoder # Sex sex_encoder = LabelBinarizer() with open(os.path.join('encoders', 'sex_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: sex_encoder.classes_ = json.load(infile) encoders['sex_encoder'] = sex_encoder # Age age_encoder = MinMaxScaler() age_encoder_attrs = ['min_', 'scale_'] with open(os.path.join('encoders', 'age_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: age_attrs = json.load(infile) for attr, value in age_attrs.items(): setattr(age_encoder, attr, value) encoders['age_encoder'] = age_encoder # Siblings/Spouses Aboard siblings_spouses_aboard_encoder = LabelBinarizer() with open(os.path.join('encoders', 'siblings_spouses_aboard_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: siblings_spouses_aboard_encoder.classes_ = json.load(infile) encoders['siblings_spouses_aboard_encoder'] = siblings_spouses_aboard_encoder # Parents/Children Aboard parents_children_aboard_encoder = LabelBinarizer() with open(os.path.join('encoders', 'parents_children_aboard_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: parents_children_aboard_encoder.classes_ = json.load(infile) encoders['parents_children_aboard_encoder'] = parents_children_aboard_encoder # Fare fare_encoder = MinMaxScaler() fare_encoder_attrs = ['min_', 'scale_'] with open(os.path.join('encoders', 'fare_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: fare_attrs = json.load(infile) for attr, value in fare_attrs.items(): setattr(fare_encoder, attr, value) encoders['fare_encoder'] = fare_encoder # Target Field: Survived survived_encoder = LabelEncoder() with open(os.path.join('encoders', 'survived_encoder.json'), 'r', encoding='utf8', errors='ignore') as infile: survived_encoder.classes_ = np.array(json.load(infile)) encoders['survived_encoder'] = survived_encoder return encoders def process_data(df, encoders, process_target=True): """Processes an input DataFrame into a format sutable for model prediction. This function loads the encoder specifications created in `build_encoders`. # Arguments df: a DataFrame containing the source data encoders: a dict of encoders to process the data. process_target: boolean to determine if the target should be encoded. # Returns A tuple: A list containing all the processed fields to be fed into the model, and the processed target field. """ # Pclass pclass_enc = df['Pclass'].values pclass_enc = encoders['pclass_encoder'].transform(pclass_enc) # Sex sex_enc = df['Sex'].values sex_enc = encoders['sex_encoder'].transform(sex_enc) # Age age_enc = df['Age'].values.reshape(-1, 1) age_enc = encoders['age_encoder'].transform(age_enc) # Siblings/Spouses Aboard siblings_spouses_aboard_enc = df['Siblings/Spouses Aboard'].values siblings_spouses_aboard_enc = encoders['siblings_spouses_aboard_encoder'].transform( siblings_spouses_aboard_enc) # Parents/Children Aboard parents_children_aboard_enc = df['Parents/Children Aboard'].values parents_children_aboard_enc = encoders['parents_children_aboard_encoder'].transform( parents_children_aboard_enc) # Fare fare_enc = df['Fare'].values.reshape(-1, 1) fare_enc = encoders['fare_encoder'].transform(fare_enc) data_enc = [pclass_enc, sex_enc, age_enc, siblings_spouses_aboard_enc, parents_children_aboard_enc, fare_enc ] if process_target: # Target Field: Survived survived_enc = df['Survived'].values survived_enc = encoders['survived_encoder'].transform(survived_enc) return (data_enc, survived_enc) return data_enc def model_predict(df, model, encoders): """Generates predictions for a trained model. # Arguments df: A pandas DataFrame containing the source data. model: A compiled model. encoders: a dict of encoders to process the data. # Returns A numpy array of predictions. """ data_enc = process_data(df, encoders, process_target=False) data_enc = xgb.DMatrix(
np.hstack(data_enc)
numpy.hstack
from hobart import faces_intersecting_plane, intersect_mesh_with_plane import numpy as np from polliwog import Plane, Polyline from vg.compat import v2 as vg box_vertices = np.array( [ [0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5], [0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5], [0.5, 0.5, 0.5, 0.5, -0.5, -0.5, -0.5, -0.5], ] ).T box_faces = np.array( [ [0, 1, 2], [3, 2, 1], [0, 2, 4], [6, 4, 2], [0, 4, 1], [5, 1, 4], [7, 5, 6], [4, 6, 5], [7, 6, 3], [2, 3, 6], [7, 3, 5], [1, 5, 3], ] ) double_box_vertices = np.vstack( [box_vertices, np.array([2.0, 0.0, 0.0]) + box_vertices] ) double_box_faces = np.vstack([box_faces, len(box_vertices) + box_faces]) non_intersecting_plane = Plane(np.array([0.0, 5.0, 0.0]), vg.basis.y) def create_open_box(): v_on_faces_to_remove = np.nonzero(box_vertices[:, 0] < 0.0)[0] faces_to_remove = np.all( np.in1d(box_faces.ravel(), v_on_faces_to_remove).reshape((-1, 3)), axis=1 ) return box_faces[~faces_to_remove] open_box_faces = create_open_box() double_open_box_faces = np.vstack([open_box_faces, len(box_vertices) + open_box_faces]) def test_intersection(): # Verify that we're finding the correct number of faces to start with. assert ( np.count_nonzero(faces_intersecting_plane(box_vertices, box_faces, Plane.xz)) == 8 ) xss = intersect_mesh_with_plane(box_vertices, box_faces, Plane.xz) assert isinstance(xss, list) assert len(xss) == 1 (xs,) = xss assert xs.num_v == 8 assert xs.is_closed is True assert xs.total_length == 4.0 np.testing.assert_array_equal(xs.v[:, 1], np.zeros(8)) for a, b in zip(xs.v[0:-1, [0, 2]], xs.v[1:, [0, 2]]): # Each line changes only one coordinate, and is 0.5 long. assert np.sum(a == b) == 1 assert np.linalg.norm(a - b) == 0.5 def test_intersection_with_ret_pointcloud(): (xs,) = intersect_mesh_with_plane(box_vertices, box_faces, Plane.xz) pointcloud = intersect_mesh_with_plane( box_vertices, box_faces, Plane.xz, ret_pointcloud=True ) assert isinstance(pointcloud, np.ndarray) np.testing.assert_array_equal(pointcloud, xs.v) def test_no_intersection(): np.testing.assert_array_equal( faces_intersecting_plane(box_vertices, box_faces, non_intersecting_plane), np.zeros(12), ) xss = intersect_mesh_with_plane(box_vertices, box_faces, non_intersecting_plane) assert isinstance(xss, list) assert xss == [] # TODO: Verify that we're detecting faces that lay entirely in the plane as # potential intersections. def test_no_intersection_with_neighborhood(): neighborhood = np.zeros((1, 3)) xs = intersect_mesh_with_plane( box_vertices, box_faces, non_intersecting_plane, neighborhood=neighborhood ) assert xs is None def test_no_intersection_with_ret_pointcloud(): pointcloud = intersect_mesh_with_plane( box_vertices, box_faces, non_intersecting_plane, ret_pointcloud=True ) assert isinstance(pointcloud, np.ndarray) assert pointcloud.shape == (0, 3) def test_intersection_wth_two_components(): xss = intersect_mesh_with_plane(double_box_vertices, double_box_faces, Plane.xz) assert isinstance(xss, list) assert len(xss) == 2 first, second = xss assert first.num_v == 8 assert second.num_v == 8 assert first.is_closed is True assert second.is_closed is True def test_intersection_wth_neighborhood(): neighborhood = np.zeros((1, 3)) xs = intersect_mesh_with_plane( double_box_vertices, double_box_faces, Plane.xz, neighborhood=neighborhood ) assert isinstance(xs, Polyline) assert len(xs) == 8 assert xs.is_closed is True def test_intersection_with_neighborhood_and_ret_pointcloud(): neighborhood = np.zeros((1, 3)) xs = intersect_mesh_with_plane( double_box_vertices, double_box_faces, Plane.xz, neighborhood=neighborhood ) pointcloud = intersect_mesh_with_plane( double_box_vertices, double_box_faces, Plane.xz, neighborhood=neighborhood, ret_pointcloud=True, ) assert isinstance(pointcloud, np.ndarray) np.testing.assert_array_equal(pointcloud, xs.v) def test_intersection_with_non_watertight_mesh(): xss = intersect_mesh_with_plane(box_vertices, open_box_faces, Plane.xz) assert isinstance(xss, list) assert len(xss) == 1 (xs,) = xss # The removed side is not in the xsection. assert not np.any(np.all(xs.v == [-0.5, 0.0, 0.0])) assert xs.num_v == 7 assert xs.is_closed is False assert xs.total_length == 3.0 np.testing.assert_array_equal(xs.v[:, 1], np.zeros(7)) for a, b in zip(xs.v[0:-1, [0, 2]], xs.v[1:, [0, 2]]): # Each line changes only one coordinate, and is 0.5 long. assert np.sum(a == b) == 1 assert np.linalg.norm(a - b) == 0.5 def test_intersection_with_mulitple_non_watertight_meshes(): xss = intersect_mesh_with_plane( double_box_vertices, double_open_box_faces, Plane.xz ) assert isinstance(xss, list) assert len(xss) == 2 first, second = xss assert first.num_v == 7 assert second.num_v == 7 assert first.is_closed is False assert second.is_closed is False # The removed side is not in either xsection. assert not np.any(np.all(first.v == [-0.5, 0.0, 0.0])) assert not np.any(np.all(second.v == [-0.5, 0.0, 0.0])) assert first.total_length == 3.0 assert second.total_length == 3.0 np.testing.assert_array_equal(first.v[:, 1], np.zeros(7)) np.testing.assert_array_equal(second.v[:, 1], np.zeros(7)) for xs in xss: for a, b in zip(xs.v[0:-1, [0, 2]], xs.v[1:, [0, 2]]): # Each line changes only one coordinate, and is 0.5 long. assert
np.sum(a == b)
numpy.sum
import numpy as np import copy from itertools import combinations from scipy.optimize import minimize, Bounds from scipy.spatial.distance import cdist from functools import partial from scipy.linalg import solve_triangular from scipy.special import kv, gamma from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern, RBF, Product, Sum, \ ConstantKernel, WhiteKernel from pyapprox import get_univariate_quadrature_rules_from_variable from pyapprox.utilities import cartesian_product, outer_product, \ cholesky_solve_linear_system from pyapprox.low_discrepancy_sequences import transformed_halton_sequence from pyapprox.utilities import pivoted_cholesky_decomposition, \ continue_pivoted_cholesky_decomposition from pyapprox.variables import IndependentMultivariateRandomVariable from pyapprox.variable_transformations import \ AffineRandomVariableTransformation from pyapprox.indexing import argsort_indices_leixographically from pyapprox.probability_measure_sampling import \ generate_independent_random_samples class GaussianProcess(GaussianProcessRegressor): def set_variable_transformation(self, var_trans): self.var_trans = var_trans def map_to_canonical_space(self, samples): if hasattr(self, 'var_trans'): return self.var_trans.map_to_canonical_space(samples) return samples def map_from_canonical_space(self, canonical_samples): if hasattr(self, 'var_trans'): return self.var_trans.map_from_canonical_space(canonical_samples) return canonical_samples def fit(self, train_samples, train_values): r""" A light weight wrapper of sklearn GaussianProcessRegressor.fit function. See sklearn documentation for more info. This wrapper is needed because sklearn stores a unique sample in each row of a samples matrix whereas pyapprox uses the transpose. Parameters ---------- samples : np.ndarray (nvars,nsamples) Samples at which to evaluate the GP. Sklearn requires the transpose of this matrix, i.e a matrix with size (nsamples,nvars) """ canonical_train_samples = self.map_to_canonical_space(train_samples) return super().fit(canonical_train_samples.T, train_values) def __call__(self, samples, return_std=False, return_cov=False): r""" A light weight wrapper of sklearn GaussianProcessRegressor.predict function. See sklearn documentation for more info. This wrapper is needed because sklearn stores a unique sample in each row of a samples matrix whereas pyapprox uses the transpose. Parameters ---------- samples : np.ndarray (nvars,nsamples) Samples at which to evaluate the GP. Sklearn requires the transpose of this matrix, i.e a matrix with size (nsamples,nvars) """ canonical_samples = self.map_to_canonical_space(samples) result = self.predict(canonical_samples.T, return_std, return_cov) if type(result) == tuple: # when returning prior stdev covariance then must reshape vals if result[0].ndim == 1: result = [result[0][:, None]] + [r for r in result[1:]] result = tuple(result) return result def predict_random_realization(self, samples, rand_noise=1, truncated_svd=None, keep_normalized=False): """ Predict values of a random realization of the Gaussian process Notes ----- A different realization will be returned for two different samples Even if the same random noise i used. To see this for a 1D GP use: xx = np.linspace(0, 1, 101) rand_noise = np.random.normal(0, 1, (xx.shape[0], 1)) yy = gp.predict_random_realization(xx[None, :], rand_noise) plt.plot(xx, yy) xx = np.linspace(0, 1, 97) rand_noise = np.random.normal(0, 1, (xx.shape[0], 1)) yy = gp.predict_random_realization(xx[None, :], rand_noise) plt.plot(xx, yy) plt.show() Parameters ---------- truncated_svd : dictionary Dictionary containing the following attribues needed to define a truncated singular values decomposition. If None then factor the entire matrix nsingular_vals : integer Only compute the first n singular values when factorizing the covariance matrix. n=truncated_svd tol : float The contribution to total variance from the truncated singular values must not exceed this value. Notes ----- This function replaces gp.sample_y(samples.T, n_samples=rand_noise, random_state=0) which cannot be passed rand_noise vectors and cannot use truncated SVD """ # mapping of samples is performed in __call__ mean, cov = self(samples, return_cov=True) if keep_normalized is True: mean = (mean - self._y_train_mean) / self._y_train_std cov /= self._y_train_std**2 # Use SVD because it is more robust than Cholesky # L = np.linalg.cholesky(cov) if truncated_svd is None: U, S, V = np.linalg.svd(cov) else: from sklearn.decomposition import TruncatedSVD svd = TruncatedSVD( n_components=min(samples.shape[1]-1, truncated_svd['nsingular_vals']), n_iter=7) svd.fit(cov) U = svd.components_.T S = svd.singular_values_ print('Explained variance', svd.explained_variance_ratio_.sum()) assert svd.explained_variance_ratio_.sum() >= truncated_svd['tol'] # print(S.shape, cov.shape) L = U*np.sqrt(S) # create nsamples x nvars then transpose so same samples # are produced if this function is called repeatedly with nsamples=1 if np.isscalar(rand_noise): rand_noise = np.random.normal(0, 1, (rand_noise, mean.shape[0])).T else: assert rand_noise.shape[0] == mean.shape[0] if truncated_svd is not None: rand_noise = rand_noise[:S.shape[0], :] vals = mean + L.dot(rand_noise) return vals def num_training_samples(self): return self.X_train_.shape[0] def condition_number(self): return np.linalg.cond(self.L_.dot(self.L_.T)) def get_training_samples(self): if hasattr(self, "var_trans") and self.var_trans is not None: return self.var_trans.map_from_canonical_space(self.X_train_.T) else: return self.X_train_.T class RandomGaussianProcessRealizations: """ Light weight wrapper that allows random realizations of a Gaussian process to be evaluated at an arbitrary set of samples. GaussianProcess.predict_random_realization can only evaluate the GP at a finite set of samples. This wrapper can only compute the mean interpolant as we assume that the number of training samples was sufficient to produce an approximation with accuracy (samll pointwise variance acceptable to the user. Unlike GaussianProcess predictions can return a np.ndarray (nsamples, nrandom_realizations) instead of size (nsamples, 1) where nrandom_realizations is the number of random realizations interpolated Parameters ---------- nvalidation_samples : integer The number of samples of the random realization used to compute the accuracy of the interpolant. """ def __init__(self, gp, use_cholesky=False, alpha=0): self.gp = gp kernel_types = [RBF, Matern] # ignore white noise kernel as we want to interpolate the data self.kernel = extract_covariance_kernel(gp.kernel_, kernel_types) constant_kernel = extract_covariance_kernel( gp.kernel_, [ConstantKernel]) if constant_kernel is not None: self.kernel = constant_kernel*self.kernel self.use_cholesky = use_cholesky # it is useful to specify alpha different to the one use to invert # Kernel marix at training data of gp self.alpha = alpha def fit(self, candidate_samples, rand_noise=None, ninterpolation_samples=500, nvalidation_samples=100): """ Construct interpolants of random realizations evaluated at the training data and at a new set of additional points """ assert (ninterpolation_samples <= candidate_samples.shape[1] + self.gp.X_train_.T.shape[1]), ( ninterpolation_samples, candidate_samples.shape[1] + self.gp.X_train_.T.shape[1]) canonical_candidate_samples = self.gp.map_to_canonical_space( candidate_samples) canonical_candidate_samples = np.hstack( (self.gp.X_train_.T, canonical_candidate_samples)) if self.use_cholesky is True: Kmatrix = self.kernel(canonical_candidate_samples.T) Kmatrix[np.diag_indices_from(Kmatrix)] += self.alpha init_pivots = np.arange(self.gp.X_train_.T.shape[1]) # init_pivots = None L, pivots, error, chol_flag = pivoted_cholesky_decomposition( Kmatrix, ninterpolation_samples, init_pivots=init_pivots, pivot_weights=None, error_on_small_tol=False, return_full=False, econ=True) if chol_flag > 0: pivots = pivots[:-1] msg = "Number of samples used for interpolation " msg += f"{pivots.shape[0]} " msg += f"was less than requested {ninterpolation_samples}" print(msg) # then not all points requested were selected # because L became illconditioned. This usually means that no # more candidate samples are useful and that error in # interpolant will be small. Note chol_flag > 0 even when # pivots.shape[0] == ninterpolation_samples. This means last # step of cholesky factorization triggered the incomplete flag self.L = L[pivots, :pivots.shape[0]] # print('Condition Number', np.linalg.cond(L.dot(L.T))) self.selected_canonical_samples = \ canonical_candidate_samples[:, pivots] mask = np.ones(canonical_candidate_samples.shape[1], dtype=bool) mask[pivots] = False canonical_validation_samples = canonical_candidate_samples[ :, mask] self.canonical_validation_samples = \ canonical_validation_samples[:, :nvalidation_samples] else: assert (ninterpolation_samples + nvalidation_samples <= candidate_samples.shape[1]) self.selected_canonical_samples = \ canonical_candidate_samples[:, :ninterpolation_samples] self.canonical_validation_samples = \ canonical_candidate_samples[:, ninterpolation_samples:ninterpolation_samples+nvalidation_samples] Kmatrix = self.kernel(self.selected_canonical_samples.T) Kmatrix[np.diag_indices_from(Kmatrix)] += self.alpha self.L = np.linalg.cholesky(Kmatrix) samples = np.hstack( (self.selected_canonical_samples, self.canonical_validation_samples)) # make last sample mean of gaussian process rand_noise = rand_noise[:samples.shape[1], :] rand_noise[:, -1] = np.zeros((rand_noise.shape[0])) vals = self.gp.predict_random_realization( self.gp.map_from_canonical_space(samples), rand_noise=rand_noise, truncated_svd=None, keep_normalized=True) self.train_vals = vals[:self.selected_canonical_samples.shape[1]] self.validation_vals = vals[self.selected_canonical_samples.shape[1]:] # Entries of the following should be size of alpha when # rand_noise[:, -1] = np.zeros((rand_noise.shape[0])) # print(self.train_vals[:, -1]-self.gp.y_train_[:, 0]) # L_inv = np.linalg.inv(L.T) # L_inv = solve_triangular(L.T, np.eye(L.shape[0])) # self.K_inv_ = L_inv.dot(L_inv.T) # self.alpha_ = self.K_inv_.dot(self.train_vals) tmp = solve_triangular(self.L, self.train_vals, lower=True) self.alpha_ = solve_triangular(self.L.T, tmp, lower=False) approx_validation_vals = self.kernel( self.canonical_validation_samples.T, self.selected_canonical_samples.T).dot(self.alpha_) error = np.linalg.norm( approx_validation_vals-self.validation_vals, axis=0)/( np.linalg.norm(self.validation_vals, axis=0)) # Error in interpolation of gp mean when # rand_noise[:, -1] = np.zeros((rand_noise.shape[0])) # print(np.linalg.norm((approx_validation_vals[:, -1]*self.gp._y_train_std+self.gp._y_train_mean)-self.gp(self.canonical_validation_samples)[:, 0])/np.linalg.norm(self.gp(self.canonical_validation_samples)[:, 0])) print('Worst case relative interpolation error', error.max()) print('Median relative interpolation error', np.median(error)) def __call__(self, samples): canonical_samples = self.gp.map_to_canonical_space(samples) K_pred = self.kernel( canonical_samples.T, self.selected_canonical_samples.T) vals = K_pred.dot(self.alpha_) vals = self.gp._y_train_std*vals + self.gp._y_train_mean return vals class AdaptiveGaussianProcess(GaussianProcess): def setup(self, func, sampler): self.func = func self.sampler = sampler def refine(self, num_samples): # new samples must be in user domain new_samples, chol_flag = self.sampler(num_samples) new_values = self.func(new_samples) assert new_values.shape[1] == 1 # must be scalar values QoI if hasattr(self, 'X_train_'): # get_training_samples returns samples in user space train_samples = self.get_training_samples() train_samples = np.hstack([train_samples, new_samples]) train_values = np.vstack([self.y_train_, new_values]) else: train_samples, train_values = new_samples, new_values # if self.var_trans is not None then when fit is called # train_samples are mapped to cannonical domain self.fit(train_samples, train_values) return chol_flag def is_covariance_kernel(kernel, kernel_types): return (type(kernel) in kernel_types) def extract_covariance_kernel(kernel, kernel_types): cov_kernel = None if is_covariance_kernel(kernel, kernel_types): return copy.deepcopy(kernel) if type(kernel) == Product or type(kernel) == Sum: cov_kernel = extract_covariance_kernel(kernel.k1, kernel_types) if cov_kernel is None: cov_kernel = extract_covariance_kernel(kernel.k2, kernel_types) return copy.deepcopy(cov_kernel) def gaussian_tau(train_samples, delta, mu, sigma): dists = (train_samples-mu)**2 return np.prod(np.sqrt(delta/(delta+2*sigma**2))*np.exp( -(dists)/(delta+2*sigma**2)), axis=0) def gaussian_u(delta, sigma): return np.sqrt(delta/(delta+4*sigma**2)).prod() def gaussian_P(train_samples, delta, mu, sigma): nvars, ntrain_samples = train_samples.shape P = np.ones((ntrain_samples, ntrain_samples)) for ii in range(nvars): si, mi, di = sigma[ii, 0], mu[ii, 0], delta[ii, 0] denom1 = 4*(di+4*si**2) term2 = np.sqrt(di/(di+4*si**2)) for mm in range(ntrain_samples): xm = train_samples[ii, mm] xn = train_samples[ii, mm:] P[mm, mm:] *= np.exp(-1/(2*si**2*di)*( 2*si**2*(xm**2+xn**2)+di*mi**2 - (4*si**2*(xm+xn)+2*di*mi)**2/denom1))*term2 P[mm:, mm] = P[mm, mm:] return P def gaussian_nu(delta, sigma): return np.sqrt(delta/(delta+8.*sigma**2)).prod() def gaussian_Pi(train_samples, delta, mu, sigma): nvars, ntrain_samples = train_samples.shape Pi = np.ones((ntrain_samples, ntrain_samples)) for ii in range(nvars): si, mi, di = sigma[ii, 0], mu[ii, 0], delta[ii, 0] denom1 = (12*si**4+8*di*si**2+di**2) denom2, denom3 = (di+2*si**2), (di+6*si**2) for mm in range(ntrain_samples): xm = train_samples[ii, mm] xn = train_samples[ii, mm:] t1 = 2*(xm-xn)**2/di+3*(-2*mi+xm+xn)**2/denom2+(xm-xn)**2/denom3 Pi[mm, mm:] *= np.exp(-t1/6)*np.sqrt(di**2/(denom1)) Pi[mm:, mm] = Pi[mm, mm:] return Pi def compute_v_sq(A_inv, P): # v_sq = 1-np.trace(A_inv.dot(P)) v_sq = (1-np.sum(A_inv*P)) return v_sq def compute_zeta(y, A_inv, P): return y.T.dot(A_inv.dot(P).dot(A_inv)).dot(y) def compute_zeta_econ(y, A_inv_y, A_inv_P): return y.T.dot(A_inv_P.dot(A_inv_y)) def compute_varpi(tau, A_inv): return tau.T.dot(A_inv).dot(tau) def compute_varsigma_sq(u, varpi): return u-varpi def compute_varphi(A_inv, P): tmp = A_inv.dot(P) varphi = np.sum(tmp.T*tmp) return varphi def compute_varphi_econ(A_inv_P): varphi = np.sum(A_inv_P.T*A_inv_P) return varphi def compute_psi(A_inv, Pi): return np.sum(A_inv.T*Pi) def compute_chi(nu, varphi, psi): return nu+varphi-2*psi def compute_phi(train_vals, A_inv, Pi, P): return train_vals.T.dot(A_inv).dot(Pi).dot(A_inv).dot(train_vals) -\ train_vals.T.dot(A_inv).dot(P).dot(A_inv).dot(P).dot(A_inv).dot( train_vals) def compute_phi_econ(A_inv_y, A_inv_P, Pi, P): return A_inv_y.T.dot(Pi.dot(A_inv_y))-A_inv_y.T.dot( P.dot(A_inv_P.dot(A_inv_y))) def compute_varrho(lamda, A_inv, train_vals, P, tau): return lamda.T.dot(A_inv.dot(train_vals)) - tau.T.dot( A_inv.dot(P).dot(A_inv.dot(train_vals))) def compute_varrho_econ(lamda, A_inv_y, A_inv_P, tau): return lamda.T.dot(A_inv_y) - tau.T.dot(A_inv_P.dot(A_inv_y)) def compute_xi(xi_1, lamda, tau, P, A_inv): return xi_1+tau.dot(A_inv).dot(P).dot(A_inv).dot(tau) -\ 2*lamda.dot(A_inv).dot(tau) def compute_xi_econ(xi_1, lamda, tau, A_inv_P, A_inv_tau): return xi_1+tau.dot(A_inv_P.dot(A_inv_tau)) -\ 2*lamda.dot(A_inv_tau) def compute_var_of_var_term1(phi, kernel_var, chi, zeta, v_sq): # E[ I_2^2] (term1) return 4*phi*kernel_var + 2*chi*kernel_var**2+( zeta+v_sq*kernel_var)**2 def compute_var_of_var_term2(eta, varrho, kernel_var, xi, zeta, v_sq, varsigma_sq): # -2E[I_2I^2] (term2) return 4*eta*varrho*kernel_var+2*xi*kernel_var**2 +\ zeta*varsigma_sq*kernel_var+v_sq*varsigma_sq*kernel_var**2 +\ zeta*eta**2+eta**2*v_sq*kernel_var def compute_var_of_var_term3(varsigma_sq, kernel_var, eta, v_sq): # E[I^4] return 3*varsigma_sq**2*kernel_var**2+6*eta**2*varsigma_sq*kernel_var +\ eta**4 def gaussian_lamda(train_samples, delta, mu, sigma): nvars = train_samples.shape[0] lamda = 1 for ii in range(nvars): xxi, si = train_samples[ii, :], sigma[ii, 0] mi, di = mu[ii, 0], delta[ii, 0] denom1 = 4*si**4+6*di*si**2+di**2 t1 = (di+4*si**2)/denom1*(mi-xxi)**2 lamda *= di/np.sqrt(denom1)*np.exp(-t1) return lamda def gaussian_xi_1(delta, sigma): return (delta/np.sqrt((delta+2*sigma**2)*(delta+6*sigma**2))).prod() def variance_of_mean(kernel_var, varsigma_sq): return kernel_var*varsigma_sq def mean_of_variance(zeta, v_sq, kernel_var, expected_random_mean, variance_random_mean): return zeta+v_sq*kernel_var-expected_random_mean**2-variance_random_mean def extract_gaussian_process_attributes_for_integration(gp): if extract_covariance_kernel(gp.kernel_, [WhiteKernel]) is not None: raise Exception('kernels with noise not supported') kernel_types = [ RBF, Matern, UnivariateMarginalizedSquaredExponentialKernel] kernel = extract_covariance_kernel(gp.kernel_, kernel_types) constant_kernel = extract_covariance_kernel(gp.kernel_, [ConstantKernel]) if constant_kernel is not None: kernel_var = constant_kernel.constant_value else: kernel_var = 1 if (not type(kernel) == RBF and not (type(kernel) == Matern and not np.isfinite(kernel.nu)) and not (type(kernel) == UnivariateMarginalizedSquaredExponentialKernel)): # Squared exponential kernel msg = f'GP Kernel type: {type(kernel)} ' msg += 'Only squared exponential kernel supported' raise Exception(msg) if not hasattr(gp, '_K_inv') or gp._K_inv is None: # scikit-learn < 0.24.2 has _K_inv # scikit-learn >= 0.24.2 does not L_inv = solve_triangular(gp.L_.T, np.eye(gp.L_.shape[0]), lower=False) K_inv = L_inv.dot(L_inv.T) else: K_inv = gp._K_inv.copy() transform_quad_rules = (not hasattr(gp, 'var_trans')) # gp.X_train_ will already be in the canonical space if var_trans is used x_train = gp.X_train_.T # correct for normalization of gaussian process training data # gp.y_train_ is normalized such that # y_train = gp._y_train_std*gp.y_train_ + gp._y_train_mean # shift must be accounted for in integration so do not add here y_train = gp._y_train_std*gp.y_train_ kernel_var *= float(gp._y_train_std**2) K_inv /= gp._y_train_std**2 return x_train, y_train, K_inv, kernel.length_scale, \ kernel_var, transform_quad_rules def integrate_gaussian_process(gp, variable, return_full=False, nquad_samples=50): """ The alpha regularization parameter used to construct the gp stored in gp.alpha can significantly impact condition number of A_inv and thus the accuracy that can be obtained in estimates of integrals particularly associated with variance. However setting alpha too large will also limit the accuracy that can be achieved """ x_train, y_train, K_inv, kernel_length_scale, kernel_var, \ transform_quad_rules = \ extract_gaussian_process_attributes_for_integration(gp) result = integrate_gaussian_process_squared_exponential_kernel( x_train, y_train, K_inv, kernel_length_scale, kernel_var, variable, return_full, transform_quad_rules, nquad_samples, gp._y_train_mean) expected_random_mean, variance_random_mean, expected_random_var, \ variance_random_var = result[:4] if return_full is True: return expected_random_mean, variance_random_mean, \ expected_random_var, variance_random_var, result[4] return expected_random_mean, variance_random_mean, \ expected_random_var, variance_random_var def integrate_tau_P(xx_1d, ww_1d, xtr, lscale_ii): dist_func = partial(cdist, metric='sqeuclidean') dists_1d_x1_xtr = dist_func( xx_1d[:, np.newaxis]/lscale_ii, xtr.T/lscale_ii) K = np.exp(-.5*dists_1d_x1_xtr) tau = ww_1d.dot(K) P = K.T.dot(ww_1d[:, np.newaxis]*K) return tau, P def integrate_u_lamda_Pi_nu(xx_1d, ww_1d, xtr, lscale_ii): # Get 2D tensor product quadrature rule xx_2d = cartesian_product([xx_1d]*2) ww_2d = outer_product([ww_1d]*2) dists_2d_x1_x2 = (xx_2d[0, :].T/lscale_ii-xx_2d[1, :].T/lscale_ii)**2 K = np.exp(-.5*dists_2d_x1_x2) u = ww_2d.dot(K) dist_func = partial(cdist, metric='sqeuclidean') dists_2d_x1_x2 = (xx_2d[0:1, :].T/lscale_ii-xx_2d[1:2, :].T/lscale_ii)**2 dists_2d_x2_xtr = dist_func(xx_2d[1:2, :].T/lscale_ii, xtr.T/lscale_ii) lamda = np.exp(-.5*dists_2d_x1_x2.T-.5*dists_2d_x2_xtr.T).dot(ww_2d) dists_2d_x1_xtr = dist_func(xx_2d[0:1, :].T/lscale_ii, xtr.T/lscale_ii) # ntrain_samples = xtr.shape[1] # Pi = np.empty((ntrain_samples, ntrain_samples)) # for mm in range(ntrain_samples): # dists1=dists_2d_x1_xtr[:, mm:mm+1] # Pi[mm, mm:]= np.exp( # -.5*dists1-.5*dists_2d_x1_x2-.5*dists_2d_x2_xtr[:, mm:]).T.dot( # ww_2d) # Pi[mm:, mm] = Pi[mm, mm:] w = np.exp(-.5*dists_2d_x1_x2[:, 0])*ww_2d Pi = np.exp(-.5*dists_2d_x1_xtr).T.dot(w[:, np.newaxis]*np.exp( -.5*dists_2d_x2_xtr)) nu = np.exp(-dists_2d_x1_x2)[:, 0].dot(ww_2d) return u, lamda, Pi, nu def integrate_xi_1(xx_1d, ww_1d, lscale_ii): xx_3d = cartesian_product([xx_1d]*3) ww_3d = outer_product([ww_1d]*3) dists_3d_x1_x2 = (xx_3d[0, :]/lscale_ii-xx_3d[1, :]/lscale_ii)**2 dists_3d_x2_x3 = (xx_3d[1, :]/lscale_ii-xx_3d[2, :]/lscale_ii)**2 xi_1 = np.exp(-.5*dists_3d_x1_x2-.5*dists_3d_x2_x3).dot(ww_3d) return xi_1 def get_gaussian_process_squared_exponential_kernel_1d_integrals( X_train, length_scale, variable, transform_quad_rules, nquad_samples=50, skip_xi_1=False): nvars = variable.num_vars() degrees = [nquad_samples]*nvars univariate_quad_rules, pce = get_univariate_quadrature_rules_from_variable( variable, degrees) lscale = np.atleast_1d(length_scale) # tau, u = 1, 1 # ntrain_samples = X_train.shape[1] # P = np.ones((ntrain_samples, ntrain_samples)) # lamda = np.ones(ntrain_samples) # Pi = np.ones((ntrain_samples, ntrain_samples)) # xi_1, nu = 1, 1 tau_list, P_list, u_list, lamda_list = [], [], [], [] Pi_list, nu_list, xi_1_list = [], [], [] for ii in range(nvars): # TODO only compute quadrature once for each unique quadrature rules # But all quantities must be computed for all dimensions because # distances depend on either of both dimension dependent length scale # and training sample values # But others like u only needed to be computed for each unique # Quadrature rule and raised to the power equal to the number of # instances of a unique rule # Define distance function # dist_func = partial(cdist, metric='sqeuclidean') # Training samples of ith variable xtr = X_train[ii:ii+1, :] # Get 1D quadrature rule xx_1d, ww_1d = univariate_quad_rules[ii](degrees[ii]+1) if transform_quad_rules is True: jj = pce.basis_type_index_map[ii] loc, scale = pce.var_trans.scale_parameters[jj, :] xx_1d = xx_1d*scale+loc # Evaluate 1D integrals tau_ii, P_ii = integrate_tau_P(xx_1d, ww_1d, xtr, lscale[ii]) # tau *= tau_ii # P *= P_ii u_ii, lamda_ii, Pi_ii, nu_ii = integrate_u_lamda_Pi_nu( xx_1d, ww_1d, xtr, lscale[ii]) # u *= u_ii # lamda *= lamda_ii # Pi *= Pi_ii # nu *= nu_ii if skip_xi_1 is False: xi_1_ii = integrate_xi_1(xx_1d, ww_1d, lscale[ii]) else: xi_1_ii = None # xi_1 *= xi_1_ii tau_list.append(tau_ii) P_list.append(P_ii) u_list.append(u_ii) lamda_list.append(lamda_ii) Pi_list.append(Pi_ii) nu_list.append(nu_ii) xi_1_list.append(xi_1_ii) return tau_list, P_list, u_list, lamda_list, Pi_list, nu_list, xi_1_list def integrate_gaussian_process_squared_exponential_kernel( X_train, Y_train, K_inv, length_scale, kernel_var, variable, return_full=False, transform_quad_rules=False, nquad_samples=50, y_train_mean=0): r""" Compute .. math:: I = \int \eta(\rv) \rho(\rv) ;d\rv and .. math:: \Sigma = I_2 - I^2, \qquad I_2 = \int \eta^2(\rv) \rho(\rv) ;d\rv where :math:`\rho(\rv)` is the joint density of independent random variables and :math:`\eta(\rv)` is a Gaussian process (GP) constructed with the squared exponential kernel .. math: K(x,y;L)=\sigma_K^2 \exp(-\frac{\lVert x-y\rVert_2^2}{2*L^2}) with :math:`L` being a np.ndarray of shape (nvars) containing the length scales of the covariance kernel. Because the GP is a random process, the expectation :math:`I` and the variance :math:`\Sigma` of the GP with respect to :math:`\rv` are themselves random variables. Specifically the expectation is a Gaussian random variable with mean :math:`\mu` and variance :math:`v^2`. The distribution of :math:`\Sigma` is harder to compute, but we can compute its mean and variance Parameters ---------- X_train : np.ndarray (nvars,nsamples) The locations of the training data used to train the GP Y_train : np.ndarray (nvars,nsamples) The data values at ``X_train`` used to train the GP K_inv : np.ndarray (nsamples,nsamples) The inverse of the covariance matrix :math:`K(X_train,X_train;length_scale)` length_scale : np.ndarray (nvars) The length scales :math:`L` kernel_var : float The variance :math:`\sigma_K^2` of the kernel :math:`K` variable : :class:`pyapprox.variable.IndependentMultivariateRandomVariable` A set of independent univariate random variables. The tensor-product of the 1D PDFs yields the joint density :math:`\rho` return_full : boolean If true return intermediate quantities used to compute statistics. This is only necessary for testing Returns ------- expected_random_mean : float The mean :math:`\mu_I` of the Gaussian random variable representing the expectation :math:`I` variance_random_mean : float The variance :math:`v_I^2` of the Gaussian random variable representing the expectation :math:`I` expected_random_var : float The mean :math:`\mu_\Sigma` of the Gaussian random variable representing the variance :math:`\Sigma` variance_random_var : float The variance :math:`v_\Sigma^2` of the Gaussian random variable representing the variance :math:`\Sigma` """ tau_list, P_list, u_list, lamda_list, Pi_list, nu_list, xi_1_list = \ get_gaussian_process_squared_exponential_kernel_1d_integrals( X_train, length_scale, variable, transform_quad_rules, nquad_samples) tau = np.prod(np.array(tau_list), axis=0) P = np.prod(np.array(P_list), axis=0) u = np.prod(u_list) lamda = np.prod(np.array(lamda_list), axis=0) Pi = np.prod(np.array(Pi_list), axis=0) nu = np.prod(nu_list) xi_1 = np.prod(xi_1_list) # K_inv is inv(kernel_var*A). Thus multiply by kernel_var to get # Haylock formula A_inv = K_inv*kernel_var # No kernel_var because it cancels out because it appears in K (1/s^2) # and t (s^2) A_inv_y = A_inv.dot(Y_train) expected_random_mean = tau.dot(A_inv_y) expected_random_mean += y_train_mean varpi = compute_varpi(tau, A_inv) varsigma_sq = compute_varsigma_sq(u, varpi) variance_random_mean = variance_of_mean(kernel_var, varsigma_sq) A_inv_P = A_inv.dot(P) A_inv_tau = A_inv.dot(tau) v_sq = compute_v_sq(A_inv, P) # zeta = compute_zeta(Y_train, A_inv, P) zeta = compute_zeta_econ(Y_train, A_inv_y, A_inv_P) zeta += 2*tau.dot(A_inv_y)*y_train_mean+y_train_mean**2 expected_random_var = mean_of_variance( zeta, v_sq, kernel_var, expected_random_mean, variance_random_mean) # varphi = compute_varphi(A_inv, P) varphi = compute_varphi_econ(A_inv_P) psi = compute_psi(A_inv, Pi) chi = compute_chi(nu, varphi, psi) eta = expected_random_mean # varrho = compute_varrho(lamda, A_inv, Y_train, P, tau) varrho = compute_varrho_econ(lamda, A_inv_y, A_inv_P, tau) # phi = compute_phi(Y_train, A_inv, Pi, P) phi = compute_phi_econ(A_inv_y, A_inv_P, Pi, P) # adjust phi with unadjusted varrho phi += 2*y_train_mean*varrho+y_train_mean**2*varsigma_sq # now adjust varrho varrho += y_train_mean*varsigma_sq # xi = compute_xi(xi_1, lamda, tau, P, A_inv) xi = compute_xi_econ(xi_1, lamda, tau, A_inv_P, A_inv_tau) term1 = compute_var_of_var_term1(phi, kernel_var, chi, zeta, v_sq) term2 = compute_var_of_var_term2( eta, varrho, kernel_var, xi, zeta, v_sq, varsigma_sq) term3 = compute_var_of_var_term3(varsigma_sq, kernel_var, eta, v_sq) variance_random_var = term1-2*term2+term3 variance_random_var -= expected_random_var**2 if not return_full: return expected_random_mean, variance_random_mean, \ expected_random_var, variance_random_var intermeadiate_quantities = tau, u, varpi, varsigma_sq, P, v_sq, zeta, nu, \ varphi, Pi, psi, chi, phi, lamda, varrho, xi_1, xi return expected_random_mean, variance_random_mean, expected_random_var,\ variance_random_var, intermeadiate_quantities def generate_gp_candidate_samples(nvars, num_candidate_samples, generate_random_samples, variables): if generate_random_samples is not None: num_halton_candidates = num_candidate_samples//2 num_random_candidates = num_candidate_samples//2 else: num_halton_candidates = num_candidate_samples num_random_candidates = 0 if variables is None: marginal_icdfs = None else: # marginal_icdfs = [v.ppf for v in self.variables] from scipy import stats marginal_icdfs = [] # spread QMC samples over entire domain. Range of variable # is used but not its PDF for v in variables.all_variables(): lb, ub = v.interval(1) if not np.isfinite(lb) or not np.isfinite(ub): lb, ub = v.interval(1-1e-6) marginal_icdfs.append(stats.uniform(lb, ub-lb).ppf) candidate_samples = transformed_halton_sequence( marginal_icdfs, nvars, num_halton_candidates) if num_random_candidates > 0: candidate_samples = np.hstack(( candidate_samples, generate_random_samples(num_random_candidates))) return candidate_samples class CholeskySampler(object): """ Compute samples for kernel based approximation using the power-function method. Parameters ---------- num_vars : integer The number of variables num_candidate_samples : integer The number of candidate samples from which final samples are chosen variable : :class:`pyapprox.variable.IndependentMultivariateRandomVariable` A set of independent univariate random variables. The tensor-product of the 1D PDFs yields the joint density :math:`\rho` max_num_samples : integer The maximum number of samples to be generated weight_function : callable Function used to precondition kernel with the signature ``weight_function(samples) -> np.ndarray (num_samples)`` where samples is a np.ndarray (num_vars,num_samples) generate_random_samples : callable Function with signature ``generate_random_samples(nsamples) -> np.ndarray (nvars, nsamples)`` used to generate samples to enrich default candidate set. If this is not None then num_candidate_samples//2 will be created by this function and the other half of samples will be from a Halton sequence. init_pivots : np.ndarray (ninit_pivots) The array indices of the candidate_samples to keep econ : boolean True - pivot based upon diagonal of schur complement False - pivot to minimize trace norm of low-rank approximation """ def __init__(self, num_vars, num_candidate_samples, variables=None, generate_random_samples=None, init_pivots=None, nugget=0, econ=True, gen_candidate_samples=None, var_trans=None): self.nvars = num_vars self.kernel_theta = None self.chol_flag = None self.variables = variables self.generate_random_samples = generate_random_samples if gen_candidate_samples is None: gen_candidate_samples = partial( generate_gp_candidate_samples, self.nvars, generate_random_samples=self.generate_random_samples, variables=self.variables) self.var_trans = var_trans self.set_candidate_samples( gen_candidate_samples(num_candidate_samples)) self.set_weight_function(None) self.ntraining_samples = 0 self.set_init_pivots(init_pivots) self.nugget = nugget self.econ = econ def set_candidate_samples(self, candidate_samples): if self.var_trans is not None: self.candidate_samples = self.var_trans.map_to_canonical_space( candidate_samples) else: self.candidate_samples = candidate_samples def add_nugget(self): self.Kmatrix[np.arange(self.Kmatrix.shape[0]), np.arange(self.Kmatrix.shape[1])] += self.nugget def set_weight_function(self, weight_function): self.pivot_weights = None if self.var_trans is None or weight_function is None: self.weight_function = weight_function else: # weight function is applied in canonical_space def wt_function(x): return weight_function( self.var_trans.map_from_canonical_space(x)) self.weight_function = wt_function if self.weight_function is not None: self.pivot_weights = self.weight_function(self.candidate_samples) self.weight_function_changed = True def set_kernel(self, kernel): if not hasattr(self, 'kernel') or self.kernel != kernel: self.kernel_changed = True self.kernel = kernel self.kernel_theta = self.kernel.theta def set_init_pivots(self, init_pivots): self.init_pivots = init_pivots self.training_samples = \ self.candidate_samples[:, :self.ntraining_samples] self.init_pivots_changed = True def __call__(self, num_samples): if not hasattr(self, 'kernel'): raise Exception('Must call set_kernel') if not hasattr(self, 'weight_function'): raise Exception('Must call set_weight_function') if num_samples < self.training_samples.shape[1]: msg = f'Requesting number of samples {num_samples} which is less ' msg += 'than number of training samples already generated ' msg += f'{self.training_samples.shape[1]}' raise Exception(msg) if self.kernel_theta is None: assert self.kernel_changed nprev_train_samples = self.ntraining_samples if (self.weight_function_changed or self.kernel_changed or self.init_pivots_changed): self.Kmatrix = self.kernel(self.candidate_samples.T) if self.econ is False and self.pivot_weights is not None: weights = np.sqrt(self.pivot_weights) # assert np.allclose(np.diag(weights).dot(self.Kmatrix.dot( # np.diag(weights))), # weights[:, np.newaxis]*self.Kmatrix*weights) self.Kmatrix = weights[:, np.newaxis]*self.Kmatrix*weights self.pivot_weights = None if self.nugget > 0: self.add_nugget() self.L, self.pivots, error, self.chol_flag, self.diag, \ self.init_error, self.ntraining_samples = \ pivoted_cholesky_decomposition( self.Kmatrix, num_samples, init_pivots=self.init_pivots, pivot_weights=self.pivot_weights, error_on_small_tol=False, return_full=True, econ=self.econ) self.weight_function_changed = False self.kernel_changed = False else: self.L, self.pivots, self.diag, self.chol_flag, \ self.ntraining_samples, error = \ continue_pivoted_cholesky_decomposition( self.Kmatrix, self.L, num_samples, self.init_pivots, 0., False, self.pivot_weights, self.pivots, self.diag, self.ntraining_samples, self.init_error, econ=self.econ) if self.chol_flag == 0: assert self.ntraining_samples == num_samples self.init_pivots = self.pivots[:self.ntraining_samples].copy() # extract samples that were not already in sample set # pivots has already been reduced to have the size of the number of # samples requested new_samples = \ self.candidate_samples[:, self.pivots[ nprev_train_samples:self.ntraining_samples]] self.training_samples = np.hstack( [self.training_samples, new_samples]) if self.var_trans is None: return new_samples, self.chol_flag return self.var_trans.map_from_canonical_space( new_samples), self.chol_flag class AdaptiveCholeskyGaussianProcessFixedKernel(object): """ Efficient implementation when Gaussian process kernel has no tunable hyper-parameters. Cholesky factor computed to generate training samples is reused for fiting """ def __init__(self, sampler, func): self.sampler = sampler self.func = func self.chol_flag = 0 def refine(self, num_samples): if self.chol_flag > 0: msg = 'Cannot refine. No well conditioned candidate samples ' msg += 'remaining' print(msg) return new_samples, self.chol_flag = self.sampler(num_samples) new_values = self.func(new_samples) assert new_values.shape[0] == new_samples.shape[1] if hasattr(self, 'train_samples'): self.train_samples = np.hstack([self.train_samples, new_samples]) self.train_values = np.vstack([self.train_values, new_values]) else: self.train_samples, self.train_values = new_samples, new_values self.fit() def get_current_chol_factor(self): nn = self.sampler.ntraining_samples if type(self.sampler) == CholeskySampler: chol_factor = self.sampler.L[self.sampler.pivots[:nn], :nn] elif type(self.sampler) == GreedyIntegratedVarianceSampler: chol_factor = self.sampler.L[:nn, :nn] else: raise Exception() return chol_factor def fit(self): chol_factor = self.get_current_chol_factor() self.coef = cholesky_solve_linear_system( chol_factor, self.train_values) def __call__(self, samples): return self.sampler.kernel(samples.T, self.train_samples.T).dot( self.coef) def num_training_samples(self): return self.train_samples.shape[1] def condition_number(self): chol_factor = self.get_current_chol_factor() return np.linalg.cond(chol_factor.dot(chol_factor.T)) def gaussian_process_pointwise_variance(kernel, pred_samples, train_samples, nugget=0): r""" Compute the pointwise variance of a Gaussian process, that is .. math:: K(\hat{x}, \hat{x}) - K(\hat{X}, y)^T K(\hat{X}, \hat{X}) K(\hat{X}, y) for each sample :math:`\hat{x}=[\hat{x}_1,\ldots,\hat{x}_d]` and a set of training samples :math:`X=[x^{(1)},\ldots,x^{(N)}]` Parameters ---------- kernel : callable Function with signature ``K(X, Y) -> np.ndarray(X.shape[0], Y.shape[0])`` where X and Y are samples with shape (nsamples_X, nvars) and (nsamples_Y, nvars). Note this function accepts sample sets stored in the transpose of the typical pyapprox format train_samples : np.ndarray (nvars, ntrain_samples) The locations of the training data used to train the GP pred_samples : np.ndarray (nvars, npred_samples) The data values at ``X_train`` used to train the GP Returns ------- variance : np.ndarray (npred_samples) The pointwise variance at each prediction sample """ K_train = kernel(train_samples.T) # add small number to diagonal to ensure covariance matrix is # positive definite ntrain_samples = train_samples.shape[1] K_train[np.arange(ntrain_samples), np.arange(ntrain_samples)] += nugget k_pred = kernel(train_samples.T, pred_samples.T) L = np.linalg.cholesky(K_train) tmp = solve_triangular(L, k_pred, lower=True) variance = kernel.diag(pred_samples.T) - np.sum(tmp*tmp, axis=0) return variance def RBF_gradient_wrt_samples(query_sample, other_samples, length_scale): r""" Gradient of the squared exponential kernel .. math:: \frac{\partial}{\partial x}K(x, Y) = -K(x, Y)^T \circ D\Lambda^{-1} Here :math:`x=[x_1,\ldots,x_d]^T` is a sample, :math:`Y=[y^{(1)},\ldots,y^{(N)}]` is a set of samples and the kernel is given by .. math:: K(x, y^{(i)}) = \exp\left(-\frac{1}{2}(x-y^{(i)})^T\Lambda^{-1}(x-y^{(i)})\right) where :math:`\Lambda^{-1}=\mathrm{diag}([l_1^2,\ldots,l_d^2])`, :math:`D=[\tilde{x}-\tilde{y}^{(1)},\ldots,\tilde{x}-\tilde{y}^{(N)}]` and .. math:: \tilde{x} = \left[\frac{x_1}{l_1^2}, \ldots, \frac{x_d}{l_d^2}\right], \qquad \tilde{y}^{(i)} = \left[\frac{y_1^{(i)}}{l_1^2},\ldots, \frac{y_d^{(i)}}{l_d^2}\right] Parameters ---------- query_sample : np.ndarray (nvars, 1) The sample :math:`x` other_samples : np.ndarray (nvars, nother_samples) The samples :math:`y` length_scale : np.ndarray (nvars) The length scales `l` in each dimension Returns ------- grad : np.ndarray (nother_samples, nvars) The gradient of the kernel """ dists = cdist(query_sample.T/length_scale, other_samples.T/length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) grad = -K.T*( np.tile(query_sample.T, (other_samples.shape[1], 1))-other_samples.T)/( np.asarray(length_scale)**2) return grad def RBF_integrated_posterior_variance_gradient_wrt_samples( train_samples, quad_x, quad_w, kernel, new_samples_index=0, nugget=0): r""" """ nvars, ntrain_samples = train_samples.shape length_scale = kernel.length_scale if np.isscalar(length_scale): length_scale = np.array([length_scale]*nvars) K_train = kernel(train_samples.T) # add small number to diagonal to ensure covariance matrix is # positive definite ntrain_samples = train_samples.shape[1] K_train[np.arange(ntrain_samples), np.arange(ntrain_samples)] += nugget A_inv = np.linalg.inv(K_train) grad_P, P = integrate_grad_P( quad_x, quad_w, train_samples, length_scale) AinvPAinv = (A_inv.dot(P).dot(A_inv)) noptimized_train_samples = ntrain_samples-new_samples_index jac = np.zeros((nvars*noptimized_train_samples)) cnt = 0 for kk in range(new_samples_index, ntrain_samples): K_train_grad_all_train_points_kk = \ RBF_gradient_wrt_samples( train_samples[:, kk:kk+1], train_samples, length_scale) # Use the follow properties for tmp3 and tmp4 # Do sparse matrix element wise product # 0 a 0 D00 D01 D02 # a b c x D10 D11 D12 # 0 c 0 D20 D21 D22 # =2*(a*D01 b*D11 + c*D21)-b*D11 # # Trace [RCRP] = Trace[RPRC] for symmetric matrices tmp3 = -2*np.sum(K_train_grad_all_train_points_kk.T*AinvPAinv[:, kk], axis=1) tmp3 -= -K_train_grad_all_train_points_kk[kk, :]*AinvPAinv[kk, kk] jac[cnt*nvars:(cnt+1)*nvars] = -tmp3 tmp4 = 2*np.sum(grad_P[kk*nvars:(kk+1)*nvars]*A_inv[:, kk], axis=1) tmp4 -= grad_P[kk*nvars:(kk+1)*nvars, kk]*A_inv[kk, kk] jac[cnt*nvars:(cnt+1)*nvars] -= tmp4 cnt += 1 return jac def RBF_posterior_variance_jacobian_wrt_samples( train_samples, pred_samples, kernel, new_samples_index=0, nugget=0): r""" Gradient of the posterior covariance of a Gaussian process built using the squared exponential kernel. Let :math:`\hat{x}^{(i)}` be a prediction sample and :math:`x=[x^{(1)}, \ldots, x^{(N)}]` be the training samples then the posterior covariance is .. math:: c(\hat{x}^{(i)}, x)=c(\hat{x}^{(i)}, \hat{x}^{(i)}) - K(\hat{x}^{(i)}, x)R K(\hat{x}^{(i)}, x)^T and .. math:: \frac{\partial c(\hat{x}^{(i)}, x)}{\partial x_l}= 2\left(\frac{\partial}{\partial x_l}K(\hat{x}^{(i)}, x_l)\right) \sum_{k=1}^N R[l,k]K(\hat{x}^{(i)}, x_k) - \sum_{j=1}^N\sum_{k=1}^N K(\hat{x}^{(i)}, x_j)\frac{\partial}{\partial x_l}\left(R[j,k]\right)(\hat{x}^{(i)}, x_k) where :math:`R = K(x, x)^{-1}` and .. math:: \frac{\partial R^{-1}}{\partial x_l} = R^{-1} \frac{\partial R}{\partial x_l} R^{-1} Parameters ---------- train_samples : np.ndarray (nvars, ntrain_samples) The locations of the training data used to train the GP pred_samples : np.ndarray (nvars, npred_samples) The data values at ``X_train`` used to train the GP kernel : callable Function with signature ``K(X, Y) -> np.ndarray(X.shape[0], Y.shape[0])`` where X and Y are samples with shape (nsamples_X, nvars) and (nsamples_Y, nvars). Note this function accepts sample sets stored in the transpose of the typical pyapprox format new_samples_index : integer Index in train samples that indicates the train samples for which derivatives will be computed. That is compute the derivatives of the coordinates of train_samples[:,new_sample_index:] Returns ------- jac : np.ndarray (npred_samples, (ntrain_samples-new_sample_index)*nvars) """ length_scale = kernel.length_scale nvars, npred_samples = pred_samples.shape ntrain_samples = train_samples.shape[1] noptimized_train_samples = ntrain_samples-new_samples_index k_pred_grad_all_train_points = np.zeros( (noptimized_train_samples, npred_samples, nvars)) ii = 0 for jj in range(new_samples_index, ntrain_samples): k_pred_grad_all_train_points[ii, :, :] = \ RBF_gradient_wrt_samples( train_samples[:, jj:jj+1], pred_samples, length_scale) ii += 1 K_train = kernel(train_samples.T) # add small number to diagonal to ensure covariance matrix is # positive definite ntrain_samples = train_samples.shape[1] K_train[np.arange(ntrain_samples), np.arange(ntrain_samples)] += nugget K_inv = np.linalg.inv(K_train) k_pred = kernel(train_samples.T, pred_samples.T) jac = np.zeros((npred_samples, nvars*noptimized_train_samples)) tau = k_pred.T.dot(K_inv) # K_train_grad = np.zeros((ntrain_samples, ntrain_samples)) ii = 0 for jj in range(new_samples_index, ntrain_samples): K_train_grad_all_train_points_jj = \ RBF_gradient_wrt_samples( train_samples[:, jj:jj+1], train_samples, length_scale) jac[:, ii*nvars:(ii+1)*nvars] += \ 2*tau[:, jj:jj+1]*k_pred_grad_all_train_points[ii, :, :] tmp1 = K_train_grad_all_train_points_jj.T[:, np.newaxis, :] *\ np.tile(tau[:, jj:jj+1], (2, 1, ntrain_samples)) tmp1[:, :, jj] = K_train_grad_all_train_points_jj.T.dot(tau.T) tmp2 = np.sum(tau*tmp1, axis=(2)) jac[:, ii*nvars:(ii+1)*nvars] -= tmp2.T # check if -= is needed over = # leave the following for loop to show how sparsity is taken advantage # of above. Above is abstract and hard to see what is being done # for kk in range(nvars): # # K_train_grad[jj, :] = K_train_grad_all_train_points_jj[:, kk] # # K_train_grad[:, jj] = K_train_grad[jj, :] # # The following takes advantage of sparsity of # # tmp = tau.dot(K_train_grad) # # Reset to zero # # K_train_grad[jj, :] = 0 # # K_train_grad[:, jj] = 0 # tmp = K_train_grad_all_train_points_jj[:, kk:kk+1].T *\ # np.tile(tau[:, jj:jj+1], (1, ntrain_samples)) # tmp[:, jj] = tau.dot(K_train_grad_all_train_points_jj[:, kk]) # assert np.allclose(tmp[:,jj], tmp1[kk,:,jj]) # assert np.allclose(tmp,tmp1[kk,:,:]) # jac[:, ii*nvars+kk] -= np.sum(tmp*tau, axis=1) ii += 1 jac *= -1 return jac def gaussian_grad_P_diag_term1(xtr_ii, lscale, mu, sigma): m, s, l, a = mu, sigma, lscale, xtr_ii term1 = (np.exp(-((a-m)**2/(l**2+2*s**2)))*l*(-a+m))/(l**2+2*s**2)**(3/2) return term1 def gaussian_grad_P_diag_term2(xtr_ii, lscale, mu, sigma): n, p, q, b = mu, sigma, lscale, xtr_ii term2 = np.exp(-((b-n)**2/(2*p**2+q**2)))/(p*np.sqrt(1/p**2+2/q**2)) return term2 def gaussian_grad_P_offdiag_term1(xtr_ii, xtr_jj, lscale, mu, sigma): m, s, l, a, c = mu, sigma, lscale, xtr_ii, xtr_jj term1 = ( np.exp(-((-2*c*l**2*m+2*l**2*m**2+a**2*(l**2+s**2)+c**2*(l**2+s**2) - 2*a*(l**2*m+c*s**2))/( 2*l**2*(l**2+2*s**2))))*(l**2*m+c*s**2-a*(l**2+s**2)))/( l*(l**2+2*s**2)**(3/2)) return term1 def gaussian_grad_P_offdiag_term2(xtr_ii, xtr_jj, lscale, mu, sigma): b, d, q, n, p = xtr_ii, xtr_jj, lscale, mu, sigma term2 = np.exp(-((-2*d*n*q**2+2*n**2*q**2+b**2*(p**2+q**2)+d ** 2*(p**2+q**2)-2*b*(d*p**2+n*q**2))/( 2*q**2*(2*p**2+q**2)))) term2 /= p*np.sqrt(1/p**2+2/q**2) return term2 def integrate_grad_P(xx, ww, xtr, lscale): nvars = len(lscale) assert len(xx) == len(ww) == nvars assert xtr.shape[0] == nvars dist_func = partial(cdist, metric='sqeuclidean') ntrain_samples = xtr.shape[1] grad_P = np.empty((nvars*ntrain_samples, ntrain_samples)) K = [] # keep K as list to allow for different size quadrature rules diffs = [] # similarly for diffs P = np.empty((nvars, ntrain_samples, ntrain_samples)) for nn in range(nvars): xx_1d, ww_1d = xx[nn], ww[nn] lscale_nn = lscale[nn] dists_1d_x1_xtr = dist_func( xx_1d[:, np.newaxis]/lscale_nn, xtr[nn:nn+1, :].T/lscale_nn) K.append(np.exp(-.5*dists_1d_x1_xtr)) P[nn] = K[-1].T.dot(ww_1d[:, np.newaxis]*K[-1]) diffs.append(-(xtr[nn:nn+1, :].T-xx_1d)/lscale_nn**2) # TODO replace loop over train samples with numpy operations for ii in range(ntrain_samples): for nn in range(nvars): diff = diffs[nn][ii] grad_P[nvars*ii+nn, :] = ww_1d.dot( (diff*K[nn][:, ii])[:, np.newaxis]*K[nn]) grad_P[nvars*ii+nn, :] *= np.prod(P[:nn, ii, :], axis=0) grad_P[nvars*ii+nn, :] *= np.prod(P[nn+1:, ii, :], axis=0) grad_P[nvars*ii+nn, ii] *= 2 return grad_P, np.prod(P, axis=0) class IVARSampler(object): """ Parameters ---------- num_vars : integer The number of dimensions nquad_samples : integer The number of samples used to compute the sample based estimate of the integrated variance (IVAR). If use_quadrature is True then this should be 100-1000. Otherwise this value should be at least 10,000. ncandidate_samples : integer The number of samples used by the greedy downselection procedure used to determine the initial guess (set of points) for the gradient based optimization generate_random_samples : callable Function with signature ``generate_random_samples(nsamples) -> np.ndarray (nvars, nsamples)`` used to generate samples needed to compute IVAR using Monte Carlo quadrature. Note even if use_gauss_quadrature is True, this function will be used (if provided) to enrich the default candidate set of the greedy method used to compute the initial guess for the gradient based optimization. If this is not None then num_candidate_samples//2 will be created by this function and the other half of samples will be from a Halton sequence. variables : :class:`pyapprox.variable.IndependentMultivariateRandomVariable` A set of independent univariate random variables. The tensor-product of the 1D PDFs yields the joint density :math:`\rho`. The bounds and CDFs of these variables are used to transform the Halton sequence used as the candidate set for the greedy generation of the initial guess. greedy_method : string Name of the greedy strategy for computing the initial guess used for the gradient based optimization use_gauss_quadrature : boolean True - Assume the kernel is the tensor product of univariate kernels and compute integrated variance by computing a set of univariate integrals with Gaussian quadrature False - Use monte carlo quadrature to estimate integrated variance. Any kernel can be used. nugget : float A small value added to the diagonal of the kernel matrix to improve conditioning. """ def __init__(self, num_vars, nquad_samples, ncandidate_samples, generate_random_samples, variables=None, greedy_method='ivar', use_gauss_quadrature=False, nugget=0): self.nvars = num_vars self.nquad_samples = nquad_samples self.greedy_method = greedy_method self.use_gauss_quadrature = use_gauss_quadrature self.pred_samples = generate_random_samples(self.nquad_samples) self.ncandidate_samples = ncandidate_samples self.variables = variables self.generate_random_samples = generate_random_samples self.nugget = nugget self.ntraining_samples = 0 self.training_samples = np.empty((num_vars, self.ntraining_samples)) self.nsamples_requested = [] self.set_optimization_options( {'gtol': 1e-8, 'ftol': 0, 'disp': False, 'iprint': 0}) self.initialize_greedy_sampler() if use_gauss_quadrature: self.precompute_gauss_quadrature() self.objective = self.quadrature_objective self.objective_gradient = self.quadrature_objective_gradient assert self.greedy_sampler.variables is not None else: self.objective = self.monte_carlo_objective self.objective_gradient = self.monte_carlo_objective_gradient def initialize_greedy_sampler(self): if self.greedy_method == 'chol': self.greedy_sampler = CholeskySampler( self.nvars, self.ncandidate_samples, self.variables, generate_random_samples=self.generate_random_samples) elif self.greedy_method == 'ivar': self.greedy_sampler = GreedyIntegratedVarianceSampler( self.nvars, self.nquad_samples, self.ncandidate_samples, self.generate_random_samples, self.variables, use_gauss_quadrature=self.use_gauss_quadrature, econ=True, nugget=self.nugget) else: msg = f'Incorrect greedy_method {self.greedy_method}' raise Exception(msg) def precompute_gauss_quadrature(self): degrees = [min(100, self.nquad_samples)]*self.nvars self.univariate_quad_rules, self.pce = \ get_univariate_quadrature_rules_from_variable( self.greedy_sampler.variables, degrees) self.quad_rules = [] for ii in range(self.nvars): xx_1d, ww_1d = self.univariate_quad_rules[ii](degrees[ii]+1) jj = self.pce.basis_type_index_map[ii] loc, scale = self.pce.var_trans.scale_parameters[jj, :] xx_1d = xx_1d*scale+loc self.quad_rules.append([xx_1d, ww_1d]) def get_univariate_quadrature_rule(self, ii): return self.quad_rules[ii] def compute_P(self, train_samples): self.degrees = [self.nquad_samples]*self.nvars length_scale = self.greedy_sampler.kernel.length_scale if np.isscalar(length_scale): length_scale = np.array([length_scale]*self.nvars) P = 1 for ii in range(self.nvars): xx_1d, ww_1d = self.get_univariate_quadrature_rule(ii) xtr = train_samples[ii:ii+1, :] K = self.greedy_sampler.kernels_1d[ii]( xx_1d[np.newaxis, :], xtr, length_scale[ii]) P_ii = K.T.dot(ww_1d[:, np.newaxis]*K) P *= P_ii return P def quadrature_objective(self, new_train_samples_flat): train_samples = np.hstack( [self.training_samples, new_train_samples_flat.reshape( (self.nvars, new_train_samples_flat.shape[0]//self.nvars), order='F')]) A = self.greedy_sampler.kernel(train_samples.T) A[np.arange(A.shape[0]), np.arange(A.shape[1])] += self.nugget A_inv = np.linalg.inv(A) P = self.compute_P(train_samples) return 1-np.trace(A_inv.dot(P)) def quadrature_objective_gradient(self, new_train_samples_flat): train_samples = np.hstack( [self.training_samples, new_train_samples_flat.reshape( (self.nvars, new_train_samples_flat.shape[0]//self.nvars), order='F')]) xx = [q[0] for q in self.quad_rules] ww = [q[1] for q in self.quad_rules] new_samples_index = self.training_samples.shape[1] return RBF_integrated_posterior_variance_gradient_wrt_samples( train_samples, xx, ww, self.greedy_sampler.kernel, new_samples_index, nugget=self.nugget) def monte_carlo_objective(self, new_train_samples_flat): train_samples = np.hstack( [self.training_samples, new_train_samples_flat.reshape( (self.nvars, new_train_samples_flat.shape[0]//self.nvars), order='F')]) val = gaussian_process_pointwise_variance( self.greedy_sampler.kernel, self.pred_samples, train_samples, self.nugget).mean() # print('f',val) return val def monte_carlo_objective_gradient(self, new_train_samples_flat): train_samples = np.hstack( [self.training_samples, new_train_samples_flat.reshape( (self.nvars, new_train_samples_flat.shape[0]//self.nvars), order='F')]) new_samples_index = self.training_samples.shape[1] return RBF_posterior_variance_jacobian_wrt_samples( train_samples, self.pred_samples, self.greedy_sampler.kernel, new_samples_index, self.nugget).mean(axis=0) def set_weight_function(self, weight_function): self.greedy_sampler.set_weight_function(weight_function) def set_kernel(self, kernel, kernels_1d=None): if ((self.use_gauss_quadrature is True) and (self.nvars != 1) and ((type(kernel) != Matern) or (np.isfinite(kernel.nu)))): # TODO: To deal with sum kernel with noise, need to ammend # gradient computation which currently assumes no noise msg = f'GP Kernel type: {type(kernel)} ' msg += 'Only squared exponential kernel supported when ' msg += 'use_gauss_quadrature is True and nvars > 1' # TODO add other tensor product kernels raise Exception(msg) self.greedy_sampler.set_kernel(copy.deepcopy(kernel), kernels_1d) def set_optimization_options(self, opts): self.optim_opts = opts.copy() def set_bounds(self, nsamples): if self.greedy_sampler.variables is None: lbs, ubs = np.zeros(self.nvars), np.ones(self.nvars) else: variables = self.greedy_sampler.variables.all_variables() lbs = [v.interval(1)[0] for v in variables] ubs = [v.interval(1)[1] for v in variables] lbs = np.repeat(lbs, nsamples) ubs = np.repeat(ubs, nsamples) self.bounds = Bounds(lbs, ubs) def __call__(self, nsamples): self.nsamples_requested.append(nsamples) # Remove previous training samples from candidate set to prevent # adding them twice candidate_samples = self.greedy_sampler.candidate_samples if len(self.nsamples_requested) > 1: candidate_samples = candidate_samples[ :, self.nsamples_requested[-2]:] # Add previous optimized sample set to candidate samples. This could # potentially add a candidate twice if the optimization picks some # of the original candidate samples chosen by # greedy_sampler.generate_samples, but this is unlikely. If it does # happen these points will never be chosen by the cholesky algorithm candidate_samples = np.hstack([ self.training_samples.copy(), candidate_samples]) # make sure greedy sampler recomputes all necessary information # but first extract necessary information pred_samples = self.greedy_sampler.pred_samples if hasattr(self.greedy_sampler, 'weight_function'): weight_function = self.greedy_sampler.weight_function else: weight_function = None kernel = self.greedy_sampler.kernel self.initialize_greedy_sampler() if weight_function is not None: self.set_weight_function(weight_function) # self.greedy_sampler.candidate_samples must be called before # set kernel to make sure self.A matrix is set correctly self.greedy_sampler.candidate_samples = candidate_samples # currently the following will no effect a different set # of prediction samples will be generated by greedy sampler when # set kernel is called self.greedy_sampler.pred_samples = pred_samples self.set_kernel(kernel) # Make sure greedy_sampler chooses self.training_samples # only used if greedy_sampler is a Choleskysampler. self.greedy_sampler.set_init_pivots(np.arange(self.ntraining_samples)) # Get the initial guess for new samples to add. # Note the Greedy sampler will return only new samples not in # self.training_samples self.init_guess, chol_flag = self.greedy_sampler(nsamples) self.init_guess = self.init_guess[:, self.ntraining_samples:] # assert np.allclose( # self.greedy_sampler.L[:self.ntraining_samples, # :self.ntraining_samples], # np.linalg.cholesky(kernel(self.training_samples.T))) assert chol_flag == 0 self.set_bounds(nsamples-self.ntraining_samples) init_guess = self.init_guess.flatten(order='F') # Optimize the locations of only the new training samples jac = self.objective_gradient res = minimize(self.objective, init_guess, jac=jac, method='L-BFGS-B', options=self.optim_opts, bounds=self.bounds) print(res) new_samples = res.x.reshape( (self.nvars, res.x.shape[0]//self.nvars), order='F') self.training_samples = np.hstack([self.training_samples, new_samples]) self.ntraining_samples = self.training_samples.shape[1] return new_samples, 0 def matern_kernel_1d_inf(dists): return np.exp(-.5*dists**2) def matern_kernel_1d_12(dists): return np.exp(-dists) def matern_kernel_1d_32(dists): tmp = np.sqrt(3)*dists return (1+tmp)*np.exp(-tmp) def matern_kernel_1d_52(dists): tmp = np.sqrt(5)*dists return (1+tmp+tmp**2/3)*np.exp(-tmp) def matern_kernel_general(nu, dists): dists[dists == 0] += np.finfo(float).eps tmp = (np.sqrt(2*nu) * dists) return tmp**nu*(2**(1.-nu))/gamma(nu)*kv(nu, tmp) def matern_kernel_1d(nu, x, y, lscale): explicit_funcs = {0.5: matern_kernel_1d_12, 1.5: matern_kernel_1d_32, 2.: matern_kernel_1d_52, np.inf: matern_kernel_1d_inf} dist_func = partial(cdist, metric='euclidean') dists = dist_func(x.T/lscale, y.T/lscale) if nu in explicit_funcs: return explicit_funcs[nu](dists) return matern_kernel_general(nu, dists) class GreedyVarianceOfMeanSampler(object): """ Parameters ---------- num_vars : integer The number of dimensions nquad_samples : integer The number of samples used to compute the sample based estimate of the variance of mean criteria ncandidate_samples : integer The number of samples used by the greedy downselection procedure """ def __init__(self, num_vars, nquad_samples, ncandidate_samples, generate_random_samples, variables=None, use_gauss_quadrature=False, econ=True, compute_cond_nums=False, nugget=0): self.nvars = num_vars self.nquad_samples = nquad_samples self.variables = variables self.ntraining_samples = 0 self.training_samples = np.empty((num_vars, self.ntraining_samples)) self.generate_random_samples = generate_random_samples self.use_gauss_quadrature = use_gauss_quadrature self.econ = econ self.candidate_samples = generate_gp_candidate_samples( self.nvars, ncandidate_samples, generate_random_samples, self.variables) self.nsamples_requested = [] self.pivots = [] self.cond_nums = [] self.compute_cond_nums = compute_cond_nums self.init_pivots = None self.nugget = nugget self.initialize() self.best_obj_vals = [] self.pred_samples = None def initialize(self): self.L = np.zeros((0, 0)) if self.econ is True: self.y_1 = np.zeros((0)) self.candidate_y_2 = np.empty(self.candidate_samples.shape[1]) # def monte_carlo_objective(self, new_sample_index): # train_samples = np.hstack( # [self.training_samples, # self.candidate_samples[:, new_sample_index:new_sample_index+1]]) # return gaussian_process_pointwise_variance( # self.kernel, self.pred_samples, # train_samples).mean() def precompute_monte_carlo(self): self.pred_samples = self.generate_random_samples( self.nquad_samples) k = self.kernel(self.pred_samples.T, self.candidate_samples.T) self.tau = k.mean(axis=0) assert self.tau.shape[0] == self.candidate_samples.shape[1] # Note because tau is simplified down to one integral instead of their # double used for u, it is possible for self.u - tau.dot(A_inv.dot(tau) # to be negative if tau is comptued using an inaccurate quadrature # rule. This is not important if using gauss quadrature # pred_samples2 = self.generate_random_samples(self.pred_samples.shape[1]) # self.u = np.diag( # self.kernel(self.pred_samples.T, pred_samples2.T)).mean() def get_univariate_quadrature_rule(self, ii): xx_1d, ww_1d = self.univariate_quad_rules[ii](self.degrees[ii]+1) jj = self.pce.basis_type_index_map[ii] loc, scale = self.pce.var_trans.scale_parameters[jj, :] xx_1d = xx_1d*scale+loc return xx_1d, ww_1d def precompute_gauss_quadrature(self): nvars = self.variables.num_vars() length_scale = self.kernel.length_scale if np.isscalar(length_scale): length_scale = [length_scale]*nvars self.degrees = [self.nquad_samples]*nvars self.univariate_quad_rules, self.pce = \ get_univariate_quadrature_rules_from_variable( self.variables, self.degrees) # dist_func = partial(cdist, metric='sqeuclidean') self.tau = 1 for ii in range(self.nvars): # Get 1D quadrature rule xx_1d, ww_1d = self.get_univariate_quadrature_rule(ii) # Training samples of ith variable xtr = self.candidate_samples[ii:ii+1, :] lscale_ii = length_scale[ii] # dists_1d_x1_xtr = dist_func( # xx_1d[:, np.newaxis]/lscale_ii, xtr.T/lscale_ii) # K = np.exp(-.5*dists_1d_x1_xtr) K = self.kernels_1d[ii](xx_1d[np.newaxis, :], xtr, lscale_ii) self.tau *= ww_1d.dot(K) def objective(self, new_sample_index): indices = np.concatenate( [self.pivots, [new_sample_index]]).astype(int) A = self.A[np.ix_(indices, indices)] try: L = np.linalg.cholesky(A) except: return np.inf tau = self.tau[indices] return -tau.T.dot(cholesky_solve_linear_system(L, tau)) def objective_vals(self): obj_vals = np.inf*np.ones(self.candidate_samples.shape[1]) for mm in range(self.candidate_samples.shape[1]): if mm not in self.pivots: obj_vals[mm] = self.objective(mm) # assert np.allclose(self.candidate_samples[:,self.pivots],self.training_samples) # if len(self.pivots)>22: # I = np.argsort(self.candidate_samples[0,:]) # plt.plot(self.candidate_samples[0,self.pivots],np.ones((len(self.pivots)))*obj_vals.min(),'ko') # plt.plot(self.candidate_samples[0,I],obj_vals[I]) # J = np.argmin(obj_vals) # plt.plot(self.candidate_samples[0,J],obj_vals[J], 'rs') # plt.show() return obj_vals def refine_naive(self): if (self.init_pivots is not None and len(self.pivots) < len(self.init_pivots)): pivot = self.init_pivots[len(self.pivots)] obj_val = self.objective(pivot) else: # ntraining_samples = self.ntraining_samples obj_vals = self.objective_vals() pivot = np.argmin(obj_vals) obj_val = obj_vals[pivot] return pivot, obj_val def refine_econ(self): if (self.init_pivots is not None and len(self.pivots) < len(self.init_pivots)): pivot = self.init_pivots[len(self.pivots)] obj_val = self.objective_econ(pivot) else: # training_samples = self.ntraining_samples obj_vals = self.vectorized_objective_vals_econ() pivot = np.argmin(obj_vals) obj_val = obj_vals[pivot] assert np.isfinite(obj_val) if self.L.shape[0] == 0: self.L = np.atleast_2d(self.A[pivot, pivot]) else: A_12 = self.A[self.pivots, pivot:pivot+1] L_12 = solve_triangular(self.L, A_12, lower=True) L_22_sq = self.A[pivot, pivot] - L_12.T.dot(L_12) if L_22_sq <= 0: # recompute Cholesky from scratch to make sure roundoff error # is not causing L_22_sq to be negative indices = np.concatenate([self.pivots, [pivot]]).astype(int) try: self.L = np.linalg.cholesky( self.A[np.ix_(indices, indices)]) except: return -1, np.inf L_22 = np.sqrt(L_22_sq) self.L = np.block( [[self.L, np.zeros(L_12.shape)], [L_12.T, L_22]]) assert np.isfinite(self.candidate_y_2[pivot]) self.y_1 = np.concatenate([self.y_1, [self.candidate_y_2[pivot]]]) return pivot, obj_val def objective_vals_econ(self): obj_vals = np.inf*np.ones(self.candidate_samples.shape[1]) for mm in range(self.candidate_samples.shape[1]): if mm not in self.pivots: obj_vals[mm] = self.objective_econ(mm) return obj_vals def vectorized_objective_vals_econ(self): if self.L.shape[0] == 0: diag_A = np.diagonal(self.A) L = np.sqrt(diag_A) vals = self.tau**2/diag_A self.candidate_y_2 = self.tau/L return -vals A_12 = np.atleast_2d(self.A[self.pivots, :]) L_12 = solve_triangular(self.L, A_12, lower=True) J = np.where((np.diagonal(self.A)-np.sum(L_12*L_12, axis=0)) <= 0)[0] self.temp = np.diagonal(self.A)-np.sum(L_12*L_12, axis=0) useful_candidates = np.ones( (self.candidate_samples.shape[1]), dtype=bool) useful_candidates[J] = False useful_candidates[self.pivots] = False L_12 = L_12[:, useful_candidates] L_22 = np.sqrt(np.diagonal(self.A)[useful_candidates] - np.sum( L_12*L_12, axis=0)) y_2 = (self.tau[useful_candidates]-L_12.T.dot(self.y_1))/L_22 self.candidate_y_2[useful_candidates] = y_2 self.candidate_y_2[~useful_candidates] = np.inf z_2 = y_2/L_22 vals = np.inf*np.ones((self.candidate_samples.shape[1])) vals[useful_candidates] = -( self.best_obj_vals[-1] + self.tau[useful_candidates]*z_2 - self.tau[self.pivots].dot( solve_triangular(self.L.T, L_12*z_2, lower=False))) return vals def objective_econ(self, new_sample_index): if self.L.shape[0] == 0: L = np.sqrt(self.A[new_sample_index, new_sample_index]) self.candidate_y_2[new_sample_index] = self.tau[new_sample_index]/L val = self.tau[new_sample_index]**2/self.A[ new_sample_index, new_sample_index] return -val A_12 = self.A[self.pivots, new_sample_index:new_sample_index+1] L_12 = solve_triangular(self.L, A_12, lower=True) L_22 = np.sqrt( self.A[new_sample_index, new_sample_index] - L_12.T.dot(L_12)) y_2 = (self.tau[new_sample_index]-L_12.T.dot(self.y_1))/L_22[0, 0] self.candidate_y_2[new_sample_index] = y_2 z_2 = y_2/L_22[0, 0] val = -(-self.best_obj_vals[-1] + self.tau[new_sample_index]*z_2 - self.tau[self.pivots].dot( solve_triangular(self.L.T, L_12*z_2, lower=False))) return val[0, 0] def compute_A(self): self.active_candidates = np.ones( self.candidate_samples.shape[1], dtype=bool) self.A = self.kernel( self.candidate_samples.T, self.candidate_samples.T) def set_kernel(self, kernel, kernels_1d=None): self.kernel = kernel self.kernels_1d = kernels_1d if self.kernels_1d is None and self.use_gauss_quadrature: # TODO: remove kernels 1D and just create tensor product # kernel with this as a property. assert self.kernel.nu == np.inf self.kernels_1d = [partial(matern_kernel_1d, np.inf)]*self.nvars if ((self.use_gauss_quadrature is True) and (self.nvars != 1) and ((type(kernel) != Matern) or (np.isfinite(kernel.nu)))): # TODO: To deal with sum kernel with noise, need to ammend # gradient computation which currently assumes no noise msg = f'GP Kernel type: {type(kernel)} ' msg += 'Only squared exponential kernel supported when ' msg += 'use_gauss_quadrature is True and nvars > 1' # TODO add other tensor product kernels raise Exception(msg) if self.use_gauss_quadrature: self.precompute_gauss_quadrature() else: self.precompute_monte_carlo() self.compute_A() # designs are better if a small nugget is added to the diagonal self.add_nugget() def add_nugget(self): self.A[np.arange(self.A.shape[0]), np.arange(self.A.shape[1])] += \ self.nugget def set_init_pivots(self, init_pivots): assert len(self.pivots) == 0 self.init_pivots = list(init_pivots) def update_training_samples(self, pivot): self.pivots.append(pivot) # new_sample = self.candidate_samples[:, pivot:pivot+1] self.training_samples = np.hstack( [self.training_samples, self.candidate_samples[:, pivot:pivot+1]]) def __call__(self, nsamples, verbosity=1): if not hasattr(self, 'kernel'): raise Exception('Must call set_kernel') if self.econ is True: self.refine = self.refine_econ else: self.refine = self.refine_naive flag = 0 self.nsamples_requested.append(nsamples) ntraining_samples = self.ntraining_samples for nn in range(ntraining_samples, nsamples): pivot, obj_val = self.refine() if pivot < 0: flag = 1 break # if self.econ is False: # flag = 1 # break # else: # self.econ = False # # Switch of econ mode which struggles when condition # # number is poor # print('switching naive updating strategy on') # self.refine = self.refine_naive # pivot, obj_val = self.refine() # if pivot < 0: # flag = 1 # break if verbosity > 0: print(f'Iter: {nn}, Objective: {obj_val}') self.best_obj_vals.append(obj_val) self.update_training_samples(pivot) # print(f'Number of points generated {nn+1}') self.active_candidates[pivot] = False if self.compute_cond_nums is True: if self.econ: self.cond_nums.append(np.linalg.cond(self.L)**2) else: self.cond_nums.append( np.linalg.cond( self.A[np.ix_(self.pivots, self.pivots)])) # print(np.linalg.cond( # self.A[np.ix_(self.pivots, self.pivots)])) new_samples = self.training_samples[:, ntraining_samples:] self.ntraining_samples = self.training_samples.shape[1] return new_samples, flag def matern_gradient_wrt_samples(nu, query_sample, other_samples, length_scale): """ Parameters ---------- query_sample : np.ndarray (nvars, 1) other_samples : np.ndarray (nvars, nquery_samples) length_scale : np.ndarray (nvars) """ if type(length_scale) == np.ndarray: assert length_scale.shape[0] == query_sample.shape[0] length_scale = np.asarray(length_scale) dists = cdist(query_sample.T/length_scale, other_samples.T/length_scale, metric='euclidean') if nu == 3/2: tmp1 = np.sqrt(3)*dists tmp2 = (np.tile( query_sample.T, (other_samples.shape[1], 1))-other_samples.T)/( length_scale**2) K = np.exp(-tmp1) grad = -3*K.T*tmp2 elif nu == 5/2: tmp1 = np.sqrt(5)*dists K = np.exp(-tmp1) tmp2 = (np.tile( query_sample.T, (other_samples.shape[1], 1))-other_samples.T)/( length_scale**2) grad = -5/3*K.T*tmp2*(np.sqrt(5)*dists+1) elif nu == np.inf: tmp2 = (np.tile( query_sample.T, (other_samples.shape[1], 1))-other_samples.T)/( length_scale**2) K = np.exp(-.5 * dists**2) grad = -K.T*tmp2 else: raise Exception(f'Matern gradient with nu={nu} not supported') return grad class GreedyIntegratedVarianceSampler(GreedyVarianceOfMeanSampler): """ Parameters ---------- num_vars : integer The number of dimensions nquad_samples : integer The number of samples used to compute the sample based estimate of the integrated variance (IVAR) ncandidate_samples : integer The number of samples used by the greedy downselection procedure """ def initialize(self): self.L = np.zeros((0, 0)) self.L_inv = np.zeros((0, 0)) self.A_inv = np.zeros((0, 0)) def precompute_monte_carlo(self): self.pred_samples = self.generate_random_samples( self.nquad_samples) # lscale = self.kernel.length_scale # if np.isscalar(lscale): # lscale = np.array([lscale]*self.nvars) # dist_func = partial(cdist, metric='sqeuclidean') # dists_x1_xtr = dist_func( # self.pred_samples.T/lscale, self.candidate_samples.T/lscale) # K = np.exp(-.5*dists_x1_xtr) K = self.kernel(self.pred_samples.T, self.candidate_samples.T) ww = np.ones(self.pred_samples.shape[1])/self.pred_samples.shape[1] self.P = K.T.dot(ww[:, np.newaxis]*K) def precompute_gauss_quadrature(self): self.degrees = [self.nquad_samples]*self.nvars length_scale = self.kernel.length_scale if np.isscalar(length_scale): length_scale = np.array([length_scale]*self.nvars) self.univariate_quad_rules, self.pce = \ get_univariate_quadrature_rules_from_variable( self.variables, self.degrees) self.P = 1 for ii in range(self.nvars): xx_1d, ww_1d = self.get_univariate_quadrature_rule(ii) xtr = self.candidate_samples[ii:ii+1, :] K = self.kernels_1d[ii]( xx_1d[np.newaxis, :], xtr, length_scale[ii]) P_ii = K.T.dot(ww_1d[:, np.newaxis]*K) self.P *= P_ii def objective(self, new_sample_index): indices = np.concatenate( [self.pivots, [new_sample_index]]).astype(int) A = self.A[np.ix_(indices, indices)] A_inv = np.linalg.inv(A) P = self.P[np.ix_(indices, indices)] # P1=1 # length_scale = self.kernel.length_scale # if np.isscalar(length_scale): # length_scale = np.array([length_scale]*self.nvars) # for ii in range(self.nvars): # xx_1d, ww_1d = self.get_univariate_quadrature_rule(ii) # xtr = self.candidate_samples[ii:ii+1, indices] # K = self.kernels_1d[ii]( # xx_1d[np.newaxis, :], xtr, length_scale[ii]) # P_ii = K.T.dot(ww_1d[:, np.newaxis]*K) # P1*=P_ii # assert np.allclose(P, P1) return -np.trace(A_inv.dot(P)) def objective_econ(self, new_sample_index): if self.L_inv.shape[0] == 0: val = self.P[new_sample_index, new_sample_index]/self.A[ new_sample_index, new_sample_index] return -val A_12 = self.A[self.pivots, new_sample_index:new_sample_index+1] L_12 = solve_triangular(self.L, A_12, lower=True) L_22 = np.sqrt( self.A[new_sample_index, new_sample_index] - L_12.T.dot(L_12)) C = -np.dot(L_12.T/L_22, self.L_inv) # TODO set self.P_11 when pivot is chosen so do not constantly # have to reduce matrix P_11 = self.P[np.ix_(self.pivots, self.pivots)] P_12 = self.P[self.pivots, new_sample_index:new_sample_index+1] P_22 = self.P[new_sample_index, new_sample_index] val = -(-self.best_obj_vals[-1] + np.sum(C.T.dot(C)*P_11) + 2*np.sum(C.T/L_22*P_12) + 1/L_22**2*P_22) return val[0, 0] def vectorized_objective_vals_econ(self): if self.L_inv.shape[0] == 0: vals = np.diagonal(self.P)/np.diagonal(self.A) return -vals A_12 = np.atleast_2d(self.A[self.pivots, :]) L_12 = solve_triangular(self.L, A_12, lower=True) J = np.where((np.diagonal(self.A)-np.sum(L_12*L_12, axis=0)) <= 0)[0] self.temp = np.diagonal(self.A)-np.sum(L_12*L_12, axis=0) useful_candidates = np.ones( (self.candidate_samples.shape[1]), dtype=bool) useful_candidates[J] = False useful_candidates[self.pivots] = False L_12 = L_12[:, useful_candidates] L_22 = np.sqrt(np.diagonal(self.A)[useful_candidates] - np.sum( L_12*L_12, axis=0)) P_11 = self.P[np.ix_(self.pivots, self.pivots)] P_12 = self.P[np.ix_(self.pivots, useful_candidates)] P_22 = np.diagonal(self.P)[useful_candidates] C = -np.dot((L_12/L_22).T, self.L_inv) vals = np.inf*np.ones((self.candidate_samples.shape[1])) vals[useful_candidates] = -( -self.best_obj_vals[-1] + np.sum(C.T*P_11.dot(C.T), axis=0) + 2*np.sum(C.T/L_22*P_12, axis=0) + 1/L_22**2*P_22) return vals def refine_econ(self): if (self.init_pivots is not None and len(self.pivots) < len(self.init_pivots)): pivot = self.init_pivots[len(self.pivots)] obj_val = self.objective_econ(pivot) else: # training_samples = self.ntraining_samples obj_vals = self.vectorized_objective_vals_econ() # obj_vals = self.objective_vals_econ() pivot = np.argmin(obj_vals) obj_val = obj_vals[pivot] if not np.isfinite(obj_val): # or obj_val < -1: # ill conditioning causes obj_val to go below -1 which should not # be possible return -1, np.inf if self.L_inv.shape[0] == 0: self.L = np.atleast_2d(self.A[pivot, pivot]) self.L_inv = np.atleast_2d(1/self.A[pivot, pivot]) return pivot, obj_val A_12 = self.A[self.pivots, pivot:pivot+1] L_12 = solve_triangular(self.L, A_12, lower=True) L_22_sq = self.A[pivot, pivot] - L_12.T.dot(L_12) if L_22_sq <= 0: # recompute Cholesky from scratch to make sure roundoff error # is not causing L_22_sq to be negative indices = np.concatenate([self.pivots, [pivot]]).astype(int) try: self.L = np.linalg.cholesky(self.A[np.ix_(indices, indices)]) except: return -1, np.inf self.L_inv = np.linalg.inv(self.L) return pivot, obj_val L_22 = np.sqrt(L_22_sq) self.L = np.block( [[self.L, np.zeros(L_12.shape)], [L_12.T, L_22]]) indices = np.concatenate([self.pivots, [pivot]]).astype(int) L_22_inv = np.linalg.inv(L_22) self.L_inv = np.block( [[self.L_inv,
np.zeros(L_12.shape)
numpy.zeros
import torch import torch.nn as nn from torch.autograd import Variable from torchvision.transforms import transforms import numpy as np import cv2 from functools import partial import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from models import Vgg16Conv from models import Vgg16Deconv from utils import decode_predictions def load_images(img_path): # imread from img_path img = cv2.imread(img_path) img = cv2.resize(img, (224, 224)) # pytorch must normalize the pic by # mean = [0.485, 0.456, 0.406] # std = [0.229, 0.224, 0.225] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) ]) img = transform(img) img.unsqueeze_(0) #img_s = img.numpy() #img_s = np.transpose(img_s, (1, 2, 0)) #cv2.imshow("test img", img_s) #cv2.waitKey() return img def store(model): """ make hook for feature map """ def hook(module, input, output, key): if isinstance(module, nn.MaxPool2d): model.feature_maps[key] = output[0] model.pool_locs[key] = output[1] else: model.feature_maps[key] = output for idx, layer in enumerate(model._modules.get('features')): # _modules returns an OrderedDict layer.register_forward_hook(partial(hook, key=idx)) def vis_layer(layer, vgg16_conv, vgg16_deconv): """ visualing the layer deconv result """ num_feat = vgg16_conv.feature_maps[layer].shape[1] # set other feature map activations to zero new_feat_map = vgg16_conv.feature_maps[layer].clone() # choose the max activations map act_lst = [] for i in range(0, num_feat): choose_map = new_feat_map[0, i, :, :] activation = torch.max(choose_map) act_lst.append(activation.item()) act_lst = np.array(act_lst) mark =
np.argmax(act_lst)
numpy.argmax
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D, proj3d from scipy.stats import multivariate_normal from matplotlib.patches import FancyArrowPatch class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) if __name__ == '__main__': X = np.linspace(-5.5, 5.5, 100) Y = np.linspace(-5.5, 5.5, 100) X, Y = np.meshgrid(X, Y) S = np.transpose(np.stack((X, Y))) Z = -3.0 * multivariate_normal.pdf(S, mean=[0, 0], cov=
np.matrix([[4, 2], [2, 4]])
numpy.matrix
""" Module for generating lists of frames using frame features, pca, kmeans, etc. """ import attr import cattr import itertools import logging import numpy as np import random from time import time from typing import Dict, List, Optional, Tuple import cv2 from sklearn.decomposition import PCA from sklearn.cluster import KMeans from skimage import draw from skimage.feature import hog from skimage.util.shape import view_as_windows from sleap.io.video import Video logger = logging.getLogger(__name__) @attr.s(auto_attribs=True) class BriskVec: brisk_threshold: int vocab_size: int debug: bool = False def __attrs_post_init__(self): self._brisk = cv2.BRISK_create(thresh=self.brisk_threshold) def get_vecs(self, imgs): all_descs = [] row_img = [] # Create matrix with multiple brisk descriptors for each image. for i, img in enumerate(imgs): kps, descs = self._brisk.detectAndCompute(img, None) # Brisk descriptor is 512 bits, but opencv returns this as 16 uint8's, # so we'll convert it to discrete numbers. descs = np.unpackbits(descs, axis=1) # Make list with all brisk descriptors (or all images) and map which # tells us which descriptor goes with which image row_img.extend([i] * len(descs)) all_descs.append(descs) # Convert to single matrix of descriptors all_descs = np.concatenate(all_descs) # Convert to single matrix of row (individual descriptor) -> image index row_img = np.array(row_img) # Create a bag of features for each image by clustering the brisk image # descriptors (these clusters will be the "words" in a bag of words for # each image), then generate vocab-length vector for each image which # represents whether the "word" (i.e., brisk feature in some cluster) # is present in the image. kmeans = KMeans(n_clusters=self.vocab_size).fit(all_descs) return self.clusters_to_vecs(kmeans.labels_, row_img, len(imgs)) # img_bags = np.zeros((len(imgs), self.vocab_size), dtype="bool") # # for i in range(len(imgs)): # img_words = kmeans.labels_[row_img == i] # img_bags[(i,), img_words] = 1 # # return img_bags def clusters_to_vecs(self, cluster_labels, ownership, img_count): # Make helper function that builds bag of features vector for a single # image by looking up all the descriptors for an image and counting # how many there are for each cluster (vocab word). def img_bof_vec(img_idx): return np.bincount( cluster_labels[ownership == img_idx], minlength=self.vocab_size ) # Now make the matrix with a bag of features vector for each image return np.stack([img_bof_vec(i) for i in range(img_count)]) @attr.s(auto_attribs=True) class HogVec: brisk_threshold: int vocab_size: int debug: bool = False def __attrs_post_init__(self): self._brisk = cv2.BRISK_create(thresh=self.brisk_threshold) self.points_list = [] self.cmap = [ [31, 120, 180], [51, 160, 44], [227, 26, 28], [255, 127, 0], [106, 61, 154], [177, 89, 40], [166, 206, 227], [178, 223, 138], [251, 154, 153], [253, 191, 111], [202, 178, 214], [255, 255, 153], ] def get_vecs(self, imgs): # Get matrix of hog descriptors for all images, and array which says # which image is the source for each row. descs, ownership = self.get_hogs(imgs) # Cluster the descriptors into a vocabulary for bag of features kmeans = KMeans(n_clusters=self.vocab_size).fit(descs) if self.debug: if imgs.shape[-1] == 1: new_shape = (imgs.shape[0], imgs.shape[1], imgs.shape[2], 3) self.vis = np.empty(new_shape, dtype=imgs.dtype) self.vis[..., 0] = imgs[..., 0] self.vis[..., 1] = imgs[..., 0] self.vis[..., 2] = imgs[..., 0] else: self.vis = np.copy(imgs) for i, img in enumerate(self.vis): img_desc_clusters = kmeans.labels_[ownership == i] img_points = self.points_list[i] for point, cluster in zip(img_points, img_desc_clusters): color = self.cmap[cluster % len(self.cmap)] cv2.circle(img, tuple(point), 3, color, lineType=cv2.LINE_AA) return self.clusters_to_vecs(kmeans.labels_, ownership, len(imgs)) def clusters_to_vecs(self, cluster_labels, ownership, img_count): # Make helper function that builds bag of features vector for a single # image by looking up all the descriptors for an image and counting # how many there are for each cluster (vocab word). def img_bof_vec(img_idx): return np.bincount( cluster_labels[ownership == img_idx], minlength=self.vocab_size ) # Now make the matrix with a bag of features vector for each image return np.stack([img_bof_vec(i) for i in range(img_count)]) def get_hogs(self, imgs): """Returns descriptors and corresponding image for all images.""" per_image_hog_descriptors = [self.get_image_hog(img) for img in imgs] descs = np.concatenate( [image_descs for image_descs in per_image_hog_descriptors] ) ownership = np.array( list( itertools.chain.from_iterable( [ [i] * len(image_descs) for i, image_descs in enumerate(per_image_hog_descriptors) ] ) ) ) return descs, ownership def get_image_hog(self, img): """Returns hog descriptor for all brisk keypoints on single image.""" points = self.get_brisk_keypoints_as_points(img) center_points = points + np.array([8, 8]) crops = self.get_image_crops(img, center_points) multichannel = img.ndim > 2 img_descs = np.stack( [ hog( crop, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualize=False, multichannel=multichannel, ) for crop in crops ] ) return img_descs def get_image_crops(self, img, points): """Returns stack of windows around keypoints on single image.""" W = view_as_windows(img, (16, 16, img.shape[-1]))[..., 0, :, :, :] max_y = W.shape[1] - 1 max_x = W.shape[0] - 1 xs = points[:, 0] ys = points[:, 1] # Shift crops for keypoints that are too close to edges # TODO: is this how we should handle this case? xs[xs > max_x] = max_x ys[ys > max_y] = max_y return W[xs, ys] def get_brisk_keypoints_as_points(self, img): """Returns matrix of brisk keypoints for single image.""" kps = self._brisk.detect(img) points = self.keypoints_to_points_matrix(kps) return points def keypoints_to_points_matrix(self, kps): points = np.round(np.array([kps[idx].pt for idx in range(0, len(kps))])).astype( np.int ) self.points_list.append(points) return points @attr.s(auto_attribs=True, frozen=True) class FrameItem(object): """Just a simple wrapper for (video, frame_idx), plus method to get image.""" video: Video frame_idx: int def get_raw_image(self, scale: float = 1.0): if scale == 1.0: return self.video[self.frame_idx] else: img = self.video[self.frame_idx] _, h, w, c = img.shape h_, w_ = int(h // (1 / scale)), int(w // (1 / scale)) # note that cv2 expects (width, height) instead of (rows, columns) img = cv2.resize(np.squeeze(img), (w_, h_))[None, ...] if c == 1: img = img[..., None] return img @attr.s(auto_attribs=True) class FrameGroupSet(object): """ Class for a set of groups of FrameItem objects. Each item can have at most one group; each group is represented as an int. Attributes: method: Label for the method used to generate group set. item_group: Dictionary which maps each item to its group. group_data: Dictionary of any extra data for each group; keys are group ids, values are dictionaries of data. groupset_data: Dictionary for any data about the entire set of groups. """ method: str item_group: Dict[FrameItem, int] = attr.ib(default=attr.Factory(dict)) group_data: Dict[int, dict] = attr.ib(default=attr.Factory(dict)) groupset_data: Dict = attr.ib(default=attr.Factory(dict)) def append_to_group(self, group: int, item: FrameItem): """Adds item to group.""" self.item_group[item] = group if group not in self.group_data: self.group_data[group] = dict() def extend_group_items(self, group: int, item_list: List[FrameItem]): """Adds all items in list to group.""" for item in item_list: self.append_to_group(group, item) def get_item_group(self, item: FrameItem): """Returns group that contain item.""" return self.item_group.get(item, None) @property def groups(self): """Iterate over groups, yielding group and list of items.""" for group in self.group_data.keys(): item_list = [ frame_item for (frame_item, frame_group) in self.item_group.items() if frame_group == group ] yield group, item_list @property def all_items(self): """Gets list of all items.""" return list(itertools.chain(self.item_group.keys())) def sample(self, per_group: int, unique_samples: bool = True): """ Returns new FrameGroupSet with groups sampled from current groups. Note that the order of items in the new groups will not match order of items in the groups from which samples are drawn. Args: per_group: The number of samples to take from each group. unique_samples: Whether to ensure that there are no shared items in the resulting groups. Returns: New FrameGroupSet. """ new_groupset = FrameGroupSet(method="sample_groups") new_groupset.groupset_data["per_group"] = per_group selected_set = set() for group, group_item_list in self.groups: if unique_samples: # Remove items that were already sampled from other groups group_item_list = list(set(group_item_list) - selected_set) # Sample items from this group samples_from_group = np.random.choice( group_item_list, min(len(group_item_list), per_group), False ) # Keep track of the items we sampled so far from any group selected_set = selected_set.union(set(samples_from_group)) # Add this sampled group to the new set of groups # samples_from_group.sort() new_groupset.extend_group_items(group, list(samples_from_group)) return new_groupset @attr.s(auto_attribs=True) class ItemStack(object): """ Container for items, each item can "own" one or more rows of data. Attributes: items: The list of items data: An ndarray with rows of data corresponding to items. ownership: List which specifies which rows of data correspond to which items. meta: List which stores metadata about each operation on stack. group_sets: List of GroupSets of items. """ items: List = attr.ib(default=attr.Factory(list)) data: Optional[np.ndarray] = attr.ib(default=None, repr=False) ownership: Optional[List[tuple]] = None meta: List = attr.ib(default=attr.Factory(list)) group_sets: List[FrameGroupSet] = attr.ib(default=attr.Factory(list)) @property def current_groupset(self): """Gets current (most recent) group set.""" if not self.group_sets: return None return self.group_sets[-1] def get_item_data_idxs(self, item): """Returns indexes of rows in data which belong to item.""" item_idx = self.items.index(item) if self.ownership: owns = self.ownership[item_idx] else: owns = tuple([item_idx]) return owns def get_item_data(self, item): """Returns rows of data which belong to item.""" owns = self.get_item_data_idxs(item) return self.data[owns, ...] def get_item_by_data_row(self, row_idx): if self.ownership: for item_idx, owns in enumerate(self.ownership): if row_idx in owns: return self.items[item_idx] elif len(self.items) > row_idx: return self.items[row_idx] raise IndexError(f"No ownership for row {row_idx}.") def extend_ownership(self, ownership, row_count): """Extends an ownership list with number of rows owned by next item.""" start_i = 0 if len(ownership): # Start at 1 + (last row index of last item so far) start_i = 1 + ownership[-1][-1] item_owns = list(range(start_i, start_i + row_count)) ownership.append(item_owns) def get_raw_images(self, scale=0.5): """Sets data to raw image for each FrameItem.""" self.meta.append(dict(action="raw_images")) data_shape = [1, 1, 1] mixed_shapes = False imgs = [] for frame in self.items: # Add to list of raw images img = frame.get_raw_image(scale=scale) imgs.append(img) # Keep track of shape large enough to hold any of the images img_shape = img.shape data_shape = [max(data_shape[i], img_shape[i + 1]) for i in (0, 1, 2)] if data_shape != img_shape: mixed_shapes = True if mixed_shapes: # Make array large enough to hold any image and pad smaller images self.data = np.zeros((len(self.items), *data_shape), dtype="uint8") for i, img in enumerate(imgs): _, rows, columns, channels = img.shape self.data[i, :rows, :columns, :channels] = img else: self.data = np.concatenate(imgs) def flatten(self): """Flattens each row of data to 1-d array.""" meta = dict(action="flatten", shape=self.data.shape[1:]) self.meta.append(meta) row_count = self.data.shape[0] row_size =
np.product(meta["shape"])
numpy.product
import pytest import sys import os from math import trunc, ceil, floor import numpy as np sys.path.insert(0, os.getcwd()) from uncvalue import Value, val, unc, set_unc # noqa: E402 ϵ = 1e-8 a = Value(3.1415, 0.0012) b = Value(-1.618, 0.235) c = Value(3.1264e2, 1.268) A = np.array([[a, a], [b, b], [c, c]]) B = Value([a.x] * 5, a.ux) C = Value([b.x] * 5, [b.ux] * 5) @pytest.mark.parametrize('v, x', [ (a, a.x), (A, np.array([[a.x, a.x], [b.x, b.x], [c.x, c.x]])), (B, a.x), (a.x, a.x)], ids=['Single', 'Array of values', 'Value array', 'Number']) def test_val(v, x): assert np.all(val(v) == x) @pytest.mark.parametrize('v, x', [ (a, a.ux), (A, np.array([[a.ux, a.ux], [b.ux, b.ux], [c.ux, c.ux]])), (B, a.ux), (a.x, 0)], ids=['Single', 'Array of values', 'Value array', 'Number']) def test_unc(v, x): assert np.all(unc(v) == x) def test_set_unc(): v = set_unc(0.234, 0.0052) assert isinstance(v, Value) assert v.x == 0.234 assert v.ux == 0.0052 v = set_unc(a, 0.0052) assert isinstance(v, Value) assert v.x == a.x assert v.ux == 0.0052 v = set_unc([0.234] * 8, 0.0052) assert isinstance(v, np.ndarray) assert v.shape == (8, ) assert np.mean(unc(v)) == 0.0052 v = set_unc([0.234] * 8, [0.0052] * 8) assert isinstance(v, np.ndarray) assert v.shape == (8, ) assert np.mean(unc(v)) == 0.0052 with pytest.raises(ValueError): set_unc(np.random.random((3, 2, 1)), np.random.random((4, 2, 1))) def test_constructor(): v = Value(3.1415, 0.0012) assert v.x == 3.1415 == v.val assert v.ux == 0.0012 == v.unc with pytest.raises(ValueError): Value(3.14, -0.28) V = Value([3.1415] * 8, 0.0012) assert V.x.shape == (8, ) assert V.ux.shape == (8, ) assert np.mean(V.ux) == 0.0012 V = Value([3.1415] * 8, [0.0012] * 8) assert V.x.shape == (8, ) assert V.ux.shape == (8, ) assert np.mean(V.ux) == 0.0012 with pytest.raises(ValueError): Value(np.random.random((3, 2, 1)), np.random.random((4, 2, 1))) with pytest.raises(ValueError): Value(1j, 0) Value(1, 2j) @pytest.mark.parametrize('x, y, r', [ (a.x, a, False), (a, a.x, False), (a, Value(a.x, a.ux * 5), False), (b, a, True), (a, a - 0.0001, False), (A, A, False), (B, C, False)], ids=['Right', 'Left', 'Both', 'Different', 'Within unc', 'Array eq', 'Array dif']) def test_smaller(x, y, r): assert np.all((x < y) == r) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(a.x + 1, a.ux)), (a, 1, Value(a.x + 1, a.ux)), (a, b, Value(a.x + b.x, np.hypot(a.ux, b.ux))), (1, A, np.array([[a+1, a+1], [b+1, b+1], [c+1, c+1]])), (a, A, np.array([[a+a, a+a], [b+a, b+a], [c+a, c+a]])), (1, B, Value(1 + B.x, B.ux)), (a, B, Value(a.x + B.x, np.hypot(a.ux, B.ux))), (A, A, np.array([[a+a, a+a], [b+b, b+b], [c+c, c+c]])), (B, C, Value(B.x + C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Number + Array', 'Value + Array', 'Array of values', 'Number + Valued array', 'Value + Valued array', 'Valued array']) def test_add(x, y, r): z = x + y assert np.all(val(z) == val(r)) assert np.all(unc(z) == unc(r)) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(a.x + 1, a.ux)), (a.copy(), 1, Value(a.x + 1, a.ux)), (a.copy(), b, Value(a.x + b.x, np.hypot(a.ux, b.ux))), (B.copy(), C, Value(B.x + C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_iadd(x, y, r): x += y assert isinstance(x, Value) assert np.all(x.x == r.x) assert np.all(x.ux == r.ux) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(1 - a.x, a.ux)), (a, 1, Value(a.x - 1, a.ux)), (a, b, Value(a.x - b.x, np.hypot(a.ux, b.ux))), (A, A, np.array([[a-a, a-a], [b-b, b-b], [c-c, c-c]])), (B, C, Value(B.x - C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Array of values', 'Valued array']) def test_sub(x, y, r): z = x - y assert np.all(val(z) == val(r)) assert np.all(unc(z) == unc(r)) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(1 - a.x, a.ux)), (a.copy(), 1, Value(a.x - 1, a.ux)), (a.copy(), b, Value(a.x - b.x, np.hypot(a.ux, b.ux))), (B.copy(), C, Value(B.x - C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_isub(x, y, r): x -= y assert isinstance(x, Value) assert
np.all(x.x == r.x)
numpy.all
import numpy as np import pandas as pd from scipy import optimize from scipy.stats import norm, truncnorm, t, chi2 from scipy.stats import multivariate_normal as MVN from scipy.linalg import cholesky from scipy.integrate import quad from scipy.optimize import minimize_scalar from scipy.optimize import minimize from sklearn.linear_model import LinearRegression from time import time def rvec(x): return np.atleast_2d(x) def cvec(x): return rvec(x).T def vprint(stmt, verbose=True): if verbose: print(stmt) class BVN(): def __init__(self, mu, sigma, rho): """ mu: array of means sigma: array of variances rho: correlation coefficient """ if isinstance(mu,list): mu, sigma = np.array(mu), np.array(sigma) assert mu.shape[0]==sigma.shape[0]==2 assert np.abs(rho) <= 1 self.mu = mu.reshape([1,2]) self.sigma = sigma.flatten() od = rho*np.sqrt(sigma.prod()) self.rho = rho self.Sigma = np.array([[sigma[0],od],[od, sigma[1]]]) self.A = cholesky(self.Sigma) # A.T.dot(A) = Sigma # size=1000;seed=1234 # del size, seed def rvs(self, size, seed=None): """ size: number of samples to simulate seed: to pass onto np.random.seed """ np.random.seed(seed) X = np.random.randn(size,2) Z = self.A.T.dot(X.T).T + self.mu return Z def imills(self, a): return norm.pdf(a)/norm.cdf(-a) def sheppard(self, theta, h, k): return (1/(2*np.pi))*np.exp(-0.5*(h**2+k**2-2*h*k*np.cos(theta))/(np.sin(theta)**2)) # h, k = -2, -np.infty def orthant(self, h, k, method='scipy'): # P(X1 >= h, X2 >=k) assert method in ['scipy','cox','sheppard'] if isinstance(h,int) or isinstance(h, float): h, k = np.array([h]), np.array([k]) else: assert isinstance(h,np.ndarray) and isinstance(k,np.ndarray) assert len(h) == len(k) # assert np.all(h >= 0) and np.all(k >= 0) # Calculate the number of standard deviations away it is Y = (np.c_[h, k] - self.mu)/np.sqrt(self.sigma) Y1, Y2 = Y[:,0], Y[:,1] # (i) scipy: L(h, k)=1-(F1(h)+F2(k))+F12(h, k) if method == 'scipy': sp_bvn = MVN([0, 0],[[1,self.rho],[self.rho,1]]) pval = 1+sp_bvn.cdf(Y)-(norm.cdf(Y1)+norm.cdf(Y2)) return pval # A Simple Approximation for Bivariate and Trivariate Normal Integrals if method == 'cox': mu_a = self.imills(Y1) root = np.sqrt(1-self.rho**2) xi = (self.rho * mu_a - Y2) / root pval = norm.cdf(-Y1) * norm.cdf(xi) return pval if method == 'sheppard': pval = np.array([quad(self.sheppard, np.arccos(self.rho), np.pi, args=(y1,y2))[0] for y1, y2 in zip(Y1,Y2)]) return pval # mu=np.array([[0,0],[1,1]]);tau=np.array([[1,1],[1,1]]);a=np.array([1,1]); b=np.array([np.inf,np.inf]) # mu = np.repeat(0,20).reshape([10,2]); tau=np.linspace(1,2,21)[:-1].reshape([10,2]) # a = np.repeat(1,10); b=np.repeat(np.inf,10) # self = NTS(mu, tau, a, b) # mu, tau, a, b = [0,0], [1,1], 1, np.inf # self = NTS(mu, tau, a, b) class NTS(): def __init__(self, mu, tau, a, b): """ mu: matrix/array of means tau: matrix/array of standard errors a: array of lower bounds b: array of upper bounds """ if not (isinstance(mu,np.ndarray) & isinstance(tau,np.ndarray)): mu, tau = np.array(mu), np.array(tau) assert mu.shape == tau.shape if len(mu.shape) == 2: assert mu.shape[1] == tau.shape[1] == 2 a, b = np.array(a), np.array(b) else: assert mu.shape[0] == tau.shape[0] == 2 mu, tau = rvec(mu), rvec(tau) a, b, = np.array([a]), np.array([b]) self.r = mu.shape[0] assert self.r == len(a) == len(b) self.mu, self.tau, self.a, self.b = mu, tau, a.flatten(), b.flatten() # Truncated normal (Z2) self.alpha = (self.a - self.mu[:,1]) / self.tau[:,1] self.beta = (self.b - self.mu[:,1]) / self.tau[:,1] self.Z = norm.cdf(self.beta) - norm.cdf(self.alpha) self.Q = norm.pdf(self.alpha) - norm.pdf(self.beta) # Average will be unweighted combination of the two distributions self.mu_W = self.mu[:,0] + self.mu[:,1] + self.tau[:,1]*self.Q/self.Z if np.prod(self.mu_W.shape) == 1: self.mu_W = self.mu_W[0] # Distributions self.dist_X1 = norm(loc=self.mu[:,0], scale=self.tau[:,0]) self.dist_X2 = truncnorm(a=self.alpha, b=self.beta, loc=self.mu[:,1], scale=self.tau[:,1]) # W self.theta1 = self.mu.sum(1) self.theta2 = self.mu[:,1] self.sigma1 = np.sqrt(np.sum(self.tau**2,1)) self.sigma2 = self.tau[:,1] self.rho = self.sigma2/self.sigma1 # Initialize BVN for CDF self.di_BVN = {i:BVN(mu=[0,0],sigma=[1,1],rho=self.rho[i]) for i in range(self.r)} def reshape(self, x): if isinstance(x, list) | isinstance(x, pd.Series): x =
np.array(x)
numpy.array
import numpy import threading def merge_times(time1,time2): """ merge two time vectors and remove duplicates """ times = numpy.append(time1,time2) resortIndices = numpy.argsort(times) times = times[resortIndices] diff = numpy.diff(times) diff = numpy.append([1],diff)# the diff has one less, so we add one more indices = diff != 0 times = times[indices] # take only those indices which are different from the previous value return times class TimeSeries: def __init__(self,values=[],times=[],allocSize = 10000): self.allocSize = allocSize self.times = numpy.asarray(times,dtype=numpy.float64) self.values = numpy.asarray(values,dtype=numpy.float64) self.lastValidIndex = self.times.size-1 self.lock = threading.RLock() def __realloc(self,size=0): alloc = numpy.full(self.allocSize+size, numpy.nan, dtype=numpy.float64) with self.lock: self.values=numpy.append(self.values,alloc) self.times =numpy.append(self.times,alloc) def insert(self, values=None, times=None, profiling =None, allowDuplicates=False): #convert to numpy if type(times) is not numpy.ndarray: times = numpy.asarray(times) if type(values) is not numpy.ndarray: values = numpy.asarray(values) #incoming vector must make sense if values.size != times.size: return False if values.size == 0: return True with self.lock: lastOldValueIndex = self.lastValidIndex #remember for later if not allowDuplicates: # sort the new values before inserting and remove duplicates of the times times,indices = numpy.unique(times, return_index=True) values = values[indices] else: #keep the duplicates but sort sortedIndices = numpy.argsort(times) times = times[sortedIndices] values = values[sortedIndices] remainingSpace = (self.times.size-1)-self.lastValidIndex newLen = values.size if remainingSpace < newLen: self.__realloc(newLen) if profiling: profiling.lap("alloc") if lastOldValueIndex==-1 or times[0]>self.times[lastOldValueIndex]: #simply append the data start = self.lastValidIndex + 1 self.values[start:start + newLen] = values self.times[start:start + newLen] = times self.lastValidIndex += newLen if profiling: profiling.lap(f"put in array") else: #must insert and avoid producing dublicates insertIndicesLeft = numpy.searchsorted(self.get_times(),times,side="right") if profiling: profiling.lap(f"searchsorted") inserted = 0 # the number of elements already inserted, for each already inserted element, we need to add 1 on the insert index for the remaining elements to insert for idx,newTime,newValue in zip(insertIndicesLeft,times,values): index = idx + inserted if not allowDuplicates and self.times[index-1] == newTime: #this is just a replacement of existing data self.values[index-1] = newValue else: #this is a real new one, we must insert at position index #make room self.times[index+1:]=self.times[index:-1] self.values[index + 1:] = self.values[index:-1] #put in self.times[index]=newTime self.values[index] = newValue self.lastValidIndex += 1 inserted = inserted+1 if profiling: profiling.lap(f"inserted in array with shift and duplicates") return True def delete_area(self,start=None,end=None,includeEnd=True): #delete all data where start<=times<=end if type(start) == type(None): left = 0 else: left = numpy.searchsorted(self.get_times(), start,side="left") if type(end) == type(None): # this is a tail delete that is easy: print("adjust last valid in des {self.lastValidIndex} -> {left -1}") self.lastValidIndex = left -1 else: if includeEnd: right = numpy.searchsorted(self.get_times(), end, side="right") else: right = numpy.searchsorted(self.get_times(),end,side="left") siz = right-left self.times[left:self.lastValidIndex - siz+1] = self.times[right:self.lastValidIndex+1] self.values[left:self.lastValidIndex - siz+1] = self.values[right:self.lastValidIndex+1] self.lastValidIndex = self.lastValidIndex - siz return True def set_masked(self, values, mask): with self.lock: #only with indices if len(values) == len(self.values): return False self.values[mask]=values[mask] return True def set(self,values=None,times=None,withAllocSpace=False): """ Args: withAllocSpace: if set true, we also make space for additional values """ # if both are set at the same time, we assure the right order #make sure the incoming is in time order and correct type # there are cases where values and times are written in two steps (e.g. the timeseries.load from npz) # for those cases we bypass theses extra checks #type conversion if type(times) != type(None): times = numpy.asarray(times,dtype=numpy.float64) if type(values) != type(None): values = numpy.asarray(values,dtype=numpy.float64) #check order if both come in at the same time if type(times)!= type(None) and type(values)!= type(None) and len(times)>0 and len(values)>0: orderedIndices = numpy.argsort(times) times = times[orderedIndices] values = values[orderedIndices] with self.lock: if type(values) != type(None): if withAllocSpace: alloc = numpy.full(self.allocSize, numpy.nan, dtype=numpy.float64) self.values = numpy.append(values, alloc) else: self.values = numpy.copy(values) self.lastValidIndex = len(values) -1 if type(times) != type(None): if withAllocSpace: alloc = numpy.full(self.allocSize, numpy.nan, dtype=numpy.float64) self.times =numpy.append(times, alloc) else: self.times = numpy.copy(times) self.lastValidIndex = len(times) - 1 return True def get_values(self): return self.values[0:self.lastValidIndex+1] def get_times(self): return self.times[0:self.lastValidIndex+1] def get_len(self): return self.lastValidIndex+1 def get_last_time_stamp(self): if self.lastValidIndex != -1: return self.times[self.lastValidIndex] else: return None def get(self, start=None, end=None, copy=False, resampleTimes = None, noBins = None, includeIntervalLimits = False, resampleMethod = None, includeAllNan = False): """ request data and resample it typical use cases: 1) give a start and end time and the number of bins: this returns a vector of noBins elements including start and end time if the data does not have enough points between start and end, we do NOT deliver more if the data does have more points than noBins between start and end , we downsample by picking values 2) use the resampleTimes option: give a vector resampleTimes containing time points at which we want to get results, if necessary, the data will be resampled using the resampleMethod Args start [float]: the start time of the data query in epoch seconds end [float] : the end time of the data query in epoch seconds copy [bool]: if False, we only get the pointer to the numpy array, not a copy. This saves time, but the data should only be read! if True we get a full copy of the requested data resampleTimes [numpy.array float]: the time points to return in the result noBins : if start and end time is given, we can query a certain number of data points, the dat will be up/down sampled with sample and hold includeIntervalLimits: if set to true, we will include one more data point each left and right of the requested time resampleMethod [enum]: how to resample if we need to; options are: "samplehold" sample and hold "linear": linear interpolation "linearfill": linear interpolation and also interpolate "nan" or "inf" values in the original data "outlier" includeAllNan: if set true, we will return all existing nan in the requested interval no matter if they match the resampling ... currently only supported for "bin" queries (typically from the UI) Return [dict] {"values":[..],"__time":[...]} """ with self.lock: haveData = True #remainingSpace = numpy.count_nonzero(numpy.isnan(self.times)) #the times will not have any intermediate nan, only at the end #lastValidIndex = len(self.times)-remainingSpace-1 lastValidIndex = self.lastValidIndex if type(start) is not type(None): if start < 0: # we support the -start time, endtime = None, typically used for streaming # to query interval from the end # get the last time and subtract the query time if lastValidIndex == -1: start = 0 else: lastTime = self.times[lastValidIndex] start = lastTime + start # look back from the end, note that start is negative if start < 0: start = 0 startIndex = numpy.searchsorted(self.get_times(), start,"left") #the first index to take else: startIndex = 0 if type(end) is not type(None): endIndex = numpy.searchsorted(self.get_times(), end, side="right") # this endIndex is one more than the last that we take else: endIndex = lastValidIndex +1 startIndex = max(startIndex,0) # make sure, startIndex is not negative if startIndex == endIndex: haveData = False else: #assure limits if startIndex > lastValidIndex: #this means, all the data is left from the query, we should no provide data haveData = False if endIndex > lastValidIndex+1: endIndex = lastValidIndex+1 if haveData: if type(resampleTimes) == type(None): #print(f"startIdex:{startIndex}:{self.times[startIndex]}, endIndex:{endIndex-1}:{self.times[endIndex-1]}, diff:{self.times[endIndex-1]-self.times[startIndex]}") #print(f"lastvalid {lastValidIndex}:{self.times[lastValidIndex]} ") if includeIntervalLimits: if startIndex != 0: startIndex = startIndex -1 if endIndex < lastValidIndex +1: #we can go one above, as the linspace and arange do not include the right endIndex = endIndex +1 if noBins: #we pick samples only if we have more than requested if (endIndex-startIndex)>noBins: if resampleMethod=="outlier": #take the outliers firstIndices = numpy.linspace(startIndex, endIndex-1, noBins+1, endpoint=True, dtype=int) # one more than the bins takeIndices = [] for idxOfIndices in range(len(firstIndices)-1): startIdx = firstIndices[idxOfIndices] endIdx = firstIndices[idxOfIndices+1] values = self.values[startIdx:endIdx] #take = numpy.argmax(values)+startIdx # take the maximum valur values = numpy.abs(values-numpy.mean(values)) #find the max deviating value take = numpy.argmax(values)+startIdx takeIndices.append(take) takeIndices = numpy.asarray(takeIndices,dtype=numpy.int) else: takeIndices = numpy.linspace(startIndex, endIndex - 1, noBins, endpoint=True, dtype=int) else: takeIndices = numpy.arange(startIndex, endIndex) #arange excludes the last if includeAllNan: #now look in the full data between start and end and find all Nans there, add those indices to the total take indices nanIndices = numpy.where(~numpy.isfinite(self.values[startIndex:endIndex]))[0] + startIndex takeIndices = numpy.append(takeIndices,nanIndices) takeIndices = numpy.unique(takeIndices) #unique: sort and remove dublicates times = self.times[takeIndices] values = self.values[takeIndices] else: #takeIndices = numpy.arange(startIndex,endIndex) #arange exludes the last times = self.times[startIndex:endIndex] values = self.values[startIndex:endIndex] else: #must resample the data #oldTimes = self.times[startIndex:endIndex] #oldValues = self.values[startIndex:endIndex] if resampleMethod == "linear": values = numpy.interp(resampleTimes,self.get_times(),self.get_values()) elif resampleMethod == "linearfill": #fill the nans with data indices = numpy.isfinite(self.get_values()) values = numpy.interp(resampleTimes, self.get_times()[indices], self.get_values()[indices]) else: #the default is ffill values = self.__resample_ffill(resampleTimes, self.get_times(), self.get_values()) times = resampleTimes else: times=numpy.asarray([]) values=numpy.asarray([]) if copy: result = {"__time": numpy.copy(times), "values":numpy.copy(values)} else: result = {"__time": times, "values": values} return result def __resample_ffill(self,newTimes, oldTimes, values): """ resample the values along a new time axis up/down samping is possible, and distances are possible if upsamping Args: newTimes: a numpy.array of time values (typically epoch seconds in UTC oldTimes: the old time stamps of the values, must have same length as values values: a numpy array of values to be up/down sampled method: the method used when up/down sampling. we currently only support the "ffill": @downsampling: sample values (we take the last value in time (sample and hold) @upsampling: we also take the last old value in time (forward fill, sample and hold) Returns: numpy array of type values of the length of newTimes with the up/down-sampled values """ newValues = numpy.full(len(newTimes), numpy.nan) # if the searchsorted gives index 0, we must put the new value in front of the old and use nan for the value # as we don't have any valid previous value, the fastest way to do this is to put a value infront and use # the searchsorted as a vector process with the "right", e.g. right a[i-1] <= v < a[i], # so we get the found index i as one bigger than out timestamp (which is then <= the searched time) # we should actually take the result index -1 to have the right index, but the values have been shifted by one to the right, so # we are fine # example: # oldTimes = 11,12,13 # old values = 11,12,13 # newTimes 10,10.5,11,11.5 # preprocessing values preold= nan,11,12,13 # searchsorted (10,10.5,11,11.5 "right" gives: 0,0,1,1) # result is preold[0,0,1,1] =[nan,nan,11,11] myvals = numpy.insert(values, 0, numpy.nan) found = numpy.searchsorted(oldTimes, newTimes, "right") newValues = myvals[found] return newValues def merge(self,timeseries): """ merge another time series into this times series: the times will be all time points existing double times will be removed the new values will get priority on dublicate times """ with self.lock: mergeTimes = merge_times(self.get_times(),timeseries.get_times()) oldValues = self.get(resampleTimes=mergeTimes)["values"] if len(oldValues) == 0: #the oldValues is empty, so we create a NaN array oldValues = numpy.full(len(mergeTimes),numpy.nan,dtype=numpy.float64) newValues = timeseries.get(resampleTimes=mergeTimes)["values"] indices=numpy.isfinite(newValues) oldValues[indices]=newValues[indices] self.set(oldValues,mergeTimes) class TimeSeriesTable: """ the TSTable is an API class for the access of tabled data for any alternative implementation, the api should be implemented such as create, insert etc. """ def __init__(self,allocSize = 10000): self.store = {} self.allocSize = allocSize def get_items(self): """ Returns: a list of keys which are the ids of the timeseries stored here """ return list(self.store.keys()) # this makes a copy def create(self,name,allocSize=None): if type(allocSize) is type(None): allocSize = self.allocSize self.store[name]=TimeSeries(allocSize=allocSize) return True def delete(self,name): if name in self.store: del self.store[name] return True def clear(self): self.store={} def insert(self,name,values=None,times=None,allowDuplicates = False): if name not in self.store: self.create(name) return self.store[name].insert(values,times,allowDuplicates = allowDuplicates) def append(self, name, values=None, times=None): if name not in self.store: self.create(name) return self.store[name].insert(values,times) def set(self,name,values = None,times = None): return self.store[name].set(values,times) def get_table(self, names, start=None, end=None, copy=False, resampleTimes=None, noBins = None, includeIntervalLimits=False,resampleMethod = None, includeAllNan = False): """ returns raw data dict with {name:{"values":[..],"__time":[...], "name2":{"values":[..], "__time":[..] """ if not type(names) is list: names = [names] result = {} #we are handling here a special case of a time query for the "end" of data via end=None, start =-time # we must cover the case where the requested variables have different end times, we will use the one with the newest data a a reference for all of them if (type(end) is type(None)) and (not type(start) is type(None)): #this is a streaming request, get the newest possible time point of all vars lastsraw = [self.store[name].get_last_time_stamp() for name in names if name in self.store] lasts = [] for last in lastsraw: if type(last) is type(None): continue if numpy.isfinite(last): lasts.append(last) if lasts != []: end = numpy.max(lasts) start = end + start #(start was negative) else: #all are empty, the store.get will handle this pass for name in names: if name in self.store: includeNan = False if includeAllNan == True: includeNan = True if type(includeAllNan) is list: #it is a selection list: if name in includeAllNan: includeNan = True result[name]=self.store[name].get(start=start,end=end,copy=copy,resampleTimes=resampleTimes,noBins=noBins,includeIntervalLimits=includeIntervalLimits,resampleMethod=resampleMethod,includeAllNan=includeNan) return result def get_info(self,name = None): if not name: s="" for k,v in self.store.items(): s=s+f"{k}: {v.get()}"+"\n" return s else: if not name in self.store: return f"time series data not found" else: dat = self.store[name].get()['values'] return f"time series len {len(dat)}, data:{dat[0:min(len(dat),10)]}" def delete_area(self,name,start=None,end=None): if name not in self.store: return False return self.store[name].delete_area(start,end) def insert_blobs(self,blobs): """ blob is a dict or list of dicts of key and values containing one time base like { "root.vars.a": [1.5,1.6,1.7]m "root.vars.b": [2,3,4] "__time" :[100001,100002,100003] } """ if not type(blobs) is list: blobs = [blobs] return [self.__insert_blob(b) for b in blobs] def __insert_blob(self,blob): if not "__time" in blob: return False for k,v in blob.items(): if numpy.isscalar(v): blob[k]=numpy.asarray([v]) lens = [len(v) for k,v in blob.items()] if len(set(lens)) != 1: #the lengths differ, we can't process return False for k,v in blob.items(): if k=="__time": continue if k not in self.store: self.create(k) self.store[k].insert(values=v,times=blob["__time"]) def merge(self,name,values,times): """ merge the additional into the origin see merge function to """ if name not in self.store: return False ts = TimeSeries(values = values, times= times) return self.store[name].merge(ts) def save(self,name): saveDict = {} for k,v in self.store.items(): ts = v.get() saveDict[k] = ts["values"] saveDict[k+"__time"] = ts["__time"] numpy.savez(name, **saveDict) def load(self,name): get =
numpy.load(name+".npz")
numpy.load
import numpy as np from typing import Optional, Union, Tuple, Callable, List from ..initialisations import lookup_normal_init from ....utils.misc import to_device from .abs_block import AbsBlock from torch import Tensor import torch.nn as nn __all__ = ['ClassRegMulti'] class AbsTail(AbsBlock): def __init__(self, n_in:int, n_out:int, objective:str, bias_init:Optional[float]=None, lookup_init:Callable[[str,Optional[int],Optional[int]],Callable[[Tensor],None]]=lookup_normal_init, freeze:bool=False): super().__init__(lookup_init=lookup_init, freeze=freeze) self.n_in,self.n_out,self.objective,self.bias_init = n_in,n_out,objective,bias_init class ClassRegMulti(AbsTail): r''' Output block for (multi(class/label)) classification or regression tasks. Designed to be passed as a 'tail' to :class:`~lumin.nn.models.model_builder.ModelBuilder`. Takes output size of network body and scales it to required number of outputs. For regression tasks, y_range can be set with per-output minima and maxima. The outputs are then adjusted according to ((y_max-y_min)*x)+self.y_min, where x is the output of the network passed through a sigmoid function. Effectively allowing regression to be performed without normalising and standardising the target values. Note it is safest to allow some leaway in setting the min and max, e.g. max = 1.2*max, min = 0.8*min Output activation function is automatically set according to objective and y_range. Arguments: n_in: number of inputs to expect n_out: number of outputs required objective: string representation of network objective, i.e. 'classification', 'regression', 'multiclass' y_range: if not None, will apply rescaling to network outputs: x = ((y_range[1]-y_range[0])*sigmoid(x))+y_range[0]. Incompatible with `y_mean` and `y_std` bias_init: specify an intial bias for the output neurons. Otherwise default values of 0 are used, except for multiclass objectives, which use 1/n_out y_mean: if sepcified along with `y_std`, will apply rescaling to network outputs: x = (y_std*x)+y_mean. Incopmpatible with `y_range` y_std: if sepcified along with `y_mean`, will apply rescaling to network outputs: x = (y_std*x)+y_mean. Incopmpatible with `y_range` lookup_init: function taking string representation of activation function, number of inputs, and number of outputs an returning a function to initialise layer weights. Examples:: >>> tail = ClassRegMulti(n_in=100, n_out=1, objective='classification') >>> >>> tail = ClassRegMulti(n_in=100, n_out=5, objective='multiclass') >>> >>> y_range = (0.8*targets.min(), 1.2*targets.max()) >>> tail = ClassRegMulti(n_in=100, n_out=1, objective='regression', ... y_range=y_range) >>> >>> min_targs = np.min(targets, axis=0).reshape(targets.shape[1],1) >>> max_targs = np.max(targets, axis=0).reshape(targets.shape[1],1) >>> min_targs[min_targs > 0] *=0.8 >>> min_targs[min_targs < 0] *=1.2 >>> max_targs[max_targs > 0] *=1.2 >>> max_targs[max_targs < 0] *=0.8 >>> y_range = np.hstack((min_targs, max_targs)) >>> tail = ClassRegMulti(n_in=100, n_out=6, objective='regression', ... y_range=y_range, ... lookup_init=lookup_uniform_init) ''' # TODO: Automate y_range calculation with adjustable leeway def __init__(self, n_in:int, n_out:int, objective:str, y_range:Optional[Union[Tuple,np.ndarray]]=None, bias_init:Optional[float]=None, y_mean:Optional[Union[float,List[float],np.ndarray]]=None, y_std:Optional[Union[float,List[float],np.ndarray]]=None, lookup_init:Callable[[str,Optional[int],Optional[int]],Callable[[Tensor],None]]=lookup_normal_init, freeze:bool=False): super().__init__(n_in=n_in, n_out=n_out, objective=objective, bias_init=bias_init, lookup_init=lookup_init, freeze=freeze) self.y_range,self.y_mean,self.y_std = y_range,y_mean,y_std self.rescale = False if self.y_range is not None and (self.y_mean is not None or self.y_std is not None): raise ValueError("Both y_range (sigmoid output and rescaling) and y_mean + y_std (linear output and rescaling) are set. Please only set either.") if (self.y_mean is None and self.y_std is not None) or (self.y_mean is not None and self.y_std is None): raise ValueError("Only one of y_mean or y_std is set, but not both. Please set both or neither.") if self.y_mean is not None and self.y_std is not None and bias_init is not None: print("y_mean and y_std are both set, but so is bias_init. Bias init will be set to zero to provide accurate rescaling") self.bias_init = None if self.y_range is not None: if not isinstance(self.y_range, np.ndarray): self.y_range =
np.array(self.y_range)
numpy.array
from flask import Flask, render_template, request, redirect, url_for app = Flask(__name__) @app.route('/') def login(): return render_template('option.html') # 获取提交参数及处理 @app.route('/sub', methods=['POST']) def getLoginRequest(): q1 = request.values.get("q1") q2 = request.values.get("q2") q3 = request.values.get("q3") q4 = request.values.get("q4") q5 = request.values.get("q5") q6 = request.values.get("q6") q7 = request.values.get("q7") q8 = request.values.getlist("q8") q9 = request.values.get("q9") q10 = request.values.get("q10") q11 = request.values.get("q11") q12 = request.values.get("q12") q13 = request.values.getlist("q13") q14 = request.values.getlist("q14") # if q1!=None and q2!=None and q3!=None and q4!=None and q5!=None and q6!=None and q7!=None and q8!=[] and q9!=[]and q10!=[]: ## Calculate the result and transform it into an integer sum = int(q1) + int(q2) + int(q3) + int(q4) + int(q5) + int(q6) + int(q7) + int(q9) + int(q10) + int(q11) + int(q12) ## Classify num=12 if sum in range(12, 17): level = 1 elif sum in range(17, 22): level = 2 elif sum in range(22, 27): level = 3 elif sum in range(27, 31): level = 4 elif sum in range(31, 35): level = 5 elif sum in range(35, 39): level = 6 elif sum in range(39, 43): level = 7 elif sum in range(43, 45): level = 8 elif sum in range(45, 46): level = 9 elif sum in range(46, 48): level = 10 else: level = 1 from rpy2 import robjects robjects.r(''' library("xml2") library("dplyr") library("stringr") library("rlist") library("xts") library("quantmod") library("PortfolioAnalytics") library("DEoptim") library("ROI") require("ROI.plugin.glpk") require("ROI.plugin.quadprog") weights<-function(ins) { ### Read data from last milestone data = read.csv("complete.csv",header = TRUE, fileEncoding = "UTF-8", sep=",", na.strings = "") data_print_out = data #Number of funds in the final portforlio, can be specified portfolio_num = 5 fund_num = portfolio_num*10 fund_num_tmp = floor(fund_num/10) fund_num_upper = fund_num_tmp * ins if(ins == 10) { fund_num_upper = fund_num } selected <- data[,(fund_num_tmp*(ins-1)+1+1):(fund_num_upper+1)] #first plus one: begin with 6-10; second plus one: first column of data is date selected <- cbind(data[,1],selected) data <- selected data_print_out = data ### Construct the system by Markowitz model #Initialization rows = nrow(data) returns_tmp = c() return_tmp = data.frame() for (j in 1:portfolio_num){ data_tmp <- data.frame(data[,1],data[,j+1]) data_tmp <- xts(data_tmp[,2],as.Date(data_tmp[,1])) return_tmp <- periodReturn(data_tmp,period="daily",type="log") returns_tmp <- cbind(returns_tmp,return_tmp) } returns <- returns_tmp[,1:5] rownames(returns) <- data[,1] colnames(returns) <- c("fd1", "fd2", "fd3", "fd4","fd5") funds <- colnames(returns) init <- portfolio.spec(assets = funds) init <- add.constraint(portfolio=init, type="leverage",min_sum=1.00, max_sum=1.00) init <- add.constraint(portfolio=init, type="box", min=0.10, max=0.40) #6.3 Minimize variance with ROI minvar <- add.objective(portfolio=init, type="risk", name="var") opt_minvar <- optimize.portfolio(R=returns, portfolio=minvar, optimize_method="ROI", trace=TRUE) w = extractWeights(opt_minvar) data_print_out_final = rbind(data_print_out,w) return_data = data_print_out_final[,-1] return_data = rbind(colnames(return_data),return_data) return (return_data) } ''') import pandas as pd import numpy as np return_data = robjects.r['weights'](level) return_data=list(return_data) length=len(return_data[0]) ## Change data type data=np.array(return_data[:]) data=data[:,1:(length+100)].astype(float) data=data.transpose() ## Construct an empty array data_all = np.zeros((10, data.shape[0] - 1)) # here minus 1: space for weights ## A function to calculate the average def weighted_avg(in_put, weight): if np.ndim(in_put) == 1: return np.sum(in_put * weight) else: size = in_put.shape[0] tmp = np.zeros(size) for i in range(0, size): tmp[i] = np.sum(in_put[i, :] * weight) return tmp ###initialization nav = data[:-1, :] # here -1: space for weights weight = data[-1, :] date = nav.shape[0] fund_num = nav.shape[1] data_all = np.zeros((10, date)) # here minus 1: space for weights ###daily returns daily_returns = np.zeros((date - 1, fund_num)) for j in range(0, fund_num): daily_returns[:, j] = np.diff(nav[:, j]) / nav[:-1, j] data_all[9, :-1] = weighted_avg(daily_returns, weight) ###---Step 1 ###accumulative daily returns accu_daily_returns = np.zeros((date - 1, fund_num)) for j in range(0, fund_num): for i in range(0, date - 1): accu_daily_returns[i, j] = float(nav[i + 1, j] / nav[0, j] - 1) data_all[1, :-1] = weighted_avg(accu_daily_returns, weight) ###---Step 2 ###annualized return & std annual_return = ((1 + (data_all[1, -2])) ** (1 / ( date / 252)) - 1) # data_all[1,-2] is the second last number of the data_all row, which is the acumulative rate data_all[2, 0] = annual_return annual_std = np.std(data_all[9, :-1]) * np.sqrt(252) data_all[2, 3] = annual_std ## Sharpe Ratio SR = data_all[9].mean() / data_all[9].std() data_all[2, 1]=SR data_all[6, 0] = SR ## 最大回撤 index_j = np.argmax(np.maximum.accumulate(data_all[9]) - data_all[9]) # 结束位置 index_i = np.argmax(data_all[9][:index_j]) # 开始位置 d = data_all[9][index_j] - data_all[9][index_i] # 最大回撤 data_all[2, 2] = d ## 95% VAR d_sort=data_all[9,:-1].copy() d_sort.sort() va=d_sort[int((date-1)*0.05)] data_all[2, 4] = va t2=[] t2.append(data_all[2, 0]) t2.append(data_all[2, 1]) t2.append(data_all[2, 2]) t2.append(data_all[2, 3]) t2.append(data_all[2, 4]) ###---Step 3: Chosen date return chosen_return =
np.zeros((48, fund_num))
numpy.zeros
import random import albumentations as A import cv2 import numpy as np import torch __all__ = ["BoxesDropout", "CoarseDropoutWithBboxes"] class BoxesDropout(A.DualTransform): """ Remove objects and fill image & mask corresponding to removed bboxes. """ def __init__( self, max_objects=5, max_fraction=0.2, image_fill_value=0, mask_fill_value=0, always_apply=False, drop_overlapping_boxes=True, overlap_iou=0.35, p=0.5, ): """ Args: max_objects: Maximum number of labels that can be zeroed out. Can be tuple, in this case it's [min, max] image_fill_value: Fill value to use when filling image. Can be 'inpaint' to apply inpaining (works only for 3-chahnel images) mask_fill_value: Fill value to use when filling mask. Targets: image, mask Image types: uint8, float32 """ super(BoxesDropout, self).__init__(always_apply, p) self.max_objects = max_objects self.max_fraction = max_fraction self.image_fill_value = image_fill_value self.mask_fill_value = mask_fill_value self.drop_overlapping_boxes = drop_overlapping_boxes self.overlap_iou = overlap_iou @property def targets_as_params(self): return ["image", "bboxes"] @property def targets(self): return { "image": self.apply, "mask": self.apply_to_mask, "masks": self.apply_to_masks, "bboxes": self.apply_to_bboxes, "keypoints": self.apply_to_keypoints, } def get_params_dependent_on_targets(self, params): from torchvision.ops import box_iou image = params["image"] rows, cols = image.shape[:2] bboxes = A.denormalize_bboxes(params["bboxes"], rows, cols) num_bboxes = len(bboxes) max_num_objects_to_drop = min(self.max_objects, int(self.max_fraction * num_bboxes)) if max_num_objects_to_drop == 0: dropout_mask = None objects_to_drop = [] else: indexes = np.arange(num_bboxes) objects_to_drop = random.randint(1, max_num_objects_to_drop) objects_to_drop = set(random.sample(indexes.tolist(), objects_to_drop)) if self.drop_overlapping_boxes: bboxes = np.asarray([box[:4] for box in bboxes]).reshape((-1, 4)) iou: np.ndarray = box_iou(torch.from_numpy(bboxes), torch.from_numpy(bboxes)).numpy()
np.fill_diagonal(iou, 0)
numpy.fill_diagonal
# -*- coding: utf-8 -*- """ Created on Mon Apr 16 16:26:04 2018 @author: garrettsmith Word-by-word SOSP sentence processing The lexicon is a dictionary where the keys are attachment sites (head and dependent) and the values are lists the features. A treelet is a vector of head identities (phon. forms), head features, and a fixed number of dependent features for each word. DESIGN CHOICE: To allow for strings shorter than max_sent_length, added EMPTY lexical item as placeholder. Short but fully linked parses, e.g., the->dog EMPTY, are fully harmonious. CHANGE TO PREV. CHOICE (5/24): Only parses with all required attachments are now fully harmonious. This is done by implementing the at-most-one-hot rule as a local constraint for each attch. site. DESIGN CHOICE: A seq. of all EMPTYs has a local harmony of missing_link_penalty DESIGN CHOICE: Ambiguous words are disambiguated in the lexicon file, but if they share a phonological form, only a single phonological form is used for making the dimension names. This is also how optional attachments can be handled (although I haven't tried that yet). DESIGN CHOICE: eliminating link patterns like L_W0_W1_d0 L_W1_W0_d0, i.e., "circular" link patterns. DESIGN CHOICE: init. activ. patterns of ambiguous words are the average of their ambiguous senses. DESIGN CHOICE: a seq. of all EMPTYs is only penalized for its missing links DESIGN CHOICE: When a new word is input, predictions/hallucinations about not- yet-seen words are erased so that the system it always deflected away from an attr. instead of immediately being at a, w0 w1 EMPTY (no link) low-harm. attr. DESIGN CHOICE: Include a full lexicon, but if only want to consider particular sequences, simply pass a corpus of those sequences. DESIGN CHOICE: Using pullback: when a new word is input, the link strengths are multiplied by a parameter self.pullback that weakens them (or turns them off). Later maybe: Info about the expected direction of dependents would reduce the number of dim. Also, after calculating harmonies, could eliminate very low-harmony centers to simplify system. For now at least, don't use root/apex node """ import yaml from itertools import product from sympy.utilities.iterables import multiset_permutations import numpy as np from scipy.optimize import minimize import matplotlib.pyplot as plt import seaborn as sns from .dynamics import calc_harmony, iterate, euclid_stop, vel_stop, cheb_stop import pandas as pd def gen_nlinks_vectors(nlink_dims, maxlinks): lconfigs = [] for i in range(0, maxlinks+1): base = [0]*nlink_dims if i > 0: base[:i] = [1]*i perms = multiset_permutations(base) lconfigs.extend([i for i in perms]) return lconfigs # chain(*lconfigs) class Struct(object): def __init__(self, lex_file=None, features=None, max_sent_length=10, missing_link_cost=0.01, gamma=0.25, stopping_crit='euclid_stop', corpus=None): self.max_sent_length = max_sent_length self.ndim_per_position = 0 # Maximum number of possible dependents; change to be fn. that calc.s # after reading in lex. self.ndep = 2 self.max_links = self.max_sent_length - 1 # Multiplier for missing links self.missing_link_cost = missing_link_cost self.gamma = gamma if stopping_crit == 'vel_stop': self.stopping_crit = vel_stop elif stopping_crit == 'cheb_stop': self.stopping_crit = cheb_stop else: self.stopping_crit = euclid_stop # self.tau = 0.01 # Time step for discretized dynamics self.tau = 0.1 self.max_time = 10000 # Max. number of time steps self.noise_mag = 0.0001 # default self.tol = 0.05 # Stopping tolerance self.pullback = 0.0 if features is None: self.features = ['Det', 'N', 'V', 'sg', 'pl'] self.nfeatures = len(self.features) else: self.features = features self.nfeatures = len(features) if lex_file is not None: self.lexicon = self._import_lexicon(lex_file) pf = [] for w in self.lexicon: pf.append(self.lexicon[w]['phon_form']) self.phon_forms = list(dict.fromkeys(pf)) self.nwords = len(self.lexicon) self.nphon_forms = len(self.phon_forms) self.pos_names = self._name_pos_dims() self.link_names = self._name_links() self.nlinks = len(self.link_names) self.dim_names = self.pos_names + self.link_names self.ndim = len(self.dim_names) self.idx_words = {j: i for i, j in enumerate(self.lexicon.keys())} self.idx_phon_feat = slice(0, self.nphon_forms) self.idx_phon_dict = {j: i for i, j in enumerate(self.phon_forms)} self.idx_head_feat = slice(self.nphon_forms, self.nphon_forms + self.nfeatures) self.idx_links = slice(len(self.pos_names), len(self.dim_names)) self.word_vecs = self._make_word_vecs() else: print('No lexicon loaded') self.lexicon = dict() self.nwords = 0 self.dim_names = None self.ndim = None # Working with a corpus if corpus is not None: disamb = corpus.copy() for seq in corpus: # Disambiguating words for word_nr, word in enumerate(seq): ambig_forms = [w for w in self.lexicon if word in w] if len(ambig_forms) > 1: for amb in ambig_forms: rep = [w if w is not word else amb for w in seq] disamb.append(rep) # del disamb[corpus.index(seq)] del disamb[disamb.index(seq)] # Also need to add partial subsequences from seqs in corpus full_corp = disamb.copy() for seq in disamb: for i in range(len(seq)-1): full_corp.append(seq[:i+1] + ['EMPTY']*(len(seq)-i-1)) corp_tuple = map(tuple, full_corp) corp_unique = list(map(list, dict.fromkeys(corp_tuple))) # self.seq_names = full_corp self.seq_names = corp_unique def set_params(self, **kwargs): for param, val in kwargs.items(): setattr(self, param, val) def _import_lexicon(self, file): with open(file, 'r') as stream: lex = yaml.safe_load(stream) assert 'EMPTY' in lex.keys(), 'Lexicon must include EMPTY.' return lex def _make_word_vecs(self): """Builds word vecs, return them in a NumPy array """ word_list = [] for word in self.lexicon: curr = [] word_phon = self.lexicon[word]['phon_form'] phon = [0.] * self.nphon_forms phon[self.idx_phon_dict[word_phon]] = 1.0 curr.extend([i for i in phon]) curr.extend(self.lexicon[word]['head']) if self.lexicon[word]['dependents'] is None: curr.extend([-1.] * self.ndep * self.nfeatures) else: for dep in self.lexicon[word]['dependents']: curr.extend(self.lexicon[word]['dependents'][dep]) ndeps = len(self.lexicon[word]['dependents']) if ndeps > 0: # Code non-existent features as -1s as placeholders curr.extend([-1.] * (self.ndep-ndeps) * self.nfeatures) word_list.append(curr) return np.array(word_list) def _name_seqs(self): """Finds all word sequences up to max_sentence_lengths. The centers will be these with allowed link combinations appended (done later). """ # One approach: for each possible sequence of words, find all allowed # feature/link combinations. if self.seq_names: word_seqs = self.seq_names else: non_empty = {k: self.lexicon[k] for k in self.lexicon if k not in 'EMPTY'} # For storing all possible sequences of words word_seqs = [] # Manually adding the empty sequence word_seqs.append(['EMPTY'] * self.max_sent_length) for i in range(self.max_sent_length): pr = product(non_empty, repeat=i+1) word_seqs.extend([list(x) for x in pr]) for i in range(len(word_seqs)): curr_len = len(word_seqs[i]) if curr_len < self.max_sent_length: word_seqs[i].extend(['EMPTY'] * (self.max_sent_length - curr_len)) return word_seqs def _make_seq_vecs(self): """Returns a list of sequence vectors in which each element holds word vectors concatenated together. """ word_vec = self._make_word_vecs() seq_names = self._name_seqs() seq_vecs = [] for seq in seq_names: curr_seq = [] for word in seq: curr_word = self.idx_words[word] curr_seq.extend(word_vec[curr_word]) seq_vecs.append(curr_seq) self.seq_vecs = seq_vecs return seq_vecs def _prune_links(self): """Returns an array of link vectors after removing the ones disallowed under the constraints of SOSP """ link_names = self._name_links() nlink_dims = len(link_names) link_vecs = gen_nlinks_vectors(nlink_dims, self.max_links) # A little kludgy, but works for now... if self.max_sent_length == 2: return(link_vecs) to_rm = [] to_keep = [] for i, lvec in enumerate(link_vecs): # Remove vectors that have the same word attached twice as a dep. for word_nr in range(self.max_sent_length): dim_per_word = self.ndep * (self.max_sent_length-1) init = word_nr*dim_per_word idx = slice(init, init+dim_per_word) if sum(lvec[idx]) >= self.max_links: to_rm.append(i) # to_keep.append(lvec) # Next, rm vectors with more than one thing attached to the # same dep attch site. for dep in ['d0', 'd1']: word_str = 'W' + str(word_nr) + '_' + dep dep_idx = [j for j, w in enumerate(link_names) if word_str in w] if sum([lvec[k] for k in dep_idx]) >= self.max_links: to_rm.append(i) # Now rm links that form cycles for wn in range(self.max_sent_length-1): w0 = wn w1 = wn + 1 for d in ['d' + str(j) for j in range(self.ndep)]: s0 = '_'.join(['L', 'W' + str(w0), 'W' + str(w1), d]) idx0 = link_names.index(s0) s1 = '_'.join(['L', 'W' + str(w1), 'W' + str(w0), d]) idx1 = link_names.index(s1) if lvec[idx0] == 1 and lvec[idx1] == 1: to_rm.append(i) # Finally, remove links that aren't possible with the vocabulary return [link_vecs[k] for k in range(len(link_vecs)) if k not in to_rm] def _name_links(self): print('Naming links...') links = [] for pos_nr in range(self.max_sent_length): other_positions = [x for x in range(self.max_sent_length) if x != pos_nr] # Any word can appear at any position, so use whole lexicon here for op in other_positions: for dep in ['d0', 'd1']: # first and second dependents links.append('_'.join(['L', 'W' + str(pos_nr), 'W' + str(op), dep])) return links def _name_pos_dims(self): """Returns a list of the dimension names. There are always ndep dependents at a position regardless of what word is in that position. Also only creates one phonological form for ambiguous words, like 'the_sg' and 'the_pl.' """ assert self.lexicon is not None, 'Must initialize lexicon.' print('Naming position dimensions...') per_position = [] for word in self.phon_forms: per_position.append(word) for feat in self.features: per_position.append(feat) for dep in range(self.ndep): for feat in self.features: per_position.append('d' + str(dep) + '_' + feat) self.ndim_per_position = len(per_position) all_names = [] for i in range(self.max_sent_length): tmp = ['W' + str(i) + '_' + pf for pf in per_position] for x in tmp: all_names.append(x) return all_names def gen_centers(self): """Will return a NumPy array with a center on each row. Because links are only care about sentence position and attch. site, don't have to worry about what words are in the positions, except to make sure they allow dependents. Note: need to create 2 different centers when there's a 0.5 in the vec """ # Notes: link vec of zeros is always possible, no matter how many words # have been input. No links turned on after reading first word. # As words come in, can only allow centers with them attching somehow # to previous words, not looking ahead. seq_vecs = self._make_seq_vecs() seq_names = self._name_seqs() assert len(seq_vecs) == len(seq_names), \ 'Number of sequence vectors mismatches number of sequence names.' link_names = self._name_links() link_vecs = self._prune_links() centers = [] # Cycle through seqs and find allowed links for seq_name, seq in zip(seq_names, seq_vecs): curr_seq = seq.copy() if seq_name[0] == 'EMPTY': # Assumes 0th link vec is one with no links! centers.append(curr_seq + link_vecs[0]) elif seq_name[1] == 'EMPTY': centers.append(curr_seq + link_vecs[0]) else: # Need to exclude attchs. to EMPTYs try: first_empty = seq_name.index('EMPTY') empties = ['W' + str(i) for i in range(first_empty, self.max_sent_length)] # Indexing the dimensions that have links to EMPTYs empty_idx = [i for i, ln in enumerate(link_names) for e in empties if e in ln] except ValueError: empty_idx = [] to_rm = [] for lconfig in link_vecs: for i in empty_idx: if lconfig[i] != 0: to_rm.append(lconfig) # Now removing link configs if they link to a non-existent # dependent for word_nr, word in enumerate(seq_name): if self.lexicon[word]['dependents'] is None: null_attch = ['W' + str(word_nr) + '_' + 'd' + str(j) for j in range(self.ndep)] null_idx = [i for i, ln in enumerate(link_names) for n in null_attch if n in ln] for lconfig in link_vecs: for i in null_idx: if lconfig[i] != 0: to_rm.append(lconfig) elif len(self.lexicon[word]['dependents']) < self.ndep: null_attch = ['W' + str(word_nr) + '_' + 'd' + str(j) for j in range(1, self.ndep)] null_idx = [i for i, ln in enumerate(link_names) for n in null_attch if n in ln] for lconfig in link_vecs: for i in null_idx: if lconfig[i] != 0: to_rm.append(lconfig) # Now, removing links to/from EMPTYs if word == 'EMPTY': idx = [i for i, ln in enumerate(link_names) if 'W' + str(word_nr) in ln] for lconfig in link_vecs: if any([lconfig[j] for j in idx]): to_rm.append(lconfig) # Finally, removing any link configs w/ multiple links to # same attch. site for lconfig in link_vecs: mult_gov = [l for l in link_names if 'L_W' + str(word_nr) in l] idx = [i for i, ln in enumerate(self.link_names) if ln in mult_gov] if sum([lconfig[i] for i in idx]) >= 2: to_rm.append(lconfig) # Excluding to_rm configs_to_use = [c for c in link_vecs if c not in to_rm] for config in configs_to_use: centers.append(curr_seq + config) # Getting rid of duplicates ctuple = map(tuple, centers) centers_unique = list(dict.fromkeys(ctuple)) centers_array = np.array(centers_unique) centers_array[centers_array < 0] = 0.0 # Getting rid of -1s self.centers = centers_array print('Number of centers generated: {}'.format(centers_array.shape[0])) return def which_nonzero(self, center): """Returns the names of the dimensions in a cetner that are non-zero. """ idx = list(np.where(center != 0)[0]) return [self.dim_names[i] for i in idx] def look_up_center(self, active): """Returns the center (if it exists) that corresponds to the given dimensions being active. """ idx = [self.dim_names.index(dim) for dim in active] test_vec = [0] * len(self.dim_names) for i in idx: test_vec[i] = 1 if test_vec in self.centers.tolist(): lidx = np.where((self.centers == test_vec).all(axis=1)) lharmony = self.local_harmonies[lidx] print('Local harmony: {}\nCenter number: {}\nCenter: {}'.format( lharmony, lidx, test_vec)) else: print('Active dimensions don\'t correspond to a center.') return def hamming_dist(self, vec0, vec1): return sum(f0 != f1 for f0, f1 in zip(vec0, vec1)) def feat_match(self, vec0, vec1): assert len(vec0) == len(vec1), 'Feature vectors not of equal length' return 1 - (self.hamming_dist(vec0, vec1) / len(vec0)) def calculate_local_harmonies(self): """Cycle through the centers and use self.lexicon to look up features. """ local_harmonies = np.ones(self.centers.shape[0]) for c, center in enumerate(self.centers): # Find which dims are active nonzero = self.which_nonzero(self.centers[c]) # Getting active links from there active_links = [nonzero[i] for i, dim in enumerate(nonzero) if 'L_' in dim] nempties = len([dim for dim in nonzero if 'EMPTY' in dim]) if nempties == self.max_sent_length: # This is a choice: local_harmonies[c] *= self.missing_link_cost**self.max_links # pass continue for link in active_links: # get locations of feat vecs _, dep_word_nr, head_word_nr, head_dep = link.split('_') # Just the position number dep_nr = int(dep_word_nr[1]) dep_slice = slice(dep_nr * self.ndim_per_position + self.nphon_forms, dep_nr * self.ndim_per_position + self.nphon_forms + self.nfeatures) # Head features of the dependent treelet v0 = center[dep_slice] # Getting features of dependent attch. site on the head head_str = '_'.join([head_word_nr, head_dep]) tmp = [i for i, x in enumerate(self.pos_names) if head_str in x] head_slice = slice(tmp[0], tmp[0] + self.nfeatures) v1 = center[head_slice] local_harmonies[c] *= self.feat_match(v0, v1) # Penalizing missing links active_words = [nonzero[i] for i, dim in enumerate(nonzero) for ph in self.phon_forms if ph in dim] spl = [item.split('_') for item in active_words] assert max([len(it) for it in spl]) == 2, 'Error identifying words' for pos, word in spl: if word == 'EMPTY': continue ambig = [ph for ph in self.lexicon if word in ph] if len(ambig) > 1: for form in ambig: head_feats = [self.features[i] for i, val in enumerate(self.lexicon[form]['head']) if val == 1] hfeat_pos = [pos + '_' + x for x in head_feats] # If this form isn't the one in the center, skip it if not all(x in nonzero for x in hfeat_pos): continue if (self.lexicon[form]['gov_req'] and not any(x for x in active_links if 'L_' + pos + '_W' in x)): local_harmonies[c] *= self.missing_link_cost if self.lexicon[form]['dependents'] is not None: for dep_nr in range(len(self.lexicon[form]['dependents'])): if (self.lexicon[form]['dep_req'][dep_nr] and not any(x for x in active_links if pos + '_d' + str(dep_nr) in x)): local_harmonies[c] *= self.missing_link_cost else: if (self.lexicon[word]['gov_req'] and not any(x for x in active_links if 'L_' + pos + '_W' in x)): local_harmonies[c] *= self.missing_link_cost if self.lexicon[word]['dependents'] is not None: for dep_nr in range(len(self.lexicon[word]['dependents'])): if (self.lexicon[word]['dep_req'][dep_nr] and not any(x for x in active_links if pos + '_d' + str(dep_nr) in x)): local_harmonies[c] *= self.missing_link_cost # Old way: across-the-board, top-down penalty for too few links # if len(active_links) < self.max_links - nempties: # local_harmonies[c] *= (self.missing_link_cost ** # (self.max_links - # len(active_links))) self.local_harmonies = local_harmonies return def input_word(self, state_vec, word, pos): """Inputs a new word at a particular position by overwriting the values of the state vector at the relevant positions. """ assert (pos + 1) <= self.max_sent_length, \ 'Can only add words up to max_sent_length' # First, get the feature vector(s) from the lexicon ambig_words = [w for w in self.lexicon if word in w] # Then, average them in case the word is ambiguous word_vec = np.zeros(self.nfeatures) for w in ambig_words: word_vec += np.array(self.lexicon[w]['head']) word_vec /= len(ambig_words) # Getting dep. features dep_feats = np.zeros(self.ndep * self.nfeatures) for i, w in enumerate(ambig_words): if self.lexicon[w]['dependents'] is not None: idx = slice(i*self.nfeatures, i*self.nfeatures+self.nfeatures) for d in self.lexicon[w]['dependents']: # Getting avg. of deps in case the word has multiple senses dep_feats[idx] += np.array(self.lexicon[w]['dependents'][d]) dep_feats /= len(ambig_words) # Finally, turn on the averaged features at the correct possition phon = np.zeros(self.nphon_forms) phon[self.idx_phon_dict[word]] = 1.0 whole_vec = np.zeros(self.ndim_per_position * (self.max_sent_length - pos)) whole_vec[:self.nphon_forms] = phon whole_vec[self.nphon_forms:self.nphon_forms+self.nfeatures] = word_vec whole_vec[self.nphon_forms+self.nfeatures: self.nphon_forms+self.nfeatures+self.ndep*self.nfeatures] \ = dep_feats updated_state = state_vec.copy() start = pos*self.ndim_per_position stop = self.ndim - self.nlinks idx = slice(start, stop) updated_state[idx] = whole_vec updated_state[-self.nlinks:] *= self.pullback # Implementing pull-back return updated_state def neg_harmony(self, x, centers, local_harmonies, gamma): return -1 * calc_harmony(x, centers, local_harmonies, gamma) def jac_neg_harmony(self, x, centers, local_harmonies, gamma): return -1 * iterate(x, centers, local_harmonies, gamma) def locate_attrs(self): """Finds actual locations of attractors in the full harmony landscape using the Newton-CG algorithm on the negative of the harmony fn. """ attrs = np.zeros(self.centers.shape) for c in range(self.centers.shape[0]): extremum = minimize(self.neg_harmony, self.centers[c], args=(self.centers, self.local_harmonies, self.gamma), method='L-BFGS-B', jac=self.jac_neg_harmony) attrs[c] = extremum.x unique_attrs = np.unique(np.round(attrs, 2), axis=0) self.attrs = unique_attrs print('Found {} unique attractors from {} centers'.format( self.attrs.shape[0], self.centers.shape[0])) return def _zero_state_hist(self): self.state_hist = np.zeros((self.max_time, self.ndim)) def single_run(self, seq=None): """Run the model once until stopping criterion is met or time runs out. """ assert seq is not None, 'Must provide a sequence of words.' self._zero_state_hist() self.harmony = np.zeros(self.max_time) data = [] # Input the first word curr_pos = 0 self.state_hist[0, ] = self.input_word(self.state_hist[0, ], seq[curr_pos], curr_pos) # Pre-generate the noise for speed noise = (np.sqrt(2 * self.noise_mag * self.tau) * np.random.normal(0, 1, self.state_hist.shape)) t = 0 word_t = 0 # for keeping track of max amt. of time ea. word can get while t < self.max_time-1: not_close = self.stopping_crit(self.state_hist[t], self.attrs, self.tol) if not_close: self.state_hist[t+1, ] = (self.state_hist[t, ] + self.tau * iterate(self.state_hist[t, ], self.centers, self.local_harmonies, self.gamma) + noise[t, ]) self.harmony[t] = calc_harmony(self.state_hist[t, ], self.centers, self.local_harmonies, self.gamma) t += 1 word_t += 1 else: data.append([curr_pos, seq[curr_pos], word_t]) try: curr_pos += 1 self.state_hist[t+1, ] = (self.input_word( self.state_hist[t, ], seq[curr_pos], curr_pos)) self.harmony[t] = calc_harmony(self.state_hist[t, ], self.centers, self.local_harmonies, self.gamma) t += 1 word_t = 0 except: trunc = self.state_hist[~np.all(self.state_hist == 0, axis=1)] return trunc[-1], data trunc = self.state_hist[~np.all(self.state_hist == 0, axis=1)] return trunc[-1], data def many_runs(self, n_runs=100, seq=None): """Do repeated Monte Carlo runs. Returns a Pandas data frame with the center number and settling time. """ print('Run number:') data_list = [] for run in range(n_runs): curr_data = [] if run % (n_runs // 10) == 0: print('[{}] '.format(run), end='') final_st, trial_data = self.single_run(seq) for w in trial_data: curr_data.append(w) final_rounded =
np.rint(final_st)
numpy.rint
import os import numpy as np import pytest import xarray as xr from xclim import atmos from xclim.core.calendar import percentile_doy from xclim.core.options import set_options from xclim.core.units import convert_units_to from xclim.testing import open_dataset K2C = 273.15 class TestCSDI: def test_simple(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn += K2C tn[10:20] -= 2 tn = tasmin_series(tn) tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert out[0] == 10 def test_convert_units(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn[10:20] -= 2 tn = tasmin_series(tn + K2C) tn.attrs["units"] = "C" tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert out[0] == 10 def test_nan_presence(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + K2C + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn[10:20] -= 2 tn[9] = np.nan tn = tasmin_series(tn) tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert np.isnan(out[0]) class TestDTR: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_DTR_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan dtr = atmos.daily_temperature_range(tasmin, tasmax, freq="MS") dtrC = atmos.daily_temperature_range(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] dtr1 = max1 - min1 np.testing.assert_array_equal(dtr, dtrC) assert dtr.attrs["units"] == "K" assert np.allclose(dtr1[0:31].mean(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) dtr = atmos.max_daily_temperature_range(tasmin, tasmax, freq="MS") dtrC = atmos.max_daily_temperature_range(tasmin_C, tasmax_C, freq="MS") np.testing.assert_array_equal(dtr, dtrC) assert dtr.attrs["units"] == "K" assert np.allclose(dtr1[0:31].max(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) class TestDTRVar: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_dtr_var_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan dtr = atmos.daily_temperature_range_variability(tasmin, tasmax, freq="MS") dtrC = atmos.daily_temperature_range_variability(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] assert dtr.attrs["units"] == "K" dtr1a = max1 - min1 dtr1 = abs(np.diff(dtr1a)) np.testing.assert_array_equal(dtr, dtrC) # first month jan use 0:30 (n==30) because of day to day diff assert np.allclose(dtr1[0:30].mean(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) class TestETR: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_dtr_var_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan etr = atmos.extreme_temperature_range(tasmin, tasmax, freq="MS") etrC = atmos.extreme_temperature_range(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] np.testing.assert_array_equal(etr, etrC) etr1 = max1[0:31].max() - min1[0:31].min() assert np.allclose(etr1, etr.values[0, 0, 0]) assert np.isnan(etr.values[1, 1, 0]) assert np.isnan(etr.values[0, -1, -1]) class TestTmean: nc_files = ( os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc"), os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc"), ) def test_Tmean_3d_data(self): ds_tmax = open_dataset(self.nc_files[0]) ds_tmin = open_dataset(self.nc_files[1]) tas = atmos.tg(ds_tmin.tasmin, ds_tmax.tasmax) tas_C = atmos.tg(ds_tmin.tasmin, ds_tmax.tasmax) tas_C.values -= K2C tas_C.attrs["units"] = "C" # put a nan somewhere tas.values[180, 1, 0] = np.nan tas_C.values[180, 1, 0] = np.nan tmmean = atmos.tg_mean(tas) tmmeanC = atmos.tg_mean(tas_C) x1 = tas.values[:, 0, 0] tmmean1 = x1.mean() # TODO: Investigate the differences between the two outputs. # The conversion to K is done after / before the mean. np.testing.assert_array_almost_equal(tmmeanC, tmmean, 3) # test single point vs manual assert np.allclose(tmmean1, tmmean.values[0, 0, 0], tmmeanC.values[0, 0, 0]) # test single nan point assert np.isnan(tmmean.values[0, 1, 0]) # test all nan point assert np.isnan(tmmean.values[0, -1, -1]) class TestTx: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_TX_3d_data(self): tasmax = open_dataset(self.nc_file).tasmax tasmax_C = open_dataset(self.nc_file).tasmax tasmax_C.values -= K2C tasmax_C.attrs["units"] = "C" # put a nan somewhere tasmax.values[180, 1, 0] = np.nan tasmax_C.values[180, 1, 0] = np.nan txmean = atmos.tx_mean(tasmax) txmax = atmos.tx_max(tasmax) txmin = atmos.tx_min(tasmax) txmeanC = atmos.tx_mean(tasmax_C) txmaxC = atmos.tx_max(tasmax_C) txminC = atmos.tx_min(tasmax_C) no_nan = ( ~np.isnan(txmean).values & ~np.isnan(txmax).values & ~np.isnan(txmin).values ) # test maxes always greater than mean and mean always greater than min (non nan values only) assert np.all(txmax.values[no_nan] > txmean.values[no_nan]) & np.all( txmean.values[no_nan] > txmin.values[no_nan] ) np.testing.assert_array_almost_equal(txmeanC, txmean, 3) np.testing.assert_array_equal(txminC, txmin) np.testing.assert_array_equal(txmaxC, txmax) x1 = tasmax.values[:, 0, 0] txmean1 = x1.mean() txmin1 = x1.min() txmax1 = x1.max() # test single point vs manual assert np.allclose(txmean1, txmean.values[0, 0, 0], txmeanC.values[0, 0, 0]) assert np.allclose(txmax1, txmax.values[0, 0, 0], txmaxC.values[0, 0, 0]) assert np.allclose(txmin1, txmin.values[0, 0, 0], txminC.values[0, 0, 0]) # test single nan point assert np.isnan(txmean.values[0, 1, 0]) assert np.isnan(txmin.values[0, 1, 0]) assert np.isnan(txmax.values[0, 1, 0]) # test all nan point assert np.isnan(txmean.values[0, -1, -1]) assert np.isnan(txmin.values[0, -1, -1]) assert np.isnan(txmax.values[0, -1, -1]) class TestTn: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_TN_3d_data(self): tasmin = open_dataset(self.nc_file).tasmin tasmin_C = open_dataset(self.nc_file).tasmin tasmin_C.values -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[180, 1, 0] = np.nan tasmin_C.values[180, 1, 0] = np.nan tnmean = atmos.tn_mean(tasmin) tnmax = atmos.tn_max(tasmin) tnmin = atmos.tn_min(tasmin) tnmeanC = atmos.tn_mean(tasmin_C) tnmaxC = atmos.tn_max(tasmin_C) tnminC = atmos.tn_min(tasmin_C) no_nan = ( ~np.isnan(tnmean).values & ~np.isnan(tnmax).values & ~np.isnan(tnmin).values ) # test maxes always greater than mean and mean alwyas greater than min (non nan values only) assert np.all(tnmax.values[no_nan] > tnmean.values[no_nan]) & np.all( tnmean.values[no_nan] > tnmin.values[no_nan] ) np.testing.assert_array_almost_equal(tnmeanC, tnmean, 3) np.testing.assert_array_equal(tnminC, tnmin) np.testing.assert_array_equal(tnmaxC, tnmax) x1 = tasmin.values[:, 0, 0] txmean1 = x1.mean() txmin1 = x1.min() txmax1 = x1.max() # test single point vs manual assert np.allclose(txmean1, tnmean.values[0, 0, 0], tnmeanC.values[0, 0, 0]) assert np.allclose(txmax1, tnmax.values[0, 0, 0], tnmaxC.values[0, 0, 0]) assert np.allclose(txmin1, tnmin.values[0, 0, 0], tnminC.values[0, 0, 0]) # test single nan point assert np.isnan(tnmean.values[0, 1, 0]) assert np.isnan(tnmin.values[0, 1, 0]) assert np.isnan(tnmax.values[0, 1, 0]) # test all nan point assert np.isnan(tnmean.values[0, -1, -1]) assert np.isnan(tnmin.values[0, -1, -1]) assert np.isnan(tnmax.values[0, -1, -1]) class TestConsecutiveFrostDays: def test_one_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [1]) def test_three_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [3]) def test_two_equal_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 a[6:9] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [3]) def test_two_events_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 a[6:10] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [4]) def test_convert_units_freeze_day(self, tasmin_series): a = np.zeros(365) + 5.0 a[2:5] -= 20 a[6:10] -= 20 ts = tasmin_series(a) ts.attrs["units"] = "C" out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [4]) def test_one_nan_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2] -= 20 a[-1] = np.nan ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [np.nan]) class TestConsecutiveFrostFreeDays: def test_real_data(self, atmosds): tasmin = atmosds.tasmin test = atmos.maximum_consecutive_frost_free_days(tasmin) np.testing.assert_allclose(test[2, 0], [68], rtol=1e-1) assert ( "Annual maximum number of consecutive days with minimum daily temperature above or equal to 0 degc." ) in test.description class TestFrostSeasonLength: def test_simple(self, tasmin_series): a = np.zeros(730) + K2C + 15 a[300:400] = K2C - 5 a[404:407] = K2C - 5 tasmin = tasmin_series(a, start="2000-01-01") # Default, window = 5, mid_date = 07-01, freq= AS-JUL out = atmos.frost_season_length(tasmin=tasmin) np.testing.assert_array_equal(out, [np.nan, 107, np.nan]) out = atmos.frost_season_length(tasmin=tasmin, window=3) np.testing.assert_array_equal(out, [np.nan, 100, np.nan]) out = atmos.frost_season_length(tasmin=tasmin, mid_date="07-01", freq="YS") np.testing.assert_array_equal(out, [np.nan, np.nan]) class TestColdSpellDays: def test_simple(self, tas_series): a = np.zeros(365) + K2C a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning ts = tas_series(a) out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_convert_units(self, tas_series): a = np.zeros(365) a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning ts = tas_series(a) ts.attrs["units"] = "C" out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS")
np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0])
numpy.testing.assert_array_equal
import inspect import numpy as np from primitives_ubc.regCCFS.src.utils.commonUtils import sVT from primitives_ubc.regCCFS.src.utils.commonUtils import is_numeric from primitives_ubc.regCCFS.src.utils.commonUtils import fastUnique from primitives_ubc.regCCFS.src.utils.commonUtils import queryIfColumnsVary from primitives_ubc.regCCFS.src.utils.commonUtils import queryIfOnlyTwoUniqueRows from primitives_ubc.regCCFS.src.utils.ccfUtils import regCCA_alt from primitives_ubc.regCCFS.src.utils.ccfUtils import random_feature_expansion from primitives_ubc.regCCFS.src.utils.ccfUtils import genFeatureExpansionParameters from primitives_ubc.regCCFS.src.training_utils.component_analysis import componentAnalysis from primitives_ubc.regCCFS.src.training_utils.twopoint_max_marginsplit import twoPointMaxMarginSplit import warnings warnings.filterwarnings('ignore') import logging logger = logging.getLogger(__name__) #-----------------------------------------------------------------------------# def setupLeaf(YTrain, bReg, options): """ Update tree struct to make node a leaf """ tree = {} tree["bLeaf"] = True tree["Npoints"] = YTrain.shape[0] tree["mean"] = np.mean(YTrain, axis=0) if bReg: tree["std_dev"] = np.std(YTrain, axis=0, ddof=1) # If a mapping has been applied, invert it if not (options["org_stdY"].size == 0): tree["mean"] = tree["mean"] * options["org_stdY"] tree["std_dev"] = tree["std_dev"] * options["org_stdY"] if not (options["org_muY"].size == 0): tree["mean"] = tree["mean"] + options["org_muY"] return tree #-----------------------------------------------------------------------------# def makeExpansionFunc(wZ, bZ, bIncOrig): if bIncOrig: f = lambda x: np.concatenate((x, random_feature_expansion(x, wZ, bZ)), axis=1) else: f = lambda x: random_feature_expansion(x, wZ, bZ) return f #-----------------------------------------------------------------------------# def calc_mse(cumtotal, cumsq, YTrainSort): value = np.divide(cumsq, sVT(np.arange(1, YTrainSort.shape[0]+1))) -\ np.divide(((cumtotal[0:-1, :])**2 + YTrainSort**2 + np.multiply(2 * cumtotal[0:-1, :], YTrainSort)),\ sVT(np.arange(1, YTrainSort.shape[0]+1)**2)) return value #------------------------------------------------------------------------------- def growCCT(XTrain, YTrain, bReg, options, iFeatureNum, depth): """ This function applies greedy splitting according to the CCT algorithm and the provided options structure. Algorithm either returns a leaf or forms an internal splitting node in which case the function recursively calls itself for each of the children, eventually returning the corresponding subtree. Parameters ---------- XTrain = Array giving training features. Data should be processed using processInputData before being passed to CCT YTrain = Output data after formatting carried out by genCCF bReg = Whether to perform regression instead of classification. Default = false (i.e. classification). options = Options class of type optionsClassCCF. Some fields are updated during recursion iFeatureNum = Grouping of features as per processInputData. During recursion if a feature is found to be identical across data points, the corresponding values in iFeatureNum are replaced with NaNs. depth = Current tree depth (zero based) Returns ------- tree = Structure containing learnt tree """ # Standard variables eps = 2.2204e-16 # Set any missing required variables if (options["mseTotal"]).size == 0: options["mseTotal"] = YTrain.var(axis=0) #--------------------------------------------------------------------------- # First do checks for whether we should immediately terminate #--------------------------------------------------------------------------- N = XTrain.shape[0] # Return if one training point, pure node or if options for returning # fulfilled. A little case to deal with a binary YTrain is required. bStop = (N < (np.amax([2, options["minPointsForSplit"], 2 * options["minPointsLeaf"]]))) or\ (is_numeric(options["maxDepthSplit"]) and depth > options["maxDepthSplit"]) if depth > 490 and (options["maxDepthSplit"] == 'stack'): bStop = True logging.warning('Reached maximum depth imposed by stack limitations!') if bStop: tree = setupLeaf(YTrain, bReg, options) return tree else: # Check if variance in Y is less than the cut off amount varY = YTrain.var(axis=0) if np.all(varY < (options["mseTotal"] * options["mseErrorTolerance"])): tree = setupLeaf(YTrain, bReg, options) return tree #--------------------------------------------------------------------------- # Subsample features as required for hyperplane sampling #--------------------------------------------------------------------------- iCanBeSelected = fastUnique(X=iFeatureNum) iCanBeSelected = iCanBeSelected[~np.isnan(iCanBeSelected)] lambda_ = np.min((iCanBeSelected.size, options["lambda"])) indFeatIn = np.random.choice(int(iCanBeSelected.size), int(lambda_), replace=False) iFeatIn = iCanBeSelected[indFeatIn] bInMat = np.equal((iFeatureNum.flatten(order='F')[np.newaxis]), (np.sort(iFeatIn.flatten(order='F'))[np.newaxis]).T) # 1xk == nx1 iIn = (np.any(bInMat, axis=0)).ravel().nonzero()[0] # Check for variation along selected dimensions and # resample features that have no variation bXVaries = queryIfColumnsVary(X=XTrain[:, iIn], tol=options["XVariationTol"]) if (not np.all(bXVaries)): iInNew = iIn nSelected = 0 iIn = iIn[bXVaries] while (not np.all(bXVaries)) and lambda_ > 0: iFeatureNum[iInNew[~bXVaries]] = np.nan bInMat[:, iInNew[~bXVaries]] = False bRemainsSelected = np.any(bInMat, axis=1) nSelected = nSelected + bRemainsSelected.sum(axis=0) iCanBeSelected = np.delete(iCanBeSelected, indFeatIn) lambda_ = np.min((iCanBeSelected.size, options["lambda"]-nSelected)) if lambda_ < 1: break indFeatIn = np.random.choice(iCanBeSelected.size, size=int(lambda_), replace=False) iFeatIn = iCanBeSelected[indFeatIn] bInMat = np.equal((iFeatureNum.flatten(order='F')[np.newaxis]), (iFeatIn.flatten(order='F')[np.newaxis].T)) iInNew = (np.any(bInMat, axis=0)).ravel().nonzero()[0] bXVaries = queryIfColumnsVary(X=XTrain[:, iInNew], tol=options["XVariationTol"]) iIn = np.sort(np.concatenate((iIn, iInNew[bXVaries]))) if iIn.size == 0: # This means that there was no variation along any feature, therefore exit. tree = setupLeaf(YTrain, bReg, options) return tree #--------------------------------------------------------------------------- # Projection bootstrap if required #--------------------------------------------------------------------------- if options["bProjBoot"]: iTrainThis = np.random.randint(N, size=(N, 1)) XTrainBag = XTrain[iTrainThis, iIn] YTrainBag = YTrain[iTrainThis, :] if len(YTrainBag.shape) > 2: YTrainBag = np.squeeze(YTrainBag) else: XTrainBag = XTrain[:, iIn] YTrainBag = YTrain bXBagVaries = queryIfColumnsVary(X=XTrainBag, tol=options["XVariationTol"]) if (not np.any(bXBagVaries)) or\ (not bReg and YTrainBag.shape[1] > 1 and (np.sum(np.absolute(np.sum(YTrainBag, axis=0)) > 1e-12) < 2)) or\ (not bReg and YTrainBag.shape[1] == 1 and (np.any(np.sum(YTrainBag, axis=0) == np.array([0, YTrainBag.shape[0]])))) or\ (bReg and np.all(np.var(YTrainBag, axis=0) < (options["mseTotal"] * options["mseErrorTolerance"]))): if (not options["bContinueProjBootDegenerate"]): tree = setupLeaf(YTrain, bReg, options) return tree else: XTrainBag = XTrain[:, iIn] YTrainBag = YTrain #--------------------------------------------------------------------------- # Check for only having two points #--------------------------------------------------------------------------- if (not (len(options["projections"]) == 0)) and ((XTrainBag.shape[0] == 2) or queryIfOnlyTwoUniqueRows(X=XTrainBag)): bSplit, projMat, partitionPoint = twoPointMaxMarginSplit(XTrainBag, YTrainBag, options["XVariationTol"]) if (not bSplit): tree = setupLeaf(YTrain, bReg, options) return tree else: bLessThanTrain = np.dot(XTrain[:, iIn], projMat) <= partitionPoint iDir = 0 else: # Generate the new features as required if options["bRCCA"]: wZ, bZ = genFeatureExpansionParameters(XTrainBag, options["rccaNFeatures"], options["rccaLengthScale"]) fExp = makeExpansionFunc(wZ, bZ, options["rccaIncludeOriginal"]) XTrainBag = fExp(XTrainBag) projMat, _, _ = regCCA_alt(XTrainBag, YTrainBag, options["rccaRegLambda"], options["rccaRegLambda"], 1e-8) if projMat.size == 0: projMat = np.ones((XTrainBag.shape[1], 1)) UTrain = np.dot(fExp(XTrain[:, iIn]), projMat) else: projMat, yprojMat, _, _, _ = componentAnalysis(XTrainBag, YTrainBag, options["projections"], options["epsilonCCA"]) UTrain = np.dot(XTrain[:, iIn], projMat) #----------------------------------------------------------------------- # Choose the features to use #----------------------------------------------------------------------- # This step catches splits based on no significant variation bUTrainVaries = queryIfColumnsVary(UTrain, options["XVariationTol"]) if (not np.any(bUTrainVaries)): tree = setupLeaf(YTrain, bReg, options) return tree UTrain = UTrain[:, bUTrainVaries] projMat = projMat[:, bUTrainVaries] if options["bUseOutputComponentsMSE"] and bReg and (YTrain.shape[1] > 1) and\ (not (yprojMat.size == 0)) and (options["splitCriterion"] == 'mse'): VTrain = np.dot(YTrain, yprojMat) #----------------------------------------------------------------------- # Search over splits using provided method #----------------------------------------------------------------------- nProjDirs = UTrain.shape[1] splitGains = np.empty((nProjDirs,1)) splitGains.fill(np.nan) iSplits = np.empty((nProjDirs,1)) iSplits.fill(np.nan) for nVarAtt in range(nProjDirs): # Calculate the probabilities of being at each class in each of child # nodes based on proportion of training data for each of possible # splits using current projection sort_UTrain = UTrain[:, nVarAtt].ravel() UTrainSort = np.sort(sort_UTrain) iUTrainSort = np.argsort(sort_UTrain) bUniquePoints_ = np.diff(UTrainSort, n=1, axis=0) bUniquePoints = np.concatenate((bUniquePoints_ > options["XVariationTol"], np.array([False]))) if options["bUseOutputComponentsMSE"] and bReg and YTrain.shape[1] > 1 and (not (yprojMat.size == 0)) and (options["splitCriterion"] == 'mse'): VTrainSort = VTrain[iUTrainSort, :] else: VTrainSort = YTrain[iUTrainSort, :] leftCum = np.cumsum(VTrainSort, axis=0) if (YTrain.shape[1] ==1 or options["bSepPred"]) and (not bReg): # Convert to [class_doesnt_exist,class_exists] leftCum = np.concatenate((np.subtract(sVT(X=np.arange(0,N)), leftCum), leftCum)) rightCum = np.subtract(leftCum[-1, :], leftCum) # Calculate the metric values of the current node and two child nodes if options["splitCriterion"] == 'mse': cumSqLeft = np.cumsum(VTrainSort**2) cumSqLeft = np.expand_dims(cumSqLeft, axis=1) varData = np.subtract((cumSqLeft[-1]/N), (leftCum[-1, :]/N)**2) if np.all(varData < (options["mseTotal"] * options["mseErrorTolerance"])): # Total variation is less then the allowed tolerance so # terminate and construct a leaf tree = setupLeaf(YTrain, bReg, options) return tree cumtotal_l = np.concatenate((np.zeros((1, VTrainSort.shape[1])), leftCum)) metricLeft = calc_mse(cumtotal=cumtotal_l, cumsq=cumSqLeft, YTrainSort=VTrainSort) # For calculating the right need to go in additive order again # so go from other end and then flip end = cumSqLeft.shape[0] - 1 vend = VTrainSort.shape[0] - 1 metricRight = np.concatenate((np.zeros((1, VTrainSort.shape[1])),\ calc_mse(rightCum[::-1, :],\ np.subtract((cumSqLeft[-1, :][np.newaxis]), cumSqLeft[(end-1)::-1, :]),\ VTrainSort[vend:0:-1, :]))) metricRight = metricRight[::-1, :] # No need to do the grouping for regression as each must be # a seperate output anyway. else: assert (False), 'Invalid split criterion!' metricCurrent = np.copy(metricLeft[-1, :]) metricLeft[~bUniquePoints, :] = np.inf metricRight[~bUniquePoints, :] = np.inf # Calculate gain in metric for each of possible splits based on current # metric value minus metric value of child weighted by number of terms # in each child metricGain = np.subtract(metricCurrent,\ (np.multiply(sVT(np.arange(1,N+1, 1)), metricLeft)\ +np.multiply(sVT(np.arange(N-1, -1, -1)), metricRight))/N) metricGain = np.round(metricGain, decimals=4) # Combine gains if there are mulitple outputs. Note that for gini, # info and mse, the joint gain is equal to the mean gain, hence # taking the mean here rather than explicitly calculating joints before. if metricGain.shape[1] > 1: if is_numeric(options["taskWeights"]): # If weights provided, weight task appropriately in terms of importance. metricGain = np.multiply(metricGain, (options["taskWeights"].flatten(order='F')[np.newaxis])) # (nxk) .* (1*k) multiTGC = options["multiTaskGainCombination"] if multiTGC == 'mean': metricGain = np.mean(metricGain, axis=1, keepdims=True) elif multiTGC == 'max': metricGain = np.max(metricGain, axis=1, keepdims=True) else: assert (False), 'Invalid option for options.multiTaskGainCombination!' # Disallow splits that violate the minimum number of leaf points end = (metricGain.shape[0]-1) metricGain[0:(options["minPointsLeaf"]-1)] = -np.inf metricGain[(end-(options["minPointsLeaf"]-1)):] = -np.inf # Note that end is never chosen anyway # Randomly sample from equally best splits iSplits[nVarAtt] = np.argmax(metricGain[0:-1]) splitGains[nVarAtt] = np.max(metricGain[0:-1]) iEqualMax = ((np.absolute(metricGain[0:-1] - splitGains[nVarAtt]) < (10*eps)).ravel().nonzero())[0] if iEqualMax.size == 0: iEqualMax = np.array([1]) iSplits[nVarAtt] = iEqualMax[np.random.randint(iEqualMax.size)] # If no split gives a positive gain then stop if np.max(splitGains) < 0: tree = setupLeaf(YTrain, bReg, options) return tree # Establish between projection direction maxGain = np.max(splitGains, axis=0) iEqualMax = ((np.absolute(splitGains - maxGain) < (10 * eps)).ravel().nonzero())[0] # Use given method to break ties if options["dirIfEqual"] == 'rand': iDir = iEqualMax[np.random.randint(iEqualMax.size)] elif options["dirIfEqual"] == 'first': if iEqualMax.size == 0: iDir = 0 else: iDir = iEqualMax[0] else: assert (False), 'invalid dirIfEqual!' iSplit = (iSplits[iDir]).astype(int) #----------------------------------------------------------------------- # Establish partition point and assign to child #----------------------------------------------------------------------- UTrain = UTrain[:, iDir, np.newaxis] UTrainSort = np.sort(UTrain, axis=0) # The convoluted nature of the below is to avoid numerical errors uTrainSortLeftPart = UTrainSort[iSplit] UTrainSort = np.subtract(UTrainSort, uTrainSortLeftPart) partitionPoint = np.add(
np.multiply(UTrainSort[iSplit], 0.5)
numpy.multiply
import warnings import numpy as np import numpy.testing as npt from dipy.data import get_fnames from dipy.core.gradients import (gradient_table, GradientTable, gradient_table_from_bvals_bvecs, gradient_table_from_qvals_bvecs, gradient_table_from_gradient_strength_bvecs, WATER_GYROMAGNETIC_RATIO, reorient_bvecs, generate_bvecs, check_multi_b) from dipy.io.gradients import read_bvals_bvecs def test_btable_prepare(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(7) bvals[0] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(bt.bvecs, bvecs) # bt.info fimg, fbvals, fbvecs = get_fnames('small_64D') bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) bvecs = np.where(np.isnan(bvecs), 0, bvecs) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(bt.bvecs, bvecs) bt2 = gradient_table(bvals, bvecs.T) npt.assert_array_equal(bt2.bvecs, bvecs) btab = np.concatenate((bvals[:, None], bvecs), axis=1) bt3 = gradient_table(btab) npt.assert_array_equal(bt3.bvecs, bvecs) npt.assert_array_equal(bt3.bvals, bvals) bt4 = gradient_table(btab.T) npt.assert_array_equal(bt4.bvecs, bvecs) npt.assert_array_equal(bt4.bvals, bvals) # Test for proper inputs (expects either bvals/bvecs or 4 by n): npt.assert_raises(ValueError, gradient_table, bvecs) def test_GradientTable(): gradients = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 1], [3, 4, 0], [5, 0, 12]], 'float') expected_bvals = np.array([0, 1, 1, 5, 13]) expected_b0s_mask = expected_bvals == 0 expected_bvecs = gradients / (expected_bvals + expected_b0s_mask)[:, None] gt = GradientTable(gradients, b0_threshold=0) npt.assert_array_almost_equal(gt.bvals, expected_bvals) npt.assert_array_equal(gt.b0s_mask, expected_b0s_mask) npt.assert_array_almost_equal(gt.bvecs, expected_bvecs) npt.assert_array_almost_equal(gt.gradients, gradients) gt = GradientTable(gradients, b0_threshold=1) npt.assert_array_equal(gt.b0s_mask, [1, 1, 1, 0, 0]) npt.assert_array_equal(gt.bvals, expected_bvals) npt.assert_array_equal(gt.bvecs, expected_bvecs) # checks negative values in gtab npt.assert_raises(ValueError, GradientTable, -1) npt.assert_raises(ValueError, GradientTable,
np.ones((6, 2))
numpy.ones