prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import pytest import numpy as np from ale.rotation import ConstantRotation, TimeDependentRotation def test_constant_constant_composition(): # Two 90 degree rotation about the X-axis rot1_2 = ConstantRotation([1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)], 1, 2) rot2_3 = ConstantRotation([1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)], 2, 3) # compose to get a 180 degree rotation about the X-axis rot1_3 = rot2_3*rot1_2 assert isinstance(rot1_3, ConstantRotation) assert rot1_3.source == 1 assert rot1_3.dest == 3 np.testing.assert_equal(rot1_3.quat, np.array([1, 0, 0, 0])) def test_constant_time_dependent_composition(): # 90 degree rotation about the X-axis to a 180 degree rotation about the X-axis quats = [[1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)],[1, 0, 0, 0]] times = [0, 1] rot1_2 = TimeDependentRotation(quats, times, 1, 2) # 90 degree rotation about the X-axis rot2_3 = ConstantRotation([1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)], 2, 3) # compose to get a 180 degree rotation about the X-axis to a 270 degree rotation about the X-axis rot1_3 = rot2_3*rot1_2 assert isinstance(rot1_3, TimeDependentRotation) assert rot1_3.source == 1 assert rot1_3.dest == 3 expected_quats = np.array([[1, 0, 0, 0],[1.0/np.sqrt(2), 0, 0, -1.0/np.sqrt(2)]]) np.testing.assert_equal(rot1_3.times, np.array(times)) np.testing.assert_almost_equal(rot1_3.quats, expected_quats) def test_time_dependent_constant_composition(): # 90 degree rotation about the X-axis rot1_2 = ConstantRotation([1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)], 1, 2) # 90 degree rotation about the X-axis to a 180 degree rotation about the X-axis quats = [[1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)],[1, 0, 0, 0]] times = [0, 1] rot2_3 = TimeDependentRotation(quats, times, 2, 3) # compose to get a 180 degree rotation about the X-axis to a 270 degree rotation about the X-axis rot1_3 = rot2_3*rot1_2 assert isinstance(rot1_3, TimeDependentRotation) assert rot1_3.source == 1 assert rot1_3.dest == 3 expected_quats = np.array([[1, 0, 0, 0],[1.0/np.sqrt(2), 0, 0, -1.0/np.sqrt(2)]]) np.testing.assert_equal(rot1_3.times, np.array(times)) np.testing.assert_almost_equal(rot1_3.quats, expected_quats) def test_time_dependent_time_dependent_composition(): # 90 degree rotation about the X-axis to a 180 degree rotation about the X-axis quats1_2 = [[1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)],[1, 0, 0, 0]] times1_2 = [0, 1] rot1_2 = TimeDependentRotation(quats1_2, times1_2, 1, 2) # -90 degree rotation about the X-axis to a 90 degree rotation about the X-axis quats2_3 = [[1.0/np.sqrt(2), 0, 0, -1.0/np.sqrt(2)],[1.0/np.sqrt(2), 0, 0, 1.0/np.sqrt(2)]] times2_3 = [0, 2] rot2_3 = TimeDependentRotation(quats2_3, times2_3, 2, 3) # compose to get no rotation to a 180 degree rotation about the X-axis to no rotation rot1_3 = rot2_3*rot1_2 assert isinstance(rot1_3, TimeDependentRotation) assert rot1_3.source == 1 assert rot1_3.dest == 3 expected_times = np.array([0, 1]) expected_quats = np.array([[0, 0, 0, -1],[-1, 0, 0, 0]])
np.testing.assert_equal(rot1_3.times, expected_times)
numpy.testing.assert_equal
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tf_agents.utils.generalized_advantage_estimation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from tf_agents.utils import value_ops def _naive_gae_as_ground_truth(discounts, rewards, values, final_value, td_lambda): """A naive GAE closely resembles equation (16) in the paper. Slow, for testing purpose only. For full paper see https://arxiv.org/abs/1506.02438.pdf Args: discounts: `np.array` with shape [T, B]. rewards: `np.array` with shape [T, B]. values: `np.array` with shape [T, B]. final_value: `np.array` with shape [B]. td_lambda: A float scalar. Returns: A `np.array` with shape[T, B] representing the advantages. """ episode_length = len(values) values_t_puls_1 = np.concatenate([values, final_value[None, :]], axis=0) delta_v = [ (rewards[t] + discounts[t] * values_t_puls_1[t + 1] - values_t_puls_1[t]) for t in range(episode_length) ] weighted_discounts = discounts * td_lambda advantages = [] for s in range(episode_length): advantage = np.copy(delta_v[s]) for t in range(s + 1, episode_length): advantage += np.prod(weighted_discounts[s:t], axis=0) * delta_v[t] advantages.append(advantage) return
np.array(advantages)
numpy.array
import logging from datetime import date, timedelta from datetime import datetime from os import path from typing import Tuple import numpy as np from django.conf import settings from django.db import models from django.db.models import QuerySet from django.utils.functional import cached_property from django.utils.timezone import make_aware logger_name = settings.LOGGER_NAME logger = logging.getLogger(logger_name) class Subject(models.Model): SEX_MAN = 'man' SEX_WOMAN = 'woman' SEX_CHOICES = [ (SEX_MAN, 'man'), (SEX_WOMAN, 'woman'), ] SKIN_WHITE = 'white' SKIN_BLACK = 'black' SKIN_BROWN = 'brown' SKIN_CHOICES = [ (SKIN_WHITE, 'white'), (SKIN_BLACK, 'black'), (SKIN_BROWN, 'brown'), ] SOURCE_CAMERA = 'camera' SOURCE_VIDEO = 'video' SOURCE_MANUAL = 'manual' name = models.CharField(max_length=255, blank=True, default='') last_name = models.CharField(max_length=255, blank=True, default='') birthdate = models.DateField(blank=True, null=True) sex = models.CharField(max_length=16, choices=SEX_CHOICES, blank=True, default='') skin = models.CharField(max_length=16, choices=SKIN_CHOICES, blank=True, default='') pred_sex = models.CharField(max_length=16, choices=SEX_CHOICES, blank=True, default='') pred_age = models.PositiveIntegerField(blank=True, null=True) pred_sex_score = models.FloatField( blank=True, default=0.0 ) pred_age_var = models.FloatField( blank=True, default=0.0 ) # task = models.ForeignKey( # 'Task', # null=True, # blank=True, # on_delete=models.CASCADE, # related_name='subjects' # ) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) @cached_property def full_name(self): return f'{self.name} {self.last_name}'.strip() @cached_property def image(self): for face in self.faces.all(): if face.image: return face.image return None @cached_property def timestamp(self): dt = None for face in self.faces.all(): if dt is None or face.created_at > dt: dt = face.created_at return self.created_at if dt is None else dt @cached_property def age(self): if self.birthdate: return self.age_from_birthdate(self.birthdate) return None def __str__(self): return f'{self.full_name}' if self.full_name else f'[{self.pk}] unknown identity' class Meta: ordering = ['-created_at'] @staticmethod def age_from_birthdate(birthdate): today = date.today() return today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day)) @staticmethod def birthdate_from_age(age): return datetime.now() - timedelta(days=(age * 365.2425)) # @cached_property # def camera(self): # if self.task.camera is not None: # return self.task.camera.pk # return None # # @cached_property # def video(self): # if self.task is not None and self.task.video is not None: # return self.task.video.pk # return None @staticmethod def queryset_train_data(queryset: QuerySet) -> Tuple[np.ndarray, np.ndarray]: embeddings = [] subjects = [] queryset = queryset.exclude(faces__embeddings_bytes__isnull=True) for subject in queryset.iterator(): for face in subject.faces.all(): embeddings.append(face.embeddings) subjects.append(subject.id) embeddings = np.array(embeddings, np.float32) subjects = np.array(subjects, np.int32) return embeddings, subjects # noinspection PyTypeChecker class SubjectSegment(models.Model): NAMING_NAMED = 'named' NAMING_UNNAMED = 'unnamed' NAMING_ALL = '' NAMING_CHOICES = [ (NAMING_NAMED, 'named'), (NAMING_UNNAMED, 'unnamed'), (NAMING_ALL, ''), ] disk_cached = models.BooleanField( blank=True, default=False, help_text='Indicates if linked train data if stored in disk.' ) title = models.CharField( max_length=255, blank=True, help_text='The segment title.' ) name = models.CharField(max_length=255, blank=True) naming = models.CharField(max_length=16, blank=True, choices=NAMING_CHOICES, default=NAMING_ALL) last_name = models.CharField(max_length=255, blank=True) min_birthdate = models.DateField(blank=True, null=True) max_birthdate = models.DateField(blank=True, null=True) min_timestamp = models.DateTimeField(blank=True, null=True) max_timestamp = models.DateTimeField(blank=True, null=True) sex = models.CharField(max_length=255, blank=True) skin = models.CharField(max_length=255, blank=True) count = models.IntegerField(default=0) cameras = models.ManyToManyField( 'Camera', related_name='subject_segments' ) videos = models.ManyToManyField( 'VideoRecord', related_name='subject_segments' ) tasks = models.ManyToManyField( 'Task', related_name='subject_segments' ) model_path = models.CharField(max_length=255, blank=True) updated_at = models.DateTimeField(null=True, blank=True) @cached_property def queryset(self) -> QuerySet: queryset = Subject.objects.all() if self.name: queryset = queryset.filter(name__icontains=self.name) if self.last_name: queryset = queryset.filter(last_name__icontains=self.last_name) if self.naming == self.NAMING_NAMED: queryset = queryset.exclude( name='', last_name='' ) elif self.naming == self.NAMING_UNNAMED: queryset = queryset.filter( name='', last_name='' ) tasks = [] try: tasks = self.tasks.all() except ValueError: pass cameras = [] try: cameras = self.cameras.all() except ValueError: pass videos = [] try: videos = self.videos.all() except ValueError: pass if len(tasks): queryset = queryset.filter(task__in=tasks) elif len(cameras): queryset = queryset.filter(task__camera__in=cameras) elif len(videos): queryset = queryset.filter(task__video__in=videos) if self.min_timestamp is not None: queryset = queryset.filter(created_at__gt=self.min_timestamp) if self.max_timestamp is not None: queryset = queryset.filter(created_at__lt=self.max_timestamp) if self.min_birthdate is not None: queryset = queryset.filter(birthdate__gt=self.min_birthdate) if self.max_birthdate is not None: queryset = queryset.filter(birthdate__lt=self.max_birthdate) if self.sex: queryset = queryset.filter(sex=self.sex) if self.skin: queryset = queryset.filter(skin=self.skin) return queryset.distinct() def get_data(self): if not self.disk_cached or not self.model_path or self.is_outdated(): embeddings, subjects = Subject.queryset_train_data(self.queryset) self.update_data(embeddings, subjects) return embeddings, subjects else: data = np.load(self.full_model_path) return data['embeddings'], data['subjects'] def update_data(self, embeddings=None, subjects=None): if not self.disk_cached: return self.updated_at = make_aware(datetime.now()) self.count = self.queryset.count() if self.model_path: if embeddings is None or subjects is None: embeddings, subjects = Subject.queryset_train_data(self.queryset)
np.savez(self.full_model_path, subjects=subjects, embeddings=embeddings)
numpy.savez
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # import sys import time import numpy import scipy.linalg from pyscf import lib from pyscf.lib import logger def expmat(a): return scipy.linalg.expm(a) class CIAHOptimizer(lib.StreamObject): def __init__(self): self.conv_tol_grad = 1e-4 self.max_stepsize = .05 self.max_iters = 10 self.kf_interval = 5 self.kf_trust_region = 5 self.ah_start_tol = 5. self.ah_start_cycle = 1 self.ah_level_shift = 0#1e-4 self.ah_conv_tol = 1e-12 self.ah_lindep = 1e-14 self.ah_max_cycle = 30 self.ah_trust_region = 3. def gen_g_hop(self, u): pass def pack_uniq_var(self, mat): nmo = mat.shape[0] idx = numpy.tril_indices(nmo, -1) return mat[idx] def unpack_uniq_var(self, v): nmo = int(numpy.sqrt(v.size*2)) + 1 idx =
numpy.tril_indices(nmo, -1)
numpy.tril_indices
# %% --- IMPORT REQUIRED PACKAGES --- # built-in modules from pathlib import Path # third-party modules from matplotlib.patches import Patch import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_validate, RandomizedSearchCV from sklearn.svm import LinearSVC from sklearn.utils import resample from xgboost import XGBClassifier # built-in modules from bitome.core import Bitome plt.rcParams['figure.dpi'] = 150 plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.sans-serif'] = ['Helvetica'] #%% --- LOAD BITOME AND TRAINING DATA --- FIG_PATH = Path('figures', 'figure_4') test_bitome = Bitome.init_from_file(Path('matrix_data', 'bitome.pkl')) train_matrix = np.load(Path('matrix_data', 'TRAIN_snp_gene.npy')) feature_names = test_bitome.matrix_row_labels + ['transcription_direction'] feature_names_seq_only = feature_names[:4] feature_names_no_seq = feature_names[8:] # assumes that the training matrix in the .npy file has ALL SNP (1) labels FIRST, THEN the non-SNP labels (0) n_snps = int(train_matrix[:, -1].sum()) n_non_snps = train_matrix.shape[0] - n_snps snp_matrix = train_matrix[:n_snps, :] non_snp_matrix = train_matrix[n_snps:, :] #%% --- PERFORM MODEL SELECTION --- models_to_try = { 'LR': LogisticRegression( penalty='l1', solver='liblinear' ), 'SVM': LinearSVC( penalty='l1', dual=False ), 'RF': RandomForestClassifier(), 'XGBoost': XGBClassifier() } accuracy_df = pd.DataFrame(columns=list(models_to_try.keys())) accuracy_df_seq_only = pd.DataFrame(columns=list(models_to_try.keys())) accuracy_df_no_seq = pd.DataFrame(columns=list(models_to_try.keys())) accuracy_df_shuffled = pd.DataFrame(columns=list(models_to_try.keys())) accuracy_df_list = [accuracy_df, accuracy_df_seq_only, accuracy_df_no_seq, accuracy_df_shuffled] n_exploratory = 10 for i in range(n_exploratory): down_sample_snp_matrix = resample(snp_matrix, n_samples=n_non_snps, replace=False) down_sample_matrix = np.concatenate([down_sample_snp_matrix, non_snp_matrix], axis=0) np.random.shuffle(down_sample_matrix) X, y = down_sample_matrix[:, :-1], down_sample_matrix[:, -1] # prepare subsets of the features, and shuffled targets X_seq_only = X[:, :4] X_no_seq = X[:, 8:] y_shuffled = np.random.permutation(y) # set up the training matrices we want to use X_list = [X, X_seq_only, X_no_seq, X] y_list = [y, y, y, y_shuffled] for model_name, model in models_to_try.items(): print(f'{i}: {model_name}') for X_current, y_current, result_df in zip(X_list, y_list, accuracy_df_list): cv_scores = cross_validate( model, X_current, y=y_current, cv=5, scoring='accuracy', verbose=3, n_jobs=4 ) result_df.loc[i, model_name] = np.mean(cv_scores['test_score']) accuracy_df.to_csv(Path('matrix_data', 'model_select_accuracy.csv')) accuracy_df_seq_only.to_csv(Path('matrix_data', 'model_select_accuracy_seq_only.csv')) accuracy_df_no_seq.to_csv(Path('matrix_data', 'model_select_accuracy_no_seq.csv')) accuracy_df_shuffled.to_csv(Path('matrix_data', 'model_select_accuracy_shuffled.csv')) #%% --- Reload Model Selection Data If Necessary --- RELOAD_DATA = True if RELOAD_DATA: accuracy_df = pd.read_csv(Path('matrix_data', 'model_select_accuracy.csv'), index_col=0) accuracy_df_seq_only = pd.read_csv(Path('matrix_data', 'model_select_accuracy_seq_only.csv'), index_col=0) accuracy_df_no_seq = pd.read_csv(Path('matrix_data', 'model_select_accuracy_no_seq.csv'), index_col=0) accuracy_df_shuffled = pd.read_csv(Path('matrix_data', 'model_select_accuracy_shuffled.csv'), index_col=0) #%% --- _, ax = plt.subplots() sns.swarmplot(data=accuracy_df, color='tab:blue') sns.swarmplot(data=accuracy_df_shuffled, color='tab:gray') ax.tick_params(axis='both', labelsize=22) plt.ylabel('Accuracy', fontsize=24) legend_elems = [ Patch(facecolor='tab:blue', edgecolor='tab:blue', label='bitome'), Patch(facecolor='tab:gray', edgecolor='tab:gray', label='shuffled') ] plt.legend(handles=legend_elems, prop={'size': 18}, loc='upper left') plt.savefig(Path(FIG_PATH, 'model_selection.svg')) plt.show() # create a single dataframe with the Random Forest values for the different data subsets feature_v_sequence_df = pd.DataFrame(data={ 'bitome': accuracy_df['RF'], 'no seq': accuracy_df_no_seq['RF'], 'seq only': accuracy_df_seq_only['RF'] }) _, ax = plt.subplots() sns.barplot(data=feature_v_sequence_df) plt.ylim(0.6, 0.75) ax.tick_params(axis='both', labelsize=22) plt.ylabel('Accuracy', fontsize=24) plt.savefig(Path(FIG_PATH, 'bitome_v_sequence.svg')) plt.show() #%% --- PERFORM HYPERPARAMETER OPTIMIZATION --- random_forest_hyperopt = RandomForestClassifier() param_distributions = { 'n_estimators': np.arange(150, 250), 'max_depth':
np.arange(5, 10)
numpy.arange
# Use the filter on lots of things and save the data and generate plots import numpy as np import h5py import scipy.sparse import scipy.io from constants import * import ipdb import sys import cPickle as pickle flen = DEE flen_2 = 3 dt = EPSILON st = 0.75 #kind of equivalent to sigma root = '/home/bjkomer/deep_learning/DeepSLAM/' prefix = 'conf_mat_smush_full_' dname = "dataset" res_dict = {} ground_truth = scipy.io.loadmat('GroundTruth_Eynsham_40meters.mat')['ground_truth'] def main(): if len(sys.argv) == 2: fnames = read_file(sys.argv[1]) else: fnames = read_file('all.txt') sys.argv.append('all.txt') # for file name consistency #fname = '/home/bjkomer/deep_learning/DeepSLAM/conf_mat_smush_full_googlenet_inception_4b-output.h5' #fname = '/home/bjkomer/deep_learning/DeepSLAM/conf_mat_avg.h5' results = [] avg_matrix = None for fname in fnames: print(fname) h5f = h5py.File(root + fname.rstrip(), 'r') #conf_matrix = h5f[dname][:] if ('conf_mat' in fname) and ('full' not in fname): conf_matrix = h5f[dname][:] # Only the train vs test data else: conf_matrix = h5f[dname][0:4789, 4789:9575] # Only the train vs test data if avg_matrix is None: avg_matrix = conf_matrix else: avg_matrix += conf_matrix h5f.close() precision, recall, f1 = filter_mat(conf_matrix) b_precision, b_recall, b_f1 = filter_boost_mat(conf_matrix) results.append((fname.rstrip(), precision, recall, f1)) res_dict[fname.rstrip()] = (precision, recall, f1, b_precision, b_recall, b_f1) print("") print("averaging") precision, recall, f1 = filter_mat(avg_matrix) b_precision, b_recall, b_f1 = filter_boost_mat(avg_matrix) avg_name = 'average_' + sys.argv[1][:-4] results.append((avg_name.rstrip(), precision, recall, f1)) res_dict[avg_name.rstrip()] = (precision, recall, f1, b_precision, b_recall, b_f1) pickle.dump(res_dict, open("filter_res_"+sys.argv[1][:-4]+".p", "wb")) def read_file(file_name): with open(file_name, 'rb') as f: ret = f.readlines() return ret def filter_mat(test_matrix): # grab the testing matrix from the confusion matrix #test_matrix = conf_matrix[0:4789, 4789:9575] # the min score is the best match b = np.argmin(test_matrix, axis=0) # Percentage of top matches used in the vibration calculation, allows the occasional outlier inlier_fraction = 5/6.0 p = np.zeros(b.size) matches = np.zeros(int(b.size - flen + flen_2)) max_diff = 0 for i in range(0, b.size - flen): match_index = int(i + flen_2) vibrations = np.abs( np.diff(b[i:i + flen]) ) sorted_vib = np.sort(vibrations) max_diff = np.max(sorted_vib[ 0 : int(np.round(inlier_fraction * flen)) ]) # linear regression pt = np.polyfit( np.arange(0, flen), b[i:i + flen], 1) p[match_index] = pt[0] # under vibration threshold stable = max_diff <= dt # forward match # What's with the -1 and +1? I think this should be checking positions? forward_match = np.abs(p[match_index] - 1) < st or np.abs(p[match_index] + 1) < st # Nothing makes it through this filter, despite it working in the matlab version if stable and forward_match: matches[match_index] = pt[1] + pt[0] * 0.5 * flen ### Compare to ground truth ### print("comparing to ground truth") start_first = 1 end_first = 4788 len_first = end_first - start_first + 1 start_second = 4789 end_second = 9574 len_second = end_second - start_second + 1 half_matrix = 4785 ground_matrix = np.zeros((len_second, len_first)) tp_num = 0 tp_value = [] fp_num = 0 fp_value = [] for ground_idx in range(start_second, end_second): value_ground = ground_truth[ground_idx, :] value_fit = value_ground.toarray().flatten().nonzero()[0] # only store those in first round value_fit2 = value_fit[ np.where(value_fit < end_first)[0].astype(int) ] # '16' here is the consistent shift between the ground truth value_fit3 = value_fit2 - start_first + 1 value_fit4 = value_fit3[ np.where(value_fit3 > 0)[0].astype(int) ] matrix_idx = ground_idx - start_second + 1 ground_matrix[matrix_idx, value_fit4] = 1 for truth_idx in range(0, matches.size): ground_row = ground_truth[truth_idx+end_first, :] ground_row_idx = ground_row.toarray().flatten().nonzero()[0] # Maybe check if ground_row_idx is getting value that are not one? if matches[truth_idx] != 0: truth_va = np.round(matches[truth_idx]) if np.any(ground_row_idx == np.round(truth_va)): tp_num = tp_num + 1 tp_value = [tp_value, truth_idx] else: fp_num = fp_num + 1 fp_value = [fp_value, truth_idx] precision = tp_num / float(tp_num + fp_num) print(precision) recall = tp_num / float(b.size) print(recall) f1 = 2 * (precision * recall) / (precision + recall) print(f1) return (precision, recall, f1) def filter_boost_mat(test_matrix): # grab the testing matrix from the confusion matrix #test_matrix = conf_matrix[0:4789, 4789:9575] # the min score is the best match b = np.argmin(test_matrix, axis=0) # Percentage of top matches used in the vibration calculation, allows the occasional outlier inlier_fraction = 5/6.0 matches = np.zeros(int(b.size - flen + flen_2)) stable_count = 0 # WHY NOT FILTER AROUND? Change to get same results but neater? for i in range(0, b.size - flen): match_index = int(i + flen_2) # Check that the match being considered is continous with those around it vibrations = np.abs( np.diff(b[i:i + flen]) ) sorted_vib = np.sort(vibrations) max_diff = np.max(sorted_vib[ 0 : int(np.round(inlier_fraction * flen)) ]) stable = max_diff <= dt # linear regression to get slope of fit pt = np.polyfit( np.arange(0, flen), b[i:i + flen], 1) # This is the slope, because highest powers first velocity = pt[0] # forward match with a tolerance of -1 and +1 # absolute value to check going forwards or backwards forward_match = np.abs(velocity - 1) < st or np.abs(velocity + 1) < st if stable and forward_match: # smooth the value based off of those around it matches[match_index] = pt[1] + pt[0] * 0.5 * flen for j in range(1, flen_2 + 1): back_chk = match_index - j front_chk = match_index + j # fill in the zero (default) values if possible if matches[back_chk] == 0: matches[back_chk] = b[back_chk] # fill in base values for future vals if front_chk < 4783: matches[front_chk] = b[front_chk] ### Compare to ground truth ### print("zeros") print(
np.where(matches == 0)
numpy.where
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_bond_carry [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_bond_carry&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-4-carry-cb). # + import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt from arpym.pricing import bond_value, cash_flow_reinv from arpym.tools.logo import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_bond_carry-parameters) t_now = np.datetime64('2011-06-27') # current date tau_hor = 108 # time to horizon c = 0.04 # annualized coupons (percentage of the face value) freq_paym = 1 # coupon payment frequency (years) # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_bond_carry-implementation-step00): Upload data path = '../../../databases/temporary-databases' tau = np.array([1, 2, 3, 5, 7, 10, 15, 30]) # times to maturity path = '../../../databases/global-databases/fixed-income/db_yields' y = pd.read_csv(path + '/data.csv', header=0, index_col=0) # select the yields corresponding to current time y = y[tau.astype(float).astype(str)] y_carry = y.loc[y.index == pd.to_datetime(str(t_now)).strftime("%d-%b-%Y")] # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_bond_carry-implementation-step01): Monitoring dates, record dates and coupons of the bond # + t_end = np.datetime64('2025-12-22') # maturity date m_ = tau_hor # monitoring dates deltat_m = 21 t_m = np.busday_offset(t_now,
np.arange(m_+1)
numpy.arange
from pandas import PeriodIndex import numpy as np import pandas.util.testing as tm import pandas as pd def test_to_native_types(): index = PeriodIndex(['2017-01-01', '2017-01-02', '2017-01-03'], freq='D') # First, with no arguments. expected = np.array(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='<U10') result = index.to_native_types() tm.assert_numpy_array_equal(result, expected) # No NaN values, so na_rep has no effect result = index.to_native_types(na_rep='pandas') tm.assert_numpy_array_equal(result, expected) # Make sure slicing works expected =
np.array(['2017-01-01', '2017-01-03'], dtype='<U10')
numpy.array
import numpy as np from numpy import cos, sin from astropy.time import Time from ._jit import jit @jit def rotation_matrix(angle, axis): c = cos(angle) s = sin(angle) if axis == 0: return
np.array([[1.0, 0.0, 0.0], [0.0, c, -s], [0.0, s, c]])
numpy.array
import numpy as np import pandas as pd # from scipy.stats import gamma np.random.seed(181336) number_regions = 5 number_strata = 10 number_units = 5000 units = np.linspace(0, number_units - 1, number_units, dtype="int16") + 10 * number_units units = units.astype("str") sample = pd.DataFrame(units) sample.rename(columns={0: "unit_id"}, inplace=True) sample["region_id"] = "xx" for i in range(number_units): sample.loc[i]["region_id"] = sample.iloc[i]["unit_id"][0:2] sample["cluster_id"] = "xxx" for i in range(number_units): sample.loc[i]["cluster_id"] = sample.iloc[i]["unit_id"][0:4] area_type = pd.DataFrame(np.unique(sample["cluster_id"])) area_type.rename(columns={0: "cluster_id"}, inplace=True) area_type["area_type"] =
np.random.choice(("urban", "rural"), area_type.shape[0], p=(0.4, 0.6))
numpy.random.choice
"""Tests for trace_distance.""" import numpy as np from toqito.state_metrics import trace_distance from toqito.states import basis def test_trace_distance_same_state(): r"""Test that: :math:`T(\rho, \sigma) = 0` iff `\rho = \sigma`.""" e_0, e_1 = basis(2, 0), basis(2, 1) e_00 = np.kron(e_0, e_0) e_11 = np.kron(e_1, e_1) u_vec = 1 / np.sqrt(2) * (e_00 + e_11) rho = u_vec * u_vec.conj().T sigma = rho res = trace_distance(rho, sigma) np.testing.assert_equal(np.isclose(res, 0), True) def test_trace_distance_non_density_matrix(): r"""Test trace distance on non-density matrix.""" rho = np.array([[1, 2], [3, 4]]) sigma = np.array([[5, 6], [7, 8]]) with np.testing.assert_raises(ValueError): trace_distance(rho, sigma) if __name__ == "__main__":
np.testing.run_module_suite()
numpy.testing.run_module_suite
"""Modified versions of gas properties and spectra that use the rate network.""" import numpy as np from ._spectra_priv import _interpolate_2d from . import gas_properties from . import spectra from .rate_network import RateNetwork class RateNetworkGas(gas_properties.GasProperties): """Replace the get_reproc_HI function with something that solves the rate network. Optionally can also do self-shielding.""" def __init__(self, redshift, absnap, hubble=0.71, fbar=0.17, units=None, sf_neutral=True, selfshield=False, photo_factor=1): super().__init__(redshift, absnap, hubble=hubble, fbar=fbar, units=units, sf_neutral=sf_neutral) self.rates = RateNetwork(redshift, photo_factor = photo_factor, f_bar = fbar, cool="KWH", recomb="C92", selfshield=selfshield, treecool_file="data/TREECOOL_ep_2018p") self.temp_factor = 1 self.gamma_factor = 1 self.build_interp(dlim=(-15, 2), elim=(1, 14)) def build_interp(self, dlim, elim, sz=750): """Build the interpolator""" #Build interpolation self.densgrid = np.linspace(dlim[0], dlim[1], 2*sz) self.ienergygrid = np.linspace(elim[0], elim[1], sz) dgrid, egrid = np.meshgrid(self.densgrid, self.ienergygrid) self.lh0grid = np.log(self.rates.get_neutral_fraction(np.exp(dgrid), np.exp(egrid))) #We assume primordial helium def get_reproc_HI(self, part_type, segment): """Get a neutral hydrogen fraction using a rate network which reads temperature and density of the gas.""" #expecting units of atoms/cm^3 density = np.log(self.get_code_rhoH(part_type, segment)) #expecting units of 10^-10 ergs/g ienergy = np.log(self.absnap.get_data(part_type, "InternalEnergy", segment=segment)*self.units.UnitInternalEnergy_in_cgs/1e10) if np.any((np.max(self.densgrid) < density)+(np.min(self.densgrid) > density)): if np.any((
np.max(self.ienergygrid)
numpy.max
from logging import getLogger import types import numpy as np import scipy as sp import scipy.stats from statsmodels.sandbox.stats.multicomp import multipletests from scipy.special import comb logger = getLogger(__name__) # data transformation def rankdata(data): logger.debug('ranking the data') rdata = np.zeros(np.shape(data)) for crow in range(np.shape(data)[0]): rdata[crow, :] = sp.stats.rankdata(data[crow, :]) return rdata def log2data(data): logger.debug('log2 transforming the data') data[data < 2] = 2 data = np.log2(data) return data def binarydata(data): logger.debug('binary transforming the data') data[data != 0] = 1 return data def normdata(data): logger.debug('normalizing the data') data = data / np.sum(data, axis=0) return data # different methods to calculate test statistic def meandiff(data, labels): mean0 = np.mean(data[:, labels == 0], axis=1) mean1 = np.mean(data[:, labels == 1], axis=1) tstat = mean1 - mean0 return tstat def stdmeandiff(data, labels): mean0 = np.mean(data[:, labels == 0], axis=1) mean1 = np.mean(data[:, labels == 1], axis=1) sd0 = np.std(data[:, labels == 0], axis=1, ddof=1) sd1 = np.std(data[:, labels == 1], axis=1, ddof=1) sdsum = sd0 + sd1 # if feature has identical values in all samples in each group, std is 0 # fix it to 1 so won't divide by 0 (mean/std is undefined) sdsum[sdsum == 0] = 1 tstat = (mean1 - mean0) / sdsum return tstat def mannwhitney(data, labels): group0 = data[:, labels == 0] group1 = data[:, labels == 1] tstat = np.array([scipy.stats.mannwhitneyu(group0[i, :], group1[i, :], alternative='two-sided') .statistic for i in range(np.shape(data)[0])]) return tstat # kruwallis give a column vector while others give row vector def kruwallis(data, labels): n = len(np.unique(labels)) allt = np.zeros(np.shape(data)[0]) for cbact in range(np.shape(data)[0]): group = [] for j in range(n): group.append(data[cbact, labels == j]) tstat = scipy.stats.kruskal(*group).statistic allt[cbact] = tstat return allt def pearson(data, labels): tstat = np.array([scipy.stats.pearsonr(data[i, :], labels)[0] for i in range(np.shape(data)[0])]) return tstat def spearman(data, labels): tstat = np.array([scipy.stats.spearmanr(data[i, :], labels).correlation for i in range(np.shape(data)[0])]) return tstat # new fdr method def dsfdr(data, labels, transform_type='rankdata', method='meandiff', alpha=0.1, numperm=1000, fdr_method='dsfdr', random_seed=None): ''' calculate the Discrete FDR for the data Parameters ---------- data : N x S numpy array each column is a sample (S total), each row a feature (N total) labels : a 1d numpy array (length S) the labels of each sample (same order as data) with the group (0/1 if binary, 0-G-1 if G groups, or numeric values for correlation) transform_type : str or None transformation to apply to the data before caluculating the test statistic 'rankdata' : rank transfrom each feature 'log2data' : calculate log2 for each feature using minimal cutoff of 2 'normdata' : normalize the data to constant sum per samples 'binarydata' : convert to binary absence/presence None : no transformation to perform method : str or function the method to use for calculating test statistics: 'meandiff' : mean(A)-mean(B) (binary) 'mannwhitney' : mann-whitney u-test (binary) 'kruwallis' : kruskal-wallis test (multiple groups) 'stdmeandiff' : (mean(A)-mean(B))/(std(A)+std(B)) (binary) 'spearman' : spearman correlation (numeric) 'pearson' : pearson correlation (numeric) 'nonzerospearman' : spearman correlation only non-zero entries (numeric) 'nonzeropearson' : pearson correlation only non-zero entries (numeric) function : use this function to calculate the test statistic (input is data,labels, output is array of float) alpha : float the desired FDR control level numperm : int number of permutations to perform fdr_method : str the FDR procedure to determine significant bacteria 'dsfdr' : discrete FDR method 'bhfdr' : Benjamini-Hochberg FDR method 'byfdr' : Benjamini-Yekutielli FDR method 'filterBH' : Benjamini-Hochberg FDR method with filtering random_seed : int, np.radnom.Generator instance or None, optional, default=None set the random number generator seed for the random permutations If int, random_seed is the seed used by the random number generator; If Generator instance, random_seed is set to the random number generator; If None, then fresh, unpredictable entropy will be pulled from the OS Returns ------- reject : np array of bool (length N) True for features where the null hypothesis is rejected tstat : np array of float (length N) the test statistic value for each feature (for effect size) pvals : np array of float (length N) the p-value (uncorrected) for each feature qvals: np array of float (length N) the q-value (corrected p-value) for each feature. ''' logger.debug('dsfdr using fdr method: %s' % fdr_method) # create the numpy.random.Generator rng = np.random.default_rng(random_seed) data = data.copy() if fdr_method == 'filterBH': index = [] n0 = np.sum(labels == 0) n1 = np.sum(labels == 1) for i in range(np.shape(data)[0]): nonzeros = np.count_nonzero(data[i, :]) if nonzeros < min(n0, n1): pval_min = (comb(n0, nonzeros, exact=True) + comb(n1, nonzeros, exact=True)) / comb(n0 + n1, nonzeros) if pval_min <= alpha: index.append(i) else: index.append(i) data = data[index, :] # transform the data if transform_type == 'rankdata': data = rankdata(data) elif transform_type == 'log2data': data = log2data(data) elif transform_type == 'binarydata': data = binarydata(data) elif transform_type == 'normdata': data = normdata(data) elif transform_type is None: pass else: raise ValueError('transform type %s not supported' % transform_type) numbact = np.shape(data)[0] labels = labels.copy() numbact = np.shape(data)[0] labels = labels.copy() logger.debug('start permutation') if method == 'meandiff': # fast matrix multiplication based calculation method = meandiff tstat = method(data, labels) t = np.abs(tstat) numsamples = np.shape(data)[1] p = np.zeros([numsamples, numperm]) k1 = 1 / np.sum(labels == 0) k2 = 1 / np.sum(labels == 1) for cperm in range(numperm): rng.shuffle(labels) p[labels == 0, cperm] = k1 p2 = np.ones(p.shape) * k2 p2[p > 0] = 0 mean1 = np.dot(data, p) mean2 =
np.dot(data, p2)
numpy.dot
from typing import ( Any, Dict, List, Tuple, Union, TypeVar, Callable, Hashable, Iterable, Optional, Sequence, ) from typing_extensions import Literal import os import wrapt import warnings from itertools import tee, product, combinations from statsmodels.stats.multitest import multipletests import scanpy as sc from anndata import AnnData from cellrank import logging as logg from cellrank.tl._enum import ModeEnum from cellrank.ul._docs import d from cellrank.ul._utils import _get_neighs, _has_neighs, _get_neighs_params from cellrank.tl._colors import ( _compute_mean_color, _convert_to_hex_colors, _insert_categorical_colors, ) from cellrank.ul._parallelize import parallelize from cellrank.tl._linear_solver import _solve_lin_system from cellrank.tl.kernels._utils import np_std, np_mean, _filter_kwargs import numpy as np import pandas as pd from pandas import Series from scipy.stats import norm from numpy.linalg import norm as d_norm from scipy.sparse import eye as speye from scipy.sparse import diags, issparse, spmatrix, csr_matrix, isspmatrix_csr from sklearn.cluster import KMeans from pandas.api.types import infer_dtype, is_bool_dtype, is_categorical_dtype from scipy.sparse.linalg import norm as sparse_norm import matplotlib.colors as mcolors ColorLike = TypeVar("ColorLike") GPCCA = TypeVar("GPCCA") CFLARE = TypeVar("CFLARE") DiGraph = TypeVar("DiGraph") EPS = np.finfo(np.float64).eps class TestMethod(ModeEnum): # noqa FISCHER = "fischer" PERM_TEST = "perm_test" class RandomKeys: """ Create random keys inside an :class:`anndata.AnnData` object. Parameters ---------- adata Annotated data object. n Number of keys, If `None`, create just 1 keys. where Attribute of ``adata``. If `'obs'`, also clean up `'{key}_colors'` for each generated key. """ def __init__(self, adata: AnnData, n: Optional[int] = None, where: str = "obs"): self._adata = adata self._where = where self._n = n or 1 self._keys = [] def _generate_random_keys(self): def generator(): return f"RNG_COL_{np.random.randint(2 ** 16)}" where = getattr(self._adata, self._where) names, seen = [], set(where.keys()) while len(names) != self._n: name = generator() if name not in seen: seen.add(name) names.append(name) return names def __enter__(self): self._keys = self._generate_random_keys() return self._keys def __exit__(self, exc_type, exc_val, exc_tb): for key in self._keys: try: getattr(self._adata, self._where).drop( key, axis="columns", inplace=True ) except KeyError: pass if self._where == "obs": try: del self._adata.uns[f"{key}_colors"] except KeyError: pass def _pairwise(iterable: Iterable) -> zip: """Return pairs of elements from an iterable.""" a, b = tee(iterable) next(b, None) return zip(a, b) def _min_max_scale(x: np.ndarray) -> np.ndarray: """ Scale a 1D array to 0-1 range. Parameters ---------- x Array to be scaled. Returns ------- The scaled array. """ minn, maxx = np.nanmin(x), np.nanmax(x) with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) return (x - minn) / (maxx - minn) def _process_series( series: pd.Series, keys: Optional[List[str]], colors: Optional[np.array] = None ) -> Union[pd.Series, Tuple[pd.Series, List[str]]]: """ Process :class:`pandas.Series` categorical objects. Categories in ``series`` are combined/removed according to ``keys``, the same transformation is applied to the corresponding colors. Parameters ---------- series Input data, must be a pd.series of categorical type. keys Keys could be e.g. `['cat_1, cat_2', 'cat_4']`. If originally, there were 4 categories in `series`, then this would combine the first and the second and remove the third. The same would be done to `colors`, i.e. the first and second color would be merged (average color), while the third would be removed. colors List of colors which aligns with the order of the categories. Returns ------- :class:`pandas.Series` Categorical updated annotation. Each cell is assigned to either `NaN` or one of updated approximate recurrent classes. list Color list processed according to keys. """ # determine whether we want to process colors as well process_colors = colors is not None # if keys is None, just return if keys is None: if process_colors: return series, colors return series # assert dtype of the series if not is_categorical_dtype(series): raise TypeError(f"Series must be `categorical`, found `{infer_dtype(series)}`.") # initialize a copy of the series object series_in = series.copy() if process_colors: colors_in = np.array(colors.copy()) if len(colors_in) != len(series_in.cat.categories): raise ValueError( f"Length of colors ({len(colors_in)}) does not match length of " f"categories ({len(series_in.cat.categories)})." ) if not all(mcolors.is_color_like(c) for c in colors_in): raise ValueError("Not all colors are color-like.") # define a set of keys keys_ = { tuple(sorted({key.strip(" ") for key in rc.strip(" ,").split(",")})) for rc in keys } # check that the keys are unique overlap = [set(ks) for ks in keys_] for c1, c2 in combinations(overlap, 2): overlap = c1 & c2 if overlap: raise ValueError(f"Found overlapping keys: `{list(overlap)}`.") # check the `keys` are all proper categories remaining_cat = [b for a in keys_ for b in a] if not np.all(np.in1d(remaining_cat, series_in.cat.categories)): raise ValueError( "Not all keys are proper categories. Check for spelling mistakes in `keys`." ) # remove cats and colors according to keys n_remaining = len(remaining_cat) removed_cat = list(set(series_in.cat.categories) - set(remaining_cat)) if process_colors: mask = np.in1d(series_in.cat.categories, remaining_cat) colors_temp = colors_in[mask].copy() series_temp = series_in.cat.remove_categories(removed_cat) # loop over all indiv. or combined rc's colors_mod = {} for cat in keys_: # if there are more than two keys in this category, combine them if len(cat) > 1: new_cat_name = " or ".join(cat) mask = np.repeat(False, len(series_temp)) for key in cat: mask = np.logical_or(mask, series_temp == key) remaining_cat.remove(key) series_temp = series_temp.cat.add_categories(new_cat_name) remaining_cat.append(new_cat_name) series_temp[mask] = new_cat_name if process_colors: # apply the same to the colors array. We just append new colors at the end color_mask = np.in1d(series_temp.cat.categories[:n_remaining], cat) colors_merge = np.array(colors_temp)[:n_remaining][color_mask] colors_mod[new_cat_name] = _compute_mean_color(colors_merge) elif process_colors: color_mask = np.in1d(series_temp.cat.categories[:n_remaining], cat[0]) colors_mod[cat[0]] = np.array(colors_temp)[:n_remaining][color_mask][0] # Since we have just appended colors at the end, we must now delete the unused ones series_temp = series_temp.cat.remove_unused_categories() series_temp = series_temp.cat.reorder_categories(remaining_cat) if process_colors: # original colors can still be present, convert to hex colors_temp = _convert_to_hex_colors( [colors_mod[c] for c in series_temp.cat.categories] ) return series_temp, colors_temp return series_temp def _complex_warning( X: np.array, use: Union[list, int, tuple, range], use_imag: bool = False ) -> np.ndarray: """ Check for imaginary components in columns of X specified by ``use``. Parameters ---------- X Matrix containing the eigenvectors. use Selection of columns of `X`. use_imag For eigenvectors that are complex, use real or imaginary part. Returns ------- class:`numpy.ndarray` An array containing either only real eigenvectors or also complex ones. """ complex_mask = np.sum(X.imag != 0, axis=0) > 0 complex_ixs = np.array(use)[np.where(complex_mask)[0]] complex_key = "imaginary" if use_imag else "real" if len(complex_ixs) > 0: logg.warning( f"The eigenvectors with indices `{list(complex_ixs)}` have an imaginary part. " f"Showing their {complex_key} part" ) X_ = X.real if use_imag: X_[:, complex_mask] = X.imag[:, complex_mask] return X_ def _mat_mat_corr_sparse( X: csr_matrix, Y: np.ndarray, ) -> np.ndarray: n = X.shape[1] X_bar = np.reshape(np.array(X.mean(axis=1)), (-1, 1)) X_std = np.reshape( np.sqrt(np.array(X.power(2).mean(axis=1)) - (X_bar ** 2)), (-1, 1) ) y_bar = np.reshape(np.mean(Y, axis=0), (1, -1)) y_std = np.reshape(np.std(Y, axis=0), (1, -1)) with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) return (X @ Y - (n * X_bar * y_bar)) / ((n - 1) * X_std * y_std) def _mat_mat_corr_dense(X: np.ndarray, Y: np.ndarray) -> np.ndarray: n = X.shape[1] X_bar = np.reshape(np_mean(X, axis=1), (-1, 1)) X_std = np.reshape(np_std(X, axis=1), (-1, 1)) y_bar = np.reshape(np_mean(Y, axis=0), (1, -1)) y_std = np.reshape(np_std(Y, axis=0), (1, -1)) with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) return (X @ Y - (n * X_bar * y_bar)) / ((n - 1) * X_std * y_std) def _perm_test( ixs: np.ndarray, corr: np.ndarray, X: Union[np.ndarray, spmatrix], Y: np.ndarray, seed: Optional[int] = None, queue=None, ) -> Tuple[np.ndarray, np.ndarray]: rs = np.random.RandomState(None if seed is None else seed + ixs[0]) cell_ixs = np.arange(X.shape[1]) pvals = np.zeros_like(corr, dtype=np.float64) corr_bs = np.zeros((len(ixs), X.shape[0], Y.shape[1])) # perms x genes x lineages mmc = _mat_mat_corr_sparse if issparse(X) else _mat_mat_corr_dense for i, _ in enumerate(ixs): rs.shuffle(cell_ixs) corr_i = mmc(X, Y[cell_ixs, :]) pvals += np.abs(corr_i) >= np.abs(corr) bootstrap_ixs = rs.choice(cell_ixs, replace=True, size=len(cell_ixs)) corr_bs[i, :, :] = mmc(X[:, bootstrap_ixs], Y[bootstrap_ixs, :]) if queue is not None: queue.put(1) if queue is not None: queue.put(None) return pvals, corr_bs @d.get_sections(base="correlation_test", sections=["Returns"]) @d.dedent def _correlation_test( X: Union[np.ndarray, spmatrix], Y: "Lineage", # noqa: F821 gene_names: Sequence[str], method: TestMethod = TestMethod.FISCHER, confidence_level: float = 0.95, n_perms: Optional[int] = None, seed: Optional[int] = None, **kwargs: Any, ) -> pd.DataFrame: """ Perform a statistical test. Return NaN for genes which don't vary across cells. Parameters ---------- X Array or sparse matrix of shape ``(n_cells, n_genes)`` containing the expression. Y Array of shape ``(n_cells, n_lineages)`` containing the absorption probabilities. gene_names Sequence of shape ``(n_genes,)`` containing the gene names. method Method for p-value calculation. confidence_level Confidence level for the confidence interval calculation. Must be in `[0, 1]`. n_perms Number of permutations if ``method = 'perm_test'``. seed Random seed if ``method = 'perm_test'``. %(parallel)s Returns ------- Dataframe of shape ``(n_genes, n_lineages * 5)`` containing the following columns, one for each lineage: - ``{lineage}_corr`` - correlation between the gene expression and absorption probabilities. - ``{lineage}_pval`` - calculated p-values for double-sided test. - ``{lineage}_qval`` - corrected p-values using Benjamini-Hochberg method at level `0.05`. - ``{lineage}_ci_low`` - lower bound of the ``confidence_level`` correlation confidence interval. - ``{lineage}_ci_high`` - upper bound of the ``confidence_level`` correlation confidence interval. """ corr, pvals, ci_low, ci_high = _correlation_test_helper( X.T, Y.X, method=method, n_perms=n_perms, seed=seed, confidence_level=confidence_level, **kwargs, ) invalid = np.sum((corr < -1) | (corr > 1)) if invalid: raise ValueError(f"Found `{invalid}` correlations that are not in `[0, 1]`.") res = pd.DataFrame(corr, index=gene_names, columns=[f"{c}_corr" for c in Y.names]) for idx, c in enumerate(Y.names): res[f"{c}_pval"] = pvals[:, idx] res[f"{c}_qval"] = multipletests(pvals[:, idx], alpha=0.05, method="fdr_bh")[1] res[f"{c}_ci_low"] = ci_low[:, idx] res[f"{c}_ci_high"] = ci_high[:, idx] # fmt: off res = res[[f"{c}_{stat}" for c in Y.names for stat in ("corr", "pval", "qval", "ci_low", "ci_high")]] return res.sort_values(by=[f"{c}_corr" for c in Y.names], ascending=False) # fmt: on def _correlation_test_helper( X: Union[np.ndarray, spmatrix], Y: np.ndarray, method: TestMethod = TestMethod.FISCHER, n_perms: Optional[int] = None, seed: Optional[int] = None, confidence_level: float = 0.95, **kwargs, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ Compute the correlation between rows in matrix ``X`` columns of matrix ``Y``. Parameters ---------- X Array or matrix of `(M, N)` elements. Y Array of `(N, K)` elements. method Method for p-value calculation. n_perms Number of permutations if ``method='perm_test'``. seed Random seed if ``method='perm_test'``. confidence_level Confidence level for the confidence interval calculation. Must be in `[0, 1]`. kwargs Keyword arguments for :func:`cellrank.ul._parallelize.parallelize`. Returns ------- Correlations, p-values, corrected p-values, lower and upper bound of 95% confidence interval. Each array if of shape ``(n_genes, n_lineages)``. """ def perm_test_extractor( res: Sequence[Tuple[np.ndarray, np.ndarray]] ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: pvals, corr_bs = zip(*res) pvals = np.sum(pvals, axis=0) / float(n_perms) corr_bs = np.concatenate(corr_bs, axis=0) corr_ci_low, corr_ci_high = np.quantile(corr_bs, q=ql, axis=0), np.quantile( corr_bs, q=qh, axis=0 ) return pvals, corr_ci_low, corr_ci_high if not (0 <= confidence_level <= 1): raise ValueError( f"Expected `confidence_level` to be in interval `[0, 1]`, found `{confidence_level}`." ) n = X.shape[1] # genes x cells ql = 1 - confidence_level - (1 - confidence_level) / 2.0 qh = confidence_level + (1 - confidence_level) / 2.0 if issparse(X) and not isspmatrix_csr(X): X = csr_matrix(X) corr = _mat_mat_corr_sparse(X, Y) if issparse(X) else _mat_mat_corr_dense(X, Y) if method == TestMethod.FISCHER: # see: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Using_the_Fisher_transformation mean, se = np.arctanh(corr), 1.0 / np.sqrt(n - 3) z_score = (np.arctanh(corr) - np.arctanh(0)) * np.sqrt(n - 3) z = norm.ppf(qh) corr_ci_low = np.tanh(mean - z * se) corr_ci_high = np.tanh(mean + z * se) pvals = 2 * norm.cdf(-np.abs(z_score)) elif method == TestMethod.PERM_TEST: if not isinstance(n_perms, int): raise TypeError( f"Expected `n_perms` to be an integer, found `{type(n_perms).__name__!r}`." ) if n_perms <= 0: raise ValueError(f"Expcted `n_perms` to be positive, found `{n_perms}`.") pvals, corr_ci_low, corr_ci_high = parallelize( _perm_test, np.arange(n_perms), as_array=False, unit="permutation", extractor=perm_test_extractor, **kwargs, )(corr, X, Y, seed=seed) else: raise NotImplementedError(method) return corr, pvals, corr_ci_low, corr_ci_high def _make_cat( labels: List[List[Any]], n_states: int, state_names: Sequence[str] ) -> Series: """Get categorical from list of lists.""" labels_new = np.repeat(np.nan, n_states) for i, c in enumerate(labels): labels_new[c] = i labels_new = Series(labels_new, index=state_names, dtype="category") labels_new.cat.categories = labels_new.cat.categories.astype("int") return labels_new def _filter_cells(distances: spmatrix, rc_labels: Series, n_matches_min: int) -> Series: """Filter out some cells that look like transient states based on their neighbors.""" if not is_categorical_dtype(rc_labels): raise TypeError( f"Expected `categories` be `categorical`, found `{infer_dtype(rc_labels)}`." ) # retrieve knn graph rows, cols = distances.nonzero() cls = rc_labels.cat.categories freqs_orig = np.array([np.sum(rc_labels == cl) for cl in cls]) # loop over cells and check whether they have neighbors from the same class for cl in cls: cells = np.where(rc_labels == cl)[0] for cell in cells: own_cl = rc_labels[cell] neighbors = cols[rows == cell] n_cls = rc_labels[neighbors] n_matches = np.sum(np.in1d(n_cls, own_cl)) if n_matches < n_matches_min: rc_labels[cell] = None freqs_new = np.array([np.sum(rc_labels == cl) for cl in cls]) if np.any((freqs_new / freqs_orig) < 0.5): logg.warning( "Consider lowering 'n_matches_min' or " "increasing 'n_neighbors_filtering'. This filters out too many cells" ) return rc_labels def _cluster_X( X: Union[np.ndarray, spmatrix], n_clusters: int, method: Literal["leiden", "kmeans"] = "leiden", n_neighbors: int = 20, resolution: float = 1.0, ) -> List[Any]: """ Cluster the rows of the matrix X. Parameters ---------- X Matrix of shape ``n_samples x n_features``. n_clusters Number of clusters to use. method Method to use for clustering. Options are `'kmeans'`, `'leiden'`. n_neighbors If using a community-detection based clustering algorithm, number of neighbors for KNN construction. resolution Resolution parameter for `'leiden'` clustering. Returns ------- :class:`list` List of cluster labels of length `n_samples`. """ if X.shape[0] == 1: # sc.tl.leiden issue return [0] if method == "kmeans": kmeans = KMeans(n_clusters=n_clusters).fit(X) labels = kmeans.labels_ elif method == "leiden": adata_dummy = sc.AnnData(X=X) sc.pp.neighbors(adata_dummy, use_rep="X", n_neighbors=n_neighbors) sc.tl.leiden(adata_dummy, resolution=resolution) labels = adata_dummy.obs[method] else: raise NotImplementedError( f"Invalid method `{method}`. Valid options are `kmeans` or `leiden`." ) return list(labels) def _eigengap(evals: np.ndarray, alpha: float) -> int: """ Compute the eigengap among the top eigenvalues of a matrix. Parameters ---------- evals Sorted array of real numbers. If complex, take their real part. alpha Determines how much weight is given to the deviation of an eigenvalue from one. Returns ------- int Number of eigenvectors to be used. """ if np.iscomplexobj(evals): evals = evals.real evals = np.sort(evals)[::-1] # they could be ordered by LM, not LR gap, eps = evals[:-1] - evals[1:], (1 - evals)[:-1] J = gap - alpha * eps return int(np.argmax(J)) def _partition( conn: Union[DiGraph, np.ndarray, spmatrix], sort: bool = True ) -> Tuple[List[List[Any]], List[List[Any]]]: """ Partition a directed graph into its transient and recurrent classes. In a directed graph *G*, node *j* is accessible from node *i* if there exists a path from *i* to *j*. If *i* is accessible from *j* and the converse holds as well, then *i* and *j* communicate. Communication forms and equivalence relation on directed graphs, so every directed graph can be uniquely partitioned into its communication classes (also called strongly connected components). If *G* describes the state space of a Markov chain, then communication classes are often characterized as either recurrent or transient. Intuitively, once the process enters a recurrent class, it will never leave it again. Parameters ---------- conn Directed graph to _partition. Returns ------- :class:`list`, :class:`list` Recurrent and transient classes, respectively. """ import networkx as nx start = logg.debug("Partitioning the graph into current and transient classes") def partition(g): yield from ( ( (sorted(scc) if sort else scc), all((not nx.has_path(g, s, t) for s, t in product(scc, g.nodes - scc))), ) for scc in nx.strongly_connected_components(g) ) def maybe_sort(iterable): return ( sorted(iterable, key=lambda x: (-len(x), x[0])) if sort else list(map(list, iterable)) ) rec_classes, trans_classes = tee( partition(nx.DiGraph(conn) if not isinstance(conn, nx.DiGraph) else conn), 2 ) rec_classes = (node for node, is_rec in rec_classes if is_rec) trans_classes = (node for node, is_rec in trans_classes if not is_rec) logg.debug(" Finish", time=start) return maybe_sort(rec_classes), maybe_sort(trans_classes) def _connected(c: Union[spmatrix, np.ndarray]) -> bool: """Check whether the undirected graph encoded by c is connected.""" import networkx as nx G = nx.from_scipy_sparse_matrix(c) if issparse(c) else nx.from_numpy_array(c) return nx.is_connected(G) def _irreducible(d: Union[spmatrix, np.ndarray]) -> bool: """Check whether the unirected graph encoded by d is irreducible.""" import networkx as nx start = logg.debug("Checking the transition matrix for irreducibility") G = nx.DiGraph(d) if not isinstance(d, nx.DiGraph) else d try: it = iter(nx.strongly_connected_components(G)) _ = next(it) _ = next(it) is_irreducible = False except StopIteration: is_irreducible = True if not is_irreducible: logg.warning("Transition matrix is not irreducible", time=start) else: logg.debug("Transition matrix is irreducible", time=start) return is_irreducible def _symmetric( matrix: Union[spmatrix, np.ndarray], ord: str = "fro", eps: float = 1e-4, only_check_sparsity_pattern: bool = False, ) -> bool: """Check whether the graph encoded by `matrix` is symmetric.""" if only_check_sparsity_pattern: if issparse(matrix): return len(((matrix != 0) - (matrix != 0).T).data) == 0 return ((matrix != 0) == (matrix != 0).T).all() if issparse(matrix): return sparse_norm((matrix - matrix.T), ord=ord) < eps return d_norm((matrix - matrix.T), ord=ord) < eps def _normalize( X: Union[np.ndarray, spmatrix], ) -> Union[np.ndarray, spmatrix]: """ Row-normalizes an array to sum to 1. Parameters ---------- X Array to be normalized. Returns ------- :class:`numpy.ndarray` or :class:`scipy.sparse.spmatrix` The normalized array. """ with np.errstate(divide="ignore"): if issparse(X): return X.multiply(csr_matrix(1.0 / np.abs(X).sum(1))) X = np.array(X) return X / (X.sum(1)[:, None]) def _get_connectivities( adata: AnnData, mode: str = "connectivities", n_neighbors: Optional[int] = None ) -> Optional[spmatrix]: # utility function, copied from scvelo if _has_neighs(adata): C = _get_neighs(adata, mode) if ( n_neighbors is not None and n_neighbors <= _get_neighs_params(adata)["n_neighbors"] ): C = ( _select_connectivities(C, n_neighbors) if mode == "connectivities" else _select_distances(C, n_neighbors) ) return C.tocsr().astype(np.float32) def _select_connectivities( connectivities: spmatrix, n_neighbors: Optional[int] = None ) -> spmatrix: # utility function, copied from scvelo C = connectivities.copy() n_counts = (C > 0).sum(1).A1 if issparse(C) else (C > 0).sum(1) n_neighbors = ( n_counts.min() if n_neighbors is None else min(n_counts.min(), n_neighbors) ) rows =
np.where(n_counts > n_neighbors)
numpy.where
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import platform import numpy as np from chumpy import Ch, depends_on from opendr.renderer import BaseRenderer, ColoredRenderer, TexturedRenderer from opendr.renderer import draw_edge_visibility, draw_boundary_images, draw_boundaryid_image if platform.system() == 'Darwin': from opendr.contexts.ctx_mac import OsContext else: from opendr.contexts.ctx_mesa import OsContext from opendr.contexts._constants import * class OrthoBaseRenderer(BaseRenderer): terms = ['f', 'overdraw'] dterms = ['ortho', 'v'] @property def v(self): return self.ortho.v @v.setter def v(self, newval): self.ortho.v = newval @depends_on('f', 'ortho', 'overdraw') def barycentric_image(self): return super(OrthoBaseRenderer, self).barycentric_image @depends_on(terms+dterms) def boundaryid_image(self): self._call_on_changed() return draw_boundaryid_image(self.glb, self.v.r, self.f, self.vpe, self.fpe, self.ortho) @depends_on('f', 'ortho', 'overdraw') def visibility_image(self): return super(OrthoBaseRenderer, self).visibility_image @depends_on('f', 'ortho') def edge_visibility_image(self): self._call_on_changed() return draw_edge_visibility(self.glb, self.v.r, self.vpe, self.f) class OrthoColoredRenderer(OrthoBaseRenderer, ColoredRenderer): terms = 'f', 'background_image', 'overdraw', 'num_channels' dterms = 'vc', 'ortho', 'bgcolor' def compute_r(self): return self.color_image def compute_dr_wrt(self, wrt): raise NotImplementedError def on_changed(self, which): if 'ortho' in which: w = self.ortho.width h = self.ortho.height self.glf = OsContext(np.int(w), np.int(h), typ=GL_FLOAT) _setup_ortho(self.glf, self.ortho.left.r, self.ortho.right.r, self.ortho.bottom.r, self.ortho.top.r, self.ortho.near, self.ortho.far, self.ortho.view_mtx) self.glf.Viewport(0, 0, w, h) self.glb = OsContext(np.int(w), np.int(h), typ=GL_UNSIGNED_BYTE) self.glb.Viewport(0, 0, w, h) _setup_ortho(self.glb, self.ortho.left.r, self.ortho.right.r, self.ortho.bottom.r, self.ortho.top.r, self.ortho.near, self.ortho.far, self.ortho.view_mtx) if not hasattr(self, 'num_channels'): self.num_channels = 3 if not hasattr(self, 'bgcolor'): self.bgcolor = Ch(np.array([.5] * self.num_channels)) which.add('bgcolor') if not hasattr(self, 'overdraw'): self.overdraw = True if 'bgcolor' in which: self.glf.ClearColor(self.bgcolor.r[0], self.bgcolor.r[1 % self.num_channels], self.bgcolor.r[2 % self.num_channels], 1.) @depends_on('f', 'ortho', 'vc') def boundarycolor_image(self): return self.draw_boundarycolor_image(with_vertex_colors=True) @depends_on('f', 'ortho') def boundary_images(self): self._call_on_changed() return draw_boundary_images(self.glb, self.v.r, self.f, self.vpe, self.fpe, self.ortho) @depends_on(terms+dterms) def color_image(self): return super(OrthoColoredRenderer, self).color_image @property def shape(self): return (self.ortho.height, self.ortho.width, 3) class OrthoTexturedRenderer(OrthoColoredRenderer, TexturedRenderer): terms = 'f', 'ft', 'background_image', 'overdraw' dterms = 'vc', 'ortho', 'bgcolor', 'texture_image', 'vt' def compute_dr_wrt(self, wrt): raise NotImplementedError def on_changed(self, which): OrthoColoredRenderer.on_changed(self, which) # have to redo if ortho changes, b/c ortho triggers new context if 'texture_image' in which or 'ortho' in which: gl = self.glf texture_data = np.array(self.texture_image * 255., dtype='uint8', order='C') tmp =
np.zeros(1, dtype=np.uint32)
numpy.zeros
from pycqed.measurement import measurement_control as mc import adaptive from pycqed.instrument_drivers.meta_instrument.LutMans import flux_lutman as flm from pycqed.instrument_drivers.virtual_instruments import noise_parameters_CZ_new as npCZ from pycqed.simulations import cz_superoperator_simulation_new_functions as czf import numpy as np from pycqed.measurement import detector_functions as det import matplotlib.pyplot as plt from qcodes import Instrument from pycqed.measurement.waveform_control_CC import waveforms_flux as wfl from scipy.interpolate import interp1d import qutip as qtp np.set_printoptions(threshold=np.inf) def f_to_parallelize_new(arglist): # cluster wants a list as an argument. # Below the various list items are assigned to their own variable fitted_stepresponse_ty = arglist['fitted_stepresponse_ty'] fluxlutman_args = arglist['fluxlutman_args'] # see function return_instrument_args in czf noise_parameters_CZ_args = arglist['noise_parameters_CZ_args'] # see function return_instrument_args in czf number = arglist['number'] adaptive_pars = arglist['adaptive_pars'] try: MC = Instrument.find_instrument('MC'+'{}'.format(number)) except KeyError: MC = mc.MeasurementControl('MC'+'{}'.format(number), live_plot_enabled=False) from qcodes import station station = station.Station() station.add_component(MC) MC.station =station fluxlutman = flm.AWG8_Flux_LutMan('fluxlutman'+'{}'.format(number)) station.add_component(fluxlutman) noise_parameters_CZ = npCZ.NoiseParametersCZ('noise_parameters_CZ'+'{}'.format(number)) station.add_component(noise_parameters_CZ) fluxlutman, noise_parameters_CZ = czf.return_instrument_from_arglist(fluxlutman,fluxlutman_args,noise_parameters_CZ,noise_parameters_CZ_args) d=CZ_trajectory_superoperator(fluxlutman=fluxlutman, noise_parameters_CZ=noise_parameters_CZ, fitted_stepresponse_ty=fitted_stepresponse_ty, qois=adaptive_pars.get('qois', 'all')) MC.set_detector_function(d) exp_metadata = {'double sided':fluxlutman.czd_double_sided(), 'length': fluxlutman.cz_length(), 'distortions': noise_parameters_CZ.distortions(), 'T2_scaling': noise_parameters_CZ.T2_scaling(), 'sigma_q1': noise_parameters_CZ.sigma_q1(), 'sigma_q0': noise_parameters_CZ.sigma_q0()} if adaptive_pars['mode']=='adaptive': MC.set_sweep_functions([fluxlutman.cz_theta_f, fluxlutman.cz_lambda_2]) if adaptive_pars['uniform']: loss_per_triangle= adaptive.learner.learner2D.uniform_loss else: loss_per_triangle=None MC.set_adaptive_function_parameters( {'adaptive_function': adaptive.Learner2D, 'loss_per_triangle': loss_per_triangle, 'goal':lambda l: l.npoints>adaptive_pars['n_points'], 'bounds':[(adaptive_pars['theta_f_min'], adaptive_pars['theta_f_max']), (adaptive_pars['lambda2_min'], adaptive_pars['lambda2_max'])]}) if noise_parameters_CZ.cluster(): dat = MC.run('2D simulation_new_cluster2 double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='adaptive',exp_metadata=exp_metadata) else: if adaptive_pars['long_name']: dat = MC.run('2D simulation_new_2 double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='adaptive',exp_metadata=exp_metadata) else: dat = MC.run('2D simulation_new_2', exp_metadata=exp_metadata, mode='adaptive') elif adaptive_pars['mode']=='1D': MC.set_sweep_functions([fluxlutman.cz_theta_f]) MC.set_sweep_points(np.linspace(adaptive_pars['theta_f_min'], adaptive_pars['theta_f_max'],adaptive_pars['n_points'])) if noise_parameters_CZ.cluster(): dat = MC.run('1D simulation_new_cluster2 double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: if adaptive_pars['long_name']: dat = MC.run('1D simulation_new_2 double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: dat = MC.run('1D simulation_new_2', exp_metadata=exp_metadata, mode='1D') elif adaptive_pars['mode']=='spectral_tomo': MC.set_sweep_functions([noise_parameters_CZ.T1_q0]) MC.set_sweep_points(np.logspace(adaptive_pars['theta_f_min'], adaptive_pars['theta_f_max'],adaptive_pars['n_points'])) if noise_parameters_CZ.cluster(): dat = MC.run('1D sim_spectral_tomo double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: if adaptive_pars['long_name']: dat = MC.run('1D sim_spectral_tomo double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: dat = MC.run('1D sim_spectral_tomo', exp_metadata=exp_metadata, mode='1D') elif adaptive_pars['mode']=='spectral_tomo_nonmarkovian': MC.set_sweep_functions([noise_parameters_CZ.repetitions]) MC.set_sweep_points(np.arange(0, adaptive_pars['n_points'], 1)) if noise_parameters_CZ.cluster(): dat = MC.run('1D sim_spectral_tomo_nonmarkovian double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: if adaptive_pars['long_name']: dat = MC.run('1D sim_spectral_tomo_nonmarkovian double sided {} - length {:.0f} - distortions {} - T2_scaling {:.1f} - sigma_q1 {:.0f}, sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.distortions(), noise_parameters_CZ.T2_scaling(), noise_parameters_CZ.sigma_q1()*1e6, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: dat = MC.run('1D sim_spectral_tomo_nonmarkovian', exp_metadata=exp_metadata, mode='1D') elif adaptive_pars['mode']=='time_series': MC.set_sweep_functions([noise_parameters_CZ.detuning]) # random sweep function never used in this file. Put it just because I need to put one MC.set_sweep_points(np.array([-1])) if noise_parameters_CZ.cluster(): dat = MC.run('1D time_series_cluster double sided {} - length {:.0f} - sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: if adaptive_pars['long_name']: dat = MC.run('1D time_series double sided {} - length {:.0f} - sigma_q0 {:.0f}'.format(fluxlutman.czd_double_sided(), fluxlutman.cz_length()*1e9, noise_parameters_CZ.sigma_q0()*1e6), mode='1D',exp_metadata=exp_metadata) else: dat = MC.run('1D time_series', exp_metadata=exp_metadata, mode='1D') fluxlutman.close() noise_parameters_CZ.close() MC.close() def compute_propagator(arglist): # I was parallelizing this function in the cluster, then I changed but the list as an argument remains. # Below each list item is assigned to its own variable fluxbias_q0 = arglist['fluxbias_q0'] fluxbias_q1 = arglist['fluxbias_q1'] fitted_stepresponse_ty = arglist['fitted_stepresponse_ty'] fluxlutman = arglist['fluxlutman'] noise_parameters_CZ = arglist['noise_parameters_CZ'] sim_step=1/fluxlutman.sampling_rate() subdivisions_of_simstep=4 # 4 is a good one, corresponding to a time step of 0.1 ns sim_step_new=sim_step/subdivisions_of_simstep # waveform is generated according to sampling rate of AWG, # but we can use a different step for simulating the time evolution tlist = np.arange(0, fluxlutman.cz_length(), sim_step) # residual_coupling=czf.conditional_frequency(0,fluxlutman,noise_parameters_CZ) # To check residual coupling at the operating point. # print(residual_coupling) # Change amp to get the residual coupling at different points eps_i = fluxlutman.calc_amp_to_eps(0, state_A='11', state_B='02') theta_i = wfl.eps_to_theta(eps_i, g=fluxlutman.q_J2()) # Beware theta in radian! if not fluxlutman.czd_double_sided(): thetawave = wfl.martinis_flux_pulse( length=fluxlutman.cz_length(), lambda_2=fluxlutman.cz_lambda_2(), lambda_3=fluxlutman.cz_lambda_3(), theta_i=theta_i, theta_f=np.deg2rad(fluxlutman.cz_theta_f()), sampling_rate=fluxlutman.sampling_rate()) # return in terms of theta epsilon = wfl.theta_to_eps(thetawave, fluxlutman.q_J2()) amp = fluxlutman.calc_eps_to_amp(epsilon, state_A='11', state_B='02') # transform detuning frequency to (positive) amplitude else: amp = get_f_pulse_double_sided(fluxlutman,theta_i) # For better accuracy in simulations, redefine amp in terms of sim_step_new. # We split here below in two cases to keep into account that certain times net-zero is one AWG time-step longer # than the conventional pulse with the same pulse length. if len(tlist) == len(amp): tlist_temp=np.concatenate((tlist,np.array([fluxlutman.cz_length()]))) tlist_new = np.arange(0, fluxlutman.cz_length(), sim_step_new) else: tlist_temp=np.concatenate((tlist,np.array([fluxlutman.cz_length(),fluxlutman.cz_length()+sim_step]))) tlist_new = np.arange(0, fluxlutman.cz_length()+sim_step, sim_step_new) amp_temp=np.concatenate((amp,np.array([amp[0]]))) # amp should come back to the initial value, i.e. at the sweet spot amp_interp=interp1d(tlist_temp,amp_temp) amp=amp_interp(tlist_new) if fluxlutman.czd_double_sided() and noise_parameters_CZ.waiting_at_sweetspot()!=0: tlist_new, amp = czf.add_waiting_at_sweetspot(tlist_new,amp, noise_parameters_CZ.waiting_at_sweetspot()) # Apply voltage scaling amp = amp * noise_parameters_CZ.voltage_scaling_factor() ### Apply distortions if noise_parameters_CZ.distortions(): amp_final = czf.distort_amplitude(fitted_stepresponse_ty=fitted_stepresponse_ty,amp=amp,tlist_new=tlist_new,sim_step_new=sim_step_new) else: amp_final = amp # Uncomment to get plots of the distorted pulse. # czf.plot(x_plot_vec=[np.array(tlist_new)*1e9],y_plot_vec=[amp_final], # title='Pulse with distortions, absolute', # xlabel='Time (ns)',ylabel='Amplitude (volts)') # czf.plot(x_plot_vec=[np.array(tlist_new)*1e9],y_plot_vec=[amp_final-amp], # title='Pulse with distortions, difference', # xlabel='Time (ns)',ylabel='Amplitude (volts)') # We add the single qubit rotations at the end of the pulse if noise_parameters_CZ.Z_rotations_length() != 0: tlist_singlequbitrotations = np.arange(0,noise_parameters_CZ.Z_rotations_length(),sim_step_new) amp_Z_rotation = np.zeros(len(tlist_singlequbitrotations))+amp_final[0] amp_Z_rotation, f_pulse_Z_rotation = czf.shift_due_to_fluxbias_q0(fluxlutman=fluxlutman,amp_final=amp_Z_rotation,fluxbias_q0=fluxbias_q0,noise_parameters_CZ=noise_parameters_CZ) tlist_new = czf.concatenate_CZpulse_and_Zrotations(noise_parameters_CZ.Z_rotations_length(),sim_step_new,tlist_new) # We add the idle time at the end of the pulse (even if it's not at the end. It doesn't matter) if noise_parameters_CZ.total_idle_time() != 0: tlist_idle_time = np.arange(0,noise_parameters_CZ.total_idle_time(),sim_step_new) amp_idle_time = np.zeros(len(tlist_idle_time))+amp_final[0] double_sided = fluxlutman.czd_double_sided() # idle time is single-sided so we save the fluxlutman.czd_double_sided() value, set it to False # and later restore it to the original value fluxlutman.czd_double_sided(False) amp_idle_time, f_pulse_idle_time = czf.shift_due_to_fluxbias_q0(fluxlutman=fluxlutman,amp_final=amp_idle_time,fluxbias_q0=fluxbias_q0,noise_parameters_CZ=noise_parameters_CZ) fluxlutman.czd_double_sided(double_sided) tlist_new = czf.concatenate_CZpulse_and_Zrotations(noise_parameters_CZ.total_idle_time(),sim_step_new,tlist_new) # misleading name for the function sorry ### the fluxbias_q0 affects the pulse shape after the distortions have been taken into account amp_final, f_pulse_final = czf.shift_due_to_fluxbias_q0(fluxlutman=fluxlutman,amp_final=amp_final,fluxbias_q0=fluxbias_q0,noise_parameters_CZ=noise_parameters_CZ) # We concatenate amp and f_pulse with the values they take during the Zrotations and idle_time. # It comes after the previous line because of details of the function czf.shift_due_to_fluxbias_q0 if noise_parameters_CZ.Z_rotations_length() != 0: amp_final=np.concatenate((amp_final,amp_Z_rotation)) f_pulse_final=np.concatenate((f_pulse_final,f_pulse_Z_rotation)) if noise_parameters_CZ.total_idle_time() != 0: amp_final=np.concatenate((amp_final,amp_idle_time)) f_pulse_final=np.concatenate((f_pulse_final,f_pulse_idle_time)) # czf.plot(x_plot_vec=[np.array(tlist_new)*1e9],y_plot_vec=[amp_final], # title='Pulse with (possibly) single qubit rotations and idle time', # xlabel='Time (ns)',ylabel='Amplitude (volts)') # czf.plot(x_plot_vec=[np.array(tlist_new)*1e9],y_plot_vec=[amp_final-amp_final_new], # title='Pulse with distortions and shift due to fluxbias_q0, difference', # xlabel='Time (ns)',ylabel='Amplitude (volts)') # amp_final = amp_final_new # czf.plot(x_plot_vec=[np.array(tlist_new)*1e9],y_plot_vec=[f_pulse_final/1e9], # title='Pulse with distortions and shift due to fluxbias_q0', # xlabel='Time (ns)',ylabel='Frequency (GHz)') t_final = tlist_new[-1]+sim_step_new # actual overall gate length ### Obtain jump operators for Lindblad equation c_ops = czf.return_jump_operators(noise_parameters_CZ=noise_parameters_CZ, f_pulse_final=f_pulse_final, fluxlutman=fluxlutman) ### Compute propagator U_final = czf.time_evolution_new(c_ops=c_ops, noise_parameters_CZ=noise_parameters_CZ, fluxlutman=fluxlutman, fluxbias_q1=fluxbias_q1, amp=amp_final, sim_step=sim_step_new) #print(czf.verify_CPTP(U_superop_average)) # simple check of CPTP property return [U_final, t_final] def get_f_pulse_double_sided(fluxlutman,theta_i): thetawave_A = wfl.martinis_flux_pulse( length=fluxlutman.cz_length()*fluxlutman.czd_length_ratio(), lambda_2=fluxlutman.cz_lambda_2(), lambda_3=fluxlutman.cz_lambda_3(), theta_i=theta_i, theta_f=np.deg2rad(fluxlutman.cz_theta_f()), sampling_rate=fluxlutman.sampling_rate()) # return in terms of theta epsilon_A = wfl.theta_to_eps(thetawave_A, fluxlutman.q_J2()) amp_A = fluxlutman.calc_eps_to_amp(epsilon_A, state_A='11', state_B='02') # transform detuning frequency to positive amplitude # Generate the second CZ pulse thetawave_B = wfl.martinis_flux_pulse( length=fluxlutman.cz_length()*(1-fluxlutman.czd_length_ratio()), lambda_2=fluxlutman.cz_lambda_2(), lambda_3=fluxlutman.cz_lambda_3(), theta_i=theta_i, theta_f=np.deg2rad(fluxlutman.cz_theta_f()), sampling_rate=fluxlutman.sampling_rate()) # return in terms of theta epsilon_B = wfl.theta_to_eps(thetawave_B, fluxlutman.q_J2()) amp_B = fluxlutman.calc_eps_to_amp(epsilon_B, state_A='11', state_B='02', positive_branch=False) # transform detuning frequency to negative amplitude # N.B. No amp scaling and offset present amp = np.concatenate([amp_A, amp_B]) return amp # Functions for spectral tomography. def get_normalized_gellmann_matrices(index,specification): # Returns the Gell-Mann matrix specified by index, normalized to 1. # The numbering follows the wikipedia article. We use the index 0 for the identity. # index must be an integer. if specification == 'GTM': lambda_0=qtp.Qobj([[1,0,0], [0,1,0], [0,0,1]])/np.sqrt(3) elif specification == 'PTM': lambda_0=qtp.Qobj([[1,0,0], [0,1,0], [0,0,0]])/np.sqrt(2) lambda_1=qtp.Qobj([[0,1,0], [1,0,0], [0,0,0]])/np.sqrt(2) lambda_2=qtp.Qobj([[0,-1j,0], [1j,0,0], [0,0,0]])/np.sqrt(2) lambda_3=qtp.Qobj([[1,0,0], [0,-1,0], [0,0,0]])/np.sqrt(2) lambda_4=qtp.Qobj([[0,0,1], [0,0,0], [1,0,0]])/np.sqrt(2) lambda_5=qtp.Qobj([[0,0,-1j], [0,0,0], [1j,0,0]])/np.sqrt(2) lambda_6=qtp.Qobj([[0,0,0], [0,0,1], [0,1,0]])/np.sqrt(2) lambda_7=qtp.Qobj([[0,0,0], [0,0,-1j], [0,1j,0]])/np.sqrt(2) lambda_8=qtp.Qobj([[1,0,0], [0,1,0], [0,0,-2]])/np.sqrt(6) lambdas=[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4,lambda_5,lambda_6,lambda_7,lambda_8] return lambdas[index] def transform_basis(C,S): # C (operator or superoperator) # S: matrix change of basis if C.type == 'oper': return S.dag()*C*S elif C.type == 'super': S=qtp.to_super(S) return S.dag()*C*S def get_PTM_or_GTM(S,specification): # Input: superoperator S in Liouville representation for 2 qutrits # Output: Gellmann Transfer Matrix of S, defined as # GTM_ij = Tr(lambda_i*S(lambda_j)) if specification=='PTM': dim=4 elif specification=='GTM': dim=9 GTM=np.zeros([dim**2,dim**2],dtype=complex) for i in range(0,dim): lambda_i=get_normalized_gellmann_matrices(i,specification) for i_prime in range(0,dim): lambda_i_prime=get_normalized_gellmann_matrices(i_prime,specification) lambda_i_combined=qtp.operator_to_vector(qtp.tensor(lambda_i,lambda_i_prime)) for j in range(0,dim): lambda_j=get_normalized_gellmann_matrices(j,specification) for j_prime in range(0,dim): lambda_j_prime=get_normalized_gellmann_matrices(j_prime,specification) lambda_j_combined=qtp.operator_to_vector(qtp.tensor(lambda_j,lambda_j_prime)) GTM[i*dim+i_prime,j*dim+j_prime]=(lambda_i_combined.dag()*S*lambda_j_combined).data[0,0] return GTM def extract_T_matrix(PTM): # For any numpy matrix it returns the submatrix obtained deleting the first column and the first row. PTM=np.delete(PTM,0,0) PTM=np.delete(PTM,0,1) return PTM def time_series(U_final_vec_timeseries,S,weights,repetitions,samplingpoints_gaussian_q0,axis_overrotation): trace_PTM_vec=[] trace_GTM_vec=[] for n_rep in range(repetitions): print(n_rep) U_final_vec=np.copy(U_final_vec_timeseries) for i in range(len(U_final_vec)): if U_final_vec[i].type == 'oper': U_final_vec[i] = qtp.to_super(U_final_vec[i]) # weighted averaging needs to be done for superoperators over_rot=czf.qubit_to_2qutrit_unitary(czf.bloch_sphere_rotation(samplingpoints_gaussian_q0[i], axis_overrotation),'right') U_final_vec[i]=qtp.to_super(over_rot)*U_final_vec[i] U_final_vec[i] = U_final_vec[i] ** n_rep U_final_vec[i] = U_final_vec[i] * weights[i] U_superop_average = np.sum(np.array(U_final_vec)) # computing resulting average propagator #print(czf.verify_CPTP(U_superop_average)) U_superop_average=czf.correct_phases(U_superop_average) U_superop_average=transform_basis(U_superop_average,S.dag()) GTM=get_PTM_or_GTM(U_superop_average,'GTM') PTM=get_PTM_or_GTM(U_superop_average,'PTM') T_GTM=extract_T_matrix(GTM) T_PTM=extract_T_matrix(PTM) trace_PTM=np.trace(T_PTM) trace_GTM=np.trace(T_GTM) trace_GTM_vec.append(trace_GTM) trace_PTM_vec.append(trace_PTM) return trace_GTM_vec, trace_PTM_vec class CZ_trajectory_superoperator(det.Soft_Detector): def __init__(self, fluxlutman, noise_parameters_CZ, fitted_stepresponse_ty, qois='all'): """ Detector for simulating a CZ trajectory. Args: fluxlutman (instr): an instrument that contains the parameters required to generate the waveform for the trajectory, and the hamiltonian as well. noise_parameters_CZ: instrument that contains the noise parameters, plus some more fitted_stepresponse_ty: list of two elements, corresponding to the time t and the step response in volts along the y axis qois: list list of quantities of interest, this can be used to return only a select set of values. The list should contain entries of "value_names". if qois=='all', all quantities are returned. Structure: compute input parameters necessary to compute time evolution (propagator), then compute quantities of interest Returns: quantities of interest """ super().__init__() # load instruments and parameters self.fluxlutman = fluxlutman self.noise_parameters_CZ = noise_parameters_CZ self.fitted_stepresponse_ty=fitted_stepresponse_ty # list of 2 elements: stepresponse (=y) # as a function of time (=t) self.noise_parameters_CZ.T1_q1(self.noise_parameters_CZ.T1_q0()) ### define value names and units # std simulations of CZ self.value_names = ['Cost func', 'Cond phase', 'L1', 'L2', 'avgatefid_pc', 'avgatefid_compsubspace_pc', 'phase_q0', 'phase_q1', 'avgatefid_compsubspace', 'avgatefid_compsubspace_pc_onlystaticqubit', 'population_02_state', 'cond_phase02', 'coherent_leakage11', 'offset_difference', 'missing_fraction'] self.value_units = ['a.u.', 'deg', '%', '%', '%', '%', 'deg', 'deg', '%', '%', '%', 'deg', '%', '%', '%'] # eigenvalues of 1 single CZ in the case of time_series, otherwise of n repetitions if spectral_tomo_nonmarkovian for i in range(1,81): self.value_names.append('eig_real_GTM_'+str(i)) for i in range(1,81): self.value_names.append('eig_imag_GTM_'+str(i)) for i in range(1,16): self.value_names.append('eig_real_PTM_'+str(i)) for i in range(1,16): self.value_names.append('eig_imag_PTM_'+str(i)) for i in range(0,95*2): self.value_units.append('a.u.') # add traces if not self.noise_parameters_CZ.time_series(): self.value_names.append('trace_PTM') self.value_names.append('trace_GTM') for i in [0,1]: self.value_units.append('a.u.') else: for i in range(noise_parameters_CZ.repetitions()): self.value_names.append('trace_GTM_'+str(i)) self.value_units.append('a.u.') for i in range(noise_parameters_CZ.repetitions()): self.value_names.append('trace_PTM_'+str(i)) self.value_units.append('a.u.') # filter self.qois = qois if self.qois != 'all': self.qoi_mask = [self.value_names.index(q) for q in qois] self.value_names = list(np.array(self.value_names)[self.qoi_mask]) self.value_units = list(np.array(self.value_units)[self.qoi_mask]) def acquire_data_point(self, **kw): ### Discretize average (integral) over a Gaussian distribution mean = 0 sigma_q0 = self.noise_parameters_CZ.sigma_q0() sigma_q1 = self.noise_parameters_CZ.sigma_q1() # one for each qubit, in units of Phi_0 qoi_plot = [] # used to verify convergence properties. If len(n_sampling_gaussian_vec)==1, it is useless n_sampling_gaussian_vec = self.noise_parameters_CZ.n_sampling_gaussian_vec() # 11 guarantees excellent convergence. # We choose it odd so that the central point of the Gaussian is included. # Always choose it odd for n_sampling_gaussian in n_sampling_gaussian_vec: # If sigma=0 there's no need for sampling if sigma_q0 != 0: samplingpoints_gaussian_q0 =
np.linspace(-5*sigma_q0,5*sigma_q0,n_sampling_gaussian)
numpy.linspace
# author: <NAME> <<EMAIL>> # license: MIT '''module for implementation utilities''' import numpy as np from numba import njit # constants DEGREE2_SPHERE = 60**4//100/np.pi ARCMIN2_SPHERE = 60**6//100/np.pi ARCSEC2_SPHERE = 60**8//100/np.pi def restrict_interval(f, x, xmin, xmax): '''restrict a function to an interval using interpolation''' # get the extra axes of the function *a, n = np.shape(f) # the x grid might not coincide with the interval # get points which are strictly in the interior of the interval interior = np.greater(x, xmin) & np.less(x, xmax) # create an array for the restricted function # length of last axis is number of interior points plus 2 boundary points f_ = np.empty_like(f, shape=(*a, np.sum(interior)+2)) # restrict function on each extra axis # first, fill in the strict interior of the function # then interpolate on the boundary for each extra function axis np.compress(interior, f, axis=-1, out=f_[..., 1:-1]) for i in np.ndindex(*a): f_[i][[0, -1]] = np.interp([xmin, xmax], x, f[i]) # get the x values of the restriction x_ = np.concatenate([[xmin], np.extract(interior, x), [xmax]]) return f_, x_ def cumtrapz(f, x, out=None): '''cumulative trapezoidal rule along last axis''' if out is None: out = np.empty_like(f) np.cumsum((f[..., 1:] + f[..., :-1])/2*
np.diff(x)
numpy.diff
from typing import Dict, Tuple, Optional import numpy as np from sklearn.utils import check_random_state, check_array from sklearn.base import BaseEstimator, TransformerMixin from scipy import stats from scipy.stats import norm, uniform, ortho_group, entropy as sci_entropy from scipy.interpolate import interp1d from rbig.information.total_corr import information_reduction from rbig.information.entropy import entropy_marginal from rbig.utils import make_cdf_monotonic from sklearn.decomposition import PCA import sys import logging from rbig.transform.gaussian import ( gaussian_transform, gaussian_fit_transform, gaussian_inverse_transform, gaussian_transform_jacobian, ) logging.basicConfig( level=logging.INFO, stream=sys.stdout, format="%(asctime)s: %(levelname)s: %(message)s", ) logger = logging.getLogger() # logger.setLevel(logging.INFO) class RBIG(BaseEstimator, TransformerMixin): """ Rotation-Based Iterative Gaussian-ization (RBIG). This algorithm transforms any multidimensional data to a Gaussian. It also provides a sampling mechanism whereby you can provide multidimensional gaussian data and it will generate multidimensional data in the original domain. You can calculate the probabilities as well as have access to a few information theoretic measures like total correlation and entropy. Parameters ---------- n_layers : int, optional (default 1000) The number of steps to run the sequence of marginal gaussianization and then rotation rotation_type : {'PCA', 'random'} The rotation applied to the marginally Gaussian-ized data at each iteration. - 'pca' : a principal components analysis rotation (PCA) - 'random' : random rotations - 'ica' : independent components analysis (ICA) pdf_resolution : int, optional (default 1000) The number of points at which to compute the gaussianized marginal pdfs. The functions that map from original data to gaussianized data at each iteration have to be stored so that we can invert them later - if working with high-dimensional data consider reducing this resolution to shorten computation time. method : str, default='custom' pdf_extension : int, optional (default 0.1) The fraction by which to extend the support of the Gaussian-ized marginal pdf compared to the empirical marginal PDF. verbose : int, optional If specified, report the RBIG iteration number every progress_report_interval iterations. zero_tolerance : int, optional (default=60) The number of layers where the total correlation should not change between RBIG iterations. If there is no zero_tolerance, then the method will stop iterating regardless of how many the user sets as the n_layers. rotation_kwargs : dict, optional (default=None) Any extra keyword arguments that you want to pass into the rotation algorithms (i.e. ICA or PCA). See the respective algorithms on scikit-learn for more details. random_state : int, optional (default=None) Control the seed for any randomization that occurs in this algorithm. entropy_correction : bool, optional (default=True) Implements the shannon-millow correction to the entropy algorithm Attributes ---------- gauss_data : array, (n_samples x d_dimensions) The gaussianized data after the RBIG transformation residual_info : array, (n_layers) The cumulative amount of information between layers. It should exhibit a curve with a plateau to indicate convergence. rotation_matrix = dict, (n_layers) A rotation matrix that was calculated and saved for each layer. gauss_params = dict, (n_layers) The cdf and pdf for the gaussianization parameters used for each layer. References ---------- * Original Paper : Iterative Gaussianization: from ICA to Random Rotations https://arxiv.org/abs/1602.00229 * Original MATLAB Implementation http://isp.uv.es/rbig.html * Original Python Implementation https://github.com/spencerkent/pyRBIG """ def __init__( self, n_layers: int = 1_000, rotation_type: str = "PCA", method: str = "custom", pdf_resolution: int = 1_000, pdf_extension: int = 10, random_state: Optional[int] = None, verbose: int = 0, tolerance: int = None, zero_tolerance: int = 60, entropy_correction: bool = True, rotation_kwargs: Dict = {}, base="gauss", n_quantiles: int = 1_000, ) -> None: self.n_layers = n_layers self.rotation_type = rotation_type self.method = method self.pdf_resolution = pdf_resolution self.pdf_extension = pdf_extension self.random_state = random_state self.verbose = verbose self.tolerance = tolerance self.zero_tolerance = zero_tolerance self.entropy_correction = entropy_correction self.rotation_kwargs = rotation_kwargs self.base = base self.n_quantiles = n_quantiles def fit(self, X): """ Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ X = check_array(X, ensure_2d=True) self._fit(X) return self def _fit(self, data): """ Fit the model with data. Parameters ---------- data : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ data = check_array(data, ensure_2d=True) if self.pdf_extension is None: self.pdf_extension = 10 if self.pdf_resolution is None: self.pdf_resolution = 2 * np.round(np.sqrt(data.shape[0])) self.X_fit_ = data gauss_data = np.copy(data) n_samples, n_dimensions = np.shape(data) if self.zero_tolerance is None: self.zero_tolerance = self.n_layers + 1 if self.tolerance is None: self.tolerance = self._get_information_tolerance(n_samples) logging.debug("Data (shape): {}".format(np.shape(gauss_data))) # Initialize stopping criteria (residual information) self.residual_info = list() self.gauss_params = list() self.rotation_matrix = list() # Loop through the layers logging.debug("Running: Looping through the layers...") for layer in range(self.n_layers): if self.verbose > 2: print("Completed {} iterations of RBIG.".format(layer + 1)) # ------------------ # Gaussian(-ization) # ------------------ layer_params = list() for idim in range(n_dimensions): gauss_data[:, idim], params = gaussian_fit_transform( gauss_data[:, idim], method=self.method, params={ "support_extension": self.pdf_extension, "n_quantiles": self.n_quantiles, }, ) # gauss_data[:, idim], params = self.univariate_make_normal( # gauss_data[:, idim], self.pdf_extension, self.pdf_resolution # ) if self.verbose > 2: logging.info( f"Gauss Data (After Marginal): {gauss_data.min()}, {gauss_data.max()}" ) # append the parameters layer_params.append(params) self.gauss_params.append(layer_params) gauss_data_prerotation = gauss_data.copy() if self.verbose > 2: logging.info( f"Gauss Data (prerotation): {gauss_data.min()}, {gauss_data.max()}" ) # -------- # Rotation # -------- if self.rotation_type == "random": rand_ortho_matrix = ortho_group.rvs(n_dimensions) gauss_data = np.dot(gauss_data, rand_ortho_matrix) self.rotation_matrix.append(rand_ortho_matrix) elif self.rotation_type.lower() == "pca": # Initialize PCA model pca_model = PCA(random_state=self.random_state, **self.rotation_kwargs) logging.debug("Size of gauss_data: {}".format(gauss_data.shape)) gauss_data = pca_model.fit_transform(gauss_data) self.rotation_matrix.append(pca_model.components_.T) else: raise ValueError( f"Rotation type '{self.rotation_type}' not recognized." ) # -------------------------------- # Information Reduction # -------------------------------- self.residual_info.append( information_reduction( gauss_data, gauss_data_prerotation, self.tolerance ) ) # -------------------------------- # Stopping Criteria # -------------------------------- if self._stopping_criteria(layer): break else: pass self.residual_info = np.array(self.residual_info) self.gauss_data = gauss_data self.mutual_information = np.sum(self.residual_info) self.n_layers = len(self.gauss_params) return self def _stopping_criteria(self, layer): """Stopping criteria for the the RBIG algorithm. Parameter --------- layer : int Returns ------- verdict = """ stop_ = False if layer > self.zero_tolerance: aux_residual = np.array(self.residual_info) if np.abs(aux_residual[-self.zero_tolerance :]).sum() == 0: logging.debug("Done! aux: {}".format(aux_residual)) # delete the last 50 layers for saved parameters self.rotation_matrix = self.rotation_matrix[:-50] self.gauss_params = self.gauss_params[:-50] stop_ = True else: stop_ = False return stop_ def transform(self, X): """Complete transformation of X given the learned Gaussianization parameters. This assumes that the data follows a similar distribution as the data that was original used to fit the RBIG Gaussian-ization parameters. Parameters ---------- X : array, (n_samples, n_dimensions) The data to be transformed (Gaussianized) Returns ------- X_transformed : array, (n_samples, n_dimensions) The new transformed data in the Gaussian domain """ X = check_array(X, ensure_2d=True, copy=True) for igauss, irotation in zip(self.gauss_params, self.rotation_matrix): # ---------------------------- # Marginal Gaussianization # ---------------------------- for idim in range(X.shape[1]): X[:, idim] = gaussian_transform(X[:, idim], igauss[idim]) # ---------------------- # Rotation # ---------------------- X = np.dot(X, irotation) return X def inverse_transform(self, X): """Complete transformation of X in the given the learned Gaussianization parameters. Parameters ---------- X : array, (n_samples, n_dimensions) The X that follows a Gaussian distribution to be transformed to data in the original input space. Returns ------- X_input_domain : array, (n_samples, n_dimensions) The new transformed X in the original input space. """ X = check_array(X, ensure_2d=True, copy=True) for igauss, irotation in zip( self.gauss_params[::-1], self.rotation_matrix[::-1] ): # ---------------------- # Rotation # ---------------------- X = np.dot(X, irotation.T) # ---------------------------- # Marginal Gaussianization # ---------------------------- for idim in range(X.shape[1]): X[:, idim] = gaussian_inverse_transform(X[:, idim], igauss[idim]) return X def _get_information_tolerance(self, n_samples): """Precompute some tolerances for the tails.""" xxx = np.logspace(2, 8, 7) yyy = [0.1571, 0.0468, 0.0145, 0.0046, 0.0014, 0.0001, 0.00001] return interp1d(xxx, yyy)(n_samples) def jacobian(self, X: np.ndarray): """Calculates the jacobian matrix of the X. Parameters ---------- X : array, (n_samples, n_features) The input array to calculate the jacobian using the Gaussianization params. return_X_transform : bool, default: False Determines whether to return the transformed Data. This is computed along with the Jacobian to save time with the iterations Returns ------- jacobian : array, (n_samples, n_features, n_features) The jacobian of the data w.r.t. each component for each direction X_transformed : array, (n_samples, n_features) (optional) The transformed data in the Gaussianized space """ X = check_array(X, ensure_2d=True, copy=True) n_samples, n_components = X.shape X_logdetjacobian = np.zeros((n_samples, n_components, self.n_layers)) for ilayer, (igauss, irotation) in enumerate( zip(self.gauss_params, self.rotation_matrix) ): # ---------------------------- # Marginal Gaussianization # ---------------------------- for idim in range(X.shape[1]): # marginal gaussian transformation ( X[:, idim], X_logdetjacobian[:, idim, ilayer], ) = gaussian_transform_jacobian(X[:, idim], igauss[idim]) # ---------------------- # Rotation # ---------------------- X = np.dot(X, irotation) return X, X_logdetjacobian def log_det_jacobian(self, X: np.ndarray): """Calculates the jacobian matrix of the X. Parameters ---------- X : array, (n_samples, n_features) The input array to calculate the jacobian using the Gaussianization params. return_X_transform : bool, default: False Determines whether to return the transformed Data. This is computed along with the Jacobian to save time with the iterations Returns ------- jacobian : array, (n_samples, n_features, n_features) The jacobian of the data w.r.t. each component for each direction X_transformed : array, (n_samples, n_features) (optional) The transformed data in the Gaussianized space """ X = check_array(X, ensure_2d=True, copy=True) X += 1e-1 * np.random.rand(X.shape[0], X.shape[1]) n_samples, n_components = X.shape X_logdetjacobian = np.zeros((n_samples, n_components)) X_ldj = np.zeros((n_samples, n_components)) self.jacs_ = list() self.jacs_sum_ = list() for ilayer, (igauss, irotation) in enumerate( zip(self.gauss_params, self.rotation_matrix) ): # ---------------------------- # Marginal Gaussianization # ---------------------------- for idim in range(X.shape[1]): # marginal gaussian transformation (X[:, idim], X_ldj[:, idim],) = gaussian_transform_jacobian( X[:, idim], igauss[idim] ) # print( # X_logdetjacobian[:, idim].min(), # X_logdetjacobian[:, idim].max(), # X_ldj.min(), # X_ldj.max(), # ) msg = f"X: {np.min(X[:, idim]):.5f}, {np.max(X[:, idim]):.5f}" msg += f"\nLayer: {ilayer, idim}" assert not np.isinf(X_logdetjacobian).any(), msg # X_ldj = np.clip(X_ldj, -2, 2) # ---------------------- # Rotation # ---------------------- X_logdetjacobian += X_ldj.copy() # X_logdetjacobian = np.clip(X_logdetjacobian, -10, 10) self.jacs_.append(np.percentile(X_ldj, [0, 5, 10, 50, 90, 95, 100])) self.jacs_sum_.append( np.percentile(X_logdetjacobian, [0, 5, 10, 50, 90, 95, 100]) ) X = np.dot(X, irotation) return X, X_logdetjacobian def predict_proba(self, X): """ Computes the probability of the original data under the generative RBIG model. Parameters ---------- X : array, (n_samples x n_components) The points that the pdf is evaluated n_trials : int, (default : 1) The number of times that the jacobian is evaluated and averaged TODO: make sure n_trials is an int TODO: make sure n_trials is 1 or more chunksize : int, (default: 2000) The batchsize to calculate the jacobian matrix. TODO: make sure chunksize is an int TODO: make sure chunk size is greater than 0 domain : {'input', 'gauss', 'both'} The domain to calculate the PDF. - 'input' : returns the original domain (default) - 'gauss' : returns the gaussian domain - 'both' : returns both the input and gauss domain Returns ------- prob_data_input_domain : array, (n_samples, 1) The probability """ X = check_array(X, ensure_2d=True, copy=True) # get transformation and jacobian Z, X_ldj = self.log_det_jacobian(X) logging.debug(f"Z: {np.percentile(Z, [0, 5, 50, 95, 100])}") # calculate the probability Z_logprob = stats.norm.logpdf(Z) logging.debug(f"Z_logprob: {np.percentile(Z_logprob, [0, 5, 50, 95, 100])}") logging.debug(f"X_ldj: {np.percentile(X_ldj, [0, 5, 50, 95, 100])}") # calculate total probability X_logprob = (Z_logprob + X_ldj).sum(-1) logging.debug(f"X_logprob: {
np.percentile(X_logprob, [0, 5, 50, 95, 100])
numpy.percentile
# %load code/engram_functions.py # Import dependencies import xlrd import numpy as np from sympy.utilities.iterables import multiset_permutations import matplotlib import matplotlib.pyplot as plt import seaborn as sns def permute_optimize_keys(fixed_letters, fixed_letter_indices, open_letter_indices, all_letters, keys, data_matrix, bigrams, bigram_frequencies, min_score=0, verbose=False): """ Find all permutations of letters, optimize layout, and generate output. """ matrix_selected = select_keys(data_matrix, keys, verbose=False) unassigned_letters = [] for all_letter in all_letters: if all_letter not in fixed_letters: unassigned_letters.append(all_letter) if len(unassigned_letters) == len(open_letter_indices): break letter_permutations = permute_letters(unassigned_letters, verbose) if verbose: print("{0} permutations".format(len(letter_permutations))) top_permutation, top_score = optimize_layout(np.array([]), matrix_selected, bigrams, bigram_frequencies, letter_permutations, open_letter_indices, fixed_letters, fixed_letter_indices, min_score, verbose) return top_permutation, top_score, letter_permutations def permute_optimize(starting_permutation, letters, all_letters, all_keys, data_matrix, bigrams, bigram_frequencies, min_score=0, verbose=False): """ Find all permutations of letters, optimize layout, and generate output. """ matrix_selected = select_keys(data_matrix, all_keys, verbose=False) open_positions = [] fixed_positions = [] open_letters = [] fixed_letters = [] assigned_letters = [] for iletter, letter in enumerate(letters): if letter.strip() == "": open_positions.append(iletter) for all_letter in all_letters: if all_letter not in letters and all_letter not in assigned_letters: open_letters.append(all_letter) assigned_letters.append(all_letter) break else: fixed_positions.append(iletter) fixed_letters.append(letter) letter_permutations = permute_letters(open_letters, verbose) if verbose: print("{0} permutations".format(len(letter_permutations))) top_permutation, top_score = optimize_layout(starting_permutation, matrix_selected, bigrams, bigram_frequencies, letter_permutations, open_positions, fixed_letters, fixed_positions, min_score, verbose) return top_permutation, top_score def select_keys(data_matrix, keys, verbose=False): """ Select keys to quantify pairwise relationships. """ # Extract pairwise entries for the keys: nkeys = len(keys) Select = np.zeros((nkeys, nkeys)) u = 0 for i in keys: u += 1 v = 0 for j in keys: v += 1 Select[u-1,v-1] = data_matrix[i-1,j-1] # Normalize matrix with min-max scaling to a range with max 1: newMin = np.min(Select) / np.max(Select) newMax = 1.0 Select = newMin + (Select - np.min(Select)) * (newMax - newMin) / (np.max(Select) - np.min(Select)) if verbose: # Heatmap of array heatmap(data=Select, title="Matrix heatmap", xlabel="Key 1", ylabel="Key 2", print_output=False); plt.show() return Select def permute_letters(letters, verbose=False): """ Find all permutations of a given set of letters (max: 8-10 letters). """ letter_permutations = [] for p in multiset_permutations(letters): letter_permutations.append(p) letter_permutations = np.array(letter_permutations) return letter_permutations def score_layout(data_matrix, letters, bigrams, bigram_frequencies, verbose=False): """ Compute the score for a given letter-key layout (NOTE normalization step). """ # Create a matrix of bigram frequencies: nletters = len(letters) F2 = np.zeros((nletters, nletters)) # Find the bigram frequency for each ordered pair of letters in the permutation: for i1 in range(nletters): for i2 in range(nletters): bigram = letters[i1] + letters[i2] i2gram = np.where(bigrams == bigram) if np.size(i2gram) > 0: F2[i1, i2] = bigram_frequencies[i2gram][0] # Normalize matrices with min-max scaling to a range with max 1: newMax = 1 minF2 = np.min(F2) maxF2 = np.max(F2) newMin2 = minF2 / maxF2 F2 = newMin + (F2 - minF2) * (newMax - newMin2) / (maxF2 - minF2) # Compute the score for this permutation: score = np.average(data_matrix * F2) if verbose: print("Score for letter permutation {0}: {1}".format(letters, score)) return score def tally_bigrams(input_text, bigrams, normalize=True, verbose=False): """ Compute the score for a given letter-key layout (NOTE normalization step). """ # Find the bigram frequency for each ordered pair of letters in the input text #input_text = [str.upper(str(x)) for x in input_text] input_text = [str.upper(x) for x in input_text] nchars = len(input_text) F = np.zeros(len(bigrams)) for ichar in range(0, nchars-1): bigram = input_text[ichar] + input_text[ichar + 1] i2gram = np.where(bigrams == bigram) if np.size(i2gram) > 0: F[i2gram] += 1 # Normalize matrix with min-max scaling to a range with max 1: if normalize: newMax = 1 newMin = np.min(F) / np.max(F) F = newMin + (F - np.min(F)) * (newMax - newMin) / (np.max(F) - np.min(F)) bigram_frequencies_for_input = F if verbose: print("Bigram frequencies for input: {0}".format(bigram_frequencies_for_input)) return bigram_frequencies_for_input def tally_layout_samefinger_bigrams(layout, bigrams, bigram_frequencies, nkeys=32, verbose=False): """ Tally the number of same-finger bigrams within (a list of 24 letters representing) a layout: ['P','Y','O','U','C','I','E','A','G','K','J','X','M','D','L','B','R','T','N','S','H','V','W','F'] """ if nkeys == 32: # Left: Right: # 1 2 3 4 25 28 13 14 15 16 31 # 5 6 7 8 26 29 17 18 19 20 32 # 9 10 11 12 27 30 21 22 23 24 same_finger_keys = [[1,5],[5,9],[1,9], [2,6],[6,10],[2,10], [3,7],[7,11],[3,11], [4,8],[8,12],[4,12], [25,26],[26,27],[25,27], [28,29],[29,30],[28,30], [31,32], [4,25],[4,26],[4,27], [8,25],[8,26],[8,27], [12,25],[12,26],[12,27], [13,28],[13,29],[13,30], [17,28],[17,29],[17,30], [21,28],[21,29],[21,30], [31,16],[31,20],[31,24], [32,16],[32,20],[32,24], [13,17],[17,21],[13,21], [14,18],[18,22],[14,22], [15,19],[19,23],[15,23], [16,20],[20,24],[16,24]] elif nkeys == 24: # 1 2 3 4 13 14 15 16 # 5 6 7 8 17 18 19 20 # 9 10 11 12 21 22 23 24 same_finger_keys = [[1,5],[5,9],[1,9], [2,6],[6,10],[2,10], [3,7],[7,11],[3,11], [4,8],[8,12],[4,12], [13,17],[17,21],[13,21], [14,18],[18,22],[14,22], [15,19],[19,23],[15,23], [16,20],[20,24],[16,24]] layout = [str.upper(x) for x in layout] max_frequency = 1.00273E+11 samefinger_bigrams = [] samefinger_bigram_counts = [] for bigram_keys in same_finger_keys: bigram1 = layout[bigram_keys[0]-1] + layout[bigram_keys[1]-1] bigram2 = layout[bigram_keys[1]-1] + layout[bigram_keys[0]-1] i2gram1 = np.where(bigrams == bigram1) i2gram2 = np.where(bigrams == bigram2) if np.size(i2gram1) > 0: samefinger_bigrams.append(bigram1) samefinger_bigram_counts.append(max_frequency * bigram_frequencies[i2gram1] / np.max(bigram_frequencies)) if np.size(i2gram2) > 0: samefinger_bigrams.append(bigram2) samefinger_bigram_counts.append(max_frequency * bigram_frequencies[i2gram2] / np.max(bigram_frequencies)) samefinger_bigrams_total = np.sum([x[0] for x in samefinger_bigram_counts]) if verbose: print(" Total same-finger bigram frequencies: {0:15.0f}".format(samefinger_bigrams_total)) return samefinger_bigrams, samefinger_bigram_counts, samefinger_bigrams_total def tally_layout_bigram_rolls(layout, bigrams, bigram_frequencies, nkeys=32, verbose=False): """ Tally the number of bigrams that engage little-to-index finger inward rolls for (a list of 24 or 32 letters representing) a layout, within the four columns of one hand, or any column across two hands. layout = ['P','Y','O','U','C','I','E','A','G','K','J','X','L','D','B','V','N','T','R','S','H','M','W','F'] bigram_rolls, bigram_roll_counts, bigram_rolls_total = tally_layout_bigram_rolls(layout, bigrams, bigram_frequencies, nkeys=24, verbose=True) """ if nkeys == 32: # Left: Right: # 1 2 3 4 25 28 13 14 15 16 31 # 5 6 7 8 26 29 17 18 19 20 32 # 9 10 11 12 27 30 21 22 23 24 roll_keys = [[1,2],[2,3],[3,4], [5,6],[6,7],[7,8], [9,10],[10,11],[11,12], [16,15],[15,14],[14,13], [20,19],[19,18],[18,17], [24,23],[23,22],[22,21], [1,3],[2,4],[1,4], [5,7],[6,8],[5,8], [9,11],[10,12],[9,12], [16,14],[15,13],[16,13], [20,18],[19,17],[20,17], [24,22],[23,21],[24,21], [1,6],[1,7],[1,8],[2,7],[2,8],[3,8], [5,2],[5,3],[5,4],[6,3],[6,4],[7,4], [5,10],[5,11],[5,12],[6,11],[6,12],[7,12], [9,6],[9,7],[9,8],[10,7],[10,8],[11,8], [16,19],[16,18],[16,17],[15,18],[15,17],[14,17], [20,15],[20,14],[20,13],[19,14],[19,13],[18,13], [20,23],[20,22],[20,21],[19,22],[19,21],[18,21], [24,19],[24,18],[24,17],[23,18],[23,17],[22,17], [1,10],[1,11],[1,12],[2,11],[2,12],[3,12], [9,2],[9,3],[9,4],[10,3],[10,4],[11,4], [16,23],[16,22],[16,21],[15,22],[15,21],[14,21], [24,15],[24,14],[24,13],[23,14],[23,13],[22,13]] for i in [1,2,3,4,5,6,7,8,9,10,11,12, 25,26,27]: for j in [13,14,15,16,17,18,19,20,21,22,23,24, 28,29,30,31,32]: roll_keys.append([i,j]) for i in [13,14,15,16,17,18,19,20,21,22,23,24, 28,29,30,31,32]: for j in [1,2,3,4,5,6,7,8,9,10,11,12, 25,26,27]: roll_keys.append([i,j]) elif nkeys == 24: # 1 2 3 4 13 14 15 16 # 5 6 7 8 17 18 19 20 # 9 10 11 12 21 22 23 24 roll_keys = [[1,2],[2,3],[3,4], [5,6],[6,7],[7,8], [9,10],[10,11],[11,12], [16,15],[15,14],[14,13], [20,19],[19,18],[18,17], [24,23],[23,22],[22,21], [1,3],[2,4],[1,4], [5,7],[6,8],[5,8], [9,11],[10,12],[9,12], [16,14],[15,13],[16,13], [20,18],[19,17],[20,17], [24,22],[23,21],[24,21], [1,6],[1,7],[1,8],[2,7],[2,8],[3,8], [5,2],[5,3],[5,4],[6,3],[6,4],[7,4], [5,10],[5,11],[5,12],[6,11],[6,12],[7,12], [9,6],[9,7],[9,8],[10,7],[10,8],[11,8], [16,19],[16,18],[16,17],[15,18],[15,17],[14,17], [20,15],[20,14],[20,13],[19,14],[19,13],[18,13], [20,23],[20,22],[20,21],[19,22],[19,21],[18,21], [24,19],[24,18],[24,17],[23,18],[23,17],[22,17], [1,10],[1,11],[1,12],[2,11],[2,12],[3,12], [9,2],[9,3],[9,4],[10,3],[10,4],[11,4], [16,23],[16,22],[16,21],[15,22],[15,21],[14,21], [24,15],[24,14],[24,13],[23,14],[23,13],[22,13]] for i in range(0,12): for j in range(12,24): roll_keys.append([i,j]) for i in range(12,24): for j in range(0,12): roll_keys.append([i,j]) layout = [str.upper(x) for x in layout] max_frequency = 1.00273E+11 bigram_rolls = [] bigram_roll_counts = [] for bigram_keys in roll_keys: bigram1 = layout[bigram_keys[0]-1] + layout[bigram_keys[1]-1] bigram2 = layout[bigram_keys[1]-1] + layout[bigram_keys[0]-1] i2gram1 = np.where(bigrams == bigram1) i2gram2 = np.where(bigrams == bigram2) if
np.size(i2gram1)
numpy.size
#!/usr/bin/env python # -*- coding: utf-8 -*- """overall code framework is adapped from https://github.com/weigq/3d_pose_baseline_pytorch""" from __future__ import print_function, absolute_import, division import os import time import torch import torch.nn as nn import torch.optim from torch.autograd import Variable import numpy as np from progress.bar import Bar import pandas as pd from utils import loss_funcs, utils as utils from utils.opt import Options import utils.GCN_Architecture as nnmodel import utils.data_utils as data_utils from data import DATA from model_methods import MODEL_METHODS def main(opt): start_epoch = 0 err_best = 10000 lr_now = opt.lr is_cuda = torch.cuda.is_available() print(">>> loading data") input_n = opt.input_n output_n = opt.output_n dct_n = opt.dct_n sample_rate = opt.sample_rate ##################################################### # Load data ##################################################### data = DATA(opt.dataset, opt.data_dir) out_of_distribution = data.get_dct_and_sequences(input_n, output_n, sample_rate, dct_n, opt.out_of_distribution) train_loader, val_loader, OoD_val_loader, test_loaders = data.get_dataloaders(opt.train_batch, opt.test_batch, opt.job) print(">>> data loaded !") print(">>> train data {}".format(data.train_dataset.__len__())) if opt.dataset=='h3.6m': print(">>> validation data {}".format(data.val_dataset.__len__())) ##################################################### # Define script name ##################################################### script_name = os.path.basename(__file__).split('.')[0] script_name = script_name + "_{}_in{:d}_out{:d}_dctn{:d}_dropout_{}".format(str(opt.dataset), opt.input_n, opt.output_n, opt.dct_n, str(opt.dropout)) if out_of_distribution: script_name = script_name + "_OoD_{}_".format(str(opt.out_of_distribution)) if opt.variational: script_name = script_name + "_var_lambda_{}_nz_{}_lr_{}_n_layers_{}".format(str(opt.lambda_), str(opt.n_z), str(opt.lr), str(opt.num_decoder_stage)) ################################################################## # Instantiate model, and methods used fro training and valdation ################################################################## print(">>> creating model") model = nnmodel.GCN(input_feature=dct_n, hidden_feature=opt.linear_size, p_dropout=opt.dropout, num_stage=opt.num_stage, node_n=data.node_n, variational=opt.variational, n_z=opt.n_z, num_decoder_stage=opt.num_decoder_stage) methods = MODEL_METHODS(model, is_cuda) if opt.is_load: start_epoch, err_best, lr_now = methods.load_weights(opt.load_path) print(">>> total params: {:.2f}M".format(sum(p.numel() for p in model.parameters()) / 1000000.0)) methods.optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) for epoch in range(start_epoch, opt.epochs): ##################################################################################################################################################### # Training step ##################################################################################################################################################### if (epoch + 1) % opt.lr_decay == 0: lr_now = utils.lr_decay(methods.optimizer, lr_now, opt.lr_gamma) print('==========================') print('>>> epoch: {} | lr: {:.5f}'.format(epoch + 1, lr_now)) ret_log = np.array([epoch + 1]) head = np.array(['epoch']) # per epoch lr_now, t_l, t_l_joint, t_l_vlb, t_l_latent, t_e, t_3d = methods.train(train_loader, dataset=opt.dataset, input_n=input_n, lr_now=lr_now, cartesian=data.cartesian, lambda_=opt.lambda_,max_norm=opt.max_norm, dim_used=data.train_dataset.dim_used, dct_n=dct_n) ret_log = np.append(ret_log, [lr_now, t_l, t_l_joint, t_l_vlb, t_l_latent, t_e, t_3d]) head = np.append(head, ['lr', 't_l', 't_l_joint', 't_l_vlb', 't_l_latent', 't_e', 't_3d']) ##################################################################################################################################################### # Evaluate on validation set; Keep track of best, either via val set, OoD val set (in the case of OoD), or train set in the case of the CMU dataset ##################################################################################################################################################### if opt.dataset == 'h3.6m': v_e, v_3d = methods.val(val_loader, input_n=input_n, dim_used=data.train_dataset.dim_used, dct_n=dct_n) ret_log = np.append(ret_log, [v_e, v_3d]) head = np.append(head, ['v_e', 'v_3d']) is_best, err_best = utils.check_is_best(v_e, err_best) if out_of_distribution: OoD_v_e, OoD_v_3d = methods.val(OoD_val_loader, input_n=input_n, dim_used=data.train_dataset.dim_used, dct_n=dct_n) ret_log = np.append(ret_log, [OoD_v_e, OoD_v_3d]) head = np.append(head, ['OoD_v_e', 'OoD_v_3d']) else: is_best, err_best = utils.check_is_best(t_e, err_best) ##################################################### # Evaluate on test set ##################################################### test_3d_temp = np.array([]) test_3d_head = np.array([]) for act in data.acts_test: test_e, test_3d = methods.test(test_loaders[act], dataset=opt.dataset, input_n=input_n, output_n=output_n, cartesian=data.cartesian, dim_used=data.train_dataset.dim_used, dct_n=dct_n) ret_log = np.append(ret_log, test_e) test_3d_temp = np.append(test_3d_temp, test_3d) test_3d_head = np.append(test_3d_head, [act + '3d80', act + '3d160', act + '3d320', act + '3d400']) head = np.append(head, [act + '80', act + '160', act + '320', act + '400']) if output_n > 10: head = np.append(head, [act + '560', act + '1000']) test_3d_head = np.append(test_3d_head, [act + '3d560', act + '3d1000']) ret_log = np.append(ret_log, test_3d_temp) head = np.append(head, test_3d_head) ##################################################### # Update log file and save checkpoint ##################################################### df = pd.DataFrame(
np.expand_dims(ret_log, axis=0)
numpy.expand_dims
from collections import Counter, defaultdict from copy import deepcopy from operator import itemgetter import numpy as np import sklearn from imblearn.base import BaseSampler from sklearn.neighbors import NearestNeighbors from multi_imbalance.utils.data import construct_maj_int_min class SOUP(BaseSampler): """ Similarity Oversampling and Undersampling Preprocessing (SOUP) is an algorithm that equalizes number of samples in each class. It also takes care of the similarity between classes, which means that it removes samples from majority class, that are close to samples from the other class and duplicate samples from the minority classes, which are in the safest area in space """ def __init__(self, k: int = 7, shuffle=False, maj_int_min=None) -> None: """ :param k: number of neighbors :param shuffle: bool - output will be shuffled :param maj_int_min: dict {'maj': majority class labels, 'min': minority class labels} """ super().__init__() self._sampling_type = 'clean-sampling' self.k = k self.shuffle = shuffle self.maj_int_min = maj_int_min self.quantities, self.goal_quantity = None, None self.dsc_maj_cls, self.asc_min_cls = None, None self._X, self._y = None, None def _fit_resample(self, X, y): """ The method computes the metrics required for resampling based on the given set :param X: two dimensional numpy array (number of samples x number of features) with float numbers :param y: one dimensional numpy array with labels for rows in X :return: Resampled X (median class quantity * number of unique classes), y (number of rows in X) as numpy array """ if self.maj_int_min is None: self.maj_int_min = construct_maj_int_min(y) self._X = deepcopy(X) self._y = deepcopy(y) assert len(self._X.shape) == 2, 'X should have 2 dimension' assert self._X.shape[0] == self._y.shape[0], 'Number of labels must be equal to number of samples' self.quantities = Counter(self._y) self.goal_quantity = self._calculate_goal_quantity(self.maj_int_min) self.dsc_maj_cls = sorted(((v, i) for v, i in self.quantities.items() if i >= self.goal_quantity), key=itemgetter(1), reverse=True) self.asc_min_cls = sorted(((v, i) for v, i in self.quantities.items() if i < self.goal_quantity), key=itemgetter(1), reverse=False) for class_name, class_quantity in self.dsc_maj_cls: self._X, self._y = self._undersample(self._X, self._y, class_name) for class_name, class_quantity in self.asc_min_cls: self._X, self._y = self._oversample(self._X, self._y, class_name) if self.shuffle: self._X, self._y = sklearn.utils.shuffle(self._X, self._y) return np.array(self._X), np.array(self._y) def _construct_class_safe_levels(self, X, y, class_name) -> defaultdict: self.quantities = Counter(y) indices_in_class = [i for i, value in enumerate(y) if value == class_name] neigh_clf = NearestNeighbors(n_neighbors=self.k + 1).fit(X) neighbour_indices = neigh_clf.kneighbors(X[indices_in_class], return_distance=False)[:, 1:] neighbour_classes = y[neighbour_indices] class_safe_levels = defaultdict(float) for i, sample_id in enumerate(indices_in_class): neighbours_quantities = Counter(neighbour_classes[i]) class_safe_levels[sample_id] = self._calculate_sample_safe_level(class_name, neighbours_quantities) return class_safe_levels def _calculate_sample_safe_level(self, class_name, neighbours_quantities: Counter): safe_level = 0 q: Counter = self.quantities for neigh_label, neigh_q in neighbours_quantities.items(): similarity_between_classes = min(q[class_name], q[neigh_label]) / max(q[class_name], q[neigh_label]) safe_level += neigh_q * similarity_between_classes safe_level /= self.k if safe_level > 1: raise ValueError(f'Safe level is bigger than 1: {safe_level}') return safe_level def _undersample(self, X, y, class_name): safe_levels_of_samples_in_class = self._construct_class_safe_levels(X, y, class_name) class_quantity = self.quantities[class_name] safe_levels_list = sorted(safe_levels_of_samples_in_class.items(), key=itemgetter(1)) samples_to_remove_quantity = max(0, int(class_quantity - self.goal_quantity)) if samples_to_remove_quantity > 0: remove_indices = list(map(itemgetter(0), safe_levels_list[:samples_to_remove_quantity])) X = np.delete(X, remove_indices, axis=0) y = np.delete(y, remove_indices, axis=0) return X, y def _oversample(self, X, y, class_name): safe_levels_of_samples_in_class = self._construct_class_safe_levels(X, y, class_name) class_quantity = self.quantities[class_name] safe_levels_list = list(sorted(safe_levels_of_samples_in_class.items(), key=itemgetter(1), reverse=True)) difference = self.goal_quantity - class_quantity while difference > 0: quantity_items_to_copy = min(difference, class_quantity) indices_to_copy = list(map(itemgetter(0), safe_levels_list[:quantity_items_to_copy])) X = np.vstack((X, X[indices_to_copy])) y = np.hstack((y, y[indices_to_copy])) difference -= quantity_items_to_copy return X, y def _calculate_goal_quantity(self, maj_int_min=None): if maj_int_min is None: maj_q = max(list(self.quantities.values())) min_q = min(list(self.quantities.values())) return np.mean((min_q, maj_q), dtype=int) else: maj_classes = {k: v for k, v in self.quantities.items() if k in maj_int_min['maj']} maj_q = list(maj_classes.values()) min_classes = {k: v for k, v in self.quantities.items() if k in maj_int_min['min']} min_q = list(min_classes.values()) if len(maj_q) == 0: return np.mean(min_q, dtype=int) if len(min_q) == 0: return
np.mean(maj_q, dtype=int)
numpy.mean
import numpy as np import torch from scipy import linalg from torch.nn.functional import adaptive_avg_pool2d from tqdm import tqdm from utils.fid.inception import InceptionV3 class FID: def __init__(self, dims=2048): ''' 64: first max pooling features 192: second max pooling features 768: pre-aux classifier features 2048: final average pooling features (this is the default) ''' block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] self.model = InceptionV3([block_idx]) self.cuda = torch.cuda.is_available() if self.cuda: self.model.cuda() self.model.eval() self.bs = 128 self.m1 = None self.s1 = None self.dims = dims def get_activations(self, images): N = images.shape[0] n_batches = N // self.bs n_used_imgs = n_batches * self.bs pred_arr = np.empty((n_used_imgs, self.dims)) for i in tqdm(range(n_batches)): start = i * self.bs end = start + self.bs batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor) if self.cuda: batch = batch.cuda() pred = self.model(batch)[0] # If model output is not scalar, apply global spatial average pooling. # This happens if you choose a dimensionality not equal 2048. if pred.shape[2] != 1 or pred.shape[3] != 1: pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) pred_arr[start:end] = pred.cpu().data.numpy().reshape(self.bs, -1) return pred_arr def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by <NAME>. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representative data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representative data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) +
np.trace(sigma1)
numpy.trace
# <NAME> # <EMAIL> # Developed for fun # Feel free to use this code as you wish as long as you quote me as author """ neural_network.py ~~~~~~~~~~ This module is for building a classic dense neural network Weights and biases are initialized randomly according to a normal distribution A network can be saved and loaded for later use The class is build for the snake project so: - The rendering method is not very modular and is specifi for this project, I'll improve it later - No backpropagation since we don't need it for the genetic algorithm """ from numba import jit import numpy as np import pygame from constants import * from pygame import gfxdraw class NeuralNetwork: """Neural Network class""" def __init__(self, shape=None): """ :param shape: list of int, describes how many layers and neurons by layer the network has """ self.shape = shape self.biases = [] self.weights = [] self.score = 0 # to remember how well it performed if shape: for y in shape[1:]: # biases random initialization self.biases.append(np.random.randn(y, 1)) for x, y in zip(shape[:-1], shape[1:]): # weights random initialization self.weights.append(np.random.randn(y, x)) def feed_forward(self, a): """ Main function, takes an input vector and calculate the output by propagation through the network :param a: column of integers, inputs for the network (snake's vision) :return: column of integers, output neurons activation """ for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a def save(self, name=None): """ Saves network weights and biases into 2 separated files in current folder :param name: str, in case you want to name it :return: creates two files """ if not name: np.save('saved_weights_'+str(self.score), self.weights) np.save('saved_biases_'+str(self.score), self.biases) else:
np.save(name + '_weights', self.weights)
numpy.save
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import scipy.stats import sys from tqdm import tqdm # print(len(sys.argv)) # filenames = sys.argv[1:] # print(filenames) # datas = [] def autolabel(rects, bar_label): for idx,rect in enumerate(rects): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., -200, bar_label[idx], ha='center', va='bottom', rotation=0) # fig, axs = plt.subplots(2, sharex=False, sharey=False) fig, axs = plt.subplots(2, sharex=False, sharey=False, gridspec_kw={'hspace': 0.2, 'left':0.11, 'right':0.99}) threshold = 0.11 ################################ # PLOTING MASSES ################################ axs[0].set_rasterized(True) ax = axs[0] x = np.array([1,2]) ################################ # PLOTING MASSES - OBJ I ################################ # filenames = ["object1.m1s1.npy", "object1.m2s1.npy"] filenames = ["object1.m1s1.npy", "object1.m2s1.npy"] m_mean = [] m_std = [] for filename in tqdm(filenames): data = np.load(filename) lower = data[np.argmax(data[:,2] < threshold),0] mean_t = data[np.argmax(data[:,1] < threshold),0] upper = data[np.argmax(data[:,3] < threshold),0] m_mean.append(mean_t) m_std.append(((upper-mean_t)+(mean_t-lower))/2.0) b1 = ax.bar(x, m_mean, width=0.95, yerr=m_std, align='center', alpha=0.5, ecolor='black', capsize=10, label="Rectangular prism") autolabel(b1, [r"$200$g", r"$400$g"]) ax.set_ylabel('Time (s)', fontsize=12) # ax.set_xlabel('Mass', fontsize=14) ################################ # PLOTING MASSES - OBJ III ################################ # filenames = ["object3.m1s1.npy", "object3.m2s1.npy"] filenames = ["object3.m1s1.npy", "object3.m2s1.npy"] m_mean = [] m_std = [] for filename in tqdm(filenames): data = np.load(filename) lower = data[np.argmax(data[:,2] < threshold),0] mean_t = data[np.argmax(data[:,1] < threshold),0] upper = data[np.argmax(data[:,3] < threshold),0] m_mean.append(mean_t) m_std.append(((upper-mean_t)+(mean_t-lower))/2.0) b1 = ax.bar(x+3.5, m_mean, width=0.95, yerr=m_std, align='center', alpha=0.5, ecolor='black', capsize=10, label="Octagonal prism") autolabel(b1, [r"$200$g", r"$400$g"]) ################################ # PLOTING MASSES - OBJ II ################################ # filenames = ["object2.m1s1.npy", "object2.m2s1.npy"] filenames = ["object2.m1s1.npy", "object2.m2s1.npy"] w = [1.0, 1.1] m_mean = [] m_std = [] i = 0 for filename in tqdm(filenames): data = np.load(filename) lower = w[i]*data[np.argmax(data[:,2] < threshold),0] mean_t = w[i]*data[
np.argmax(data[:,1] < threshold)
numpy.argmax
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/1/20 下午3:08 # @Author : FengDa # @File : ddpg_trainer.py # @Software: PyCharm """ Class for a generic trainer used for training all the different reinforcement learning models """ import torch import torch.nn as nn # from Utils.utils import * from collections import deque, defaultdict # from models.attention import * import time import numpy as np import random import torch.optim as optim from torch.autograd import Variable import matplotlib.pyplot as plt # from ...datasets.utils import to_tensor class Trainer(object): def __init__(self, agent, num_epochs, num_rollouts, num_eval_rollouts, env, eval_env, nb_train_steps, max_episodes_per_epoch, random_seed, output_folder=None, her_training=False, multi_gpu_training=False, use_cuda=True, verbose=True, save_model=False, plot_stats=True, future=None): """ :param ddpg: The ddpg network :param num_rollouts: number of experience gathering rollouts per episode :param num_eval_rollouts: number of evaluation rollouts :param num_episodes: number of episodes per epoch :param env: Gym environment to train on :param eval_env: Gym environment to evaluate on :param nb_train_steps: training steps to take :param max_episodes_per_epoch: maximum number of episodes per epoch :param her_training: use hindsight experience replay :param multi_gpu_training: train on multiple gpus """ self.ddpg = agent self.num_epochs = num_epochs self.num_rollouts = num_rollouts self.num_eval_rollouts = num_eval_rollouts self.env = env self.eval_env = eval_env self.nb_train_steps = nb_train_steps self.max_episodes = max_episodes_per_epoch self.seed(random_seed) self.her = her_training self.multi_gpu = multi_gpu_training self.cuda = use_cuda self.verbose = verbose self.plot_stats = plot_stats self.save_model = save_model self.output_folder = output_folder self.future = future self.all_rewards = [] self.successes = [] # Get the target and standard networks self.target_actor = self.ddpg.get_actors()['target'] self.actor = self.ddpg.get_actors()['actor'] self.target_critic = self.ddpg.get_critics()['target'] self.critic = self.ddpg.get_critics()['critic'] self.statistics = defaultdict(float) self.combined_statistics = defaultdict(list) if self.multi_gpu: if torch.cuda.device_count() > 1: print("Training on ", torch.cuda.device_count() , " GPUs ") self.target_critic = nn.DataParallel(self.target_critic) self.critic = nn.DataParallel(self.critic) self.target_actor = nn.DataParallel(self.target_actor) self.actor = nn.DataParallel(self.actor) else: print("Only 1 gpu available for training .....") def train_on_policy(self): pass def train(self): # Starting time start_time = time.time() # Initialize the statistics dictionary statistics = self.statistics episode_rewards_history = deque(maxlen=100) eval_episode_rewards_history = deque(maxlen=100) episode_success_history = deque(maxlen=100) eval_episode_success_history = deque(maxlen=100) epoch_episode_rewards = [] epoch_episode_success = [] epoch_episode_steps = [] # Epoch Rewards and success epoch_rewards = [] epoch_success = [] # Initialize the training with an initial state state = self.env.reset() # If eval, initialize the evaluation with an initial state if self.eval_env is not None: eval_state = self.eval_env.reset() eval_state = to_tensor(eval_state, use_cuda=self.cuda) eval_state = torch.unsqueeze(eval_state, dim=0) # Initialize the losses loss = 0 episode_reward = 0 episode_success = 0 episode_step = 0 epoch_actions = [] t = 0 # Check whether to use cuda or not state = to_tensor(state, use_cuda=self.cuda) state = torch.unsqueeze(state, dim=0) # Main training loop for epoch in range(self.num_epochs): epoch_actor_losses = [] epoch_critic_losses = [] for episode in range(self.max_episodes): # Rollout of trajectory to fill the replay buffer before training for rollout in range(self.num_rollouts): # Sample an action from behavioural policy pi action = self.ddpg.get_action(state=state, noise=True) assert action.shape == self.env.get_action_shape # Execute next action new_state, reward, done, success = self.env.step(action) success = success['is_success'] done_bool = done * 1 t+=1 episode_reward += reward episode_step += 1 episode_success += success # Book keeping epoch_actions.append(action) # Store the transition in the replay buffer of the agent self.ddpg.store_transition(state=state, new_state=new_state, action=action, done=done_bool, reward=reward, success=success) # Set the current state as the next state state = to_tensor(new_state, use_cuda=self.cuda) state = torch.unsqueeze(state, dim=0) # End of the episode if done: epoch_episode_rewards.append(episode_reward) episode_rewards_history.append(episode_reward) episode_success_history.append(episode_success) epoch_episode_success.append(episode_success) epoch_episode_steps.append(episode_step) episode_reward = 0 episode_step = 0 episode_success = 0 # Reset the agent self.ddpg.reset() # Get a new initial state to start from state = self.env.reset() state = to_tensor(state, use_cuda=self.cuda) # Train for train_steps in range(self.nb_train_steps): critic_loss, actor_loss = self.ddpg.fit_batch() if critic_loss is not None and actor_loss is not None: epoch_critic_losses.append(critic_loss) epoch_actor_losses.append(actor_loss) # Update the target networks using polyak averaging self.ddpg.update_target_networks() eval_episode_rewards = [] eval_episode_successes = [] if self.eval_env is not None: eval_episode_reward = 0 eval_episode_success = 0 for t_rollout in range(self.num_eval_rollouts): if eval_state is not None: eval_action = self.ddpg.get_action(state=eval_state, noise=False) eval_new_state, eval_reward, eval_done, eval_success = self.eval_env.step(eval_action) eval_episode_reward += eval_reward eval_episode_success += eval_success if eval_done: eval_state = self.eval_env.reset() eval_state = to_tensor(eval_state, use_cuda=self.cuda) eval_state = torch.unsqueeze(eval_state, dim=0) eval_episode_rewards.append(eval_episode_reward) eval_episode_rewards_history.append(eval_episode_reward) eval_episode_successes.append(eval_episode_success) eval_episode_success_history.append(eval_episode_success) eval_episode_reward = 0 eval_episode_success = 0 # Log stats duration = time.time() - start_time statistics['rollout/rewards'] = np.mean(epoch_episode_rewards) statistics['rollout/rewards_history'] = np.mean(episode_rewards_history) statistics['rollout/successes'] = np.mean(epoch_episode_success) statistics['rollout/successes_history'] =
np.mean(episode_success_history)
numpy.mean
import numpy as np import simpleaudio as sa import random def fun_sound(): # calculate note frequencies A_freq = 440 scale = [A_freq * 2 ** (i / 12) for i in range(12)] # get timesteps for each sample, T is note duration in seconds sample_rate = 44100 T = 0.5 t = np.linspace(0, T, int(T * sample_rate), False) # generate sine wave notes notes = [random.choice(scale) for i in range(3)] note1 = np.sin(notes[0] * t * 2 * np.pi) note2 = np.sin(notes[1] * t * 2 * np.pi) note3 = np.sin(notes[2] * t * 2 * np.pi) # mix audio together audio = np.zeros((44100, 2)) n = len(t) offset = 0 audio[0 + offset: n + offset, 0] += note1 audio[0 + offset: n + offset, 1] += 0.125 * note1 offset = 5500 audio[0 + offset: n + offset, 0] += 0.5 * note2 audio[0 + offset: n + offset, 1] += 0.5 * note2 offset = 11000 audio[0 + offset: n + offset, 0] += 0.125 * note3 audio[0 + offset: n + offset, 1] += note3 # normalize to 16-bit range audio *= 32767 / np.max(np.abs(audio)) # convert to 16-bit data audio = audio.astype(np.int16) return(audio) loop = [fun_sound(), fun_sound(), fun_sound(), fun_sound()] loop4 = loop * 4 sound =
np.concatenate(loop4)
numpy.concatenate
""" Estimators : Empirical, Catoni, Median of means, Trimmed mean Random truncation for u=empirical second moment and for u=true second moment Data distributions: - Normal (with mean=0, sd = 1.5, 2.2, 2.4) - Log-normal (with log-mean=0, log-sd = 1.25, 1.75, 1.95) - Pareto (a=3,xm= 4.1,6,6.5) The parameters are chosen such that the inter quartile range is the same in each setting """ import numpy as np from matplotlib import pyplot as plt from math import * from scipy.integrate import quad from scipy.integrate import dblquad from scipy import integrate from scipy import special from numpy import median from numpy import linspace from copy import deepcopy import pandas as pd # Defining a function that returns the results of one setting (setting = parameters fixed + method fixed) : def setting_alpha(string_estimator, sigma_normal, sigma_lognormal, x_m, a, max_trials, min_alpha, max_alpha, alpha_size, n, u): """ Comparing the evolution of the excess risk of the three distributions (normal, lognormal, pareto) for one estimator over many trials with respect to alpha Parameters ---------- string_estimator : string, name of the estimator empirical, catoni, median_means, trimmed_mean, random_trunc sigma_normal : float s.d of the normal distribution sigma_lognormal : float s.d of the lognormal distribution x_m, a : float, float Pareto parameters max_trials : int maximum number of trials min_alpha : float smallest alpha we want to consider max_alpha : float largest alpha we want to consider alpha_size : int number of alpha points we want to consider n: int sample size u : string or int u = 0 if the estimator isn't random_trunc u = 'empirical_2nd_moment' if we want to use the empirical variance for the random truncation estimator u = 'true_2nd_moment' if we want to use the true variance for the random truncation estimator Returns ------- 3-(samples_number +1) array Each line corresponds to the results of one distribution The array has the form : [['normal', results_normal],['lognormal', results_lognormal],['pareto', results_pareto] """ estimator = dic[string_estimator] MeanVariance_normal = [] MeanVariance_lognormal = [] MeanVariance_pareto = [] alpha_line = linspace(min_alpha, max_alpha, alpha_size) # Calculating the second moments of each distribution second_moment_normal = sigma_normal ** 2 second_moment_lognormal = exp((sigma_lognormal ** 2) / 2) ** 2 + (exp(sigma_lognormal ** 2) - 1) \ * exp(sigma_lognormal ** 2) second_moment_pareto = (a * x_m / (a - 1)) ** 2 + (x_m ** 2) * a / ((a - 1) ** 2) * (a - 2) # _____________________________________________________ for alpha in alpha_line: Gaussian_estimates = [] Lognormal_estimates = [] Pareto_estimates = [] if u == 0: Gaussian_estimates = [estimator(data_mod(np.random.normal(0, sigma_normal, n), value_at_risk(np.random.normal(0, sigma_normal, n), alpha))) for i in range(max_trials)] Lognormal_estimates = [estimator(data_mod(
np.random.lognormal(0, sigma_lognormal, n)
numpy.random.lognormal
import sys import os import json import numpy as np import glob import argparse import pdb import scipy.optimize import scipy.stats import f0dl_bernox def run_f0dl_experiment(json_fn, max_pct_diff=100/6, noise_stdev=1e-12, bin_width=5e-2, mu=0.0, threshold_value=0.707, use_empirical_f0dl_if_possible=False, f0_label_true_key='f0_label:labels_true', f0_label_pred_key='f0_label:labels_pred', f0_label_prob_key='f0_label:probs_out', kwargs_f0_bins={}, kwargs_f0_octave={}, kwargs_f0_normalization={}, kwargs_f0_prior={}, f0_ref_min=80.0, f0_ref_max=320.0, f0_ref_n_step=5, metadata_key_list=['f_carrier', 'f_envelope', 'f0']): ''' ''' # Load JSON file of model predictions into `expt_dict` expt_dict = f0dl_bernox.load_f0_expt_dict_from_json(json_fn, f0_label_true_key=f0_label_true_key, f0_label_pred_key=f0_label_pred_key, f0_label_prob_key=f0_label_prob_key, metadata_key_list=metadata_key_list) # Define list of reference F0s at which to measure discrimination thresholds f0_ref_list = np.power(2, np.linspace(np.log2(f0_ref_min), np.log2(f0_ref_max), f0_ref_n_step)) unique_f_carrier_list = np.unique(expt_dict['f_carrier']) N = len(unique_f_carrier_list) * len(f0_ref_list) # Add list of nearest f0_ref values for centering prior (defined as the nearest reference F0) nearest_f0_ref_bins = [-np.inf] for itr0 in range(1, f0_ref_list.shape[0]): f0_low = f0_ref_list[itr0 - 1] f0_high = f0_ref_list[itr0] nearest_f0_ref_bins.append(np.exp(np.mean(np.log([f0_low, f0_high])))) nearest_f0_ref_bins.append(np.inf) nearest_f0_ref_bins = np.array(nearest_f0_ref_bins) f0_ref_indexes = np.digitize(expt_dict['f0'], nearest_f0_ref_bins) - 1 expt_dict['nearest_f0_ref'] = f0_ref_list[f0_ref_indexes] # Add f0 estimates to expt_dict (possibly using prior) expt_dict = f0dl_bernox.add_f0_estimates_to_expt_dict(expt_dict, f0_label_true_key=f0_label_true_key, f0_label_pred_key=f0_label_pred_key, kwargs_f0_bins=kwargs_f0_bins, kwargs_f0_octave=kwargs_f0_octave, kwargs_f0_normalization=kwargs_f0_normalization, kwargs_f0_prior=kwargs_f0_prior) # Initialize dictionary to hold psychophysical results results_dict = { 'f_carrier': [None]*N, 'f0_ref': [None]*N, 'f0dl': [None]*N, 'psychometric_function': [None]*N, } itr0 = 0 for f_carrier in unique_f_carrier_list: for f0_ref in f0_ref_list: # Simulate f0 discrimination experiment for limited f0 range f0_range = [f0_ref * (1.0-max_pct_diff/100.0), f0_ref * (1.0+max_pct_diff/100.0)] sub_expt_dict = f0dl_bernox.filter_expt_dict(expt_dict, filter_dict={'f_carrier': f_carrier, 'f0': f0_range}) sub_expt_dict = f0dl_bernox.add_f0_judgments_to_expt_dict(sub_expt_dict, f0_true_key='f0', f0_pred_key='f0_pred', max_pct_diff=max_pct_diff, noise_stdev=noise_stdev) pct_diffs = sub_expt_dict['pairwise_pct_diffs'].reshape([-1]) pct_diffs = pct_diffs[~np.isnan(pct_diffs)] judgments = sub_expt_dict['pairwise_judgments'].reshape([-1]) judgments = judgments[~np.isnan(judgments)] # Fit the empirical psychometric function and compute a threshold bins, bin_means = f0dl_bernox.get_empirical_psychometric_function(pct_diffs, judgments, bin_width=bin_width) sigma_opt, sigma_opt_cov = f0dl_bernox.fit_normcdf(bins, bin_means, mu=mu) f0dl = scipy.stats.norm(mu, sigma_opt).ppf(threshold_value) # Replace fit-computed f0dl with the empirical threshold if empirical psychometric function passes threshold if use_empirical_f0dl_if_possible: above_threshold_bin_indexes = np.logical_and(bins >= 0, bin_means > threshold_value) if
np.sum(above_threshold_bin_indexes)
numpy.sum
import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline import os,os.path import re from numpy.lib.recfunctions import append_fields from . import localpath class SN1a_feedback(object): def __init__(self): """ this is the object that holds the feedback table for SN1a .masses gives a list of masses .metallicities gives a list of possible yield metallicities .elements gives the elements considered in the yield table .table gives a dictionary where the yield table for a specific metallicity can be queried .table[0.02] gives a yield table. Keys of this object are ['Mass','mass_in_remnants','elements'] Mass is in units of Msun 'mass_in_remnants' in units of Msun but with a '-' 'elements' yield in Msun normalised to Mass. i.e. integral over all elements is unity """ def TNG(self): """ IllustrisTNG yield tables from Pillepich et al. 2017. These are the 1997 Nomoto W7 models, and sum all isotopes (not just stable)""" import h5py as h5 filename = localpath+'input/yields/TNG/SNIa.hdf5' # Read H5 file f = h5.File(filename, "r") indexing = {} indexing['H'] = 'Hydrogen' indexing['He'] = 'Helium' indexing['Li'] = 'Lithium' indexing['Be'] = 'Beryllium' indexing['B'] = 'Boron' indexing['C'] = 'Carbon' indexing['N'] = 'Nitrogen' indexing['O'] = 'Oxygen' indexing['F'] = 'Fluorine' indexing['Ne'] = 'Neon' indexing['Na'] = 'Sodium' indexing['Mg'] = 'Magnesium' indexing['Al'] = 'Aluminum' indexing['Si'] = 'Silicon' indexing['P'] = 'Phosphorus' indexing['S'] = 'Sulphur' indexing['Cl'] = 'Chlorine' indexing['Ar'] = 'Argon' indexing['K'] = 'Potassium' indexing['Ca'] = 'Calcium' indexing['Sc'] = 'Scandium' indexing['Ti'] = 'Titanium' indexing['V'] = 'Vanadium' indexing['Cr'] = 'Chromium' indexing['Mn'] = 'Manganese' indexing['Fe'] = 'Iron' indexing['Co'] = 'Cobalt' indexing['Ni'] = 'Nickel' indexing['Cu'] = 'Copper' indexing['Zn'] = 'Zinc' indexing['Ga'] = 'Gallium' indexing['Ge'] = 'Germanium' indexing['As'] = 'Arsenic' indexing['Se'] = 'Selenium' indexing['Br'] = 'Bromine' indexing['Kr'] = 'Krypton' indexing['Rb'] = 'Rubidium' indexing['Sr'] = 'Strontium' indexing['Y'] = 'Yttrium' indexing['Zr'] = 'Zirconium' indexing['Nb'] = 'Niobium' indexing['Mo'] = 'Molybdenum' self.elements = list(indexing.keys()) self.table = {} self.metallicities = list([0.02]) # arbitrary since only one value self.masses = list([np.sum(f['Yield'].value)]) # sum of all yields names = ['Mass','mass_in_remnants']+self.elements yield_subtable = {} base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_subtable['Mass'] = self.masses yield_subtable['mass_in_remnants'] = np.asarray([-1*m for m in self.masses]) for el_index,el in enumerate(self.elements): yield_subtable[el] = np.divide(f['Yield'][el_index],self.masses) self.table[self.metallicities[0]] = yield_subtable def Seitenzahl(self): """ Seitenzahl 2013 from Ivo txt """ y = np.genfromtxt(localpath + 'input/yields/Seitenzahl2013/0.02.txt', names = True, dtype = None) self.metallicities = list([0.02]) self.masses = list([1.4004633930489443]) names = list(y.dtype.names) self.elements = names[2:] base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) for name in names: if name in ['Mass','mass_in_remnants']: yield_tables_final_structure_subtable[name] = y[name] else: yield_tables_final_structure_subtable[name] = np.divide(y[name],self.masses) yield_tables_final_structure = {} yield_tables_final_structure[0.02] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def Thielemann(self): """ Thilemann 2003 yields as compiled in Travaglio 2004 """ y = np.genfromtxt(localpath + 'input/yields/Thielemann2003/0.02.txt', names = True, dtype = None) metallicity_list = [0.02] self.metallicities = metallicity_list self.masses = [1.37409] names = y.dtype.names base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) for name in names: if name in ['Mass','mass_in_remnants']: yield_tables_final_structure_subtable[name] = y[name] else: yield_tables_final_structure_subtable[name] = np.divide(y[name],self.masses) self.elements = list(y.dtype.names[2:]) yield_tables_final_structure = {} yield_tables_final_structure[0.02] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def Iwamoto(self): ''' Iwamoto99 yields building up on Nomoto84 ''' import numpy.lib.recfunctions as rcfuncs tdtype = [('species1','|S4'),('W7',float),('W70',float),('WDD1',float),('WDD2',float),('WDD3',float),('CDD1',float),('CDD2',float)] metallicity_list = [0.02,0.0] self.metallicities = metallicity_list self.masses = [1.38] y = np.genfromtxt(localpath + 'input/yields/Iwamoto/sn1a_yields.txt',dtype = tdtype, names = None) ## Python3 need transformation between bytes and strings element_list2 = [] for j,jtem in enumerate(y['species1']): element_list2.append(jtem.decode('utf8')) y = rcfuncs.append_fields(y,'species',element_list2,usemask = False) ################################ without_radioactive_isotopes=True if without_radioactive_isotopes:### without radioactive isotopes it should be used this way because the radioactive nuclides are already calculated in here carbon_list = ['12C','13C'] nitrogen_list = ['14N','15N'] oxygen_list = ['16O','17O','18O'] fluorin_list = ['19F'] neon_list = ['20Ne','21Ne','22Ne']#,'22Na'] sodium_list = ['23Na'] magnesium_list = ['24Mg','25Mg','26Mg']#,'26Al'] aluminium_list = ['27Al'] silicon_list = ['28Si','29Si','30Si'] phosphorus_list = ['31P'] sulfur_list = ['32S','33S','34S','36S'] chlorine_list = ['35Cl','37Cl'] argon_list = ['36Ar','38Ar','40Ar']#, '36Cl'] potassium_list = ['39K','41K']#, '39Ar', '41Ca'] calcium_list = ['40Ca','42Ca','43Ca','44Ca','46Ca','48Ca']#, '40K'] scandium_list = ['45Sc']#,'44Ti'] titanium_list = ['46Ti','47Ti','48Ti','49Ti','50Ti']#,'48V','49V'] vanadium_list = ['50V','51V'] chromium_list = ['50Cr','52Cr','53Cr','54Cr']#,'53Mn'] manganese_list = ['55Mn'] iron_list = ['54Fe', '56Fe','57Fe','58Fe']#,'56Co','57Co'] cobalt_list = ['59Co']#,'60Fe','56Ni','57Ni','59Ni'] nickel_list = ['58Ni','60Ni','61Ni','62Ni','64Ni']#,'60Co'] copper_list = ['63Cu','65Cu']#,'63Ni'] zinc_list = ['64Zn','66Zn','67Zn','68Zn'] ##### with radioactive isotopes (unclear weather they are double, probably not but remnant mass is too big) else: carbon_list = ['12C','13C'] nitrogen_list = ['14N','15N'] oxygen_list = ['16O','17O','18O'] fluorin_list = ['19F'] neon_list = ['20Ne','21Ne','22Ne','22Na'] sodium_list = ['23Na'] magnesium_list = ['24Mg','25Mg','26Mg','26Al'] aluminium_list = ['27Al'] silicon_list = ['28Si','29Si','30Si'] phosphorus_list = ['31P'] sulfur_list = ['32S','33S','34S','36S'] chlorine_list = ['35Cl','37Cl'] argon_list = ['36Ar','38Ar','40Ar', '36Cl'] potassium_list = ['39K','41K', '39Ar', '41Ca'] calcium_list = ['40Ca','42Ca','43Ca','44Ca','46Ca','48Ca', '40K'] scandium_list = ['45Sc','44Ti'] titanium_list = ['46Ti','47Ti','48Ti','49Ti','50Ti','48V','49V'] vanadium_list = ['50V','51V'] chromium_list = ['50Cr','52Cr','53Cr','54Cr','53Mn'] manganese_list = ['55Mn'] iron_list = ['54Fe', '56Fe','57Fe','58Fe','56Co','57Co','56Ni','57Ni'] cobalt_list = ['59Co','60Fe','59Ni'] nickel_list = ['58Ni','60Ni','61Ni','62Ni','64Ni','60Co'] copper_list = ['63Cu','65Cu','63Ni'] zinc_list = ['64Zn','66Zn','67Zn','68Zn'] indexing = {} indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Ar'] = argon_list indexing['K'] = potassium_list indexing['Ca'] = calcium_list indexing['Sc'] = scandium_list indexing['Ti'] = titanium_list indexing['V'] = vanadium_list indexing['Cr'] = chromium_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list indexing['Cu'] = copper_list indexing['Zn'] = zinc_list self.elements = list(indexing.keys()) ################################# yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(metallicity_list[:]): if metallicity == 0.02: model = 'W7' elif metallicity == 0.0: model = 'W70' else: print('this metallicity is not represented in the Iwamoto yields. They only have solar (0.02) and zero (0.0001)') additional_keys = ['Mass', 'mass_in_remnants'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = self.masses[0] total_mass = [] for i,item in enumerate(self.elements): for j,jtem in enumerate(indexing[item]): cut = np.where(y['species']==jtem) yield_tables_final_structure_subtable[item] += y[model][cut] total_mass.append(y[model][cut]) yield_tables_final_structure_subtable['mass_in_remnants'] = -sum(total_mass) for i,item in enumerate(self.elements): yield_tables_final_structure_subtable[item] = np.divide(yield_tables_final_structure_subtable[item],-yield_tables_final_structure_subtable['mass_in_remnants']) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure class SN2_feedback(object): def __init__(self): """ This is the object that holds the feedback table for CC-SN. Different tables can be loaded by the methods. """ def Portinari_net(self): ''' Loading the yield table from Portinari1998. These are presented as net yields in fractions of initial stellar mass. ''' # Define metallicities in table self.metallicities = [0.0004,0.004,0.008,0.02,0.05] # Load one table x = np.genfromtxt(localpath + 'input/yields/Portinari_1998/0.02.txt',names=True) # Define masses and elements in yield tables self.masses = list(x['Mass']) # In solar masses self.elements = list(x.dtype.names[3:]) self.table = {} # Output dictionary for yield tables for metallicity in self.metallicities: additional_keys = ['Mass', 'mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements # These are fields in dictionary # Create empty record array of correct size base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_subtable = np.core.records.fromarrays(list_of_arrays,names=names) # Add mass field to subtable (in solar masses) yield_subtable['Mass'] = np.array(self.masses) # Read in yield tbale x = np.genfromtxt(localpath + 'input/yields/Portinari_1998/%s.txt' %(metallicity),names=True) # Read in element yields for item in self.elements: yield_subtable[item] = np.divide(x[item],x['Mass']) # Yields must be in mass fraction # Add fractional mass in remnants yield_subtable['mass_in_remnants'] = np.divide(x['Mass'] - x['ejected_mass'], x['Mass']) # Add unprocessed mass as 1-remnants (with correction if summed net yields are not exactly zero) for i,item in enumerate(self.masses): yield_subtable['unprocessed_mass_in_winds'][i] = 1. - (yield_subtable['mass_in_remnants'][i] + sum(list(yield_subtable[self.elements][i]))) # Add subtable to output table self.table[metallicity] = yield_subtable def francois(self): ''' Loading the yield table of Francois et. al. 2004. Taken from the paper table 1 and 2 and added O H He from WW95 table 5A and 5B where all elements are for Z=Zsun and values for Msun > 40 have been stayed the same as for Msun=40. Values from 11-25 Msun used case A from WW95 and 30-40 Msun used case B. ''' y =
np.genfromtxt(localpath + 'input/yields/Francois04/francois_yields.txt',names=True)
numpy.genfromtxt
'''Various image handling functions.''' from .common import * import math import numpy as np # HANDLE IMAGE LOADING try: import lycon # define functions def imwrite(img_path, img): '''Stores image to disk.''' img = np.ascontiguousarray(img, dtype=np.uint8) lycon.save(img_path, img) def imread(img_path, channels=3): '''Loads an image from the given path.''' img = lycon.load(img_path) if channels == 3: img = img[...,[2,1,0]] elif channels == 1: img = np.mean(img, axis=-1, keepdims=True) return img def imresize(img, width, height): return lycon.resize(img, width=width, height=height, interpolation=lycon.Interpolation.LINEAR) except ImportError: print("WARNING: Could not find lycon, using cv2 instead!") try: import cv2 except ImportError: raise RuntimeError("storage library requires either cv2 or lycon to be installed!") # define functions def imwrite(img_path, img): '''Stores image to disk.''' cv2.imwrite(img_path, img) def imread(img_path, channels=3): '''Loads an image from the given path.''' img = cv2.imread(img_path, 1) if channels == 3: img = img[...,[2,1,0]] elif channels == 1: img = np.mean(img, axis=-1, keepdims=True) return img def imresize(img, width, height): return cv2.resize(img, (int(width), int(height)), interpolation=cv2.INTER_LINEAR) # ---- def get_padding(params): if "padding" not in params.training: raise KeyError("Could not find value 'padding' in 'training'!") pad = params.training.padding mode = PadMode.EDGE resize = ResizeMode.FIT color = (0,0,0) if pad[0] == "center": mode = PadMode.CENTER if pad[1] == "stretch": resize = ResizeMode.STRETCH elif pad[1] == "black": resize = ResizeMode.PAD_COLOR color = (0,0,0) elif pad[1] == "blue": resize = ResizeMode.PAD_COLOR color = (0,0,255) elif pad[1] == "red": resize = ResizeMode.PAD_COLOR color = (255,0,0) elif pad[1] == "green": resize = ResizeMode.PAD_COLOR color = (0,255,0) elif pad[1] == "color": resize = ResizeMode.PAD_COLOR color = params.training.pad_color elif pad[1] == "random": resize = ResizeMode.PAD_RANDOM elif pad[1] == "mean": resize = ResizeMode.PAD_MEAN elif pad[1] == "edge": resize = ResizeMode.PAD_EDGE return mode, resize, color def imread_resize(img_path, params): '''Loads an image from the given path and resizes it according to configuration.''' img = imread(img_path, params.network.color_channels) mode, res_mode, pad_color = get_padding(params) img, _, _ = resize(img, params.network.input_size, res_mode, pad_color, mode) return img def pad(img, size, resize=ResizeMode.FIT, pad_color=(0,0,0), pad_mode=PadMode.EDGE): '''Pads an image to a new size. Returns: img (np.array): padded image offset (tuple): integer tuple that stores the offset from the upper left corner in format `[TOP, LEFT]` ''' # retrieve general parameter pad_size = [(size[0] - img.shape[0]), (size[1] - img.shape[1])] padding = [(0, 0), (0, 0), (0, 0)] # add padding to the image if pad_mode == PadMode.EDGE: padding = [(0, int(pad_size[0])), (0, int(pad_size[1])), (0, 0)] pad_size = [0, 0] elif pad_mode == PadMode.CENTER: pad_size = [pad_size[0] / 2, pad_size[1] / 2] padding = [(math.floor(pad_size[0]), math.ceil(pad_size[0])), (math.floor(pad_size[1]), math.ceil(pad_size[1])), (0, 0)] # check additional padding modes if resize == ResizeMode.PAD_COLOR: img_new = np.stack([np.full(size, col) for col in pad_color], axis=-1) img_new[padding[0][0]:padding[0][0]+img.shape[0], padding[1][0]:padding[1][0]+img.shape[1], :] = img img = img_new elif resize == ResizeMode.PAD_MEAN: mode = "mean" elif resize == ResizeMode.PAD_EDGE: mode = "edge" elif resize == ResizeMode.PAD_RANDOM: img_new = np.random.randint(low=0, high=255, size=[size[0], size[1], 3]) img_new[padding[0][0]:padding[0][0]+img.shape[0], padding[1][0]:padding[1][0]+img.shape[1], :] = img img = img_new else: return img, (0, 0) # update the image if resize not in (ResizeMode.PAD_COLOR, ResizeMode.PAD_RANDOM): padding = padding if len(img.shape)>=3 and img.shape[2]>1 else padding[:2] img = np.pad(img, padding, mode=mode) return img, (padding[0][0], padding[1][0]) def resize(img, size=None, resize=ResizeMode.FIT, pad_color=(0,0,0), pad_mode=PadMode.EDGE): '''Resizes the image and provides the scale. Returns: img (np.array): Array of the image scale (tuple): Tuple of float values containing the scale of the image in both dimensions offset (tuple): Tuple of int values containing the offset of the image from top left corner (through padding) ''' # check if valid if size is None: return img, (1.0, 1.0), (0, 0) # retrieve some params img_size = img.shape[:2] offset = (0, 0) scale = (1.0, 1.0) # check the type of data if type(size) == tuple or type(size) == list or type(size) == np.ndarray: if resize == ResizeMode.FIT: frac = min((size[0] / img_size[0], size[1] / img_size[1])) scale = (frac, frac) elif resize == ResizeMode.STRETCH: scale = (size[0] / img_size[0], size[1] / img_size[1]) frac = size else: frac = min((size[0] / img_size[0], size[1] / img_size[1])) scale = (frac, frac) elif type(size) == int: if resize == ResizeMode.FIT: frac = float(size) / max(img_size) scale = (frac, frac) elif resize == ResizeMode.STRETCH: frac = (size, size) scale = (frac[0] / img_size[0], frac[1] / img_size[1]) else: frac = float(size) / max(img_size) scale = (frac, frac) size = (size, size) else: raise ValueError("Size has unkown type ({}: {})".format(type(size), size)) # scale image and set padding #img = scipy.misc.imresize(img, frac) nsize = img.shape if isinstance(frac, float): nsize = [min(np.ceil(nsize[0] * frac), size[0]), min(np.ceil(nsize[1] * frac), size[1])] else: nsize = frac img = imresize(img, width=nsize[1], height=nsize[0]) img, offset = pad(img, size, resize, pad_color, pad_mode) return img, scale, offset def get_spaced_colors(n): '''Retrieves n colors distributed over the color space.''' max_value = 16581375 #255**3 interval = int(max_value / n) colors = [hex(I)[2:].zfill(6) for I in range(0, max_value, interval)] return [(int(i[:2], 16), int(i[2:4], 16), int(i[4:], 16)) for i in colors][:n] def fill_patch(img, bbox, mode, color): '''Fills the given image patch in the given mode. Args: img (np.ndarray): Image array bbox (list): Bounding box for the patch in absolute coordinates and yx format mode (FillMode): FillMode that is used to fill the item ''' # safty: check size of the box against image size bbox = [max(0, bbox[0]), max(0, bbox[1]), min(img.shape[0], bbox[2]), min(img.shape[1], bbox[3])] def _gen_patch(color): arr = [] for i in range(len(color)): el = np.full([bbox[2] - bbox[0], bbox[3] - bbox[1]], color[i]) arr.append(el) return np.stack(arr, axis=-1) # generate the element if mode == FillMode.MEAN: color =
np.mean(img, (0, 1), dtype=np.float)
numpy.mean
# ---------------------------------------------------------------------------- # Copyright (c) 2016--, gneiss development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import unittest import os import shutil import numpy as np import pandas as pd import numpy.testing as npt from skbio import TreeNode from skbio.util import get_data_path from gneiss.plot._regression_plot import ols_summary, lme_summary from gneiss.regression import ols, mixedlm class TestOLS_Summary(unittest.TestCase): def setUp(self): A = np.array # aliasing for the sake of pep8 self.table = pd.DataFrame({ 's1': A([1., 1.]), 's2': A([1., 2.]), 's3': A([1., 3.]), 's4': A([1., 4.]), 's5': A([1., 5.])}, index=['Y2', 'Y1']).T self.tree = TreeNode.read(['(c, (b,a)Y2)Y1;']) self.metadata = pd.DataFrame({ 'lame': [1, 1, 1, 1, 1], 'real': [1, 2, 3, 4, 5] }, index=['s1', 's2', 's3', 's4', 's5']) np.random.seed(0) n = 15 a = np.array([1, 4.2, 5.3, -2.2, 8]) x1 = np.linspace(.01, 0.1, n) x2 = np.logspace(0, 0.01, n) x3 = np.exp(np.linspace(0, 0.01, n)) x4 = x1 ** 2 self.x = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4}) y = (a[0] + a[1]*x1 + a[2]*x2 + a[3]*x3 + a[4]*x4 + np.random.normal(size=n)) sy = np.vstack((-y/10, -y)).T self.y = pd.DataFrame(sy, columns=['y0', 'y1']) self.t2 = TreeNode.read([r"((a,b)y1,c)y0;"]) self.results = "results" os.mkdir(self.results) def tearDown(self): shutil.rmtree(self.results) def test_visualization(self): res = ols(formula="x1 + x2 + x3 + x4", table=self.y, metadata=self.x) res.fit() ols_summary(self.results, res, tree=self.t2) fp = os.path.join(self.results, 'pvalues.csv') self.assertTrue(os.path.exists(fp)) fp = os.path.join(self.results, 'coefficients.csv') self.assertTrue(os.path.exists(fp)) fp = os.path.join(self.results, 'predicted.csv') self.assertTrue(os.path.exists(fp)) fp = os.path.join(self.results, 'residuals.csv') self.assertTrue(os.path.exists(fp)) index_fp = os.path.join(self.results, 'index.html') self.assertTrue(os.path.exists(index_fp)) with open(index_fp, 'r') as fh: html = fh.read() self.assertIn('<h1>Simplicial Linear Regression Summary</h1>', html) self.assertIn('<th>Coefficients</th>\n', html) self.assertIn('<th>Predicted Balances</th>\n', html) self.assertIn('<th>Residuals</th>\n', html) class TestLME_Summary(unittest.TestCase): def setUp(self): np.random.seed(6241) n = 1600 exog = np.random.normal(size=(n, 2)) groups = np.kron(np.arange(n // 16), np.ones(16)) # Build up the random error vector errors = 0 # The random effects exog_re = np.random.normal(size=(n, 2)) slopes = np.random.normal(size=(n // 16, 2)) slopes = np.kron(slopes, np.ones((16, 1))) * exog_re errors += slopes.sum(1) # First variance component errors += np.kron(2 * np.random.normal(size=n // 4), np.ones(4)) # Second variance component errors += np.kron(2 * np.random.normal(size=n // 2), np.ones(2)) # iid errors errors += np.random.normal(size=n) endog = exog.sum(1) + errors df = pd.DataFrame(index=range(n)) df["Y1"] = endog + 2 * 2 df["Y2"] = endog df["groups"] = groups df["x1"] = exog[:, 0] df["x2"] = exog[:, 1] self.tree = TreeNode.read(['(c, (b,a)Y2)Y1;']) self.table = df[["Y1", "Y2"]] self.metadata = df[['x1', 'x2', 'groups']] self.results = "results" if not os.path.exists(self.results): os.mkdir(self.results) def tearDown(self): shutil.rmtree(self.results) def test_visualization(self): model = mixedlm("x1 + x2", self.table, self.metadata, groups="groups") model.fit() lme_summary(self.results, model, self.tree) pvals = pd.read_csv(os.path.join(self.results, 'pvalues.csv'), index_col=0) coefs = pd.read_csv(os.path.join(self.results, 'coefficients.csv'), index_col=0) pred = pd.read_csv(os.path.join(self.results, 'predicted.csv'), index_col=0) resid = pd.read_csv(os.path.join(self.results, 'residuals.csv'), index_col=0) exp_pvals = pd.DataFrame({ 'Intercept': {'Y1': 4.8268860492262526e-236, 'Y2': 0.099411090631406948}, 'Group Var': {'Y1': 4.4193804668281966e-05, 'Y2': 4.4193804668280984e-05}, 'x1': {'Y1': 3.9704936434633392e-35, 'Y2': 3.9704936434628853e-35}, 'x2': {'Y1': 3.56912071867573e-30, 'Y2': 3.56912071867573e-30}}).sort_index(axis=1) pvals = pvals.sort_index(axis=0).sort_index(axis=1) exp_pvals = exp_pvals.sort_index(axis=0).sort_index(axis=1)
npt.assert_allclose(pvals, exp_pvals, rtol=1e-5)
numpy.testing.assert_allclose
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) #################################################################################### def test_allclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) tolerance = 1e-5 data1 = np.random.randn(shape.rows, shape.cols) data2 = data1 + tolerance / 10 data3 = data1 + 1 cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance) #################################################################################### def test_amax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_amin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_angle(): components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.angleScaler(value), 9) == np.round(np.angle(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.angleArray(cArray), 9), np.round(np.angle(data), 9)) #################################################################################### def test_any(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) #################################################################################### def test_append(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.append(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) numRows = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + numRows, shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.append(data1, data2, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) NumCppols = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + NumCppols) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.append(data1, data2, axis=1)) #################################################################################### def test_arange(): start = np.random.randn(1).item() stop = np.random.randn(1).item() * 100 step = np.abs(np.random.randn(1).item()) if stop < start: step *= -1 data = np.arange(start, stop, step) assert np.array_equal(np.round(NumCpp.arange(start, stop, step).flatten(), 9), np.round(data, 9)) #################################################################################### def test_arccos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(
np.arccos(value)
numpy.arccos
import os.path import numpy as np import gzip #fname = os.path.expanduser('~/Downloads/Homo_sapiens.GRCh37.72.gtf') fname = os.path.expanduser('~/data/genomes/Homo_sapiens.GRCh37.68.gtf.gz') def gtf_desc_to_dict(s): t = s.strip().split(';') t = [x.strip() for x in t] d = {} for l in t[:-1]: i = l.index(' ') key = l[0:i] val = l[i+1:].strip('"') d[key] = val return d def read_transcript_exons(fname): transcripts = dict() for l in gzip.open(fname): t = l.strip().split('\t') if t[2] == 'exon': d = gtf_desc_to_dict(t[8]) t[8] = d enst = '%s.%s' % (d['gene_id'], d['transcript_id']) if enst in transcripts: transcripts[enst].append(t) else: transcripts[enst] = [t] return transcripts def transcript_intron_lengths(exons): startpos = np.array([x[3] for x in exons], dtype=int) endpos = np.array([x[4] for x in exons], dtype=int) strand = exons[0][6] number = np.array([x[8]['exon_number'] for x in exons], dtype=int) assert(all(sorted(number) == number)) if strand == '+': introns = startpos[1:] - endpos[0:-1] - 1 else: introns = startpos[0:-1] - endpos[1:] - 1 return introns def transcript_intron_lengths_and_positions(exons): startpos = np.array([x[3] for x in exons], dtype=int) endpos = np.array([x[4] for x in exons], dtype=int) strand = exons[0][6] number =
np.array([x[8]['exon_number'] for x in exons], dtype=int)
numpy.array
# Copyright (c) 2018, NECOTIS # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Authors: <NAME>, <NAME> (advisor) # Date: April 22th, 2019 # Organization: Groupe de recherche en Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), # Université de Sherbrooke, Canada import random import logging import numpy as np import matplotlib.pyplot as plt from brian2.units import ms, Hz from brian2.synapses.synapses import Synapses from brian2.core.clocks import defaultclock from brian2.monitors.spikemonitor import SpikeMonitor from brian2.core.network import Network from brian2.units.allunits import second from brian2.monitors.statemonitor import StateMonitor from brian2.input.spikegeneratorgroup import SpikeGeneratorGroup from brian2.groups.neurongroup import NeuronGroup from brian2.core.functions import implementation from brian2.units.fundamentalunits import check_units from brian2.core.base import BrianObject from brian2.devices.cpp_standalone.codeobject import CPPStandaloneCodeObject from brian2.core.preferences import prefs from critical.microcircuit import Microcircuit logger = logging.getLogger(__name__) class AvalancheEndDetector(BrianObject): def __init__(self, G, maxQuietTime=15 * ms, network=None, *args, **kwargs): super(AvalancheEndDetector, self).__init__(*args, **kwargs) prefs.codegen.cpp.headers += ['"run.h"'] # This is necessary to use brian_end() namespace = None if network is not None: # Stop simulation when avalanche end is detected @implementation(CPPStandaloneCodeObject, ''' double stop_on_avalanche_end(double lastspiketime_input, double maxQuietTime) { if (lastspiketime_input > maxQuietTime) { brian_end(); std::exit(0); } return 0.0; } ''') @implementation('numpy', discard_units=True) @check_units(lastspiketime_input=second, maxQuietTime=second, result=1) def stop_on_avalanche_end(lastspiketime_input, maxQuietTime): if lastspiketime_input > maxQuietTime: network.stop() return 0.0 namespace = {'stop_on_avalanche_end': stop_on_avalanche_end, 'maxQuietTime': maxQuietTime} # Spike monitor used to compute the avalanche length M = SpikeMonitor(G, record=True) # Dummy neuron and synapses used to monitor the end of the avalanche from the spiking activity P = NeuronGroup(1, ''' lastspiketime_input : second ''', namespace=namespace) P.lastspiketime_input = 0.0 * second Sae = Synapses(G, P, on_pre=''' lastspiketime_input = 0.0 * second ''') Sae.connect('True') P.run_regularly('lastspiketime_input += dt', when='synapses') if network is not None: P.run_regularly('dummy = stop_on_avalanche_end(lastspiketime_input, maxQuietTime)', when='after_synapses') self.P = P self.M = M self.contained_objects.extend([P, M, Sae]) def getAvalancheSize(self): return max(int(self.M.num_spikes - 1), 0) def getAvalancheLength(self): if len(self.M.t) > 1: minTime, maxTime = np.min(self.M.t), np.max(self.M.t) avalancheLength = (maxTime - minTime) else: avalancheLength = 0.0 * ms return avalancheLength def estimatePowerLawScaling(net, microcircuit, nbSamples=1000, maxAvalancheTime=150 * ms): # Disable plasticity and spontaneous activity microcircuit.S.plastic = False microcircuit.G.noise.active = False # Spike generator used for input stimulation # NOTE: use a high weight to force spiking of the postsynaptic neuron nbInputs = len(microcircuit.G) G = SpikeGeneratorGroup(nbInputs, indices=[0], times=[0 * ms]) Si = Synapses(G, microcircuit.G, model='w : 1', on_pre='''v_post += w * int(not_refractory_post) c_in_tot_post += w * int(not_refractory_post)''') Si.connect(j='i') Si.w = 10.0 # Detect the end of avalanche and stop the simulation if no spike occured in the last 5 ms D = AvalancheEndDetector(microcircuit.G, maxQuietTime=5 * ms, network=net) defaultclock.dt = 0.1 * ms net.add([G, Si, D]) net.store('before_testing') # Generate multiple avalanches # NOTE: only select excitatory neurons targets = np.arange(len(microcircuit.G), dtype=np.int) validTargets = targets[microcircuit.G.ntype > 0] avalancheSizes = [] for n in range(nbSamples): if (n + 1) % 100 == 0: logger.debug('Generating avalanche no.%d (out of %d)' % (n + 1, nbSamples)) # Reinitialization net.restore('before_testing') # Chose a target neuron in the population target = np.random.choice(validTargets) G.set_spikes(indices=[target], times=[defaultclock.t + 1 * ms]) net.run(maxAvalancheTime) # Get the number of elicited spikes logger.debug('Avalanche no.%d: size of %d, length of %4.3f ms' % (n + 1, D.getAvalancheSize(), D.getAvalancheLength() / ms)) avalancheSizes.append(D.getAvalancheSize()) avalancheSizes = np.array(avalancheSizes) # Compute the histogram of avalanche sizes sizes = np.arange(0, np.max(avalancheSizes) + 1) bins = np.concatenate((sizes, [np.max(avalancheSizes) + 1, ])) - 0.5 hist, _ = np.histogram(avalancheSizes, bins) pdf = hist.astype(np.float) / np.sum(hist) assert len(pdf) == len(sizes) # Show histogram of avalanche sizes fig = plt.figure(facecolor='white') ax = fig.add_subplot(111) ax.scatter(sizes[pdf > 0], pdf[pdf > 0], color='k', marker='.') ax.set_xlabel('Avalanche size') ax.set_ylabel('Probability') ax.set_xscale('log') ax.set_yscale('log') # Fitting the power-law line in log-log domain mask = np.logical_and(sizes > 0, pdf > 0) logX = np.log(sizes[mask]) logY = np.log(pdf[mask]) p = np.polyfit(logX, logY, 1) a, b = p[0], p[1] logger.info('Estimated exponent using curve fitting: %f' % (a)) # Plot the fitted powerlaw curve npl = np.arange(0, np.max(sizes) + 1) pl = np.exp(b) * (npl ** (a)) ax.plot(npl, pl, color='k', linestyle='--') return fig def main(): # Choose the duration of the training duration = 60 * second targetCbf = 1.0 logger.info('Simulating for target branching factor of %f' % (targetCbf)) # Create the microcircuit # NOTE: p_max is chosen so to have an out-degree of N=16 m = Microcircuit(connectivity='small-world', macrocolumnShape=[2, 2, 2], minicolumnShape=[4, 4, 4], p_max=0.056, srate=1 * Hz, excitatoryProb=0.8, delay='1*ms + 2*ms * rand()') # Configure CRITICAL learning rule m.G.c_out_ref = targetCbf # target critical branching factor m.S.alpha = 0.05 # learning rate logger.info('Number of neurons in the population: %d' % (len(m.G))) # Configure the monitors and simulation # NOTE: setting a high time resolution increase the stability of the learning rule M = SpikeMonitor(m.G, record=True) Mg = StateMonitor(m.G, variables=['cbf'], record=True, dt=10 * ms) defaultclock.dt = 0.1 * ms net = Network(m.getBrianObjects()) net.store('initialized') # Add inputs and monitors net.add([M, Mg]) # Run the simulation with input stimuli and plasticity enabled m.S.plastic = True net.run(duration, report='text') # Compute population average firing rate avgOutputFiringRate = len(M.i) / (len(m.G) * duration) logger.info('Average output firing rate: %4.2f Hz' % (avgOutputFiringRate)) # NOTE: compute statistics on excitatory neurons only meanCbf = np.mean(Mg.cbf.T[:, m.G.ntype > 0], axis=-1) fig = plt.figure(facecolor='white', figsize=(6, 5)) ax = fig.add_subplot(1, 1, 1) ax.set_xlabel('Time [sec]') ax.set_ylabel('Average output contributions') ax.plot(Mg.t, meanCbf, color='k') ax.set_ylim((0.0, 2.0)) fig.tight_layout() fig.savefig('convergence.eps') # Visualization of the simulation # NOTE: show only the last 10 sec of the simulation fig = plt.figure(facecolor='white', figsize=(6, 5)) plt.subplot(111) plt.title('Spiking activity (output)') plt.plot(M.t / ms, M.i, '.', color='b') plt.ylabel('Neurons') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) fig.tight_layout() # Disable spontaneous activity and let the population reach a resting state m.S.plastic = False m.G.noise.active = False net.remove([M, Mg]) net.run(10 * second) net.store('after_learning') fig = estimatePowerLawScaling(net, m, nbSamples=1000, maxAvalancheTime=250 * ms) fig.savefig('avalanches_distribution.eps') plt.show() if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) # Fix the seed of all random number generator seed = 0 random.seed(seed)
np.random.seed(seed)
numpy.random.seed
import sys import warnings import re import xml.etree.ElementTree import io import uuid import struct import pathlib import jnius_config import numpy as np import scipy.spatial.distance import scipy.fft import skimage.util import skimage.util.dtype import skimage.io import skimage.exposure import skimage.transform import sklearn.linear_model import networkx as nx import matplotlib.pyplot as plt import matplotlib.cm as mcm import matplotlib.patches as mpatches import matplotlib.patheffects as mpatheffects from . import utils from . import thumbnail from . import __version__ as _version if not jnius_config.vm_running: pkg_root = pathlib.Path(__file__).parent.resolve() bf_jar_path = pkg_root / 'jars' / 'loci_tools.jar' if not bf_jar_path.exists(): raise RuntimeError("loci_tools.jar missing from distribution" " (expected it at %s)" % bf_jar_path) jnius_config.add_classpath(str(bf_jar_path)) import jnius DebugTools = jnius.autoclass('loci.common.DebugTools') IFormatReader = jnius.autoclass('loci.formats.IFormatReader') MetadataRetrieve = jnius.autoclass('ome.xml.meta.MetadataRetrieve') ServiceFactory = jnius.autoclass('loci.common.services.ServiceFactory') OMEXMLService = jnius.autoclass('loci.formats.services.OMEXMLService') ChannelSeparator = jnius.autoclass('loci.formats.ChannelSeparator') DynamicMetadataOptions = jnius.autoclass('loci.formats.in.DynamicMetadataOptions') UNITS = jnius.autoclass('ome.units.UNITS') DebugTools.enableLogging("ERROR") # TODO: # - Write tables with summary information about alignments. class Metadata(object): @property def _num_images(self): raise NotImplementedError @property def num_channels(self): raise NotImplementedError @property def pixel_size(self): raise NotImplementedError @property def pixel_dtype(self): raise NotImplementedError def tile_position(self, i): raise NotImplementedError def tile_size(self, i): raise NotImplementedError @property def grid_dimensions(self): pos = self.positions shape = np.array([len(set(pos[:, d])) for d in range(2)]) if np.prod(shape) != self.num_images: raise ValueError("Series positions do not form a grid") return shape @property def num_images(self): return self._num_images @property def positions(self): if not hasattr(self, '_positions'): self._positions = np.vstack([ self.tile_position(i) for i in range(self._num_images) ]) return self._positions @property def size(self): if not hasattr(self, '_size'): s0 = self.tile_size(0) image_ids = range(1, self._num_images) if any(any(self.tile_size(i) != s0) for i in image_ids): raise ValueError("Image series must all have the same dimensions") self._size = s0 return self._size @property def centers(self): return self.positions + self.size / 2 @property def origin(self): return self.positions.min(axis=0) class PlateMetadata(Metadata): def __init__(self): super(PlateMetadata, self).__init__() self.set_active_plate_well(None, None) @property def num_plates(self): raise NotImplementedError @property def num_wells(self): raise NotImplementedError @property def plate_well_series(self): raise NotImplementedError def plate_name(self, i): raise NotImplementedError def well_name(self, plate, i): raise NotImplementedError def set_active_plate_well(self, plate, well): if (plate is None) ^ (well is None): raise ValueError("plate and well must be both set or both None") self.active_plate = plate self.active_well = well @property def active_series(self): if self.active_plate is None: return range(self._num_images) else: return self.plate_well_series[self.active_plate][self.active_well] @property def plate_names(self): if not hasattr(self, '_plate_names'): self._plate_names = [ self.plate_name(i) for i in range(self.num_plates) ] return self._plate_names @property def well_names(self): if not hasattr(self, '_well_names'): self._well_names = [ [self.well_name(p, i) for i in range(num_plate_wells)] for p, num_plate_wells in enumerate(self.num_wells) ] return self._well_names @Metadata.num_images.getter def num_images(self): return len(self.active_series) @Metadata.positions.getter def positions(self): return Metadata.positions.fget(self)[self.active_series] # FIXME Metadata.grid_dimensions should be overriden here or removed. class Reader(object): def read(self, series, c): raise NotImplementedError class PlateReader(Reader): # No API here, just a way to signal that a subclass's metadata class # inherits from PlateMetadata. This is probably a sign that the # architectural split between Metadata and Reader should be reconsidered. pass class BioformatsMetadata(PlateMetadata): _pixel_dtypes = { 'uint8': np.dtype(np.uint8), 'uint16': np.dtype(np.uint16), } _ome_dtypes = {v: k for k, v in _pixel_dtypes.items()} def __init__(self, path): super(BioformatsMetadata, self).__init__() self.path = path self._init_metadata() def __getstate__(self): state = self.__dict__.copy() del state['_reader'], state['_metadata'], state['_omexml_root'] return state def __setstate__(self, state): self.__dict__.update(state) self._init_metadata() def _init_metadata(self): factory = ServiceFactory() service = jnius.cast(OMEXMLService, factory.getInstance(OMEXMLService)) metadata = service.createOMEXMLMetadata() self._reader = ChannelSeparator() self._reader.setMetadataStore(metadata) # For multi-scene .CZI files, we need raw tiles instead of the # auto-stitched mosaic and we don't want labels or overview images options = DynamicMetadataOptions() options.setBoolean('zeissczi.autostitch', False) options.setBoolean('zeissczi.attachments', False) self._reader.setMetadataOptions(options) self._reader.setId(self.path) xml_content = service.getOMEXML(metadata) self._metadata = jnius.cast(MetadataRetrieve, metadata) self._omexml_root = xml.etree.ElementTree.fromstring(xml_content) self.format_name = self._reader.getFormat() @property def _num_images(self): count = self._metadata.imageCount # Skip final overview slide in Metamorph Slide Scan data if present. if (self.format_name == 'Metamorph STK' and 'overview' in self._metadata.getImageName(count - 1).lower()): count -= 1 return count @property def num_channels(self): return self._metadata.getChannelCount(0) @property def num_plates(self): return self._metadata.getPlateCount() @property def num_wells(self): return [self._metadata.getWellCount(i) for i in range(self.num_plates)] @property def plate_well_series(self): if hasattr(self, '_plate_well_series'): return self._plate_well_series # FIXME Store slice objects to save resources where possible. series = [ [ np.array([ self._metadata.getWellSampleIndex(p, w, s).value for s in range(self._metadata.getWellSampleCount(p, w)) ], dtype=int) for w in range(num_wells) ] for p, num_wells in enumerate(self.num_wells) ] return series @property def pixel_size(self): values = [] for dim in ('Y', 'X'): method = getattr(self._metadata, 'getPixelsPhysicalSize%s' % dim) v_units = method(0) if v_units is None: warn_data( "Pixel size undefined; falling back to 1.0 \u03BCm." ) value = 1.0 else: value = v_units.value(UNITS.MICROMETER).doubleValue() values.append(value) if values[0] != values[1]: raise Exception("Can't handle non-square pixels (%f, %f)" % tuple(values)) return values[0] @property def pixel_dtype(self): return self._pixel_dtypes[self._metadata.getPixelsType(0).value] def plate_name(self, i): return self._metadata.getPlateName(i) @property def well_naming(self): if not hasattr(self, '_well_naming'): _well_naming = [] for p in range(self.num_plates): row_nc = self._metadata.getPlateRowNamingConvention(p) column_nc = self._metadata.getPlateColumnNamingConvention(p) if row_nc is not None: row_nc = row_nc.value else: row_nc = 'letter' if column_nc is not None: column_nc = column_nc.value else: column_nc = 'number' if row_nc not in ('letter', 'number') or column_nc != 'number': raise RuntimeError( "Can't handle well naming convention row={} column={}" .format(row_nc, column_nc) ) _well_naming.append([row_nc, column_nc]) self._well_naming = _well_naming return self._well_naming def well_name(self, plate, i): row = self._metadata.getWellRow(plate, i).value column = self._metadata.getWellColumn(plate, i).value row_nc, column_nc = self.well_naming[plate] # FIXME Support formatting with 384/1536-well plates. assert row_nc in ('letter', 'number') assert column_nc == 'number' if row_nc == 'number': row_fmt = '{:02}'.format(row + 1) else: row_fmt = chr(ord('A') + row) column_fmt = '{:02}'.format(column + 1) return row_fmt + column_fmt def tile_position(self, i): planeCount = self._metadata.getPlaneCount(i) values = [] for dim in ('Y', 'X'): method = getattr(self._metadata, 'getPlanePosition%s' % dim) # FIXME verify all planes have the same X,Y position. if planeCount > 0: # Returns None if planePositionX/Y not defined. v_units = method(i, 0) else: # Simple file formats don't have planes at all. v_units = None if v_units is None: warn_data( "Stage coordinates undefined; falling back to (0, 0)." ) values = [0.0, 0.0] break else: v = v_units.value(UNITS.MICROMETER) if v is None: # Conversion failed, which usually happens when the unit is # "reference frame". Proceed as if it's actually microns but # emit a warning. warn_data( "Stage coordinates' measurement unit is undefined;" " assuming \u03BCm." ) v = v_units.value() value = v.doubleValue() values.append(value) position_microns = np.array(values, dtype=float) # Invert Y so that stage position coordinates and image pixel # coordinates are aligned (most formats seem to work this way). position_microns *= [-1, 1] position_pixels = position_microns / self.pixel_size return position_pixels def tile_size(self, i): values = [] for dim in ('Y', 'X'): method = getattr(self._metadata, 'getPixelsSize%s' % dim) v = method(i).value values.append(v) return np.array(values, dtype=int) class BioformatsReader(PlateReader): def __init__(self, path, plate=None, well=None): self.path = path self.metadata = BioformatsMetadata(self.path) self.metadata.set_active_plate_well(plate, well) def read(self, series, c): self.metadata._reader.setSeries(self.metadata.active_series[series]) index = self.metadata._reader.getIndex(0, c, 0) byte_array = self.metadata._reader.openBytes(index) dtype = self.metadata.pixel_dtype shape = self.metadata.tile_size(series) img = np.frombuffer(byte_array.tostring(), dtype=dtype).reshape(shape) return img class CachingReader(Reader): """Wraps a reader to provide tile image caching.""" def __init__(self, reader, channel): self.reader = reader self.channel = channel self._cache = {} @property def metadata(self): return self.reader.metadata def read(self, series, c): if c == self.channel and series in self._cache: img = self._cache[series] else: img = self.reader.read(series, c) if c == self.channel and series not in self._cache: self._cache[series] = img return img # TileStatistics = collections.namedtuple( # 'TileStatistics', # 'scan tile x_original y_original x y shift_x shift_y error' # ) @property def neighbors_graph(aligner): """Return graph of neighboring (overlapping) tiles. Tiles are considered neighbors if the 'city block' distance between them is less than the largest tile dimension. """ # FIXME: This should properly test for overlap, possibly via # intersection of bounding rectangles. if not hasattr(aligner, '_neighbors_graph'): pdist = scipy.spatial.distance.pdist(aligner.metadata.positions, metric='cityblock') sp = scipy.spatial.distance.squareform(pdist) max_distance = aligner.metadata.size.max() + 1 edges = zip(*np.nonzero((sp > 0) & (sp < max_distance))) graph = nx.from_edgelist(edges) graph.add_nodes_from(range(aligner.metadata.num_images)) aligner._neighbors_graph = graph return aligner._neighbors_graph class EdgeAligner(object): def __init__( self, reader, channel=0, max_shift=15, false_positive_ratio=0.01, randomize=False, filter_sigma=0.0, do_make_thumbnail=True, verbose=False ): self.channel = channel self.reader = CachingReader(reader, self.channel) self.verbose = verbose # Unit is micrometers. self.max_shift = max_shift self.max_shift_pixels = self.max_shift / self.metadata.pixel_size self.false_positive_ratio = false_positive_ratio self.randomize = randomize self.filter_sigma = filter_sigma self.do_make_thumbnail = do_make_thumbnail self._cache = {} neighbors_graph = neighbors_graph def run(self): self.make_thumbnail() self.check_overlaps() self.compute_threshold() self.register_all() self.build_spanning_tree() self.calculate_positions() self.fit_model() def make_thumbnail(self): if not self.do_make_thumbnail: return self.reader.thumbnail = thumbnail.make_thumbnail( self.reader, channel=self.channel ) def check_overlaps(self): # This might be better addressed by removing the +1 from the # neighbors_graph max_distance calculation and ensuring the graph is # fully connected. pos = self.metadata.positions overlaps = np.array([ self.metadata.size - abs(pos[t1] - pos[t2]) for t1, t2 in self.neighbors_graph.edges ]) failures = np.any(overlaps < 1, axis=1) if len(overlaps) else [] if len(failures) and all(failures): warn_data("No tiles overlap, attempting alignment anyway.") elif any(failures): warn_data("Some neighboring tiles have zero overlap.") def compute_threshold(self): # Compute error threshold for rejecting aligments. We generate a # distribution of error scores for many known non-overlapping image # regions and take a certain percentile as the maximum allowable error. # The percentile becomes our accepted false-positive ratio. edges = self.neighbors_graph.edges num_tiles = self.metadata.num_images # If not enough tiles overlap to matter, skip this whole thing. if len(edges) <= 1: self.errors_negative_sampled = np.empty(0) self.max_error = np.inf return widths = np.array([ self.intersection(t1, t2).shape.min() for t1, t2 in edges ]) w = widths.max() max_offset = self.metadata.size[0] - w # Number of possible pairs minus number of actual neighbor pairs. num_distant_pairs = num_tiles * (num_tiles - 1) // 2 - len(edges) # Reduce permutation count for small datasets -- there are fewer # possible truly distinct strips with fewer tiles. The calculation here # is just a heuristic, not rigorously derived. n = 1000 if num_distant_pairs > 8 else (num_distant_pairs + 1) * 10 pairs = np.empty((n, 2), dtype=int) offsets = np.empty((n, 2), dtype=int) # Generate n random non-overlapping image strips. Strips are always # horizontal, across the entire image width. max_tries = 100 if self.randomize is False: random_state = np.random.RandomState(0) else: random_state = np.random.RandomState() for i in range(n): # Limit tries to avoid infinite loop in pathological cases. for current_try in range(max_tries): t1, t2 = random_state.randint(self.metadata.num_images, size=2) o1, o2 = random_state.randint(max_offset, size=2) # Check for non-overlapping strips and abort the retry loop. if t1 != t2 and (t1, t2) not in edges: # Different, non-neighboring tiles -- always OK. break elif t1 == t2 and abs(o1 - o2) > w: # Same tile OK if strips don't overlap within the image. break elif (t1, t2) in edges: # Neighbors OK if either strip is entirely outside the # expected overlap region (based on nominal positions). its = self.intersection(t1, t2, np.repeat(w, 2)) ioff1, ioff2 = its.offsets[:, 0] if ( its.shape[0] > its.shape[1] or o1 < ioff1 - w or o1 > ioff1 + w or o2 < ioff2 - w or o2 > ioff2 + w ): break else: # Retries exhausted. This should be very rare. warn_data( "Could not find non-overlapping strips in {max_tries} tries" ) pairs[i] = t1, t2 offsets[i] = o1, o2 errors = np.empty(n) for i, ((t1, t2), (offset1, offset2)) in enumerate(zip(pairs, offsets)): if self.verbose and (i % 10 == 9 or i == n - 1): sys.stdout.write( '\r quantifying alignment error %d/%d' % (i + 1, n) ) sys.stdout.flush() img1 = self.reader.read(t1, self.channel)[offset1:offset1+w, :] img2 = self.reader.read(t2, self.channel)[offset2:offset2+w, :] _, errors[i] = utils.register(img1, img2, self.filter_sigma, upsample=1) if self.verbose: print() self.errors_negative_sampled = errors self.max_error = np.percentile(errors, self.false_positive_ratio * 100) def register_all(self): n = self.neighbors_graph.size() for i, (t1, t2) in enumerate(self.neighbors_graph.edges, 1): if self.verbose: sys.stdout.write('\r aligning edge %d/%d' % (i, n)) sys.stdout.flush() self.register_pair(t1, t2) if self.verbose: print() self.all_errors = np.array([x[1] for x in self._cache.values()]) # Set error values above the threshold to infinity. for k, v in self._cache.items(): if v[1] > self.max_error or any(np.abs(v[0]) > self.max_shift_pixels): self._cache[k] = (v[0], np.inf) def build_spanning_tree(self): # Note that this may be disconnected, so it's technically a forest. g = nx.Graph() g.add_nodes_from(self.neighbors_graph) g.add_weighted_edges_from( (t1, t2, error) for (t1, t2), (_, error) in self._cache.items() if np.isfinite(error) ) spanning_tree = nx.Graph() spanning_tree.add_nodes_from(g) for c in nx.connected_components(g): cc = g.subgraph(c) center = nx.center(cc)[0] paths = nx.single_source_dijkstra_path(cc, center).values() for path in paths: nx.add_path(spanning_tree, path) self.spanning_tree = spanning_tree def calculate_positions(self): shifts = {} for c in nx.connected_components(self.spanning_tree): cc = self.spanning_tree.subgraph(c) center = nx.center(cc)[0] shifts[center] = np.array([0, 0]) for edge in nx.traversal.bfs_edges(cc, center): source, dest = edge if source not in shifts: source, dest = dest, source shift = self.register_pair(source, dest)[0] shifts[dest] = shifts[source] + shift if shifts: self.shifts = np.array([s for _, s in sorted(shifts.items())]) self.positions = self.metadata.positions + self.shifts else: # TODO: fill in shifts and positions with 0x2 arrays raise NotImplementedError("No images") def fit_model(self): components = sorted( nx.connected_components(self.spanning_tree), key=len, reverse=True ) # Fit LR model on positions of largest connected component. cc0 = list(components[0]) self.lr = sklearn.linear_model.LinearRegression() self.lr.fit(self.metadata.positions[cc0], self.positions[cc0]) # Fix up degenerate transform matrix (e.g. when we have only one tile). if (self.lr.coef_ == 0).all(): self.lr.coef_ = np.diag(np.ones(2)) # Adjust position of remaining components so their centroids match # the predictions of the model. for cc in components[1:]: nodes = list(cc) centroid_m = np.mean(self.metadata.positions[nodes], axis=0) centroid_f = np.mean(self.positions[nodes], axis=0) shift = self.lr.predict([centroid_m])[0] - centroid_f self.positions[nodes] += shift # Adjust positions and model intercept to put origin at 0,0. self.origin = self.positions.min(axis=0) self.positions -= self.origin self.lr.intercept_ -= self.origin self.centers = self.positions + self.metadata.size / 2 def register_pair(self, t1, t2): """Return relative shift between images and the alignment error.""" key = tuple(sorted((t1, t2))) try: shift, error = self._cache[key] except KeyError: # We test a series of increasing overlap window sizes to help avoid # missing alignments when the stage position error is large relative # to the tile overlap. Simply using a large overlap in all cases # limits the maximum achievable correlation thus increasing the # error metric, leading to worse overall results. The window size # starts at the nominal size and doubles until it's at least 10% of # the tile size. If the nominal overlap is already 10% or greater, # we only use that one size. smin = self.intersection(key[0], key[1]).shape smax = np.round(self.metadata.size * 0.1) sizes = [smin] while any(sizes[-1] < smax): sizes.append(sizes[-1] * 2) results = [self._register(key[0], key[1], s) for s in sizes] # Use the shift from the window size that gave the lowest error. shift, _ = min(results, key=lambda r: r[1]) # Extract the images from the nominal overlap window but with the # shift applied to the second tile's position, and compute the error # metric on these images. This should be even lower than the error # computed above. _, o1, o2 = self.overlap(key[0], key[1], shift=shift) error = utils.nccw(o1, o2, self.filter_sigma) self._cache[key] = (shift, error) if t1 > t2: shift = -shift # Return copy of shift to prevent corruption of cached values. return shift.copy(), error def _register(self, t1, t2, min_size=0): its, img1, img2 = self.overlap(t1, t2, min_size) # Account for padding, flipping the sign depending on the direction # between the tiles. p1, p2 = self.metadata.positions[[t1, t2]] sx = 1 if p1[1] >= p2[1] else -1 sy = 1 if p1[0] >= p2[0] else -1 padding = its.padding * [sy, sx] shift, error = utils.register(img1, img2, self.filter_sigma) shift += padding return shift, error def intersection(self, t1, t2, min_size=0, shift=None): corners1 = self.metadata.positions[[t1, t2]] if shift is not None: corners1[1] += shift corners2 = corners1 + self.metadata.size return Intersection(corners1, corners2, min_size) def crop(self, tile, offset, shape): img = self.reader.read(series=tile, c=self.channel) return utils.crop(img, offset, shape) def overlap(self, t1, t2, min_size=0, shift=None): its = self.intersection(t1, t2, min_size, shift) img1 = self.crop(t1, its.offsets[0], its.shape) img2 = self.crop(t2, its.offsets[1], its.shape) return its, img1, img2 @property def best_edge(self): ordered_keys = sorted(self._cache, key=lambda k: self._cache[k][1]) return ordered_keys[0] @property def metadata(self): return self.reader.metadata @property def mosaic_shape(self): upper_corners = self.positions + self.metadata.size max_dimensions = upper_corners.max(axis=0) return np.ceil(max_dimensions).astype(int) def debug(self, t1, t2, min_size=0): shift, _ = self._register(t1, t2, min_size) its, o1, o2 = self.overlap(t1, t2, min_size) w1 = utils.whiten(o1, self.filter_sigma) w2 = utils.whiten(o2, self.filter_sigma) corr = scipy.fft.fftshift(np.abs(scipy.fft.ifft2( scipy.fft.fft2(w1) * scipy.fft.fft2(w2).conj() ))) corr /= (np.linalg.norm(w1) * np.linalg.norm(w2)) stack = np.vstack rows, cols = 3, 1 if corr.shape[0] > corr.shape[1]: stack = np.hstack rows, cols = cols, rows plt.figure() plt.subplot(rows, cols, 1) plt.imshow(stack([o1, o2])) ax = plt.subplot(rows, cols, 2) ax.set_xticks([]) ax.set_yticks([]) plt.imshow(stack([w1, w2]).real) ax = plt.subplot(rows, cols, 3) ax.set_xticks([]) ax.set_yticks([]) plt.imshow(corr, vmin=
np.exp(-10)
numpy.exp
import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches import scipy import csv import Statistics as stats class ResultData(): def __init__(self, rps_scores, name): self.rps_scores = rps_scores self.name = name def computeData(self): self.uwm = [self.rps_scores[i][0] for i in range(1,len(self.rps_scores))] self.pwm = [self.rps_scores[i][1] for i in range(1,len(self.rps_scores))] self.cwm = [self.rps_scores[i][2] for i in range(1,len(self.rps_scores))] self.con = [self.rps_scores[i][3] for i in range(1,len(self.rps_scores))] self.bex = [self.rps_scores[i][4] for i in range(1,len(self.rps_scores))] self.ran = [self.rps_scores[i][5] for i in range(1,len(self.rps_scores))] def computeDataDefaultWeight(self): self.dew = [self.rps_scores[i][0] for i in range(1,len(self.rps_scores))] def setExpertPerformance(self, ep): self.expertPerformance = ep def setExpertWeights(self, ew): self.expertWeights = ew def getExpertPerformance(self): return self.expertPerformance def getMeanExpertRPS(self): return np.mean(np.array(self.expertPerformance[0]), axis=0) def getExpertWeights(self): return self.expertWeights def getMeanRPS(self): array = [self.rps_scores[0], list(np.mean(np.array(self.rps_scores[1:]), axis=0))] return array def getConfInterval_old(self, confidence=0.95): n = len(self.rps_scores[1:]) if(n<100): print("Please know that our confidence interval values are not correct for small samples!") inf = round(((1-confidence)/2)*n) sup = round(((1+confidence)/2)*n) data =
np.array(self.rps_scores[1:])
numpy.array
from .losses import ROI_mean_squared_error_loss,wind_ROI_mean_squared_error,ROI_diff_mse_joint_loss,ROI_diff_temporal_loss,wind_ROI_diff_temporal_loss from .util import agg_window,create_windowed_arr,save_multiple_graph,get_output,gather_auc_avg_per_tol,join_mean_std,create_diff_mask import matplotlib.pyplot as plt from keras.models import Sequential, Model import numpy as np import pandas as pd import os class Params(object): """ Parameters class to handlde parameters for the Fusion models """ def __init__(self,width=64, height=64,win_length=8,thermal_channels=1,flow_channels=3,dset='Thermal_track',d_type='frame',flow_lambda=1,thermal_lambda_S=1,thermal_lambda_T=1,regularizer_list=None,TR_name=None,FR_name=None,D_name=None,batch_size=32,break_win=10): self.width=width self.height=height self.win_length=win_length self.thermal_channels=thermal_channels self.flow_channels=flow_channels self.dset=dset self.d_type=d_type self.batch_size = batch_size self.flow_lambda=flow_lambda self.thermal_lambda_S=thermal_lambda_S self.thermal_lambda_T=thermal_lambda_T self.regularizer_list=regularizer_list self.TR_name=TR_name self.FR_name=FR_name self.D_name=D_name self.gap=break_win def create_model_name(self): return self.get_model_type()+ '_TS{}_TT{}_F{}'.format(str(self.thermal_lambda_S),str(self.thermal_lambda_T),str(self.flow_lambda)) def create_hp_name(self): return 'lambda_TS{}_TT{}_F{}'.format(str(self.thermal_lambda_S),str(self.thermal_lambda_T),str(self.flow_lambda)) def get_model_type(self): TR_name=self.TR_name FR_name=self.FR_name D_name=self.D_name return FR_name+'_'+TR_name+'_'+D_name def get_model_dir(self): return self.get_root_path()+'/models' def get_TR_path(self,epochs_trained): return self.get_root_path()+'/models/GAN_T_R_weights_epoch-{}.h5'.format(epochs_trained) def get_FR_path(self,epochs_trained): return self.get_root_path()+'/models/GAN_F_R_weights_epoch-{}.h5'.format(epochs_trained) def get_D_path(self,epochs_trained): return self.get_root_path()+'/models/GAN_D_weights_epoch-{}.h5'.format(epochs_trained) def get_root_path(self): return './{}/{}/{}/{}'.format(self.dset,self.d_type,self.get_model_type(),self.create_hp_name()) class Fusion_Diff_ROI_3DCAE_GAN3D(object): ''' Class used to train and test fusion, difference frames loss and ROI based adversarial learning ''' def __init__(self, train_par=None,stride=1): self.train_par=train_par self.stride=stride def initialize_model(self,T_Reconstructor, F_Reconstructor, Discriminator ): print("Compiling GAN model.") self.T_R = T_Reconstructor self.F_R = F_Reconstructor self.D = Discriminator print('Discriminator') print(self.D.summary()) print('Thermal Reconstructor') print(self.T_R.summary()) print('Flow Reconstructor') print(self.F_R.summary()) self.OPTIMIZER = 'adam' self.stacked_R_D = self.stacked_R_D() losses={'D': 'binary_crossentropy', 'thermal_decoded': ROI_diff_mse_joint_loss(self.T_R.input[1],self.T_R.input[2],self.train_par.thermal_lambda_S,self.train_par.thermal_lambda_T),\ 'flow_decoded': ROI_mean_squared_error_loss(self.F_R.input[1])} loss_weights = {'D':1, 'thermal_decoded':1, 'flow_decoded':self.train_par.flow_lambda} T_R_metrics={'thermal_decoded':[ROI_mean_squared_error_loss(self.T_R.input[1]),ROI_diff_temporal_loss(self.T_R.input[1],self.T_R.input[2])]} self.stacked_R_D.compile(loss=losses,\ optimizer=self.OPTIMIZER, loss_weights = loss_weights, metrics=T_R_metrics) def stacked_R_D(self): ''' Used for training Reconstructor. Dicscriminator is freezed. ''' self.D.trainable = False #print(self.R.output) model = Model(inputs = self.T_R.input+ self.F_R.input, outputs = [self.T_R.output,self.F_R.output, self.D([self.T_R.output,self.F_R.output])],name='stacked') print('stacked') print(model.summary()) return model def create_windowed_data(self, videos_dic,stride=1,data_key='FRAME'): total = [] img_width, img_height,win_length=self.train_par.width,self.train_par.height,self.train_par.win_length if data_key=='FLOW': win_length=win_length-1 # print('total.shape', 'num_windowed', 'output_shape', total.shape, num_windowed, output_shape) for vid_name in videos_dic.keys(): # print('Video Name', vid_name) vid_windowed_list=[] sub_vid_list=videos_dic[vid_name][data_key] for sub_vid in sub_vid_list: vid_windowed_list.append(create_windowed_arr(sub_vid, stride, win_length)) # print("Number of sub videos: ",len(vid_windowed_list)) vid_windowed=np.concatenate(vid_windowed_list) total.append(vid_windowed) total=np.concatenate(total) # print("Windowed data shape:") print(total.shape) return total def get_F_RE_all_agg(self, flow_data, flow_masks): """ compute Reconstruction error of flow frames """ img_width, img_height, win_length, channels,model = self.train_par.width, self.train_par.height ,self.train_par.win_length, self.train_par.flow_channels, self.F_R recons_seq = model.predict([flow_data,flow_masks]) #(samples-win_length+1, win_length, wd,ht,1) RE=wind_ROI_mean_squared_error(flow_masks,flow_data,recons_seq,win_length-1, img_height,img_width,channels) RE_dict = {} agg_type_list = ['in_std', 'in_mean'] for agg_type in agg_type_list: RE_dict[agg_type] = agg_window(RE, agg_type) return RE_dict, recons_seq def get_T_S_RE_all_agg(self, thermal_data, thermal_masks,diff_masks): """ compute Reconstruction error of thermal frames i.e thermal spatial loss """ img_width, img_height, win_length, channels,model = self.train_par.width, self.train_par.height ,self.train_par.win_length, self.train_par.thermal_channels, self.T_R recons_seq = model.predict([thermal_data,thermal_masks,diff_masks]) #(samples-win_length+1, win_length, wd,ht,1) # print(recons_seq.shape) RE=wind_ROI_mean_squared_error(thermal_masks,thermal_data,recons_seq,win_length, img_height,img_width,channels) # print('RE.shape', RE.shape) RE_dict = {} agg_type_list = ['x_std', 'x_mean', 'in_std', 'in_mean'] for agg_type in agg_type_list: RE_dict[agg_type] = agg_window(RE, agg_type) return RE_dict, recons_seq def get_T_T_RE_all_agg(self, thermal_data, thermal_masks,diff_masks): """ compute Reconstruction error of thermal difference frames i.e thermal temporal loss """ img_width, img_height, win_length, channels,model = self.train_par.width, self.train_par.height ,self.train_par.win_length, self.train_par.thermal_channels, self.T_R recons_seq = model.predict([thermal_data,thermal_masks,diff_masks]) #(samples-win_length+1, win_length, wd,ht,1) RE=wind_ROI_diff_temporal_loss(thermal_masks,diff_masks,thermal_data,recons_seq,win_length, img_height,img_width,channels) RE_dict = {} agg_type_list = ['in_std', 'in_mean'] for agg_type in agg_type_list: RE_dict[agg_type] = agg_window(RE, agg_type) return RE_dict, recons_seq def train(self, thermal_frame, thermal_mask,thermal_diff_masks,flow_frame, flow_mask,epochs= 500,epochs_trained=0, save_interval = 10): ''' Train the adversarial framework thermal_frame- window of thermal frames thermal_mask- mask of thermal windows flow_frame- window of flow frames flow_mask- mask of flow windows ''' print('using save root:', self.train_par.get_root_path()) self.save_root=self.train_par.get_root_path() batch_size=self.train_par.batch_size print('self.stacked_R_D.metrics_names', self.stacked_R_D.metrics_names) print('self.D.metrics_names', self.D.metrics_names) num_batches = int(thermal_frame.shape[0]/batch_size) print("Train thermal dataset shape",thermal_frame.shape) print("Train flow shape",flow_frame.shape) print("Number of batches",num_batches) #model save dir if not os.path.isdir(self.train_par.get_model_dir()): os.makedirs(self.train_par.get_model_dir()) d_loss_list = [] #m for mean r_loss_list_S_RE = [] #Spatial Reconstruction error r_loss_list_T_RE = [] #Temporal Reconstruction error r_loss_list_F_RE = [] #Flow frame Reconstruction error r_loss_list_BCE = [] #Binary cross entropy loss_root = self.save_root + '/loss' R_loss_root=loss_root +'/R_loss' D_loss_root=loss_root +'/D_loss' if not os.path.isdir(R_loss_root): print("Creating R loss directory ") os.makedirs(R_loss_root) if not os.path.isdir(D_loss_root): print("Creating D loss directory ") os.makedirs(D_loss_root) print("Loss file status................") if os.path.isfile(D_loss_root + '/epoch-{}.npy'.format(epochs_trained)): print("D Loss file found") d_loss_list=list(np.load(D_loss_root + '/epoch-{}.npy'.format(epochs_trained))) if os.path.isfile(R_loss_root + '/S_epoch-{}.npy'.format(epochs_trained)): print("R Spatial Loss file found") r_loss_list_S_RE=list(np.load(R_loss_root + '/S_epoch-{}.npy'.format(epochs_trained))) if os.path.isfile(R_loss_root + '/T_epoch-{}.npy'.format(epochs_trained)): print("RE Temporal Loss file found") r_loss_list_T_RE=list(np.load(R_loss_root + '/T_epoch-{}.npy'.format(epochs_trained))) if os.path.isfile(R_loss_root + '/F_epoch-{}.npy'.format(epochs_trained)): print("R Flow Loss file found") r_loss_list_F_RE=list(np.load(R_loss_root + '/F_epoch-{}.npy'.format(epochs_trained))) if os.path.isfile(R_loss_root + '/BCE_epoch-{}.npy'.format(epochs_trained)): print("R BCE Loss file found") r_loss_list_BCE=list(np.load(R_loss_root + '/BCE_epoch-{}.npy'.format(epochs_trained))) for epoch in range(epochs_trained+1,epochs): ## train discriminator random_index = np.random.randint(0, len(thermal_frame) - batch_size) permutated_indexes = np.random.permutation(thermal_frame.shape[0]) for step in range(num_batches): batch_indeces = permutated_indexes[step*batch_size:(step+1)*batch_size] #Retrieve Batch batch_thermal_frame =thermal_frame[batch_indeces] batch_thermal_mask=thermal_mask[batch_indeces] batch_thermal_diff_mask=thermal_diff_masks[batch_indeces] batch_flow_frame =flow_frame[batch_indeces] batch_flow_mask=flow_mask[batch_indeces] #AE #Thermal recons_thermal_images = self.T_R.predict([batch_thermal_frame,batch_thermal_mask,batch_thermal_diff_mask]) #Flow recons_flow_images = self.F_R.predict([batch_flow_frame,batch_flow_mask]) #Combine real and fake thermal_combined_batch = np.concatenate((batch_thermal_frame,recons_thermal_images)) flow_combined_batch = np.concatenate((batch_flow_frame,recons_flow_images)) y_combined_batch = np.concatenate((np.ones((batch_size, 1)), np.zeros((batch_size, 1)))) # First train Discriminator d_loss = self.D.train_on_batch([thermal_combined_batch,flow_combined_batch ], y_combined_batch) d_loss_list.append(d_loss) # Train Reconstructor y_mislabled = np.ones((batch_size, 1)) r_loss = self.stacked_R_D.train_on_batch([batch_thermal_frame,batch_thermal_mask,\ batch_thermal_diff_mask,batch_flow_frame,batch_flow_mask], {'thermal_decoded':batch_thermal_frame,'flow_decoded':batch_flow_frame,'D':y_mislabled}) # metrics order['loss','thermal_decoded_loss','flow_decoded_loss','D_loss','thermal_decoded_mse_loss','thermal_decoded_diff_temporal_loss'] r_loss_list_S_RE.append(r_loss[4]) r_loss_list_T_RE.append(r_loss[5]) r_loss_list_F_RE.append(r_loss[2]) r_loss_list_BCE.append(r_loss[3]) if step % 10 == 0: print('epoch: {}, step {}, [Discriminator :: d_loss: {}], [ Reconstructor :: S_RE loss, T_RE loss, F_RE loss,\ BCE loss: {}, {}, {}, {}]'.format(epoch, step, d_loss, r_loss[4], r_loss[5], r_loss[2], r_loss[3])) if epoch % save_interval == 0 or epoch == epochs-1: save_string = self.train_par.get_TR_path(epoch) self.T_R.save_weights(save_string) save_string = self.train_par.get_FR_path(epoch) self.F_R.save_weights(save_string) save_string = self.train_par.get_D_path(epoch) self.D.save_weights(save_string) print('saving images') np.random.seed(0) test_idxs = np.random.choice(len(thermal_frame), 8, replace = False) #Saving thermal image test_ims =thermal_frame[test_idxs] test_masks = thermal_mask[test_idxs] test_diff_masks =thermal_diff_masks[test_idxs] self.plot_images_3D(save2file=True, step=epoch, test_window = test_ims,test_masks=test_masks,\ diff_masks=test_diff_masks,d_type='thermal') #Saving flow image test_flow_ims =flow_frame[test_idxs] test_flow_masks=flow_mask[test_idxs] self.plot_images_3D(save2file=True, step=epoch, test_window = test_flow_ims,test_masks=test_flow_masks,d_type='flow') #saving loss values np.save(D_loss_root + '/epoch-{}.npy'.format(epoch), np.array(d_loss_list)) np.save(R_loss_root + '/S_epoch-{}.npy'.format(epoch), np.array(r_loss_list_S_RE)) np.save(R_loss_root + '/F_epoch-{}.npy'.format(epoch), np.array(r_loss_list_F_RE)) np.save(R_loss_root + '/BCE_epoch-{}.npy'.format(epoch), np.array(r_loss_list_BCE)) #saving loss values np.save(D_loss_root + '/epoch-{}.npy'.format(epoch), np.array(d_loss_list)) np.save(R_loss_root + '/S_epoch-{}.npy'.format(epoch), np.array(r_loss_list_S_RE)) np.save(R_loss_root + '/F_epoch-{}.npy'.format(epoch), np.array(r_loss_list_F_RE)) np.save(R_loss_root + '/T_epoch-{}.npy'.format(epoch),
np.array(r_loss_list_T_RE)
numpy.array
import os import torch from torchvision.datasets import CelebA, CIFAR10, LSUN, ImageFolder from torch.utils.data import Dataset, DataLoader, random_split, Subset from utils import CropTransform import torchvision.transforms as transforms import numpy as np from tqdm import tqdm import cv2 from PIL import Image # Change the below to the actual dataset root folders celeba_root = 'datasets/CelebA' ffhq_root = 'datasets/FFHQ' shoes_root = 'datasets/edges2shoes' class Shoes(Dataset): """ Dataset format is the same as used in pix2pix. We take only trainB and testB. """ def __init__(self, root_dir, split='train', transform=None): self.root_dir = root_dir self.transform = transform self.split = split self.im_list = [f for f in os.listdir(os.path.join(root_dir, split+'B')) if f.endswith('jpg')] print('Got {} shoes in split {}.'.format(len(self.im_list), split)) def __len__(self): return len(self.im_list) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() img_path = os.path.join(self.root_dir, self.split+'B', self.im_list[idx]) image = Image.open(img_path) if not image.mode == 'RGB': image = image.convert('RGB') if self.transform: image = self.transform(image) return image class FFHQ(Dataset): """ FFHQ folder should contain images1024x1024 and thumbnails128x128 """ def __init__(self, root_dir, split='train', transform=None, use_thumbnails=False): self.root_dir = root_dir self.transform = transform self.split = split self.use_thumbnails = use_thumbnails self.split_ranges = {'train': (0, 60000), 'test': (60000, 70000)} def __len__(self): return self.split_ranges[self.split][1] - self.split_ranges[self.split][0] def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() subfolder = 'thumbnails128x128' if self.use_thumbnails else 'images1024x1024' img_name = os.path.join(self.root_dir, subfolder, '%05i.png' % (idx+self.split_ranges[self.split][0])) image = Image.open(img_name) if self.transform: image = self.transform(image) return image def load_data(dataset, num_samples=None, w=128, shuffle=True, has_cls=False): if num_samples: if shuffle: dataset = random_split(dataset, [num_samples, len(dataset)-num_samples])[0] else: dataset = Subset(dataset, np.arange(num_samples)) loader = DataLoader(dataset, shuffle=shuffle, num_workers=8) if has_cls: return np.vstack([x.numpy() for x, _ in tqdm(loader)]).transpose([0, 2, 3, 1]).reshape(-1, w*w*3) return np.vstack([x.numpy() for x in tqdm(loader)]).transpose([0, 2, 3, 1]).reshape(-1, w*w*3) def get_ffhq_data(split='train', num_samples=None, w=128, shuffle=True): ffhq = FFHQ(ffhq_root, split=split, transform=transforms.Compose([transforms.Resize(w), transforms.ToTensor()]), use_thumbnails=(w <= 128)) return load_data(ffhq, num_samples, w, shuffle) def get_celeba_data(split='train', num_samples=None, w=128, attr_num=None, attr_value=None, shuffle=True): celeba = CelebA(root=celeba_root, split=split, download=False, target_type='attr', transform=transforms.Compose([CropTransform((25, 50, 25+128, 50+128)), transforms.Resize(w), transforms.ToTensor()])) return load_data(celeba, num_samples, w, shuffle, has_cls=True) def get_shoes_data(split='train', num_samples=None, w=128, shuffle=True): shoes = Shoes(shoes_root, split=split, transform=transforms.Compose([transforms.CenterCrop((256, 256)), transforms.Resize((w, w)), transforms.ToTensor()])) return load_data(shoes, num_samples, w, shuffle) def true_transform(X, ttype='identity', w=128): """ Apply a synthetic transformation to a set of images :param X: Images (ch last) flattened - each image as row vector in X :param ttype: The required transformation :param w: The image resolution (w=h) :return: Transformed images """ X = X.reshape(-1, w, w, 3) if ttype == 'rot90': X = np.rot90(X, k=1, axes=(1, 2)) elif ttype == 'inpaint': mask = cv2.imread('data/inpaint_mask_simple.png').astype(np.float32)/255.0 # mask = cv2.imread('data/inpaint_mask.png').astype(np.float32)/255.0 # mask[:, 64:, :] = 1.0 - mask[:, 64:, :] if not mask.shape[0] == w: mask = cv2.resize(mask, (w, w), interpolation=cv2.INTER_NEAREST) X = X.copy() * mask.reshape(1, w, w, 3) elif ttype == 'vflip': X = X[:, ::-1] elif ttype == 'colorize': X = np.repeat(np.mean(X, axis=3, keepdims=True), 3, axis=3) elif ttype == 'edges': ksize = 1 if w == 64 else 3 X = np.stack([cv2.Laplacian(X[i], cv2.CV_32F, ksize=ksize) for i in range(X.shape[0])]) elif ttype == 'Canny-edges': edges = np.stack([cv2.Canny((
np.mean(X[i], axis=2)
numpy.mean
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ Implements data iterators and I/O related functions for sequence-to-sequence models. """ import bisect import gzip import logging import math import pickle import random from collections import OrderedDict from typing import Any, Dict, Iterator, Iterable, List, NamedTuple, Optional, Tuple import mxnet as mx import numpy as np from sockeye.utils import check_condition from . import config from . import constants as C logger = logging.getLogger(__name__) def define_buckets(max_seq_len: int, step=10) -> List[int]: """ Returns a list of integers defining bucket boundaries. Bucket boundaries are created according to the following policy: We generate buckets with a step size of step until the final bucket fits max_seq_len. We then limit that bucket to max_seq_len (difference between semi-final and final bucket may be less than step). :param max_seq_len: Maximum bucket size. :param step: Distance between buckets. :return: List of bucket sizes. """ buckets = [bucket_len for bucket_len in range(step, max_seq_len + step, step)] buckets[-1] = max_seq_len return buckets def define_parallel_buckets(max_seq_len_source: int, max_seq_len_target: int, bucket_width: int = 10, length_ratio: float = 1.0) -> List[Tuple[int, int]]: """ Returns (source, target) buckets up to (max_seq_len_source, max_seq_len_target). The longer side of the data uses steps of bucket_width while the shorter side uses steps scaled down by the average target/source length ratio. If one side reaches its max_seq_len before the other, width of extra buckets on that side is fixed to that max_seq_len. :param max_seq_len_source: Maximum source bucket size. :param max_seq_len_target: Maximum target bucket size. :param bucket_width: Width of buckets on longer side. :param length_ratio: Length ratio of data (target/source). """ source_step_size = bucket_width target_step_size = bucket_width if length_ratio >= 1.0: # target side is longer -> scale source source_step_size = max(1, int(bucket_width / length_ratio)) else: # source side is longer, -> scale target target_step_size = max(1, int(bucket_width * length_ratio)) source_buckets = define_buckets(max_seq_len_source, step=source_step_size) target_buckets = define_buckets(max_seq_len_target, step=target_step_size) # Extra buckets if len(source_buckets) < len(target_buckets): source_buckets += [source_buckets[-1] for _ in range(len(target_buckets) - len(source_buckets))] elif len(target_buckets) < len(source_buckets): target_buckets += [target_buckets[-1] for _ in range(len(source_buckets) - len(target_buckets))] # minimum bucket size is 2 (as we add BOS symbol to target side) source_buckets = [max(2, b) for b in source_buckets] target_buckets = [max(2, b) for b in target_buckets] parallel_buckets = list(zip(source_buckets, target_buckets)) # deduplicate for return return list(OrderedDict.fromkeys(parallel_buckets)) def get_bucket(seq_len: int, buckets: List[int]) -> Optional[int]: """ Given sequence length and a list of buckets, return corresponding bucket. :param seq_len: Sequence length. :param buckets: List of buckets. :return: Chosen bucket. """ bucket_idx = bisect.bisect_left(buckets, seq_len) if bucket_idx == len(buckets): return None return buckets[bucket_idx] def length_statistics(source_sentences: Iterable[List[Any]], target_sentences: Iterable[List[Any]]) -> Tuple[float, float]: """ Returns mean and standard deviation of target-to-source length ratios of parallel corpus. :param source_sentences: Source sentences. :param target_sentences: Target sentences. :return: Mean and standard deviation of length ratios. """ length_ratios = np.array([len(t)/float(len(s)) for t, s in zip(target_sentences, source_sentences)]) mean = np.asscalar(np.mean(length_ratios)) std = np.asscalar(np.std(length_ratios)) return mean, std def get_training_data_iters(source: str, target: str, validation_source: str, validation_target: str, vocab_source: Dict[str, int], vocab_target: Dict[str, int], vocab_source_path: Optional[str], vocab_target_path: Optional[str], batch_size: int, batch_by_words: bool, batch_num_devices: int, fill_up: str, max_seq_len_source: int, max_seq_len_target: int, bucketing: bool, bucket_width: int, sequence_limit: Optional[int] = None, provide_annealing_data: bool = False) -> Tuple['ParallelBucketSentenceIter', 'ParallelBucketSentenceIter', 'DataConfig']: """ Returns data iterators for training and validation data. :param source: Path to source training data. :param target: Path to target training data. :param validation_source: Path to source validation data. :param validation_target: Path to target validation data. :param vocab_source: Source vocabulary. :param vocab_target: Target vocabulary. :param vocab_source_path: Path to source vocabulary. :param vocab_target_path: Path to target vocabulary. :param batch_size: Batch size. :param batch_by_words: Size batches by words rather than sentences. :param batch_num_devices: Number of devices batches will be parallelized across. :param fill_up: Fill-up strategy for buckets. :param max_seq_len_source: Maximum source sequence length. :param max_seq_len_target: Maximum target sequence length. :param bucketing: Whether to use bucketing. :param bucket_width: Size of buckets. :param sequence_limit: Maximum number of training sequences to read. :param provide_annealing_data: Provide dummy ones to modify and use as annealing coefficients. :return: Tuple of (training data iterator, validation data iterator, data config). """ logger.info("Creating train data iterator") # streams id-coded sentences from disk train_source_sentences = SentenceReader(source, vocab_source, add_bos=False, limit=sequence_limit) train_target_sentences = SentenceReader(target, vocab_target, add_bos=True, limit=sequence_limit) # reads the id-coded sentences from disk once lr_mean, lr_std = length_statistics(train_source_sentences, train_target_sentences) check_condition(train_source_sentences.is_done() and train_target_sentences.is_done(), "Different number of lines in source and target data.") logger.info("%d source sentences in '%s'", train_source_sentences.count, source) logger.info("%d target sentences in '%s'", train_target_sentences.count, target) logger.info("Mean training target/source length ratio: %.2f (+-%.2f)", lr_mean, lr_std) # define buckets buckets = define_parallel_buckets(max_seq_len_source, max_seq_len_target, bucket_width, lr_mean) if bucketing else [ (max_seq_len_source, max_seq_len_target)] train_iter = ParallelBucketSentenceIter(train_source_sentences, train_target_sentences, buckets, batch_size, batch_by_words, batch_num_devices, vocab_target[C.EOS_SYMBOL], C.PAD_ID, vocab_target[C.UNK_SYMBOL], bucket_batch_sizes=None, fill_up=fill_up, provide_annealing_data=provide_annealing_data) logger.info("Creating validation data iterator") val_source_sentences = SentenceReader(validation_source, vocab_source, add_bos=False, limit=None) val_target_sentences = SentenceReader(validation_target, vocab_target, add_bos=True, limit=None) val_iter = ParallelBucketSentenceIter(val_source_sentences, val_target_sentences, buckets, batch_size, batch_by_words, batch_num_devices, vocab_target[C.EOS_SYMBOL], C.PAD_ID, vocab_target[C.UNK_SYMBOL], bucket_batch_sizes=train_iter.bucket_batch_sizes, fill_up=fill_up, provide_annealing_data=provide_annealing_data) check_condition(val_source_sentences.is_done() and val_target_sentences.is_done(), "Different number of lines in source and target validation data.") logger.info("%d validation source sentences in '%s'", val_source_sentences.count, source) logger.info("%d validation target sentences in '%s'", val_target_sentences.count, target) config_data = DataConfig(source, target, validation_source, validation_target, vocab_source_path, vocab_target_path, lr_mean, lr_std, train_iter.max_observed_source_len, train_iter.max_observed_target_len) return train_iter, val_iter, config_data class DataConfig(config.Config): """ Stores data paths from training. """ def __init__(self, source: str, target: str, validation_source: str, validation_target: str, vocab_source: Optional[str], vocab_target: Optional[str], length_ratio_mean: float = C.TARGET_MAX_LENGTH_FACTOR, length_ratio_std: float = 0.0, max_observed_source_seq_len: Optional[int] = None, max_observed_target_seq_len: Optional[int] = None) -> None: super().__init__() self.source = source self.target = target self.validation_source = validation_source self.validation_target = validation_target self.vocab_source = vocab_source self.vocab_target = vocab_target self.length_ratio_mean = length_ratio_mean self.length_ratio_std = length_ratio_std self.max_observed_source_seq_len = max_observed_source_seq_len self.max_observed_target_seq_len = max_observed_target_seq_len def smart_open(filename: str, mode: str = "rt", ftype: str = "auto", errors:str = 'replace'): """ Returns a file descriptor for filename with UTF-8 encoding. If mode is "rt", file is opened read-only. If ftype is "auto", uses gzip iff filename endswith .gz. If ftype is {"gzip","gz"}, uses gzip. Note: encoding error handling defaults to "replace" :param filename: The filename to open. :param mode: Reader mode. :param ftype: File type. If 'auto' checks filename suffix for gz to try gzip.open :param errors: Encoding error handling during reading. Defaults to 'replace' :return: File descriptor """ if ftype == 'gzip' or ftype == 'gz' or (ftype == 'auto' and filename.endswith(".gz")): return gzip.open(filename, mode=mode, encoding='utf-8', errors=errors) else: return open(filename, mode=mode, encoding='utf-8', errors=errors) def read_content(path: str, limit: Optional[int] = None) -> Iterator[List[str]]: """ Returns a list of tokens for each line in path up to a limit. :param path: Path to files containing sentences. :param limit: How many lines to read from path. :return: Iterator over lists of words. """ with smart_open(path) as indata: for i, line in enumerate(indata): if limit is not None and i == limit: break yield list(get_tokens(line)) def get_tokens(line: str) -> Iterator[str]: """ Yields tokens from input string. :param line: Input string. :return: Iterator over tokens. """ for token in line.rstrip().split(): if len(token) > 0: yield token def tokens2ids(tokens: Iterable[str], vocab: Dict[str, int]) -> List[int]: """ Returns sequence of ids given a sequence of tokens and vocab. :param tokens: List of tokens. :param vocab: Vocabulary (containing UNK symbol). :return: List of word ids. """ return [vocab.get(w, vocab[C.UNK_SYMBOL]) for w in tokens] class SentenceReader(Iterator): """ Reads sentences from path and creates word id sentences. Streams from disk, instead of loading all sentences into memory. :param path: Path to read data from. :param vocab: Vocabulary mapping. :param add_bos: Whether to add Beginning-Of-Sentence (BOS) symbol. :param limit: Read limit. """ def __init__(self, path: str, vocab: Dict[str, int], add_bos: bool = False, limit: Optional[int] = None) -> None: self.path = path self.vocab = vocab self.add_bos = add_bos self.limit = limit assert C.UNK_SYMBOL in vocab assert C.UNK_SYMBOL in vocab assert vocab[C.PAD_SYMBOL] == C.PAD_ID assert C.BOS_SYMBOL in vocab assert C.EOS_SYMBOL in vocab self._iter = None # type: Optional[Iterator] self._iterated_once = False self.count = 0 self._next = None def __iter__(self): assert self._next is None, "Can not iterate multiple times simultaneously." self._iter = read_content(self.path, self.limit) self._next = next(self._iter, None) return self def __next__(self): if self._next is None: raise StopIteration sentence_tokens = self._next sentence = tokens2ids(sentence_tokens, self.vocab) check_condition(bool(sentence), "Empty sentence in file %s" % self.path) if self.add_bos: sentence.insert(0, self.vocab[C.BOS_SYMBOL]) if not self._iterated_once: self.count += 1 # fetch next element self._next = next(self._iter, None) if self._next is None: self._iter = None if not self._iterated_once: self._iterated_once = True return sentence def is_done(self): return self._iterated_once and self._next is None def get_default_bucket_key(buckets: List[Tuple[int, int]]) -> Tuple[int, int]: """ Returns the default bucket from a list of buckets, i.e. the largest bucket. :param buckets: List of buckets. :return: The largest bucket in the list. """ return max(buckets) def get_parallel_bucket(buckets: List[Tuple[int, int]], length_source: int, length_target: int) -> Optional[Tuple[int, Tuple[int, int]]]: """ Returns bucket index and bucket from a list of buckets, given source and target length. Returns (None, None) if no bucket fits. :param buckets: List of buckets. :param length_source: Length of source sequence. :param length_target: Length of target sequence. :return: Tuple of (bucket index, bucket), or (None, None) if not fitting. """ bucket = None, None # type: Tuple[int, Tuple[int, int]] for j, (source_bkt, target_bkt) in enumerate(buckets): if source_bkt >= length_source and target_bkt >= length_target: bucket = j, (source_bkt, target_bkt) break return bucket BucketBatchSize = NamedTuple("BucketBatchSize", [ ("batch_size", int), ("average_words_per_batch", float) ]) """ :param batch_size: Number of sentences in each batch. :param average_words_per_batch: Approximate number of non-padding tokens in each batch. """ # TODO: consider more memory-efficient batch creation (load from disk on demand) # TODO: consider using HDF5 format for language data class ParallelBucketSentenceIter(mx.io.DataIter): """ A bucketing parallel sentence iterator. Data is read into NDArrays for the buckets defined in buckets. Randomly shuffles the data after every call to reset(). Data is stored in NDArrays for each epoch for fast indexing during iteration. :param source_sentences: Iterable of source sentences (integer-coded). :param target_sentences: Iterable of target sentences (integer-coded). :param buckets: List of buckets. :param batch_size: Batch_size of generated data batches. Incomplete batches are discarded if fill_up == None, or filled up according to the fill_up strategy. :param batch_by_words: Size batches by words rather than sentences. :param batch_num_devices: Number of devices batches will be parallelized across. :param fill_up: If not None, fill up bucket data to a multiple of batch_size to avoid discarding incomplete batches. for each bucket. If set to 'replicate', sample examples from the bucket and use them to fill up. :param eos_id: Word id for end-of-sentence. :param pad_id: Word id for padding symbols. :param unk_id: Word id for unknown symbols. :param bucket_batch_sizes: Pre-computed bucket batch sizes (used to keep iterators consistent for train/validation). :param dtype: Data type of generated NDArrays. """ def __init__(self, source_sentences: Iterable[List[int]], target_sentences: Iterable[List[int]], buckets: List[Tuple[int, int]], batch_size: int, batch_by_words: bool, batch_num_devices: int, eos_id: int, pad_id: int, unk_id: int, bucket_batch_sizes: Optional[List[BucketBatchSize]] = None, fill_up: Optional[str] = None, source_data_name=C.SOURCE_NAME, target_data_name=C.TARGET_NAME, annealing_data_name=C.ANNEALING_NAME, label_name=C.TARGET_LABEL_NAME, provide_annealing_data: bool = False, dtype='float32') -> None: super(ParallelBucketSentenceIter, self).__init__() self.buckets = list(buckets) self.buckets.sort() self.default_bucket_key = get_default_bucket_key(self.buckets) self.batch_size = batch_size self.batch_by_words = batch_by_words self.batch_num_devices = batch_num_devices self.eos_id = eos_id self.pad_id = pad_id self.unk_id = unk_id self.dtype = dtype self.source_data_name = source_data_name self.target_data_name = target_data_name self.annealing_data_name = annealing_data_name self.label_name = label_name self.fill_up = fill_up self.provide_annealing_data = provide_annealing_data self.data_source = [[] for _ in self.buckets] # type: ignore self.data_target = [[] for _ in self.buckets] # type: ignore self.data_label = [[] for _ in self.buckets] # type: ignore self.data_target_average_len = [0 for _ in self.buckets] # Per-bucket batch sizes (num seq, num word) # If not None, populated as part of assigning to buckets self.bucket_batch_sizes = bucket_batch_sizes # assign sentence pairs to buckets self.max_observed_source_len = 0 self.max_observed_target_len = 0 self._assign_to_buckets(source_sentences, target_sentences) # convert to single numpy array for each bucket self._convert_to_array() # "Staging area" that needs to fit any size batch we're using by total number of elements. # When computing per-bucket batch sizes, we guarantee that the default bucket will have the # largest total batch size. # Note: this guarantees memory sharing for input data and is generally a good heuristic for # other parts of the model, but it is possible that some architectures will have intermediate # operations that produce shapes larger than the default bucket size. In these cases, MXNet # will silently allocate additional memory. self.provide_data = [ mx.io.DataDesc(name=self.source_data_name, shape=(self.bucket_batch_sizes[-1].batch_size, self.default_bucket_key[0]), layout=C.BATCH_MAJOR), mx.io.DataDesc(name=self.target_data_name, shape=(self.bucket_batch_sizes[-1].batch_size, self.default_bucket_key[1]), layout=C.BATCH_MAJOR)] if self.provide_annealing_data: self.provide_data.append(mx.io.DataDesc(name=self.annealing_data_name, shape=(self.bucket_batch_sizes[-1].batch_size,), layout="N")) self.provide_label = [ mx.io.DataDesc(name=self.label_name, shape=(self.bucket_batch_sizes[-1].batch_size, self.default_bucket_key[1]), layout=C.BATCH_MAJOR)] self.data_names = [self.source_data_name, self.target_data_name] if self.provide_annealing_data: self.data_names.append(self.annealing_data_name) self.label_names = [self.label_name] # create index tuples (i,j) into buckets: i := bucket index ; j := row index of bucket array self.idx = [] # type: List[Tuple[int, int]] for i, buck in enumerate(self.data_source): batch_size_seq = self.bucket_batch_sizes[i].batch_size rest = len(buck) % batch_size_seq if rest > 0: logger.info("Discarding %d samples from bucket %s due to incomplete batch", rest, self.buckets[i]) idxs = [(i, j) for j in range(0, len(buck) - batch_size_seq + 1, batch_size_seq)] self.idx.extend(idxs) self.curr_idx = 0 # holds NDArrays self.indices = [] # type: List[List[int]] self.nd_source = [] # type: List[mx.ndarray] self.nd_target = [] # type: List[mx.ndarray] self.nd_label = [] # type: List[mx.ndarray] self.reset() def _assign_to_buckets(self, source_sentences, target_sentences): ndiscard = 0 tokens_source = 0 tokens_target = 0 num_of_unks_source = 0 num_of_unks_target = 0 # Bucket sentences as padded np arrays for source, target in zip(source_sentences, target_sentences): source_len = len(source) target_len = len(target) buck_idx, buck = get_parallel_bucket(self.buckets, source_len, target_len) if buck is None: ndiscard += 1 continue # skip this sentence pair tokens_source += source_len tokens_target += target_len if source_len > self.max_observed_source_len: self.max_observed_source_len = source_len if target_len > self.max_observed_target_len: self.max_observed_target_len = target_len num_of_unks_source += source.count(self.unk_id) num_of_unks_target += target.count(self.unk_id) buff_source = np.full((buck[0],), self.pad_id, dtype=self.dtype) buff_target = np.full((buck[1],), self.pad_id, dtype=self.dtype) # NOTE(fhieber): while this is wasteful w.r.t memory, we need to explicitly create the label sequence # with the EOS symbol here sentence-wise and not per-batch due to variable sequence length within a batch. # Once MXNet allows item assignments given a list of indices (probably MXNet 0.13): e.g a[[0,1,5,2]] = x, # we can try again to compute the label sequence on the fly in next(). buff_label =
np.full((buck[1],), self.pad_id, dtype=self.dtype)
numpy.full
import numpy as np import matplotlib from PIL import Image matplotlib.use('Agg') from matplotlib import pyplot as plt # Plot image examples. def save_tile_img(imgs, path): imgs = (imgs + 1.0) * 127.5 imgs = imgs.astype(np.uint8) im = Image.fromarray(imgs) im.save(path) def plot_img(img, title=None): plt.figure() plt.imshow(img, interpolation='nearest') if title is not None: plt.title(title) plt.axis('off') plt.tight_layout() def img_stretch(img): img = img.astype(float) img -= np.min(img) img /= np.max(img)+1e-12 return img def img_tile(imgs, aspect_ratio=1.0, tile_shape=None, border=1, border_color=0, stretch=False): ''' Tile images in a grid. If tile_shape is provided only as many images as specified in tile_shape will be included in the output. ''' # Prepare images if stretch: imgs = img_stretch(imgs) imgs = np.array(imgs) if imgs.ndim != 3 and imgs.ndim != 4: raise ValueError('imgs has wrong number of dimensions.') n_imgs = imgs.shape[0] # Grid shape img_shape = np.array(imgs.shape[1:3]) if tile_shape is None: img_aspect_ratio = img_shape[1] / float(img_shape[0]) aspect_ratio *= img_aspect_ratio tile_height = int(np.ceil(np.sqrt(n_imgs * aspect_ratio))) tile_width = int(np.ceil(np.sqrt(n_imgs / aspect_ratio))) grid_shape = np.array((tile_height, tile_width)) else: assert len(tile_shape) == 2 grid_shape = np.array(tile_shape) # Tile image shape tile_img_shape = np.array(imgs.shape[1:]) tile_img_shape[:2] = (img_shape[:2] + border) * grid_shape[:2] - border # Assemble tile image tile_img =
np.empty(tile_img_shape)
numpy.empty
""" DQN training, single run created by: Qiong 09/28/2021 """ import time import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid") import os os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' from RL_learn import DQNNet, SumTree, Memory, BatteryEnv start_time = time.time() ############################## # Data loading # input data of house 214, 2019 (every 15mins (quarter hour), each day (pu, per unit) contains 96 data points) df_raw = pd.read_csv("/home/doya/Documents/DQNBattery/data/house214_2019_quarterhour_avg.csv") # df_raw = pd.read_csv("./data/house214_2019_quarterhour_avg.csv") df = df_raw.fillna(method="ffill", inplace=False) # replace NaN data with forward vaild data # T = 96 * 50 # df = df[:T] charge_discharge_power = df["charge_discharge_power"] # W rsoc = df["rsoc"] # % pvc_charge_power = df["pvc_charge_power"] # W battery_current = df["battery_current"] # A(DC) p2 = df["p2"] # W ups_output_power = df["ups_output_power"] ############################# # State concatenate pv = df[["pvc_charge_power"]].values load = df[["ups_output_power"]].values p2 = df[["p2"]].values x =
np.concatenate([pv, load, p2], axis=-1)
numpy.concatenate
"""matrix-splitting iterations""" import numpy as np import math def gs(x, A, b, **kwargs): """gauss-seidel""" d = np.diag(A) n = b.size error = 1 omega = kwargs.get('omega', 1) old = np.copy(x) delta = np.zeros(n) while error > 0: for i in xrange(n): x[i] += omega * (b[i] - A[i, :].dot(x)) / d[i] delta[:] = x - old error = math.sqrt(delta.dot(delta)) yield error old[:] = x def jacobi(x, A, b, **kwargs): """jacobi""" d = kwargs.get('diag', np.diag(A)) n = b.size omega = kwargs.get('omega', 2 / n) error = 1 old = np.copy(x) delta = np.zeros(n) while error > 0: x += omega * (b - A.dot(x)) / d delta[:] = x - old error = math.sqrt(delta.dot(delta)) yield error old[:] = x def pgs(x, A, b, **kwargs): """projected gauss-seidel""" d = kwargs.get('diag', np.diag(A)) n = b.size omega = kwargs.get('omega', 1) error = 1 old = np.copy(x) delta = np.zeros(n) while error > 0: for i in xrange(n): x[i] += omega * (b[i] - A[i, :].dot(x)) / d[i] if x[i] < 0: x[i] = 0 delta[:] = x - old error = math.sqrt(delta.dot(delta)) yield error old[:] = x def pjacobi(x, A, b, **kwargs): """projected jacobi""" d = kwargs.get('diag', np.diag(A)) n = b.size omega = kwargs.get('omega', 2 / float(n)) error = 1 old = np.copy(x) delta = np.zeros(n) zero =
np.zeros(n)
numpy.zeros
import numpy as np from numpy import linalg as la import logging from typing import Callable, List, Tuple, Dict def random_sample(bounds: np.ndarray, k: int) -> np.ndarray: """ Generate a set of k n-dimensional points sampled uniformly at random :param bounds: n x 2 dimenional array containing upper/lower bounds for each dimension :param k: number of samples :return: k x n array containing the sampled points """ # k: Number of points n = len(bounds) # Dimensionality of each point X = np.zeros((k, n)) for i in range(n): X[:, i] =
np.random.uniform(bounds[i][0], bounds[i][1], k)
numpy.random.uniform
import numpy as np from numba import njit from scipy import sparse from sklearn.utils import check_array def solver_path(X, y, datafit, penalty, eps=1e-3, n_alphas=100, alphas=None, coef_init=None, max_iter=20, max_epochs=50_000, p0=10, tol=1e-4, use_acc=True, prune=0, return_n_iter=False, verbose=0,): r"""Compute optimization path with Celer primal as inner solver. The loss is customized by passing various choices of datafit and penalty: loss = datafit.value() + penalty.value() Parameters ---------- X : ndarray, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Target values. datafit: instance of Datafit class Datafitting term. penalty : instance of Penalty class Penalty used in the model. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min = 1e-3 * alpha_max`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically coef_init : ndarray, shape (n_features,) | None, optional, (default=None) Initial value of coefficients. If None, np.zeros(n_features) is used. max_iter : int, optional The maximum number of iterations (definition of working set and resolution of problem restricted to features in working set) max_epochs : int, optional Maximum number of (block) CD epochs on each subproblem. p0 : int, optional First working set size. verbose : bool or integer, optional Amount of verbosity. 0/False is silent tol : float, optional The tolerance for the optimization. prune : bool, optional Whether or not to use pruning when growing working sets. X_offset : np.array, shape (n_features,), optional Used to center sparse X without breaking sparsity. Mean of each column. See sklearn.linear_model.base._preprocess_data(). X_scale : np.array, shape (n_features,), optional Used to scale centered sparse X without breaking sparsity. Norm of each centered column. See sklearn.linear_model.base._preprocess_data(). return_n_iter : bool, optional If True, number of iterations along the path are returned. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) Coefficients along the path. kkt_max : array, shape (n_alphas,) Maximum violation of KKT along the path. """ X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=False, accept_large_sparse=False) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if sparse.issparse(X): datafit.initialize_sparse(X.data, X.indptr, X.indices, y) else: datafit.initialize(X, y) n_features = X.shape[1] # if X_offset is not None: # X_sparse_scaling = X_offset / X_scale # X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) # else: # X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X_dense, X_data, X_indices, X_indptr = _sparse_and_dense(X) if alphas is None: # TODO pass datafit.gradient at 0 alpha_max = penalty.alpha_max(X, y) alphas = alpha_max * np.geomspace(1, eps, n_alphas, dtype=X.dtype) else: alphas = np.sort(alphas)[::-1] n_alphas = len(alphas) coefs = np.zeros((n_features, n_alphas), order='F', dtype=X.dtype) kkt_maxs = np.zeros(n_alphas) if return_n_iter: n_iters = np.zeros(n_alphas, dtype=int) for t in range(n_alphas): alpha = alphas[t] penalty.alpha = alpha # TODO this feels it will break sklearn compat if verbose: to_print = "##### Computing alpha %d/%d" % (t + 1, n_alphas) print("#" * len(to_print)) print(to_print) print("#" * len(to_print)) if t > 0: w = coefs[:, t - 1].copy() p0 = max(len(np.where(w != 0)[0]), 1) else: if coef_init is not None: w = coef_init.copy() p0 = max((w != 0.).sum(), p0) Xw = X @ w else: w = np.zeros(n_features, dtype=X.dtype) Xw = np.zeros_like(y) sol = solver( X, y, datafit, penalty, w, Xw, max_iter=max_iter, max_epochs=max_epochs, p0=p0, tol=tol, use_acc=use_acc, verbose=verbose) coefs[:, t] = w.copy() kkt_maxs[t] = sol[-1] if return_n_iter: n_iters[t] = len(sol[1]) results = alphas, coefs, kkt_maxs if return_n_iter: results += (n_iters,) return results # @profile def solver( X, y, datafit, penalty, w, Xw, max_iter=50, max_epochs=50_000, p0=10, tol=1e-4, use_acc=True, K=5, verbose=0): """ datafit : instance of Datafit penalty: instance of Penalty p0: first size of working set. """ n_features = X.shape[1] pen = penalty.is_penalized(n_features) unpen = ~pen n_unpen = unpen.sum() obj_out = [] all_feats = np.arange(n_features) is_sparse = sparse.issparse(X) for t in range(max_iter): if is_sparse: # I separated the computation of the gradient from the kkt # computations to see what was the bottelneck grad = construct_grad_sparse( X.data, X.indptr, X.indices, y, Xw, datafit, n_features) kkt = penalty.subdiff_distance(w, grad, all_feats) # kkt = _kkt_violation_sparse( # w, X.data, X.indptr, X.indices, y, Xw, datafit, penalty, # all_feats) else: # I separated the computation of the gradient from the kkt grad = construct_grad(X, y, w, Xw, datafit, all_feats) kkt = penalty.subdiff_distance(w, grad, all_feats) # kkt = _kkt_violation( # w, X, y, Xw, datafit, penalty, all_feats) kkt_max = np.max(kkt) if verbose: print(f"KKT max violation: {kkt_max:.2e}") if kkt_max <= tol: break # 1) select features : all unpenalized, + 2 * (nnz and penalized) ws_size = max(p0 + n_unpen, min(2 * (w != 0).sum() - n_unpen, n_features)) # ws_size = n_features kkt[unpen] = np.inf # always include unpenalized features kkt[w != 0] = np.inf # TODO check # here I used topk instead of sorting the full array # ie the following line ws =
np.argpartition(kkt, -ws_size)
numpy.argpartition
#!/usr/bin/env python # coding: utf-8 import numpy as np import matplotlib.pyplot as pt dirName = '../Dataset/MNIST/' trainImageFile = "train-images.idx3-ubyte" trainLabelFile = "train-labels.idx1-ubyte" testImageFile = "t10k-images.idx3-ubyte" testLabelFile = "t10k-labels.idx1-ubyte" def readMNISTImage(fileName): infile = open(fileName,'rb') magic = int.from_bytes(infile.read(4),byteorder='big') assert magic == 2051, 'File magic number not equal to 2051' totalImageNum = int.from_bytes(infile.read(4),byteorder='big') W = int.from_bytes(infile.read(4),byteorder='big') H = int.from_bytes(infile.read(4),byteorder='big') image = np.zeros((totalImageNum,H,W,1),dtype=int) imageSize = W * H for i in range(totalImageNum): image[i,:,:,:] = np.frombuffer(infile.read(imageSize),dtype=np.uint8).reshape((1,H,W,1)) infile.close() return image def readMNISTLabel(fileName): infile = open(fileName,'rb') magic = int.from_bytes(infile.read(4),byteorder='big') assert magic == 2049, 'File magic number not equal to 2049' totalLabelNum = int.from_bytes(infile.read(4),byteorder='big') label = np.frombuffer(infile.read(totalLabelNum),dtype=np.uint8) infile.close() labelOneHot =
np.zeros((totalLabelNum,10),dtype=float)
numpy.zeros
### Authors: <NAME>, <NAME> import numpy as np import pickle print("\n--> Loading parameters...") ############################## ### Independent parameters ### ############################## global par par = { # Setup parameters 'save_dir' : './savedir/', 'stabilization' : 'pathint', # 'EWC' (Kirkpatrick method) or 'pathint' (Zenke method) 'save_analysis' : False, 'reset_weights' : False, # reset weights between tasks 'load_weights' : False, # Network configuration 'synapse_config' : 'std_stf', # Full is 'std_stf' 'exc_inh_prop' : 0.8, # Literature 0.8, for EI off 1 'balance_EI' : True, 'var_delay' : False, 'training_method' : 'SL', # 'SL', 'RL' 'architecture' : 'BIO', # 'BIO', 'LSTM' 'weight_distribution' : 'gamma', 'c_gamma' : 0.025, 'c_input_gamma' : 0.05, 'c_uniform' : 0.1, # Network shape 'num_motion_tuned' : 48, # 64 'num_fix_tuned' : 4, 'num_rule_tuned' : 26, 'n_hidden' : 500, 'n_val' : 1, 'include_rule_signal' : True, # Winner-take-all setup 'winner_take_all' : True, 'top_k_neurons' : 100, # k-shot testing setup 'do_k_shot_testing' : False, 'load_from_checkpoint' : False, 'use_threshold' : False, 'k_shot_task' : 6, 'num_shots' : 5, 'testing_iters' : 10, 'shot_reps' : 50, # Timings and rates 'dt' : 20, 'learning_rate' : 1e-3, 'membrane_time_constant': 50, 'connection_prob' : 1.0, 'discount_rate' : 0., # Variance values 'clip_max_grad_val' : 1.0, 'input_mean' : 0.0, 'noise_in_sd' : 0.0, 'noise_rnn_sd' : 0.05, # Task specs 'task' : 'multistim', 'n_tasks' : 20, 'multistim_trial_length': 2000, 'mask_duration' : 0, 'dead_time' : 200, # Tuning function data 'num_motion_dirs' : 8, 'tuning_height' : 4.0, # magnitude scaling factor for von Mises # Cost values 'spike_cost' : 1e-7, 'weight_cost' : 0., 'entropy_cost' : 0.0001, 'val_cost' : 0.01, # Synaptic plasticity specs 'tau_fast' : 200, 'tau_slow' : 1500, 'U_stf' : 0.15, 'U_std' : 0.45, # Training specs 'batch_size' : 256, 'n_train_batches' : 5001, #50000, # Omega parameters 'omega_c' : 0., 'omega_xi' : 0.001, 'EWC_fisher_num_batches': 16, # number of batches when calculating EWC # Gating parameters 'gating_type' : None, # 'XdG', 'partial', 'split', None 'gate_pct' : 0.8, # Num. gated hidden units for 'XdG' only 'n_subnetworks' : 4, # Num. subnetworks for 'split' only # Stimulus parameters 'fix_break_penalty' : -1., 'wrong_choice_penalty' : -0.01, 'correct_choice_reward' : 1., # Save paths 'save_fn' : 'model_results.pkl', 'ckpt_save_fn' : 'model.ckpt', 'ckpt_load_fn' : 'model.ckpt', } ############################ ### Dependent parameters ### ############################ def update_parameters(updates, quiet=False): """ Takes a list of strings and values for updating parameters in the parameter dictionary Example: updates = [(key, val), (key, val)] """ if quiet: print('Updating parameters...') for (key, val) in updates.items(): par[key] = val if not quiet: print('Updating : ', key, ' -> ', val) update_dependencies() def update_dependencies(): """ Updates all parameter dependencies """ ### ### Putting together network structure ### # Turn excitatory-inhibitory settings on or off if par['architecture'] == 'BIO': par['EI'] = True if par['exc_inh_prop'] < 1 else False elif par['architecture'] == 'LSTM': print('Using LSTM networks; setting to EI to False') par['EI'] = False par['exc_inh_prop'] = 1. par['synapse_config'] = None par['spike_cost'] = 0. # Generate EI matrix par['num_exc_units'] = int(np.round(par['n_hidden']*par['exc_inh_prop'])) par['num_inh_units'] = par['n_hidden'] - par['num_exc_units'] par['EI_list'] = np.ones(par['n_hidden'], dtype=np.float32) if par['EI']: n = par['n_hidden']//par['num_inh_units'] par['ind_inh'] = np.arange(n-1,par['n_hidden'],n) par['EI_list'][par['ind_inh']] = -1. par['EI_matrix'] = np.diag(par['EI_list']) # Number of output neurons par['n_output'] = par['num_motion_dirs'] + 1 par['n_pol'] = par['num_motion_dirs'] + 1 # Number of input neurons par['n_input'] = par['num_motion_tuned'] + par['num_fix_tuned'] + par['num_rule_tuned'] # General network shape par['shape'] = (par['n_input'], par['n_hidden'], par['n_output']) # Specify time step in seconds and neuron time constant par['dt_sec'] = par['dt']/1000 par['alpha_neuron'] = np.float32(par['dt'])/par['membrane_time_constant'] # Generate noise deviations par['noise_rnn'] = np.sqrt(2*par['alpha_neuron'])*par['noise_rnn_sd'] par['noise_in'] = np.sqrt(2/par['alpha_neuron'])*par['noise_in_sd'] # Set trial step length par['num_time_steps'] = par['multistim_trial_length']//par['dt'] # Set up gating vectors for hidden layer gen_gating() ### ### Setting up weights, biases, masks, etc. ### # Specify initial RNN state par['h_init'] = 0.1*np.ones((par['batch_size'], par['n_hidden']), dtype=np.float32) # Initialize weights conn = np.float32(np.random.rand(par['n_input'], par['n_hidden']) > 0.5) if par['weight_distribution'] == 'gamma': par['W_in_init'] = conn*np.float32(np.random.gamma(shape = par['c_input_gamma'], scale=1.0, size = [par['n_input'], par['n_hidden']])) elif par['weight_distribution'] == 'uniform': par['W_in_init'] = conn*np.float32(np.random.uniform(low = -par['c_uniform'], high=par['c_uniform'], size=[par['n_input'], par['n_hidden']])) par['W_out_init'] = np.float32(np.random.gamma(shape=0.2, scale=1.0, size = [par['n_hidden'], par['n_output']])) if par['EI']: if par['weight_distribution'] == 'gamma': par['W_rnn_init'] = np.float32(np.random.gamma(shape = par['c_gamma'], scale=1.0, size = [par['n_hidden'], par['n_hidden']])) elif par['weight_distribution'] == 'uniform': par['W_rnn_init'] = np.float32(np.random.uniform(low = -par['c_uniform'], high = par['c_uniform'], size=[par['n_hidden'], par['n_hidden']])) par['W_rnn_mask'] = np.ones((par['n_hidden'], par['n_hidden']), dtype=np.float32) - np.eye(par['n_hidden']) par['W_rnn_init'] *= par['W_rnn_mask'] if par['balance_EI']: par['W_rnn_init'][:, par['ind_inh']] = initialize([par['n_hidden'], par['num_inh_units']], par['connection_prob'], shape=2*par['c_gamma'], scale=1.) par['W_rnn_init'][par['ind_inh'], :] = initialize([ par['num_inh_units'], par['n_hidden']], par['connection_prob'], shape=2*par['c_gamma'], scale=1.) else: par['W_rnn_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_hidden']])) par['W_rnn_mask'] = np.ones((par['n_hidden'], par['n_hidden']), dtype=np.float32) # Initialize biases par['b_rnn_init'] = np.zeros((1,par['n_hidden']), dtype = np.float32) par['b_out_init'] = np.zeros((1,par['n_output']), dtype = np.float32) # Specify masks par['W_out_mask'] = np.ones((par['n_hidden'], par['n_output']), dtype=np.float32) par['W_in_mask'] = np.ones((par['n_input'], par['n_hidden']), dtype=np.float32) if par['EI']: par['W_out_init'][par['ind_inh'], :] = 0 par['W_out_mask'][par['ind_inh'], :] = 0 # Initialize RL-specific weights par['W_pol_out_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_pol']])) par['b_pol_out_init'] = np.zeros((1,par['n_pol']), dtype = np.float32) par['W_val_out_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_val']])) par['b_val_out_init'] = np.zeros((1,par['n_val']), dtype = np.float32) ### ### Setting up LSTM weights and biases, if required ### if par['architecture'] == 'LSTM': par['Wf_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_input'], par['n_hidden']])) par['Wi_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_input'], par['n_hidden']])) par['Wo_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_input'], par['n_hidden']])) par['Wc_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_input'], par['n_hidden']])) par['Uf_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_hidden']])) par['Ui_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_hidden']])) par['Uo_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_hidden']])) par['Uc_init'] = np.float32(np.random.uniform(-par['c_uniform'], par['c_uniform'], size = [par['n_hidden'], par['n_hidden']])) par['bf_init'] = np.zeros((1, par['n_hidden']), dtype = np.float32) par['bi_init'] = np.zeros((1, par['n_hidden']), dtype = np.float32) par['bo_init'] = np.zeros((1, par['n_hidden']), dtype = np.float32) par['bc_init'] = np.zeros((1, par['n_hidden']), dtype = np.float32) ### ### Setting up synaptic plasticity parameters ### """ 0 = static 1 = facilitating 2 = depressing """ par['synapse_type'] = np.zeros(par['n_hidden'], dtype=np.int8) # only facilitating synapses if par['synapse_config'] == 'stf': par['synapse_type'] = np.ones(par['n_hidden'], dtype=np.int8) # only depressing synapses elif par['synapse_config'] == 'std': par['synapse_type'] = 2*np.ones(par['n_hidden'], dtype=np.int8) # even numbers facilitating, odd numbers depressing elif par['synapse_config'] == 'std_stf': par['synapse_type'] = 2*np.ones(par['n_hidden'], dtype=np.int8) ind = range(1,par['n_hidden'],2) #par['synapse_type'][par['ind_inh']] = 1 par['synapse_type'][ind] = 1 par['alpha_stf'] = np.ones((par['n_hidden'], 1), dtype=np.float32) par['alpha_std'] =
np.ones((par['n_hidden'], 1), dtype=np.float32)
numpy.ones
import unittest import numpy as np import torch from pytorch_metric_learning.utils import accuracy_calculator, stat_utils ### FROM https://gist.github.com/VChristlein/fd55016f8d1b38e95011a025cbff9ccc ### and https://github.com/KevinMusgrave/pytorch-metric-learning/issues/290 class TestCalculateAccuraciesLargeK(unittest.TestCase): def test_accuracy_calculator_large_k(self): for ecfss in [False, True]: for max_k in [None, "max_bin_count"]: for num_embeddings in [1000, 2100]: # make random features encs = np.random.rand(num_embeddings, 5).astype(np.float32) # and random labels of 100 classes labels = np.zeros((num_embeddings // 100, 100), dtype=np.int32) for i in range(10): labels[i] = np.arange(100) labels = labels.ravel() correct_p1, correct_map, correct_mapr = self.evaluate( encs, labels, max_k, ecfss ) # use Musgrave's library if max_k is None: k = len(encs) - 1 if ecfss else len(encs) accs = [ accuracy_calculator.AccuracyCalculator(), accuracy_calculator.AccuracyCalculator(k=k), ] elif max_k == "max_bin_count": accs = [ accuracy_calculator.AccuracyCalculator(k="max_bin_count") ] for acc in accs: d = acc.get_accuracy( encs, encs, labels, labels, ecfss, include=( "mean_average_precision", "mean_average_precision_at_r", "precision_at_1", ), ) self.assertTrue(np.isclose(correct_p1, d["precision_at_1"])) self.assertTrue( np.isclose(correct_map, d["mean_average_precision"]) ) self.assertTrue( np.isclose(correct_mapr, d["mean_average_precision_at_r"]) ) def evaluate(self, encs, labels, max_k=None, ecfss=False): """ evaluate encodings assuming using associated labels parameters: encs: TxD encoding matrix labels: array/list of T labels """ # let's use Musgrave's knn torch_encs = torch.from_numpy(encs) k = len(encs) - 1 if ecfss else len(encs) all_indices, _ = stat_utils.get_knn(torch_encs, torch_encs, k, ecfss) if max_k is None: max_k = k indices = all_indices elif max_k == "max_bin_count": max_k = int(max(np.bincount(labels))) - int(ecfss) indices, _ = stat_utils.get_knn(torch_encs, torch_encs, max_k, ecfss) # let's use the most simple mAP implementation # of course this can be computed much faster using cumsum, etc. n_encs = len(encs) mAP = [] mAP_at_r = [] correct = 0 for r in range(n_encs): precisions = [] rel = 0 # indices doesn't contain the query index itself anymore, so no correction w. -1 necessary all_rel = np.count_nonzero(labels[all_indices[r]] == labels[r]) prec_at_r = [] for k in range(max_k): if labels[indices[r, k]] == labels[r]: rel += 1 precisions.append(rel / float(k + 1)) if k == 0: correct += 1 # mAP@R if k < all_rel: prec_at_r.append(rel / float(k + 1)) avg_precision = np.mean(precisions) if len(precisions) > 0 else 0 mAP.append(avg_precision) # mAP@R avg_prec_at_r =
np.sum(prec_at_r)
numpy.sum
#!/usr/bin/env python #----------------------------------------------------------------------------- # Title : pysmurf debug module - SmurfNoiseMixin class #----------------------------------------------------------------------------- # File : pysmurf/debug/smurf_noise.py # Created : 2018-09-17 #----------------------------------------------------------------------------- # This file is part of the pysmurf software package. It is subject to # the license terms in the LICENSE.txt file found in the top-level directory # of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of the pysmurf software package, including this file, may be # copied, modified, propagated, or distributed except according to the terms # contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import os import time import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np from scipy import optimize from scipy import signal from pysmurf.client.base import SmurfBase from pysmurf.client.util import tools class SmurfNoiseMixin(SmurfBase): def take_noise_psd(self, meas_time, channel=None, nperseg=2**12, detrend='constant', fs=None, low_freq=np.array([.1, 1.]), high_freq=np.array([1., 10.]), make_channel_plot=True, make_summary_plot=True, save_data=False, show_plot=False, grid_on=False, datafile=None, downsample_factor=None, write_log=True, reset_filter=True, reset_unwrapper=True, return_noise_params=False, plotname_append=''): """ Takes a timestream of noise and calculates its PSD. It also attempts to fit a white noise and 1/f component to the data. It takes into account the sampling frequency and the downsampling filter and downsampler. Args ---- meas_time : float The amount of time to observe in seconds. channel : int array or None, optional, default None The channels to plot. Note that this script always takes data on all the channels. This only sets the ones to plot. If None, plots all channels that are on. nperseg : int, optional, default 2**12 The number of elements per segment in the PSD. detrend : str, optional, default 'constant' Extends the scipy.signal.welch detrend. fs : float or None, optional, default None Sample frequency. If None, reads it in. make_channel_plot : bool, optional, default True Whether to make the individual channel plots. make_summary_plot : bool, optional, default True Whether to make the summary plots. save_data : bool, optional, default False Whether to save the band averaged data as a text file. show_plot : bool, optional, default False Show the plot on the screen. datafile : str or None, optional, default None If data has already been taken, can point to a file to bypass data taking and just analyze. downsample_factor : int or None, optional, default None The datarate is the flux ramp rate divided by the downsample_factor. write_log : bool, optional, default True Whether to write to the log file (or the screen if the logfile is not defined). reset_filter : bool, optional, default True Whether to reset the filter before taking data. reset_unwrapper : bool, optional, default True Whether to reset the unwrapper before taking data. plotname_append : str, optional, default '' Appended to the default plot filename. Returns ------- datafile : str The full path to the raw data. """ if datafile is None: datafile = self.take_stream_data(meas_time, downsample_factor=downsample_factor, write_log=write_log, reset_unwrapper=reset_unwrapper, reset_filter=reset_filter) else: self.log(f'Reading data from {datafile}') basename, _ = os.path.splitext(os.path.basename(datafile)) # Get downsample filter params filter_b = self.get_filter_b() filter_a = self.get_filter_a() timestamp, phase, mask = self.read_stream_data(datafile) bands, channels = np.where(mask!=-1) phase *= self._pA_per_phi0/(2.*np.pi) # phase converted to pA flux_ramp_freq = self.get_flux_ramp_freq() * 1.0E3 if fs is None: if downsample_factor is None: downsample_factor = self.get_downsample_factor() # flux ramp rate returns in kHz fs = flux_ramp_freq/downsample_factor # Generate downsample transfer function - downsampling is at # flux ramp freq downsample_freq, downsample_transfer = signal.freqz(filter_b, filter_a, worN=np.arange(.01, fs/2, .01), fs=flux_ramp_freq) downsample_transfer = np.abs(downsample_transfer) if write_log: self.log(f'Plotting {bands}, {channels}', self.LOG_USER) n_channel = len(channels) if make_summary_plot or make_channel_plot: plt.rcParams["patch.force_edgecolor"] = True noise_floors = np.full((len(low_freq), n_channel), np.nan) f_knees = np.full(n_channel,np.nan) res_freqs = np.full(n_channel,np.nan) wl_list = [] f_knee_list = [] n_list = [] plt.ion() if not show_plot: plt.ioff() for c, (b, ch) in enumerate(zip(bands, channels)): if ch < 0: continue ch_idx = mask[b, ch] # Calculate PSD f, Pxx = signal.welch(phase[ch_idx], nperseg=nperseg, fs=fs, detrend=detrend) Pxx = np.sqrt(Pxx) good_fit = False try: # Fit the PSD popt, pcov, f_fit, Pxx_fit = self.analyze_psd(f, Pxx, fs=fs, flux_ramp_freq=flux_ramp_freq) wl, n, f_knee = popt if f_knee != 0.: wl_list.append(wl) f_knee_list.append(f_knee) f_knees[c]=f_knee n_list.append(n) good_fit = True if write_log: self.log(f'{c+1}. b{b}ch{ch:03}:' + f' white-noise level = {wl:.2f}' + f' pA/rtHz, n = {n:.2f}' + f', f_knee = {f_knee:.2f} Hz') except Exception as e: if write_log: self.log(f'{c+1} b{b}ch{ch:03}: bad fit to noise model') self.log(e) # Calculate noise in various frequency bins for i, (l, h) in enumerate(zip(low_freq, high_freq)): idx = np.logical_and(f>l, f<h) noise_floors[i, c] = np.mean(Pxx[idx]) if make_channel_plot: fig, ax = plt.subplots(2, figsize=(8, 6)) sampleNums = np.arange(len(phase[ch_idx])) t_array = sampleNums / fs # Plot the data ax[0].plot(t_array,phase[ch_idx] - np.mean(phase[ch_idx])) ax[0].set_xlabel('Time [s]') ax[0].set_ylabel('Phase [pA]') if grid_on: ax[0].grid() ax[1].loglog(f, Pxx) ylim = ax[1].get_ylim() # Plot the fit if good_fit: ax[1].plot(f_fit, Pxx_fit, linestyle='--', label=f'n={n:3.2f}') # plot f_knee ax[1].plot(f_knee, 2.*wl, linestyle='none', marker='o', label=r'$f_\mathrm{knee} = ' + f'{f_knee:0.2f},' + r'\mathrm{Hz}$') ax[1].plot(f_fit,wl + np.zeros(len(f_fit)), linestyle=':', label=r'$\mathrm{wl} = $'+ f'{wl:0.2f},' + r'$\mathrm{pA}/\sqrt{\mathrm{Hz}}$') ax[1].plot(downsample_freq, wl*downsample_transfer, color='k', linestyle='dashdot', alpha=.5, label='Lowpass') ax[1].legend(loc='best') ax[1].set_ylim(ylim) ax[1].set_xlabel('Frequency [Hz]') ax[1].set_xlim(f[1],f[-1]) ax[1].set_ylabel('Amp [pA/rtHz]') if grid_on: ax[1].grid() if write_log: self.log(noise_floors[-1, c]) res_freq = self.channel_to_freq(b, ch) res_freqs[c]=res_freq ax[0].set_title(f'Band {b} Ch {ch:03} - {res_freq:.2f} MHz') fig.tight_layout() plot_name = basename + \ f'_noise_timestream_b{b}_ch{ch:03}{plotname_append}.png' fig.savefig(os.path.join(self.plot_dir, plot_name), bbox_inches='tight') # Close the individual channel plots - otherwise too many # plots are brought to screen plt.close(fig) if save_data: for i, (l, h) in enumerate(zip(low_freq, high_freq)): save_name = basename+f'_{l:3.2f}_{h:3.2f}.txt' outfn = os.path.join(self.plot_dir, save_name) np.savetxt(outfn, np.c_[res_freqs,noise_floors[i],f_knees]) # Publish the data self.pub.register_file(outfn, 'noise_timestream', format='txt') if make_summary_plot: bins = np.arange(0,351,20) for i, (l, h) in enumerate(zip(low_freq, high_freq)): fig, ax = plt.subplots(1, figsize=(10,6)) ax.hist(noise_floors[i,~np.isnan(noise_floors[i])], bins=bins) ax.text(0.03, 0.95, f'{l:3.2f}' + '-' + f'{h:3.2f} Hz', transform=ax.transAxes, fontsize=10) ax.set_xlabel(r'Mean noise [$\mathrm{pA}/\sqrt{\mathrm{Hz}}$]') plot_name = ( basename + f'{l}_{h}_noise_hist{plotname_append}.png') plt.savefig(os.path.join(self.plot_dir, plot_name), bbox_inches='tight') if show_plot: plt.show() else: plt.close() if len(wl_list) > 0: wl_median = np.median(wl_list) n_median = np.median(n_list) f_knee_median = np.median(f_knee_list) n_fit = len(wl_list) n_attempt = len(channels) fig,ax = plt.subplots(1,3, figsize=(10,6)) fig.suptitle( f'{basename} noise parameters' + f' ({n_fit} fit of {n_attempt} attempted)') ax[0].hist(wl_list, bins=np.logspace(np.floor(np.log10(np.min(wl_list))), np.ceil(np.log10(np.max(wl_list))), 10)) ax[0].set_xlabel('White-noise level (pA/rtHz)') ax[0].set_xscale('log') ax[0].set_title(f'median = {wl_median:.3e} pA/rtHz') ax[1].hist(n_list) ax[1].set_xlabel('Noise index') ax[1].set_title(f'median = {n_median:.3e}') ax[2].hist(f_knee_list, bins=np.logspace(np.floor(np.log10(np.min(f_knee_list))), np.ceil(np.log10(np.max(f_knee_list))), 10)) ax[2].set_xlabel('Knee frequency') ax[2].set_xscale('log') ax[2].set_title(f'median = {f_knee_median:.3e} Hz') plt.tight_layout() fig.subplots_adjust(top = 0.9) noise_params_hist_fname = basename + \ f'_noise_params{plotname_append}.png' plt.savefig(os.path.join(self.plot_dir, noise_params_hist_fname), bbox_inches='tight') if show_plot: plt.show() else: plt.close() if return_noise_params: return datafile, (res_freqs, noise_floors, f_knees) else: return datafile def turn_off_noisy_channels(self, band, noise, cutoff=150): """ Turns off channels with noise level above a cutoff. Args ---- band : int The band to search noise : float array The noise floors. Presumably calculated using take_noise_psd. cutoff : float, optional, default 150.0 The value to cut at in the same units as noise. """ n_channel = self.get_number_channels(band) for ch in np.arange(n_channel): if noise[ch] > cutoff: self.channel_off(band, ch) def noise_vs_tone(self, band, tones=None, meas_time=30, analyze=False, bias_group=None, lms_freq_hz=None, fraction_full_scale=.72, meas_flux_ramp_amp=False, n_phi0=4, make_timestream_plot=True, new_master_assignment=True, from_old_tune=False, old_tune=None): """Takes timestream noise at various tone powers. Operates on one band at a time because it needs to retune between taking another timestream at a different tone power. Args ---- band : int The 500 MHz band to run tones : int array or None, optional, default None The tone amplitudes. If None, uses np.arange(10,15). meas_time : float, optional, default 30.0 The measurement time per tone power in seconds. analyze : bool, optional, default False Whether to analyze the data. bias_group : int array or None, optional, default None The bias groups to analyze. lms_freq_hz : float or None, optional, default None The tracking frequency in Hz. If None, measures the tracking frequency. fraction_full_scale : float, optional, default 0.72 The amplitude of the flux ramp. meas_flux_ramp_amp : bool or None, optional, default False Whether to measure the flux ramp amplitude. n_phi0 : float, optional, default 4.0 The number of phi0 to use if measuring flux ramp. make_timestream_plot : bool, optional, default True Whether to make the timestream plot. new_master_assignment : bool, optional, default True Whether to make a new master channel assignemnt. This will only make one for the first tone. It needs to keep the channel assignment the same after that for the analysis. from_old_tune : bool, optional, default False Whether to tune from an old tune. old_tune : str or None, optional, default None The tune file if using old tune. """ timestamp = self.get_timestamp() if tones is None: tones = np.arange(10,15) # Take data datafiles = np.array([]) channel = np.array([]) for _, t in enumerate(tones): self.log(f'Measuring for tone power {t}') # Tune the band with the new drive power self.tune_band_serial(band, drive=t, new_master_assignment=new_master_assignment, from_old_tune=from_old_tune, old_tune=old_tune) # all further tunings do not make new assignemnt new_master_assignment = False # Append list of channels that are on channel = np.unique(np.append(channel, self.which_on(band))) # Start tracking self.tracking_setup(band, fraction_full_scale=fraction_full_scale, lms_freq_hz=lms_freq_hz, meas_flux_ramp_amp=meas_flux_ramp_amp, n_phi0=n_phi0) # Check self.check_lock(band) time.sleep(2) datafile = self.take_stream_data(meas_time) datafiles = np.append(datafiles, datafile) self.log('Saving data') datafile_save = os.path.join(self.output_dir, timestamp + '_noise_vs_tone_datafile.txt') tone_save = os.path.join(self.output_dir, timestamp + '_noise_vs_tone_tone.txt') # Save the data np.savetxt(datafile_save,datafiles, fmt='%s') self.pub.register_file(datafile_save, 'noise_vs_tone_data', format='txt') np.savetxt(tone_save, tones, fmt='%i') self.pub.register_file(tone_save, 'noise_vs_tone_tone', format='txt') # Get sample frequency fs = self.get_sample_frequency() if analyze: self.analyze_noise_vs_tone(tone_save, datafile_save, band=band, channel=channel, bias_group=bias_group, fs=fs, make_timestream_plot=make_timestream_plot, data_timestamp=timestamp) def noise_vs_bias(self, bias_group, band=None, channel=None, bias_high=1.5, bias_low=0., step_size=0.25, bias=None, high_current_mode=True, overbias_voltage=9., meas_time=30., analyze=False, nperseg=2**13, detrend='constant', fs=None, show_plot=False, cool_wait=30., psd_ylim=(10.,1000.), make_timestream_plot=False, only_overbias_once=False, overbias_wait=1): """ This ramps the TES voltage from bias_high to bias_low and takes noise measurements. You can make it analyze the data and make plots with the optional argument analyze=True. Note that the analysis is a little slow. band and channel inputs only dictate what plots are made. Data is taken on every band and channel that is on. Args ---- bias_group : int or int array which bias group(s) to bias/read back. band : int or None, optional, default None The band to take noise vs bias data on. channel : int or None, optional, default None The channel to run analysis on. Note that data is taken on all channels. This only affects what is analyzed. You can always run the analyze script later. bias_high : float, optional, default 1.5 The bias voltage to start at. bias_low : float, optional, default 0.0 The bias votlage to end at. step_size : float, optional, default 0.25 The step in voltage. bias : float array or None, optional, default None The array of bias values to step through. If None, uses values in defined by bias_high, bias_low, and step_size. overbias_voltage : float, optional, default 9.0 Voltage to set the overbias in volts. meas_time : float, optional, default 30.0 The amount of time to take data at each TES bias. analyze : bool, optional, default False Whether to analyze the data. nperseg : int, optional, default 2**13 The number of samples per segment in the PSD. detrend : str, optional, default 'constant' Whether to detrend the data before taking the PSD. Default is to remove a constant. fs : float or None, optional, default None The sample frequency. show_plot : bool, optional, default False Whether to show analysis plots. only_overbias_once : bool, optional, default False Whether or not to overbias right before each TES bias step. """ if bias is None: if step_size > 0: step_size *= -1 bias = np.arange(bias_high, bias_low-np.absolute(step_size), step_size) self.noise_vs(band=band, bias_group=bias_group, var='bias', var_range=bias, meas_time=meas_time, analyze=analyze, channel=channel, nperseg=nperseg, detrend=detrend, fs=fs, show_plot=show_plot, psd_ylim=psd_ylim, overbias_voltage=overbias_voltage, cool_wait=cool_wait,high_current_mode=high_current_mode, make_timestream_plot=make_timestream_plot, only_overbias_once=only_overbias_once, overbias_wait=overbias_wait) def noise_vs_amplitude(self, band, amplitude_high=11, amplitude_low=9, step_size=1, amplitudes=None, meas_time=30., analyze=False, channel=None, nperseg=2**13, detrend='constant', fs=None, show_plot=False, make_timestream_plot=False, psd_ylim=None): """ Args ---- band : int The band to take noise vs bias data on. """ if amplitudes is None: if step_size > 0: step_size *= -1 amplitudes = np.arange(amplitude_high, amplitude_low-np.absolute(step_size), step_size) self.noise_vs(band=band,var='amplitude',var_range=amplitudes, meas_time=meas_time, analyze=analyze, channel=channel, nperseg=nperseg, detrend=detrend, fs=fs, show_plot=show_plot, make_timestream_plot=make_timestream_plot, psd_ylim=psd_ylim) def noise_vs(self, band, var, var_range, meas_time=30, analyze=False, channel=None, nperseg=2**13, detrend='constant', fs=None, show_plot=False, psd_ylim=None, make_timestream_plot=False, only_overbias_once=False, **kwargs): """ Generic script for analyzing noise vs some variable. This is called by noise_vs_bias and noise_vs_tone. Args ---- band : int The 500 MHz band to analyze. var : dict A dictionary values to use in the analysis. The values depend on which variable is being varied. var_range : float array The range of the test variable. meas_time : float, optional, default 30.0 The measurement time in seconds. analyze : bool, optional, default False Whether to analyze the data. channel : int array or None, optional, default None The channels to analyze. nperseg : int, optional, default 2**13 The number of segments in the PSD. detrend : str, optional, default 'constant' The type of filtering to use before using the PSD. See the documentation of scipy.signal.welch. fs : float or None, optional, default None The sample frequency. show_plot : bool, optional, default False Whether to show the plot. psd_ylim : float array or None, optional, default None The ylim to use in the plot. If None, uses the default plot value. make_timestream_plot : bool, optional, default False Whether to plot the timestream. only_overbias_once : bool, optional, default False Whether to only overbias at the beginning of the measurement (as opposed to between every step). """ if fs is None: fs = self.get_sample_frequency() # aliases biasaliases=['bias'] amplitudealiases=['amplitude'] # vs TES bias if var in biasaliases: # requirement assert ('bias_group' in kwargs.keys()),'Must specify bias_group.' # defaults if 'high_current_mode' not in kwargs.keys(): kwargs['high_current_mode'] = False if 'cool_wait' not in kwargs.keys(): kwargs['cool_wait'] = 30. if 'overbias_wait' not in kwargs.keys(): kwargs['overbias_wait'] = 1 if var in amplitudealiases: assert (band is not None), "Must provide band for noise vs amplitude" # no parameters (yet) but need to null this until we rework the analysis kwargs['bias_group']=-1 pass psd_dir = os.path.join(self.output_dir, 'psd') self.make_dir(psd_dir) timestamp = self.get_timestamp() fn_var_values = os.path.join(psd_dir, f'{timestamp}_{var}.txt') np.savetxt(fn_var_values, var_range) # Is this an accurate tag? self.pub.register_file(fn_var_values, f'noise_vs_{var}', format='txt') datafiles = np.array([], dtype=str) xlabel_override = None unit_override = None actually_overbias = True for v in var_range: if var in biasaliases: self.log(f'Bias {v}') if type(kwargs['bias_group']) is int: # only received one group self.overbias_tes(kwargs['bias_group'], tes_bias=v, high_current_mode=kwargs['high_current_mode'], cool_wait=kwargs['cool_wait'], overbias_voltage=kwargs['overbias_voltage'], actually_overbias=actually_overbias, overbias_wait=kwargs['overbias_wait']) else: self.overbias_tes_all(kwargs['bias_group'], tes_bias=v, high_current_mode=kwargs['high_current_mode'], cool_wait=kwargs['cool_wait'], overbias_voltage=kwargs['overbias_voltage'], actually_overbias=actually_overbias, overbias_wait=kwargs['overbias_wait']) if only_overbias_once: actually_overbias=False if var in amplitudealiases: unit_override='' xlabel_override='Tone amplitude [unit-less]' self.log(f'Retuning at tone amplitude {v}') self.set_amplitude_scale_array(band, np.array(self.get_amplitude_scale_array(band)*v/ np.max(self.get_amplitude_scale_array(band)),dtype=int)) self.run_serial_gradient_descent(band) self.run_serial_eta_scan(band) self.tracking_setup(band,lms_freq_hz=self._lms_freq_hz[band], save_plot=True, make_plot=True, channel=self.which_on(band), show_plot=False) self.log('Taking data') datafile = self.take_stream_data(meas_time) datafiles = np.append(datafiles, datafile) self.log(f'datafile {datafile}') self.log(f'Done with noise vs {var}') fn_datafiles = os.path.join(psd_dir, f'{timestamp}_datafiles.txt') np.savetxt(fn_datafiles,datafiles, fmt='%s') self.pub.register_file(fn_datafiles, 'datafiles', format='txt') self.log(f'Saving variables values to {fn_var_values}.') self.log(f'Saving data filenames to {fn_datafiles}.') if analyze: self.analyze_noise_vs_bias( var_range, datafiles, channel=channel, band=band, bias_group=kwargs['bias_group'], nperseg=nperseg, detrend=detrend, fs=fs, save_plot=True, show_plot=show_plot, data_timestamp=timestamp, psd_ylim=psd_ylim, make_timestream_plot=make_timestream_plot, xlabel_override=xlabel_override, unit_override=unit_override) def get_datafiles_from_file(self, fn_datafiles): """ For, e.g., noise_vs_bias, the list of datafiles is recorded in a txt file. This function simply extracts those filenames and returns them as a list. Args ---- fn_datafiles : str Full path to txt containing names of data files. Returns ------- datafiles : list of str Strings of data-file names. """ datafiles = [] f_datafiles = open(fn_datafiles,'r') for line in f_datafiles: datafiles.append(line.split()[0]) return datafiles def get_biases_from_file(self, fn_biases, dtype=float): """ For, e.g., noise_vs_bias, the list of commanded bias voltages is recorded in a txt file. This function simply extracts those values and returns them as a list. Args ---- fn_biases : str Full path to txt containing list of bias voltages. Returns ------- biases : list of float Floats of commanded bias voltages. """ biases = [] f_biases = open(fn_biases,'r') for line in f_biases: bias_str = line.split()[0] if dtype == float: bias = float(bias_str) elif dtype == int: bias = int(bias_str) biases.append(bias) return biases def get_iv_data(self, iv_data_filename, band, high_current_mode=False): """ Takes IV data and extracts responsivities as a function of commanded bias voltage. Args ---- iv_data_filename : str Filename of output of IV analysis. band : int Band from which to extract responsivities. high_current_mode : bool, optional, default False Whether or not to return the IV bias voltages so that they look like the IV was taken in high-current mode. Returns ------- iv_band_data : dict Dictionary with IV information for band. """ self.log(f'Extracting IV data from {iv_data_filename}') iv_data = np.load(iv_data_filename, allow_pickle=True).item() iv_band_data = iv_data[band] iv_high_current_mode = iv_data['high_current_mode'] for ch in iv_band_data: v_bias = iv_band_data[ch]['v_bias'] if iv_high_current_mode and not high_current_mode: iv_band_data[ch]['v_bias'] = v_bias*self._high_low_current_ratio elif not iv_high_current_mode and high_current_mode: iv_band_data[ch]['v_bias'] = v_bias/self._high_low_current_ratio return iv_band_data def get_si_data(self, iv_band_data, ch): """ Convenience function for getting the responsivitiy from the IV data. Args ---- iv_band_data : dict The IV dictionary. ch : int The channel to extract the data from. Returns ------- v_bias : float The bias voltage. si : float The responsivity. """ return iv_band_data[ch]['v_bias'], iv_band_data[ch]['si'] def NEI_to_NEP(self, iv_band_data, ch, v_bias): """ Takes NEI in pA/rtHz and converts to NEP in aW/rtHz. Args ---- iv_band_data : dict The IV dictionary. ch : int The channel to extract the data from. v_bias : float Commanded bias voltage at which to estimate NEP. Returns ------- float Noise-equivalent power in aW/rtHz. """ v_bias_array,si_array = self.get_si_data(iv_band_data, ch) si = np.interp(v_bias, v_bias_array[:-1], si_array) return 1./np.absolute(si) def analyze_noise_vs_bias(self, bias, datafile, channel=None, band=None, nperseg=2**13, detrend='constant', fs=None, save_plot=True, show_plot=False, make_timestream_plot=False, data_timestamp=None, psd_ylim=(10.,1000.), bias_group=None, smooth_len=15, show_legend=True, freq_range_summary=None, R_sh=None, high_current_mode=True, iv_data_filename=None, NEP_ylim=(10.,1000.), f_center_GHz=150., bw_GHz=32., xlabel_override=None, unit_override=None): """ Analysis script associated with noise_vs_bias. Args ---- bias :float array The bias in voltage. Can also pass an absolute path to a txt containing the bias points. datafile :str array The paths to the datafiles. Must be same length as bias array. Can also pass an absolute path to a txt containing the names of the datafiles. channel : int array The channels to analyze. band : int The band where the data is taken. nperseg : int Passed to scipy.signal.welch. Number of elements per segment of the PSD. detrend : str Passed to scipy.signal.welch. fs : float Passed to scipy.signal.welch. The sample rate. save_plot : bool Whether to save the plot. Default is True. show_plot : bool Whether to how the plot. Default is False. data_timestamp : str The string used as a save name. Default is None. bias_group : int or int array which bias groups were used. Default is None. smooth_len : int length of window over which to smooth PSDs for plotting show_legend : bool Whether to show the legend. Default True. freq_range_summary : tup frequencies between which to take mean noise for summary plot of noise vs. bias; if None, then plot white-noiselevel from model fit """ if not show_plot: plt.ioff() if unit_override is None: unit='V' else: unit=unit_override if fs is None: fs = self.get_sample_frequency() if R_sh is None: R_sh = self._R_sh if isinstance(bias,str): self.log(f'Biases being read from {bias}') bias = self.get_biases_from_file(bias) if isinstance(datafile,str): self.log(f'Noise data files being read from {datafile}') datafile = self.get_datafiles_from_file(datafile) if band is None and channel is None: mask = self.make_mask_lookup(datafile[0]) band, channel = np.where(mask != -1) # Make sure band is an int array band = np.array(band).astype(int) # If an analyzed IV datafile is given, estimate NEP if iv_data_filename is not None and band is not None: iv_band_data = self.get_iv_data(iv_data_filename, band, high_current_mode=high_current_mode) self.log('IV data given. Estimating NEP. Skipping noise analysis' ' for channels without responsivity estimates.') est_NEP = True else: est_NEP = False timestream_dict = {} # Analyze data and save for _, (bs, d) in enumerate(zip(bias, datafile)): timestream_dict[bs] = {} for b in np.unique(band): timestream_dict[bs][b] = {} timestamp, phase, mask = self.read_stream_data(d) phase *= self._pA_per_phi0/(2.*np.pi) # phase converted to pA basename, _ = os.path.splitext(os.path.basename(d)) dirname = os.path.dirname(d) psd_dir = os.path.join(dirname, 'psd') self.make_dir(psd_dir) for b, ch in zip(band, channel): ch_idx = mask[b, ch] phase_ch = phase[ch_idx] timestream_dict[bs][b][ch] = phase_ch f, Pxx = signal.welch(phase_ch, nperseg=nperseg, fs=fs, detrend=detrend) Pxx = np.sqrt(Pxx) # pA path = os.path.join(psd_dir, basename + f'_psd_b{b}ch{ch:03}.txt') np.savetxt(path, np.array([f, Pxx])) self.pub.register_file(path, 'psd', format='txt') # Explicitly remove objects from memory del timestamp del phase # Make plot cm = plt.get_cmap('plasma') noise_est_data = [] if est_NEP: NEP_est_data = [] n_bias = len(bias) n_row = int(np.ceil(n_bias/2.)*3) h_NEI = int(n_row/3) w_NEI = 2 w_timestream = w_NEI h_NEIwl = h_NEI h_NEPwl = h_NEIwl h_SI = n_row - h_NEIwl - h_NEPwl w_NEIwl = 1 w_NEPwl = w_NEIwl w_SI = w_NEPwl n_col = w_NEI + w_NEIwl # for ch in channel: # Load filter parameters filter_a = self.get_filter_a() filter_b = self.get_filter_b() for b, ch in zip(band, channel): if ch < 0: continue w_fig = 13 if make_timestream_plot or est_NEP: h_fig = 19 else: h_fig = 7 fig = plt.figure(figsize=(w_fig, h_fig)) gs = GridSpec(n_row, n_col) ax_NEI = fig.add_subplot(gs[:h_NEI, :w_NEI]) ax_NEIwl = fig.add_subplot(gs[:h_NEIwl, w_NEI:w_NEI+w_NEIwl]) if est_NEP: if ch not in iv_band_data: self.log(f'Skipping channel {ch}: no responsivity data.') continue ax_NEPwl = fig.add_subplot(gs[h_NEIwl:h_NEIwl+h_NEPwl, w_timestream:w_timestream+w_NEPwl]) ax_SI = fig.add_subplot(gs[h_NEIwl+h_NEPwl:h_NEIwl+h_NEPwl+h_SI, w_timestream:w_timestream+w_SI]) if make_timestream_plot: axs_timestream = [] for i in range(n_bias): ax_i = fig.add_subplot(gs[h_NEI+i:h_NEI+i+1,:w_timestream]) axs_timestream.append(ax_i) noise_est_list = [] if est_NEP: NEP_est_list = [] for i, (bs, d) in enumerate(zip(bias, datafile)): basename, _ = os.path.splitext(os.path.basename(d)) dirname = os.path.dirname(d) f, Pxx = np.loadtxt(os.path.join(psd_dir, basename + f'_psd_b{b}ch{ch:03}.txt')) if est_NEP: print(f'Bias {bs}') NEI2NEP = self.NEI_to_NEP(iv_band_data, ch, bs) #NEP = Pxx*NEI2NEP # smooth Pxx for plotting if smooth_len >= 3: window_len = smooth_len self.log(f'Smoothing PSDs for plotting with window of length {window_len}') s = np.r_[Pxx[window_len-1:0:-1], Pxx, Pxx[-2:-window_len-1:-1]] w = np.hanning(window_len) Pxx_smooth_ext = np.convolve(w/w.sum(), s, mode='valid') ndx_add = window_len % 2 Pxx_smooth = Pxx_smooth_ext[(window_len//2)-1+ndx_add:-(window_len//2)] else: self.log('No smoothing of PSDs for plotting.') Pxx_smooth = Pxx color = cm(float(i)/len(bias)) label_bias = f'{bs:.2f} {unit}' ax_NEI.plot(f, Pxx_smooth, color=color, label=label_bias) ax_NEI.set_xlim(min(f[1:]), max(f[1:])) ax_NEI.set_ylim(psd_ylim) if make_timestream_plot: ax_i = axs_timestream[i] ts_i = timestream_dict[bs][b][ch] ts_i -= np.mean(ts_i) # subtract offset t_i = np.arange(len(ts_i))/fs ax_i.plot(t_i, ts_i, color=color, label=label_bias) ax_i.legend(loc='upper right') ax_i.grid() if i == n_bias - 1: ax_i.set_xlabel('Time [s]') else: ax_i.set_xticklabels([]) ax_i.set_xlim(min(t_i), max(t_i)) ax_i.set_ylabel('Phase [pA]') # fit to noise model; catch error if fit is bad popt, pcov, f_fit, Pxx_fit = self.analyze_psd(f, Pxx, filter_b=filter_b, filter_a=filter_a) wl, n, f_knee = popt self.log(f'ch. {ch}, bias = {bs:.2f}' + f', white-noise level = {wl:.2f}' + f' pA/rtHz, n = {n:.2f}' + f', f_knee = {f_knee:.2f} Hz') # get noise estimate to summarize PSD for given bias if freq_range_summary is not None: freq_min,freq_max = freq_range_summary idxs_est = np.logical_and(f>=freq_min,f<=freq_max) noise_est = np.mean(Pxx[idxs_est]) self.log(f'ch. {ch}, bias = {bs:.2f}' + ', mean current noise between ' + f'{freq_min:.3e} and {freq_max:.3e} Hz ' + f'= {noise_est:.2f} pA/rtHz') else: noise_est = wl noise_est_list.append(noise_est) if est_NEP: self.log(f'abs(responsivity) = {1./NEI2NEP:.2f} uV^-1') NEP_est = noise_est * NEI2NEP self.log(f'power noise = {NEP_est:.2f} aW/rtHz') NEP_est_list.append(NEP_est) ax_NEI.plot(f_fit, Pxx_fit, color=color, linestyle='--') ax_NEI.plot(f, wl + np.zeros(len(f)), color=color, linestyle=':') ax_NEI.plot(f_knee, 2.*wl, marker='o', linestyle='none', color=color) ax_NEIwl.plot(bs, noise_est, color=color, marker='s', linestyle='none') if est_NEP: ax_NEPwl.plot(bs, NEP_est, color=color, marker='s', linestyle='none') iv_bias, si = self.get_si_data(iv_band_data, ch) iv_bias = iv_bias[:-1] if i == 0: ax_SI.plot(iv_bias, si) v_tes = iv_band_data[ch]['v_tes'][:-1] si_etf = -1./v_tes ax_SI.plot(iv_bias, si_etf, linestyle = '--', label=r'$-1/V_\mathrm{TES}$') trans_idxs = iv_band_data[ch]['trans idxs'] sc_idx = trans_idxs[0] nb_idx = trans_idxs[1] R = iv_band_data[ch]['R'] R_n = iv_band_data[ch]['R_n'] R_frac_min = R[sc_idx]/R_n R_frac_max = R[nb_idx]/R_n for ax in [ax_NEIwl,ax_NEPwl,ax_SI]: if ax == ax_SI: label_Rfrac = f'{R_frac_min:.2f}-{R_frac_max:.2f}' + \ r'$R_\mathrm{N}$' else: label_Rfrac = None ax.axvspan(iv_bias[sc_idx],iv_bias[nb_idx], alpha=.15,label=label_Rfrac) ax_SI.plot(bs, np.interp(bs, iv_bias, si), color=color, marker='s', linestyle='none') ax_NEI.set_xlabel(r'Freq [Hz]') ax_NEI.set_ylabel(r'NEI [$\mathrm{pA}/\sqrt{\mathrm{Hz}}$]') ax_NEI.set_xscale('log') ax_NEI.set_yscale('log') if show_legend: ax_NEI.legend(loc = 'upper right') if not self.offline: res_freq = self.channel_to_freq(b, ch) else: res_freq = -1 xrange_bias = max(bias) - min(bias) xbuffer_bias = xrange_bias/20. xlim_bias = (min(bias)-xbuffer_bias,max(bias)+xbuffer_bias) ax_NEIwl.set_xlim(xlim_bias) if xlabel_override is None: xlabel_bias = r'Commanded bias voltage [V]' else: xlabel_bias=xlabel_override if est_NEP: ax_SI.set_xlim(xlim_bias) ax_NEPwl.set_xlim(xlim_bias) ax_SI.set_xlabel(xlabel_bias) ax_NEIwl.set_xticklabels([]) ax_NEPwl.set_xticklabels([]) else: ax_NEIwl.set_xlabel(xlabel_bias) if freq_range_summary is not None: ylabel_summary = f'mean noise {freq_min:.2f}-{freq_max:.2f} Hz' else: ylabel_summary = 'white-noise level' ax_NEIwl.set_ylabel(f'NEI {ylabel_summary} ' + r'[$\mathrm{pA}/\sqrt{\mathrm{Hz}}$]') bottom = max(0.95*min(noise_est_list), 0.) top_desired = 1.05*max(noise_est_list) if psd_ylim is not None: top = min(psd_ylim[1], top_desired) else: top = top_desired ax_NEIwl.set_ylim(bottom=bottom, top=top) ax_NEIwl.grid() if est_NEP: ax_NEPwl.set_ylabel(f'NEP {ylabel_summary} ' + r'[$\mathrm{aW}/\sqrt{\mathrm{Hz}}$]') ax_SI.set_ylabel(r'Estimated responsivity with $\beta = 0$'+ r'[$\mu\mathrm{V}^{-1}$]') bottom_NEP = 0.95*min(NEP_est_list) top_NEP_desired = 1.05*max(NEP_est_list) if NEP_ylim is not None: top_NEP = min(NEP_ylim[1], top_NEP_desired) else: top_NEP = top_NEP_desired ax_NEPwl.set_ylim(bottom=bottom_NEP, top=top_NEP) ax_NEPwl.set_yscale('log') v_tes_target = iv_band_data[ch]['v_tes_target'] ax_SI.set_ylim(-2./v_tes_target, 0.5/v_tes_target) ax_NEPwl.grid() ax_SI.grid() ax_NET = ax_NEPwl.twinx() # NEP to NET conversion model def NEPtoNET(NEP): return (1e-18/1e-6)*(1./np.sqrt(2.))*NEP/tools.dPdT_singleMode(f_center_GHz*1e9,bw_GHz*1e9,2.7) bottom_NET = NEPtoNET(bottom_NEP) top_NET = NEPtoNET(top_NEP) # labels and limits ax_NET.set_ylim(bottom=bottom_NET, top=top_NET) ax_NET.set_yscale('log') ax_NET.set_ylabel(r'NET with opt. eff. = $100\%$ [$\mu\mathrm{K} \sqrt{\mathrm{s}}$]') ax_SI.legend(loc='best') if type(bias_group) is not int: # ie if there were more than one fig_title_string = '' file_name_string = '' for i in range(len(bias_group)): g = bias_group[i] fig_title_string += str(g) + ',' # I'm sorry but the satellite was down file_name_string += str(g) + '_' else: fig_title_string = str(bias_group) + ',' file_name_string = str(bias_group) + '_' # Title and layout fig.suptitle(basename + f' Band {np.unique(band)}, Group {fig_title_string}' + f' Channel {ch:03} - {res_freq:.2f} MHz') plt.tight_layout() if show_plot: plt.show() if save_plot: plot_name = 'noise_vs_bias_' + \ f'g{file_name_string}b{b}ch{ch:03}.png' if data_timestamp is not None: plot_name = f'{data_timestamp}_' + plot_name else: plot_name = f'{self.get_timestamp()}_' + plot_name plot_fn = os.path.join(self.plot_dir, plot_name) self.log(f'Saving plot to {plot_fn}') plt.savefig(plot_fn, bbox_inches='tight') plt.close() del f del Pxx noise_est_dict = {'ch':ch,'noise_est_list':noise_est_list} noise_est_data.append(noise_est_dict) if est_NEP: NEP_est_dict = {'ch':ch,'NEP_est_list':NEP_est_list} NEP_est_data.append(NEP_est_dict) n_analyzed = len(noise_est_data) # make summary histogram of noise vs. bias over all analyzed channels noise_est_data_bias = [] if est_NEP: NEP_est_data_bias = [] for i in range(len(bias)): bs = bias[i] noise_est_bias = [] if est_NEP: NEP_est_bias = [] for j in range(len(noise_est_data)): noise_est_bias.append(noise_est_data[j]['noise_est_list'][i]) if est_NEP: for j in range(len(NEP_est_data)): NEP_est_bias.append(NEP_est_data[j]['NEP_est_list'][i]) noise_est_data_bias.append(np.array(noise_est_bias)) if est_NEP: NEP_est_data_bias.append(np.array(NEP_est_bias)) if psd_ylim is not None: bin_min = np.log10(psd_ylim[0]) bin_max = np.log10(psd_ylim[1]) else: bin_min = np.floor(np.log10(np.min(noise_est_data_bias))) bin_max = np.ceil(np.log10(np.max(noise_est_data_bias))) # Make figure plt.figure() # Make bins bins_hist = np.logspace(bin_min, bin_max, 20) hist_mat = np.zeros((len(bins_hist)-1, len(bias))) noise_est_median_list = [] for i in range(len(bias)): hist_mat[:,i], _ = np.histogram(noise_est_data_bias[i], bins=bins_hist) noise_est_median_list.append(np.median(noise_est_data_bias[i])) X_hist, Y_hist = np.meshgrid(np.arange(len(bias),-1,-1), bins_hist) plt.pcolor(X_hist, Y_hist, hist_mat) cbar = plt.colorbar() # Labels cbar.set_label('Number of channels') plt.yscale('log') plt.ylabel(f'NEI {ylabel_summary}' + r' [$\mathrm{pA}/\sqrt{\mathrm{Hz}}$]') plt.ylim(10**bin_min, 10**bin_max) plt.title(basename + f": Band {np.unique(band)}, Group " + f"{fig_title_string.strip(',')}, {n_analyzed}" + "channels") xtick_labels = [] for bs in bias: xtick_labels.append(f'{bs}') xtick_locs = np.arange(len(bias)-1,-1,-1) + 0.5 plt.xticks(xtick_locs, xtick_labels) plt.xlabel('Commanded bias voltage [V]') # Plot the data plt.plot(xtick_locs, noise_est_median_list, linestyle='--', marker='o', color='r', label='Median NEI') plt.legend(loc='lower center') if show_plot: plt.show() if save_plot: plot_name = f'noise_vs_bias_band{np.unique(band)}' + \ f'_g{file_name_string}NEI_hist.png' if data_timestamp is not None: plot_name = f'{data_timestamp}_' + plot_name else: plot_name = f'{self.get_timestamp()}_' + plot_name plot_fn = os.path.join(self.plot_dir, plot_name) self.log(f'\nSaving NEI histogram to {plot_fn}') plt.savefig(plot_fn, bbox_inches='tight') plt.close() if est_NEP: if NEP_ylim is not None: bin_NEP_min = np.log10(NEP_ylim[0]) bin_NEP_max = np.log10(NEP_ylim[1]) else: bin_NEP_min = np.floor(np.log10(np.min(NEP_est_data_bias))) bin_NEP_max = np.ceil(np.log10(np.max(NEP_est_data_bias))) plt.figure() bins_NEP_hist = np.logspace(bin_NEP_min,bin_NEP_max,20) hist_NEP_mat = np.zeros((len(bins_NEP_hist)-1,len(bias))) NEP_est_median_list = [] for i in range(len(bias)): hist_NEP_mat[:,i],_ = np.histogram(NEP_est_data_bias[i], bins=bins_NEP_hist) NEP_est_median_list.append(np.median(NEP_est_data_bias[i])) X_NEP_hist,Y_NEP_hist = np.meshgrid(np.arange(len(bias),-1,-1), bins_NEP_hist) plt.pcolor(X_NEP_hist,Y_NEP_hist,hist_NEP_mat) cbar_NEP = plt.colorbar() cbar_NEP.set_label('Number of channels') plt.yscale('log') plt.ylabel(f'NEP {ylabel_summary}' + r' [$\mathrm{aW}/\sqrt{\mathrm{Hz}}$]') plt.title(basename + plt.title(basename + f": Band {np.unique(band)}, Group " + f"{fig_title_string.strip(',')}, {n_analyzed}" + "channels")) plt.xticks(xtick_locs,xtick_labels) plt.xlabel('Commanded bias voltage [V]') plt.plot(xtick_locs,NEP_est_median_list, linestyle='--', marker='o', color='r', label='Median NEP') plt.legend(loc='lower center') if show_plot: plt.show() if save_plot: plot_name = 'noise_vs_bias_' + \ f'band{np.unique(band)}_g{file_name_string}NEP_hist.png' if data_timestamp is not None: plot_name = f'{data_timestamp}_' + plot_name else: plot_name = f'{self.get_timestamp()}_' + plot_name plot_fn = os.path.join(self.plot_dir, plot_name) self.log(f'\nSaving NEP histogram to {plot_fn}') plt.savefig(plot_fn, bbox_inches='tight') plt.close() def analyze_psd(self, f, Pxx, fs=None, p0=[100.,0.5,0.01], flux_ramp_freq=None, filter_a=None, filter_b=None): """ Return model fit for a PSD. p0 (float array): initial guesses for model fitting: [white-noise level in pA/rtHz, exponent of 1/f^n component, knee frequency in Hz] Args ---- f : float array The frequency information. Pxx : float array The power spectral data. fs : float or None, optional, default None Sampling frequency. If None, loads in the current sampling frequency. p0 : float array, optional, default [100.0,0.5,0.01] Initial guess for fitting PSDs. flux_ramp_freq : float, optional, default None The flux ramp frequency in Hz. Returns ------- popt : float array The fit parameters - [white_noise_level, n, f_knee]. pcov : float array Covariance matrix. f_fit : float array The frequency bins of the fit. Pxx_fit : float array The amplitude. """ # incorporate timestream filtering if filter_b is None: filter_b = self.get_filter_b() if filter_a is None: filter_a = self.get_filter_a() if flux_ramp_freq is None: flux_ramp_freq = self.get_flux_ramp_freq() * 1.0E3 if fs is None: fs = self.get_sample_frequency() def noise_model(freq, wl, n, f_knee): """ Crude model for noise modeling. Args ---- wl : float White-noise level. n : float Exponent of 1/f^n component. f_knee : float Frequency at which white noise = 1/f^n component """ A = wl*(f_knee**n) # The downsample filter is at the flux ramp frequency w, h = signal.freqz(filter_b, filter_a, worN=freq, fs=flux_ramp_freq) tf = np.absolute(h) # filter transfer function return (A/(freq**n) + wl)*tf bounds_low = [0.,0.,0.] # constrain 1/f^n to be red spectrum bounds_high = [np.inf,np.inf,np.inf] bounds = (bounds_low,bounds_high) try: popt, pcov = optimize.curve_fit(noise_model, f[1:], Pxx[1:], p0=p0, bounds=bounds) except Exception: wl = np.mean(Pxx[1:]) self.log('Unable to fit noise model. ' + f'Reporting mean noise: {wl:.2f} pA/rtHz') popt = [wl, 1., 0.] pcov = None df = f[1] - f[0] f_fit = np.arange(f[1],f[-1] + df,df/10.) Pxx_fit = noise_model(f_fit,*popt) return popt, pcov, f_fit, Pxx_fit def noise_all_vs_noise_solo(self, band, meas_time=10.0): """ Measures the noise with all the resonators on, then measures every channel individually. Args ---- band : int The band number. meas_time : float, optional, default 10.0 The measurement time per resonator in seconds. """ timestamp = self.get_timestamp() channel = self.which_on(2) n_channel = len(channel) drive = self.freq_resp[band]['drive'] self.log('Taking noise with all channels') filename = self.take_stream_data(meas_time=meas_time) ret = {'all': filename} for i, ch in enumerate(channel): self.log(f'ch {ch:03} - {i+1} of {n_channel}') self.band_off(band) self.flux_ramp_on() self.set_amplitude_scale_channel(band, ch, drive) self.set_feedback_enable_channel(band, ch, 1, wait_after=1) filename = self.take_stream_data(meas_time) ret[ch] = filename path = os.path.join(self.output_dir, timestamp + 'all_vs_solo') np.save(path, ret) self.pub.register_file(path, 'noise', format='npy') return ret def analyze_noise_all_vs_noise_solo(self, ret, fs=None, nperseg=2**10, make_channel_plot=False): """ Analyzes the data from noise_all_vs_noise_solo Args ---- ret : dict The returned values from noise_all_vs_noise_solo. """ if fs is None: fs = self._fs keys = ret.keys() all_dir = ret.pop('all') t, d, m = self.read_stream_data(all_dir) d *= self._pA_per_phi0/(2*np.pi) # convert to pA wl_diff = np.zeros(len(keys)) for i, k in enumerate(ret.keys()): self.log(f'{k} : {ret[k]}') tc, dc, mc = self.read_stream_data(ret[k]) dc *= self._pA_per_phi0/(2*np.pi) band, channel = np.where(mc != -1) # there should be only one ch_idx = m[band, channel][0] f, Pxx = signal.welch(d[ch_idx], fs=fs, nperseg=nperseg) Pxx = np.sqrt(Pxx) popt, pcov, f_fit, Pxx_fit = self.analyze_psd(f, Pxx) wl, n, f_knee = popt # extract fit parameters f_solo, Pxx_solo = signal.welch(dc[0], fs=fs, nperseg=nperseg) Pxx_solo = np.sqrt(Pxx_solo) popt_solo, pcov_solo, f_fit_solo, Pxx_fit_solo = \ self.analyze_psd(f, Pxx_solo) wl_solo, n_solo, f_knee_solo = popt_solo if make_channel_plot: fig, ax = plt.subplots(2) ax[0].plot(t-t[0], d[ch_idx]-np.median(d[ch_idx])) ax[0].plot(tc-tc[0], dc[0]-np.median(dc[0])) ax[1].semilogy(f, Pxx, alpha=.5, color='b') ax[1].semilogy(f, Pxx_solo, alpha=.5, color='r') ax[1].axhline(wl, color='b') ax[1].axhline(wl_solo, color='r') plt.show() wl_diff[i] = wl - wl_solo return wl_diff def NET_CMB(self, NEI, V_b, R_tes, opt_eff, f_center=150e9, bw=32e9, R_sh=None, high_current_mode=False): """ Converts current spectral noise density to NET in uK rt(s). Assumes NEI is white-noise level. Args ---- NEI : float Current spectral density in pA/rtHz. V_b : float Commanded bias voltage in V. R_tes : float Resistance of TES at bias point in Ohm. opt_eff : float Optical efficiency (in the range 0-1). f_center : float, optional, default 150e9 Center optical frequency of detector in Hz, e.g., 150 GHz for E4c. bw : float, optional, default 32e9 Effective optical bandwidth of detector in Hz, e.g., 32 GHz for E4c. R_sh : float or None, optional, default None Shunt resistance in Ohm; defaults to stored config figure. high_current_mode : bool, optional, default False Whether the bias voltage was set in high-current mode. Returns ------- NET (float) : The noise equivalent temperature in units of uKrts """ NEI *= 1e-12 # bring NEI to SI units, i.e., A/rt(Hz) if high_current_mode: V_b *= self._high_low_current_ratio I_b = V_b/self._bias_line_resistance # bias current running through shunt+TES network if R_sh is None: R_sh = self._R_sh V_tes = I_b*R_sh*R_tes/(R_sh+R_tes) # voltage across TES NEP = V_tes*NEI # power spectral density T_CMB = 2.7 dPdT = opt_eff*tools.dPdT_singleMode(f_center,bw,T_CMB) NET_SI = NEP/(dPdT*np.sqrt(2.)) # NET in SI units, i.e., K rt(s) return NET_SI/1e-6 # NET in uK rt(s) def analyze_noise_vs_tone(self, tone, datafile, channel=None, band=None, nperseg=2**13, detrend='constant', fs=None, save_plot=True, show_plot=False, make_timestream_plot=False, data_timestamp=None, psd_ylim=(10.,1000.), bias_group=None, smooth_len=11, show_legend=True, freq_range_summary=None): """ Analysis script associated with noise_vs_tone. Writes outputs and plots to output_dir and plot_dir respectively. Args ---- tone : str The full path to the tone file. datafile : str The full path to the text file holding all the data files. channel : int array or None, optional, default None The channels to analyze. band : int or None, optional, default None The band where the data is taken. nperseg : int, optional, default 2**13 Passed to scipy.signal.welch. Number of elements per segment of the PSD. detrend : str, optional, default 'constant' Passed to scipy.signal.welch. fs : float or None, optional, default None Passed to scipy.signal.welch. The sample rate. save_plot : bool, optional, default True Whether to save the plot. show_plot : bool, optional, default False Whether to how the plot. data_timestamp : str or None, optional, default None The string used as a save name. bias_group : int or int array or None, optional, default None Which bias groups were used. smooth_len : int, optional, default 11 Length of window over which to smooth PSDs for plotting. show_legend : bool, optional, default True Whether to show the legend. freq_range_summary : tuple or None, optional, default None frequencies between which to take mean noise for summary plot of noise vs. bias; if None, then plot white-noise level from model fit. """ if not show_plot: plt.ioff() n_channel = self.get_number_channels(band) if band is None and channel is None: channel = np.arange(n_channel) elif band is not None and channel is None: channel = self.which_on(band) channel = channel.astype(int) if fs is None: fs = self._fs if isinstance(tone,str): self.log(f'Tone powers being read from {tone}') tone = self.get_biases_from_file(tone,dtype=int) if isinstance(datafile,str): self.log(f'Noise data files being read from {datafile}') datafile = self.get_datafiles_from_file(datafile) mask = self.get_channel_mask() # Analyze data and save for _, (_, d) in enumerate(zip(tone, datafile)): timestamp, phase, mask = self.read_stream_data(d) phase *= self._pA_per_phi0/(2.*np.pi) # phase converted to pA basename, _ = os.path.splitext(os.path.basename(d)) dirname = os.path.dirname(d) psd_dir = os.path.join(dirname, 'psd') self.make_dir(psd_dir) # loop over all channels that are on in this data acq _, chs = np.where(mask!=-1) for ch in chs: ch_idx = mask[band, ch] f, Pxx = signal.welch(phase[ch_idx], nperseg=nperseg, fs=fs, detrend=detrend) Pxx = np.ravel(
np.sqrt(Pxx)
numpy.sqrt
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 17:45:51 2020 Author: <NAME> License: BSD-3 """ import numpy as np from numpy.testing import assert_allclose, assert_equal import pytest from statsmodels.regression.linear_model import OLS import statsmodels.stats.power as smpwr import statsmodels.stats.oneway as smo # needed for function with `test` from statsmodels.stats.oneway import ( confint_effectsize_oneway, confint_noncentrality, effectsize_oneway, anova_oneway, anova_generic, equivalence_oneway, equivalence_oneway_generic, power_equivalence_oneway, power_equivalence_oneway0, f2_to_wellek, fstat_to_wellek, wellek_to_f2) from statsmodels.stats.robust_compare import scale_transform from statsmodels.stats.contrast import ( wald_test_noncent_generic, wald_test_noncent, _offset_constraint) def test_oneway_effectsize(): # examole 3 in Steiger 2004 Beyond the F-test, p. 169 F = 5 df1 = 3 df2 = 76 nobs = 80 ci = confint_noncentrality(F, df1, df2, alpha=0.05, alternative="two-sided") ci_es = confint_effectsize_oneway(F, df1, df2, alpha=0.05) ci_steiger = ci_es.ci_f * np.sqrt(4 / 3) res_ci_steiger = [0.1764, 0.7367] res_ci_nc = np.asarray([1.8666, 32.563]) assert_allclose(ci, res_ci_nc, atol=0.0001) assert_allclose(ci_es.ci_f_corrected, res_ci_steiger, atol=0.00006) assert_allclose(ci_steiger, res_ci_steiger, atol=0.00006) assert_allclose(ci_es.ci_f**2, res_ci_nc / nobs, atol=0.00006) assert_allclose(ci_es.ci_nc, res_ci_nc, atol=0.0001) def test_effectsize_power(): # example and results from PASS documentation n_groups = 3 means = [527.86, 660.43, 649.14] vars_ = 107.4304**2 nobs = 12 es = effectsize_oneway(means, vars_, nobs, use_var="equal", ddof_between=0) es = np.sqrt(es) alpha = 0.05 power = 0.8 nobs_t = nobs * n_groups kwds = {'effect_size': es, 'nobs': nobs_t, 'alpha': alpha, 'power': power, 'k_groups': n_groups} from statsmodels.stats.power import FTestAnovaPower res_pow = 0.8251 res_es = 0.559 kwds_ = kwds.copy() del kwds_['power'] p = FTestAnovaPower().power(**kwds_) assert_allclose(p, res_pow, atol=0.0001) assert_allclose(es, res_es, atol=0.0006) # example unequal sample sizes nobs = np.array([15, 9, 9]) kwds['nobs'] = nobs es = effectsize_oneway(means, vars_, nobs, use_var="equal", ddof_between=0) es = np.sqrt(es) kwds['effect_size'] = es p = FTestAnovaPower().power(**kwds_) res_pow = 0.8297 res_es = 0.590 assert_allclose(p, res_pow, atol=0.005) # lower than print precision assert_allclose(es, res_es, atol=0.0006) def test_effectsize_fstat(): # results from R package `effectsize`, confint is 0.9 confidence # > es = F_to_eta2(45.8, 3, 35) Eta_Sq_partial = 0.796983758700696 CI_eta2 = 0.685670133284926, 0.855981325777856 # reformated from output # > es = F_to_epsilon2(45.8, 3, 35) Epsilon_Sq_partial = 0.779582366589327 CI_eps2 = 0.658727573280777, 0.843636867987386 # > es = F_to_omega2(45.8, 3, 35) Omega_Sq_partial = 0.775086505190311 CI_omega2 = 0.65286429480169, 0.840179680453464 # > es = F_to_f(45.8, 3, 35) Cohens_f_partial = 1.98134153686695 CI_f = 1.47694659580859, 2.43793847155554 f_stat, df1, df2 = 45.8, 3, 35 # nobs = df1 + df2 + 1 # not directly used in the following, only df fes = smo._fstat2effectsize(f_stat, df1, df2) assert_allclose(np.sqrt(fes.f2), Cohens_f_partial, rtol=1e-13) assert_allclose(fes.eta2, Eta_Sq_partial, rtol=1e-13) assert_allclose(fes.eps2, Epsilon_Sq_partial, rtol=1e-13) assert_allclose(fes.omega2, Omega_Sq_partial, rtol=1e-13) ci_nc = confint_noncentrality(f_stat, df1, df2, alpha=0.1) # the following replicates R package effectsize ci_es = smo._fstat2effectsize(ci_nc / df1, df1, df2) assert_allclose(ci_es.eta2, CI_eta2, rtol=2e-4) assert_allclose(ci_es.eps2, CI_eps2, rtol=2e-4) assert_allclose(ci_es.omega2, CI_omega2, rtol=2e-4) assert_allclose(np.sqrt(ci_es.f2), CI_f, rtol=2e-4) def test_effectsize_fstat_stata(): # reference numbers computed with Stata 14 # Stata 16 does not seem to have confint for omega2 # esizei 2 40 7.47403193349075, level(90) eta2 = 0.2720398648288652 lb_eta2 = 0.0742092468714613 ub_eta2 = 0.4156116886974804 omega2 = 0.2356418580703085 lb_omega2 = 0.0279197092150344 ub_omega2 = 0.3863922731323545 # level = 90 f_stat, df1, df2 = 7.47403193349075, 2, 40 fes = smo._fstat2effectsize(f_stat, df1, df2) assert_allclose(fes.eta2, eta2, rtol=1e-13) assert_allclose(fes.omega2, omega2, rtol=0.02) # low agreement ci_es = smo.confint_effectsize_oneway(f_stat, df1, df2, alpha=0.1) assert_allclose(ci_es.eta2, (lb_eta2, ub_eta2), rtol=1e-4) assert_allclose(ci_es.ci_omega2, (lb_omega2, ub_omega2), rtol=0.025) @pytest.mark.parametrize("center", ['median', 'mean', 'trimmed']) def test_scale_transform(center): x = np.random.randn(5, 3) xt = scale_transform(x, center=center, transform='abs', trim_frac=0.2, axis=0) xtt = scale_transform(x.T, center=center, transform='abs', trim_frac=0.2, axis=1) assert_allclose(xt.T, xtt, rtol=1e-13) xt0 = scale_transform(x[:, 0], center=center, transform='abs', trim_frac=0.2) assert_allclose(xt0, xt[:, 0], rtol=1e-13) assert_allclose(xt0, xtt[0, :], rtol=1e-13) class TestOnewayEquivalenc(object): @classmethod def setup_class(cls): y0 = [112.488, 103.738, 86.344, 101.708, 95.108, 105.931, 95.815, 91.864, 102.479, 102.644] y1 = [100.421, 101.966, 99.636, 105.983, 88.377, 102.618, 105.486, 98.662, 94.137, 98.626, 89.367, 106.204] y2 = [84.846, 100.488, 119.763, 103.736, 93.141, 108.254, 99.510, 89.005, 108.200, 82.209, 100.104, 103.706, 107.067] y3 = [100.825, 100.255, 103.363, 93.230, 95.325, 100.288, 94.750, 107.129, 98.246, 96.365, 99.740, 106.049, 92.691, 93.111, 98.243] n_groups = 4 arrs_w = [np.asarray(yi) for yi in [y0, y1, y2, y3]] nobs = np.asarray([len(yi) for yi in arrs_w]) nobs_mean = np.mean(nobs) means = np.asarray([yi.mean() for yi in arrs_w]) stds = np.asarray([yi.std(ddof=1) for yi in arrs_w]) cls.data = arrs_w # TODO use `data` cls.means = means cls.nobs = nobs cls.stds = stds cls.n_groups = n_groups cls.nobs_mean = nobs_mean def test_equivalence_equal(self): # reference numbers from Jan and Shieh 2019, p. 5 means = self.means nobs = self.nobs stds = self.stds n_groups = self.n_groups eps = 0.5 res0 = anova_generic(means, stds**2, nobs, use_var="equal") f = res0.statistic res = equivalence_oneway_generic(f, n_groups, nobs.sum(), eps, res0.df, alpha=0.05, margin_type="wellek") assert_allclose(res.pvalue, 0.0083, atol=0.001) assert_equal(res.df, [3, 46]) # the agreement for f-stat looks too low assert_allclose(f, 0.0926, atol=0.0006) res = equivalence_oneway(self.data, eps, use_var="equal", margin_type="wellek") assert_allclose(res.pvalue, 0.0083, atol=0.001) assert_equal(res.df, [3, 46]) def test_equivalence_welch(self): # reference numbers from Jan and Shieh 2019, p. 6 means = self.means nobs = self.nobs stds = self.stds n_groups = self.n_groups vars_ = stds**2 eps = 0.5 res0 = anova_generic(means, vars_, nobs, use_var="unequal", welch_correction=False) f_stat = res0.statistic res = equivalence_oneway_generic(f_stat, n_groups, nobs.sum(), eps, res0.df, alpha=0.05, margin_type="wellek") assert_allclose(res.pvalue, 0.0110, atol=0.001) assert_allclose(res.df, [3.0, 22.6536], atol=0.0006) # agreement for Welch f-stat looks too low b/c welch_correction=False assert_allclose(f_stat, 0.1102, atol=0.007) res = equivalence_oneway(self.data, eps, use_var="unequal", margin_type="wellek") assert_allclose(res.pvalue, 0.0110, atol=1e-4) assert_allclose(res.df, [3.0, 22.6536], atol=0.0006) assert_allclose(res.f_stat, 0.1102, atol=1e-4) # 0.007) # check post-hoc power, JS p. 6 pow_ = power_equivalence_oneway0(f_stat, n_groups, nobs, eps, res0.df) assert_allclose(pow_, 0.1552, atol=0.007) pow_ = power_equivalence_oneway(eps, eps, nobs.sum(), n_groups=n_groups, df=None, alpha=0.05, margin_type="wellek") assert_allclose(pow_, 0.05, atol=1e-13) nobs_t = nobs.sum() es = effectsize_oneway(means, vars_, nobs, use_var="unequal") es = np.sqrt(es) es_w0 = f2_to_wellek(es**2, n_groups) es_w = np.sqrt(fstat_to_wellek(f_stat, n_groups, nobs_t / n_groups)) pow_ = power_equivalence_oneway(es_w, eps, nobs_t, n_groups=n_groups, df=None, alpha=0.05, margin_type="wellek") assert_allclose(pow_, 0.1552, atol=0.007) assert_allclose(es_w0, es_w, atol=0.007) margin = wellek_to_f2(eps, n_groups) pow_ = power_equivalence_oneway(es**2, margin, nobs_t, n_groups=n_groups, df=None, alpha=0.05, margin_type="f2") assert_allclose(pow_, 0.1552, atol=0.007) class TestOnewayScale(object): @classmethod def setup_class(cls): yt0 = np.array([102., 320., 0., 107., 198., 200., 4., 20., 110., 128., 7., 119., 309.]) yt1 = np.array([0., 1., 228., 81., 87., 119., 79., 181., 43., 12., 90., 105., 108., 119., 0., 9.]) yt2 = np.array([33., 294., 134., 216., 83., 105., 69., 20., 20., 63., 98., 155., 78., 75.]) y0 = np.array([452., 874., 554., 447., 356., 754., 558., 574., 664., 682., 547., 435., 245.]) y1 = np.array([546., 547., 774., 465., 459., 665., 467., 365., 589., 534., 456., 651., 654., 665., 546., 537.]) y2 = np.array([785., 458., 886., 536., 669., 857., 821., 772., 732., 689., 654., 597., 830., 827.]) n_groups = 3 data = [y0, y1, y2] nobs = np.asarray([len(yi) for yi in data]) nobs_mean = np.mean(nobs) means = np.asarray([yi.mean() for yi in data]) stds = np.asarray([yi.std(ddof=1) for yi in data]) cls.data = data cls.data_transformed = [yt0, yt1, yt2] cls.means = means cls.nobs = nobs cls.stds = stds cls.n_groups = n_groups cls.nobs_mean = nobs_mean def test_means(self): # library onewaystats, BF test for equality of means # st = bf.test(y ~ g, df3) statistic = 7.10900606421182 parameter = [2, 31.4207256105052] p_value = 0.00283841965791224 # method = 'Brown-Forsythe Test' res = anova_oneway(self.data, use_var="bf") # R bf.test uses original BF df_num assert_allclose(res.pvalue2, p_value, rtol=1e-13) assert_allclose(res.statistic, statistic, rtol=1e-13) assert_allclose([res.df_num2, res.df_denom], parameter) def test_levene(self): data = self.data # lawstat: Test Statistic = 1.0866123063642, p-value = 0.3471072204516 statistic = 1.0866123063642 p_value = 0.3471072204516 res0 = smo.test_scale_oneway(data, method='equal', center='median', transform='abs', trim_frac_mean=0.2) assert_allclose(res0.pvalue, p_value, rtol=1e-13) assert_allclose(res0.statistic, statistic, rtol=1e-13) # library car # > lt = leveneTest(y ~ g, df3, center=mean, trim=0.2) statistic = 1.10732113109744 p_value = 0.340359251994645 df = [2, 40] res0 = smo.test_scale_oneway(data, method='equal', center='trimmed', transform='abs', trim_frac_mean=0.2) assert_allclose(res0.pvalue, p_value, rtol=1e-13) assert_allclose(res0.statistic, statistic, rtol=1e-13) assert_equal(res0.df, df) # library(onewaytests) # test uses mean as center # > st = homog.test(y ~ g, df3) statistic = 1.07894485177512 parameter = [2, 40] # df p_value = 0.349641166869223 # method = "Levene's Homogeneity Test" res0 = smo.test_scale_oneway(data, method='equal', center='mean', transform='abs', trim_frac_mean=0.2) assert_allclose(res0.pvalue, p_value, rtol=1e-13) assert_allclose(res0.statistic, statistic, rtol=1e-13) assert_equal(res0.df, parameter) # > st = homog.test(y ~ g, df3, method = "Bartlett") statistic = 3.01982414477323 # parameter = 2 # scipy bartlett does not return df p_value = 0.220929402900495 # method = "Bartlett's Homogeneity Test" # Bartlett is in scipy.stats from scipy import stats stat, pv = stats.bartlett(*data) assert_allclose(pv, p_value, rtol=1e-13) assert_allclose(stat, statistic, rtol=1e-13) def test_options(self): # regression tests for options, # many might not be implemented in other packages data = self.data # regression numbers from initial run statistic, p_value = 1.0173464626246675, 0.3763806150460239 df = (2.0, 24.40374758005409) res = smo.test_scale_oneway(data, method='unequal', center='median', transform='abs', trim_frac_mean=0.2)
assert_allclose(res.pvalue, p_value, rtol=1e-13)
numpy.testing.assert_allclose
""" Tools for performing astrometry analysis on asteroids in TESS data""" import warnings from lightkurve.targetpixelfile import TessTargetPixelFile import lightkurve as lk import matplotlib.pyplot as plt import numpy as np import astropy.units as u from scipy.interpolate import PchipInterpolator from astropy.io import fits from tqdm import tqdm import csv from scipy.optimize import minimize_scalar from tess_ephem import ephem from scipy.stats import median_abs_deviation import os import glob import pandas as pd from matplotlib import patches, animation #import multiprocessing as mp from tess_astrometry.MovingTargetPixelFile import MovingTargetPixelFile #************************************************************************************************************* class MovingCentroids: """ Object to store computed centroid information Atributes --------- mtpf : astrometry.MovingTargetPixelFile The moving target pixel file to compute centroids for time : astropy.time.core.Time Timestamps in BTJD aper : ndarray(nCadences, cols, rows) The selected aperture per cadence col : [np.array] Column centroids in pixels row : [np.array] Row centroids in pixels ra : [np.array] Right Ascension centroids in degrees dec : [np.array] Declination centroids in degrees expected_ra : np.array The JPL Horizons expected RA expected_dec : np.array The JPL Horizons expected decl. raDec2Pix_ra : np.array The SPOC raDec2Pix computed RA raDec2Pix_dec : np.array The SPOC raDec2Pix computed decl. expected_row : np.array The JPL Horizons expected row expected_col : np.array The JPL Horizons expected column colRowDataAvailable : bool If column and row centroid data in pixels is in object raDecDataAvailable : bool If RA and Decl. centroid data in degrees is in object self.avg_col_motion : float column proper motion in pixels per day self.avg_row_motion : float row proper motion in pixels per day self.avg_motion : float total proper motion in pixels per day """ centroid_type_options = ('colRowData', 'raDecData') #************************************************************************************************************* def __init__(self, mtpf): """ Generate the MovingCentroids object. Compute the centrouds using one of the centroiding methods. """ assert isinstance(mtpf, MovingTargetPixelFile), 'Must pass a MovingTargetPixelFile object' self.mtpf = mtpf self.colRowDataAvailable = False self.raDecDataAvailable = False self.aper = None self.col = None self.row = None self.ra = None self.dec = None # These need to be downloaded with tess-ephem self.expected_ra = None self.expected_dec = None # These are computed by the SPOC raDec2Pix: self.raDec2Pix_ra = None self.raDec2Pix_dec = None @property def time(self): """ The time given by the mtpf""" return self.mtpf.time @property def instrument_time(self): """ The instrument time given by the mtpf""" return self.mtpf.instrument_time @property def targetid(self): return self.mtpf.targetid #************************************************************************************************************* def download_expected_motion(self, aberrate : bool = False, use_mtpf_stored : bool = False): """ Downloads the expected motion in R.A. and decl. using tess-ephem, which uses JPL Horizons NOTE: By default tess-ephem will perform the approximate DVA correction when returning the column and row coordinates. The <aberrate> argument will enable or disable this DVA correction. The RA and Decl. returned by ephem are the true coords, irrespective of the <aberrate> value. Parameters ---------- aberrate : bool If true then apply the approximate DVA correction for the returned row and column use_mtpf_stored : bool The ecpected astrometry is stored in the mtpf, just return that instead. Note that this only includes the row and column data """ if use_mtpf_stored: self.expected_row = self.mtpf.hdu[1].data['TARGET_ROW'][self.mtpf.quality_mask] self.expected_col = self.mtpf.hdu[1].data['TARGET_COLUMN'][self.mtpf.quality_mask] # These are not available in the mtpf self.expected_ra = np.full(len(self.time), np.nan) self.expected_dec = np.full(len(self.time), np.nan) else: # Download the JPL Horizons data at the data cadence times # print('Downloading Expected R.A. and decl. from JPL Horizons...') df = ephem(self.mtpf.targetid, time=self.time, interpolation_step='2m', verbose=True, aberrate=aberrate) # Pad invalid times with NaN dfTimeArray = [t.value for t in df.index] presentTimes = np.nonzero(np.in1d(self.time.value, dfTimeArray))[0] self.expected_ra = np.full(len(self.time), np.nan) self.expected_ra[presentTimes] = df.ra.values self.expected_dec = np.full(len(self.time), np.nan) self.expected_dec[presentTimes] = df.dec.values self.expected_row = np.full(len(self.time), np.nan) self.expected_row[presentTimes] = df.row.values self.expected_col = np.full(len(self.time), np.nan) self.expected_col[presentTimes] = df.column.values #************************************************************************************************************* def compute_centroids_simple_aperture(self, method='moments', CCD_ref=True, aper_mask_threshold=3.0): """ Computes the centroid of a moving target pixel file using a simple static aperture Parameters ---------- method : str The centroiding method to use: 'moments' 'quadratic' CCD_ref : bool If True then add in the mtpf CORNER_COLUMN and CORNER_ROW to get the CCD reference pixel coordinates aper_mask_threshold : float A value for the number of sigma by which a pixel needs to be brighter than the median flux to be included in the aperture mask. Returns ------- centroidsMatrix : float np.array(nCadences,2) Centroid data relative to mask for use with self.mtpf.animate method And also modifies these class attributes: self.row : array of row centroids self.col : array of column centroids self.colRowDataAvailable = True """ # Calculate the median image with warnings.catch_warnings(): warnings.simplefilter("ignore") median_image = np.array(np.nanmedian(self.mtpf.flux, axis=0)) vals = median_image[np.isfinite(median_image)].flatten() # Calculate the theshold value in flux units mad_cut = (1.4826 * median_abs_deviation(vals) * aper_mask_threshold) + np.nanmedian(median_image) # Create a mask containing the pixels above the threshold flux aper = np.nan_to_num(median_image) >= mad_cut cols, rows = self.mtpf.estimate_centroids(method=method, aperture_mask=aper) centroidsMatrix = np.transpose([cols, rows]) if CCD_ref: cols += self.mtpf.corner_column * u.pixel rows += self.mtpf.corner_row * u.pixel self.col = cols self.row = rows self.colRowDataAvailable = True return centroidsMatrix #************************************************************************************************************* def compute_centroids_dynamic_aperture(self, method='moments', CCD_ref=True, aper_mask_threshold=3.0, n_cores=None): """ Compute the centroid of a moving target pixel file using a dynamic aperture. This method will optimize the aperture on each cadence to minimize the sawtooth pattern due to a moving object. Computing the centroid on each cadence is an independent process so this function is ripe for asyncronous multiprocessing. TODO: figure out how to get this parallel processed given we are using a mtpf class. Parameters ---------- method : str The centroiding method to use: 'moments' 'quadratic' CCD_ref : bool If True then add in the mtpf CORNER_COLUMN and CORNER_ROW to get the CCD reference pixel coordinates aper_mask_threshold : float A value for the number of sigma by which a pixel needs to be brighter than the median flux to be included in the aperture mask. n_cores : int Number of multiprocessing cores to use. None means use all. Returns ------- centroidsMatrix : float np.array(nCadences,2) Centroid data relative to mask for use with self.mtpf.animate method And also modifies these class attributes: self.row : array of row centroids self.col : array of column centroids self.colRowDataAvailable = True """ cols = [] rows = [] self.aper = np.full(self.mtpf.shape, np.nan) # #*** # # Multiprocessing # pool = mp.Pool(processes=n_cores) # # Execute the children in parallel # results = [pool.apply_async(_single_cadence_dynamic_aperture, args=(self.mtpf, aper_mask_threshold, method, idx, cadenceno)) for # idx,cadenceno in enumerate(self.mtpf.cadenceno)] # # Collect the results # outputs = [result.get() for result in results] # for output in outputs: # [aper, col, row] = output # self.aper[idx,:,:] = aper # cols.append(col) # rows.append(row) # #*** # Compute the aperture for each cadence seperately # TODO: This is ripe for parallelization. Figure out how to do that within a class object for idx,cadenceno in enumerate(self.mtpf.cadenceno): self.aper[idx,:,:] = self.mtpf.create_threshold_mask_one_cadence(cadenceno, threshold=aper_mask_threshold) col, row = self.mtpf.estimate_centroids_one_cadence(cadenceno, method=method, aperture_mask=self.aper[idx,:,:]) cols.append(col) rows.append(row) cols = np.array(cols).flatten() * u.pixel rows = np.array(rows).flatten() * u.pixel centroidsMatrix = np.transpose([cols, rows]) if CCD_ref: cols += self.mtpf.corner_column * u.pixel rows += self.mtpf.corner_row * u.pixel self.col = cols self.row = rows self.colRowDataAvailable = True return centroidsMatrix #************************************************************************************************************* def write_to_csv(self, data='col_row', filename=None): """ Writes out the centroids to a CSV file This data is intended for use with the SPOC pipeline tools so the time is converted to instrument time (TJD). Parameters ---------- data : str What centroid data to write {'col_row', 'ra_dec'} filename : str Name of file to write to """ assert filename is not None, 'filename must be passed' if data == 'col_row': assert self.colRowDataAvailable, 'First compute the centroids' rows = [[self.mtpf.camera[idx], self.mtpf.ccd[idx], self.instrument_time.value[idx], self.col[idx].value, self.row[idx].value] for idx in np.arange(len(self.row))] elif data == 'ra_dec': raise Exception('This option is not currently working') assert self.raDecDataAvailable, 'First compute the centroids' rows = [[self.instrument_time.value[idx], self.ra[idx].value, self.dec[idx].value] for idx in np.arange(len(self.ra))] with open(filename, 'w') as fp: # Write the header fieldnames = ['# target = '+str(self.mtpf.targetid), ' Sector = '+str(self.mtpf.sector)] wr = csv.DictWriter(fp, fieldnames=fieldnames) wr.writeheader() fieldnames = ['# camera', ' CCD', ' instrument time [TJD]', ' column [pixels]', ' row [pixels]'] wr = csv.DictWriter(fp, fieldnames=fieldnames) wr.writeheader() # Write the data wr = csv.writer(fp) wr.writerows(rows) #************************************************************************************************************* def read_from_csv(self, data='raDec2Pix_ra_dec', filename=None): """ Read data from CSV file. Parameters ---------- data : str What centroid data to read and store Options: 'raDec2Pix_ra_dec': The ra and dec computed by the SPOC raDec2Pix class filename : str Name of file to read from Returns ------- if data='raDec2Pix_ra_dec': self.raDec2Pix_ra self.raDec2Pix_dec """ assert data=='raDec2Pix_ra_dec', 'data=raDec2Pix_ra_dec is the only current option' assert filename is not None, 'filename must be passed' self.raDec2Pix_ra = np.full(len(self.time), np.nan) self.raDec2Pix_dec = np.full(len(self.time), np.nan) with open(filename, newline='') as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: # Find time entry by finding the nearest timestamp to the data # TODO: do something more robust if data=='raDec2Pix_ra_dec': nearestIdx = np.argmin(np.abs(self.instrument_time.value - float(row[0]))) self.raDec2Pix_ra[nearestIdx] = float(row[1]) self.raDec2Pix_dec[nearestIdx] = float(row[2]) else: raise Exception ('The only data option is "raDec2Pix_ra_dec"'); self.raDecDataAvailable = True #************************************************************************************************************* def detrend_centroids_via_poly (self, polyorderRange=[1,8], sigmaThreshold=5.0, remove_expected=False, include_DVA=False, fig=None, plot=False): """ Detrends any trends in the centroid motion via piecewise polynomial fitting. This function will optionally first remove the JPL Horizons expected centroids if requested. Then it will identify discontinuities (i.e. orbit boundaries) or any other spurious regions. It will then chunk the data around discontinuities and gap the spurious regions. It will then fit the curves to a dynamic order polynomial, where the optimal polyorder is chosen based on RMSE. This function will work on either row/col centroids or ra/dec centroids depending on what data is available. Parameters ---------- polyorderRange : ndarray list(2) The upper and lower polyorders to try sigmaThreshold : float The sigma threshold for finding segments remove_expected : bool If True then first subtract off the JPL Horizons expected astrometry include_DVA : bool If True then use includes the DVA term when computing the JPL Horizons expected trend fig : figure handle If passed (and plot==True) then plot on this figure plot : bool If True then generate plot Returns ------- column, row : `~astropy.units.Quantity`, `~astropy.units.Quantity` Floats containing the column and row detrended centroids """ #*** # First remove the JPL Horizons expected centroids, if requested if remove_expected: self.download_expected_motion(aberrate=include_DVA) rowExpRemoved = _remove_expected_trend_elemental(self.row, self.expected_row) colExpRemoved = _remove_expected_trend_elemental(self.col, self.expected_col) self.col -= colExpRemoved self.row -= rowExpRemoved #*** # Piecewise polynomial fit if self.colRowDataAvailable: detrended_col_centroids, col_polyFitCurve, col_break_point = _detrend_centroids_elemental(self.col, self.mtpf.time, self.mtpf.cadenceno, polyorderRange, sigmaThreshold=sigmaThreshold) detrended_row_centroids, row_polyFitCurve, row_break_point = _detrend_centroids_elemental(self.row, self.mtpf.time, self.mtpf.cadenceno, polyorderRange, sigmaThreshold=sigmaThreshold) elif self.raDecDataAvailable: raise Exception('This option has not been maintained') detrended_ra_centroids, ra_polyFitCurve, ra_break_point = _detrend_centroids_elemental(centroids.ra, mtpf.time, mtpf.cadenceno, polyorderRange, sigmaThreshold=sigmaThreshold) detrended_dec_centroids, dec_polyFitCurve, dec_break_point = _detrend_centroids_elemental(centroids.dec, mtpf.time, mtpf.cadenceno, polyorderRange, sigmaThreshold=sigmaThreshold) # Plot the detrended centroids # We can plot either row/col or ra/dec if plot: if fig is None: fig,ax = plt.subplots(1,1, figsize=(12, 10)) else: fig.clf() #*** # Raw centroids ax = plt.subplot(3,1,1) if self.colRowDataAvailable: ax.plot(self.mtpf.time.value, self.col, '*b', label='Column Centroids') ax.plot(self.mtpf.time.value[col_break_point], self.col[col_break_point], '*r', markersize=10, label='Column Breakpoints') ax.plot(self.mtpf.time.value, col_polyFitCurve, '-m', label='Column PolyFit') ax.plot(self.mtpf.time.value, self.row, '*c', label='Row Centroids') ax.plot(self.mtpf.time.value[row_break_point], self.row[row_break_point], '*r', markersize=10, label='Row Breakpoints') ax.plot(self.mtpf.time.value, row_polyFitCurve, '-m', label='Row PolyFit') minVal = np.nanmin([self.col, self.row]) maxVal = np.nanmax([self.col, self.row]) elif centroids.raDecDataAvailable: ax.plot(mtpf.time.value, centroids.ra, '*b', label='R.A. Centroids') ax.plot(mtpf.time.value[ra_break_point], centroids.ra[ra_break_point], '*r', markersize=10, label='R.A. Breakpoints') ax.plot(mtpf.time.value, ra_polyFitCurve, '-m', label='R.A. PolyFit') ax.plot(mtpf.time.value, centroids.dec, '*c', label='Decl. Centroids') ax.plot(mtpf.time.value[dec_break_point], centroids.dec[dec_break_point], '*r', markersize=10, label='Decl. Breakpoints') ax.plot(mtpf.time.value, dec_polyFitCurve, '-m', label='Decl. PolyFit') minVal = np.nanmin([centroids.ra, centroids.dec]) maxVal = np.nanmax([centroids.ra, centroids.dec]) # Plot the momentum dump locations # momentum dump bit = 32 dumpHere = np.nonzero(self.mtpf.hdu[1].data['QUALITY'] & 32 > 0)[0] #for idx in dumpHere: # ax.plot([mtpf.hdu[1].data['TIME'][dumpHere], mtpf.hdu[1].data['TIME'][dumpHere]], [minVal, maxVal], '-k') ax.vlines(self.mtpf.hdu[1].data['TIME'][dumpHere], ymin=minVal, ymax=maxVal, colors='k', label='Momentum Dumps') ax.legend() ax.set_title('Removing long term trends in centroids') ax.grid() #*** # Residual from polynomial ax = plt.subplot(3,1,2) if self.colRowDataAvailable: col = detrended_col_centroids row = detrended_row_centroids madstd = lambda x: 1.4826*median_abs_deviation(x, nan_policy='omit') ax.plot(self.mtpf.time.value, col, '*-b', label='Column Residual; madstd={:.3f}'.format(madstd(col))) ax.plot(self.mtpf.time.value, row, '*-c', label='Row Residual; madstd={:.3f}'.format(madstd(row))) ax.set_ylabel('Pixels') minVal = np.nanmin([col, row]) maxVal = np.nanmax([col, row]) elif centroids.raDecData: # plot ra and dec in arcseconds ra = detrended_centroids.ra * 60**2 dec = detrended_centroids.dec * 60**2 ax.plot(mtpf.time.value, ra, '*-b', label='R.A. Residual; std={:.3f}'.format(np.nanstd(ra))) ax.plot(mtpf.time.value, dec, '*-c', label='Decl. Residual; std={:.3f}'.format(np.nanstd(dec))) ax.set_ylabel('Arcseconds') minVal = np.nanmin([ra, dec]) maxVal = np.nanmax([ra, dec]) #for idx in dumpHere: # ax.plot([mtpf.hdu[1].data['TIME'][dumpHere], mtpf.hdu[1].data['TIME'][dumpHere]], [minVal, maxVal], '-k') ax.vlines(self.mtpf.hdu[1].data['TIME'][dumpHere], ymin=minVal, ymax=maxVal, colors='k', label='Momentum Dumps') # Plot where the pixel grid snaps a pixel ax.legend() ax.set_title('Centroid Residuals') ax.grid() #*** # Examine the Periodogram # Convert centroids to LightCurve objects ax = plt.subplot(3,1,3) if self.colRowDataAvailable: col_lc = lk.LightCurve(time=self.mtpf.time, flux=detrended_col_centroids) row_lc = lk.LightCurve(time=self.mtpf.time, flux=detrended_row_centroids) col_pg = col_lc.to_periodogram() row_pg = row_lc.to_periodogram() col_pg.plot(ax=ax, view='period', scale='log', label='Column', c='b') row_pg.plot(ax=ax, view='period', scale='log', label='Row', c='c') elif centroids.raDecData: ra_lc = lk.LightCurve(time=mtpf.time, flux=detrended_centroids.ra) dec_lc = lk.LightCurve(time=mtpf.time, flux=detrended_centroids.dec) ra_pg = ra_lc.to_periodogram() dec_pg = dec_lc.to_periodogram() ra_pg.plot(ax=ax, view='period', scale='log', label='R.A.', c='b') dec_pg.plot(ax=ax, view='period', scale='log', label='Decl.', c='c') ax.grid() ax.set_title('Periodram of Residual Motion') return detrended_col_centroids, detrended_row_centroids #************************************************************************************************************* def detrend_centroids_expected_trend(self, include_DVA=False, extra_title="", plot=False): """ Detrends the centroids using the given the JPL Horizons expected trends Parameters ---------- include_DVA : bool If True then use includes the DVA term when computing the JPL Horizons expected trend extra_title : str Extra title to prepend to figure title plot : bool If True then generate plot """ # The JPL Horizons expected astrometry self.download_expected_motion(aberrate=include_DVA) rowExpRemoved = _remove_expected_trend_elemental(self.row, self.expected_row) colExpRemoved = _remove_expected_trend_elemental(self.col, self.expected_col) if plot: # Now print the results fig,ax = plt.subplots(1,1, figsize=(12, 10)) # Initial and expected centroids ax = plt.subplot(2,1,1) ax.plot(self.mtpf.time.value, self.col, '*b', label='Column Centroids') ax.plot(self.mtpf.time.value, self.expected_col, '-m', label='Column Expected') ax.plot(self.mtpf.time.value, self.row, '*c', label='Row Centroids') ax.plot(self.mtpf.time.value, self.expected_row, '-m', label='Row Expected') plt.legend() plt.title(extra_title + ' Measured Astrometry vs. JPL Horizons Expected') plt.grid() # Final Residual ax = plt.subplot(2,1,2) madstd = lambda x: 1.4826*median_abs_deviation(x, nan_policy='omit') ax.plot(self.mtpf.time.value, colExpRemoved, '*b', label='Column Residual; madstd={:.3f}'.format(madstd(colExpRemoved))) ax.plot(self.mtpf.time.value, rowExpRemoved, '*c', label='Row Residual; madstd={:.3f}'.format(madstd(rowExpRemoved))) # Set plot limits to ignore excursions allYData = np.concatenate((colExpRemoved, rowExpRemoved)) # yUpper = np.nanpercentile(allYData, 99.5) # yLower = np.nanpercentile(allYData, 0.5) yUpper = np.nanpercentile(allYData, 99.0) yLower = np.nanpercentile(allYData, 1.0) ax.set_ylim(yLower, yUpper) # ax.set_ylim(-1.0, 1.0) plt.legend() plt.title('Final Residual') plt.grid() # # Periodigram # ax = plt.subplot(3,1,3) # col_lc = lk.LightCurve(time=self.mtpf.time, flux=colExpRemoved) # row_lc = lk.LightCurve(time=self.mtpf.time, flux=rowExpRemoved) # col_pg = col_lc.to_periodogram() # row_pg = row_lc.to_periodogram() # col_pg.plot(ax=ax, view='period', scale='log', label='Column', c='b') # row_pg.plot(ax=ax, view='period', scale='log', label='Row', c='c') # ax.grid() # ax.set_title('Periodram of Residual Motion') return colExpRemoved, rowExpRemoved #************************************************************************************************************* def compare_JPL_to_computed_centroids(self, raDec2PixDataPath=None, plot_figure=False, include_DVA=True): """ Compares the JPL Horizons expected astrometry to that computed by the centroiding and SPOC's raDec2Pix Parameters ---------- raDec2PixDataPath : str If a file then load in the raDec2Pix data from this filename If a directory then automataically attempts to find thwe correct file based on the Target ID If None then checks to see if the data is already loaded, if not then raises an exception plot_figure : bool If True then display figure include_DVA : bool If True then use includes the DVA term when computing the expected trend Returns ------- summary_stats : pandas.DataFrame DataFrame containing the difference stats: 'ccd' : int # The median CCD for this target 'medianCol' : float # The measured median Column 'medianRow' : float # The measured median Row 'medianExpectedRA' : float 'medianExpectedDec' : float 'medianRaDec2PixRA' : float 'medianRaDec2PixDec': float 'stdRaDiff' : float 'stdDecDiff' : float 'medianRaDiff' : float 'medianDecDiff' : float diff_arrays : dict Dictionary containing the astrometry difference time series 'raDiff' : float array 'decDiff' : float array """ assert self.colRowDataAvailable, 'Must first compute the centroids' # Load in raDec2Pix computed data is passed if os.path.isdir(raDec2PixDataPath): # Attempt to automatically find the correct file targetid = str(self.mtpf.targetid) filenames = glob.glob(os.path.join(raDec2PixDataPath, "*.csv")) foundIdx = [idx for idx,file in enumerate(filenames) if '_'+targetid+'_' in file] if len(foundIdx) > 1: raise Exception('Found more than one filename match') else: foundIdx = foundIdx[0] self.read_from_csv(data='raDec2Pix_ra_dec', filename=filenames[foundIdx]) if os.path.isfile(raDec2PixDataPath): #print('Loading in raDec2Pix computed data...') self.read_from_csv(data='raDec2Pix_ra_dec', filename=raDec2PixDataPath) elif self.raDec2Pix_ra is None or self.raDec2Pix_dec is None: raise Exception('raDec2Pix data is not present, must be loaded.') # Load the JPL Horizons expected data if not already loaded if self.expected_ra is None or self.expected_dec is None: self.download_expected_motion(aberrate=include_DVA) madstd = lambda x: 1.4826*median_abs_deviation(x, nan_policy='omit') # Compute in arcseconds medianCol = np.nanmedian(self.col) medianRow = np.nanmedian(self.row) medianExpectedRA = np.nanmedian(self.expected_ra) medianExpectedDec = np.nanmedian(self.expected_dec) medianRaDec2PixRA = np.nanmedian(self.raDec2Pix_ra) medianRaDec2PixDec = np.nanmedian(self.raDec2Pix_dec) raDiff = (self.raDec2Pix_ra - self.expected_ra) * 60 * 60 decDiff = (self.raDec2Pix_dec - self.expected_dec) * 60 * 60 stdRaDiff = madstd(raDiff) stdDecDiff = madstd(decDiff) medianRaDiff = np.nanmedian(raDiff) medianDecDiff = np.nanmedian(decDiff) if plot_figure: fig,ax = plt.subplots(1,1, figsize=(12, 10)) ax = plt.subplot(3,1,1) plt.plot(self.expected_dec, self.expected_ra, '*r', label='JPL Horizons') plt.plot(self.raDec2Pix_dec, self.raDec2Pix_ra, '-b', label='Centroiding With SPOC raDec2Pix') plt.legend() plt.grid() plt.title('Target {}; Comparing JPL Horizons predicted astrometry versus measured Centroids and raDec2Pix'.format(self.mtpf.targetid)) plt.xlabel('Decl. [Deg.]') plt.ylabel('R.A. [Deg.]') # Scale the difference figures so we ignore the excursions and just see the detail yLow = np.nanpercentile(decDiff, 3) yHigh = np.nanpercentile(decDiff, 97) ax = plt.subplot(3,1,2) plt.plot(self.time.value, decDiff, '*m', label='Decl. difference; madstd={:.3f}; median={:.3f}'.format(stdDecDiff, medianDecDiff)) plt.legend() plt.grid() plt.xlabel('TJD') plt.ylabel('Error [Arcsec]') plt.ylim(yLow, yHigh) yLow =
np.nanpercentile(raDiff, 3)
numpy.nanpercentile
import numpy as np from typing import Union, List # TENSOR SCRIPT ======================================== class Tensor(): def __init__(self, x=None, grad=None, seed=None): ''' Construct a Tensor object to perform forward mode automatic differentation. Parameters ---------- x : np.ndarray, list, int, float or np.float_, optional, default is None values of the variable at which to compute the derivative grad : np.ndarray, list, int, float or np.float_, optional, default is None gradient with respect to the variable seed : np.ndarray, list, int, float or np.float_, optional, default is None seed vector is used to perform directional derivative Returns ------- A Tensor object with the corresponding value, gradient, and seed Examples -------- >>> x = Tensor([[1.], [2.], [3.]]) >>> z = x + 4 >>> print(x) spladtool.Tensor([[1.], [2.], [3.]]) >>> print(z) spladtool.Tensor([[5.], [6.], [7.]]) >>> print(z.grad) [[1.], [1.], [1.]] ''' super().__init__() if x is None: self.data = None else: assert type(x) in [np.ndarray, list, int, float, np.float_] if type(x) != np.ndarray: x = np.array(x) self.data = x self._shape = x.shape if grad is None: grad = np.ones_like(self.data) self.grad = grad if seed is not None: self.grad =
np.dot(grad, seed)
numpy.dot
import numpy as np class HandcraftedGeneration: def __init__(self, config): self._timesteps = config['timesteps'] self._dataset_generation_size = config['dataset_generation_size'] self._generated_datesets_dir = config['generated_datesets_dir'] @staticmethod def _get_mode(dataset): (values, counts) = np.unique(dataset, return_counts=True) ind =
np.argmax(counts)
numpy.argmax
# -*- coding: utf-8 -*- """ Created on Mon Mar 23 21:56:24 2020 @author: Mitchell """ """network.py ~~~~~~~~~~~~~~ This file contains a set of classes and modules that can be used for building and training fully connected feedforward neural networks. Each network is trained using the stochastic gradient descent learning algorithm with backpropogation. Additionally, each network can be saved and loaded using a json format for later use. No advanced machine learning modules are leveraged for thiscode, and the only non-standard library required in numpy. """ #### Libraries # Standard library import json import random import sys # Third-party libraries import numpy as np #### Define Cost class and each of our individual cost functions. Namely the #### quadratic and cross-entropy cost functions. class Cost(object): pass class QuadraticCost(Cost): @staticmethod def fn(a, y): """Return the cost associated with an output ``a`` and desired output ``y``. """ return 0.5*np.linalg.norm(a-y)**2 @staticmethod def der(a, y): """Return the gradient of the cost function wrt the activations.""" return a-y class CrossEntropyCost(Cost): @staticmethod def fn(a, y): """Return the cost associated with an output ``a`` and desired output ``y``. Note that np.nan_to_num is used to ensure numerical stability. In particular, if both ``a`` and ``y`` have a 1.0 in the same slot, then the expression (1-y)*np.log(1-a) returns nan. The np.nan_to_num ensures that that is converted to the correct value (0.0). """ return np.sum(np.nan_to_num(-y*np.log(a)-(1.0-y)*np.log(1.0-a))) @staticmethod def der(a, y): """Return the gradient of the cost function wrt the activations. Note that np.nan_to_num is used to ensure numerical stability.""" return np.nan_to_num((a-y) / (a*(1.0-a))) #### Define the Activation class and each of the possible activation functions. class Activation(object): pass class Perceptron(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return np.heaviside(z, 0.) @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return 0.*z class Linear(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return z @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return 1.0 + 0.*z class Sigmoid(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return 1.0/(1.0+np.exp(-z)) @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return np.exp(-z) / (1.0+np.exp(-z))**2 class TanH(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return 2.0/(1.0+np.exp(-2.0*z)) - 1.0 @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return 1.0 - (2.0/(1.0+np.exp(-2.0*z)) - 1.0)**2 class ArcTan(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return np.arctan(z) @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return 1.0/(z**2 + 1.0) class ReLU(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return np.maximum(0., z) @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return np.heaviside(z, 0.) class PReLU(Activation): def __init__(self, a): """Initializes the one parameter of the activation. Namely, stores the prescribed slope for our linear unit. """ self.a = a def fn(self, z): """Returns the value of our activation function for the given pre-activation. """ return np.maximum(0., self.a*z) def der(self, z): """Returns the derivative of our activation function for the given pre-activation. """ return np.heaviside(z, 0.)*self.a class SoftPlus(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. """ return np.log(1.0+np.exp(z)) @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. """ return 1.0/(1.0+np.exp(-z)) class SoftMax(Activation): @staticmethod def fn(z): """Returns the value of our activation function for the given pre-activation. Note to ensure stability we subtract maximum z value from our z-array. """ z_max = np.max(z) return np.exp(z-z_max)/np.sum(np.exp(z-z_max)) @staticmethod def der(z): """Returns the derivative of our activation function for the given pre-activation. Note to ensure stability we subtract maximum z value from our z-array. """ z_max = np.max(z) return np.exp(z-z_max)/np.sum(np.exp(z-z_max)) - (np.exp(z-z_max)/np.sum(np.exp(z-z_max)))**2 #### Main Network class class Network(object): def __init__(self, sizes, cost=CrossEntropyCost, activations = None): """Initializes a network instance using the prescribed network sizes, cost function, and activations. The biases and weights for the network are initialized randomly, using ``self.default_weight_initializer`` (see docstring for that method). Also initializes the weight and bias velocity arrays that will be used during SGD training with 0's. sizes: List containing the number of nodes in each layer of our. network. Example - sizes = [784, 100, 100, 10]. cost: Cost function used to evaluate training examples. Should be one of the functions defined above from the Cost class. By default is set to the CrossEntropyCost function as defined above. Example - cost = CrossEntropyCost activations: List of the activation functions of our network. Specifically, the activation functions that will be applied to each non-input layer of our network. By default will make the hidden layer activation function ReLU and the output layer SoftMax. Example - activations = [Sigmoid, Sigmoid, SoftMax] """ self.num_layers = len(sizes) self.sizes = sizes self.default_weight_initializer() self.biases_velocity = [np.zeros([y, 1]) for y in self.sizes[1:]] self.weights_velocity = [np.zeros([y, x]) for x, y in zip(self.sizes[:-1], self.sizes[1:])] self.cost=cost if activations: self.activations = activations else: self.activations = [] for i in range(len(self.biases)): if i == len(self.biases) - 1: self.activations.append(SoftMax) else: self.activations.append(ReLU) self.evaluations = 0 def default_weight_initializer(self): """Initialize each weight using a Gaussian distribution with mean 0 and standard deviation 1 over the square root of the number of weights connecting to the same neuron. Initialize the biases using a Gaussian distribution with mean 0 and standard deviation 1. Also initializes Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers. """ self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]] self.weights = [np.random.randn(y, x)/np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def large_weight_initializer(self): """Initialize each weight and bias using a Gaussian distribution with mean 0 and standard deviation 1. Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers. """ self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def constant_weight_initializer(self, constant): """Initialize the weights and biases to 0 if desired. May be beneficial for certain activations and cost functions Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers. """ self.biases = [np.ones([y, 1])*constant for y in self.sizes[1:]] self.weights = [np.ones([y, x])*constant for x, y in zip(self.sizes[:-1], self.sizes[1:])] def velocity_reset(self): """Sets gradient descent velocity for weights and biases to 0. This is a helper function used during SGD training to reset weight and bias velocities. Currently only being used to reset velocities before each new SGD run, but can be implemented elsewhere if desired (Example: after each training epoch reset velocities).""" self.biases_velocity = [np.zeros([y, 1]) for y in self.sizes[1:]] self.weights_velocity = [np.zeros([y, x]) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w, activation in zip(self.biases, self.weights, self.activations): a = activation.fn(np.dot(w, a)+b) self.evaluations += 1 return a def SGD(self, training_data, epochs, mini_batch_size, eta, lmbda = 0.0, max_norm = None, max_norm_ratio = 1., dropout = 0., input_dropout = 0., eta_decay = 1., momentum = False, friction = 1., evaluation_data=None, monitor_evaluation_cost=False, monitor_evaluation_accuracy=False, monitor_training_cost=False, monitor_training_accuracy=False, early_stopping_n = 0): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory, but are also described below according to their associated technique. The method also accepts ``evaluation_data``, usually either the validation or test data. We can monitor the cost and accuracy on either the evaluation data or the training data, by setting the appropriate flags. The method returns a tuple containing four lists: the (per-epoch) costs on the evaluation data, the accuracies on the evaluation data, the costs on the training data, and the accuracies on the training data. All values are evaluated at the end of each training epoch. So, for example, if we train for 30 epochs, then the first element of the tuple will be a 30-element list containing the cost on the evaluation data at the end of each epoch. Note that the lists are empty if the corresponding flag is not set. Added Functionalities: 1) Gradient Descent Modifications: Stochastic gradient descent training algorithm has been modified to allow eta decay over the cours of epochs and to allow the use of momentum. 2) Dropout Backpropogation: Backpropogation algorithm has been modified to allow dropout implementation during training. This allows for a specified fraction of the inputs and hidden nodes to be ignored during the training of each mini-batch. 3) Generalized Cost Functions: Have generalized the cost functions into their own class and changed function to have two functions, evaluation and derivative. These calculate the value of the cost function and its derivative respectively for the given activations and solutions. (This was done to allow the use of activation functions other than the sigmoid function.) 4) Generalized Activations: Like the cost functions, the activations have been generalized into their own class with two methods, evaluation and its derivative. Additionally, more activation functions have been added and the user now has ability to specify a different activation function for each layer of the network. (This was done primarily to support the use of a softmax output activation so the results are a probability distribution. However, decided that it wouldn't take much more work to allow each layer to have an independent activation prescription, allowing much more freedom and customizability to each network.) 5) Regularization Techniques: In addition to the dropout regularization mentioned above, there are two types of weight contraint regularization techniques that can be used in our new networks. The first is using L2 weights decay regularization and the second using max-norm weight constraints. The former adds a term to our cost function that is a sum of the squares of all the weights in our network. This encourages our network weights to shrink over time through the gradient descent updates. The latter enforces a limit on the frobenius norm of the weights at hidden nodes. In other words, it constrains the norm of each node's weights to be below a certain value. This prevents the wieghts from getting large by restricting them to a small subspace, but does not force them to get smaller over time. """ # early stopping functionality: best_accuracy=1 training_data = list(training_data) n = len(training_data) if evaluation_data: evaluation_data = list(evaluation_data) n_data = len(evaluation_data) # early stopping functionality: best_accuracy=0 no_accuracy_change=0 evaluation_cost, evaluation_accuracy = [], [] training_cost, training_accuracy = [], [] self.velocity_reset() for j in range(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)] for i in range(len(self.biases)): M=self.sizes[i] if i == 0: m = int(M - input_dropout*M) else: m = int(M - dropout*M) self.weights[i] = self.weights[i] * M/m for mini_batch in mini_batches: self.update_mini_batch( mini_batch, eta*(eta_decay**j), lmbda, dropout, input_dropout, friction) if max_norm: self.normalize_weights(max_norm, max_norm_ratio) for i in range(len(self.biases)): M=self.sizes[i] if i == 0: m = int(M - input_dropout*M) else: m = int(M - dropout*M) self.weights[i] = self.weights[i] * m/M print("Epoch %s training complete" % j) if monitor_training_cost: cost = self.total_cost(training_data, lmbda) training_cost.append(cost) print("Cost on training data: {}".format(cost)) if monitor_training_accuracy: accuracy = self.accuracy(training_data, convert=True) training_accuracy.append(accuracy) print("Accuracy on training data: {} / {}".format(accuracy, n)) if monitor_evaluation_cost: cost = self.total_cost(evaluation_data, lmbda, convert=True) evaluation_cost.append(cost) print("Cost on evaluation data: {}".format(cost)) if monitor_evaluation_accuracy: accuracy = self.accuracy(evaluation_data) evaluation_accuracy.append(accuracy) print("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), n_data)) # Early stopping: if early_stopping_n > 0: if accuracy > best_accuracy: best_accuracy = accuracy no_accuracy_change = 0 #print("Early-stopping: Best so far {}".format(best_accuracy)) else: no_accuracy_change += 1 if (no_accuracy_change == early_stopping_n): #print("Early-stopping: No accuracy change in last epochs: {}".format(early_stopping_n)) return evaluation_cost, evaluation_accuracy, training_cost, training_accuracy return evaluation_cost, evaluation_accuracy, \ training_cost, training_accuracy def update_mini_batch(self, mini_batch, eta, lmbda, dropout, input_dropout, friction): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the learning rate, ``lmbda`` is the regularization parameter, and ``n`` is the total size of the training data set. """ node_arrays = [] for i in range(len(self.biases)): N=self.sizes[i] if i == 0: n = int(N - input_dropout*N) else: n = int(N - dropout*N) node_arrays.append(sorted(np.random.choice(range(N),n, replace=False))) node_arrays.append(list(range(self.sizes[-1]))) node_matrices = [] biases = [] weights = [] biases_velocity = [] weights_velocity = [] for i in range(len(self.biases)): node_matrix = np.meshgrid(node_arrays[i], node_arrays[i+1]) node_matrix.reverse() node_matrices.append(node_matrix) nodes = node_arrays[i+1] biases.append(self.biases[i][nodes]) biases_velocity.append(self.biases_velocity[i][nodes]) N=self.sizes[i] if i == 0: n = int(N - input_dropout*N) else: n = int(N - dropout*N) weights.append(self.weights[i][tuple(node_matrix)]) weights_velocity.append(self.weights_velocity[i][tuple(node_matrix)]) nabla_b = [np.zeros(b.shape) for b in biases] nabla_w = [np.zeros(w.shape) for w in weights] for x, y in mini_batch: x = x[node_arrays[0]] delta_nabla_b, delta_nabla_w = self.backprop(x, y, biases, weights) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] weights_velocity = [(1-friction)*wv-(eta/len(mini_batch))*nw for wv, nw in zip(weights_velocity, nabla_w)] biases_velocity = [(1-friction)*wb-(eta/len(mini_batch))*nb for wb, nb in zip(biases_velocity, nabla_b)] weights = [(1-eta*lmbda)*w + wv for w, wv in zip(weights, weights_velocity)] biases = [b-(eta/len(mini_batch))*bv for b, bv in zip(biases, biases_velocity)] for i in range(len(self.biases)): nodes = node_arrays[i+1] self.biases[i][nodes] = biases[i] self.biases_velocity[i][nodes] = biases_velocity[i] node_matrix = node_matrices[i] N = self.sizes[i] if i == 0: n = int(N - input_dropout*N) else: n = int(N - dropout*N) self.weights[i][tuple(node_matrix)] = weights[i] self.weights_velocity[i][tuple(node_matrix)] = weights_velocity[i] def backprop(self, x, y, biases, weights): """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in biases] nabla_w = [np.zeros(w.shape) for w in weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w, act in zip(biases, weights, self.activations): z = np.dot(w, activation)+b zs.append(z) activation = act.fn(z) activations.append(activation) # backward pass delta = (self.cost).der(activations[-1], y) * (self.activations[-1]).der(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # Note that the variable l in the loop below is used a little # differently to the notation in Chapter 2 of the book. Here, # l = 1 means the last layer of neurons, l = 2 is the # second-last layer, and so on. It's a renumbering of the # scheme in the book, used here to take advantage of the fact # that Python can use negative indices in lists. for l in range(2, self.num_layers): z = zs[-l] sp = (self.activations[-l]).der(z) delta = np.dot(weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_b, nabla_w) def normalize_weights(self, max_norm, max_norm_ratio): """Re-normalizes the weights of each hidden node in our network to have a frobenius norm less than the prescribed max-norm value. This function basically enforces our max-norm regularization constraint during SGD if prescribed.""" for i in range(len(self.weights)-1): norms = np.linalg.norm(self.weights[i], axis = 1) test = norms > max_norm if len(norms[test]) > 0: norms = norms.reshape((len(norms),1)) self.weights[i][test] = self.weights[i][test] * max_norm / norms[test] / max_norm_ratio def accuracy(self, data, convert=False): """Return the number of inputs in ``data`` for which the neural network outputs the correct result. The neural network's output is assumed to be the index of whichever neuron in the final layer has the highest activation. The flag ``convert`` should be set to False if the data set is validation or test data (the usual case), and to True if the data set is the training data. The need for this flag arises due to differences in the way the results ``y`` are represented in the different data sets. In particular, it flags whether we need to convert between the different representations. It may seem strange to use different representations for the different data sets. Why not use the same representation for all three data sets? It's done for efficiency reasons -- the program usually evaluates the cost on the training data and the accuracy on other data sets. These are different types of computations, and using different representations speeds things up. More details on the representations can be found in mnist_loader.load_data_wrapper. """ if convert: results = [(np.argmax(self.feedforward(x)), np.argmax(y)) for (x, y) in data] else: results = [(np.argmax(self.feedforward(x)), y) for (x, y) in data] result_accuracy = sum(int(x == y) for (x, y) in results) return result_accuracy def inaccuracy(self, data, convert=False): """Return the inputs in ``data`` for which the neural network outputs the correct result. The flag ``convert`` should be set to False if the data set is validation or test data (the usual case), and to True if the data set is the training data """ if convert: results = [(np.argmax(self.feedforward(x)), np.argmax(y)) for (x, y) in data] else: results = [(np.argmax(self.feedforward(x)), y) for (x, y) in data] incorrect_images = [] incorrect_digits = [] correct_digits = [] image_indices = [] for i in range(len(results)): if results[i][0] != results[i][1]: incorrect_images.append(data[i][0]) incorrect_digits.append(results[i][0]) correct_digits.append(results[i][1]) image_indices.append(i) return incorrect_images, incorrect_digits, correct_digits, image_indices def total_cost(self, data, lmbda, convert=False): """Return the total cost for the data set ``data``. The flag ``convert`` should be set to False if the data set is the training data (the usual case), and to True if the data set is the validation or test data. See comments on the similar (but reversed) convention for the ``accuracy`` method, above. """ cost = 0.0 for x, y in data: a = self.feedforward(x) if convert: y = vectorized_result(y) cost += self.cost.fn(a, y)/len(data) cost += 0.5*(lmbda)*sum(np.linalg.norm(w)**2 for w in self.weights) # '**' - to the power of. return cost def save(self, filename): """Save the neural network to the file ``filename``.""" data = {"sizes": self.sizes, "weights": [w.tolist() for w in self.weights], "biases": [b.tolist() for b in self.biases], "activations":[str(activation.__name__) for activation in self.activations], "cost": str(self.cost.__name__)} f = open(filename, "w") json.dump(data, f) f.close() #### Loading a Network def load(filename): """Load a neural network from the file ``filename``. Returns an instance of Network. """ f = open(filename, "r") data = json.load(f) f.close() cost = getattr(sys.modules[__name__], data["cost"]) activations = [getattr(sys.modules[__name__], activation) for activation in data["activations"]] net = Network(data["sizes"], cost=cost, activations = activations) net.weights = [np.array(w) for w in data["weights"]] net.biases = [np.array(b) for b in data["biases"]] return net #### Miscellaneous functions def vectorized_result(j): """Return a 10-dimensional unit vector with a 1.0 in the j'th position and zeroes elsewhere. This is used to convert a digit (0...9) into a corresponding desired output from the neural network. """ e =
np.zeros((10, 1))
numpy.zeros
#!/usr/bin/env python3 import numpy as np import re from pkg_resources import resource_filename from ..num.num_input import Num_input from directdm.run import rge #-----------------------# # Conventions and Basis # #-----------------------# # The basis of operators in the DM-SM sector below the weak scale (5-flavor EFT) is given by # dim.5 (2 operators) # # 'C51', 'C52', # dim.6 (32 operators) # # 'C61u', 'C61d', 'C61s', 'C61c', 'C61b', 'C61e', 'C61mu', 'C61tau', # 'C62u', 'C62d', 'C62s', 'C62c', 'C62b', 'C62e', 'C62mu', 'C62tau', # 'C63u', 'C63d', 'C63s', 'C63c', 'C63b', 'C63e', 'C63mu', 'C63tau', # 'C64u', 'C64d', 'C64s', 'C64c', 'C64b', 'C64e', 'C64mu', 'C64tau', # dim.7 (129 operators) # # 'C71', 'C72', 'C73', 'C74', # 'C75u', 'C75d', 'C75s', 'C75c', 'C75b', 'C75e', 'C75mu', 'C75tau', # 'C76u', 'C76d', 'C76s', 'C76c', 'C76b', 'C76e', 'C76mu', 'C76tau', # 'C77u', 'C77d', 'C77s', 'C77c', 'C77b', 'C77e', 'C77mu', 'C77tau', # 'C78u', 'C78d', 'C78s', 'C78c', 'C78b', 'C78e', 'C78mu', 'C78tau', # 'C79u', 'C79d', 'C79s', 'C79c', 'C79b', 'C79e', 'C79mu', 'C79tau', # 'C710u', 'C710d', 'C710s', 'C710c', 'C710b', 'C710e', 'C710mu', 'C710tau', # 'C711', 'C712', 'C713', 'C714', # 'C715u', 'C715d', 'C715s', 'C715c', 'C715b', 'C715e', 'C715mu', 'C715tau', # 'C716u', 'C716d', 'C716s', 'C716c', 'C716b', 'C716e', 'C716mu', 'C716tau', # 'C717u', 'C717d', 'C717s', 'C717c', 'C717b', 'C717e', 'C717mu', 'C717tau', # 'C718u', 'C718d', 'C718s', 'C718c', 'C718b', 'C718e', 'C718mu', 'C718tau', # 'C719u', 'C719d', 'C719s', 'C719c', 'C719b', 'C719e', 'C719mu', 'C719tau', # 'C720u', 'C720d', 'C720s', 'C720c', 'C720b', 'C720e', 'C720mu', 'C720tau', # 'C721u', 'C721d', 'C721s', 'C721c', 'C721b', 'C721e', 'C721mu', 'C721tau', # 'C722u', 'C722d', 'C722s', 'C722c', 'C722b', 'C722e', 'C722mu', 'C722tau', # 'C723u', 'C723d', 'C723s', 'C723c', 'C723b', 'C723e', 'C723mu', 'C723tau', # 'C725', # dim.8 (12 operators) # # 'C81u', 'C81d', 'C81s', 'C82u', 'C82d', 'C82s' # 'C83u', 'C83d', 'C83s', 'C84u', 'C84d', 'C84s' # In total, we have 2+32+129+12=175 operators. # In total, we have 2+32+129=163 operators w/o dim.8. #-----------------------------# # The QED anomalous dimension # #-----------------------------# def ADM_QED(nf): """ Return the QED anomalous dimension in the DM-SM sector for nf flavor EFT """ Qu = 2/3 Qd = -1/3 Qe = -1 nc = 3 gamma_QED = np.array([[8/3*Qu*Qu*nc, 8/3*Qu*Qd*nc, 8/3*Qu*Qd*nc, 8/3*Qu*Qu*nc,\ 8/3*Qu*Qd*nc, 8/3*Qu*Qe*nc, 8/3*Qu*Qe*nc, 8/3*Qu*Qe*nc], [8/3*Qd*Qu*nc, 8/3*Qd*Qd*nc, 8/3*Qd*Qd*nc, 8/3*Qd*Qu*nc,\ 8/3*Qd*Qd*nc, 8/3*Qd*Qe*nc, 8/3*Qd*Qe*nc, 8/3*Qd*Qe*nc], [8/3*Qd*Qu*nc, 8/3*Qd*Qd*nc, 8/3*Qd*Qd*nc, 8/3*Qd*Qu*nc,\ 8/3*Qd*Qd*nc, 8/3*Qd*Qe*nc, 8/3*Qd*Qe*nc, 8/3*Qd*Qe*nc], [8/3*Qu*Qu*nc, 8/3*Qu*Qd*nc, 8/3*Qu*Qd*nc, 8/3*Qu*Qu*nc,\ 8/3*Qu*Qd*nc, 8/3*Qu*Qe*nc, 8/3*Qu*Qe*nc, 8/3*Qu*Qe*nc], [8/3*Qd*Qu*nc, 8/3*Qd*Qd*nc, 8/3*Qd*Qd*nc, 8/3*Qd*Qu*nc,\ 8/3*Qd*Qd*nc, 8/3*Qd*Qe*nc, 8/3*Qd*Qe*nc, 8/3*Qd*Qe*nc], [8/3*Qe*Qu, 8/3*Qe*Qd, 8/3*Qe*Qd, 8/3*Qe*Qu,\ 8/3*Qe*Qd, 8/3*Qe*Qe, 8/3*Qe*Qe, 8/3*Qe*Qe], [8/3*Qe*Qu, 8/3*Qe*Qd, 8/3*Qe*Qd, 8/3*Qe*Qu,\ 8/3*Qe*Qd, 8/3*Qe*Qe, 8/3*Qe*Qe, 8/3*Qe*Qe], [8/3*Qe*Qu, 8/3*Qe*Qd, 8/3*Qe*Qd, 8/3*Qe*Qu,\ 8/3*Qe*Qd, 8/3*Qe*Qe, 8/3*Qe*Qe, 8/3*Qe*Qe]]) gamma_QED_1 = np.zeros((2,163)) gamma_QED_2 = np.hstack((np.zeros((8,2)),gamma_QED,np.zeros((8,153)))) gamma_QED_3 = np.hstack((np.zeros((8,10)),gamma_QED,np.zeros((8,145)))) gamma_QED_4 = np.zeros((145,163)) gamma_QED = np.vstack((gamma_QED_1, gamma_QED_2, gamma_QED_3, gamma_QED_4)) if nf == 5: return gamma_QED elif nf == 4: return np.delete(np.delete(gamma_QED, [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 0)\ , [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 1) elif nf == 3: return np.delete(np.delete(gamma_QED, [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 0)\ , [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 1) else: raise Exception("nf has to be 3, 4 or 5") def ADM_QED2(nf): """ Return the QED anomalous dimension in the DM-SM sector for nf flavor EFT at alpha^2 """ # Mixing of Q_{11}^(7) into Q_{5,f}^(7) and Q_{12}^(7) into Q_{6,f}^(7), adapted from Hill et al. [1409.8290]. gamma_gf = -8 gamma_QED2_gf = np.array([5*[gamma_gf]]) gamma_QED2_1 = np.zeros((86,163)) gamma_QED2_2 = np.hstack((np.zeros((1,38)),gamma_QED2_gf,np.zeros((1,120)))) gamma_QED2_3 = np.hstack((np.zeros((1,46)),gamma_QED2_gf,np.zeros((1,112)))) gamma_QED2_4 = np.zeros((75,163)) gamma_QED2 = np.vstack((gamma_QED2_1, gamma_QED2_2, gamma_QED2_3, gamma_QED2_4)) if nf == 5: return gamma_QED2 elif nf == 4: return np.delete(np.delete(gamma_QED2, [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 0)\ , [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 1) elif nf == 3: return np.delete(np.delete(gamma_QED2, [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 0)\ , [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 1) else: raise Exception("nf has to be 3, 4 or 5") #------------------------------# # The QCD anomalous dimensions # #------------------------------# def ADM_QCD(nf): """ Return the QCD anomalous dimension in the DM-SM sector for nf flavor EFT, when ADM starts at O(alphas) """ gamma_QCD_T = 32/3 * np.eye(5) gt2qq = 64/9 gt2qg = -4/3 gt2gq = -64/9 gt2gg = 4/3*nf gamma_twist2 = np.array([[gt2qq, 0, 0, 0, 0, 0, 0, 0, gt2qg], [0, gt2qq, 0, 0, 0, 0, 0, 0, gt2qg], [0, 0, gt2qq, 0, 0, 0, 0, 0, gt2qg], [0, 0, 0, gt2qq, 0, 0, 0, 0, gt2qg], [0, 0, 0, 0, gt2qq, 0, 0, 0, gt2qg], [0, 0, 0, 0, 0, 0, 0, 0, 0 ], [0, 0, 0, 0, 0, 0, 0, 0, 0 ], [0, 0, 0, 0, 0, 0, 0, 0, 0 ], [gt2gq, gt2gq, gt2gq, gt2gq, gt2gq, 0, 0, 0, gt2gg]]) gamma_QCD_1 = np.zeros((70,163)) gamma_QCD_2 = np.hstack((np.zeros((5,70)), gamma_QCD_T, np.zeros((5,88)))) gamma_QCD_3 = np.zeros((3,163)) gamma_QCD_4 = np.hstack((np.zeros((5,78)), gamma_QCD_T, np.zeros((5,80)))) gamma_QCD_5 = np.zeros((71,163)) gamma_QCD_6 = np.hstack((np.zeros((9,154)), gamma_twist2)) gamma_QCD = [np.vstack((gamma_QCD_1, gamma_QCD_2, gamma_QCD_3,\ gamma_QCD_4, gamma_QCD_5, gamma_QCD_6))] if nf == 5: return gamma_QCD elif nf == 4: return np.delete(np.delete(gamma_QCD, [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 1)\ , [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 2) elif nf == 3: return np.delete(np.delete(gamma_QCD, [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 1)\ , [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 2) else: raise Exception("nf has to be 3, 4 or 5") def ADM_QCD2(nf): # CHECK ADM # """ Return the QCD anomalous dimension in the DM-SM sector for nf flavor EFT, when ADM starts at O(alphas^2) """ # Mixing of Q_1^(7) into Q_{5,q}^(7) and Q_2^(7) into Q_{6,q}^(7), from Hill et al. [1409.8290]. # Note that we have different prefactors and signs. cf = 4/3 gamma_gq = 8*cf # changed 2019-08-29, double check with RG solution # Mixing of Q_3^(7) into Q_{7,q}^(7) and Q_4^(7) into Q_{8,q}^(7), from Hill et al. [1409.8290]. # Note that we have different prefactors and signs. gamma_5gq = -8 # changed 2019-08-29, double check with RG solution gamma_QCD2_gq = np.array([5*[gamma_gq]]) gamma_QCD2_5gq = np.array([5*[gamma_5gq]]) gamma_QCD2_1 = np.zeros((34,163)) gamma_QCD2_2 = np.hstack((np.zeros((1,38)),gamma_QCD2_gq,np.zeros((1,120)))) gamma_QCD2_3 = np.hstack((np.zeros((1,46)),gamma_QCD2_gq,np.zeros((1,112)))) gamma_QCD2_4 = np.hstack((np.zeros((1,54)),gamma_QCD2_5gq,np.zeros((1,104)))) gamma_QCD2_5 = np.hstack((np.zeros((1,62)),gamma_QCD2_5gq,np.zeros((1,96)))) gamma_QCD2_6 = np.zeros((125,163)) gamma_QCD2 = [np.vstack((gamma_QCD2_1, gamma_QCD2_2, gamma_QCD2_3,\ gamma_QCD2_4, gamma_QCD2_5, gamma_QCD2_6))] if nf == 5: return gamma_QCD2 elif nf == 4: return np.delete(np.delete(gamma_QCD2, [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 1)\ , [6, 14, 22, 30, 42, 50, 58, 66, 74, 82, 94,\ 102, 110, 118, 126, 134, 142, 150, 158], 2) elif nf == 3: return np.delete(np.delete(gamma_QCD2, [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 1)\ , [5,6, 13,14, 21,22, 29,30, 41,42,\ 49,50, 57,58, 65,66, 73,74, 81,82,\ 93,94, 101,102, 109,110, 117,118,\ 125,126, 133,134, 141,142, 149,150, 158,159], 2) else: raise Exception("nf has to be 3, 4 or 5") def ADM5(Ychi, dchi): """ The dimension-five anomalous dimension Return a numpy array with the anomalous dimension matrices for g1, g2, g3, and yt The Higgs self coupling lambda is currently ignored. Variables --------- Ychi: The DM hypercharge, defined via the Gell-Mann - Nishijima relation Q = I_W^3 + Ychi/2. dchi: The dimension of the electroweak SU(2) representation furnished by the DM multiplet. """ jj1 = (dchi**2-1)/4 # The beta functions for one multiplet b1 = - 41/6 - Ychi**2 * dchi/3 b2 = 19/6 - 4*jj1*dchi/9 adm5_g1 = np.array([[5/2*Ychi**2-2*b1, 0, -6*Ychi, 0, 0, 0, 0, 0], [-4*Ychi*jj1, Ychi**2/2, 0, 12*Ychi, 0, 0, 0, 0], [0, 0, -3/2*(1+Ychi**2), 0, 0, 0, 0, 0], [0, 0, 0, -3/2*(1+Ychi**2), 0, 0, 0, 0], [0, 0, 0, 0, 5/2*Ychi**2-2*b1, 0, -6*Ychi, 0], [0, 0, 0, 0, -4*Ychi*jj1, Ychi**2/2, 0, 12*Ychi], [0, 0, 0, 0, 0, 0, -3/2*(1+Ychi**2), 0], [0, 0, 0, 0, 0, 0, 0, -3/2*(1+Ychi**2)]]) adm5_g2 = np.array([[2*jj1, -4*Ychi, 0, -24, 0, 0, 0, 0], [0, (10*jj1-8)-2*b2, 12*jj1, 0, 0, 0, 0, 0], [0, 0, (-9/2-6*jj1), 0, 0, 0, 0, 0], [0, 0, 0, (3/2-6*jj1), 0, 0, 0, 0], [0, 0, 0, 0, 2*jj1, -4*Ychi, 0, -24], [0, 0, 0, 0, 0, (10*jj1-8)-2*b2, 12*jj1, 0], [0, 0, 0, 0, 0, 0, (-9/2-6*jj1), 0], [0, 0, 0, 0, 0, 0, 0, (3/2-6*jj1)]]) adm5_g3 = np.zeros((8,8)) adm5_yc = np.diag([0,0,6,6,0,0,6,6]) adm5_ytau = np.diag([0,0,2,2,0,0,2,2]) adm5_yb = np.diag([0,0,6,6,0,0,6,6]) adm5_yt = np.diag([0,0,6,6,0,0,6,6]) adm5_lam = np.diag([0,0,3,1,0,0,3,1]) full_adm = np.array([adm5_g1, adm5_g2, adm5_g3, adm5_yc, adm5_ytau, adm5_yb, adm5_yt, adm5_lam]) if dchi == 1: return np.delete(np.delete(full_adm, [1,3,5,7], 1), [1,3,5,7], 2) else: return full_adm def ADM6(Ychi, dchi): """ The dimension-five anomalous dimension Return a numpy array with the anomalous dimension matrices for g1, g2, g3, ytau, yb, and yt The running due to the Higgs self coupling lambda is currently ignored. The operator basis is Q1-Q14 1st, 2nd, 3rd gen.; S1-S17 (mixing of gen: 1-1, 2-2, 3-3, 1-2, 1-3, 2-3), S18-S24 1st, 2nd, 3rd gen., S25; D1-D4. The explicit ordering of the operators, including flavor indices, is contained in the file "directdm/run/operator_ordering.txt" Variables --------- Ychi: The DM hypercharge, defined via the Gell-Mann - Nishijima relation Q = I_W^3 + Ychi/2. dchi: The dimension of the electroweak SU(2) representation furnished by the DM multiplet. """ scope = locals() def load_adm(admfile): with open(admfile, "r") as f: adm = [] for line in f: line = re.sub("\n", "", line) line = line.split(",") adm.append(list(map(lambda x: eval(x, scope), line))) return adm admg1 = load_adm(resource_filename("directdm", "run/full_adm_g1.py")) admg2 = load_adm(resource_filename("directdm", "run/full_adm_g2.py")) admg3 = np.zeros((207,207)) admyc = load_adm(resource_filename("directdm", "run/full_adm_yc.py")) admytau = load_adm(resource_filename("directdm", "run/full_adm_ytau.py")) admyb = load_adm(resource_filename("directdm", "run/full_adm_yb.py")) admyt = load_adm(resource_filename("directdm", "run/full_adm_yt.py")) admlam = np.zeros((207,207)) full_adm = np.array([np.array(admg1), np.array(admg2), admg3,\ np.array(admyc), np.array(admytau), np.array(admyb),\ np.array(admyt), np.array(admlam)]) if dchi == 1: return np.delete(np.delete(full_adm, [0, 4, 8, 11, 14, 18, 22, 25, 28, 32, 36, 39,\ 42, 44, 205, 206], 1),\ [0, 4, 8, 11, 14, 18, 22, 25, 28, 32, 36, 39,\ 42, 44, 205, 206], 2) else: return full_adm def ADM_QCD_dim8(nf): """ Return the QCD anomalous dimension in the DM-SM sector at dim.8, for nf flavor EFT """ beta0 = rge.QCD_beta(nf, 1).trad() gammam0 = rge.QCD_gamma(nf, 1).trad() ADM8 = 2*(gammam0 - beta0) * np.eye(12) return ADM8 def ADM_SM_QCD(nf): """ Return the QCD anomalous dimension in the SM-SM sector for nf flavor EFT, for a subset of SM dim.6 operators The basis is spanned by a subset of 10*8 + 5*4 = 100 SM operators, with Wilson coefficients ['P61ud', 'P62ud', 'P63ud', 'P63du', 'P64ud', 'P65ud', 'P66ud', 'P66du', 'P61us', 'P62us', 'P63us', 'P63su', 'P64us', 'P65us', 'P66us', 'P66su', 'P61uc', 'P62uc', 'P63uc', 'P63cu', 'P64uc', 'P65uc', 'P66uc', 'P66cu', 'P61ub', 'P62ub', 'P63ub', 'P63bu', 'P64ub', 'P65ub', 'P66ub', 'P66bu', 'P61ds', 'P62ds', 'P63ds', 'P63sd', 'P64ds', 'P65ds', 'P66ds', 'P66sd', 'P61dc', 'P62dc', 'P63dc', 'P63cd', 'P64dc', 'P65dc', 'P66dc', 'P66cd', 'P61db', 'P62db', 'P63db', 'P63bd', 'P64db', 'P65db', 'P66db', 'P66bd', 'P61sc', 'P62sc', 'P63sc', 'P63cs', 'P64sc', 'P65sc', 'P66sc', 'P66cs', 'P61sb', 'P62sb', 'P63sb', 'P63bs', 'P64sb', 'P65sb', 'P66sb', 'P66bs', 'P61cb', 'P62cb', 'P63cb', 'P63bc', 'P64cb', 'P65cb', 'P66cb', 'P66bc', 'P61u', 'P62u', 'P63u', 'P64u', 'P61d', 'P62d', 'P63d', 'P64d', 'P61s', 'P62s', 'P63s', 'P64s', 'P61c', 'P62c', 'P63c', 'P64c', 'P61b', 'P62b', 'P63b', 'P64b'] """ adm_qqp_qqp = np.array([[0, 0, 0, 0, 0, 12, 0, 0], [0, 0, 0, 0, 12, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 12], [0, 0, 0, 0, 0, 0, 12, 0], [0, 8/3, 0, 0, - 19/3, 5, 0, 0], [8/3, 0, 0, 0, 5, - 9, 0, 0], [0, 0, 0, 8/3, 0, 0, - 23/3, 5], [0, 0, 8/3, 0, 0, 0, 5, - 23/3]]) adm_qqp_qqpp = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4/3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 4/3, 0], [0, 0, 0, 0, 0, 0, 0, 0]]) adm_qpq_qppq = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4/3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 4/3]]) adm_qqp_qppq = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4/3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 4/3], [0, 0, 0, 0, 0, 0, 0, 0]]) adm_qpq_qqpp = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4/3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 4/3, 0]]) adm_q_q = np.array([[4, 4, 0, - 28/3], [0, 0, 0, 44/3], [0, 0, 44/9, 0], [5/3, 13/3, 0, - 106/9]]) adm_qqp_q = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 4/3], [0, 0, 0, 0], [0, 0, 4/9, 0], [0, 0, 0, 0]]) adm_qpq_q = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 4/3], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 4/9, 0]]) adm_q_qqp = np.array([[0, 0, 0, 0, 8/3, 0, 0, 0], [0, 0, 0, 0, 8/3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 8/3, 0], [0, 0, 0, 0, 20/9, 0, 0, 0]]) adm_q_qpq = np.array([[0, 0, 0, 0, 8/3, 0, 0, 0], [0, 0, 0, 0, 8/3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 8/3], [0, 0, 0, 0, 20/9, 0, 0, 0]]) adm_ud = np.hstack((adm_qqp_qqp, adm_qqp_qqpp, adm_qqp_qqpp,\ adm_qqp_qqpp, adm_qpq_qqpp, adm_qpq_qqpp,\ adm_qpq_qqpp, np.zeros((8, 24)), adm_qqp_q,\ adm_qpq_q, np.zeros((8,12)))) adm_us = np.hstack((adm_qqp_qqpp, adm_qqp_qqp, adm_qqp_qqpp,\ adm_qqp_qqpp, adm_qpq_qppq, np.zeros((8,16)),\ adm_qpq_qqpp, adm_qpq_qqpp, np.zeros((8, 8)),\ adm_qqp_q, np.zeros((8,4)), adm_qpq_q, np.zeros((8,8)))) adm_uc = np.hstack((adm_qqp_qqpp, adm_qqp_qqpp, adm_qqp_qqp,\ adm_qqp_qqpp, np.zeros((8,8)), adm_qpq_qppq,\ np.zeros((8,8)), adm_qpq_qppq, np.zeros((8, 8)),\ adm_qpq_qqpp, adm_qqp_q, np.zeros((8,8)),\ adm_qpq_q, np.zeros((8,4)))) adm_ub = np.hstack((adm_qqp_qqpp, adm_qqp_qqpp, adm_qqp_qqpp,\ adm_qqp_qqp, np.zeros((8,16)), adm_qpq_qppq,\ np.zeros((8,8)), adm_qpq_qppq, adm_qpq_qppq,\ adm_qqp_q, np.zeros((8,12)), adm_qpq_q)) adm_ds = np.hstack((adm_qqp_qppq, adm_qpq_qppq, np.zeros((8,16)),\ adm_qqp_qqp, adm_qqp_qqpp, adm_qqp_qqpp,\ adm_qpq_qqpp, adm_qpq_qqpp, np.zeros((8,8)),\ np.zeros((8,4)), adm_qqp_q, adm_qpq_q, np.zeros((8,8)))) adm_dc = np.hstack((adm_qqp_qppq, np.zeros((8,8)), adm_qpq_qppq,\ np.zeros((8,8)), adm_qqp_qqpp, adm_qqp_qqp, adm_qqp_qqpp,\ adm_qpq_qppq, np.zeros((8,8)), adm_qpq_qqpp,\ np.zeros((8,4)), adm_qqp_q, np.zeros((8,4)),\ adm_qpq_q, np.zeros((8,4)))) adm_db = np.hstack((adm_qqp_qppq, np.zeros((8,16)), adm_qpq_qppq,\ adm_qqp_qqpp, adm_qqp_qqpp, adm_qqp_qqp,\ np.zeros((8,8)), adm_qpq_qppq, adm_qpq_qppq,\ np.zeros((8,4)), adm_qqp_q, np.zeros((8,8)), adm_qpq_q)) adm_sc = np.hstack((np.zeros((8,8)), adm_qqp_qppq, adm_qpq_qppq,\ np.zeros((8,8)), adm_qqp_qppq, adm_qpq_qppq, np.zeros((8,8)),\ adm_qqp_qqp, adm_qqp_qqpp, adm_qpq_qqpp, np.zeros((8,8)),\ adm_qqp_q, adm_qpq_q, np.zeros((8,4)))) adm_sb = np.hstack((np.zeros((8,8)), adm_qqp_qppq, np.zeros((8,8)),\ adm_qpq_qppq, adm_qqp_qppq, np.zeros((8,8)), adm_qpq_qppq,\ adm_qqp_qqpp, adm_qqp_qqp, adm_qpq_qppq, np.zeros((8,8)),\ adm_qqp_q, np.zeros((8,4)), adm_qpq_q)) adm_cb = np.hstack((np.zeros((8,16)), adm_qqp_qppq, adm_qpq_qppq,\ np.zeros((8,8)), adm_qqp_qppq, adm_qpq_qppq,\ adm_qqp_qppq, adm_qpq_qppq, adm_qqp_qqp,\ np.zeros((8,12)), adm_qqp_q, adm_qpq_q)) adm_u = np.hstack((adm_q_qqp, adm_q_qqp, adm_q_qqp, adm_q_qqp,\ np.zeros((4,48)), adm_q_q, np.zeros((4,16)))) adm_d = np.hstack((adm_q_qpq, np.zeros((4,24)), adm_q_qqp, adm_q_qqp,\ adm_q_qqp, np.zeros((4,24)), np.zeros((4,4)),\ adm_q_q, np.zeros((4,12)))) adm_s = np.hstack((np.zeros((4,8)), adm_q_qpq, np.zeros((4,16)),\ adm_q_qpq, np.zeros((4,16)), adm_q_qqp,\ adm_q_qqp, np.zeros((4,8)),\ np.zeros((4,8)), adm_q_q, np.zeros((4,8)))) adm_c = np.hstack((np.zeros((4,16)), adm_q_qpq, np.zeros((4,16)),\ adm_q_qpq, np.zeros((4,8)),\ adm_q_qpq, np.zeros((4,8)), adm_q_qqp,\ np.zeros((4,12)), adm_q_q, np.zeros((4,4)))) adm_b = np.hstack((np.zeros((4,24)), adm_q_qpq, np.zeros((4,16)),\ adm_q_qpq, np.zeros((4,8)), adm_q_qpq,\ adm_q_qpq, np.zeros((4,16)), adm_q_q)) adm = np.vstack((adm_ud, adm_us, adm_uc, adm_ub, adm_ds,\ adm_dc, adm_db, adm_sc, adm_sb, adm_cb,\ adm_u, adm_d, adm_s, adm_c, adm_b)) if nf == 5: return adm elif nf == 4: return np.delete(np.delete(adm, np.r_[np.s_[24:32], np.s_[48:56],\ np.s_[64:80], np.s_[96:100]], 0),\ np.r_[np.s_[24:32], np.s_[48:56],\ np.s_[64:80], np.s_[96:100]], 1) else: raise Exception("nf has to be 4 or 5") def ADT_QCD(nf, input_dict=None): """ Return the QCD anomalous dimension tensor for nf flavor EFT, for double insertions of DM-SM and SM-SM operators Our basis of operators below the electroweak scale includes a set of 12 dimension-eight operators, with Wilson coefficients for Dirac DM ['C81u', 'C81d', 'C81s', 'C82u', 'C82d', 'C82s', 'C83u', 'C83d', 'C83s', 'C84u', 'C84d', 'C84s'] and by a subset of 10*8 = 80 SM operators, with Wilson coefficients ['P61ud', 'P62ud', 'P63ud', 'P63du', 'P64ud', 'P65ud', 'P66ud', 'P66du', 'P61us', 'P62us', 'P63us', 'P63su', 'P64us', 'P65us', 'P66us', 'P66su', 'P61uc', 'P62uc', 'P63uc', 'P63cu', 'P64uc', 'P65uc', 'P66uc', 'P66cu', 'P61ub', 'P62ub', 'P63ub', 'P63bu', 'P64ub', 'P65ub', 'P66ub', 'P66bu', 'P61ds', 'P62ds', 'P63ds', 'P63sd', 'P64ds', 'P65ds', 'P66ds', 'P66sd', 'P61dc', 'P62dc', 'P63dc', 'P63cd', 'P64dc', 'P65dc', 'P66dc', 'P66cd', 'P61db', 'P62db', 'P63db', 'P63bd', 'P64db', 'P65db', 'P66db', 'P66bd', 'P61sc', 'P62sc', 'P63sc', 'P63cs', 'P64sc', 'P65sc', 'P66sc', 'P66cs', 'P61sb', 'P62sb', 'P63sb', 'P63bs', 'P64sb', 'P65sb', 'P66sb', 'P66bs', 'P61cb', 'P62cb', 'P63cb', 'P63bc', 'P64cb', 'P65cb', 'P66cb', 'P66bc'] The anomalous dimension tensor defined below uses the following subset of the dim.6 DM-SM basis, ['C63u', 'C63d', 'C63s', 'C63c', 'C63b', 'C64u', 'C64d', 'C64s', 'C64c', 'C64b'] and the basis above. Arguments --------- nf -- the number of active flavors input_dict (optional) -- a dictionary of hadronic input parameters (default is Num_input().input_parameters) """ if input_dict is None: ip = Num_input().input_parameters # One should include a warning in case the dictionary # does not contain all necessary keys else: ip = input_dict mb = ip['mb_at_MZ'] mc = ip['mc_at_MZ'] ms = ip['ms_at_MZ'] md = ip['md_at_MZ'] mu = ip['mu_at_MZ'] # Create the ADT: gamma_hat_P63cu_Q81u = np.hstack((np.zeros(3), -48 * mc**2/mu**2, np.zeros(6))) gamma_hat_P63bu_Q81u = np.hstack((np.zeros(4), -48 * mb**2/mu**2, np.zeros(5))) gamma_hat_P63cd_Q81d = np.hstack((np.zeros(3), -48 * mc**2/md**2, np.zeros(6))) gamma_hat_P63bd_Q81d = np.hstack((np.zeros(4), -48 * mb**2/md**2, np.zeros(5))) gamma_hat_P63cs_Q81s = np.hstack((np.zeros(3), -48 * mc**2/ms**2, np.zeros(6))) gamma_hat_P63bs_Q81s = np.hstack((np.zeros(4), -48 * mb**2/ms**2, np.zeros(5))) gamma_hat_P63cu_Q82u = np.hstack((np.zeros(8), -48 * mc**2/mu**2, np.zeros(1))) gamma_hat_P63bu_Q82u = np.hstack((np.zeros(9), -48 * mb**2/mu**2)) gamma_hat_P63cd_Q82d = np.hstack((np.zeros(8), -48 * mc**2/md**2, np.zeros(1))) gamma_hat_P63bd_Q82d = np.hstack((
np.zeros(9)
numpy.zeros
import warnings import weakref from typing import List, Tuple import numpy as np import yt.geometry.particle_deposit as particle_deposit from yt.config import ytcfg from yt.data_objects.selection_objects.data_selection_objects import ( YTSelectionContainer, ) from yt.funcs import is_sequence from yt.geometry.selection_routines import convert_mask_to_indices from yt.units.yt_array import YTArray from yt.utilities.exceptions import ( YTFieldTypeNotFound, YTParticleDepositionNotImplemented, ) from yt.utilities.lib.interpolators import ghost_zone_interpolate from yt.utilities.lib.mesh_utilities import clamp_edges from yt.utilities.nodal_data_utils import get_nodal_slices RECONSTRUCT_INDEX = bool(ytcfg.get("yt", "reconstruct_index")) class AMRGridPatch(YTSelectionContainer): _spatial = True _num_ghost_zones = 0 _grids = None _id_offset = 1 _cache_mask = True _type_name = "grid" _skip_add = True _con_args = ("id", "filename") _container_fields = ( ("index", "dx"), ("index", "dy"), ("index", "dz"), ("index", "x"), ("index", "y"), ("index", "z"), ) OverlappingSiblings = None def __init__(self, id, filename=None, index=None): super().__init__(index.dataset, None) self.id = id self._child_mask = self._child_indices = self._child_index_mask = None self.ds = index.dataset self._index = weakref.proxy(index) self.start_index = None self.filename = filename self._last_mask = None self._last_count = -1 self._last_selector_id = None def get_global_startindex(self): """ Return the integer starting index for each dimension at the current level. """ if self.start_index is not None: return self.start_index if self.Parent is None: left = self.LeftEdge.d - self.ds.domain_left_edge.d start_index = left / self.dds.d return np.rint(start_index).astype("int64").ravel() pdx = self.Parent.dds.d di = np.rint((self.LeftEdge.d - self.Parent.LeftEdge.d) / pdx) start_index = self.Parent.get_global_startindex() + di self.start_index = (start_index * self.ds.refine_by).astype("int64").ravel() return self.start_index def __getitem__(self, key): tr = super().__getitem__(key) try: fields = self._determine_fields(key) except YTFieldTypeNotFound: return tr finfo = self.ds._get_field_info(*fields[0]) if not finfo.sampling_type == "particle": num_nodes = 2 ** sum(finfo.nodal_flag) new_shape = list(self.ActiveDimensions) if num_nodes > 1: new_shape += [num_nodes] return tr.reshape(new_shape) return tr def convert(self, datatype): """ This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor or throws a KeyError. """ return self.ds[datatype] @property def shape(self): return self.ActiveDimensions def _reshape_vals(self, arr): if len(arr.shape) == 3: return arr return arr.reshape(self.ActiveDimensions, order="C") def _generate_container_field(self, field): if self._current_chunk is None: self.index._identify_base_chunk(self) if field == ("index", "dx"): tr = self._current_chunk.fwidth[:, 0] elif field == ("index", "dy"): tr = self._current_chunk.fwidth[:, 1] elif field == ("index", "dz"): tr = self._current_chunk.fwidth[:, 2] elif field == ("index", "x"): tr = self._current_chunk.fcoords[:, 0] elif field == ("index", "y"): tr = self._current_chunk.fcoords[:, 1] elif field == ("index", "z"): tr = self._current_chunk.fcoords[:, 2] return self._reshape_vals(tr) def _setup_dx(self): # So first we figure out what the index is. We don't assume # that dx=dy=dz, at least here. We probably do elsewhere. id = self.id - self._id_offset ds = self.ds index = self.index if self.Parent is not None: if not hasattr(self.Parent, "dds"): self.Parent._setup_dx() self.dds = self.Parent.dds.d / self.ds.refine_by else: LE, RE = (index.grid_left_edge[id, :].d, index.grid_right_edge[id, :].d) self.dds = (RE - LE) / self.ActiveDimensions if self.ds.dimensionality < 3: self.dds[2] = ds.domain_right_edge[2] - ds.domain_left_edge[2] elif self.ds.dimensionality < 2: self.dds[1] = ds.domain_right_edge[1] - ds.domain_left_edge[1] self.dds = self.dds.view(YTArray) self.dds.units = self.index.grid_left_edge.units def __repr__(self): return "AMRGridPatch_%04i" % (self.id) def __int__(self): return self.id def clear_data(self): """ Clear out the following things: child_mask, child_indices, all fields, all field parameters. """ super().clear_data() self._setup_dx() def _prepare_grid(self): """Copies all the appropriate attributes from the index.""" # This is definitely the slowest part of generating the index # Now we give it pointers to all of its attributes # Note that to keep in line with Enzo, we have broken PEP-8 h = self.index # cache it my_ind = self.id - self._id_offset self.ActiveDimensions = h.grid_dimensions[my_ind] self.LeftEdge = h.grid_left_edge[my_ind] self.RightEdge = h.grid_right_edge[my_ind] # This can be expensive so we allow people to disable this behavior # via a config option if RECONSTRUCT_INDEX: if is_sequence(self.Parent) and len(self.Parent) > 0: p = self.Parent[0] else: p = self.Parent if p is not None and p != []: # clamp grid edges to an integer multiple of the parent cell # width clamp_edges(self.LeftEdge, p.LeftEdge, p.dds) clamp_edges(self.RightEdge, p.RightEdge, p.dds) h.grid_levels[my_ind, 0] = self.Level # This might be needed for streaming formats # self.Time = h.gridTimes[my_ind,0] self.NumberOfParticles = h.grid_particle_count[my_ind, 0] def get_position(self, index): """Returns center position of an *index*.""" pos = (index + 0.5) * self.dds + self.LeftEdge return pos def _fill_child_mask(self, child, mask, tofill, dlevel=1): rf = self.ds.refine_by if dlevel != 1: rf = rf**dlevel gi, cgi = self.get_global_startindex(), child.get_global_startindex() startIndex = np.maximum(0, cgi // rf - gi) endIndex = np.minimum( (cgi + child.ActiveDimensions) // rf - gi, self.ActiveDimensions ) endIndex += startIndex == endIndex mask[ startIndex[0] : endIndex[0], startIndex[1] : endIndex[1], startIndex[2] : endIndex[2], ] = tofill @property def child_mask(self): """ Generates self.child_mask, which is zero where child grids exist (and thus, where higher resolution data is available). """ child_mask = np.ones(self.ActiveDimensions, "bool") for child in self.Children: self._fill_child_mask(child, child_mask, 0) for sibling in self.OverlappingSiblings or []: self._fill_child_mask(sibling, child_mask, 0, dlevel=0) return child_mask @property def child_indices(self): return self.child_mask == 0 @property def child_index_mask(self): """ Generates self.child_index_mask, which is -1 where there is no child, and otherwise has the ID of the grid that resides there. """ child_index_mask = np.zeros(self.ActiveDimensions, "int32") - 1 for child in self.Children: self._fill_child_mask(child, child_index_mask, child.id) for sibling in self.OverlappingSiblings or []: self._fill_child_mask(sibling, child_index_mask, sibling.id, dlevel=0) return child_index_mask def retrieve_ghost_zones(self, n_zones, fields, all_levels=False, smoothed=False): # We will attempt this by creating a datacube that is exactly bigger # than the grid by nZones*dx in each direction nl = self.get_global_startindex() - n_zones new_left_edge = nl * self.dds + self.ds.domain_left_edge # Something different needs to be done for the root grid, though level = self.Level if all_levels: level = self.index.max_level + 1 kwargs = { "dims": self.ActiveDimensions + 2 * n_zones, "num_ghost_zones": n_zones, "use_pbar": False, "fields": fields, } # This should update the arguments to set the field parameters to be # those of this grid. field_parameters = {} field_parameters.update(self.field_parameters) if smoothed: cube = self.ds.smoothed_covering_grid( level, new_left_edge, field_parameters=field_parameters, **kwargs ) else: cube = self.ds.covering_grid( level, new_left_edge, field_parameters=field_parameters, **kwargs ) cube._base_grid = self return cube def get_vertex_centered_data( self, fields: List[Tuple[str, str]], smoothed: bool = True, no_ghost: bool = False, ): _old_api = isinstance(fields, (str, tuple)) if _old_api: message = ( "get_vertex_centered_data() requires list of fields, rather than " "a single field as an argument." ) warnings.warn(message, DeprecationWarning, stacklevel=2) fields = [fields] # type: ignore # Make sure the field list has only unique entries fields = list(set(fields)) new_fields = {} for field in fields: finfo = self.ds._get_field_info(field) new_fields[field] = self.ds.arr( np.zeros(self.ActiveDimensions + 1), finfo.output_units ) if no_ghost: for field in fields: # Ensure we have the native endianness in this array. Avoid making # a copy if possible. old_field = np.asarray(self[field], dtype="=f8") # We'll use the ghost zone routine, which will naturally # extrapolate here. input_left = np.array([0.5, 0.5, 0.5], dtype="float64") output_left = np.array([0.0, 0.0, 0.0], dtype="float64") # rf = 1 here ghost_zone_interpolate( 1, old_field, input_left, new_fields[field], output_left ) else: cg = self.retrieve_ghost_zones(1, fields, smoothed=smoothed) for field in fields: src = cg[field].in_units(new_fields[field].units).d dest = new_fields[field].d np.add(dest, src[1:, 1:, 1:], dest) np.add(dest, src[:-1, 1:, 1:], dest) np.add(dest, src[1:, :-1, 1:], dest) np.add(dest, src[1:, 1:, :-1], dest) np.add(dest, src[:-1, 1:, :-1], dest) np.add(dest, src[1:, :-1, :-1], dest) np.add(dest, src[:-1, :-1, 1:], dest) np.add(dest, src[:-1, :-1, :-1], dest) np.multiply(dest, 0.125, dest) if _old_api: return new_fields[fields[0]] return new_fields def select_icoords(self, dobj): mask = self._get_selector_mask(dobj.selector) if mask is None: return np.empty((0, 3), dtype="int64") coords = convert_mask_to_indices(mask, self._last_count) coords += self.get_global_startindex()[None, :] return coords def select_fcoords(self, dobj): mask = self._get_selector_mask(dobj.selector) if mask is None: return
np.empty((0, 3), dtype="float64")
numpy.empty
""" Implementation of Neural Autoregressive Distribution Estimator (NADE) """ import numpy as np import torch import torch.nn as nn from one_out_lstm import OneOutLSTM torch.manual_seed(1) np.random.seed(5) class NADE(): def __init__(self, molecule_size=7, encoding_dim=55, lr=.01, hidden_units=256, generation='random', missing_token=np.zeros((55))): self._molecule_size = molecule_size self._input_dim = encoding_dim self._output_dim = encoding_dim self._layer = 2 self._hidden_units = hidden_units self._generation = generation self._missing = missing_token # Learning rate self._lr = lr # Build new model self._lstm_fordir = OneOutLSTM(self._input_dim, self._hidden_units, self._layer) self._lstm_backdir = OneOutLSTM(self._input_dim, self._hidden_units, self._layer) # Check availability of GPUs self._gpu = torch.cuda.is_available() self._device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): self._lstm_fordir = self._lstm_fordir.cuda() self._lstm_backdir = self._lstm_backdir.cuda() # Adam optimizer self._optimizer = torch.optim.Adam(list(self._lstm_fordir.parameters()) + list(self._lstm_backdir.parameters()), lr=self._lr, betas=(0.9, 0.999)) # Cross entropy loss self._loss = nn.CrossEntropyLoss(reduction='mean') def build(self, name=None): """Build new model or load model by name""" if (name is None): self._lstm_fordir = OneOutLSTM(self._input_dim, self._hidden_units, self._layer) self._lstm_backdir = OneOutLSTM(self._input_dim, self._hidden_units, self._layer) else: self._lstm_fordir = torch.load(name + '_fordir.dat', map_location=self._device) self._lstm_backdir = torch.load(name + '_backdir.dat', map_location=self._device) if torch.cuda.is_available(): self._lstm_fordir = self._lstm_fordir.cuda() self._lstm_backdir = self._lstm_backdir.cuda() self._optimizer = torch.optim.Adam(list(self._lstm_fordir.parameters()) + list(self._lstm_backdir.parameters()), lr=self._lr, betas=(0.9, 0.999)) def train(self, data, label, epochs=1, batch_size=1): '''Train the model :param data: data array (n_samples, molecule_length, encoding_length) label: label array (n_samples, molecule_length) epochs: number of epochs for the training :return statistic: array storing computed losses (epochs, batchs) ''' # Number of samples n_samples = data.shape[0] # Change axes from (n_samples, molecule_size, encoding_dim) to (molecule_size, n_samples, encoding_dim) data = np.swapaxes(data, 0, 1) # Create tensor for labels label = torch.from_numpy(label).to(self._device) # Calculate number of batches per epoch if (n_samples % batch_size) is 0: n_iter = n_samples // batch_size else: n_iter = n_samples // batch_size + 1 # To store losses statistic = np.zeros((epochs, n_iter)) # Prepare model for training self._lstm_fordir.train() self._lstm_backdir.train() # Iteration over epochs for i in range(epochs): # Iteration over batches for n in range(n_iter): # Reset gradient for each epoch self._optimizer.zero_grad() # Compute indices used as batch batch_start = n * batch_size batch_end = min((n + 1) * batch_size, n_samples) # Initialize loss for molecule molecule_loss = 0 # Compute data for this batch batch_data = torch.from_numpy(data[:, batch_start:batch_end, :].astype('float32')).to(self._device) # Different cases for training if self._generation == 'random': # Initialize loss for molecule tot_loss = torch.zeros(1).to(self._device) # Reset model with correct batch size self._lstm_fordir.new_sequence(batch_end - batch_start, self._device) self._lstm_backdir.new_sequence(batch_end - batch_start, self._device) # Output for each position position_out = torch.zeros(self._molecule_size, batch_end - batch_start, self._input_dim).to( self._device) # Forward iteration over molecules (Token at position n-2 and n-1 not read since no prediction for next tokens) for j in range(self._molecule_size - 2): # Prepare input tensor with dimension (1,batch_size, molecule_size) input = batch_data[j].view(1, batch_end - batch_start, -1) # Probabilities for forward and backward token position_out[j + 1] = torch.add(position_out[j + 1], self._lstm_fordir(input)) # Backward iteration over molecules (Token at position 0 and 1 not read since no prediction for next tokens) for j in range(self._molecule_size - 1, 1, -1): # Prepare input tensor with dimension (1,batch_size, molecule_size) input = batch_data[j].view(1, batch_end - batch_start, -1) # Probabilities for forward and backward token position_out[j - 1] = torch.add(position_out[j - 1], self._lstm_backdir(input)) # Compute loss for token from 1 to n-2 (loss not computed for first (0) and last token (n-1)) for j in range(1, self._molecule_size - 1): # Cross-entropy loss loss = self._loss(position_out[j], label[batch_start:batch_end, j]) # Sum loss over molecule molecule_loss += loss.item() # Add loss tensor tot_loss = torch.add(tot_loss, loss) # Compute gradients tot_loss.backward() # Store statistics: loss per token (middle token not included) statistic[i, n] = molecule_loss / (self._molecule_size - 2) # Perform optimization step self._optimizer.step() elif self._generation == 'fixed': # Prepare missing data for this batch missing_data = np.repeat(self._missing, batch_end - batch_start, axis=0) missing_data = np.swapaxes(missing_data, 0, 1) missing_data = torch.from_numpy(missing_data.astype('float32')).to(self._device) # The losses for position p and position molecule_size-p-1 are computed within a single loop iteration for p in range(1, int(np.ceil(self._molecule_size / 2))): # Initialize new sequence self._lstm_fordir.new_sequence(batch_end - batch_start, self._device) self._lstm_backdir.new_sequence(batch_end - batch_start, self._device) # Iteration forward direction # Read tokens until position p for j in range(p): input = batch_data[j].view(1, batch_end - batch_start, -1) out = self._lstm_fordir(input) pred_1 = out # Read token at position p, since this token is predicted before the token at position molecule_size-1-p input = batch_data[p].view(1, batch_end - batch_start, -1) self._lstm_fordir(input) # Read missing value until position molecule_size-1-p for j in range(p + 1, self._molecule_size - 1 - p): out = self._lstm_fordir(missing_data) pred_2 = out # Iteration backward direction # Read backwards until position molecule_size-1-p for j in range(self._molecule_size - 1, self._molecule_size - p - 1, -1): input = batch_data[j].view(1, batch_end - batch_start, -1) out = self._lstm_backdir(input) pred_2 = torch.add(pred_2, out) # Read missing values backwards until position p for j in range(self._molecule_size - p - 1, p, -1): out = self._lstm_backdir(missing_data) pred_1 = torch.add(pred_1, out) # Cross-entropy loss for position p loss_1 = self._loss(pred_1[0], label[batch_start:batch_end, p]) loss_1.backward(retain_graph=True) # Accumulate gradients molecule_loss += loss_1.item() # Compute loss for position molecule_size-1-p if it is not equal to position p. They are equal in the case of an odd SMILES length for the middle token. if p != self._molecule_size - 1 - p: loss_2 = self._loss(pred_2[0], label[batch_start:batch_end, self._molecule_size - p - 1]) loss_2.backward() # Accumulate gradients molecule_loss += loss_2.item() del loss_2, pred_2 # Delete to reduce memory usage del loss_1, pred_1 # Delete to reduce memory usage # Store statistics: loss per token (middle token not included) statistic[i, n] = molecule_loss / (self._molecule_size - 2) # Perform optimization step self._optimizer.step() return statistic def validate(self, data, label, batch_size=128): ''' Validation of model and compute error :param data: test data (n_samples, molecule_size, encoding_size) :param label: label data (n_samples, molecule_size) :param batch_size: batch size for validation :return: mean loss over test data ''' # Use train mode to get loss consistent with training self._lstm_fordir.train() self._lstm_backdir.train() # Gradient is not compute to reduce memory requirements with torch.no_grad(): # Compute tensor of labels label = torch.from_numpy(label).to(self._device) # Number of samples n_samples = data.shape[0] # Change axes from (n_samples, molecule_size, encoding_dim) to (molecule_size , n_samples, encoding_dim) data = np.swapaxes(data, 0, 1) # Initialize loss for complete validation set tot_loss = 0 # Calculate number of batches per epoch if (n_samples % batch_size) is 0: n_iter = n_samples // batch_size else: n_iter = n_samples // batch_size + 1 for n in range(n_iter): # Compute indices used as batch batch_start = n * batch_size batch_end = min((n + 1) * batch_size, n_samples) # Data used in this batch batch_data = torch.from_numpy(data[:, batch_start:batch_end, :].astype('float32')).to(self._device) # Output for each position position_out = torch.zeros(self._molecule_size, batch_end - batch_start, self._input_dim).to( self._device) # Initialize loss for molecule molecule_loss = 0 # Different cases for validation if self._generation == 'random': # Reset model with correct batch size and device self._lstm_fordir.new_sequence(batch_end - batch_start, self._device) self._lstm_backdir.new_sequence(batch_end - batch_start, self._device) # Forward iteration over molecules (Token at position n-2 and n-1 not read since no prediction for next tokens) for j in range(self._molecule_size - 2): # Prepare input tensor with dimension (1,batch_size, molecule_size) input = batch_data[j].view(1, batch_end - batch_start, -1) # Probabilities for forward and backward token position_out[j + 1] = torch.add(position_out[j + 1], self._lstm_fordir(input)) # Backward iteration over molecules (Token at position 0 and 1 not read since no prediction for next tokens) for j in range(self._molecule_size - 1, 1, -1): # Prepare input tensor with dimension (1,batch_size, molecule_size) input = batch_data[j].view(1, batch_end - batch_start, -1) # Probabilities for forward and backward token position_out[j - 1] = torch.add(position_out[j - 1], self._lstm_backdir(input)) # Compute loss for token from 1 ro n-2 (loss not computed for first (0) and last token (n-1)) for j in range(1, self._molecule_size - 1): # Cross-entropy loss loss = self._loss(position_out[j], label[batch_start:batch_end, j]) # Sum loss over molecule molecule_loss += loss.item() # Add loss per token to total loss (start token and end token not counted) tot_loss += molecule_loss / (self._molecule_size - 2) elif self._generation == 'fixed': # Prepare missing data for this batch missing_data = np.repeat(self._missing, batch_end - batch_start, axis=0) missing_data = np.swapaxes(missing_data, 0, 1) missing_data = torch.from_numpy(missing_data.astype('float32')).to(self._device) # The losses for position p and position molecule_size-p-1 are computed within a single loop iteration for p in range(1, int(np.ceil(self._molecule_size / 2))): # Reset model with correct batch size and device self._lstm_fordir.new_sequence(batch_end - batch_start, self._device) self._lstm_backdir.new_sequence(batch_end - batch_start, self._device) # Iteration forward direction # Read until position p for j in range(p): input = batch_data[j].view(1, batch_end - batch_start, -1) out = self._lstm_fordir(input) pred_1 = out # Read token at position p, since this token is predicted before the token at position molecule_size-1-p input = batch_data[p].view(1, batch_end - batch_start, -1) self._lstm_fordir(input) # Read missing value until position molecule_size-1-p for j in range(p + 1, self._molecule_size - 1 - p): out = self._lstm_fordir(missing_data) pred_2 = out # Iteration backward direction # Read backwards until position molecule_size-1-p for j in range(self._molecule_size - 1, self._molecule_size - p - 1, -1): input = batch_data[j].view(1, batch_end - batch_start, -1) out = self._lstm_backdir(input) pred_2 = torch.add(pred_2, out) # Read backwards until position p for j in range(self._molecule_size - p - 1, p, -1): out = self._lstm_backdir(missing_data) pred_1 = torch.add(pred_1, out) # Cross-entropy loss for position p loss_1 = self._loss(pred_1[0], label[batch_start:batch_end, p]) molecule_loss += loss_1.item() # Compute loss for position molecule_size-1-p if it is not equal to position p. They are equal in the case of an odd SMILES length for the middle token. if p != self._molecule_size - 1 - p: loss_2 = self._loss(pred_2[0], label[batch_start:batch_end, self._molecule_size - p - 1]) molecule_loss += loss_2.item() del loss_2, pred_2 del loss_1, pred_1 # Add loss per token to total loss (start token and end token not counted) tot_loss += molecule_loss / (self._molecule_size - 2) # Return loss per token return tot_loss / n_iter def sample(self, seq, T=1): '''Generate new molecule :param seq: starting sequence :param T: sampling temperature :return newly generated molecule (1, molecule_length, encoding_length) ''' # Prepare model self._lstm_fordir.eval() self._lstm_backdir.eval() # Gradient is not compute to reduce memory requirements with torch.no_grad(): # Output array with merged forward and backward directions # Change axes from (1, molecule_size, encoding_dim) to (molecule_size , 1, encoding_dim) seq = np.swapaxes(seq, 0, 1).astype('float32') # Create tensor for data and select correct device seq = torch.from_numpy(seq).to(self._device) # Construct specific order for the generation if self._generation == 'random': order = np.random.choice(np.arange(self._molecule_size - 2) + 1, self._molecule_size - 2, replace=False) elif self._generation == 'fixed': order = np.zeros(self._molecule_size - 2).astype(int) order[0::2] = np.arange(1, len(order[0::2]) + 1) order[1::2] = np.arange(self._molecule_size - 2, len(order[0::2]), -1) # Construct molecule in a predefined order for r in order: # Reset model with correct batch size and device self._lstm_fordir.new_sequence(1, self._device) self._lstm_backdir.new_sequence(1, self._device) # Forward iteration over molecule up to token r for j in range(r): # Prepare input tensor with dimension (molecule_size, 1, encoding_dim) input = seq[j].view(1, 1, -1) # Probabilities for forward and backward token (Overwriting until r is reached) output_for = self._lstm_fordir(input) # Backward iteration over molecule up to token r for j in range(self._molecule_size - 1, r, -1): # Prepare input tensor with dimension (1,batch_size, molecule_size) input = seq[j].view(1, 1, -1) # Probabilities for forward and backward token (Overwriting until r is reached) output_back = self._lstm_backdir(input) # Add output from forward and backward iterations out = torch.add(output_for, output_back) # Compute new token token = self.sample_token(np.squeeze(out.cpu().detach().numpy()), T) # Exchange token in sequence seq[r, 0, :] = torch.zeros(self._input_dim) seq[r, 0, token] = 1.0 return np.swapaxes(seq.cpu().numpy(), 0, 1) def sample_token(self, out, T=1.0): ''' Sample token :param out: output values from model :param T: sampling temperature :return: index of predicted token ''' # Explicit conversion to float64 avoiding truncation errors out = out.astype('float64') # Compute probabilities with specific temperature out_T = out / T p = np.exp(out_T) / np.sum(np.exp(out_T)) # Generate new token at random char =
np.random.multinomial(1, p, size=1)
numpy.random.multinomial
## Reader for labpics dataset import numpy as np import os import cv2 import json import threading import ClassesGroups import Visuallization as vis ######################################################################################################################### class Reader: # Initiate reader and define the main parameters for the data reader def __init__(self, MainDir=r"", MaxBatchSize=100,MinSize=250,MaxSize=1000,MaxPixels=800*800*5,MinMaskSize=1000, TrainingMode=True, IgnoreParts=True,IgnoreSurfacePhase=True, IgnoreScattered=True,ClassToUse=[]): self.ClassToUse=ClassToUse self.IgnoreParts = IgnoreParts self.IgnoreSurfacePhase = IgnoreSurfacePhase self.IgnoreScattered = IgnoreScattered self.MinMaskSize=MinMaskSize # mininimal vessel instance size in pixel (smaller will be ignored self.MaxBatchSize=MaxBatchSize # Max number of image in batch self.MinSize=MinSize # Min image width and hight in pixels self.MaxSize=MaxSize #Max image width and hight in pixels self.MaxPixels=MaxPixels # Max number of pixel in all the batch (reduce to solve oom out of memory issues) self.epoch = 0 # Training Epoch self.itr = 0 # Training iteratation # ----------------------------------------Create list of annotations arranged by class-------------------------------------------------------------------------------------------------------------- self.AnnList = [] # Image/annotation list self.AnnByCat = {} # Image/annotation list by class print("Creating annotation list for reader this might take a while") for AnnDir in os.listdir(MainDir): self.AnnList.append(MainDir+"/"+AnnDir) #------------------------------------------------------------------------------------------------------------ print("done making file list Total=" + str(len(self.AnnList))) if TrainingMode: self.StartLoadBatchInstance() # Start loading instance mask batch (multi threaded) self.StartLoadBatchSemantic() # Start loading semantic maps batch (multi threaded) self.AnnData=False ############################################################################################################################# ############################################################################################################################# # Crop and resize image and annotation mask and ROI to feet batch size def CropResize(self,Img, InsMasks ,Hb,Wb): # ========================resize image if it too small to the batch size================================================================================== bbox= cv2.boundingRect(InsMasks['Vessel'].astype(np.uint8)) [h, w, d] = Img.shape #================================================================================================= if np.random.rand() < 0.3: Img = cv2.resize(Img, dsize=(Wb, Hb), interpolation=cv2.INTER_LINEAR) for nm in InsMasks: InsMasks[nm] = cv2.resize(InsMasks[nm], dsize=(Wb, Hb), interpolation=cv2.INTER_NEAREST) return Img, InsMasks #==================================================================================================== Wbox = int(np.floor(bbox[2])) # Segment Bounding box width Hbox = int(np.floor(bbox[3])) # Segment Bounding box height if Hbox == 0 or Wbox == 0: print("empty box") exit(0) if Wbox==0: Wbox+=1 if Hbox == 0: Hbox += 1 Rs = np.max((Hb / h, Wb / w)) # Check if target size larger then corrent image size Bs = np.min((Hb / Hbox, Wb / Wbox)) # Check if target size smaller then bounding box if Rs > 1 or Bs<1 or np.random.rand()<0.2: # Resize image and mask to batch size if mask is smaller then batch or if segment bounding box larger then batch image size h = int(np.max((h * Rs, Hb))) w = int(np.max((w * Rs, Wb))) Img = cv2.resize(Img, dsize=(w, h), interpolation=cv2.INTER_LINEAR) for nm in InsMasks: InsMasks[nm] = cv2.resize(InsMasks[nm], dsize=(w, h), interpolation=cv2.INTER_NEAREST) bbox = (np.float32(bbox) * Rs.astype(np.float)).astype(np.int64) # =======================Crop image to fit batch size=================================================================================== x1 = int(np.floor(bbox[0])) # Bounding box x position Wbox = int(np.floor(bbox[2])) # Bounding box width y1 = int(np.floor(bbox[1])) # Bounding box y position Hbox = int(np.floor(bbox[3])) # Bounding box height if Wb > Wbox: Xmax = np.min((w - Wb, x1)) Xmin = np.max((0, x1 - (Wb - Wbox)-1)) else: Xmin = x1 Xmax = np.min((w - Wb, x1 + (Wbox - Wb)+1)) if Hb > Hbox: Ymax = np.min((h - Hb, y1)) Ymin = np.max((0, y1 - (Hb - Hbox)-1)) else: Ymin = y1 Ymax = np.min((h - Hb, y1 + (Hbox - Hb)+1)) if Ymax<=Ymin: y0=Ymin else: y0 = np.random.randint(low=Ymin, high=Ymax + 1) if Xmax<=Xmin: x0=Xmin else: x0 = np.random.randint(low=Xmin, high=Xmax + 1) # Img[:,:,1]*=Mask # misc.imshow(Img) Img = Img[y0:y0 + Hb, x0:x0 + Wb, :] for nm in InsMasks: InsMasks[nm] = InsMasks[nm][y0:y0 + Hb, x0:x0 + Wb] if not (InsMasks[nm].shape[0] == Hb and InsMasks[nm].shape[1] == Wb): InsMasks = cv2.resize(InsMasks[nm].astype(float),dsize=(Wb, Hb), interpolation=cv2.INTER_NEAREST) #------------------------------------------Verify shape match the batch shape---------------------------------------------------------------------------------------- if not (Img.shape[0] == Hb and Img.shape[1] == Wb): Img = cv2.resize(Img, dsize=(Wb, Hb),interpolation=cv2.INTER_LINEAR) #----------------------------------------------------------------------------------------------------------------------------------------------------------------------- return Img,InsMasks ######################################################Augmented Image################################################################################################################################## def Augment(self,Img,InsMasks,prob): Img=Img.astype(np.float) if
np.random.rand()
numpy.random.rand
from aux_oampnet2 import get_complete_tensor_model from sklearn.model_selection import train_test_split from keras.optimizers import Adam from keras.callbacks import TerminateOnNaN, ModelCheckpoint import numpy as np import tensorflow as tf import hdf5storage import os from keras import backend as K # GPU allocation K.clear_session() tf.reset_default_graph() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"; os.environ["CUDA_VISIBLE_DEVICES"] = "2"; # Set global seed np.random.seed(2020) # Tensorflow memory allocation config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 1. K.tensorflow_backend.set_session(tf.Session(config=config)) # System parameters num_tx, num_rx = 4, 4 mod_size = 4 # Architecture parameters num_iterations = 4 # Training parameters batch_size = 100 num_epochs = 10 learning_rate = 1e-4 # Load bitmaps contents = hdf5storage.loadmat('constellation%d.mat' % mod_size) constellation = contents['constellation'] # !!! Has to be swapped for 64-QAM # Load training data train_file = 'matlab/data/extended_rayleigh_ml_mimo%dby%d_mod%d_seed1234.mat' % (num_rx, num_tx, mod_size) contents = hdf5storage.loadmat(train_file) ref_x = np.squeeze(np.asarray(contents['ref_x'])) ref_y = np.squeeze(np.asarray(contents['ref_y'])) ref_h = np.squeeze(np.asarray(contents['ref_h'])) ref_labels = np.squeeze(np.asarray(contents['ref_labels'])) train_snr_array = np.squeeze(np.asarray(contents['snr_range'])) # Load test data # test_file = 'matlab/data/extended_rayleigh_zf-sic_mimo%dby%d_mod%d_seed9999.mat' % (num_rx, num_tx, mod_size) test_file = 'matlab/data/extended_rayleigh_ml_mimo%dby%d_mod%d_seed4321.mat' % (num_rx, num_tx, mod_size) contents = hdf5storage.loadmat(test_file) ref_x_test = np.squeeze(np.asarray(contents['ref_x'])) ref_y_test = np.squeeze(np.asarray(contents['ref_y'])) ref_h_test = np.squeeze(np.asarray(contents['ref_h'])) ref_labels_test = np.squeeze(np.asarray(contents['ref_labels'])) test_snr_array = np.squeeze(np.asarray(contents['snr_range'])) # For each SNR point for train_snr_idx, train_snr_value in enumerate(train_snr_array): # Clear session K.clear_session() # Get noise power sigma_n = 10 ** (-train_snr_value / 10) # Reshapes x_train = np.moveaxis(ref_x[train_snr_idx], -1, -2) x_train = np.reshape(x_train, (-1, num_tx)) y_train = np.moveaxis(ref_y[train_snr_idx], -1, -2) y_train = np.reshape(y_train, (-1, num_rx)) h_train = np.moveaxis(ref_h[train_snr_idx], -1, -3) h_train = np.reshape(h_train, (-1, num_rx, num_tx)) # Construct input-x starting at zeroes x_input_train = np.zeros((y_train.shape[0], num_tx)) # Construct v starting with zero estimate v_train = (np.square(np.linalg.norm(y_train, axis=-1, keepdims=True)) - num_rx * sigma_n) / np.trace(np.matmul( np.conj(np.transpose(h_train, axes=(0, 2, 1))), h_train), axis1=-1, axis2=-2)[..., None] v_train = np.real(v_train) v_train = np.maximum(v_train, 5e-13) # Construct tau starting at ones tau_train = np.ones((y_train.shape[0], 1)) # Split into real/imaginary x_input_real_train, x_input_imag_train = np.real(x_input_train), np.imag(x_input_train) x_real_train, x_imag_train = np.real(x_train), np.imag(x_train) y_real_train, y_imag_train = np.real(y_train), np.imag(y_train) h_real_train, h_imag_train = np.real(h_train), np.imag(h_train) # Split into training/validation x_input_real_train, x_input_real_val, x_input_imag_train, x_input_imag_val, \ x_real_train, x_real_val, x_imag_train, x_imag_val, \ y_real_train, y_real_val, y_imag_train, y_imag_val, \ h_real_train, h_real_val, h_imag_train, h_imag_val, \ v_train, v_val, tau_train, tau_val = \ train_test_split(x_input_real_train, x_input_imag_train, x_real_train, x_imag_train, y_real_train, y_imag_train, h_real_train, h_imag_train, v_train, tau_train, test_size=0.2, random_state=2020) # Result directory global_dir = 'oampnet2_models' if not os.path.exists(global_dir): os.makedirs(global_dir) # Local directory local_dir = global_dir + '/mod%d_layers%d_lr%.4f_batch%d_snr%.2f' % ( mod_size, num_iterations, learning_rate, batch_size, train_snr_value) if not os.path.exists(local_dir): os.makedirs(local_dir) # Instantiate model full_model = get_complete_tensor_model(num_tx, num_rx, mod_size, constellation, sigma_n, num_iterations) # Optimizer optimizer = Adam(lr=learning_rate) # Compile with symbol-wise cross-entropy full_model.compile(optimizer=optimizer, loss='mean_squared_error') # Best weights best_weights = ModelCheckpoint(local_dir + '/best_weights.h5', monitor='val_loss', save_best_only=True, save_weights_only=True) # Train history = full_model.fit(x=[x_input_real_train, x_input_imag_train, y_real_train, y_imag_train, h_real_train, h_imag_train, v_train, tau_train], y=[x_real_train, x_imag_train], epochs=num_epochs, batch_size=batch_size, validation_data=([x_input_real_val, x_input_imag_val, y_real_val, y_imag_val, h_real_val, h_imag_val, v_val, tau_val], [x_real_val, x_imag_val]), callbacks=[best_weights, TerminateOnNaN()]) # Load best weights full_model.load_weights(local_dir + '/best_weights.h5') # Prepare test data x_test = np.moveaxis(ref_x_test[train_snr_idx], -1, -2) x_test = np.reshape(x_test, (-1, num_tx)) y_test = np.moveaxis(ref_y_test[train_snr_idx], -1, -2) y_test = np.reshape(y_test, (-1, num_rx)) h_test = np.moveaxis(ref_h_test[train_snr_idx], -1, -3) h_test =
np.reshape(h_test, (-1, num_rx, num_tx))
numpy.reshape
#!/usr/bin/env python import math import numpy as np import scipy.special as special import scipy.stats as stats from matplotlib import pyplot as plt def nSmallerThan(data, limit): smallerVec = data < limit nSmallerThan = np.count_nonzero(smallerVec) return nSmallerThan def logLikelihood(lam, data): output = np.zeros(len(data)) for i in range(len(data)): logfacdatai = 0 for j in range(1, int(data[i] + 0.5)): logfacdatai += np.log(j) output[i] = data[i]*np.log(lam) - logfacdatai - lam return output def calcT(measuredW, expW, varW): tmp = 0 for i in range(len(measuredW)): tmp += np.square(measuredW[i] - expW)/varW return tmp/len(measuredW) #def countInIntervals def calcPFAPoisson(data): dataNorm = np.zeros(len(data), dtype=int) minData =
np.min(data)
numpy.min
# -*- coding: utf-8 -*- """ Non-uniform Fast Fourier Transform. """ from functools import lru_cache import numpy as np from scipy.fftpack import fft, ifft from math import sqrt, log, pi def nfftfreq(M, df=1): """ Compute the frequency range used in nfft for `M` frequency bins. Parameters ---------- M : int Number of frequency bins. df : float, optional Frequency range. Returns ------- freqs : `~numpy.ndarray` """ M = int(M) return df * np.arange(-(M // 2), M - (M // 2)) def nfft(x, y, M, df=1.0, eps=1e-15): """ Non-uniform Fast Fourier Transform (NFFT) computed on a uniform frequency grid. Parameters ---------- x : array-like real locations of the signal y : array-like Signal, possibly complex. M : int Number of frequencies on which the transform is computed. df : float, optional Frequency range. eps : float, optional The desired approximate error for the FFT result. Returns ------- out : `~numpy.ndarray`, dtype complex Non-uniform Fast Fourier Transform. Raises ------ ValueError : if ``x`` and ``y`` don't have the same shape. See Also -------- nfftfreq : compute the frequencies of the nfft results References ---------- .. [NFFT] <NAME> and <NAME>, Accelerating the Nonuniform Fast Fourier Transform. SIAM Review, Vol. 46, No. 3, pp. 443-454 (2005). """ x, y =
np.atleast_1d(x, y)
numpy.atleast_1d
# In the 20×20 grid below, four numbers along a diagonal line have been marked in red. # 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 # 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 # 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 # 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 # 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 # 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 # 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 # 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 # 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 # 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 # 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 # 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 # 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 # 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 # 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 # 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 # 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 # 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 # 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 # 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 # The product of these numbers is 26 × 63 × 78 × 14 = 1788696. # What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid? grid = """ 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 """ import re import numpy as np adjacent_nums = 4 data = [int(i) for i in re.findall("[0-9]+", grid)] # make a list of integers arr =
np.array(data, dtype=np.int32)
numpy.array
""" =============== emc2.core.Model =============== This module contains the Model class and example Models for your use. """ import xarray as xr import numpy as np from act.io.armfiles import read_netcdf from .instrument import ureg, quantity from netCDF4 import Dataset try: from wrf import tk, getvar, ALL_TIMES WRF_PYTHON_AVAILABLE = True except ImportError: WRF_PYTHON_AVAILABLE = False class Model(): """ This class stores the model specific parameters for the radar simulator. Attributes ---------- Rho_hyd: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the density of said hydrometeors in :math:`kg\ m^{-3}` fluffy: dict A dictionary whose keys are the names of the model's ice hydrometeor classes and whose values are the ice fluffiness factor for the fwd calculations using r_e, where values of 0 - equal volume sphere, 1 - fluffy sphere i.e., diameter = maximum dimension. lidar_ratio: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the lidar_ratio of said hydrometeors. vel_param_a: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the :math:`a` parameters to the equation :math:`V = aD^b` used to calculate terminal velocity corresponding to each hydrometeor. vel_param_b: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the :math:`b` parameters to the equation :math:`V = aD^b` used to calculate terminal velocity corresponding to each hydrometeor. N_field: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the number concentrations in :math:`cm^{-3}` corresponding to each hydrometeor class. T_field: str A string containing the name of the temperature field in the model. q_field: str A string containing the name of the water vapor mixing ratio field (in kg/kg) in the model. p_field: str A string containing the name of the pressure field (in mbar) in the model. z_field: str A string containing the name of the height field (in m) in the model. conv_frac_names: dict A dictionary containing the names of the convective fraction corresponding to each hydrometeor class in the model. strat_frac_names: dict A dictionary containing the names of the stratiform fraction corresponding to each hydrometeor class in the model. conv_frac_names_for_rad: dict A dictionary containing the names of the convective fraction corresponding to each hydrometeor class in the model for the radiation scheme. strat_frac_names_for_rad: dict A dictionary containing the names of the stratiform fraction corresponding to each hydrometeor class in the model for the radiation scheme. conv_re_fields: dict A dictionary containing the names of the effective radii of each convective hydrometeor class strat_re_fields: dict A dictionary containing the names of the effective radii of each stratiform hydrometeor class time_dim: str The name of the time dimension in the model. height_dim: str The name of the height dimension in the model. model_name: str The name of the model (used for plotting). x_dim: str The name of the x dimension of the model. y_dim: str The name of the y dimension of the model. """ def __init__(self): self.Rho_hyd = {} self.fluffy = {} self.lidar_ratio = {} self.LDR_per_hyd = {} self.vel_param_a = {} self.vel_param_b = {} self.q_names_convective = {} self.q_names_stratiform = {} self.N_field = {} self.T_field = "" self.q_field = "" self.p_field = "" self.z_field = "" self.qp_field = {} self.conv_frac_names = {} self.strat_frac_names = {} self.conv_frac_names_for_rad = {} self.strat_frac_names_for_rad = {} self.conv_re_fields = {} self.strat_re_fields = {} self.ds = None self.time_dim = "time" self.height_dim = "height" self.model_name = "empty_model" self.x_dim = None self.y_dim = None self.lat_name = None self.lon_name = None self.consts = {"c": 299792458.0, # m/s "R_d": 287.058, # J K^-1 Kg^-1 "g": 9.80665, # m/s^2 "Avogadro_c": 6.022140857e23, "R": 8.3144598} # J K^-1 mol^-1 def _add_vel_units(self): for my_keys in self.vel_param_a.keys(): self.vel_param_a[my_keys] = self.vel_param_a[my_keys] * ( ureg.meter ** (1 - self.vel_param_b[my_keys].magnitude) / ureg.second) def _prepare_variables(self): for variable in self.ds.variables.keys(): attrs = self.ds[variable].attrs try: self.ds[variable] = self.ds[variable].astype('float64') except TypeError: continue self.ds[variable].attrs = attrs def _crop_time_range(self, time_range): """ Crop model output time range. Can significantly cut subcolumn processing time. Parameters ---------- time_range: tuple, list, or array, typically in datetime64 format Two-element array with starting and ending of time range. """ time_ind = np.logical_and(self.ds[self.time_dim] >= time_range[0], self.ds[self.time_dim] < time_range[1]) if np.sum(time_ind) == 0: self.ds.close() print("The requested time range: {0} to {1} is out of the \ model output range; Ignoring crop request.".format(time_range[0], time_range[1])) else: self.ds = self.ds.isel({self.time_dim: time_ind}) @property def hydrometeor_classes(self): """ The list of hydrometeor classes. """ return list(self.N_field.keys()) @property def num_hydrometeor_classes(self): """ The number of hydrometeor classes """ return len(list(self.N_field.keys())) @property def num_subcolumns(self): """ Gets the number of subcolumns in the model. Will return 0 if the number of subcolumns has not yet been set. """ if 'subcolumn' in self.ds.dims.keys(): return self.ds.dims['subcolumn'] else: return 0 @num_subcolumns.setter def num_subcolumns(self, a): """ This will set the number of subcolumns in the simulated radar output. This is a handy shortcut for setting the number of subcolumns if you do not want to use any of the functions in the simulator module to do so. """ subcolumn = xr.DataArray(np.arange(a), dims='subcolumn') self.ds['subcolumn'] = subcolumn def subcolumns_to_netcdf(self, file_name): """ Saves all of the simulated subcolumn parameters to a netCDF file. Parameters ---------- file_name: str The name of the file to save to. """ # Set all relevant variables to save: vars_to_keep = ["sub_col", "subcol", "strat_", "conv_", "_tot", "_ext", "_mask", "_min", "mpr", "fpr"] var_dict = {} for my_var in self.ds.variables.keys(): if np.any([x in my_var for x in vars_to_keep]): var_dict[my_var] = self.ds[my_var] out_ds = xr.Dataset(var_dict) out_ds.to_netcdf(file_name) def load_subcolumns_from_netcdf(self, file_name): """ Load all of the subcolumn data from a previously saved netCDF file. The dataset being loaded must match the current number of subcolumns if there are any generated. Parameters ---------- file_name: str Name of the file to save. """ my_file = xr.open_dataset(file_name) self.ds = xr.merge([self.ds, my_file]) my_file.close() class ModelE(Model): def __init__(self, file_path, time_range=None): """ This loads a ModelE simulation with all of the necessary parameters for EMC^2 to run. Parameters ---------- file_path: str Path to a ModelE simulation. """ super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m**3), 'ci': 500. * ureg.kg / (ureg.m**3), 'pl': 1000. * ureg.kg / (ureg.m**3), 'pi': 250. * ureg.kg / (ureg.m**3)} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m**3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m**3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m**3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m**3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_field = "q" self.N_field = {'cl': 'ncl', 'ci': 'nci', 'pl': 'npl', 'pi': 'npi'} self.p_field = "p_3d" self.z_field = "z" self.T_field = "t" self.height_dim = "p" self.time_dim = "time" self.conv_frac_names = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.conv_frac_names_for_rad = {'cl': 'cldmcr', 'ci': 'cldmcr', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names_for_rad = {'cl': 'cldssr', 'ci': 'cldssr', 'pl': 'cldssr', 'pi': 'cldssr'} self.conv_re_fields = {'cl': 're_mccl', 'ci': 're_mcci', 'pi': 're_mcpi', 'pl': 're_mcpl'} self.strat_re_fields = {'cl': 're_sscl', 'ci': 're_ssci', 'pi': 're_sspi', 'pl': 're_sspl'} self.q_names_convective = {'cl': 'QCLmc', 'ci': 'QCImc', 'pl': 'QPLmc', 'pi': 'QPImc'} self.q_names_stratiform = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.ds = read_netcdf(file_path) # Check to make sure we are loading a single column if 'lat' in [x for x in self.ds.dims.keys()]: if self.ds.dims['lat'] != 1 or self.ds.dims['lon'] != 1: self.ds.close() raise RuntimeError("%s is not an SCM run. EMC^2 will only work with SCM runs." % file_path) # No need for lat and lon dimensions self.ds = self.ds.squeeze(dim=('lat', 'lon')) # crop specific model output time range (if requested) if time_range is not None: if np.issubdtype(time_range.dtype, np.datetime64): super()._crop_time_range(time_range) else: raise RuntimeError("input time range is not in the required datetime64 data type") # ModelE has pressure units in mb, but pint only supports hPa self.ds["p_3d"].attrs["units"] = "hPa" self.model_name = "ModelE" class E3SM(Model): def __init__(self, file_path, time_range=None): """ This loads an E3SM simulation output with all of the necessary parameters for EMC^2 to run. Parameters ---------- file_path: str Path to an E3SM simulation. """ super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m**3), 'ci': 500. * ureg.kg / (ureg.m**3), 'pl': 1000. * ureg.kg / (ureg.m**3), 'pi': 250. * ureg.kg / (ureg.m**3)} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m**3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m**3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m**3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m**3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_field = "Q" self.N_field = {'cl': 'NUMLIQ', 'ci': 'NUMICE', 'pl': 'NUMRAI', 'pi': 'NUMSNO'} self.p_field = "p_3d" self.z_field = "Z3" self.T_field = "T" self.height_dim = "lev" self.time_dim = "ncol" self.conv_frac_names = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pl': 'zeros_cf', 'pi': 'zeros_cf'} self.strat_frac_names = {'cl': 'CLOUD', 'ci': 'CLOUD', 'pl': 'CLOUD', 'pi': 'CLOUD'} self.conv_frac_names_for_rad = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pl': 'zeros_cf', 'pi': 'zeros_cf'} self.strat_frac_names_for_rad = {'cl': 'CLOUD', 'ci': 'CLOUD', 'pl': 'CLOUD', 'pi': 'CLOUD'} self.conv_re_fields = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pi': 'zeros_cf', 'pl': 'zeros_cf'} self.strat_re_fields = {'cl': 'AREL', 'ci': 'AREI', 'pi': 'ADSNOW', 'pl': 'ADRAIN'} self.q_names_convective = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pl': 'zeros_cf', 'pi': 'zeros_cf'} self.q_names_stratiform = {'cl': 'CLDLIQ', 'ci': 'CLDICE', 'pl': 'RAINQM', 'pi': 'SNOWQM'} self.ds = read_netcdf(file_path) # Check to make sure we are loading a single column if 'lat' in [x for x in self.ds.dims.keys()]: if self.ds.dims['lat'] != 1 or self.ds.dims['lon'] != 1: self.ds.close() raise RuntimeError("%s is not a column dataset. EMC^2 will currently works with column data." % file_path) # No need for lat and lon dimensions self.ds = self.ds.squeeze(dim=('lat', 'lon')) # crop specific model output time range (if requested) if time_range is not None: if np.issubdtype(time_range.dtype, np.datetime64): super()._crop_time_range(time_range) else: raise RuntimeError("input time range is not in the required datetime64 data type") self.ds[self.p_field] = (self.ds["P0"] * self.ds["hyam"] + self.ds["PS"] * self.ds["hybm"]).T / 1e2 # hPa self.ds[self.p_field].attrs["units"] = "hPa" self.ds["zeros_cf"] = xr.DataArray(np.zeros_like(self.ds[self.p_field].values), dims=self.ds[self.p_field].dims) self.ds["zeros_cf"].attrs["long_name"] = "An array of zeros as only strat output is used for this model" for hyd in ["pl", "pi"]: self.ds[self.strat_re_fields[hyd]].values /= 2 # Assuming effective diameter was provided self.ds["rho_a"] = self.ds[self.p_field] * 1e2 / (self.consts["R_d"] * self.ds[self.T_field]) self.ds["rho_a"].attrs["units"] = "kg / m ** 3" for hyd in ["cl", "ci", "pl", "pi"]: self.ds[self.N_field[hyd]].values *= self.ds["rho_a"].values # convert from mass number to number self.model_name = "E3SM" class WRF(Model): def __init__(self, file_path, z_range=None, time_range=None, w_thresh=1, t=None): """ This load a WRF simulation and all of the necessary parameters from the simulation. Parameters ---------- file_path: str Path to WRF simulation. time_range: tuple or None Start and end time to include. If this is None, the entire simulation will be included. z_range: numpy array or None The z levels of the vertical grid you want to use. By default, the levels are 0 m to 15000 m, increasing by 500 m. w_thresh: float The threshold of vertical velocity for defining a grid cell as convective. t: int or None The timestep number to subset the WRF data into. Set to None to load all of the data """ if not WRF_PYTHON_AVAILABLE: raise ModuleNotFoundError("wrf-python must be installed in " + "order to read WRF data.") if z_range is None: z_range = np.arange(0., 15000., 500.) super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m**3), 'ci': 500. * ureg.kg / (ureg.m**3), 'pl': 1000. * ureg.kg / (ureg.m**3), 'pi': 100. * ureg.kg / (ureg.m**3)} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m**3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m**3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m**3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m**3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} super()._add_vel_units() self.q_names = {'cl': 'QCLOUD', 'ci': 'QICE', 'pl': 'QRAIN', 'qpi': 'QSNOW'} self.q_field = "QVAPOR" self.N_field = {'cl': 'QNCLOUD', 'ci': 'QNICE', 'pl': 'QNRAIN', 'pi': 'QNSNOW'} self.p_field = "pressure" self.z_field = "Z" self.T_field = "T" self.conv_frac_names = {'cl': 'conv_frac', 'ci': 'conv_frac', 'pl': 'conv_frac', 'pi': 'conv_frac'} self.strat_frac_names = {'cl': 'strat_frac', 'ci': 'strat_frac', 'pl': 'strat_frac', 'pi': 'strat_frac'} self.conv_frac_names_for_rad = { 'cl': 'conv_frac', 'ci': 'conv_frac', 'pl': 'conv_frac', 'pi': 'conv_frac'} self.strat_frac_names_for_rad = { 'cl': 'strat_frac', 'ci': 'strat_frac', 'pl': 'strat_frac', 'pi': 'strat_frac'} self.re_fields = {'cl': 'strat_cl_frac', 'ci': 'strat_ci_frac', 'pi': 'strat_pi_frac', 'pl': 'strat_pl_frac'} self.strat_re_fields = {'cl': 'strat_cl_re', 'ci': 'strat_ci_frac', 'pi': 'strat_pi_re', 'pl': 'strat_pl_frac'} self.conv_re_fields = {'cl': 'conv_cl_re', 'ci': 'conv_ci_re', 'pi': 'conv_pi_re', 'pl': 'conv_pl_re'} self.q_names_convective = {'cl': 'qclc', 'ci': 'qcic', 'pl': 'qplc', 'pi': 'qpic'} self.q_names_stratiform = {'cl': 'qcls', 'ci': 'qcis', 'pl': 'qpls', 'pi': 'qpis'} ds = xr.open_dataset(file_path) wrfin = Dataset(file_path) self.ds = {} self.ds["pressure"] = ds["P"] + ds["PB"] self.ds["pressure"].attrs["units"] = "hPa" self.ds["Z"] = getvar(wrfin, "z", units="m", timeidx=ALL_TIMES) self.ds["T"] = getvar(wrfin, "tk", timeidx=ALL_TIMES) self.ds["T"] = self.ds["T"] + 273.15 self.ds["T"].attrs["units"] = "K" W = getvar(wrfin, "wa", units="m s-1", timeidx=ALL_TIMES) shp = W.values.shape W = W.values.max(axis=1) W = np.transpose(np.tile(W, (shp[1], 1, 1, 1)), [1, 0, 2, 3]) where_conv = np.where(W > w_thresh, 1, 0) self.ds["conv_frac"] = xr.DataArray( where_conv, dims=('Time', 'bottom_top', 'north_south', 'east_west')) self.ds["strat_frac"] = xr.DataArray( 1 - where_conv, dims=('Time', 'bottom_top', 'north_south', 'east_west')) self.ds["qclc"] = ds["QCLOUD"] * where_conv self.ds["qcic"] = ds["QICE"] * where_conv self.ds["qplc"] = ds["QRAIN"] * where_conv self.ds["qpic"] = ds["QSNOW"] * where_conv self.ds["qcls"] = ds["QCLOUD"] * (1 - where_conv) self.ds["qcis"] = ds["QICE"] * (1 - where_conv) self.ds["qpls"] = ds["QRAIN"] * (1 - where_conv) self.ds["qpis"] = ds["QSNOW"] * (1 - where_conv) self.ds["QNCLOUD"] = ds["QNCLOUD"] self.ds["QNRAIN"] = ds["QNRAIN"] self.ds["QNSNOW"] = ds["QNSNOW"] self.ds["QNICE"] = ds["QNICE"] self.ds["QVAPOR"] = ds["QVAPOR"] self.time_dim = "Time" self.height_dim = "bottom_top" self.model_name = "WRF" self.lat_name = "XLAT" self.lon_name = "XLONG" wrfin.close() for keys in self.ds.keys(): try: self.ds[keys] = self.ds[keys].drop("XTIME") except KeyError: continue self.ds = xr.Dataset(self.ds) # crop specific model output time range (if requested) if time_range is not None: super()._crop_time_range(time_range) class DHARMA(Model): def __init__(self, file_path, time_range=None): """ This loads a DHARMA simulation with all of the necessary parameters for EMC^2 to run. Parameters ---------- file_path: str Path to a ModelE simulation. time_range: tuple or None Start and end time to include. If this is None, the entire simulation will be included. """ super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m**3), 'ci': 500. * ureg.kg / (ureg.m**3), 'pl': 1000. * ureg.kg / (ureg.m**3), 'pi': 100. * ureg.kg / (ureg.m**3)} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m**3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m**3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m**3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m**3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_field = "q" self.N_field = {'cl': 'ncl', 'ci': 'nci', 'pl': 'npl', 'pi': 'npi'} self.p_field = "p" self.z_field = "z" self.T_field = "t" self.height_dim = "hgt" self.time_dim = "dom_col" self.conv_frac_names = {'cl': 'conv_dat', 'ci': 'conv_dat', 'pl': 'conv_dat', 'pi': 'conv_dat'} self.strat_frac_names = {'cl': 'strat_cl_frac', 'ci': 'strat_ci_frac', 'pl': 'strat_pl_frac', 'pi': 'strat_pi_frac'} self.conv_frac_names_for_rad = {'cl': 'conv_dat', 'ci': 'conv_dat', 'pl': 'conv_dat', 'pi': 'conv_dat'} self.strat_frac_names_for_rad = {'cl': 'strat_cl_frac', 'ci': 'strat_ci_frac', 'pl': 'strat_pl_frac', 'pi': 'strat_pi_frac'} self.conv_re_fields = {'cl': 'strat_cl_frac', 'ci': 'strat_ci_frac', 'pi': 'strat_pi_frac', 'pl': 'strat_pl_frac'} self.strat_re_fields = {'cl': 'strat_cl_frac', 'ci': 'strat_ci_frac', 'pi': 'strat_pi_frac', 'pl': 'strat_pl_frac'} self.q_names_convective = {'cl': 'conv_dat', 'ci': 'conv_dat', 'pl': 'conv_dat', 'pi': 'conv_dat'} self.q_names_stratiform = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.ds = read_netcdf(file_path) for variable in self.ds.variables.keys(): my_attrs = self.ds[variable].attrs self.ds[variable] = self.ds[variable].astype('float64') self.ds[variable].attrs = my_attrs # es.keys(): # Check to make sure we are loading a single column if 'lat' in [x for x in self.ds.dims.keys()]: if self.ds.dims['lat'] != 1 or self.ds.dims['lon'] != 1: self.ds.close() raise RuntimeError("%s is not an SCM run. EMC^2 will only work with SCM runs." % file_path) # No need for lat and lon dimensions self.ds = self.ds.squeeze(dim=('lat', 'lon')) # crop specific model output time range (if requested) if time_range is not None: super()._crop_time_range(time_range) self.model_name = "DHARMA" class TestModel(Model): """ This is a test Model structure used only for unit testing. It is not recommended for end users. """ def __init__(self): q = np.linspace(0, 1, 1000) * ureg.gram / ureg.kilogram N = 100 * np.ones_like(q) / (ureg.centimeter ** 3) heights = np.linspace(0, 11000., 1000) * ureg.meter temp = 15.04 * ureg.kelvin - quantity(0.00649, 'kelvin/meter') * heights + 273.15 * ureg.kelvin temp_c = temp.to('degC') p = 1012.9 * ureg.hPa * (temp / (288.08 * ureg.kelvin)) ** 5.256 es = 0.6112 * ureg.hPa * np.exp(17.67 * temp_c.magnitude / (temp_c.magnitude + 243.5)) qv = 0.622 * es * 1e3 / (p * 1e2 - es * 1e3) times = xr.DataArray(np.array([0]), dims=('time')) times.attrs["units"] = "seconds" heights = xr.DataArray(heights.magnitude[np.newaxis, :], dims=('time', 'height')) heights.attrs['units'] = "meter" heights.attrs["long_name"] = "Height above MSL" p_units = p.units p = xr.DataArray(p.magnitude[np.newaxis, :], dims=('time', 'height')) p.attrs["long_name"] = "Air pressure" p.attrs["units"] = '%s' % p_units qv_units = qv.units qv = xr.DataArray(qv.magnitude[np.newaxis, :], dims=('time', 'height')) qv.attrs["long_name"] = "Water vapor mixing ratio" qv.attrs["units"] = '%s' % qv_units t_units = temp_c.units temp = xr.DataArray(temp_c.magnitude[np.newaxis, :], dims=('time', 'height')) temp.attrs["long_name"] = "Air temperature" temp.attrs["units"] = '%s' % t_units q = xr.DataArray(q.magnitude[np.newaxis, :], dims=('time', 'height')) q.attrs["long_name"] = "Liquid cloud water mixing ratio" q.attrs["units"] = '%s' % qv_units N = xr.DataArray(N.magnitude[np.newaxis, :], dims=('time', 'height')) N.attrs["long_name"] = "Cloud particle number concentration" N.attrs["units"] = '%s' % qv_units my_ds = xr.Dataset({'p_3d': p, 'q': qv, 't': temp, 'z': heights, 'qcl': q, 'ncl': N, 'qpl': q, 'qci': q, 'qpi': q, 'time': times}) super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m ** 3), 'ci': 500. * ureg.kg / (ureg.m ** 3), 'pl': 1000. * ureg.kg / (ureg.m ** 3), 'pi': 250. * ureg.kg / (ureg.m ** 3)} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m ** 3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m ** 3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m ** 3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m ** 3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_names_convective = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.q_names_stratiform = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.q_field = "q" self.N_field = {'cl': 'ncl', 'ci': 'nci', 'pl': 'npl', 'pi': 'npi'} self.p_field = "p_3d" self.z_field = "z" self.T_field = "t" self.conv_frac_names = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.conv_frac_names_for_rad = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names_for_rad = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.ds = my_ds self.height_dim = "height" self.time_dim = "time" class TestConvection(Model): """ This is a test Model structure used only for unit testing. This model has a 100% convective column from 1 km to 11 km. It is not recommended for end users. """ def __init__(self): q = np.linspace(0, 1, 1000) * ureg.gram / ureg.kilogram N = 100 * np.ones_like(q) * (ureg.centimeter ** -3) Npl = 0.001 * np.ones_like(1) * (ureg.centimeter ** -3) heights = np.linspace(0, 11000., 1000) * ureg.meter temp = 15.04 * ureg.kelvin - 0.00649 * (ureg.kelvin / ureg.meter) * heights + 273.15 * ureg.kelvin temp_c = temp.to('degC') p = 1012.9 * ureg.hPa * (temp / (288.08 * ureg.kelvin)) ** 5.256 re_cl = 10 * np.ones_like(q) * ureg.micrometer re_pl = 100 * np.ones_like(q) * ureg.micrometer es = 0.6112 * ureg.hPa * np.exp(17.67 * temp_c.magnitude / (temp_c.magnitude + 243.5)) qv = 0.622 * es * 1e3 / (p * 1e2 - es * 1e3) * q.units convective_liquid = np.logical_and(heights > 1000. * ureg.meter, temp >= 273.15 * ureg.kelvin) convective_ice = np.logical_and(heights > 1000. * ureg.meter, temp < 273.15 * ureg.kelvin) Nci = np.where(convective_ice, Npl.magnitude, 0) Npi = np.where(convective_ice, Npl.magnitude, 0) Npl = np.where(convective_liquid, Npl.magnitude, 0) cldmccl = np.where(convective_liquid, 1, 0.) * ureg.dimensionless cldmcci = np.where(convective_ice, 1, 0.) * ureg.dimensionless cldsscl = np.zeros_like(heights) * ureg.dimensionless cldssci = np.zeros_like(heights) * ureg.dimensionless times = xr.DataArray(np.array([0]), dims=('time')) times.attrs["units"] = "seconds" heights = xr.DataArray(heights.magnitude[np.newaxis, :], dims=('time', 'height')) heights.attrs['units'] = "meter" heights.attrs["long_name"] = "Height above MSL" p_units = p.units p = xr.DataArray(p.magnitude[np.newaxis, :], dims=('time', 'height')) p.attrs["long_name"] = "Air pressure" p.attrs["units"] = '%s' % p_units qv_units = qv.units qv = xr.DataArray(qv.magnitude[np.newaxis, :], dims=('time', 'height')) qv.attrs["long_name"] = "Water vapor mixing ratio" qv.attrs["units"] = '%s' % qv_units t_units = temp_c.units temp = xr.DataArray(temp_c.magnitude[np.newaxis, :], dims=('time', 'height')) temp.attrs["long_name"] = "Air temperature" temp.attrs["units"] = '%s' % t_units q_units = q.units q = xr.DataArray(q.magnitude[np.newaxis, :], dims=('time', 'height')) q.attrs["long_name"] = "Liquid cloud water mixing ratio" q.attrs["units"] = '%s' % q_units N_units = N.units N = xr.DataArray(N.magnitude[np.newaxis, :], dims=('time', 'height')) N.attrs["long_name"] = "Cloud particle number concentration" N.attrs["units"] = '%s' % N_units re_cl = xr.DataArray(re_cl.magnitude[np.newaxis, :], dims=('time', 'height')) re_cl.attrs["units"] = "micrometer" re_cl.attrs["long_name"] = "Effective radius of cloud liquid particles" re_pl = xr.DataArray(re_pl.magnitude[np.newaxis, :], dims=('time', 'height')) re_pl.attrs["units"] = "micrometer" re_pl.attrs["long_name"] = "Effective radius of cloud liquid particles" cldmccl = xr.DataArray(cldmccl.magnitude[np.newaxis, :], dims=('time', 'height')) cldmccl.attrs["units"] = 'g kg-1' cldmccl.attrs["long_name"] = "Convective cloud liquid mixing ratio" cldmcci = xr.DataArray(cldmcci.magnitude[np.newaxis, :], dims=('time', 'height')) cldmcci.attrs["units"] = 'g kg-1' cldmcci.attrs["long_name"] = "Convective cloud ice mixing ratio" cldsscl = xr.DataArray(cldsscl.magnitude[np.newaxis, :], dims=('time', 'height')) cldsscl.attrs["units"] = 'g kg-1' cldsscl.attrs["long_name"] = "Stratiform cloud liquid mixing ratio" cldssci = xr.DataArray(cldssci.magnitude[np.newaxis, :], dims=('time', 'height')) cldssci.attrs["units"] = 'g kg-1' cldssci.attrs["long_name"] = "Stratiform cloud ice mixing ratio" Nci = xr.DataArray(Nci[np.newaxis, :], dims=('time', 'height')) Nci.attrs["units"] = "cm-3" Nci.attrs["long_name"] = "cloud ice particle number concentration" Npl = xr.DataArray(Npl[np.newaxis, :], dims=('time', 'height')) Npl.attrs["units"] = "cm-3" Npl.attrs["long_name"] = "liquid precipitation particle number concentration" Npi = xr.DataArray(Npi[np.newaxis, :], dims=('time', 'height')) Npi.attrs["units"] = "cm-3" Npi.attrs["long_name"] = "ice precipitation particle number concentration" my_ds = xr.Dataset({'p_3d': p, 'q': qv, 't': temp, 'z': heights, 'qcl': q, 'ncl': N, 'nci': Nci, 'npl': Npl, 'npi': Npi, 'qpl': q, 'qci': q, 'qpi': q, 'cldmccl': cldmccl, 'cldmcci': cldmcci, 'cldsscl': cldsscl, 'cldssci': cldssci, 'cldmcpl': cldmccl, 'cldmcpi': cldmcci, 'cldsspl': cldsscl, 'cldsspi': cldssci, 'time': times, 're_cl': re_cl, 're_pl': re_pl}) super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m ** 3), 'ci': 500. * ureg.kg / (ureg.m ** 3), 'pl': 1000. * ureg.kg / (ureg.m ** 3), 'pi': 250. * ureg.kg / (ureg.m ** 3)} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m ** 3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m ** 3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m ** 3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m ** 3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_names_convective = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.q_names_stratiform = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.conv_re_fields = {'cl': 're_cl', 'ci': 're_cl', 'pl': 're_pl', 'pi': 're_pl'} self.strat_re_fields = {'cl': 're_cl', 'ci': 're_cl', 'pl': 're_pl', 'pi': 're_pl'} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.q_field = "q" self.N_field = {'cl': 'ncl', 'ci': 'nci', 'pl': 'npl', 'pi': 'npi'} self.p_field = "p_3d" self.z_field = "z" self.T_field = "t" self.conv_frac_names = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.conv_frac_names_for_rad = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names_for_rad = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.ds = my_ds self.height_dim = "height" self.time_dim = "time" class TestAllStratiform(Model): """ This is a test Model structure used only for unit testing. This model has a 100% stratiform column from 1 km to 11 km. It is not recommended for end users. """ def __init__(self): q = np.linspace(0, 2, 1000) * ureg.gram / ureg.kilogram N = 300 * np.ones_like(q) * (ureg.centimeter ** -3) heights = np.linspace(0, 11000., 1000) * ureg.meter temp = 15.04 * ureg.kelvin - 0.00649 * (ureg.kelvin / ureg.meter) * heights + 273.15 * ureg.kelvin temp_c = temp.to('degC').magnitude p = 1012.9 * ureg.hPa * (temp / (288.08 * ureg.kelvin)) ** 5.256 es = 0.6112 * ureg.hPa * np.exp(17.67 * temp_c / (temp_c + 243.5)) qv = 0.622 * es * 1e3 / (p * 1e2 - es * 1e3) * q.units re_cl = 10 * np.ones_like(q) re_pl = 100 * np.ones_like(q) stratiform_liquid = np.logical_and(heights > 1000. * ureg.meter, temp >= 273.15 * ureg.kelvin) stratiform_ice = np.logical_and(heights > 1000. * ureg.meter, temp < 273.15 * ureg.kelvin) cldsscl = np.where(stratiform_liquid, 1, 0.) * ureg.dimensionless cldssci = np.where(stratiform_ice, 1, 0.) * ureg.dimensionless cldmccl = np.zeros_like(heights) * ureg.dimensionless cldmcci = np.zeros_like(heights) * ureg.dimensionless qcl = np.where(stratiform_liquid, q, 0) qci = np.where(stratiform_ice, q, 0) times = xr.DataArray(np.array([0]), dims=('time')) times.attrs["units"] = "seconds" heights = xr.DataArray(heights.magnitude[np.newaxis, :], dims=('time', 'height')) heights.attrs['units'] = "meter" heights.attrs["long_name"] = "Height above MSL" p_units = p.units p = xr.DataArray(p.magnitude[np.newaxis, :], dims=('time', 'height')) p.attrs["long_name"] = "Air pressure" p.attrs["units"] = '%s' % p_units qv_units = qv.units qv = xr.DataArray(qv.magnitude[np.newaxis, :], dims=('time', 'height')) qv.attrs["long_name"] = "Water vapor mixing ratio" qv.attrs["units"] = '%s' % qv_units t_units = "degC" temp = xr.DataArray(temp_c[np.newaxis, :], dims=('time', 'height')) temp.attrs["long_name"] = "Air temperature" temp.attrs["units"] = '%s' % t_units q_units = q.units q = xr.DataArray(q.magnitude[np.newaxis, :], dims=('time', 'height')) q.attrs["long_name"] = "Liquid cloud water mixing ratio" q.attrs["units"] = '%s' % q_units N_units = N.units N = xr.DataArray(N.magnitude[np.newaxis, :], dims=('time', 'height')) N.attrs["long_name"] = "Cloud particle number concentration" N.attrs["units"] = '%s' % N_units qcl = xr.DataArray(qcl[np.newaxis, :], dims=('time', 'height')) qcl.attrs["units"] = "g kg-1" qcl.attrs["long_name"] = "Cloud liquid water mixing ratio" qci = xr.DataArray(qci[np.newaxis, :], dims=('time', 'height')) qci.attrs["units"] = "g kg-1" qci.attrs["long_name"] = "Cloud ice water mixing ratio" re_cl = xr.DataArray(re_cl[np.newaxis, :], dims=('time', 'height')) re_cl.attrs["units"] = "micrometer" re_cl.attrs["long_name"] = "Effective radius of cloud liquid particles" re_pl = xr.DataArray(re_pl[np.newaxis, :], dims=('time', 'height')) re_pl.attrs["units"] = "micrometer" re_pl.attrs["long_name"] = "Effective radius of cloud liquid particles" nci = 0. * N npi = 0. * N npl = 1e-3 * N nci.attrs["units"] = "cm-3" nci.attrs["long_name"] = "cloud ice particle number concentration" npl.attrs["units"] = "cm-3" npl.attrs["long_name"] = "liquid precipitation particle number concentration" npi.attrs["units"] = "cm-3" npi.attrs["long_name"] = "ice precipitation particle number concentration" cldmccl = xr.DataArray(cldmccl.magnitude[np.newaxis, :], dims=('time', 'height')) cldmccl.attrs["units"] = 'g kg-1' cldmccl.attrs["long_name"] = "Convective cloud liquid mixing ratio" cldmcci = xr.DataArray(cldmcci.magnitude[np.newaxis, :], dims=('time', 'height')) cldmcci.attrs["units"] = 'g kg-1' cldmcci.attrs["long_name"] = "Convective cloud ice mixing ratio" cldsscl = xr.DataArray(cldsscl.magnitude[np.newaxis, :], dims=('time', 'height')) cldsscl.attrs["units"] = 'g kg-1' cldsscl.attrs["long_name"] = "Stratiform cloud liquid mixing ratio" cldssci = xr.DataArray(cldssci.magnitude[np.newaxis, :], dims=('time', 'height')) cldssci.attrs["units"] = 'g kg-1' cldssci.attrs["long_name"] = "Stratiform cloud ice mixing ratio" my_ds = xr.Dataset({'p_3d': p, 'q': qv, 't': temp, 'z': heights, 'qcl': qcl, 'ncl': N, 'nci': nci, 'npi': npi, 'npl': npl, 'qpl': qcl, 'qci': qci, 'qpi': qci, 'cldmccl': cldmccl, 'cldmcci': cldmcci, 'cldsscl': cldsscl, 'cldssci': cldssci, 'cldmcpl': cldmccl, 'cldmcpi': cldmcci, 'cldsspl': cldsscl, 'cldsspi': cldssci, 'time': times, 're_cl': re_cl, 're_pl': re_pl}) super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m ** 3), 'ci': 500. * ureg.kg / (ureg.m ** 3), 'pl': 1000. * ureg.kg / (ureg.m ** 3), 'pi': 250. * ureg.kg / (ureg.m ** 3)} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m ** 3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m ** 3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m ** 3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m ** 3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_names_convective = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.q_names_stratiform = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.conv_re_fields = {'cl': 're_cl', 'ci': 're_cl', 'pl': 're_pl', 'pi': 're_pl'} self.strat_re_fields = {'cl': 're_cl', 'ci': 're_cl', 'pl': 're_pl', 'pi': 're_pl'} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.q_field = "q" self.N_field = {'cl': 'ncl', 'ci': 'nci', 'pl': 'npl', 'pi': 'npi'} self.p_field = "p_3d" self.z_field = "z" self.T_field = "t" self.conv_frac_names = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.conv_frac_names_for_rad = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names_for_rad = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.ds = my_ds self.height_dim = "height" self.time_dim = "time" class TestHalfAndHalf(Model): """ This is a test Model structure used only for unit testing. This model has a 50% stratiform, 50% convective column from 1 km to 11 km. It is not recommended for end users. """ def __init__(self): q = np.linspace(0, 1, 1000) * ureg.gram / ureg.kilogram N = 100 * np.ones_like(q) * (ureg.centimeter ** -3) heights = np.linspace(0, 11000., 1000) * ureg.meter temp = 15.04 * ureg.kelvin - 0.00649 * (ureg.kelvin / ureg.meter) * heights + 273.15 * ureg.kelvin temp_c = temp.to('degC').magnitude p = 1012.9 * ureg.hPa * (temp / (288.08 * ureg.kelvin)) ** 5.256 es = 0.6112 * ureg.hPa * np.exp(17.67 * temp_c / (temp_c + 243.5)) qv = 0.622 * es * 1e3 / (p * 1e2 - es * 1e3) * q.units stratiform_liquid = np.logical_and(heights > 1000. * ureg.meter, temp >= 273.15 * ureg.kelvin) stratiform_ice = np.logical_and(heights > 1000. * ureg.meter, temp < 273.15 * ureg.kelvin) cldsscl = 0.5 * np.where(stratiform_liquid, 1, 0.) * ureg.dimensionless cldssci = 0.5 * np.where(stratiform_ice, 1, 0.) * ureg.dimensionless cldmccl = 0.5 * np.where(stratiform_liquid, 1, 0.) * ureg.dimensionless cldmcci = 0.5 * np.where(stratiform_ice, 1, 0.) * ureg.dimensionless qcl = np.where(stratiform_liquid, q, 0) qci = np.where(stratiform_ice, q, 0) times = xr.DataArray(
np.array([0])
numpy.array
import numpy as np import matplotlib.pyplot as plt # Plancks constant pbar = 6.626070040e-34 # reduced hbar = pbar/(2*np.pi) # Bohr magneton in J/Gauss mub = (9.274009994e-24)/1e4 # g factor gm = 2.00231930436 # Gyromagnetic ratio gyro = 699.9e3 # pi is pi pi = np.pi #sqrt(2) sqrt2 = np.sqrt(2) #1/sqrt(2) invsqrt2 = 0.70710678118654752440084436210484903928483593768847 # identity matrix _ID = np.asarray([[1, 0], [0, 1]]) # X gate _X = 0.5*np.asarray([[0, 1], [1, 0]]) # Z gate _Z = 0.5*np.asarray([[1, 0], [0, -1]]) # Hadamard gate _H = invsqrt2*np.asarray([[1, 1], [1, -1]]) # Y Gate _Y = 0.5*np.asarray([[0, -1j], [1j, 0]]) # S gate _S = np.asarray([[1, 0], [0, 1j]]) # Sdg gate _Sdg = np.asarray([[1, 0], [0, -1j]]) # T gate _T = np.asarray([[1, 0], [0, (1 + 1j)*invsqrt2]]) # Tdg gate _Tdg = np.asarray([[1, 0], [0, (1 - 1j)*invsqrt2]]) # CNOT gate _CX = np.matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) # zero state _pz = np.asarray([1,0], dtype=np.complex128) # one state _po = np.asarray([0, 1], dtype=np.complex128) # Pauli Z for spin 1 _Z1 = np.asarray([[1, 0, 0], [0, 0, 0], [0, 0, -1]]) # Pauli X for spin 1 _X1 = invsqrt2*np.asarray([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) # Pauli Y for spin 1 _Y1 = 1j*invsqrt2*np.asarray([[0, -1, 0], [1, 0, -1], [0, 1, 0]]) # zero state spin 1 _pz1 = np.asarray([1,0,0], dtype=np.complex128) # one state _po1 = np.asarray([0,1,0], dtype=np.complex128) # two state _pt1 = np.asarray([0,0,1], dtype=np.complex128) # identity matrix _ID1 =
np.asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
numpy.asarray
import numpy as np ######################## ### Distance metrics ### ######################## ldist = ['euclidian', 'manhattan', 'chebyshev', 'canberra', 'cosine'] class Distance(object): def __init__(self, metrica='euclidian'): super(Distance, self).__init__() if metrica not in ldist: raise ValueError('Metric does not exist! Choose between: {}'.format(ldist)) self._metrica = metrica @property def metrica(self): return self._metrica @metrica.setter def metrica(self, m): if m not in ldist: raise ValueError('Metric does not exist! Choose between: {}'.format(ldist)) self._metrica = m def distance(self, p, q): if self._metrica == 'manhattan': return np.sum(np.absolute(p - q), axis=1) if self._metrica == 'chebyshev': return np.max(np.absolute(p - q), axis=1) if self._metrica == 'canberra': num = np.absolute(p - q) den = np.absolute(p) + np.absolute(q) return np.sum(num/den, axis=1) if self._metrica == 'cosine': if p.ndim == 1: p = p[np.newaxis] num = np.sum(p*q, axis=1) den = np.sum(p**2, axis=1)**0.5 den = den*np.sum(q**2, axis=1)**0.5 return 1 - num/den return np.sum((p - q)**2, axis=1)**0.5 ###################### ### Synthetic Data ### ###################### def synthData(): ''' Returns synthetic data for clustering algorithms ''' np.random.seed(sum([ord(e) for e in 'clustering'])) # Gaussian mixture x1 = np.array([]) y1 = np.array([]) for i in range(3): mu1 = np.random.uniform(-2, 2) mu2 = np.random.uniform(-2, 2) sigma = np.random.uniform(0, 0.5) x1 = np.concatenate([x1, np.random.normal(mu1, sigma, 32)]) y1 = np.concatenate([y1, np.random.normal(mu2, sigma, 32)]) # Ring with center N = 1000 t =
np.random.uniform(0, 2*np.pi, N)
numpy.random.uniform
import numpy as np import cv2 from skimage import measure from save_blobs_nii import save_blobs_nii def evaluarSR(Sb, Rb): #Se evalua un volumen Sb respecto a un de referencia Rb. #Se dan datos en n?mero de voxeles y en n?mero de blobs (valores absolutos y en porcentaje) #para prueba de la función (1) if 0: Sb = np.zeros([10,10]) Sb[1:4,5:7] = np.ones([4,3]) Sb[1,1] = 1; Rb = np.zeros([10,10]) Rb[1:3,5:7] = np.ones([3,3]) Rb[3,8] = 1 Rb[1,8] = 1 Rb[8,8] = 1 S2R = Sb+2*Rb cv2.imshow("S2R", S2R) if 0: Sb = np.zeros([10,10,10]) Sb[1:4,5:7,0] = np.ones([4,3]) Sb[1,1:2,0] = 1; Rb = np.zeros([10,10,10]) Rb[1:3,5:7,0] = np.ones([3,3]) Rb[1:3,5:7,1] = np.ones([3,3]) Rb[3,8,0] = 1 Rb[1,8,0] = 1 Rb[8,8,0] = 1 #se halla la intersección: 1=S=FP, 2=R=FN, 3=SyR=TP S2R = Sb+2*Rb #Resultados por pixels #Confusion table per voxels (whole image) CTvoxels = confusionTable(S2R) #TP, FP, FN, TN #calculo dice por voxeles CTvoxels = np.append(CTvoxels, calcDICE(CTvoxels)) #Analisis por blobs #Labels para agrupaciones S2R_bool = S2R.astype(bool) #Convert to logical 1 for all non-zeros entries, False for 0 S2R_array = S2R_bool*1 #Convert logical to array to be able to convert to UMat labelsAgrup = np.zeros(S2R.shape) if S2R_array.ndim<3: labelsAgrup, numAgrup = measure.label(S2R_array, connectivity = 2, return_num = True) else: labelsAgrup, numAgrup = measure.label(S2R_array, connectivity = 3, return_num = True) CTAgrup = np.zeros([numAgrup, 5]) outEval = {} NdistribSolape10 =
np.zeros(10)
numpy.zeros
import os import sys import time import numpy as np import configparser import json et = 1e-8 def load_json(path): with open(path,'r') as load_f: load_dict = json.load(load_f) return load_dict def save_json(path, data): with open(path,'w') as f: json.dump(data,f) def print_dict(x): for key in x: print(key, x[key]) def factorized_fft(fft, onset_offset): st = -1 curve_fft = np.zeros_like(fft) mean_fft = np.zeros_like(fft) for i in range(fft.shape[-1]): if onset_offset[i] == 1 and st == -1: st = i elif not onset_offset[i] == 0: if st == -1: out_fft[i] = 0 mean_fft = fft[i] else: ave = np.mean(fft[st : i + 1]) std = np.std(fft[st : i + 1]) mean_fft[st : i + 1] = ave curve_fft[st : i + 1] = (fft[st : i + 1] - ave) / (std + et) if onset_offset[i] == 2: st = -1 return curve_fft, mean_fft def compute_time(event, pre_time): cur_time = time.time() print(f'{event} use', cur_time - pre_time) return cur_time def encode_mu_law(x, mu=256): mu = mu - 1 fx = np.sign(x) * np.log(1 + mu * np.abs(x)) / np.log(1 + mu) return np.floor((fx + 1) / 2 * mu + 0.5).astype(np.int64) def decode_mu_law(y, mu=256): mu = mu - 1 fx = (y - 0.5) / mu * 2 - 1 x = np.sign(fx) / mu * ((1 + mu) ** np.abs(fx) - 1) return x def read_config(config_path, name): config = configparser.ConfigParser() config.read(config_path) return config[name] def dict2str(dic, pre): res = '' for i, d in enumerate(dic): if i == 0: res += pre res += d + ' :' val = dic[d] if type(val) is dict: res += '\n' + dict2str(val, pre + '\t') + '\n' else: res += f'\t{val}\t' return res def save_score(path, score): mkdir(path, is_file=True) res = dict2str(score, '') write_lst(path, [res]) return res def get_process_groups(audio_num, process_num): assert audio_num > 0 and process_num > 0 if process_num > audio_num: process_num = audio_num audio_num_per_process = (audio_num + process_num - 1) // process_num reduce_id = process_num - (audio_num_per_process * process_num - audio_num) groups = [] cur = 0 for i in range(process_num): if i == reduce_id: audio_num_per_process -= 1 groups += [[cur, cur + audio_num_per_process]] cur += audio_num_per_process return groups def mkdir(fd, is_file=False): fd = fd.split('/') fd = fd[:-1] if is_file else fd ds = [] for d in fd: ds.append(d) d = "/".join(ds) if not d == "" and not os.path.exists(d): os.makedirs(d) def get_filename(path): path = os.path.realpath(path) na_ext = path.split('/')[-1] na = os.path.splitext(na_ext)[0] return na def traverse_folder(folder): paths = [] names = [] for root, dirs, files in os.walk(folder): for name in files: filepath = os.path.join(root, name) names.append(name) paths.append(filepath) return names, paths def note_to_freq(piano_note): return 2 ** ((piano_note - 39) / 12) * 440 def create_logging(log_dir, filemode): mkdir(log_dir) i1 = 0 while os.path.isfile(os.path.join(log_dir, '{:04d}.log'.format(i1))): i1 += 1 log_path = os.path.join(log_dir, '{:04d}.log'.format(i1)) logging.basicConfig( level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename=log_path, filemode=filemode) # Print to console console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) return logging def float32_to_int16(x): x = np.clip(x, -1, 1) assert np.max(
np.abs(x)
numpy.abs
# -*- coding: utf-8 -*- """ Created on Fri Jun 19 13:16:25 2015 @author: hbanks Brevity required, prudence preferred """ import os import io import glob import errno import copy import json import time import warnings import numpy as np from scipy.optimize import curve_fit import scipy.interpolate as spi import scipy.optimize as spo import scipy.integrate as intgt import scipy.fftpack as fft import scipy.special as spl import matplotlib.pyplot as plt import scipy.ndimage as ndimage import itertools as itt import multiprocessing as mp import sys sys.path.append('/Users/marketing/Desktop/HSG-turbo/') import hsganalysis.QWPProcessing as qwp from hsganalysis.QWPProcessing.extractMatrices import makeT,saveT np.set_printoptions(linewidth=500) # One of the main results is the HighSidebandCCD.sb_results array. These are the # various mappings between index and real value # I deally, this code should be converted to pandas to avoid this issue, # but that's outside the scope of current work. # [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] # [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] class sbarr(object): SBNUM = 0 CENFREQ = 1 CENFREQERR = 2 AREA = 3 AREAERR = 4 WIDTH = 5 WIDTHERR = 6 #################### # Objects #################### class CCD(object): def __init__(self, fname, spectrometer_offset=None): """ This will read the appropriate file and make a basic CCD object. Fancier things will be handled with the sub classes. Creates: self.parameters = Dictionary holding all of the information from the data file, which comes from the JSON encoded header in the data file self.description = string that is the text box from data taking GUI self.raw_data = raw data output by measurement software, wavelength vs. data, errors. There may be text for some of the entries corresponding to text used for Origin imports, but they should appear as np.nan self.ccd_data = semi-processed 1600 x 3 array of photon energy vs. data with standard error of mean at that pixel calculated by taking multiple images. Standard error is calculated from the data collection software Most subclasses should make a self.proc_data, which will do whatever processing is required to the ccd_data, such as normalizing, taking ratios, etc. :param fname: file name where the data is saved :type fname: str :param spectrometer_offset: if the spectrometer won't go where it's told, use this to correct the wavelengths (nm) :type spectrometer_offset: float """ self.fname = fname # Checking restrictions from Windows path length limits. Check if you can # open the file: try: with open(fname) as f: pass except FileNotFoundError: # Couldn't find the file. Could be you passed the wrong one, but I'm # finding with a large number of subfolders for polarimetry stuff, # you end up exceeding Windows' filelength limit. # Haven't tested on Mac or UNC moutned drives (e.g \\128.x.x.x\Sherwin\) fname = r"\\?\\" + os.path.abspath(fname) # Read in the JSON-formatted parameter string. # The lines are all prepended by '#' for easy numpy importing # so loop over all those lines with open(fname, 'r') as f: param_str = '' line = f.readline() while line[0] == '#': ### changed 09/17/18 # This line assumed there was a single '#' # param_str += line[1:] # while this one handles everal (because I found old files # which had '## <text>...' param_str += line.replace("#", "") line = f.readline() # Parse the JSON string try: self.parameters = json.loads(param_str) except json.JSONDecodeError: # error from _really_ old data where comments were dumped after a # single-line json dumps self.parameters=json.loads(param_str.splitlines()[0]) # Spec[trometer] steps are set to define the same physical data, but taken at # different spectrometer center wavelengths. This value is used later # for stitching these scans together try: self.parameters["spec_step"] = int(self.parameters["spec_step"]) except (ValueError, KeyError): # If there isn't a spe self.parameters["spec_step"] = 0 # Slice through 3 to get rid of comments/origin info. # Would likely be better to check np.isnan() and slicing out those nans. # I used flipup so that the x-axis is an increasing function of frequency self.raw_data = np.flipud(np.genfromtxt(fname, comments='#', delimiter=',')[3:]) # The camera chip is 1600 pixels wide. This line was redudent with the [3:] # slice above and served to make sure there weren't extra stray bad lines # hanging around. # # This should also be updated some day to compensate for any horizontal bining # on the chip, or masking out points that are bad (cosmic ray making it # through processing, room lights or monitor lines interfering with signal) self.ccd_data = np.array(self.raw_data[:1600, :]) # Check to see if the spectrometer offset is set. This isn't specified # during data collection. This is a value that can be appended # when processing if it's realized the data is offset. # This allows the offset to be specified and kept with the data file itself, # instead of trying to do it in individual processing scripts # # It's allowed as a kwarg parameter in this script for trying to determine # what the correct offset should be if spectrometer_offset is not None or "offset" in self.parameters: try: self.ccd_data[:, 0] += float(self.parameters["offset"]) except: self.ccd_data[:, 0] += spectrometer_offset # Convert from nm to eV # self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] self.ccd_data[:, 0] = photon_converter["nm"]["eV"](self.ccd_data[:, 0]) class Photoluminescence(CCD): def __init__(self, fname): """ This object handles PL-type data. The only distinction from the parent class is that the CCD data gets normalized to the exposure time to make different exposures directly comparable. creates: self.proc_data = self.ccd_data divided by the exposure time units: PL counts / second :param fname: name of the file :type fname: str """ super(Photoluminescence, self).__init__(fname) # Create a copy of the array , and then normalize the signal and the errors # by the exposure time self.proc_data = np.array(self.ccd_data) self.proc_data[:, 1] = self.proc_data[:, 1] / self.parameters['exposure'] self.proc_data[:, 2] = self.proc_data[:, 2] / self.parameters['exposure'] class Absorbance(CCD): def __init__(self, fname): """ There are several ways Absorbance data can be loaded You could try to load the abs data output from data collection directly, which has the wavelength, raw, blank and actual absorbance data itself. This is best way to do it. Alternatively, you could want to load the raw transmission/reference data, ignoring (or maybe not even having) the abs calculated from the data collection software. If you want to do it this way, you should pass fname as a list where the first element is the file name for the reference data, and the second is the absorbance data At first, it didn't really seem to make sense to let you pass just the raw reference or raw abs data, Creates: self.ref_data = np array of the reference, freq (eV) vs. reference (counts) self.raw_data = np.array of the raw absorption spectrum, freq (eV) vs. reference (counts) self.proc_data = np.array of the absorption spectrum freq (eV) vs. "absorbance" (dB) Note, the error bars for this data haven't been defined. :param fname: either an absorbance filename, or a length 2 list of filenames :type fname: str :return: None """ if "abs_" in fname: super(Absorbance, self).__init__(fname) # Separate into the separate data sets # The raw counts of the reference data self.ref_data = np.array(self.ccd_data[:, [0, 1]]) # Raw counts of the sample self.raw_data = np.array(self.ccd_data[:, [0, 2]]) # The calculated absorbance data (-10*log10(raw/ref)) self.proc_data = np.array(self.ccd_data[:, [0, 3]]) # Already in dB's else: # Should be here if you pass the reference/trans filenames try: super(Absorbance, self).__init__(fname[0]) self.ref_data = np.array(self.ccd_data) super(Absorbance, self).__init__(fname[1]) self.raw_data = np.array(self.ccd_data) except ValueError: # ValueError gets thrown when importing older data # which had more headers than data columns. Enforce # only loading first two columns to avoid numpy trying # to parse all of the data # See CCD.__init__ for what's going on. self.ref_data = np.flipud(np.genfromtxt(fname[0], comments='#', delimiter=',', usecols=(0, 1))) self.ref_data = np.array(self.ref_data[:1600, :]) self.ref_data[:, 0] = 1239.84 / self.ref_data[:, 0] self.raw_data = np.flipud(np.genfromtxt(fname[1], comments='#', delimiter=',', usecols=(0, 1))) self.raw_data = np.array(self.raw_data[:1600, :]) self.raw_data[:, 0] = 1239.84 / self.raw_data[:, 0] except Exception as e: print("Exception opening absorbance data,", e) # Calculate the absorbance from the raw camera counts. self.proc_data = np.empty_like(self.ref_data) self.proc_data[:, 0] = self.ref_data[:, 0] self.proc_data[:, 1] = -10*np.log10(self.raw_data[:, 1] / self.ref_data[:, 1]) def abs_per_QW(self, qw_number): """ :param qw_number: number of quantum wells in the sample. :type qw_number: int :return: None """ """ This method turns the absorption to the absorbance per quantum well. Is that how this data should be reported? Also, I'm not sure if columns 1 and 2 are correct. """ temp_abs = -np.log(self.proc_data[:, 1] / self.proc_data[:, 2]) / qw_number self.proc_data = np.hstack((self.proc_data, temp_abs)) def fft_smooth(self, cutoff, inspectPlots=False): """ This function removes the Fabry-Perot that affects the absorption data creates: self.clean = np.array of the Fourier-filtered absorption data, freq (eV) vs. absorbance (dB!) self.parameters['fourier cutoff'] = the low pass cutoff frequency, in eV**(-1) :param cutoff: Fourier frequency of the cut off for the low pass filter :type cutoff: int or float :param inspectPlots: Do you want to see the results? :type inspectPlots: bool :return: None """ # self.fixed = -np.log10(abs(self.raw_data[:, 1]) / abs(self.ref_data[:, 1])) # self.fixed = np.nan_to_num(self.proc_data[:, 1]) # self.fixed = np.column_stack((self.raw_data[:, 0], self.fixed)) self.parameters['fourier cutoff'] = cutoff self.clean = low_pass_filter(self.proc_data[:, 0], self.proc_data[:, 1], cutoff, inspectPlots) def save_processing(self, file_name, folder_str, marker='', index=''): """ This bad boy saves the absorption spectrum that has been manipulated. Saves 100 lines of comments. :param file_name: The base name of the file to be saved :type file_name: str :param folder_str: The name of the folder where the file will be saved :type folder_str: str :param marker: A further label that might be the series tag or something :type marker: str :param index: If multiple files are being saved with the same name, include an integer to append to the end of the file :type index: int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' self.save_name = spectra_fname try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing into Origin is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec # spec_header = '#' + parameter_str + '\n#' + self.description[:-2] + origin_import_spec np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') spectra_fname = 'clean ' + spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.clean, delimiter=',', header=spec_header, comments='', fmt='%0.6e') print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) # class LaserLineCCD(HighSidebandCCD): # """ # Class for use when doing alinging/testing by sending the laser # directly into the CCD. Modifies how "sidebands" and guess and fit, # simply looking at the max signal. # """ # def guess_sidebands(self, cutoff=8, verbose=False, plot=False): # pass class NeonNoiseAnalysis(CCD): """ This class is used to make handling neon calibration lines easier. It's not great. """ def __init__(self, fname, spectrometer_offset=None): # print 'opening', fname super(NeonNoiseAnalysis, self).__init__(fname, spectrometer_offset=spectrometer_offset) self.addenda = self.parameters['addenda'] self.subtrahenda = self.parameters['subtrahenda'] self.noise_and_signal() self.process_stuff() def noise_and_signal(self): """ This bad boy calculates the standard deviation of the space between the neon lines. The noise regions are, in nm: high: 784-792 low1: 795-806 low2: 815-823 low3: 831-834 the peaks are located at, in nm: #1, weak: 793.6 #2, medium: 794.3 #3, medium: 808.2 #4, weak: 825.9 #5, strong: 830.0 """ print('\n\n') self.ccd_data = np.flipud(self.ccd_data) # self.high_noise_region = np.array(self.ccd_data[30:230, :]) self.high_noise_region = np.array(self.ccd_data[80:180, :]) # for dark current measurements self.low_noise_region1 = np.array(self.ccd_data[380:700, :]) self.low_noise_region2 = np.array(self.ccd_data[950:1200, :]) self.low_noise_region3 = np.array(self.ccd_data[1446:1546, :]) # self.high_noise = np.std(self.high_noise_region[:, 1]) self.high_noise_std = np.std(self.high_noise_region[:, 1]) self.high_noise_sig = np.mean(self.high_noise_region[:, 1]) self.low_noise1 = np.std(self.low_noise_region1[:, 1]) self.low_noise2 = np.std(self.low_noise_region2[:, 1]) self.low_noise_std = np.std(self.low_noise_region2[:, 1]) self.low_noise_sig = np.mean(self.low_noise_region2[:, 1]) self.low_noise3 = np.std(self.low_noise_region3[:, 1]) # self.noise_list = [self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3] self.peak1 = np.array(self.ccd_data[303:323, :]) self.peak2 = np.array(self.ccd_data[319:339, :]) self.peak3 = np.array(self.ccd_data[736:746, :]) self.peak4 = np.array(self.ccd_data[1268:1288, :]) self.peak5 = np.array(self.ccd_data[1381:1421, :]) temp_max = np.argmax(self.peak1[:, 1]) self.signal1 = np.sum(self.peak1[temp_max - 1:temp_max + 2, 1]) self.error1 = np.sqrt(np.sum(self.peak1[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak2[:, 1]) self.signal2 = np.sum(self.peak2[temp_max - 1:temp_max + 2, 1]) self.error2 = np.sqrt(np.sum(self.peak2[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak3[:, 1]) self.signal3 = np.sum(self.peak3[temp_max - 1:temp_max + 2, 1]) self.error3 = np.sqrt(np.sum(self.peak3[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak4[:, 1]) self.signal4 = np.sum(self.peak4[temp_max - 1:temp_max + 2, 1]) self.error4 = np.sqrt(np.sum(self.peak4[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak5[:, 1]) self.signal5 = np.sum(self.peak5[temp_max - 1:temp_max + 2, 1]) self.error5 = np.sqrt(np.sum(self.peak5[temp_max - 1:temp_max + 2, 2] ** 2)) self.signal_list = [self.signal1, self.signal2, self.signal3, self.signal4, self.signal5] self.error_list = [self.error1, self.error2, self.error3, self.error4, self.error5] print("Signal list:", self.signal_list) self.ccd_data = np.flipud(self.ccd_data) def process_stuff(self): """ This one puts high_noise, low_noise1, signal2, and error2 in a nice horizontal array """ # self.results = np.array([self.high_noise, self.low_noise1, self.signal5, self.error5]) # average = np.mean([self.low_noise1, self.low_noise2, self.low_noise3]) # self.results = np.array([self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3, self.high_noise/average]) self.results = np.array([self.high_noise_sig, self.high_noise_std, self.low_noise_sig, self.low_noise_std]) def collect_noise(neon_list, param_name, folder_name, file_name, name='Signal'): """ This function acts like save parameter sweep. param_name = string that we're gonna save! """ # param_array = None for elem in neon_list: print("pname: {}".format(elem.parameters[param_name])) print("results:", elem.results) temp = np.insert(elem.results, 0, elem.parameters[param_name]) try: param_array = np.row_stack((param_array, temp)) except UnboundLocalError: param_array = np.array(temp) if len(param_array.shape) == 1: print("I don't think you want this file") return # append the relative peak error print('\n', param_array, '\n') param_array = np.column_stack((param_array, param_array[:, 4] / param_array[:, 3])) # append the snr param_array = np.column_stack((param_array, param_array[:, 3] / param_array[:, 2])) try: param_array = param_array[param_array[:, 0].argsort()] except: print("param_array shape", param_array.shape) raise try: os.mkdir(folder_name) except OSError as e: if e.errno == errno.EEXIST: pass else: raise file_name = file_name + '.txt' origin_import1 = param_name + ",Noise,Noise,Signal,error,rel peak error,peak signal-to-noise" # origin_import1 = param_name + ",Noise,Noise,Noise,Noise,Ratio" origin_import2 = ",counts,counts,counts,counts,," # origin_import2 = ",counts,counts,counts,," origin_import3 = ",High noise region,Low noise region,{},{} error,{} rel error, {}".format(name, name, name, name) # origin_import3 = ",High noise region,Low noise region 1,Low noise region 2,Low noise region 3,High/low" header_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # print "Spec header: ", spec_header print("the param_array is:", param_array) np.savetxt(os.path.join(folder_name, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') print("Saved the file.\nDirectory: {}".format(os.path.join(folder_name, file_name))) class HighSidebandCCD(CCD): def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): """ This will read the appropriate file. The header needs to be fixed to reflect the changes to the output header from the Andor file. Because another helper file will do the cleaning and background subtraction, those are no longer part of this init. This also turns all wavelengths from nm (NIR ones) or cm-1 (THz ones) into eV. OR, if an array is thrown in there, it'll handle the array and dict Input: For post-processing analysis: hsg_thing = file name of the hsg spectrum from CCD superclass spectrometer_offset = number of nanometers the spectrometer is off by, should be 0.0...but can be 0.2 or 1.0 For Live-software: hsg_thing = np array of spectrum from camera parameter_dict = equipment dict generated by software Internal: self.hsg_thing = the filename self.parameters = string with all the relevant experimental perameters self.description = the description we added to the file as the data was being taken self.proc_data = processed data that has gone is frequency vs counts/pulse self.dark_stdev = this is not currently handled appropriately self.addenda = the list of things that have been added to the file, in form of [constant, *spectra_added] self.subtrahenda = the list of spectra that have been subtracted from the file. Constant subtraction is dealt with with self.addenda :param hsg_thing: file name for the file to be opened. OR the actually hsg np.ndarray. Fun! :type hsg_thing: str OR np.ndarray :param parameter_dict: If being loaded through the data acquisition GUI, throw the dict in here :type parameter_dict: dict :param spectrometer_offset: Number of nm the spectrometer is off by :type spectrometer_offset: float :return: None, technically """ if isinstance(hsg_thing, str): super(HighSidebandCCD, self).__init__(hsg_thing, spectrometer_offset=spectrometer_offset) # TODO: fix addenda bullshit self.addenda = [] self.subtrahenda = [] elif isinstance(hsg_thing, np.ndarray): self.parameters = parameter_dict.copy() # Probably shouldn't shoehorn this in this way self.addenda = [] self.subtrahenda = [] self.ccd_data = np.array(hsg_thing) self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] # This data won't have an error column, so attached a column of ones self.ccd_data = np.column_stack((self.ccd_data, np.ones_like(self.ccd_data[:,1]))) self.ccd_data = np.flipud(self.ccd_data) # Because turning into eV switches direction self.fname = "Live Data" else: raise Exception("I don't know what this file type is {}, type: {}".format( hsg_thing, type(hsg_thing) )) self.proc_data = np.array(self.ccd_data) # proc_data is now a 1600 long array with [frequency (eV), signal (counts / FEL pulse), S.E. of signal mean] # self.parameters["nir_freq"] = 1239.84 / float(self.parameters["nir_lambda"]) self.parameters["nir_freq"] = 1239.84 / float(self.parameters.get("nir_lambda", -1)) # self.parameters["thz_freq"] = 0.000123984 * float(self.parameters["fel_lambda"]) self.parameters["thz_freq"] = 0.000123984 * float(self.parameters.get("fel_lambda", -1)) # self.parameters["nir_power"] = float(self.parameters["nir_power"]) self.parameters["nir_power"] = float(self.parameters.get("nir_power", -1)) try: # This is the new way of doing things. Also, now it's power self.parameters["thz_energy"] = float(self.parameters["pulseEnergies"]["mean"]) self.parameters["thz_energy_std"] = float(self.parameters["pulseEnergies"]["std"]) except: # This is the old way TODO: DEPRECATE THIS self.parameters["thz_energy"] = float(self.parameters.get("fel_power", -1)) # things used in fitting/guessing self.sb_list = np.array([]) self.sb_index = np.array([]) self.sb_dict = {} self.sb_results = np.array([]) self.full_dict = {} def __add__(self, other): """ Add together the image data from self.proc_data, or add a constant to that np.array. It will then combine the addenda and subtrahenda lists, as well as add the fel_pulses together. If type(other) is a CCD object, then it will add the errors as well. Input: self = CCD-like object other = int, float or CCD object Internal: ret.proc_data = the self.proc_data + other(.proc_data) ret.addenda = combination of two input addenda lists This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be added, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Add a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] + other ret.addenda[0] = ret.addenda[0] + other # or add the data of two hsg_spectra together else: if np.isclose(ret.parameters['center_lambda'], other.parameters['center_lambda']): ret.proc_data[:, 1] = self.proc_data[:, 1] + other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.addenda[0] = ret.addenda[0] + other.addenda[0] ret.addenda.extend(other.addenda[1:]) ret.subtrahenda.extend(other.subtrahenda) ret.parameters['fel_pulses'] += other.parameters['fel_pulses'] else: raise Exception('Source: Spectrum.__add__:\nThese are not from the same grating settings') return ret def __sub__(self, other): """ This subtracts constants or other data sets between self.proc_data. I think it even keeps track of what data sets are in the file and how they got there. See how __add__ works for more information. This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be subtracted, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Subtract a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] - other # Need to choose a name ret.addenda[0] = ret.addenda[0] - other # Subtract the data of two hsg_spectra from each other else: if np.isclose(ret.proc_data[0, 0], other.proc_data[0, 0]): ret.proc_data[:, 1] = self.proc_data[:, 1] - other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.subtrahenda.extend(other.addenda[1:]) ret.addenda.extend(other.subtrahenda) else: raise Exception('Source: Spectrum.__sub__:\nThese are not from the same grating settings') return ret def __repr__(self): base = """ fname: {}, Series: {series}, spec_step: {spec_step}, fel_lambda: {fel_lambda}, nir_lambda: {nir_lambda}""".format(os.path.basename(self.fname),**self.parameters) return base __str__ = __repr__ def calc_approx_sb_order(self, test_nir_freq): """ This simple method will simply return a float approximating the order of the frequency input. We need this because the CCD wavelength calibration is not even close to perfect. And it shifts by half a nm sometimes. :param test_nir_freq: the frequency guess of the nth sideband :type test_nir_freq: float :return: The approximate order of the sideband in question :rtype: float """ nir_freq = self.parameters['nir_freq'] thz_freq = self.parameters['thz_freq'] # If thz = 0, prevent error if not thz_freq: thz_freq = 1 approx_order = (test_nir_freq - nir_freq) / thz_freq return approx_order def guess_sidebands(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ Update 05/24/18: Hunter had two different loops for negative order sidebands, then positive order sidebands. They're done pretty much identically, so I've finally merged them into one. Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) try: error = np.array(self.proc_data[:, 2]) except IndexError: # Happens on old data where spectra weren't calculated in the live # software. error = np.ones_like(x_axis) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more. # Values are arbitrary. window_size = 0.45 + 0.0004 * order # used to be last_sb? lo_freq_bound = last_sb - thz_freq * ( 1 + window_size) # Not sure what to do about these hi_freq_bound = last_sb - thz_freq * (1 - window_size) if verbose: print("\nSideband", order) print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) # Get the indices where the energies lie within the bounds for this SB sliced_indices = \ np.where((x_axis > lo_freq_bound) & (x_axis < hi_freq_bound))[0] start_index, end_index = sliced_indices.min(), sliced_indices.max() # Get a slice of the y_data which is only in the region of interest check_y = y_axis[sliced_indices] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical # Calculate the "area" of the sideband by looking at the peak value # within the range, and the pixel above/below it check_max_area = np.sum(check_y[check_max_index - 1:check_max_index + 2]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label="{} Box".format(order)) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) # get the slice that doesn't have the peak in it to compare statistics check_region = np.append(check_y[:check_max_index - 1], check_y[check_max_index + 2:]) check_ave = check_region.mean() check_stdev = check_region.std() # Calculate an effective SNR, where check_ave is roughly the # background level check_ratio = (check_max_area - 3 * check_ave) / check_stdev if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 1.5 if verbose: print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.5g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("I just found", last_sb) sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - 3 * check_ave) error_est = np.sqrt( sum( [i ** 2 for i in error[found_index - 1:found_index + 2]] )) / (check_max_area - 3 * check_ave) if verbose: print("My error estimate is:", error_est) sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb - thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break # Look for higher sidebands if verbose: print("\nLooking for higher energy sidebands") last_sb = sb_freq_guess[0] index_guess = global_max consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init + 1, max_sb + 1): if no_more_odds == True and order % 2 == 1: last_sb = last_sb + thz_freq continue window_size = 0.45 + 0.001 * order # used to be 0.28 and 0.0004 lo_freq_bound = last_sb + thz_freq * ( 1 - window_size) # Not sure what to do about these hi_freq_bound = last_sb + thz_freq * (1 + window_size) start_index = False end_index = False if verbose: print("\nSideband", order) # print "The low frequency bound is", lo_freq_bound # print "The high frequency bound is", hi_freq_bound print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) for i in range(index_guess, 1600): if start_index == False and i == 1599: # print "I'm all out of space, captain!" break_condition = True break elif start_index == False and x_axis[i] > lo_freq_bound: # print "start_index is", i start_index = i elif i == 1599: end_index = 1599 # print "hit end of data, end_index is 1599" elif end_index == False and x_axis[i] > hi_freq_bound: end_index = i # print "end_index is", i index_guess = i break if break_condition: break check_y = y_axis[start_index:end_index] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical octant = len(check_y) // 8 # To be able to break down check_y into eighths if octant < 1: octant = 1 check_max_area = np.sum( check_y[check_max_index - octant - 1:check_max_index + octant + 1]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label=order) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) no_peak = (2 * len( check_y)) // 6 # The denominator is in flux, used to be 5 # if verbose: print "\tcheck_y length", len(check_y) check_ave = np.mean(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_stdev = np.std(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_ratio = (check_max_area - (2 * octant + 1) * check_ave) / check_stdev if verbose: print("\tIndices: {}->{} (d={})".format(start_index, end_index, len(check_y))) # print "check_y is", check_y # print "\ncheck_max_area is", check_max_area # print "check_ave is", check_ave # print "check_stdev is", check_stdev # print "check_ratio is", check_ratio print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.6g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 2 if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("\tI'm counting this SB at index {} (f={:.4f})".format( found_index, last_sb), end=' ') # print "\tI found", order, "at index", found_index, "at freq", last_sb sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - (2 * octant + 1) * check_ave) error_est = np.sqrt(sum([i ** 2 for i in error[ found_index - octant:found_index + octant]])) / ( check_max_area - (2 * octant + 1) * check_ave) # This error is a relative error. if verbose: print(". Err = {:.3g}".format(error_est)) # print "\tMy error estimate is:", error_est # print "My relative error is:", error_est / sb_amp_guess sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb + thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if verbose: print("\t\tI did not count this sideband") if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break if verbose: print("I found these sidebands:", self.sb_list) print('-' * 15) print() print() self.sb_guess = np.array([np.asarray(sb_freq_guess), np.asarray(sb_amp_guess), np.asarray(sb_error_est)]).T # self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. def guess_sidebandsOld(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ 05/24/18 Old code from Hunter's days (or nearly, I've already started cleaning some stuff up). keeping it around in case I break too much stuff Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) error = np.array(self.proc_data[:, 2]) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more. # Values are arbitrary. window_size = 0.45 + 0.0004 * order # used to be last_sb? lo_freq_bound = last_sb - thz_freq * ( 1 + window_size) # Not sure what to do about these hi_freq_bound = last_sb - thz_freq * (1 - window_size) if verbose: print("\nSideband", order) print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) # Get the indices where the energies lie within the bounds for this SB sliced_indices = \ np.where((x_axis > lo_freq_bound) & (x_axis < hi_freq_bound))[0] start_index, end_index = sliced_indices.min(), sliced_indices.max() # Get a slice of the y_data which is only in the region of interest check_y = y_axis[sliced_indices] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical # Calculate the "area" of the sideband by looking at the peak value # within the range, and the pixel above/below it check_max_area = np.sum(check_y[check_max_index - 1:check_max_index + 2]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label="{} Box".format(order)) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) # get the slice that doesn't have the peak in it to compare statistics check_region = np.append(check_y[:check_max_index - 1], check_y[check_max_index + 2:]) check_ave = check_region.mean() check_stdev = check_region.std() # Calculate an effective SNR, where check_ave is roughly the # background level check_ratio = (check_max_area - 3 * check_ave) / check_stdev if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 1.5 if verbose: print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.5g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("I just found", last_sb) sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - 3 * check_ave) error_est = np.sqrt( sum( [i ** 2 for i in error[found_index - 1:found_index + 2]] )) / (check_max_area - 3 * check_ave) if verbose: print("My error estimate is:", error_est) sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb - thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break # Look for higher sidebands if verbose: print("\nLooking for higher energy sidebands") last_sb = sb_freq_guess[0] index_guess = global_max consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init + 1, max_sb + 1): if no_more_odds == True and order % 2 == 1: last_sb = last_sb + thz_freq continue window_size = 0.45 + 0.001 * order # used to be 0.28 and 0.0004 lo_freq_bound = last_sb + thz_freq * ( 1 - window_size) # Not sure what to do about these hi_freq_bound = last_sb + thz_freq * (1 + window_size) start_index = False end_index = False if verbose: print("\nSideband", order) # print "The low frequency bound is", lo_freq_bound # print "The high frequency bound is", hi_freq_bound print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) for i in range(index_guess, 1600): if start_index == False and i == 1599: # print "I'm all out of space, captain!" break_condition = True break elif start_index == False and x_axis[i] > lo_freq_bound: # print "start_index is", i start_index = i elif i == 1599: end_index = 1599 # print "hit end of data, end_index is 1599" elif end_index == False and x_axis[i] > hi_freq_bound: end_index = i # print "end_index is", i index_guess = i break if break_condition: break check_y = y_axis[start_index:end_index] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical octant = len(check_y) // 8 # To be able to break down check_y into eighths if octant < 1: octant = 1 check_max_area = np.sum( check_y[check_max_index - octant - 1:check_max_index + octant + 1]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label=order) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) no_peak = (2 * len( check_y)) // 6 # The denominator is in flux, used to be 5 # if verbose: print "\tcheck_y length", len(check_y) check_ave = np.mean(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_stdev = np.std(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_ratio = (check_max_area - (2 * octant + 1) * check_ave) / check_stdev if verbose: print("\tIndices: {}->{} (d={})".format(start_index, end_index, len(check_y))) # print "check_y is", check_y # print "\ncheck_max_area is", check_max_area # print "check_ave is", check_ave # print "check_stdev is", check_stdev # print "check_ratio is", check_ratio print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.6g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 2 if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("\tI'm counting this SB at index {} (f={:.4f})".format( found_index, last_sb), end=' ') # print "\tI found", order, "at index", found_index, "at freq", last_sb sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - (2 * octant + 1) * check_ave) error_est = np.sqrt(sum([i ** 2 for i in error[ found_index - octant:found_index + octant]])) / ( check_max_area - (2 * octant + 1) * check_ave) # This error is a relative error. if verbose: print(". Err = {:.3g}".format(error_est)) # print "\tMy error estimate is:", error_est # print "My relative error is:", error_est / sb_amp_guess sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb + thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if verbose: print("\t\tI did not count this sideband") if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break if verbose: print("I found these sidebands:", self.sb_list) print('-' * 15) print() print() self.sb_guess = np.array([np.asarray(sb_freq_guess), np.asarray(sb_amp_guess), np.asarray(sb_error_est)]).T # self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. def fit_sidebands(self, plot=False, verbose=False): """ This takes self.sb_guess and fits to each maxima to get the details of each sideband. It's really ugly, but it works. The error of the sideband area is approximated from the data, not the curve fit. All else is from the curve fit. Which is definitely underestimating the error, but we don't care too much about those errors (at this point). self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. Temporary stuff: sb_fits = holder of the fitting results until all spectra have been fit window = an integer that determines the "radius" of the fit window, proportional to thz_freq. Attributes created: self.sb_results = the money maker. Column order: [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] self.full_dict = a dictionary similar to sb_results, but now the keys are the sideband orders. Column ordering is otherwise the same. :param plot: Do you want to see the fits plotted with the data? :type plot: bool :param verbose: Do you want to see the details AND the initial guess fits? :type verbose: bool :return: None """ # print "Trying to fit these" sb_fits = [] if verbose: print("=" * 15) print() print("Fitting CCD Sidebands") print(os.path.basename(self.fname)) print() print("=" * 15) # pretty sure you want this up here so things don't break # when no sidebands found self.full_dict = {} thz_freq = self.parameters["thz_freq"] window = 15 + int(15 * thz_freq / 0.0022) # Adjust the fit window based on the sideband spacing # The 15's are based on empirical knowledge that for # 540 GHz (2.23 meV), the best window size is 30 and # that it seems like the window size should grow slowly? for elem, peakIdx in enumerate(self.sb_index): # Have to do this because guess_sidebands # doesn't out put data in the most optimized way if peakIdx < window: data_temp = self.proc_data[:peakIdx + window, :] elif (1600 - peakIdx) < window: data_temp = self.proc_data[peakIdx - window:, :] else: data_temp = self.proc_data[peakIdx - window:peakIdx + window, :] width_guess = 0.0001 + 0.000001 * self.sb_list[elem] # so the width guess gets wider as order goes up p0 = np.array([self.sb_guess[elem, 0], self.sb_guess[elem, 1] * width_guess, width_guess, 0.1]) # print "Let's fit this shit!" if verbose: print("Fitting SB {}. Peak index: {}, {}th peak in spectra".format( self.sb_list[elem], peakIdx, elem )) # print "\nnumber:", elem, num # print "data_temp:", data_temp # print "p0:", p0 print(' '*20 +"p0 = " + np.array_str(p0, precision=4)) # plot_guess = True # This is to disable plotting the guess function if verbose and plot: plt.figure('CCD data') linewidth = 3 x_vals = np.linspace(data_temp[0, 0], data_temp[-1, 0], num=500) if elem != 0: try: plt.plot(x_vals, gauss(x_vals, *p0), plt.gca().get_lines()[-1].get_color() + '--' # I don't really know. Mostly # just looked around at what functions # matplotlib has... , linewidth=linewidth) except: # to prevent weird mac issues with the matplotlib things? plt.plot(x_vals, gauss(x_vals, *p0), '--', linewidth=linewidth) else: plt.plot(x_vals, gauss(x_vals, *p0), '--', linewidth=linewidth) try: # 11/1/16 # needed to bump maxfev up to 2k because a sideband wasn't being fit # Fix for sb 106 # 05-23 Loren 10nm\hsg_640_Perp352seq_spectrum.txt coeff, var_list = curve_fit( gauss, data_temp[:, 0], data_temp[:, 1], p0=p0, maxfev = 2000) except Exception as e: if verbose: print("\tThe fit failed:") print("\t\t", e) print("\tFitting region: {}->{}".format(peakIdx-window, peakIdx+window)) # print "I couldn't fit", elem # print "It's sideband", num # print "In file", self.fname # print "because", e # print "wanted to fit xindx", peakIdx, "+-", window self.sb_list[elem] = None continue # This will ensure the rest of the loop is not run without an actual fit. coeff[1] = abs(coeff[1]) # The amplitude could be negative if the linewidth is negative coeff[2] = abs(coeff[2]) # The linewidth shouldn't be negative if verbose: print("\tFit successful: ", end=' ') print("p = " + np.array_str(coeff, precision=4)) # print "coeffs:", coeff # print "sigma for {}: {}".format(self.sb_list[elem], coeff[2]) if 10e-4 > coeff[2] > 10e-6: try: sb_fits.append(np.hstack((self.sb_list[elem], coeff, np.sqrt(np.diag(var_list))))) except RuntimeWarning: sb_fits.append(np.hstack((self.sb_list[elem], coeff, np.sqrt(np.abs(np.diag(var_list)))))) # the var_list wasn't approximating the error well enough, even when using sigma and absoluteSigma # self.sb_guess[elem, 2] is the relative error as calculated by the guess_sidebands method # coeff[1] is the area from the fit. Therefore, the product should be the absolute error # of the integrated area of the sideband. The other errors are still underestimated. # # 1/12/18 note: So it looks like what hunter did is calculate an error estimate # for the strength/area by the quadrature sum of errors of the points in the peak # (from like 813 in guess_sidebands: # error_est = np.sqrt(sum([i ** 2 for i in error[found_index - 1:found_index + 2]])) / ( # Where the error is what comes from the CCD by averaging 4 spectra. As far as I can tell, # it doesn't currently pull in the dark counts or anything like that, except maybe # indirectly since it'll cause the variations in the peaks sb_fits[-1][6] = self.sb_guess[elem, 2] * coeff[1] if verbose: print("\tRel.Err: {:.4e} | Abs.Err: {:.4e}".format( self.sb_guess[elem, 2], coeff[1] * self.sb_guess[elem, 2] )) print() # print "The rel. error guess is", self.sb_guess[elem, 2] # print "The abs. error guess is", coeff[1] * self.sb_guess[elem, 2] # The error from self.sb_guess[elem, 2] is a relative error if plot and verbose: plt.figure('CCD data') linewidth = 5 x_vals = np.linspace(data_temp[0, 0], data_temp[-1, 0], num=500) if elem != 0: try: plt.plot(x_vals, gauss(x_vals, *coeff), plt.gca().get_lines()[-1].get_color() + '--' # I don't really know. Mostly # just looked around at what functions # matplotlib has... , linewidth=linewidth) except: # to prevent weird mac issues with the matplotlib things? plt.plot(x_vals, gauss(x_vals, *coeff), '--', linewidth=linewidth) else: plt.plot(x_vals, gauss(x_vals, *coeff), '--', linewidth=linewidth) sb_fits_temp = np.asarray(sb_fits) reorder = [0, 1, 5, 2, 6, 3, 7, 4, 8] # Reorder the list to put the error of the i-th parameter as the i+1th. try: sb_fits = sb_fits_temp[:, reorder] # if verbose: print "The abs. error guess is", sb_fits[:, 0:5] except: raise RuntimeError("No sidebands to fit?") # Going to label the appropriate row with the sideband self.sb_list = sorted(list([x for x in self.sb_list if x is not None])) sb_names = np.vstack(self.sb_list) # Sort by SB order sorter = np.argsort(sb_fits[:, 0]) self.sb_results = np.array(sb_fits[sorter, :7]) if verbose: print("\tsb_results:") print("\t\t" + ("{:^5s}" + ("{:^12s}")*(self.sb_results.shape[1]-1)).format( "SB", "Cen.En.", "", "Area", "", "Width","")) for line in self.sb_results: print('\t\t[' + ("{:^5.0f}"+ "{:<12.4g}"*(line.size-1)).format(*line) + ']') print('-'*19) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def infer_frequencies(self, nir_units="wavenumber", thz_units="GHz", bad_points=-2): """ This guy tries to fit the results from fit_sidebands to a line to get the relevant frequencies :param nir_units: What units do you want this to output? :type nir_units: 'nm', 'wavenumber', 'eV', 'THz' :param thz_units: What units do you want this to output for the THz? :type thz_units: 'GHz', 'wavenumber', 'meV' :param bad_points: How many more-positive order sidebands shall this ignore? :type bad_points: int :return: freqNIR, freqTHz, the frequencies in the appropriate units """ # force same units for in dict freqNIR, freqTHz = calc_laser_frequencies(self, "wavenumber", "wavenumber", bad_points) self.parameters["calculated NIR freq (cm-1)"] = "{}".format(freqNIR, nir_units) self.parameters["calculated THz freq (cm-1)"] = "{}".format(freqTHz, freqTHz) freqNIR, freqTHz = calc_laser_frequencies(self, nir_units, thz_units, bad_points) return freqNIR, freqTHz def save_processing(self, file_name, folder_str, marker='', index='', verbose=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise temp = np.array(self.sb_results) ampli = np.array([temp[:, 3] / temp[:, 5]]) # But [:, 3] is already area? # (The old name was area) # I think it must be amplitude temp[:, 5:7] = temp[:, 5:7] * 1000 # For meV linewidths if verbose: print("sb_results", self.sb_results.shape) print("ampli", ampli.shape) save_results = np.hstack((temp, ampli.T)) spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname self.parameters['addenda'] = self.addenda self.parameters['subtrahenda'] = self.subtrahenda try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nSideband,Center energy,error,Sideband strength,error,Linewidth,error,Amplitude' origin_import_fits += '\norder,eV,,arb. u.,,meV,,arb. u.' origin_import_fits += "\n{},,,{},,,".format(marker, marker) fits_header = '#' + parameter_str + origin_import_fits # print "DEBUG: in saving", folder_str, ",", spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, fit_fname), save_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') if verbose: print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) class HighSidebandCCDRaw(HighSidebandCCD): """ This class is meant for passing in an image file (currently supports a 2x1600) Which it does all the processing on. """ def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): # let the supers do the hard work of importing the json dict and all that jazz super(HighSidebandCCDRaw, self).__init__(hsg_thing, parameter_dict=None, spectrometer_offset=None) self.ccd_data = np.genfromtxt(hsg_thing, delimiter=',').T self.proc_data = np.column_stack(( self.gen_wavelengths(self.parameters["center_lambda"], self.parameters["grating"]), np.array(self.ccd_data[:,1], dtype=float)-np.median(self.ccd_data[:,1]), np.ones_like(self.ccd_data[:,1], dtype=float) )) self.proc_data[:, 0] = 1239.84 / self.proc_data[:, 0] self.proc_data = np.flipud(self.proc_data) @staticmethod def gen_wavelengths(center_lambda, grating): ''' This returns a 1600 element list of wavelengths for each pixel in the EMCCD based on grating and center wavelength grating = which grating, 1 or 2 center = center wavelength in nanometers ''' b = 0.75 # length of spectrometer, in m k = -1.0 # order looking at r = 16.0e-6 # distance between pixles on CCD if grating == 1: d = 1. / 1800000. gamma = 0.213258508834 delta = 1.46389935365 elif grating == 2: d = 1. / 1200000. gamma = 0.207412628027 delta = 1.44998344749 elif grating == 3: d = 1. / 600000. gamma = 0.213428934011 delta = 1.34584754696 else: print("What a dick, that's not a valid grating") return None center = center_lambda * 10 ** -9 wavelength_list = np.arange(-799.0, 801.0) output = d * k ** (-1) * ((-1) * np.cos(delta + gamma + (-1) * np.arccos( (-1 / 4) * (1 / np.cos((1 / 2) * gamma)) ** 2 * ( 2 * (np.cos((1 / 2) * gamma) ** 4 * (2 + (-1) * d ** (-2) * k ** 2 * center ** 2 + 2 * np.cos(gamma))) ** ( 1 / 2) + d ** (-1) * k * center * np.sin(gamma))) + np.arctan( b ** (-1) * (r * wavelength_list + b * np.cos(delta + gamma)) * (1 / np.sin(delta + gamma)))) + ( 1 + (-1 / 16) * (1 / np.cos((1 / 2) * gamma)) ** 4 * (2 * ( np.cos((1 / 2) * gamma) ** 4 * ( 2 + (-1) * d ** (-2) * k ** 2 * center ** 2 + 2 * np.cos(gamma))) ** (1 / 2) + d ** ( -1) * k * center * np.sin( gamma)) ** 2) ** (1 / 2)) output = (output + center) * 10 ** 9 return output class PMT(object): def __init__(self, file_name): """ Initializes a SPEX spectrum. It'll open a file, and bring in the details of a sideband spectrum into the object. There isn't currently any reason to use inheritance here, but it could be extended later to include PLE or something of the sort. attributes: self.parameters - dictionary of important experimental parameters this will not necessarily be the same for each file in the object self.fname - the current file path :param file_name: The name of the PMT file :type file_name: str :return: None """ # print "This started" self.fname = file_name # self.files_included = [file_name] with open(file_name, 'r') as f: param_str = '' line = f.readline() # Needed to move past the first line, which is the sideband order. Not generally useful line = f.readline() while line[0] == '#': param_str += line[1:] line = f.readline() self.parameters = json.loads(param_str) class HighSidebandPMT(PMT): def __init__(self, file_path, verbose=False): """ Initializes a SPEX spectrum. It'll open a single file, then read the data from that file using .add_sideband(). The super's init will handle the parameters and the description. attributes: self.parameters - dictionary of important experimental parameters, created in PMT self.sb_dict - keys are sideband order, values are PMT data arrays self.sb_list - sorted list of included sidebands :param file_path: path to the current file :type file_path: str :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: """ super(HighSidebandPMT, self).__init__( file_path) # Creates the json parameters dictionary self.fname = file_path self.parameters["files included"] = [file_path] with open(file_path, 'r') as f: sb_num = int(f.readline()[1:]) raw_temp = np.genfromtxt(file_path, comments='#', delimiter=',')[3:, :] if self.parameters.get("photon counted", False): # The scale factor for photon counting to generic # PMT data depends on... things. It's different each # day. Unfortunately, the overlap in dynamic range between # the two is small, and generally only one sideband # can been seen by both methods. I don't really have # the motivation to automatically calculate the # appropriate factor, so this is your reminder to find # it yourself. import time # assert time.strftime("%x") == "03/15/17" assert self.parameters.get("pc ratio", -1) != -1, self.fname raw_temp[:,3] *= self.parameters["pc ratio"] pass raw_temp[:, 0] = raw_temp[:, 0] / 8065.6 # turn NIR freq into eV self.parameters["thz_freq"] = 0.000123984 * float( self.parameters.get("fel_lambda", -1)) self.parameters["nir_freq"] = float( self.parameters.get("nir_lambda", -1))/8065.6 self.initial_sb = sb_num self.initial_data = np.array(raw_temp) self.sb_dict = {sb_num: np.array(raw_temp)} self.sb_list = [sb_num] def add_sideband(self, other): """ This bad boy will add another PMT sideband object to the sideband spectrum of this object. It handles when you measure the same sideband twice. It assumes both are equally "good" NOTE: This means that if both aren't equally "good" (taking a second scan with higher gain/photon counting because you didn't see it), you need to not add the file (remove/rename the file, etc.) I'd love to overhall the data collection/analysis so this can be more intelligent (Effectively offload a lot of the processing (especially not saving 10 arbitrary points to process later) onto the live software and add sideband strengths alone, like the CCD works. But this would be a bigger change that I can seem to find time for). It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could, if you have two incomplete dictionaries :param other: the new sideband data to add to the larger spectrum. Add means append, no additino is performed :type other: HighSidebandPMT :return: """ """ This bad boy will add another PMT sideband object to the sideband spectrum of this object It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could """ self.parameters["files included"].append(other.fname) if other.initial_sb in self.sb_list: self.sb_list.append(other.initial_sb) # Make things comma delimited? try: self.sb_dict[other.initial_sb] = np.row_stack( (self.sb_dict[other.initial_sb], other.initial_data) ) except KeyError: self.sb_dict[other.initial_sb] = np.array(other.initial_data) except Exception as e: print("THIS IS THE OTHER ERROR", e) raise def process_sidebands(self, verbose=False, baselineCorr = False): """ This bad boy will clean up the garbled mess that is the object before hand, including clearing out misfired shots and doing the averaging. Affects: self.sb_dict = Averages over sidebands Creates: self.sb_list = The sideband orders included in this object. :param verbose: Flag to see the nitty gritty details. :type verbose: bool :param baselineCorr: Whether to subtract the average across the two endpoints :return: None """ for sb_num, sb in list(self.sb_dict.items()): if sb_num == 0: fire_condition = -np.inf # This way the FEL doesn't need to be on during laser line measurement else: fire_condition = np.mean(sb[:, 2]) / 2 # Say FEL fired if the # cavity dump signal is # more than half the mean # of the cavity dump signal frequencies = sorted(list(set(sb[:, 0]))) temp = None for freq in frequencies: data_temp = np.array([]) for point in sb: if point[0] == freq and point[2] > fire_condition: data_temp = np.hstack((data_temp, point[3])) try: temp = np.vstack( (temp, np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]))) except: temp = np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]) # temp[:, 0] = temp[:, 0] / 8065.6 # turn NIR freq into eV temp = temp[temp[:, 0].argsort()] if baselineCorr: x = temp[[0, -1], 0] y = temp[[0, -1], 1] p = np.polyfit(x, y, 1) temp[:, 1] -= np.polyval(p, temp[:,0]) self.sb_dict[sb_num] = np.array(temp) self.sb_list = sorted(self.sb_dict.keys()) if verbose: print("Sidebands included", self.sb_list) def integrate_sidebands(self, verbose=False, cutoff=1.0, **kwargs): """ This method will integrate the sidebands to find their strengths, and then use a magic number to define the width, since they are currently so utterly undersampled for fitting. cutoff is the ratio of area/error which must be exceeded to count It is currently the preferred method for calculating sideband strengths. self.fit_sidebands is probably better with better-sampled lines. Creates: self.sb_results = full list of integrated data. Column order is: [sb order, Freq (eV), "error" (eV), Integrate area (arb.), area error, "Linewidth" (eV), "Linewidth error" (eV) self.full_dict = Dictionary where the SB order column is removed and turned into the keys. The values are the rest of that sideband's results. :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ if verbose: print("="*15) print() print("Integrating PMT Sidebands") print("Cutoff: {}".format(cutoff)) print(os.path.basename(self.fname)) print() print("=" * 15) self.full_dict = {} for sideband in list(self.sb_dict.items()): index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] # stroff = np.nan_to_num(sideband[1][[0,1,-2,1], 1]).sum()/4. area = np.trapz(np.nan_to_num(sideband[1][:, 1]), sideband[1][:, 0]) error = np.sqrt(np.sum(np.nan_to_num( sideband[1][:, 2]) ** 2)) / 8065.6 # Divide by the step size? if verbose: print("\torder: {}, area: {:.3g}, error: {:.3g}, ratio: {:.3f}".format( sideband[0], area, error, area/error )) details = np.array( [sideband[0], nir_frequency, 1 / 8065.6, area, error, 2 / 8065.6, 1 / 8065.6]) if area < 0: if verbose: print("\t\tarea < 0") continue elif area < cutoff/5 * error: # Two seems like a good cutoff? if verbose: print("\t\tI did not keep sideband") continue try: self.sb_results = np.vstack((self.sb_results, details)) except: self.sb_results = np.array(details) self.full_dict[sideband[0]] = details[1:] try: self.sb_results = self.sb_results[self.sb_results[:, 0].argsort()] except (IndexError, AttributeError): # IndexError where there's only one sideband # AttributeError when there aren't any (one sb which wasn't fit) pass if verbose: print('-'*19) def fit_sidebands(self, plot=False, verbose=False): """ This method will fit a gaussian to each of the sidebands provided in the self.sb_dict and make a list just like in the EMCCD version. It will also use the standard error of the integral of the PMT peak as the error of the gaussian area instead of that element from the covariance matrix. Seems more legit. attributes: self.sb_results: the numpy array that contains all of the fit info just like it does in the CCD class. self.full_dict = A dictionary version of self.sb_results :param plot: Flag to see the results plotted :type plot: bool :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ sb_fits = {} for sideband in list(self.sb_dict.items()): if verbose: print("Sideband number", sideband[0]) print("Sideband data:\n", sideband[1]) index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] peak = sideband[1][index, 1] width_guess = 0.0001 # Yep, another magic number p0 = [nir_frequency, peak * width_guess, width_guess, 0.00001] if verbose: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *p0), label="fit :{}".format(sideband[1])) print("p0:", p0) try: coeff, var_list = curve_fit(gauss, sideband[1][:, 0], sideband[1][:, 1], sigma=sideband[1][:, 2], p0=p0) coeff[1] = abs(coeff[1]) coeff[2] = abs(coeff[2]) if verbose: print("coeffs:", coeff) print("stdevs:", np.sqrt(np.diag(var_list))) print("integral", np.trapz(sideband[1][:, 1], sideband[1][:, 0])) if np.sqrt(np.diag(var_list))[0] / coeff[ 0] < 0.5: # The error on where the sideband is should be small sb_fits[sideband[0]] = np.concatenate( (np.array([sideband[0]]), coeff, np.sqrt(np.diag(var_list)))) # print "error then:", sb_fits[sideband[0]][6] relative_error = np.sqrt(sum([x ** 2 for x in sideband[1][index - 1:index + 2, 2]])) / np.sum( sideband[1][index - 1:index + 2, 1]) if verbose: print("relative error:", relative_error) sb_fits[sideband[0]][6] = coeff[1] * relative_error # print "error now:", sb_fits[sideband[0]][6] if plot: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *coeff)) # plt.plot(x_vals, gauss(x_vals, *p0)) else: print("what happened?") except: print("God damn it, Leroy.\nYou couldn't fit this.") sb_fits[sideband[0]] = None for result in sorted(sb_fits.keys()): try: self.sb_results = np.vstack((self.sb_results, sb_fits[result])) except: self.sb_results = np.array(sb_fits[result]) self.sb_results = self.sb_results[:, [0, 1, 5, 2, 6, 3, 7, 4, 8]] self.sb_results = self.sb_results[:, :7] if verbose: print("And the results, please:\n", self.sb_results) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def laser_line(self, verbose=False, **kwargs): """ This method is designed to scale everything in the PMT to the conversion efficiency based on our measurement of the laser line with a fixed attenuation. Creates: self.parameters['normalized?'] = Flag to specify if the laser has been accounted for. :return: None """ if 0 not in self.sb_list: self.parameters['normalized?'] = False return else: laser_index = np.where(self.sb_results[:,0] == 0)[0][0] if verbose: print("sb_results", self.sb_results) print("laser_index", laser_index) laser_strength = np.array(self.sb_results[laser_index, 3:5]) if verbose: print("Laser_strength", laser_strength) for sb in self.sb_results: if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) sb[4] = (sb[3] / laser_strength[0]) * np.sqrt( (sb[4] / sb[3]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[3] = sb[3] / laser_strength[0] if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) for sb in list(self.full_dict.values()): sb[3] = (sb[2] / laser_strength[0]) * np.sqrt( (sb[3] / sb[2]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[2] = sb[2] / laser_strength[0] self.parameters['normalized?'] = True def save_processing(self, file_name, folder_str, marker='', index='', verbose=False): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname # self.parameters["files included"] = list(self.files) try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: PMT.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count( '#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.\n,{:.3f},'.format( self.parameters["fieldStrength"]["mean"]) spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nIndex,Center energy,error,Amplitude,error,Linewidth,error\nInt,eV,,arb. u.,,eV,,\n,,' # + marker fits_header = '#' + parameter_str + origin_import_fits for sideband in sorted(self.sb_dict.keys()): try: complete = np.vstack((complete, self.sb_dict[sideband])) except: complete = np.array(self.sb_dict[sideband]) np.savetxt(os.path.join(folder_str, spectra_fname), complete, delimiter=',', header=spec_header, comments='', fmt='%0.6e') try: np.savetxt(os.path.join(folder_str, fit_fname), self.sb_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') except AttributeError: # Catch the error that happens if you save something without files print("warning, couldn't save fit file (no sidebands found?)") if verbose: print("Saved PMT spectrum.\nDirectory: {}".format( os.path.join(folder_str, spectra_fname))) class HighSidebandPMTOld(PMT): """ Old version: Replaced March 01, 2017 Class initialized by loading in data set. Multiple copies of the same sideband were stacked as raw data and combined, effectively causing (2) 10-pt scans to be treated the same as (1) 20pt scan. This works well until you have photon counted pulses. """ def __init__(self, file_path, verbose=False): """ Initializes a SPEX spectrum. It'll open a single file, then read the data from that file using .add_sideband(). The super's init will handle the parameters and the description. attributes: self.parameters - dictionary of important experimental parameters, created in PMT self.sb_dict - keys are sideband order, values are PMT data arrays self.sb_list - sorted list of included sidebands :param file_path: path to the current file :type file_path: str :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: """ super(HighSidebandPMT, self).__init__( file_path) # Creates the json parameters dictionary self.fname = file_path self.parameters["files included"] = [file_path] with open(file_path, 'r') as f: sb_num = int(f.readline()[1:]) raw_temp = np.genfromtxt(file_path, comments='#', delimiter=',')[3:, :] self.initial_sb = sb_num self.initial_data = np.array(raw_temp) self.sb_dict = {sb_num: np.array(raw_temp)} self.sb_list = [sb_num] def add_sideband(self, other): """ This bad boy will add another PMT sideband object to the sideband spectrum of this object. It handles when you measure the same sideband twice. It assumes both are equally "good" It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could, if you have two incomplete dictionaries :param other: the new sideband data to add to the larger spectrum. Add means append, no additino is performed :type other: HighSidebandPMT :return: """ """ This bad boy will add another PMT sideband object to the sideband spectrum of this object It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could """ self.parameters["files included"].append(other.fname) if other.initial_sb in self.sb_list: self.sb_list.append(other.initial_sb) # Make things comma delimited? try: self.sb_dict[other.initial_sb].vstack((other.initial_data)) except: self.sb_dict[other.initial_sb] = np.array(other.initial_data) def process_sidebands(self, verbose=False): """ This bad boy will clean up the garbled mess that is the object before hand, including clearing out misfired shots and doing the averaging. Affects: self.sb_dict = Averages over sidebands Creates: self.sb_list = The sideband orders included in this object. :param verbose: Flag to see the nitty gritty details. :type verbose: bool :return: None """ for sb_num, sb in list(self.sb_dict.items()): if sb_num == 0: fire_condition = -np.inf # This way the FEL doesn't need to be on during laser line measurement else: fire_condition = np.mean(sb[:, 2]) / 2 # Say FEL fired if the # cavity dump signal is # more than half the mean # of the cavity dump signal frequencies = sorted(list(set(sb[:, 0]))) temp = None for freq in frequencies: data_temp = np.array([]) for point in sb: if point[0] == freq and point[2] > fire_condition: data_temp = np.hstack((data_temp, point[3])) try: temp = np.vstack( (temp, np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]))) except: temp = np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]) temp[:, 0] = temp[:, 0] / 8065.6 # turn NIR freq into eV temp = temp[temp[:, 0].argsort()] self.sb_dict[sb_num] = np.array(temp) self.sb_list = sorted(self.sb_dict.keys()) if verbose: print("Sidebands included", self.sb_list) def integrate_sidebands(self, verbose=False): """ This method will integrate the sidebands to find their strengths, and then use a magic number to define the width, since they are currently so utterly undersampled for fitting. It is currently the preferred method for calculating sideband strengths. self.fit_sidebands is probably better with better-sampled lines. Creates: self.sb_results = full list of integrated data. Column order is: [sb order, Freq (eV), "error" (eV), Integrate area (arb.), area error, "Linewidth" (eV), "Linewidth error" (eV) self.full_dict = Dictionary where the SB order column is removed and turned into the keys. The values are the rest of that sideband's results. :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ self.full_dict = {} for sideband in list(self.sb_dict.items()): index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] area = np.trapz(np.nan_to_num(sideband[1][:, 1]), sideband[1][:, 0]) error = np.sqrt(np.sum(np.nan_to_num( sideband[1][:, 2]) ** 2)) / 8065.6 # Divide by the step size? if verbose: print("order", sideband[0]) print("area", area) print("error", error) print("ratio", area / error) details = np.array( [sideband[0], nir_frequency, 1 / 8065.6, area, error, 2 / 8065.6, 1 / 8065.6]) if area < 0: if verbose: print("area less than 0", sideband[0]) continue elif area < 1.0 * error: # Two seems like a good cutoff? if verbose: print("I did not keep sideband ", sideband[0]) continue try: self.sb_results = np.vstack((self.sb_results, details)) except: self.sb_results = np.array(details) self.full_dict[sideband[0]] = details[1:] try: self.sb_results = self.sb_results[self.sb_results[:, 0].argsort()] except (IndexError, AttributeError): # IndexError where there's only one sideband # AttributeError when there aren't any (one sb which wasn't fit) pass def fit_sidebands(self, plot=False, verbose=False): """ This method will fit a gaussian to each of the sidebands provided in the self.sb_dict and make a list just like in the EMCCD version. It will also use the standard error of the integral of the PMT peak as the error of the gaussian area instead of that element from the covariance matrix. Seems more legit. attributes: self.sb_results: the numpy array that contains all of the fit info just like it does in the CCD class. self.full_dict = A dictionary version of self.sb_results :param plot: Flag to see the results plotted :type plot: bool :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ sb_fits = {} for sideband in list(self.sb_dict.items()): if verbose: print("Sideband number", sideband[0]) print("Sideband data:\n", sideband[1]) index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] peak = sideband[1][index, 1] width_guess = 0.0001 # Yep, another magic number p0 = [nir_frequency, peak * width_guess, width_guess, 0.00001] if verbose: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *p0), label="fit :{}".format(sideband[1])) print("p0:", p0) try: coeff, var_list = curve_fit(gauss, sideband[1][:, 0], sideband[1][:, 1], sigma=sideband[1][:, 2], p0=p0) coeff[1] = abs(coeff[1]) coeff[2] = abs(coeff[2]) if verbose: print("coeffs:", coeff) print("stdevs:", np.sqrt(np.diag(var_list))) print("integral", np.trapz(sideband[1][:, 1], sideband[1][:, 0])) if np.sqrt(np.diag(var_list))[0] / coeff[ 0] < 0.5: # The error on where the sideband is should be small sb_fits[sideband[0]] = np.concatenate( (np.array([sideband[0]]), coeff, np.sqrt(np.diag(var_list)))) # print "error then:", sb_fits[sideband[0]][6] relative_error = np.sqrt(sum([x ** 2 for x in sideband[1][index - 1:index + 2, 2]])) / np.sum( sideband[1][index - 1:index + 2, 1]) if verbose: print("relative error:", relative_error) sb_fits[sideband[0]][6] = coeff[1] * relative_error # print "error now:", sb_fits[sideband[0]][6] if plot: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *coeff)) # plt.plot(x_vals, gauss(x_vals, *p0)) else: print("what happened?") except: print("God damn it, Leroy.\nYou couldn't fit this.") sb_fits[sideband[0]] = None for result in sorted(sb_fits.keys()): try: self.sb_results = np.vstack((self.sb_results, sb_fits[result])) except: self.sb_results = np.array(sb_fits[result]) self.sb_results = self.sb_results[:, [0, 1, 5, 2, 6, 3, 7, 4, 8]] self.sb_results = self.sb_results[:, :7] if verbose: print("And the results, please:\n", self.sb_results) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def laser_line(self, verbose=False): """ This method is designed to scale everything in the PMT to the conversion efficiency based on our measurement of the laser line with a fixed attenuation. Creates: self.parameters['normalized?'] = Flag to specify if the laser has been accounted for. :return: None """ if 0 not in self.sb_list: self.parameters['normalized?'] = False return else: laser_index = np.where(self.sb_results[:, 0] == 0)[0][0] if verbose: print("sb_results", self.sb_results[laser_index, :]) print("laser_index", laser_index) laser_strength = np.array(self.sb_results[laser_index, 3:5]) if verbose: print("Laser_strength", laser_strength) for sb in self.sb_results: if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) sb[4] = (sb[3] / laser_strength[0]) * np.sqrt( (sb[4] / sb[3]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[3] = sb[3] / laser_strength[0] if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) for sb in list(self.full_dict.values()): sb[3] = (sb[2] / laser_strength[0]) * np.sqrt( (sb[3] / sb[2]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[2] = sb[2] / laser_strength[0] self.parameters['normalized?'] = True def save_processing(self, file_name, folder_str, marker='', index=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname # self.parameters["files included"] = list(self.files) try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: PMT.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count( '#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.\n,{:.3f},'.format( self.parameters["fieldStrength"]["mean"]) spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nCenter energy,error,Amplitude,error,Linewidth,error\neV,,arb. u.,,eV,,\n,,' # + marker fits_header = '#' + parameter_str + origin_import_fits for sideband in sorted(self.sb_dict.keys()): try: complete = np.vstack((complete, self.sb_dict[sideband])) except: complete = np.array(self.sb_dict[sideband]) np.savetxt(os.path.join(folder_str, spectra_fname), complete, delimiter=',', header=spec_header, comments='', fmt='%0.6e') try: np.savetxt(os.path.join(folder_str, fit_fname), self.sb_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') except AttributeError: # Catch the error that happens if you save something without files print("warning, couldn't save fit file (no sidebands found?)") print("Saved PMT spectrum.\nDirectory: {}".format( os.path.join(folder_str, spectra_fname))) class TimeTrace(PMT): """ This class will be able to handle time traces output by the PMT softare. """ def __init__(self, file_path): super(HighSidebandPMT, self).__init__(file_path) class FullSpectrum(object): def __init__(self): pass class FullAbsorbance(FullSpectrum): """ I'm imagining this will sew up absorption spectra, but I'm not at all sure how to do that at the moment. """ def __init__(self): pass class FullHighSideband(FullSpectrum): """ I'm imagining this class is created with a base CCD file, then gobbles up other spectra that belong with it, then grabs the PMT object to normalize everything, assuming that PMT object exists. """ def __init__(self, initial_CCD_piece): """ Initialize a full HSG spectrum. Starts with a single CCD image, then adds more on to itself using stitch_hsg_dicts. Creates: self.fname = file name of the initial_CCD_piece self.sb_results = The sideband details from the initializing data self.parameters = The parameter dictionary of the initializing data. May not have all details of spectrum pieces added later. self.full_dict = a copy of the sb_results without the zeroth column, which is SB order :param initial_CCD_piece: The starting part of the spectrum, often the lowest orders seen by CCD :type initial_CCD_piece: HighSidebandCCD :return: None """ self.fname = initial_CCD_piece.fname try: self.sb_results = initial_CCD_piece.sb_results except AttributeError: print(initial_CCD_piece.full_dict) raise self.parameters = initial_CCD_piece.parameters self.parameters['files_here'] = [initial_CCD_piece.fname.split('/')[-1]] self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) @staticmethod def parse_sb_array(arr): """ Check to make sure the first even order sideband in an array is not weaker than the second even order. If this happens, it's likely because the SB was in the short pass filter and isn't work counting. We cut it out to prevent it from itnerfering with calculating overlaps :param arr: :return: """ arr = np.array(arr) if (arr[0, sbarr.SBNUM]>0 and arr[1, sbarr.SBNUM]>0 and # make sure they're both pos arr[0, sbarr.AREA] < arr[1, sbarr.AREA]): # and the fact the area is less # print "REMOVING FIRST SIDEBAND FROM FULLSIDEBAND" # print arr[0] # print arr[1] arr = arr[1:] full_dict = {} for sb in arr: full_dict[sb[0]] = np.asarray(sb[1:]) return full_dict, arr def add_CCD(self, ccd_object, verbose=False, force_calc=None, **kwargs): """ This method will be called by the stitch_hsg_results function to add another CCD image to the spectrum. :param ccd_object: The CCD object that will be stiched into the current FullHighSideband object :type ccd_object: HighSidebandCCD :return: None """ if self.parameters["gain"] == ccd_object.parameters["gain"]: calc = False else: calc = True if force_calc is not None: calc = force_calc if "need_ratio" in kwargs: #cascading it through, starting to think # everything should be in a kwarg calc = kwargs.pop("need_ratio") try: # self.full_dict = stitch_hsg_dicts(self.full_dict, ccd_object.full_dict, # need_ratio=calc, verbose=verbose) self.full_dict = stitch_hsg_dicts(self, ccd_object, need_ratio=calc, verbose=verbose, **kwargs) self.parameters['files_here'].append(ccd_object.fname.split('/')[-1]) # update sb_results, too sb_results = [[k]+list(v) for k, v in list(self.full_dict.items())] sb_results = np.array(sb_results) self.sb_results = sb_results[sb_results[:,0].argsort()] except AttributeError: print('Error, not enough sidebands to fit here! {}, {}, {}, {}'.format( self.parameters["series"], self.parameters["spec_step"], ccd_object.parameters["series"], ccd_object.parameters["spec_step"] )) def add_PMT(self, pmt_object, verbose=True): """ This method will be called by the stitch_hsg_results function to add the PMT data to the spectrum. """ # print "I'm adding PMT once" # self.full_dict = stitch_hsg_dicts(pmt_object.full_dict, self.full_dict, # need_ratio=True, verbose=False) self.full_dict = stitch_hsg_dicts(pmt_object, self, need_ratio=True, verbose=verbose) # if verbose: # self.full_dict, ratio = self.full_dict # print "I'm done adding PMT data" self.parameters['files_here'].append(pmt_object.parameters['files included']) self.make_results_array() # if verbose: # return ratio def make_results_array(self): """ The idea behind this method is to create the sb_results array from the finished full_dict dictionary. """ self.sb_results = None # print "I'm making the results array:", sorted(self.full_dict.keys()) for sb in sorted(self.full_dict.keys()): # print "Going to add this", sb try: self.sb_results = np.vstack((self.sb_results, np.hstack((sb, self.full_dict[sb])))) except ValueError: # print "It didn't exist yet!" self.sb_results = np.hstack((sb, self.full_dict[sb])) # print "and I made this array:", self.sb_results[:, 0] def save_processing(self, file_name, folder_str, marker='', index='', verbose=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: fit_fname = file_name + '_' + marker + '_' + str(index) + '_full.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files, one that is self.proc_data, the other is self.sb_results """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise temp = np.array(self.sb_results) ampli = np.array([temp[:, 3] / temp[:, 5]]) # I'm pretty sure this is # amplitude, not area temp[:, 5:7] = temp[:, 5:7] * 1000 # For meV linewidths if verbose: print("sb_results", self.sb_results.shape) print("ampli", ampli.shape) save_results = np.hstack((temp, ampli.T)) # spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_full.txt' # self.save_name = spectra_fname # self.parameters['addenda'] = self.addenda # self.parameters['subtrahenda'] = self.subtrahenda try: # PMT files add unnecessary number of lines, dump it into one line # by casting it to a string. reduced = self.parameters.copy() reduced["files_here"] = str(reduced["files_here"]) parameter_str = json.dumps(reduced, sort_keys=True, indent=4, separators=(',', ': ')) except Exception as e: print(e) print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) # origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' # spec_header = '#' + parameter_str + '\n#' + self.description[:-2] + origin_import_spec origin_import_fits = '\nSideband,Center energy,error,Sideband strength,error,Linewidth,error,Amplitude'+\ '\norder,eV,,arb. u.,,meV,,arb. u.\n' + ','.join([marker]*8) fits_header = '#' + parameter_str + origin_import_fits # np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', # header=spec_header, comments='', fmt='%f') np.savetxt(os.path.join(folder_str, fit_fname), save_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') if verbose: print("Save image.\nDirectory: {}".format(os.path.join(folder_str, fit_fname))) class TheoryMatrix(object): def __init__(self,ThzField,Thzomega,nir_wl,dephase,peakSplit,temp=60): ''' This class is designed to handle everything for creating theory matrices and comparing them to experiement. Init defines some constants that are used throughout the calculation and puts somethings in proper units. Parameters: :ThzField: Give in kV/cm. :Thzomega: Give in Ghz. :nir_wl: Give in nanometers. :dephase: Dephasing, give in meV. Should roughly be the width of absorption peaks :detune: Detuning, give in meV. Difference between NIR excitation and band gap :temp: Temperature, give in K ''' self.F = ThzField * 10**5 self.Thz_w = Thzomega * 10**9 *2*np.pi self.nir_wl = nir_wl * 10**(-9) self.nir_ph = .0012398/self.nir_wl #NIR PHOTON ENERGY self.detune = 1.52 - self.nir_ph self.peakSplit = peakSplit*1.602*10**(-22) self.dephase = dephase*1.602*10**(-22) self.n_ref = 0 self.iterations = 0 self.max_iter = 0 self.hbar = 1.055*10**(-34) # hbar in Js self.temp = temp self.kb = 8.617*10**(-5) # Boltzmann constant in eV/K self.temp_ev = self.temp*self.kb def mu_generator(self,gamma1,gamma2,phi,beta): ''' Given gamma1 and gamma2 produces mu+- according to mu+- = electron mass/(mc^-1+gamma1 -+ 2*gamma2) Note that this formula is only accurate for THz and NIR polarized along [010]. The general form requires gamma3 as well Parameters: :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :phi: [100] to THz orientation, passed from the data array :beta: experimentally measured g3/g2 ratio Returns: mu_p, mu_m effective mass of of mu plus/minus ''' theta = phi + np.pi/4 emass = 9.109*10**(-31) # bare electron mass in kg m_cond = 0.0665 # Effective mass of conduction band mu_p = emass/( 1/m_cond + gamma1 - gamma2*np.sqrt(3*np.sin(2*theta)**2+1+3*np.cos(2*theta)**2*beta**2) ) # Calculates mu_plus mu_m = emass/( 1/m_cond + gamma1 + gamma2*np.sqrt(3*np.sin(2*theta)**2+1+3*np.cos(2*theta)**2*beta**2) ) # Calculates mu_minus return mu_p,mu_m def alpha_value(self,x): ''' alpha parameter given by Qile's notes on two band model for a given x Parameters: :x: the argument of the calculation. Give in radians Returns: :alpha_val: the alpha parameter given in Qile's notes ''' alpha_val = np.cos(x/2) - np.sin(x/2)/(x/2) # This does the calculation. Pretty straightforward return alpha_val def gamma_value(self,x): ''' gamma parameter given by Qile's notes on two band model Parameters: :x: Argument of the calculation. Give in radians Returns: :gamma_val: the gamma parameter given in Qile's notes ''' gamma_val = np.sin(x/2)/(x/2) # does the calculation return gamma_val def Up(self,mu): ''' Calculates the ponderemotive energy Ponderemotive energy given by U = e^2*F_THz^2/(4*mu*w_THz^2) Parameters: :F: Thz field. Give in V/m :mu: effective mass. Give in kg :w: omega, the THz freqeuncy. Give in angular frequency. Returns: :u: The ponderemotive energy ''' F = self.F w = self.Thz_w echarge = 1.602*10**(-19) # electron charge in Coulombs u = echarge**(2)*F**(2)/(4*mu*w**2) # calculates the ponderemotive energy return u def phonon_dephase(self,n): ''' Step function that will compare the energy gained by the sideband to the energy of the phonon (36.6meV). If the energy is less than the phonon, return zero. If it's more return the scattering rate as determined by Yu and Cordana Eq 5.51 This really should be treated as a full integral, but whatever ''' thz_omega = self.Thz_w hbar = self.hbar thz_ev = n*hbar*thz_omega/(1.602*10**-19) # converts to eV phonon_ev = 36.6*10**(-3) # phonon energy in Vv emass = 9.109*10**(-31) # bare electron mass in kg m_cond = 0.0665 # Effective mass of conduction band m_eff = emass*m_cond phonon_n = 1/(np.exp(phonon_ev/self.temp_ev)-1) if thz_ev<phonon_ev: # print('No phonon for order',n) return 0 else: W0 = 7.7*10**12 # characteristic rate rate_frac = phonon_n*np.sqrt((thz_ev+phonon_ev)/thz_ev)+( phonon_n+1)*np.sqrt((thz_ev-phonon_ev)/thz_ev)+( phonon_ev/thz_ev)*(-phonon_n*np.arcsinh(np.sqrt( phonon_ev/thz_ev))+(phonon_n+1)*np.arcsinh(np.sqrt( (thz_ev-phonon_ev)/thz_ev))) # Got this from Yu and Cordana's book fullW = W0*rate_frac return fullW def integrand(self,x,mu,n): ''' Calculate the integrand to integrate A_n+- in two_band_model pdf eqn 13. Given in the new doc pdf from Qile as I_d^(2n) Parameters: :x: Argument of integrand equal to omega*t. This is the variable integrated over. :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :w: Frequency of THz in radians. :F: Thz field in V/m :mu: reduced mass give in kg :n: Order of the sideband Returns: :result: The value of the integrand for a given x value ''' hbar = self.hbar F = self.F w = self.Thz_w dephase = self.dephase detune = self.detune pn_dephase = self.phonon_dephase(n) exp_arg = (-dephase*x/(hbar*w)-pn_dephase*x/w + 1j*x*self.Up(mu)/(hbar*w)*(self.gamma_value(x)**2-1)+1j*n*x/2-1j*detune*x/(hbar*w)) # Argument of the exponential part of the integrand bessel_arg = x*self.Up(mu)*self.alpha_value(x)*self.gamma_value(x)/(hbar*w) # Argument of the bessel function bessel = spl.jv(n/2,bessel_arg) # calculates the J_n(bessel_arg) bessel function result = np.exp(exp_arg)*bessel/x # This is the integrand for a given x return result def Qintegrand(self,x,mu,n): ''' Calculate the integrand in the expression for Q, with the simplification that the canonical momentum is zero upon exciton pair creation. Parameters: :x: integration variable of dimensionless units. Equal to omega*tau :dephase: dephasing rate of the electron hole pair as it is accelerated by the THz field :w: Frequency of THz is radiams :F: THz field in V/m :mu: the effective reduced mass of the electron-hole pair :n: Order of the sideband ''' hbar = self.hbar F = self.F w = self.Thz_w dephase = self.dephase pn_detune = self.phonon_dephase(n) c0 = 2*(x-np.sin(x)) a = 3*np.sin(2*x)-4*np.sin(w*x)-2*w*x*np.cos(2*x) b = -3*np.cos(2*w*x)-4*np.cos(x)+2*w*x*np.sin(2*x)+1 c1 = np.sign(a)*np.sqrt(a**2+b**2) phi = np.arctan2(a,b) exp_arg = -dephase*x/w-1j*pn_detune*x/w + 1j*(self.Up(mu)*x)/(hbar*w**2)*c0 -1j*n*phi bessel_arg = self.Up(mu)/(hbar*w)*c1 bessel = spl.jv(n,bessel_arg) result = np.exp(exp_arg)*bessel*(-1)**(n/2) return result def scale_J_n_T(self,Jraw,Jxx,observedSidebands,crystalAngle,saveFileName, index, save_results=True, scale_to_i=True): ''' This function takes the raw J from fan_n_Tmat or findJ and scales it with Jxx found from scaling sideband strengths with the laser line/PMT In regular processing we actually find all the matrices normalized to Jxx Now can scale to a given sideband order. This is to allow comparision between the measured sideband powers, normalized by the PMT, to the evalueated Path Integral from the two band model. By normalizing the measured values and integrals to a given sideband index, we can remove the physical constants from the evaluation. :param Jraw: set of matrices from findJ :param Jxx: sb_results from PMT and CCD data :param observedSidebands: np array of observed sidebands. Data will be cropped such that these sidebands are included in everything. :param crystalAngle: (Float) Angle of the sample from the 010 crystal face :saveFileName: Str of what you want to call the text files to be saved :save_results: Boolean controls if things are saved to txt files. Currently saves scaled J and T :param index: the sideband index to which we want to normalize. :param saveFileName: Str of what you want to call the text files to be saved. :param scale_to_i: Boolean that controls to normalize to the ith sideband True -> Scale to ith | False -> scale to laser line returns: scaledJ, scaledT matrices scaled by Jxx strengths ''' # Initialize the array for scaling Jxx_scales = np.array([ ]) self.n_ref = index if scale_to_i: for idx in np.arange(len(Jxx[:,0])): if Jxx[idx,0] == index: scale_to = Jxx[idx,3] print('scale to:',scale_to) # sets the scale_to to be Jxx for the ith sideband else: scale_to = 1 # just makes this 1 if you don't want to scale to i scaledJ = Jraw # initialize the scaled J matrix for idx in np.arange(len(Jxx[:,0])): if Jxx[idx,0] in observedSidebands: Jxx_scales = np.append(Jxx_scales,Jxx[idx,3]/scale_to) print('Scaling sb order',Jxx[idx,0]) # Creates scaling factor for idx in np.arange(len(Jxx_scales)): scaledJ[:,:,idx] = Jraw[:,:,idx]*Jxx_scales[idx] # For each sideband scales Jraw by Jxx_scales scaledT = makeT(scaledJ,crystalAngle) # Makes scaledT from our new scaledJ if save_results: saveT(scaledJ, observedSidebands, "{}_scaledJMatrix.txt".format(saveFileName)) saveT(scaledT, observedSidebands, "{}_scaledTMatrix.txt".format(saveFileName)) # Saves the matrices return scaledJ, scaledT def Q_normalized_integrals(self,gamma1,gamma2,n,phi,beta): ''' Returns Q_n^{HH}/Q_n^{LH} == Integrand_n^{HH}/Integrand_n^{LH} Unlike the normallized integrals used in early 2020 analysis, these integrals are of a given Fourier component's intensity from either the HH or LH band, and thus there is no prefactor related to the energy of the given sideband photon Parameters: :dephase: dephasing rate passed to intiallized TMAtrix object :w: the frequency of the THz field, in GHz :F: THz field strength in V/m :gamma1: Gamma1 parameter from Luttinger Hamiltonian :gamma2: Gamma2 parameter from Luttinger Hamiltonian :n: Order of the sideband for this integral :phi: [100] to THz orientation, passed from the cost function funciton (in radians) :beta: experimentally measured g3/g2 ratio Returns: QRatio, the ratio of Q_n^{HH}/Q_n^{LH} ''' mu_p,mu_m = self.mu_generator(gamma1,gamma2,phi,beta) w = self.Thz_w hbar = self.hbar detune = self.detune U_pp = self.Up(mu_p) U_pm = self.Up(mu_m) int_cutoff_HH = ((n*hbar*w-detune)/(8*U_pp))**(1/4) int_cutoff_LH = ((n*hbar*w-detune)/(8*U_pm))**(1/4) # Because the integral is complex, the real and imaginary parts have to be # counted seperatly. re_Q_HH = intgt.quad(lambda x: self.Qintegrand(x,mu_p,n), 0,int_cutoff_HH)[0] re_Q_LH = intgt.quad(lambda x: self.Qintegrand(x,mu_m,n), 0,int_cutoff_LH)[0] im_Q_HH = intgt.quad(lambda x: self.Qintegrand(x,mu_p,n), 0,int_cutoff_HH)[1] im_Q_LH = intgt.quad(lambda x: self.Qintegrand(x,mu_m,n), 0,int_cutoff_LH)[1] # Combine the real and imaginary to have the full integral QRatioRe = re_Q_HH/re_Q_LH QRatioIm = im_Q_HH/im_Q_LH return QRatioRe, QRatioIm def normalized_integrals(self,gamma1,gamma2,n,n_ref,phi,beta): ''' Returns the plus and minus eta for a given sideband order, normalized to order n_ref (should probably be 10?). This whole calculation relies on calculating the ratio of these quantities to get rid of some troubling constants. So you need a reference integral. eta(n)+- = (w_nir + 2*n*w_thz)^2/(w_nir + 2*n_ref*w_thz)^2 * (mu_+-/mu_ref)^2 * (int(n)+-)^2/(int(n_ref)+)^2 This takes gamma1 and gamma2 and gives the effective mass via mu_generator. It then calculates the normalized integrals for both mu's and gives eta, which is the integrals squared with some prefactors. Then you feed this into a cost function that varies gamma1 and gamma2. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency in GHz of fel. DO NOT give in angular form, the code does that for you. :F: THz field strength :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n: Order of sideband for this integral :n_ref: Order of the reference integral which everything will be divided by :phi: [100] to THz orientation, passed from the data array :beta: experimentally measured g3/g2 ratio Returns: eta_p, eta_m the values of the eta parameter normalized to the appropriate sideband order for plus and minus values of mu. ''' mu_p,mu_m = self.mu_generator(gamma1,gamma2,phi,beta) # gets the plus/minus effective mass omega_thz = self.Thz_w # FEL frequency omega_nir = 2.998*10**8/(self.nir_wl) *2*np.pi # NIR frequency, takes nm (wavelength) and gives angular Hz Field = self.F # THz field hbar = self.hbar dephase = self.dephase int_cutoff = hbar*omega_thz/dephase*10 # This cuts off the integral when x* dephase/hbaromega = 10 # Therefore the values of the integrand will be reduced by a value # of e^(-10) which is about 4.5*10^(-5) re_int_ref = intgt.quad(lambda x: np.real(self.integrand( x,mu_p,n_ref)),0,int_cutoff,limit = 1000000)[0] re_int_p = intgt.quad(lambda x: np.real(self.integrand( x,mu_p,n)),0,int_cutoff,limit = 1000000)[0] re_int_m = intgt.quad(lambda x: np.real(self.integrand( x,mu_m,n)),0,int_cutoff,limit = 1000000)[0] # Ok so these integrands are complex valued, but the intgt.quad integration # does not work with that. So we split the integral up into two parts, # real and imaginary parts. These lines calculate the real part for the # reference, plus, and minus integrals. # The integrals currently are limited to 10,000 iterations. No clue if that's # a good amount or what. We could potentially make this simpler by doing # a trapezoidal rule. # We define the lambda function here to set all the values of the integrand # function we want except for the variable of integration x im_int_ref = intgt.quad(lambda x: np.imag(self.integrand( x,mu_p,n_ref)),0,int_cutoff,limit = 1000000)[0] im_int_p = intgt.quad(lambda x: np.imag(self.integrand( x,mu_p,n)),0,int_cutoff,limit = 1000000)[0] im_int_m = intgt.quad(lambda x: np.imag(self.integrand( x,mu_m,n)),0,int_cutoff,limit = 1000000)[0] # Same as above but these are the imaginary parts of the integrals. int_ref = re_int_ref + 1j*im_int_ref int_p = re_int_p + 1j*im_int_p int_m = re_int_m + 1j*im_int_m # All the king's horses and all the king's men putting together our integrals # again. :) prefactor = ((omega_nir +2*n*omega_thz)**2)/((omega_nir +2*n_ref*omega_thz)**2) # This prefactor is the ratio of energy of the nth sideband to the reference m_pre = (mu_m/mu_p)**2 # There is a term of mu/mu_ref in the eta expression. For the eta_p = prefactor*(np.abs(int_p)**2)/(np.abs(int_ref)**2) eta_m = prefactor*m_pre*(np.abs(int_m)**2)/(np.abs(int_ref)**2) # Putting everthing together in one tasty little result return eta_p,eta_m def cost_func(self,gamma1,gamma2,observedSidebands,n_ref,Jexp,phi,beta,gc_fname,eta_folder): ''' This will sum up a cost function that takes the difference between the theory generated eta's and experimental scaled matrices eta+/eta+_ref = |Jxx|^2 eta-/eta+_ref = |Jyy-Jxx/4|^2/|3/4|^2 The cost function is given as Sqrt(|eta+(theory)-eta+(experiment)|^2 + |eta-(theory)-eta-(experiment)|^2) Where the J elements have been scaled to the n_ref sideband (Jxx_nref) This is designed to run over and over again as you try different gamma values. On my (Joe) lab computer a single run takes ~300-400 sec. The function keeps track of values by writing a file with iteration, gamma1, gamma2, and cost for each run. This lets you keep track of the results as you run. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency of fel :F: THz field strength in kV/cm :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n_ref: Order of the reference integral which everything will be divided by :Jexp: Scaled experimental Jones matrices in xy basis that will be compared to the theoretical values. Pass in the not flattened way. :phi: [100] to THz orientation, passed from the data array :beta: experimentally measured g3/g2 ratio :gc_fname: File name for the gammas and cost results :eta_folder: Folder name for the eta lists to go in :i: itteration, for parallel processing output purposes Returns: :costs: Cumulative cost function for that run :i: itteration, for parallel processing output purposes :eta_list: list of eta for's for each sideband order of the form sb order | eta_plus theory | eta_plus experiment | eta_minus thoery | eta_minus experiment . . . ''' costs = 0 # initialize the costs for this run t_start = time.time() # keeps track of the time the run started. eta_list = np.array([0,0,0,0,0]) dephase = self.dephase lambda_nir = self.nir_wl omega_nir = 2.998*10**8/(self.nir_wl) *2*np.pi w_thz = self.Thz_w F = self.F for idx in np.arrange(len(observedSidebands)): n = observedSidebands[idx] eta_p,eta_m = self.normalized_integrals(gamma1,gamma2,n,n_ref,phi,beta) # calculates eta from the normalized_integrals function prefactor = ((omega_nir +2*n*w_thz)**2)/((omega_nir +2*n_ref*w_thz)**2) #Have to hard code the index of the 16th order sideband (8,10,12,14,16) exp_p = prefactor*np.abs(Jexp[0,0,idx])**2 exp_m = prefactor*np.abs(Jexp[1,1,idx]-(1/4)*Jexp[0,0,idx])**2*(9/16) # calculates the experimental plus and minus values # 1/9/20 added prefactor to these bad boys costs += np.sqrt(np.abs((exp_p-eta_p)/(exp_p))**2 + np.abs((exp_m-eta_m)/(exp_m))**2) # Adds the cost function for this sideband to the overall cost function # 1/8/20 Changed cost function to be the diiference of the ratio of the two etas # 01/30/20 Changed cost function to be relative difference of eta_pm this_etas = np.array([n,eta_p,exp_p,eta_m,exp_m]) eta_list = np.vstack((eta_list,this_etas)) self.iterations += 1 # Ups the iterations counter g1rnd = round(gamma1,3) g2rnd = round(gamma2,3) costs_rnd = round(costs,5) # Round gamma1,gamma2,costs to remove float rounding bullshit g_n_c = str(self.iterations)+','+str(g1rnd)+','+str(g2rnd)+','+str(costs)+'\n' # String version of iteration, gamma1, gamma2, cost with a new line gc_file = open(gc_fname,'a') #opens the gamma/cost file in append mode gc_file.write(g_n_c) # writes the new line to the file gc_file.close() # closes the file etas_header = "#\n"*95 etas_header += f'# Dephasing: {self.dephase/(1.602*10**(-22))} eV \n' etas_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' etas_header += f'# Field Strength: {self.F/(10**5)} kV/cm \n' etas_header += f'# THz Frequency: {self.Thz_w/(10**9 * 2*np.pi)} GHz \n' etas_header += f'# NIR Wavelength: {self.nir_wl/(10**(-9))} nm \n' etas_header += 'sb order, eta_plus theory, eta_plus experiment, eta_minus thoery, eta_minus experiment \n' etas_header += 'unitless, unitless, unitless, unitless, unitless \n' # Creates origin frienldy header for the eta's # eta_fname = 'eta_g1_' + str(g1rnd) + '_g2_' + str(g2rnd) + r'.txt' eta_fname = f'eta_g1_{g1rnd}_g2_{g2rnd}.txt' eta_path = os.path.join(eta_folder,eta_fname) #creates the file for this run of etas eta_list = eta_list[1:,:] np.savetxt(eta_path,eta_list, delimiter = ',', header = etas_header, comments = '') #save the etas for these gammas t_taken = round(time.time()-t_start,5) # calcuates time taken for this run print(" ") print("---------------------------------------------------------------------") print(" ") print(f'Iteration number {self.iterations} / {self.max_iter} done') print('for gamma1, gamma2 = ',g1rnd,g2rnd) print('Cost function is = ',costs_rnd) print('This calculation took ',t_taken,' seconds') print(" ") print("---------------------------------------------------------------------") print(" ") # These print statements help you keep track of what's going on as this # goes on and on and on. return costs def Q_cost_func(self,gamma1,gamma2,Gamma_Sidebands,Texp,crystalAngles, beta,gc_fname,Q_folder,ThetaSweep = True): ''' This compairs the T Matrix components measured by experiment to the ''' costs = 0 # Initialize the costs imcost = 0 recost = 0 t_start = time.time() Q_list = np.array([0,0,0,0,0]) if ThetaSweep: for idx in np.arange(len(crystalAngles)): n = Gamma_Sidebands phi = float(crystalAngles[idx]) phi_rad = phi*np.pi/180 theta = phi_rad + np.pi/4 #Calculate the Theoretical Q Ratio QRatioRe, QRatioIm = self.Q_normalized_integrals(gamma1,gamma2,n,phi_rad,beta) QRatio = QRatioRe + 1j*QRatioIm #Prefactor for experimental T Matirx algebra PHI = 5/(3*(np.sin(2*theta) - 1j*beta*np.cos(2*theta))) THETA = 1/(np.sin(2*theta)-1j*beta*np.cos(2*theta)) ExpQ = (Texp[idx,0,0]+PHI*Texp[idx,0,1])/(Texp[idx,0,0]-THETA*Texp[idx,0,1]) costs += np.abs((ExpQ - QRatio)/QRatio) imcost += np.abs((np.imag(ExpQ)-QRatioIm)/QRatioIm) recost += np.abs((np.real(ExpQ)-QRatioRe)/QRatioRe) this_Qs = np.array([phi,np.real(ExpQ),np.imag(ExpQ),QRatioRe,QRatioIm]) Q_list = np.vstack((Q_list,this_Qs)) else: for idx in np.arange(len(Gamma_Sidebands)): n = Gamma_Sidebands[idx] phi = float(crystalAngles) phi_rad = phi*np.pi/180 theta = phi_rad + np.pi/4 #Calculate the Theoretical Q Ratio QRatioRe, QRatioIm = self.Q_normalized_integrals(gamma1,gamma2,n,phi_rad,beta) QRatio = QRatioRe + 1j*QRatioIm #Prefactor for experimental T Matirx algebra PHI = 5/(3*(np.sin(2*theta) - 1j*beta*np.cos(2*theta))) THETA = 1/(np.sin(2*theta)-1j*beta*np.cos(2*theta)) ExpQ = (Texp[0,0,idx]+PHI*Texp[0,1,idx])/(Texp[0,0,idx]-THETA*Texp[0,1,idx]) costs += np.abs((ExpQ - QRatio)/QRatio) imcost += np.abs((np.imag(ExpQ)-QRatioIm)/QRatioIm) recost += np.abs((np.real(ExpQ)-QRatioRe)/QRatioRe) this_Qs = np.array([n,np.real(ExpQ),np.imag(ExpQ),QRatioRe,QRatioIm]) Q_list = np.vstack((Q_list,this_Qs)) self.iterations += 1 g1rnd = round(gamma1,3) g2rnd = round(gamma2,3) costs_rnd = round(costs,5) imcost_rnd = round(imcost,5) recost_rnd = round(recost,5) g_n_c = str(self.iterations) + ',' + str(g1rnd) + ',' + str(g2rnd) + ',' + str(costs) + ',' + str(imcost) + ',' + str(recost) + '\n' gc_file = open(gc_fname,'a') gc_file.write(g_n_c) gc_file.close() # Origin Header Q_header = "#\n"*94 Q_header += f'# Crystal Angle: {phi} Deg \n' Q_header += f'# Dephasing: {self.dephase/(1.602*10**(-22))} eV \n' Q_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' Q_header += f'# Feild Strength: {self.F/(10**5)} kV/cm \n' Q_header += f'# THz Frequncy {self.Thz_w/(10**9 *2*np.pi)} GHz \n' Q_header += f'# NIR Wavelength {self.nir_wl/(10**(-9))} nm \n' Q_header += 'Crystal Angles, QRatio Experiment Real, Imaginary, QRatio Theory Real, Imaginary\n' Q_header += 'Degrees, unitless, unitless \n' #Eta File Name Q_fname = f'Q_g1_{g1rnd}_g2_{g2rnd}.txt' Q_path = os.path.join(Q_folder,Q_fname) Q_list = Q_list[1:,:] np.savetxt(Q_path,Q_list, delimiter = ',', header = Q_header, comments = '') t_taken = round(time.time() - t_start,5) print(" ") print("---------------------------------------------------------------------") print(" ") print(f'Iteration number {self.iterations} / {self.max_iter} done') print('for gamma1, gamma2 = ',g1rnd,g2rnd) print('Cost function is = ',costs_rnd) print('Imaginary Cost function is =',imcost_rnd) print('Real Cost function is =',recost_rnd) print('This calculation took ',t_taken,' seconds') print(" ") print("---------------------------------------------------------------------") print(" ") return costs,imcost,recost def gamma_sweep(self,gamma1_array,gamma2_array,observedSidebands,n_ref, Jexp,crystalAngle,gc_fname,eta_folder,save_results = True): ''' This function calculates the integrals and cost function for an array of gamma1 and gamma2. You can pass any array of gamma1 and gamma2 values and this will return the costs for all those values. Let's you avoid the weirdness of fitting algorithims. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency of fel :F: THz field strength :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n: Order of sideband for this integral :n_ref: Order of the reference integral which everything will be divided by :observedSidebands: List or array of observed sidebands. The code will loop over sidebands in this array. :Jexp: Scaled experimental Jones matrices in xy basis that will be compared to the theoretical values. Pass in the not flattened way. :gc_fname: File name for the gammas and cost functions, include .txt :eta_folder: Folder name for the eta lists to go in Returns: gamma_cost_array of form gamma1 | gamma2 | cost | . . . . . . . . . This is just running cost_func over and over again essentially. ''' dephase = self.dephase lambda_nir = self.nir_wl w_thz = self.Thz_w F = self.F phi = crystalAngle self.max_iter = len(gamma1_array)*len(gamma2_array) self.iterations = 0 gamma_cost_array = np.array([0,0,0]) # Initialize the gamma cost array gammas_costs = np.array([]) # This is just for initializing the gamma costs file gammacosts_header = "#\n"*95 gammacosts_header += f'# Dephasing: {self.dephase/(1.602*10**(-22))} eV \n' gammacosts_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' gammacosts_header += f'# Field Strength: {self.F/(10**5)} kV/cm \n' gammacosts_header += f'# THz Frequency: {self.Thz_w/(10**9 * 2*np.pi)} GHz \n' gammacosts_header += f'# NIR Wavelength: {self.nir_wl/(10**(-9))} nm \n' gammacosts_header += 'Iteration, Gamma1, Gamma2, Cost Function \n' gammacosts_header += 'unitless, unitless, unitless, unitless \n' # Creates origin frienldy header for gamma costs np.savetxt(gc_fname, gammas_costs, delimiter = ',', header = gammacosts_header, comments = '') # create the gamma cost file data = [gamma1_array,gamma2_array] for gamma1 in gamma1_array: for gamma2 in gamma2_array: cost = self.cost_func(gamma1,gamma2,observedSidebands, n_ref,Jexp, phi, 1.42, gc_fname,eta_folder) this_costngamma = np.array([gamma1,gamma2,cost]) gamma_cost_array = np.vstack((gamma_cost_array,this_costngamma)) # calculates the cost for each gamma1/2 and adds the gamma1, gamma2, # and cost to the overall array. # gamma_cost_array = gamma_cost_final[1:,:] # if save_results: # sweepcosts_header = "#\n"*100 # sweepcosts_header += 'Gamma1, Gamma2, Cost Function \n' # sweepcosts_header += 'unitless, unitless, unitless \n' # # sweep_name = 'sweep_costs_' + gc_fname # np.savetxt(sweep_name,gamma_cost_array,delimiter = ',', # header = sweepcosts_header, comments = '') # Ok so right now I think I am going to get rid of saving this file # since it has the same information as the file that is saved in # cost_func but that file is updated every interation where this # one only works at the end. So if the program gets interrupted # the other one will still give you some information. return gamma_cost_array def gamma_th_sweep(self,gamma1_array,gamma2_array,n,crystalAngles, Texp,gc_fname,Q_folder,ThetaSweep = True, save_results = True): ''' This function calculates the integrals and cost function for an array of gamma1 and gamma2. You can pass any array of gamma1 and gamma2 values and this will return the costs for all those values. Let's you avoid the weirdness of fitting algorithims. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency of fel :F: THz field strength :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n: Order of sideband for this integral :n_ref: Order of the reference integral which everything will be divided by :observedSidebands: List or array of observed sidebands. The code will loop over sidebands in this array. :Jexp: Scaled experimental Jones matrices in xy basis that will be compared to the theoretical values. Pass in the not flattened way. :gc_fname: File name for the gammas and cost functions, include .txt :eta_folder: Folder name for the eta lists to go in Returns: gamma_cost_array of form gamma1 | gamma2 | cost | . . . . . . . . . This is just running cost_func over and over again essentially. ''' #Hard Coding the experimental g3/g2 factor beta = 1.42 self.iterations = 0 self.max_iter = len(gamma1_array)*len(gamma2_array) gamma_cost_array = np.array([0,0,0,0,0]) # Initialize the gamma cost array gammas_costs = np.array([]) # This is just for initializing the gamma costs file gammacosts_header = "#\n"*95 gammacosts_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' gammacosts_header += f'# Field Strength: {self.F/(10**5)} kV/cm \n' gammacosts_header += f'# THz Frequency: {self.Thz_w/(10**9 * 2*np.pi)} GHz \n' gammacosts_header += f'# NIR Wavelength: {self.nir_wl/(10**(-9))} nm \n' gammacosts_header += 'Iteration, Gamma1, Gamma2, Cost Function, Imaginary, Real \n' gammacosts_header += 'unitless, unitless, unitless, unitless, unitless \n' # Creates origin frienldy header for gamma costs np.savetxt(gc_fname, gammas_costs, delimiter = ',', header = gammacosts_header, comments = '') # create the gamma cost file for gamma1 in gamma1_array: for gamma2 in gamma2_array: cost,imcost,recost = self.Q_cost_func(gamma1,gamma2,n, Texp,crystalAngles,beta,gc_fname,Q_folder,ThetaSweep) this_costngamma = np.array([gamma1,gamma2,cost,imcost,recost]) gamma_cost_array = np.vstack((gamma_cost_array,this_costngamma)) # calculates the cost for each gamma1/2 and adds the gamma1, gamma2, # and cost to the overall array. return gamma_cost_array #################### # Fitting functions #################### def gauss(x, *p): """ Gaussian fit function. :param x: The independent variable :type x: np.array, or int or float :param p: [mean, area, width, y offset] to be unpacked :type p: list of floats or ints :return: Depends on x, returns another np.array or float or int :rtype: type(x) """ mu, A, sigma, y0 = p return (A / sigma) * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2)) + y0 def lingauss(x, *p): """ Gaussian fit function with a linear offset :param x: The independent variable :type x: np.array, or int or float :param p: [mean, area, width, constant offset of background, slope of background] to be unpacked :type p: list of floats or ints :return: Depends on x, returns another np.array or float or int :rtype: type(x) """ mu, A, sigma, y0, m = p return (A / sigma) * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2)) + y0 + m * x def lorentzian(x, *p): """ Lorentzian fit with constant offset :param x: The independent variable :type x: np.array, or int or float :param p: [mean, area, width, constant offset of background, slope of background] to be unpacked :type p: list of floats or ints :return: Depends on x, returns another np.array or float or int :rtype: type(x) """ mu, A, gamma, y0 = p return (A / np.pi) * (gamma / ((x - mu) ** 2 + gamma ** 2)) + y0 def background(x, *p): """ Arbitrary pink-noise model background data for absorbance FFT for the intention of replacing a peak in the FFT with the background :param x: The independent variable :type x: np.array, or int or float :param p: [proportionality factor, exponent of power law] :type p: list of floats or ints :return: Depends on x :rtype: type(x) """ a, b = p return a * (1 / x) ** b def gaussWithBackground(x, *p): """ Gaussian with pink-noise background function :param x: independent variable :type x: np.array, or int or float :param p: [mean, area, width, constant background, proportionality of power law, exponent of power law] :type p: list of floats or ints :return: Depends on x :rtype: type(x) """ pGauss = p[:4] a, b = p[4:] return gauss(x, *pGauss) + background(x, a, b) #################### # Collection functions #################### def hsg_combine_spectra(spectra_list, verbose = False, **kwargs): """ This function is all about smooshing different parts of the same hsg spectrum together. It takes a list of HighSidebandCCD spectra and turns the zeroth spec_step into a FullHighSideband object. It then uses the function stitch_hsg_dicts over and over again for the smooshing. Input: spectra_list = list of HighSidebandCCD objects that have sideband spectra larger than the spectrometer can see. Returns: good_list = A list of FullHighSideband objects that have been combined as much as can be. :param spectra_list: randomly-ordered list of HSG spectra, some of which can be stitched together :type spectra_list: List of HighSidebandCCD objects kwargs gets passed onto add_item :return: fully combined list of full hsg spectra. No PMT business yet. :rtype: list of FullHighSideband """ good_list = [] spectra_list = spectra_list.copy() spectra_list.sort(key=lambda x: x.parameters["spec_step"]) # keep a dict for each series' spec step # This allows you to combine spectra whose spec steps # change by values other than 1 (2, if you skip, or 0.5 if you # decide to insert things, or arbitary strings) spec_steps = {} for elem in spectra_list: # if verbose: # print "Spec_step is", elem.parameters["spec_step"] current_steps = spec_steps.get(elem.parameters["series"], []) current_steps.append(elem.parameters["spec_step"]) spec_steps[elem.parameters["series"]] = current_steps if verbose: print("I found these spec steps for each series:") print("\n\t".join("{}: {}".format(*ii) for ii in spec_steps.items())) # sort the list of spec steps for series in spec_steps: spec_steps[series].sort() same_freq = lambda x,y: x.parameters["fel_lambda"] == y.parameters["fel_lambda"] for index in range(len(spectra_list)): try: temp = spectra_list.pop(0) if verbose: print("\nStarting with this guy", temp, "\n") except: break good_list.append(FullHighSideband(temp)) counter = 1 temp_list = list(spectra_list) for piece in temp_list: if verbose: print("\tchecking this spec_step", piece.parameters["spec_step"], end=' ') print(", the counter is", counter) if not same_freq(piece, temp): if verbose: print("\t\tnot the same fel frequencies ({} vs {})".format(piece.parameters["fel_lambda"], temp.parameters["fel_lambda"])) continue if temp.parameters["series"] == piece.parameters["series"]: if piece.parameters["spec_step"] == spec_steps[temp.parameters["series"]][counter]: if verbose: print("I found this one", piece) counter += 1 good_list[-1].add_CCD(piece, verbose=verbose, **kwargs) spectra_list.remove(piece) else: print("\t\tNot the right spec step?", type(piece.parameters["spec_step"])) else: if verbose: print("\t\tNot the same series ({} vs {}".format( piece.parameters["series"],temp.parameters["series"])) good_list[-1].make_results_array() return good_list def hsg_combine_spectra_arb_param(spectra_list, param_name="series", verbose = False): """ This function is all about smooshing different parts of the same hsg spectrum together. It takes a list of HighSidebandCCD spectra and turns the zeroth spec_step into a FullHighSideband object. It then uses the function stitch_hsg_dicts over and over again for the smooshing. This is different than hsg_combine_spectra in that you pass which criteria distinguishes the files to be the "same". Since it can be any arbitrary value, things won't be exactly the same (field strength will never be identical between images). It will start with the first (lowest) spec step, then compare the number of images in the next step. Whichever has Input: spectra_list = list of HighSidebandCCD objects that have sideband spectra larger than the spectrometer can see. Returns: good_list = A list of FullHighSideband objects that have been combined as much as can be. :param spectra_list: randomly-ordered list of HSG spectra, some of which can be stitched together :type spectra_list: list of HighSidebandCCD :return: fully combined list of full hsg spectra. No PMT business yet. :rtype: list of FullHighSideband """ if not spectra_list: raise RuntimeError("Passed an empty spectra list!") if isinstance(param_name, list): # if you pass two things because the param you want # is in a dict (e.g. field strength has mean/std) # do it that way param_name_list = list(param_name) paramGetter = lambda x: x.parameters[param_name_list[0]][param_name_list[1]] param_name = param_name[0] elif isinstance(spectra_list[0].parameters[param_name], dict): paramGetter = lambda x: x.parameters[param_name]["mean"] else: paramGetter = lambda x: x.parameters[param_name] good_list = [] spectra_list.sort(key=lambda x: x.parameters["spec_step"]) # keep a dict for each spec step. spec_steps = {} for elem in spectra_list: if verbose: print("Spec_step is", elem.parameters["spec_step"]) current_steps = spec_steps.get(elem.parameters["spec_step"], []) current_steps.append(elem) spec_steps[elem.parameters["spec_step"]] = current_steps # Next, loop over all of the elements. For each element, if it has not # already been added to a spectra, look at all of the combinations from # other spec steps to figure out which has the smallest overall deviation # to make a new full spectrum good_list = [] already_added = set() for elem in spectra_list: if elem in already_added: continue already_added.add(elem) good_list.append(FullHighSideband(elem)) other_spec_steps = [v for k, v in list(spec_steps.items()) if k != good_list[-1].parameters["spec_step"]] min_distance = np.inf cur_value = paramGetter(good_list[-1]) best_match = None for comb in itt.product(*other_spec_steps): new_values = list(map(paramGetter, comb)) all_values = new_values + [cur_value] if np.std(all_values) < min_distance: min_distance = np.std(all_values) best_match = list(comb) if best_match is None: raise RuntimeError("No matches found. Empty lists passed?") best_values = list(map(paramGetter, best_match)) for spec in best_match: print("Adding new spec step\n\tStarted with spec={},series={}".format( good_list[-1].parameters["spec_step"],good_list[-1].parameters["series"] )) print("\tAdding with spec={},series={}\n".format( spec.parameters["spec_step"], spec.parameters["series"] )) print("\n\nfirst SBs:\n", good_list[-1].sb_results) print("\n\nsecond SBs:\n", spec.sb_results) good_list[-1].add_CCD(spec, True) print("\n\nEnding SBs:\n", good_list[-1].sb_results) already_added.add(spec) best_match.append(good_list[-1]) best_values.append(cur_value) new_value = np.mean(best_values) new_std = np.std(best_values) if isinstance(good_list[-1].parameters[param_name], dict): best_values = np.array([x.parameters[param_name]["mean"] for x in best_match]) best_std = np.array([x.parameters[param_name]["std"] for x in best_match]) new_value = np.average(best_values, weights = best_std) new_std = np.sqrt(np.average((best_values-new_value)**2, weights=best_std)) good_list[-1].parameters[param_name] = { "mean": new_value, "std": new_std } return good_list def pmt_sorter(folder_path, plot_individual = True): """ This function will be fed a folder with a bunch of PMT data files in it. The folder should contain a bunch of spectra with at least one sideband in them, each differing by the series entry in the parameters dictionary. This function will return a list of HighSidebandPMT objects. :param folder_path: Path to a folder containing a bunch of PMT data, can be part of a parameter sweep :type folder_path: str :param plot_individual: Whether to plot each sideband itself :return: A list of all the possible hsg pmt spectra, organized by series tag :rtype: list of HighSidebandPMT """ file_list = glob.glob(os.path.join(folder_path, '*[0-9].txt')) pmt_list = [] plot_sb = lambda x: None if plot_individual: plt.figure("PMT data") def plot_sb(spec): spec = copy.deepcopy(spec) spec.process_sidebands() elem = spec.sb_dict[spec.initial_sb] plt.errorbar(elem[:, 0], elem[:, 1], elem[:, 2], marker='o', label="{} {}, {}.{} ".format( spec.parameters["series"], spec.initial_sb, spec.parameters["pm_hv"], 't' if spec.parameters.get("photon counted", False) else 'f') ) for sb_file in file_list: temp = HighSidebandPMT(sb_file) plot_sb(temp) try: for pmt_spectrum in pmt_list: # pmt_spectrum is a pmt object if temp.parameters['series'] == pmt_spectrum.parameters['series']: pmt_spectrum.add_sideband(temp) break else: # this will execute IF the break was NOT called pmt_list.append(temp) except: pmt_list.append(temp) # for sb_file in file_list: # with open(sb_file,'rU') as f: # param_str = '' # line = f.readline() # line = f.readline() # while line[0] == '#': # param_str += line[1:] # line = f.readline() # # parameters = json.loads(param_str) # try: # for pmt_spectrum in pmt_list: # pmt_spectrum is a pmt object? # if parameters['series'] == pmt_spectrum.parameters['series']: # pmt_spectrum.add_sideband(sb_file) # break # else: # this will execute IF the break was NOT called # pmt_list.append(HighSidebandPMT(sb_file)) # except: # pmt_list.append(HighSidebandPMT(sb_file)) for pmt_spectrum in pmt_list: pmt_spectrum.process_sidebands() return pmt_list def stitch_abs_results(main, new): raise NotImplementedError def hsg_combine_qwp_sweep(path, loadNorm = True, save = False, verbose=False, skipOdds = True): """ Given a path to data taken from rotating the QWP (doing polarimetry), process the data (fit peaks), and parse it into a matrix of sb strength vs QWP angle vs sb number. By default, saves the file into "Processed QWP Dependence" Return should be passed directly into fitting -1 | SB1 | SB1 | SB2 | SB2 | ... | ... | SBn | SBn | angle1 | SB Strength | SB err | SB Strength | SB Err | angle2 | ... | . | . . . :param path: Path to load :param loadNorm: if true, load the normalized data :param save: Save the processed file or not :param verbose: :param skipOdds: Passed on to save sweep; determine whether or not to save odd orders. Generally, odds are artifacts and I don't want them messing up the data, so default to True. :return: """ def getData(fname): """ Helper function for loading the data and getting the header information for incident NIR stuff :param fname: :return: """ if isinstance(fname, str): if loadNorm: ending = "_norm.txt" else: ending = "_snip.txt" header = '' with open(os.path.join("Processed QWP Dependence", fname + ending)) as fh: ln = fh.readline() while ln[0] == '#': header += ln[1:] ln = fh.readline() data = np.genfromtxt(os.path.join("Processed QWP Dependence", fname + ending), delimiter=',', dtype=str) if isinstance(fname, io.BytesIO): header = b'' ln = fname.readline() while ln.decode()[0] == '#': header += ln[1:] ln = fname.readline() fname.seek(0) data = np.genfromtxt(fname, delimiter=',', dtype=str) header = json.loads(header) return data, float(header["lAlpha"]), float(header["lGamma"]), float(header["nir"]), float(header["thz"]) ######### End getData try: sbData, lAlpha, lGamma, nir, thz = getData(path) except: # Do the processing on all the files specs = proc_n_plotCCD(path, keep_empties=True, verbose=verbose) for sp in specs: try: sp.parameters["series"] = round(float(sp.parameters["rotatorAngle"]), 2) except KeyError: # Old style of formatting sp.parameters["series"] = round(float(sp.parameters["detectorHWP"]), 2) specs = hsg_combine_spectra(specs, ignore_weaker_lowers=False) if not save: # If you don't want to save them, set everything up for doing Bytes objects # to replacing saving files full, snip, norm = io.BytesIO(), io.BytesIO(), io.BytesIO() if "nir_pola" not in specs[0].parameters: # in the olden days. Force them. Hopefully making them outside of ±360 # makes it obvious specs[0].parameters["nir_pola"] = 361 specs[0].parameters["nir_polg"] = 361 keyName = "rotatorAngle" if keyName not in specs[0].parameters: # from back before I changed the name keyName = "detectorHWP" save_parameter_sweep(specs, [full, snip, norm], None, keyName, "deg", wanted_indices=[3, 4], header_dict={ "lAlpha": specs[0].parameters["nir_pola"], "lGamma": specs[0].parameters["nir_polg"], "nir": specs[0].parameters["nir_lambda"], "thz": specs[0].parameters["fel_lambda"], }, only_even=skipOdds) if loadNorm: sbData, lAlpha, lGamma, nir, thz = getData(norm) else: sbData, lAlpha, lGamma, nir, thz = getData(snip) else: save_parameter_sweep(specs, os.path.basename(path), "Processed QWP Dependence", "rotatorAngle", "deg", wanted_indices=[3, 4], header_dict={ "lAlpha": specs[0].parameters["nir_pola"], "lGamma": specs[0].parameters["nir_polg"], "nir": specs[0].parameters["nir_lambda"], "thz": specs[0].parameters["fel_lambda"], }, only_even=skipOdds) sbData, lAlpha, lGamma, nir, thz = getData(os.path.basename(path)) laserParams = { "lAlpha": lAlpha, "lGamma": lGamma, "nir": nir, "thz": thz } # get which sidebands were found in this data set # first two rows are origin header, second is sideband number # (and empty strings, which is why the "if ii" below, to prevent # ValueErrors on int(''). foundSidebands = np.array(sorted([float(ii) for ii in set(sbData[2]) if ii])) # Remove first 3 rows, which are strings for origin header, and cast it to floats sbData = sbData[3:].astype(float) # double the sb numbers (to account for sb strength/error) and add a dummy # number so the array is the same shape foundSidebands = np.insert(foundSidebands, range(len(foundSidebands)), foundSidebands) foundSidebands = np.insert(foundSidebands, 0, -1) return laserParams, np.row_stack((foundSidebands, sbData)) def makeCurve(eta, isVertical): """ :param eta: QWP retardance at the wavelength :return: """ cosd = lambda x: np.cos(x * np.pi / 180) sind = lambda x: np.sin(x * np.pi / 180) eta = eta * 2 * np.pi if isVertical: # vertical polarizer def analyzerCurve(x, *S): S0, S1, S2, S3 = S return S0-S1/2*(1+np.cos(eta)) \ + S3*np.sin(eta)*sind(2*x) \ + S1/2*(np.cos(eta)-1)*cosd(4*x) \ + S2/2*(np.cos(eta)-1)*sind(4*x) else: # vertical polarizer def analyzerCurve(x, *S): S0, S1, S2, S3 = S return S0+S1/2*(1+np.cos(eta)) \ - S3*np.sin(eta)*sind(2*x) \ + S1/2*(1-np.cos(eta))*cosd(4*x) \ + S2/2*(1-np.cos(eta))*sind(4*x) return analyzerCurve def proc_n_fit_qwp_data(data, laserParams = dict(), wantedSBs = None, vertAnaDir = True, plot=False, save = False, plotRaw = lambda sbidx, sbnum: False, series = '', eta=None, fourier = True, **kwargs): """ Fit a set of sideband data vs QWP angle to get the stoke's parameters :param data: data in the form of the return of hsg_combine_qwp_sweep :param laserParams: dictionary of the parameters of the laser, the angles and frequencies. See function for expected keys. I don't think the errors are used (except for plotting?), or the wavelengths (but left in for potential future use (wavelength dependent stuff?)) :param wantedSBs: List of the wanted sidebands to fit out. :param vertAnaDir: direction of the analzyer. True if vertical, false if horizontal. :param plot: True/False to plot alpha/gamma/dop. Alternatively, a list of "a", "g", "d" to only plot selected ones :param save: filename to save the files. Accepts BytesIO :param plotRaw: callable that takes an index of the sb and sb number, returns true to plot the raw curve :param series: a string to be put in the header for the origin files :param eta: a function to call to calculate the desired retardance. Input will be the SB order. :param fourier: Will use Fourier analysis over a fit funciton if True if saveStokes is in kwargs and False, it will not save the stokes parameters, since I rarely actually use them. :return: """ defaultLaserParams = { "lAlpha": 90, "ldAlpha": 0.2, "lGamma": 0.0, "ldGamma": 0.2, "lDOP": 1, "ldDOP": 0.02, "nir": 765.7155, "thz": 21.1 } defaultLaserParams.update(laserParams) lAlpha, ldAlpha, lGamma, ldGamma, lDOP, ldDOP = defaultLaserParams["lAlpha"], \ defaultLaserParams["ldAlpha"], \ defaultLaserParams["lGamma"], \ defaultLaserParams["ldGamma"], \ defaultLaserParams["lDOP"], \ defaultLaserParams["ldDOP"] allSbData = data angles = allSbData[1:, 0] # angles += -5 # print("="*20) # print("\n"*3) # print(" WARNING") # print("\n"*3) # print("ANGLES HAVE BEEN MANUALLY OFFEST IN proc_n_fit_qwp_data") # print("\n"*3) # print("="*20) allSbData = allSbData[:, 1:] # trim out the angles if wantedSBs is None: # set to get rid of duplicates, 1: to get rid of the -1 used for # getting arrays the right shape wantedSBs = set(allSbData[0, 1:]) if eta is None: """ It might be easier for the end user to do this by passing eta(wavelength) instead of eta(sborder), but then this function would need to carry around wavelengths, which is extra work. It could convert between NIR/THz wavelengths to SB order, but it's currently unclear whether you'd rather use what the WS6 claims, or what the sidebands say, and you'd probably want to take the extra step to ensure the SB fit rseults if using the spectromter wavelengths. In general, if you have a function as etal(wavelength), you'd probably want to pass this as eta = lambda x: etal(1239.84/(nirEv + x*THzEv)) assuming nirEv/THzEv are the photon energies of the NIR/THz. """ eta = lambda x: 0.25 # allow pasing a flag it ignore odds. I think I generally do, so set it to # default to True skipOdds = kwargs.get("skip_odds", True) # Make an array to keep all of the sideband information. # Start it off by keeping the NIR information (makes for easier plotting into origin) sbFits = [[0] + [-1] * 8 + [lAlpha, ldAlpha, lGamma, ldGamma, lDOP, ldDOP]] # Also, for convenience, keep a dictionary of the information. # This is when I feel like someone should look at porting this over to pandas sbFitsDict = {} sbFitsDict["S0"] = [[0, -1, -1]] sbFitsDict["S1"] = [[0, -1, -1]] sbFitsDict["S2"] = [[0, -1, -1]] sbFitsDict["S3"] = [[0, -1, -1]] sbFitsDict["alpha"] = [[0, lAlpha, ldAlpha]] sbFitsDict["gamma"] = [[0, lGamma, ldGamma]] sbFitsDict["DOP"] = [[0, lDOP, ldDOP]] # Iterate over all sb data. Skip by 2 because error bars are included for sbIdx in range(0, allSbData.shape[1], 2): sbNum = allSbData[0, sbIdx] if sbNum not in wantedSBs: continue if skipOdds and sbNum%2: continue # if verbose: # print("\tlooking at sideband", sbNum) sbData = allSbData[1:, sbIdx] sbDataErr = allSbData[1:, sbIdx + 1] if fourier: # We want to do Fourier Analysis # I've hard coded the maximum expected variance from QWP retardance to be # 5 degrees (converted to radians bc of small angle approximation). # Not sure how to deal with the fact that this method leaves no variance # for the S3 paramter. f0 = 0 f2 = 0 f4 = 0 df0 = 0 df2 = 0 df4 = 0 for k in range(0,16,1): f0 = f0 + allSbData[k+1,sbIdx] f2 = f2 + allSbData[k+1,sbIdx]*np.exp(-1j*np.pi*k/4) f4 = f4 + allSbData[k+1,sbIdx]*np.exp(-1j*np.pi*k/2) df0 = df0 + allSbData[k+1, sbIdx+1] df2 = df2 + allSbData[k+1,sbIdx+1]*np.exp(-1j*np.pi*k/4) df4 = df4 + allSbData[k+1,sbIdx+1]*np.exp(-1j*np.pi*k/2) phi = 5*2*np.pi/180 # Generate the Stokes parameters from the Fourier Components S0 = (f0 - 2*f4.real)/(np.pi) S1 = 4*f4.real/(np.pi) S2 = -4*f4.imag/(np.pi) S3 = 2*f2.imag/(np.pi) # For the Error Propagation, I say phi = 0 and dPhi = 2*phi (value set above) d0 = np.sqrt(df0**2+2*(4*f4.real**2*phi**2+df4.real**2*(1+phi)**2*(1-1*phi)**2)/(1+phi)**4)/(2*np.pi) d1 = np.sqrt((f4.real**2*phi**2+df4.real**2*phi**2)/(1+phi)**4)/(np.pi) d2 = np.sqrt((f4.imag**2*phi**2+df4.imag**2*phi**2)/(1+phi)**4)/(np.pi) d3 = 2*df2.imag/np.pi # Calculate the alpha, gamma, DOP and errors from Stokes parameters thisAlpha = np.arctan2(S2, S1) / 2 * 180. / np.pi thisAlphaError = np.sqrt(d2 ** 2 * S1 ** 2 + d1 ** 2 * S2 ** 2) / (S1 ** 2 + S2 ** 2) * 180./np.pi thisGamma = np.arctan2(S3, np.sqrt(S1 ** 2 + S2 ** 2)) / 2 * 180. / np.pi thisGammaError = np.sqrt((d3 ** 2 * (S1 ** 2 + S2 ** 2) ** 2 + (d1 ** 2 * S1 ** 2 + d2 ** 2 * S2 ** 2) * S3 ** 2) / ( (S1 ** 2 + S2 ** 2) * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2)) *180. /np.pi thisDOP = np.sqrt(S1 ** 2 + S2 ** 2 + S3 ** 2) / S0 thisDOPerror = np.sqrt(((d1 ** 2 * S0 ** 2 * S1 ** 2 + d0 ** 2 * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2 + S0 ** 2 * ( d2 ** 2 * S2 ** 2 + d3 ** 2 * S3 ** 2)) / (S0 ** 4 * (S1 ** 2 + S2 ** 2 + S3 ** 2)))) # Append The stokes parameters and errors to the dictionary output. sbFitsDict["S0"].append([sbNum, S0, d0]) sbFitsDict["S1"].append([sbNum, S1, d1]) sbFitsDict["S2"].append([sbNum, S2, d2]) sbFitsDict["S3"].append([sbNum, S3, d3]) sbFitsDict["alpha"].append([sbNum, thisAlpha, thisAlphaError]) sbFitsDict["gamma"].append([sbNum, thisGamma, thisGammaError]) sbFitsDict["DOP"].append([sbNum, thisDOP, thisDOPerror]) toAppend = [sbNum, S0, d0, S1, d1, S2, d2, S3, d3, thisAlpha, thisAlphaError, thisGamma, thisGammaError, thisDOP, thisDOPerror] sbFits.append(toAppend) # Otherwise we will do the normal fit else: # try: # p0 = sbFits[-1][1:8:2] # except: # p0 = [1, 1, 0, 0] p0 = [1, 1, 0, 0] etan = eta(sbNum) try: p, pcov = curve_fit(makeCurve(etan, vertAnaDir), angles, sbData, p0=p0) except ValueError: # This is getting tossed around, especially when looking at noisy data, # especially with the laser line, and it's fitting erroneous values. # Ideally, I should be cutting this out and not even returning them, # but that's immedaitely causing p = np.nan*np.array(p0) pcov = np.eye(len(p)) if plot and plotRaw(sbIdx, sbNum): # pg.figure("{}: sb {}".format(dataName, sbNum)) plt.figure("All Curves") plt.errorbar(angles, sbData, sbDataErr, 'o-', name=f"{series}, {sbNum}") # plt.plot(angles, sbData,'o-', label="Data") fineAngles = np.linspace(angles.min(), angles.max(), 300) # plt.plot(fineAngles, # makeCurve(eta, "V" in dataName)(fineAngles, *p0), name="p0") plt.plot(fineAngles, makeCurve(etan, vertAnaDir)(fineAngles, *p)) # plt.show() plt.ylim(0, 1) plt.xlim(0, 360) plt.ylabel("Normalized Intensity") plt.xlabel("QWP Angle (&theta;)") print(f"\t{series} {sbNum}, p={p}") # get the errors d = np.sqrt(np.diag(pcov)) thisData = [sbNum] + list(p) + list(d) d0, d1, d2, d3 = d S0, S1, S2, S3 = p # reorder so errors are after values thisData = [thisData[i] for i in [0, 1, 5, 2, 6, 3, 7, 4, 8]] sbFitsDict["S0"].append([sbNum, S0, d0]) sbFitsDict["S1"].append([sbNum, S1, d1]) sbFitsDict["S2"].append([sbNum, S2, d2]) sbFitsDict["S3"].append([sbNum, S3, d3]) # append alpha value thisData.append(np.arctan2(S2, S1) / 2 * 180. / np.pi) # append alpha error variance = (d2 ** 2 * S1 ** 2 + d1 ** 2 * S2 ** 2) / (S1 ** 2 + S2 ** 2) ** 2 thisData.append(np.sqrt(variance) * 180. / np.pi) sbFitsDict["alpha"].append([sbNum, thisData[-2], thisData[-1]]) # append gamma value thisData.append(np.arctan2(S3, np.sqrt(S1 ** 2 + S2 ** 2)) / 2 * 180. / np.pi) # append gamma error variance = (d3 ** 2 * (S1 ** 2 + S2 ** 2) ** 2 + (d1 ** 2 * S1 ** 2 + d2 ** 2 * S2 ** 2) * S3 ** 2) / ( (S1 ** 2 + S2 ** 2) * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2) thisData.append(np.sqrt(variance) * 180. / np.pi) sbFitsDict["gamma"].append([sbNum, thisData[-2], thisData[-1]]) # append degree of polarization thisData.append(np.sqrt(S1 ** 2 + S2 ** 2 + S3 ** 2) / S0) variance = ((d1 ** 2 * S0 ** 2 * S1 ** 2 + d0 ** 2 * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2 + S0 ** 2 * ( d2 ** 2 * S2 ** 2 + d3 ** 2 * S3 ** 2)) / (S0 ** 4 * (S1 ** 2 + S2 ** 2 + S3 ** 2))) thisData.append(np.sqrt(variance)) sbFitsDict["DOP"].append([sbNum, thisData[-2], thisData[-1]]) sbFits.append(thisData) sbFits = np.array(sbFits) sbFitsDict = {k: np.array(v) for k, v in sbFitsDict.items()} # This chunk used to insert the "alpha deviation", the difference between the angles and the # nir. I don't think I use this anymore, so stop saving it # origin_header = 'Sideband,S0,S0 err,S1,S1 err,S2,S2 err,S3,S3 err,alpha,alpha deviation,alpha err,gamma,gamma err,DOP,DOP err\n' # origin_header += 'Order,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,deg,deg,deg,deg,deg,arb.u.,arb.u.\n' # origin_header += 'Sideband,{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}'.format(*["{}".format(series)] * 15) # sbFits = np.array(sbFits) # sbFits = np.insert(sbFits, 10, sbFits[:, 9] - lAlpha, axis=1) # sbFits = sbFits[sbFits[:, 0].argsort()] origin_header = "#\n"*100 # to fit all other files for easy origin importing origin_header += 'Sideband,S0,S0 err,S1,S1 err,S2,S2 err,S3,S3 err,alpha,alpha err,gamma,gamma err,DOP,DOP err\n' origin_header += 'Order,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,deg,deg,deg,deg,arb.u.,arb.u.\n' origin_header += 'Sideband,{},{},{},{},{},{},{},{},{},{},{},{},{},{}'.format(*["{}".format(series)] * 14) sbFits = sbFits[sbFits[:, 0].argsort()] if isinstance(save, str): sbFitsSave = sbFits if not kwargs.get("saveStokes", True): headerlines = origin_header.splitlines() ln, units, coms = headerlines[-3:] ln = ','.join([ln.split(',')[0]] + ln.split(',')[9:]) units = ','.join([units.split(',')[0]] + units.split(',')[9:]) coms = ','.join([coms.split(',')[0]] + coms.split(',')[9:]) headerlines[-3:] = ln, units, coms # remove them from the save data origin_header = '\n'.join(headerlines) sbFitsSave = np.delete(sbFits, range(1, 9), axis=1) if not os.path.exists(os.path.dirname(save)): os.mkdir(os.path.dirname(save)) np.savetxt(save, np.array(sbFitsSave), delimiter=',', header=origin_header, comments='', fmt='%.6e') # print("a = {:.2f} ± {:.2f}".format(sbFits[1, 9], sbFits[1, 10])) # print("g = {:.2f} ± {:.2f}".format(sbFits[1, 11], sbFits[1, 12])) if plot: plt.figure("alpha") plt.errorbar(sbFitsDict["alpha"][:, 0], sbFitsDict["alpha"][:, 1], sbFitsDict["alpha"][:, 2], 'o-', name = series ) plt.figure("gamma") plt.errorbar(sbFitsDict["gamma"][:, 0], sbFitsDict["gamma"][:, 1], sbFitsDict["gamma"][:, 2], 'o-', name=series ) return sbFits, sbFitsDict #################### # Helper functions #################### def fvb_crr(raw_array, offset=0, medianRatio=1, noiseCoeff=5, debugging=False): """ Remove cosmic rays from a sequency of identical exposures :param raw_array: The array to be cleaned. Successive spectra should be the columns (i.e. 1600 x n) of the raw_array :param offset: baseline to add to raw_array. Not used, but here if it's needed in the future :param medianRatio: Multiplier to the median when deciding a cutoff :param noiseCoeff: Multiplier to the noise on the median May need changing for noisy data :return: """ d = np.array(raw_array) med = ndimage.filters.median_filter(d, size=(1, d.shape[1]), mode='wrap') med = np.median(d, axis=1).reshape(d.shape[0], 1) if debugging: print("shape of median filter:", med.shape) meanMedian = med.mean(axis=1) # meanMedian = med.copy() if debugging: print("shape of meaned median filter:", meanMedian.shape) # Construct a cutoff for each pixel. It was kind of guess and # check cutoff = meanMedian * medianRatio + noiseCoeff * np.std(meanMedian[-100:]) if debugging: print("shape of cutoff criteria:", cutoff.shape) import pyqtgraph as pg winlist = [] app = pg.QtGui.QApplication([]) win = pg.GraphicsLayoutWidget() win.setWindowTitle("Raw Image") p1 = win.addPlot() img = pg.ImageItem() img.setImage(d.copy().T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win.addItem(hist) win.nextRow() p2 = win.addPlot(colspan=2) p2.setMaximumHeight(250) p2.addLegend() for i, v in enumerate(d.T): p2.plot(v, pen=(i, d.shape[1]), name=str(i)) p2.plot(np.sum(d, axis=1), pen=pg.mkPen('w', width=3)) win.show() winlist.append(win) win2 = pg.GraphicsLayoutWidget() win2.setWindowTitle("Median Image") p1 = win2.addPlot() img = pg.ImageItem() img.setImage(med.T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win2.addItem(hist) win2.nextRow() p2 = win2.addPlot(colspan=2) p2.setMaximumHeight(250) p2.plot(np.sum(med, axis=1) / d.shape[1]) win2.show() winlist.append(win2) win2 = pg.GraphicsLayoutWidget() win2.setWindowTitle("d-m") p1 = win2.addPlot() img = pg.ImageItem() img.setImage((d - med).T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win2.addItem(hist) win2.nextRow() p2 = win2.addPlot(colspan=2) p2.setMaximumHeight(250) p2.addLegend() for i, v in enumerate((d - med).T): p2.plot(v, pen=(i, d.shape[1]), name=str(i)) p2.plot(cutoff, pen=pg.mkPen('w', width=3)) win2.show() winlist.append(win2) # Find the bad pixel positions # Note the [:, None] - needed to cast the correct shapes badPixs = np.argwhere((d - med) > (cutoff.reshape(len(cutoff), 1))) for pix in badPixs: # get the other pixels in the row which aren't the cosmic if debugging: print("cleaning pixel", pix) p = d[pix[0], [i for i in range(d.shape[1]) if not i == pix[1]]] if debugging: print("\tRemaining pixels in row are", p) # Replace the cosmic by the average of the others # Could get hairy if more than one cosmic per row. # Maybe when doing many exposures? d[pix[0], pix[1]] = np.mean(p) if debugging: win = pg.GraphicsLayoutWidget() win.setWindowTitle("Clean Image") p1 = win.addPlot() img = pg.ImageItem() img.setImage(d.copy().T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win.addItem(hist) win.nextRow() p2 = win.addPlot(colspan=2) p2.setMaximumHeight(250) p2.plot(np.sum(d, axis=1)) win.show() winlist.append(win) app.exec_() return np.array(d) def stitchData(dataList, plot=False): """ Attempt to stitch together absorbance data. Will translate the second data set to minimize leastsq between the two data sets. :param dataList: Iterable of the data sets to be fit. Currently it only takes the first two elements of the list, but should be fairly straightforward to recursivly handle a list>2. Shifts the second data set to overlap the first elements of dataList can be either np.arrays or Absorbance class, where it will take the proc_data itself :param plot: bool whether or not you want the fit iterations to be plotted (for debugging) :return: a, a (2,) np.array of the shift """ # Data coercsion, make sure we know what we're working wtih first = dataList[0] if isinstance(first, Absorbance): first = first.proc_data second = dataList[1] if isinstance(second, Absorbance): second = second.proc_data if plot: # Keep a reference to whatever plot is open at call-time # Useful if the calling script has plots before and after, as # omitting this will cause future plots to be added to figures here firstFig = plt.gcf() plt.figure("Stitcher") # Plot the raw input data plt.plot(*first.T) plt.plot(*second.T) # Algorithm is set up such that the "second" data set spans the # higher domain than first. Need to enforce this, and remember it # so the correct shift is applied flipped = False if max(first[:, 0]) > max(second[:, 0]): flipped = True first, second = second, first def stitch_hsg_dicts(full_obj, new_obj, need_ratio=False, verbose=False, ratios=[1,1], override_ratio = False, ignore_weaker_lowers = True): """ This helper function takes a FullHighSideband and a sideband object, either CCD or PMT and smushes the new sb_results into the full_dict. The first input doesn't change, so f there's a PMT set of data involved, it should be in the full variable to keep the laser normalization intact. This function almost certainly does not work for stitching many negative orders in it's current state 11/14/16 -------- This function has been updated to take the CCD objects themselves to be more intelligent about stitching. Consider two scans, (a) spec step 0 with 1 gain, spec step 2 with 110 gain and (b) spec step 0 with 50 gain and spec step 1 with 110 gain. The old version would always take spec step 0 to scale to, so while comparisons between spec step 0 and 1 for either case is valid, comparison between (a) and (b) were not, since they were scaled to different gain parameters. This new code will check what the gain values are and scale to the 110 data set, if present. This seems valid because we currently always have a 110 gain exposure for higher order sidebands. The exception is if the laser is present (sideband 0), as that is an absolute measure to which all else should be related. TODO: run some test cases to test this. 06/11/18 -------- That sometimes was breaking if there were only 3-4 sidebands to fit with poor SNR. I've added the override_ratio to be passed to set a specific ratio to scale by. From data on 06/03/18, the 50gain to 110gain is a ~3.6 ratio. I haven't done a clean way of specifying which data set it should be scaled. Right now, it leaves the laser line data, or the 110 gain data alone. Inputs: full = full_dict from FullHighSideband, or HighSidebandPMT. It's important that it contains lower orders than the new_dict. new_dict = another full_dict. need_ratio = If gain or other parameters aren't equal and must resort to calculating the ratio instead of the measurements being equivalent. Changing integration time still means N photons made M counts, but changing gain or using PMT or whatever does affect things. ratios: Will update with the values to the ratios needed to scale the data. ratios[0] is the ratio for the "full_obj" ratios[1] is the ratio for the "new_obj" one of them will be one, one will be the appropriate scale, since one of them is unscaled. This is strictly speaking an output override_ratio: Pass a float to specify the ratio that should be used. ignore_weaker_lowers: Sometimes, a SB is in the short pass filter so a lower order is weaker than the next highest. If True, causes script to ignore all sidebands which are weaker and lower order. Returns: full = extended version of the input full. Overlapping sidebands are averaged because that makes sense? """ if isinstance(full_obj, dict) and isinstance(new_obj, dict): return stitch_hsg_dicts_old(full_obj, new_obj, need_ratio, verbose) if verbose: print("=" * 15) print() print("Stitching HSG dicts") print() print("=" * 15) # remove potentially offensive SBs, i.e. a 6th order SB being in the SPF for more # data, but being meaningless to pull intensity information from. # Note: this might not be the best if you get to higher order stitches where it's # possible that the sidebands might not be monotonic (from noise?) if ignore_weaker_lowers: full_obj.full_dict, full_obj.sb_results = FullHighSideband.parse_sb_array(full_obj.sb_results) new_obj.new_dict, new_obj.sb_results = FullHighSideband.parse_sb_array(new_obj.sb_results) # was fucking around with references and causing updates to arrays when it shouldn't # be full = copy.deepcopy(full_obj.full_dict) new_dict = copy.deepcopy(new_obj.full_dict) # Force a rescaling if you've passed a specified parameter # if isinstance(override_ratio, float): # need_ratio = True # Do some testing to see which dict should be scaled to the other # I honestly forget why I prioritized the PMT first like this. But the third # check looks to make a gain 110 prioritize non-110, unless the non-110 includes # a laser line scaleTo = "" if need_ratio: if isinstance(new_obj, HighSidebandPMT): scaleTo = "new" elif isinstance(full_obj, HighSidebandPMT): scaleTo = "full" elif new_obj.parameters["gain"] == 110 and full_obj.parameters["gain"] != 110 \ and 0 not in full: scaleTo = "new" else: scaleTo = "full" if verbose: print("\tI'm adding these sidebands", new_obj.sb_results[:,0]) print("\t With these:", sorted(full.keys())) overlap = [] # The list that hold which orders are in both dictionaries missing = [] # How to deal with sidebands that are missing from full but in new. for new_sb in new_obj.sb_results[:,0]: full_sbs = sorted(full.keys()) if new_sb in full_sbs: overlap.append(new_sb) elif new_sb not in full_sbs and new_sb < full_sbs[-1]: # This probably doesn't work with bunches of negative orders missing.append(new_sb) if verbose: print("\t ( overlap:", overlap, ")") print("\t ( missing:", missing, ")") # This if-else clause handles how to average together overlapping sidebands # which are seen in both spectra, if need_ratio: # Calculate the appropriate ratio to multiply the new sidebands by. # I'm not entirely sure what to do with the error of this guy. ratio_list = [] try: new_starter = overlap[-1] if verbose: print("\n\tadding these ratios,", end=' ') if len(overlap) > 2: overlap = [x for x in overlap if (x % 2 == 0) ]# and (x != min(overlap) and (x != max(overlap)))] if scaleTo == "new": if verbose: print("scaling to new :") for sb in overlap: ratio_list.append(new_dict[sb][2]/full[sb][2]) if verbose: print("\t\t{:2.0f}: {:.3e}/{:.3e} ~ {:.3e},".format(sb, new_dict[sb][2], full[sb][2], ratio_list[-1])) # new_ratio = 1 06/11/18 Not sure what these were used for ratio = np.mean(ratio_list) else: if verbose: print("scaling to full:") for sb in overlap: ratio_list.append(full[sb][2] / new_dict[sb][2]) if verbose: print("\t\t{:2.0f}: {:.3e}/{:.3e} ~ {:.3e},".format(sb, full[sb][2], new_dict[sb][2], ratio_list[-1])) # new_ratio = np.mean(ratio_list) 06/11/18 Not sure what these were used for ratio = np.mean(ratio_list) # Maybe not the best way to do it, performance wise, since you still # iterate through the list, even though you'll override it. if isinstance(override_ratio, float): ratio = override_ratio if verbose: print("overriding calculated ratio with user inputted") error = np.std(ratio_list) / np.sqrt(len(ratio_list)) except IndexError: # If there's no overlap (which you shouldn't let happen), hardcode a ratio # and error. I looked at all the ratios for the overlaps from 6/15/16 # (540ghz para) to get the rough average. Hopefully they hold for all data. if not overlap: ratio = 0.1695 error = 0.02 # no overlap, so make sure it grabs all the sidebands new_starter = min(new_dict.keys()) else: raise if verbose: # print "Ratio list\n\t", ("{:.3g}, "*len(ratio_list))[:-2].format(*ratio_list) # print "Overlap \n\t", [round(ii, 3) for ii in overlap] print("\t Ratio: {:.3g} +- {:.3g} ({:.2f}%)\n".format(ratio, error, error/ratio*100)) # Adding the new sidebands to the full set and moving errors around. # I don't know exactly what to do about the other aspects of the sidebands # besides the strength and its error. if scaleTo == "full": ratios[1] = ratio for sb in overlap: if verbose: print("For SB {:02d}, original strength is {:.3g} +- {:.3g} ({:.3f}%)".format(int(sb), new_dict[sb][2], new_dict[sb][3], new_dict[sb][3]/new_dict[sb][2]*100 )) new_dict[sb][3] = ratio * new_dict[sb][2] * np.sqrt((error / ratio) ** 2 + (new_dict[sb][3] / new_dict[sb][2]) ** 2) new_dict[sb][2] = ratio * new_dict[sb][2] if verbose: print("\t\t scaled\t\t\t\t{:.3g} +- {:.3g} ({:.3f}%)".format(new_dict[sb][2], new_dict[sb][3], new_dict[sb][3]/new_dict[sb][2]*100)) print("\t\t full\t\t\t\t\t{:.3g} +- {:.3g} ({:.3f}%)".format(full[sb][2], full[sb][3], full[sb][3]/full[sb][2]*100)) sb_error = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / ( new_dict[sb][3] ** 2)) / (full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = sb_error if verbose: print("\t\t replaced with \t\t{:.3g} +- {:.3g} ({:.3f}%)".format(full[sb][2], full[sb][3], full[sb][3]/full[sb][2]*100)) print() lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / ( new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error else: ratios[0] = ratio for sb in overlap: full[sb][3] = ratio * full[sb][2] * np.sqrt((error / ratio) ** 2 + (full[sb][3] / full[sb][2]) ** 2) full[sb][2] = ratio * full[sb][2] sberror = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / ( new_dict[sb][3] ** 2)) / (full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = sberror lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / ( new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error else: # not needing a new ratio try: new_starter = overlap[-1] # This grabs the sideband order where only the new dictionary has # sideband information. It's not clear why it necessarily has to be # at this line. overlap = [x for x in overlap if (x % 2 == 0) ] # and (x != min(overlap) and (x != max(overlap)))] # This cuts out the lowest order sideband in the overlap for mysterious reasons for sb in overlap: # This for loop average two data points weighted by their relative errors if verbose: print("The sideband", sb) print("Old value", full[sb][4] * 1000) print("Add value", new_dict[sb][4] * 1000) try: error = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / (new_dict[sb][3] ** 2)) / ( full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = error except RuntimeWarning: raise IOError() lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / (new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error if verbose: print("New value", lw_avg * 1000) except: new_starter = 0 # I think this makes things work when there's no overlap if verbose: print("appending new elements. new_starter={}".format(new_starter)) for sb in [x for x in list(new_dict.keys()) if ((x > new_starter) or (x in missing))]: full[sb] = new_dict[sb] if scaleTo == "full": full[sb][2] = ratio * full[sb][2] full[sb][3] = full[sb][2] * np.sqrt((error / ratio) ** 2 + (ratio * full[sb][3] / full[sb][2]) ** 2) if scaleTo == "new": for sb in set(full.keys()) - set(sorted(new_dict.keys())[:]): full[sb][2] *= ratio # TODO: I think this is an invalid error # propagation (since ratio has error associated with it full[sb][3] *= ratio if verbose: print("I made this dictionary", sorted(full.keys())) print('-'*19) return full return full, ratio #the fuck? Why was this here? return full def stitch_hsg_dicts_old(full, new_dict, need_ratio=False, verbose=False): """ This helper function takes a FullHighSideband.full_dict attribute and a sideband object, either CCD or PMT and smushes the new sb_results into the full_dict. The first input doesn't change, so f there's a PMT set of data involved, it should be in the full variable to keep the laser normalization intact. This function almost certainly does not work for stitching many negative orders in it's current state 11/14/16 -------- The original function has been updated to take the full object (instead of the dicts alone) to better handle calculating ratios when stitching. This is called once things have been parsed in the original function (or legacy code where dicts are passed instead of the object) Inputs: full = full_dict from FullHighSideband, or HighSidebandPMT. It's important that it contains lower orders than the new_dict. new_dict = another full_dict. need_ratio = If gain or other parameters aren't equal and must resort to calculating the ratio instead of the measurements being equivalent. Changing integration time still means N photons made M counts, but changing gain or using PMT or whatever does affect things. Returns: full = extended version of the input full. Overlapping sidebands are averaged because that makes sense? """ if verbose: print("I'm adding these sidebands in old stitcher", sorted(new_dict.keys())) overlap = [] # The list that hold which orders are in both dictionaries missing = [] # How to deal with sidebands that are missing from full but in new. for new_sb in sorted(new_dict.keys()): full_sbs = sorted(full.keys()) if new_sb in full_sbs: overlap.append(new_sb) elif new_sb not in full_sbs and new_sb < full_sbs[-1]: # This probably doesn't work with bunches of negative orders missing.append(new_sb) if verbose: print("overlap:", overlap) print("missing:", missing) # This if-else clause handles how to average together overlapping sidebands # which are seen in both spectra, if need_ratio: # Calculate the appropriate ratio to multiply the new sidebands by. # I'm not entirely sure what to do with the error of this guy. ratio_list = [] #print '\n1979\nfull[2]', full[0][2] try: new_starter = overlap[-1] if len(overlap) > 2: overlap = [x for x in overlap if (x % 2 == 0) ]#and (x != min(overlap) and (x != max(overlap)))] for sb in overlap: ratio_list.append(full[sb][2] / new_dict[sb][2]) ratio = np.mean(ratio_list) # print # print '-'*15 # print "ratio for {}: {}".format() error = np.std(ratio_list) / np.sqrt(len(ratio_list)) except IndexError: # If there's no overlap (which you shouldn't let happen), # hardcode a ratio and error. # I looked at all the ratios for the overlaps from 6/15/16 # (540ghz para) to get the rough average. Hopefully they hold # for all data. if not overlap: ratio = 0.1695 error = 0.02 # no overlap, so make sure it grabs # all the sidebands new_starter = min(new_dict.keys()) else: raise if verbose: print("Ratio list","\n", [round(ii, 3) for ii in ratio_list]) print("Overlap ","\n", [round(ii, 3) for ii in overlap]) print("Ratio", ratio) print("Error", error) #print '\n2118\nfull[2]', full[0][2] # Adding the new sidebands to the full set and moving errors around. # I don't know exactly what to do about the other aspects of the sidebands # besides the strength and its error. for sb in overlap: full[sb][2] = ratio * new_dict[sb][2] full[sb][3] = full[sb][2] * np.sqrt((error / ratio) ** 2 + (new_dict[sb][3] / new_dict[sb][2]) ** 2) #print '\n2125\nfull[2]', full[0][3] # Now for linewidths lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / (new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error #print '\n2132\nfull[2]', full[0][2] else: try: new_starter = overlap[-1] # This grabs the sideband order where only the new dictionary has # sideband information. It's not clear why it necessarily has to be # at this line. overlap = [x for x in overlap if (x % 2 == 0) and (x != min(overlap) and (x != max(overlap)))] # This cuts out the lowest order sideband in the overlap for mysterious reasons for sb in overlap: # This for loop average two data points weighted by their relative errors if verbose: print("The sideband", sb) print("Old value", full[sb][4] * 1000) print("Add value", new_dict[sb][4] * 1000) error = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / (new_dict[sb][3] ** 2)) / ( full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = error lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / (new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error if verbose: print("New value", lw_avg * 1000) except: new_starter = 0 # I think this makes things work when there's no overlap if verbose: print("appending new elements. new_starter={}".format(new_starter)) # This loop will add the sidebands which were only seen in the second step for sb in [x for x in list(new_dict.keys()) if ((x >= new_starter) or (x in missing))]: full[sb] = new_dict[sb] if need_ratio: full[sb][2] = ratio * full[sb][2] full[sb][3] = full[sb][2] * np.sqrt((error / ratio) ** 2 + (ratio * full[sb][3] / full[sb][2]) ** 2) #print '\n2164\nfull[2]', full[0][2] if verbose: print("I made this dictionary", sorted(full.keys())) return full def save_parameter_sweep_no_sb(spectrum_list, file_name, folder_str, param_name, unit, verbose=False): """ This function will take a fully processed list of spectrum objects and slice Spectrum.sb_fits appropriately to get an output like: "Parameter" | SB1 freq | err | SB1 amp | error | SB1 linewidth | error | SB2...| SBn...| param1 | . | param2 | . | . . . Currently I'm thinking fuck the offset y0 After constructing this large matrix, it will save it somewhere. """ spectrum_list.sort(key=lambda x: x.parameters[param_name]) included_spectra = dict() param_array = None sb_included = [] for spec in spectrum_list: sb_included = sorted(list(set(sb_included + list(spec.full_dict.keys())))) included_spectra[spec.fname.split('/')[-1]] = spec.parameters[param_name] # If these are from summed spectra, then only the the first file name # from that sum will show up here, which should be fine? if verbose: # print "full name:", spectrum_list[0].fname print("included names:", included_spectra) print("sb_included:", sb_included) for spec in spectrum_list: temp_dict = {} # This is different from full_dict in that the list has the # sideband order as the zeroth element. if verbose: print("the sb_results:", spec.sb_results) if spec.sb_results.ndim == 1: continue for index in range(len(spec.sb_results[:, 0])): if verbose: print("my array slice:", spec.sb_results[index, :]) temp_dict[int(round(spec.sb_results[index, 0]))] = np.array( spec.sb_results[index, 1:]) if verbose: print(temp_dict) for sb in sb_included: blank = np.zeros(6) # print "checking sideband order:", sb # print "blank", blank if sb not in temp_dict: # print "\nNeed to add sideband order:", sb temp_dict[sb] = blank try: # Why is this try-except here? spec_data = np.array([float(spec.parameters[param_name])]) except: spec_data = np.array([float(spec.parameters[param_name][:2])]) for key in sorted(temp_dict.keys()): # print "I am going to hstack this:", temp_dict[key] spec_data = np.hstack((spec_data, temp_dict[key])) try: param_array = np.vstack((param_array, spec_data)) except: param_array = np.array(spec_data) if verbose: print("The shape of the param_array is:", param_array.shape) # print "The param_array itself is:", param_array ''' param_array_norm = np.array(param_array).T # python iterates over rows for elem in [x for x in xrange(len(param_array_norm)) if (x-1)%7 == 3]: temp_max = np.max(param_array_norm[elem]) param_array_norm[elem] = param_array_norm[elem] / temp_max param_array_norm[elem + 1] = param_array_norm[elem + 1] / temp_max ''' snipped_array = param_array[:, 0] norm_array = param_array[:, 0] if verbose: print("Snipped_array is", snipped_array) for ii in range(len(param_array.T)): if (ii - 1) % 6 == 0: if verbose: print("param_array shape", param_array[:, ii]) snipped_array = np.vstack((snipped_array, param_array[:, ii])) norm_array = np.vstack((norm_array, param_array[:, ii])) elif (ii - 1) % 6 == 2: snipped_array = np.vstack((snipped_array, param_array[:, ii])) temp_max = np.max(param_array[:, ii]) norm_array = np.vstack((norm_array, param_array[:, ii] / temp_max)) elif (ii - 1) % 6 == 3: snipped_array = np.vstack((snipped_array, param_array[:, ii])) norm_array = np.vstack((norm_array, param_array[:, ii] / temp_max)) snipped_array = snipped_array.T norm_array = norm_array.T try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise norm_name = file_name + '_norm.txt' snip_name = file_name + '_snip.txt' file_name = file_name + '.txt' try: included_spectra_str = json.dumps(included_spectra, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: save_parameter_sweep\nJSON FAILED") return included_spectra_str = included_spectra_str.replace('\n', '\n#') included_spectra_str += '\n#' * (99 - included_spectra_str.count('\n')) origin_import1 = param_name origin_import2 = unit origin_import3 = "" for order in sb_included: origin_import1 += "Frequency,error,Sideband strength,error,Linewidth,error" origin_import2 += ",eV,,arb. u.,,meV," origin_import3 += ",{0},,{0},,{0},".format(order) origin_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 origin_import1 = param_name origin_import2 = unit origin_import3 = "" for order in sb_included: origin_import1 += ",Frequency,Sideband strength,error" origin_import2 += ",eV,arb. u.," origin_import3 += ",{0},{0},".format(order) origin_snip = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 header_total = '#' + included_spectra_str + '\n' + origin_total header_snip = '#' + included_spectra_str + '\n' + origin_snip # print "Spec header: ", spec_header if verbose: print("the param_array is:", param_array) np.savetxt(os.path.join(folder_str, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, snip_name), snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, norm_name), norm_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') if verbose: print("Saved the file.\nDirectory: {}".format( os.path.join(folder_str, file_name))) def save_parameter_sweep(spectrum_list, file_name, folder_str, param_name, unit, wanted_indices = [1, 3, 4], skip_empties = False, verbose=False, header_dict = {}, only_even=False): """ This function will take a fully processed list of spectrum objects and slice Spectrum.sb_fits appropriately to get an output like: "Parameter" | SB1 freq | err | SB1 amp | error | SB1 linewidth | error | SB2...| SBn...| param1 | . | param2 | . | . . . Currently I'm thinking fuck the offset y0 After constructing this large matrix, it will save it somewhere. Thus function has been update to pass a list of indices to slice for the return values skip_empties: If False, will add a row of zeroes for the parameter even if no sidebands are found. If True, will not add a line for that parameter only_even: don't include odd orders in the saved sweep [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] """ if isinstance(param_name, list): # if you pass two things because the param you want # is in a dict (e.g. field strength has mean/std) # do it that way param_name_list = list(param_name) # keep reference to old one paramGetter = lambda x: x.parameters[param_name_list[0]][param_name_list[1]] # Keep the name for labeling things later on param_name = param_name[0] else: paramGetter = lambda x: x.parameters[param_name] # Sort all of the spectra based on the desired key spectrum_list.sort(key=paramGetter) # keep track of which file name corresponds to which parameter which gets put in included_spectra = dict() # The big array which will be stacked up to keep all of the sideband details vs desired parameter param_array = None # list of which sidebands are seen throughout. sb_included = [] # how many parameters (area, strength, linewidth, pos, etc.) are there? # Here incase software changes and more things are kept in # sb results. Needed to handle how to slice the arrays try: num_params = spectrum_list[0].sb_results.shape[1] except IndexError: # There's a file with only 1 sb and it happens to be first # in the list. num_params = spectrum_list[0].sb_results.shape[0] except AttributeError: # The first file has no sidebands, so just hardcode it, as stated below. num_params=0 # Rarely, there's an issue where I'm doing some testing and there's a set # where the first file has no sidebands in it, so the above thing returns 0 # It seems really silly to do a bunch of testing to try and correct for that, so # I'm going to hardcode the number of parameters. if num_params == 0: num_params = 7 # loop through all of them once to figure out which sidebands are seen in all spectra for spec in spectrum_list: try: # use sets to keep track of only unique sidebands sb_included = sorted(list(set(sb_included + list(spec.full_dict.keys())))) except AttributeError: print("No full dict?", spec.fname) print(spec.sb_list) # If these are from summed spectra, then only the the first file name # from that sum will show up here, which should be fine? included_spectra[spec.fname.split('/')[-1]] = paramGetter(spec) if only_even: sb_included = [ii for ii in sb_included if not ii%2] if verbose: print("included names:", included_spectra) print("sb_included:", sb_included) for spec in spectrum_list: # Flag to keep whethere there are no sidebands or not. Used to skip # issues when trying to index on empty arrays noSidebands = False if verbose: print("the sb_results:", spec.sb_results) # if no sidebands were found, skip this one try: # TODO: (08/14/18) the .ndim==1 isn't the correct check, since it fails # when looking at the laser line. Need to test this with a real # empty data set, vs data set with 1 sb # # # (08/28/18) I'm not sure what the "not spec" is trying to handle # spec.sb_results is None occurs when _no_ sidebands were fit # spec.sb_results.ndim == 1 happens when only one sideband is found if not spec or spec.sb_results is None or spec.sb_results.ndim == 1: if spec.sb_results is None: # Flag no sidebands are afound noSidebands = True elif spec.sb_results[0] == 0: # Cast it to 2d to allow slicing later on. Not sure hwy this is # only done if the laser line is the one found. spec.sb_results = np.atleast_2d(spec.sb_results) elif skip_empties: continue else: noSidebands = True except (AttributeError, TypeError): # continue raise # Make an sb_results of all zeroes where we'll fill # in the sideband info we found new_spec = np.zeros((len(sb_included), num_params)) if not noSidebands: sb_results = spec.sb_results.copy() saw_sbs = sb_results[:, 0] found_sb = sorted(list(set(sb_included) & set(saw_sbs))) found_idx = [sb_included.index(ii) for ii in found_sb] try: new_spec[:, 0] = sb_included except: print("new_spec", new_spec) raise try: if only_even: new_spec[found_idx, :] = sb_results[sb_results[:,0]%2==0] else: new_spec[found_idx, :] = sb_results except ValueError: print(spec.fname) print("included:", sb_included) print("found:", found_sb, found_idx) print(new_spec.shape, sb_results.shape) print(sb_results) print(new_spec) raise spec_data = np.insert(new_spec.flatten(), 0, float(paramGetter(spec))) try: param_array = np.row_stack((param_array, spec_data)) except: param_array = np.array(spec_data) if param_array.ndim == 1: # if you only pass one spectra param_array = param_array[None, :] # recast it to 2D for slicing # the indices we want from the param array from the passed argument snip = wanted_indices N = len(sb_included) # run it out across all of the points across the param_array snipped_indices = [0] + list( 1+np.array(snip * N) + num_params * np.array(sorted(list(range(N)) * len(snip)))) snipped_array = param_array[:, snipped_indices] norm_array = snipped_array.copy() # normalize the area if it's requested if 3 in snip: num_snip = len(snip) strength_idx = snip.index(3) if 4 in snip: #normalize error first if it was requested idx = snip.index(4) norm_array[:, 1 + idx + np.arange(N) * num_snip] /= norm_array[:,1 + strength_idx + np.arange(N) * num_snip].max(axis=0) strength_idx = snip.index(3) norm_array[:, 1+strength_idx+np.arange(N)*num_snip]/=norm_array[:, 1+strength_idx+np.arange(N)*num_snip].max(axis=0) try: os.mkdir(folder_str) except TypeError: pass # if you pass None as folder_str (for using byteIO) except OSError as e: if e.errno == errno.EEXIST: pass else: raise included_spectra.update(header_dict) try: included_spectra_str = json.dumps(included_spectra, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: save_parameter_sweep\nJSON FAILED") return included_spectra_str = included_spectra_str.replace('\n', '\n#') included_spectra_str += '\n#' * (99 - included_spectra_str.count('\n')) # this will make the header chunk for the full, un-sliced data set # TODO: fix naming so you aren't looping twice ### 1/9/18 This isn't needed, right? Why isn't it deleted? origin_import1 = param_name origin_import2 = unit origin_import3 = "" for order in sb_included: origin_import1 += ",sideband,Frequency,error,Sideband strength,error,Linewidth,error" origin_import2 += ",order,eV,eV,arb. u.,arb.u.,meV,meV" origin_import3 += ",,{0},,{0},,{0},".format(order) origin_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # This little chunk will make a chunk block of header strings for the sliced # data set which can be looped over origin_import1 = param_name origin_import2 = unit origin_import3 = "" wanted_titles = ["Sideband", "Frequency", "error", "Sideband strength","error","Linewidth","error"] wanted_units = ["order", "eV", "eV", "arb. u.", "arb. u.", "eV", "eV"] wanted_comments = ["", "{0}", "", "{0}", "", "{0}", ""] wanted_titles = ",".join([wanted_titles[ii] for ii in wanted_indices]) wanted_units = ",".join([wanted_units[ii] for ii in wanted_indices]) wanted_comments = ",".join([wanted_comments[ii] for ii in wanted_indices]) for order in sb_included: origin_import1 += ","+wanted_titles origin_import2 += ","+wanted_units origin_import3 += ","+wanted_comments.format(order) origin_snip = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 header_total = '#' + included_spectra_str + '\n' + origin_total header_snip = '#' + included_spectra_str + '\n' + origin_snip # print "Spec header: ", spec_header if verbose: print("the param_array is:", param_array) if isinstance(file_name, list): if isinstance(file_name[0], io.BytesIO): np.savetxt(file_name[0], param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(file_name[1], snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') np.savetxt(file_name[2], norm_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') # Need to reset the file position if you want to read them immediately # Is it better to do that here, or assume you'll do it later? # I'm gonna assume here, because I can't currently think of a time when I'd want # to be at the end of the file [ii.seek(0) for ii in file_name] if verbose: print("Saved the file to bytes objects") else: if file_name: norm_name = file_name + '_norm.txt' snip_name = file_name + '_snip.txt' file_name = file_name + '.txt' np.savetxt(os.path.join(folder_str, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, snip_name), snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, norm_name), norm_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') if verbose: print("Saved the file.\nDirectory: {}".format(os.path.join(folder_str, file_name))) else: if verbose: print("Didn't save") return sb_included, param_array, snipped_array, norm_array def save_parameter_sweep_vs_sideband(spectrum_list, file_name, folder_str, param_name, unit, verbose=False, wanted_indices = [1, 3, 4]): """ Similar to save_parameter_sweep, but the data[:,0] column is sideband number instead of series, and each set of columns correspond to a series step. Pretty much compiles all of the fit parameters from the files that are already saved and puts it into one file to keep from polluting the Origin folder :param spectrum_list: :param file_name: :param folder_str: :param param_name: :param unit: :param verbose: sb number is automatically prepended, so do not include in slicing list [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] :return: """ spectrum_list.sort(key=lambda x: x.parameters[param_name]) included_spectra = dict() param_array = None sb_included = [] # what parameters were included (for headers) params = sorted([x.parameters[param_name] for x in spectrum_list]) for spec in spectrum_list: sb_included = sorted(list(set(sb_included + list(spec.full_dict.keys())))) included_spectra[spec.fname.split('/')[-1]] = spec.parameters[param_name] # If these are from summed spectra, then only the the first file name # from that sum will show up here, which should be fine? if verbose: # print "full name:", spectrum_list[0].fname print("included names:", included_spectra) print("sb_included:", sb_included) param_array = np.array(sb_included) for spec in spectrum_list: temp_dict = spec.full_dict.copy() #prevent breaking if no sidebands in spectrum if not temp_dict: if verbose: print("No sidebands here? {}, {}".format(spec.parameters["series"], spec.parameters["spec_step"])) continue if verbose: print(temp_dict) # matrix for holding all of the sb information # for a given spectrum spec_matrix = None for sb in sb_included: blank = np.zeros(6) # print "checking sideband order:", sb # print "blank", blank sb_data = temp_dict.get(sb, blank) try: spec_matrix = np.row_stack((spec_matrix, sb_data)) except: spec_matrix = sb_data param_array = np.column_stack((param_array, spec_matrix)) # the indices we want from the param array # 1- freq, 3-area, 4-area error snip = wanted_indices N = len(spectrum_list) # run it out across all of the points across the param_array snipped_indices = [0] + list( np.array(snip*N) + 6*np.array(sorted(list(range(N))*len(snip))) ) snipped_array = param_array[:, snipped_indices] try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise snip_name = file_name + '_snip.txt' file_name = file_name + '.txt' try: included_spectra_str = json.dumps(included_spectra, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: save_parameter_sweep\nJSON FAILED") return included_spectra_str = included_spectra_str.replace('\n', '\n#') included_spectra_str += '\n#' * (99 - included_spectra_str.count('\n')) origin_import1 = "Sideband" origin_import2 = "Order" origin_import3 = "SB" for param in params: origin_import1 += ",Frequency,error,Sideband strength,error,Linewidth,error" origin_import2 += ",eV,,arb. u.,,meV," origin_import3 += ",{0},,{0},,{0},".format(param) origin_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # This little chunk will make a chunk block of header strings for the sliced # data set which can be looped over origin_import1 = "Sideband" origin_import2 = "Order" origin_import3 = "SB" wanted_titles = ["Sideband", "Frequency", "error", "Sideband strength", "error", "Linewidth", "error"] wanted_units = ["order", "eV", "eV", "arb. u.", "arb. u.", "eV", "eV"] wanted_comments = ["", "{0}", "", "{0}", "", "{0}", ""] wanted_titles = ",".join([wanted_titles[ii] for ii in wanted_indices]) wanted_units = ",".join([wanted_units[ii] for ii in wanted_indices]) wanted_comments = ",".join([wanted_comments[ii] for ii in wanted_indices]) for param in params: origin_import1 += "," + wanted_titles origin_import2 += "," + wanted_units origin_import3 += "," + wanted_comments.format(param) origin_snip = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 header_total = '#' + included_spectra_str + '\n' + origin_total header_snip = '#' + included_spectra_str + '\n' + origin_snip # print "Spec header: ", spec_header if verbose: print("the param_array is:", param_array) if file_name: # allow passing false (or empty string) to prevent saving np.savetxt(os.path.join(folder_str, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, snip_name), snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') if verbose: print("Saved the file.\nDirectory: {}".format(os.path.join(folder_str, file_name))) return None def stitchData(dataList, plot=False): """ Attempt to stitch together absorbance data. Will translate the second data set to minimize leastsq between the two data sets. :param dataList: Iterable of the data sets to be fit. Currently it only takes the first two elements of the list, but should be fairly straightforward to recursivly handle a list>2. Shifts the second data set to overlap the first elements of dataList can be either np.arrays or Absorbance class, where it will take the proc_data itself :param plot: bool whether or not you want the fit iterations to be plotted (for debugging) :return: a, a (2,) np.array of the shift """ # Data coercsion, make sure we know what we're working wtih first = dataList[0] if isinstance(first, Absorbance): first = first.proc_data second = dataList[1] if isinstance(second, Absorbance): second = second.proc_data if plot: # Keep a reference to whatever plot is open at call-time # Useful if the calling script has plots before and after, as # omitting this will cause future plots to be added to figures here firstFig = plt.gcf() plt.figure("Stitcher") # Plot the raw input data plt.plot(*first.T) plt.plot(*second.T) # Algorithm is set up such that the "second" data set spans the # higher domain than first. Need to enforce this, and remember it # so the correct shift is applied flipped = False if max(first[:, 0]) > max(second[:, 0]): flipped = True first, second = second, first def fitter(p, shiftable, immutable): # designed to over # Get the shifts dx = p[0] dy = p[1] # Don't want pass-by-reference nonsense, recast our own refs shiftable = np.array(shiftable) immutable = np.array(immutable) # Shift the data set shiftable[:, 1] += dy shiftable[:, 0] += dx # Create an interpolator. We want a # direct comparision for subtracting the two functions # Different spec grating positions have different wavelengths # so they're not directly comparable. shiftF = spi.interp1d(*shiftable.T) # Find the bounds of where the two data sets overlap overlap = (min(shiftable[:, 0]), max(immutable[:, 0])) print("overlap", overlap) # Determine the indices of the immutable function # where it overlaps. argwhere returns 2-d thing, # requiring the [0] at the end of each call fOlIdx = (min(np.argwhere(immutable[:, 0] >= overlap[0]))[0], max(np.argwhere(immutable[:, 0] <= overlap[1]))[0]) print("fOlIdx", fOlIdx) # Get the interpolated values of the shiftable function at the same # x-coordinates as the immutable case newShift = shiftF(immutable[fOlIdx[0]:fOlIdx[1], 0]) if plot: plt.plot(*immutable[fOlIdx[0]:fOlIdx[1], :].T, marker='o', label="imm", markersize=10) plt.plot(immutable[fOlIdx[0]:fOlIdx[1], 0], newShift, marker='o', label="shift") imm = immutable[fOlIdx[0]:fOlIdx[1], 1] shift = newShift return imm - shift a, _, _, msg, err = spo.leastsq(fitter, [0.0001, 0.01 * max(first[:, 1])], args=(second, first), full_output=1) # print "a", a if plot: # Revert back to the original figure, as per top comments plt.figure(firstFig.number) # Need to invert the shift if we flipped which # model we're supposed to move if flipped: a *= -1 return a def integrateData(data, t1, t2, ave=False): """ Integrate a discrete data set for a given time period. Sums the data between the given bounds and divides by dt. Optional argument to divide by T = t2-t1 for calculating averages. data = 2D array. data[:,0] = t, data[:,1] = y t1 = start of integration t2 = end of integration if data is a NxM, with M>=3, it will take the third column to be the errors of the points, and return the error as the quadrature sum """ t = data[:, 0] y = data[:, 1] if data.shape[0] >= 3: errors = data[:, 2] else: errors = np.ones_like(y) * np.nan gt = set(np.where(t > t1)[0]) lt = set(np.where(t < t2)[0]) # find the intersection of the sets vals = list(gt & lt) # Calculate the average tot = np.sum(y[vals]) error = np.sqrt(np.sum(errors[vals] ** 2)) # Multiply by sampling tot *= (t[1] - t[0]) error *= (t[1] - t[0]) if ave: # Normalize by total width if you want an average tot /= (t2 - t1) errors /= (t2 - t1) if not np.isnan(error): return tot, error return tot def fourier_prep(x_vals, y_vals, num=None): """ This function will take a Nx2 array with unevenly spaced x-values and make them evenly spaced for use in fft-related things. And remove nans! """ y_vals = handle_nans(y_vals) spline = spi.interp1d(x_vals, y_vals, kind='linear') # for some reason kind='quadratic' doesn't work? returns all nans if num is None: num = len(x_vals) even_x = np.linspace(x_vals[0], x_vals[-1], num=num) even_y = spline(even_x) # even_y = handle_nans(even_y) return even_x, even_y def handle_nans(y_vals): """ This function removes nans and replaces them with linearly interpolated values. It requires that the array maps from equally spaced x-values. Taken from Stack Overflow: "Interpolate NaN values in a numpy array" """ nan_idx = np.isnan(y_vals) my_lambda = lambda x: x.nonzero()[0] # Returns the indices where Trues reside y_vals[nan_idx] = np.interp(my_lambda(nan_idx), my_lambda(~nan_idx), y_vals[~nan_idx]) return y_vals def calc_laser_frequencies(spec, nir_units="eV", thz_units="eV", bad_points=-2, inspect_plots=False): """ Calculate the NIR and FEL frequency for a spectrum :param spec: HSGCCD object to fit :type spec: HighSidebandCCD :param nir_units: str of desired units. Options: wavenumber, eV, meV, THz, GHz, nm :param thz_units: str of desired units. Options: wavenumber, eV, meV, THz, GHz, nm :param bad_points: How many bad points which shouldn't be used to calculate the frequencies (generally because the last few points are noisy and unreliable) :return: <NIR freq>, <THz freq> """ if not hasattr(spec, "sb_results"): spec.guess_sidebands() spec.fit_sidebands() sidebands = spec.sb_results[:, 0] locations = spec.sb_results[:, 1] errors = spec.sb_results[:, 2] try: p = np.polyfit(sidebands[1:bad_points], # This is 1 because the peak picker function was calling the 10th order the 9th locations[1:bad_points], deg=1) except TypeError: # if there aren't enough sidebands to fit, give -1 p = [-1, -1] NIRfreq = p[1] THzfreq = p[0] if inspect_plots: plt.figure("Frequency Fit") plt.errorbar(sidebands, locations, errors, marker='o') plt.errorbar(sidebands[:bad_points], locations[:bad_points], errors[:bad_points], marker='o') plt.plot(sidebands, np.polyval(p, sidebands)) converter = { "eV": lambda x: x, "meV": lambda x: 1000. * x, "wavenumber": lambda x: 8065.6 * x, "THz": lambda x: 241.80060 * x, "GHz": lambda x: 241.80060 * 1e3 * x, "nm": lambda x: 1239.83 / x } freqNIR = converter.get(nir_units, converter["eV"])(NIRfreq) freqTHz = converter.get(thz_units, converter["eV"])(THzfreq) return freqNIR, freqTHz def get_data_and_header(fname, returnOrigin = False): """ Given a file to a raw data file, returns the data and the json decoded header. Can choose to return the origin header as well :param fname: Filename to open :return: data, header (dict) """ with open(fname) as fh: line = fh.readline() header_string = '' while line[0]=='#': header_string += line[1:] line = fh.readline() # image files don't have an origin header if not "Images" in fname: oh = line # last readline in loop removes first line in Origin Header # strip the remaining two oh += fh.readline() oh += fh.readline()[:-1] #remove final \n # data = np.genfromtxt(fh, delimiter=',') data = np.genfromtxt(fname, delimiter=',') header = json.loads(header_string) if returnOrigin: return data, header, oh return data, header def natural_glob(*args): # glob/python sort alphabetically, so 1, 10, 11, .., 2, 21, # but I sometimes wnat "natural" sorting: 1, 2, 3, ..., 10, 11, 12, ..., 20, 21, 21 ... # There's tons of stack overflows, so I grabbed one of them. I put it in here # because I use it all the damned time. I also almost always use it when # glob.glob'ing, so just internally do it that way # # This is taken from # https://stackoverflow.com/questions/5967500/how-to-correctly-sort-a-string-with-a-number-inside import re def atoi(text): try: return int(text) except ValueError: return text # return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [atoi(c) for c in re.split('(-?\d+)', text)] return sorted(glob.glob(os.path.join(*args)), key=natural_keys) def convertTime(timeStr): """ The data file headers have the timestamp of data collection. Sometimes you want to convert that to numbers for data's sake, but I constantly forget the functions to convert it from the time-stamp string. So here you go :param timeStr: the time as a string from the data file :return: int of the time since the epoch """ import time return time.mktime(time.strptime(timeStr, "%x %X%p")) # photonConverter[A][B](x): # convert x from A to B. photon_converter = { "nm": {"nm": lambda x: x, "eV": lambda x:1239.84/x, "wavenumber": lambda x: 10000000./x}, "eV": {"nm": lambda x: 1239.84/x, "eV": lambda x: x, "wavenumber":lambda x: 8065.56 * x}, "wavenumber": {"nm": lambda x: 10000000./x, "eV": lambda x: x/8065.56, "wavenumber": lambda x: x} } #################### # Smoothing functions #################### def savitzky_golay(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References ---------- .. [1] <NAME>, <NAME>, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, <NAME>, <NAME>, <NAME> Cambridge University Press ISBN-13: 9780521880688 source: http://scipy.github.io/old-wiki/pages/Cookbook/SavitzkyGolay """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError as msg: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = list(range(order + 1)) half_window = (window_size - 1) // 2 # precompute coefficients b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve(m[::-1], y, mode='valid') def fft_filter(data, cutoffFrequency=1520, inspectPlots=False, tryFitting=False, freqSigma=50, ftol=1e-4, isInteractive=False): """ Performs an FFT, then fits a peak in frequency around the input with the input width. If only data is given, it will cut off all frequencies above the default value. inspectPlots = True will plot the FFT and the filtering at each step, as well as the results tryFitting = True will try to fit the peak in frequency space centered at the cutoffFrequency and with a width of freqSigma, using the background function above. Will replace the peak with the background function. Feature not very well tested isInteractive: Will pop up interactive windows to move the cutoff frequency and view the FFT in real time. Requires pyqtgraph and PyQt4 installed (pyqt4 is standard with anaconda/winpython, but pyqtgraph is not) """ # Make a copy so we can return the same thing retData = np.array(data) x = np.array(retData[:, 0]) y = np.array(retData[:, -1]) # Let's you place with zero padding. zeroPadding = len(x) N = len(x) if isInteractive: try: import pyqtgraph as pg from PyQt5 import QtCore, QtWidgets except: raise ImportError("Cannot do interactive plotting without pyqtgraph installed") # Need to make some basic classes fir signals and slots to make things simple class FFTWin(pg.PlotWindow): sigCutoffChanged = QtCore.pyqtSignal(object) sigClosed = QtCore.pyqtSignal() def __init__(self, x, y): super(FFTWin, self).__init__() # Plot the log of the data, # it breaks text boxes to do semilogy self.plotItem.plot(x, np.log10(y), pen='k') # The line for picking the cutoff # Connect signals so the textbox updates and the # realspace window can recalcualte the FFT self.line = pg.InfiniteLine(cutoffFrequency, movable=True) self.line.sigPositionChanged.connect(lambda x: self.sigCutoffChanged.emit(x.value())) self.line.sigPositionChanged.connect(self.updateText) self.addItem(self.line) # Set up the textbox so user knows the frequency # If this ends up being useful, may need # a way to set the cutoff manually self.text = pg.TextItem("{:.4f}".format(cutoffFrequency)) self.addItem(self.text) self.text.setPos(min(x), max(np.log10(y))) # Cheap magic to get the close event # of the main window. Need to keep a reference # to the old function so that we can call it # to properly clean up afterwards self.oldCloseEvent = self.win.closeEvent self.win.closeEvent = self.closeEvent def updateText(self, val): self.text.setText("{:.4f}".format(val.value())) def closeEvent(self, ev): # Just emit that we've been closed and # pass it along to the window closer self.sigClosed.emit() self.oldCloseEvent(ev) class RealWin(pg.PlotWindow): sigClosed = QtCore.pyqtSignal() def __init__(self, data, fftWin): super(RealWin, self).__init__() # To connect signals from it self.fftWin = fftWin self.data = data # Start off with the FFT given by the original # inputted cutoff self.updatePlot(cutoffFrequency) # See above comments self.oldClose = self.win.closeEvent self.win.closeEvent = self.closeEvent fftWin.sigCutoffChanged.connect(self.updatePlot) # Close self if other window is closed fftWin.sigClosed.connect(self.win.close) def updatePlot(self, val): self.plotItem.clear() self.plotItem.plot(*self.data.T, pen=pg.mkPen('k', width=3)) # Recursion! Call this same function to do the FFT newData = fft_filter(self.data, cutoffFrequency=val) self.plotItem.plot(*newData.T, pen=pg.mkPen('r', width=3)) def closeEvent(self, ev): self.sigClosed.emit() try: self.fftWin.win.close() except: pass self.oldClose(ev) k = fft.fftfreq(zeroPadding, x[1] - x[0]) Y = fft.fft(y, n=zeroPadding) # Make the windows fftWin = FFTWin(k, np.abs(Y)) realWin = RealWin(np.array(retData), fftWin) realWin.show() # Need to pause the program until the frequency is selected # Done with this qeventloop. loop = QtCore.QEventLoop() realWin.sigClosed.connect(loop.exit) loop.exec_() # Return with the desired output value return fft_filter(retData, fftWin.line.value()) if inspectPlots: plt.figure("Real Space") plt.plot(x, y, label="Input Data") # Replicate origin directy # http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm # "rotate" the data set so it ends at 0, # enforcing a periodicity in the data. Otherwise # oscillatory artifacts result at the ends onePerc = int(0.01 * N) x1 = np.mean(x[:onePerc]) x2 = np.mean(x[-onePerc:]) y1 = np.mean(y[:onePerc]) y2 = np.mean(y[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x + b y -= flattenLine if inspectPlots: plt.plot(x, y, label="Rotated Data") # Perform the FFT and find the appropriate frequency spacing k = fft.fftfreq(zeroPadding, x[1] - x[0]) Y = fft.fft(y, n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(k, np.abs(Y), label="Raw FFT") if tryFitting: try: # take +/- 4 sigma points around peak to fit to sl = np.abs(k - cutoffFrequency).argmin() + np.array([-1, 1]) * 10 * freqSigma / np.abs(k[0] - k[1]) sl = slice(*[int(j) for j in sl]) p0 = [cutoffFrequency, np.abs(Y)[sl].max() * freqSigma, # estimate the height baased on the max in the set freqSigma, 0.14, 2e3, 1.1] # magic test numbers, they fit the background well if inspectPlots: plt.semilogy(k[sl], gaussWithBackground(k[sl], *p0), label="Peak with initial values") p, _ = curve_fit(gaussWithBackground, k[sl], np.abs(Y)[sl], p0=p0, ftol=ftol) if inspectPlots: plt.semilogy(k[sl], gaussWithBackground(k[sl], *p), label="Fitted Peak") # Want to remove data within 5 sigma ( arb value... ) st = int(p[0] - 5 * p[2]) en = int(p[0] + 5 * p[2]) # Find get the indices to remove. refitRangeIdx = np.argwhere((k > st) & (k < en)) refitRangeIdxNeg = np.argwhere((k < -st) & (k > -en)) # Replace the data with the backgroudn # Note: abuses the symmetry of the FFT of a real function # to get the negative side of the data Y[refitRangeIdx] = background(k[refitRangeIdx], *p[-2:]) Y[refitRangeIdxNeg] = background(k[refitRangeIdx], *p[-2:])[::-1] except: print("ERROR: Trouble fitting the peak in frequency space.\n\t Defaulting to cutting off") # Assume cutoffFrequency was the peak, not the actual cutoff # Leaving it alone means half the peak would remain and the data # wouldn't really be smoothed cutoffFrequency -= 5 * freqSigma # Reset this so the next part gets called tryFitting = False # "if not" instead of "else" because if the above # fitting fails, we can default to the sharp cutoff if not tryFitting: # Define where to remove the data st = cutoffFrequency en = int(max(k)) + 1 # Find the indices to remove the data refitRangeIdx = np.argwhere((k > st) & (k < en)) refitRangeIdxNeg = np.argwhere((k < -st) & (k > -en)) # Kill it all after the cutoff Y[refitRangeIdx] = 0 Y[refitRangeIdxNeg] = 0 smoothIdx = np.argwhere((-st < k) & (k < st)) smoothr = -1. / cutoffFrequency ** 2 * k[smoothIdx] ** 2 + 1 Y[smoothIdx] *= smoothr if inspectPlots: plt.plot(k, np.abs(Y), label="FFT with removed parts") a = plt.legend() a.draggable(True) # invert the FFT y = fft.ifft(Y, n=zeroPadding) # unshift the data y += flattenLine # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y = np.abs(y)[:len(x)] if inspectPlots: plt.figure("Real Space") print(x.size, y.size) plt.plot(x, y, label="Smoothed Data") a = plt.legend() a.draggable(True) retData[:, 0] = x retData[:, -1] = y return retData def low_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) # print "zero padding", zeroPadding # This needs to be this way because truncation is bad and actually zero padding N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 ''' # Find the indices to remove the data refitRangeIdx = np.argwhere((x_fourier > band_start) & (x_fourier <= band_end)) refitRangeIdxNeg = np.argwhere((x_fourier < -band_start) & (x_fourier >= -band_end)) #print "x_fourier", x_fourier[795:804] #print "max(x_fourier)", max(x_fourier) #print "refitRangeIdxNeg", refitRangeIdxNeg[:-400] # Kill it all after the cutoff y_fourier[refitRangeIdx] = 0 y_fourier[refitRangeIdxNeg] = 0 # This section does a square filter on the remaining code. smoothIdx = np.argwhere((-band_start < x_fourier) & (x_fourier < band_start)) smoothr = -1 / band_start**2 * x_fourier[smoothIdx]**2 + 1 y_fourier[smoothIdx] *= smoothr ''' # print abs(y_fourier[-10:]) butterworth = np.sqrt(1 / (1 + (x_fourier / cutoff) ** 100)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) # print "y_fourier", len(y_fourier) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals = np.abs(y_vals) if inspectPlots: plt.figure("Real Space") # print x_vals.size, y_vals.size plt.plot(x_vals, y_vals, linewidth=3, label="Smoothed Data") a = plt.legend() a.draggable(True) return np.column_stack((x_vals, y_vals)) def high_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) print("zero padding", zeroPadding) # This needs to be this way because truncation is bad and actually zero padding N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 ''' # Find the indices to remove the data refitRangeIdx = np.argwhere((x_fourier > band_start) & (x_fourier <= band_end)) refitRangeIdxNeg = np.argwhere((x_fourier < -band_start) & (x_fourier >= -band_end)) #print "x_fourier", x_fourier[795:804] #print "max(x_fourier)", max(x_fourier) #print "refitRangeIdxNeg", refitRangeIdxNeg[:-400] # Kill it all after the cutoff y_fourier[refitRangeIdx] = 0 y_fourier[refitRangeIdxNeg] = 0 # This section does a square filter on the remaining code. smoothIdx = np.argwhere((-band_start < x_fourier) & (x_fourier < band_start)) smoothr = -1 / band_start**2 * x_fourier[smoothIdx]**2 + 1 y_fourier[smoothIdx] *= smoothr ''' print(abs(y_fourier[-10:])) butterworth = 1 - np.sqrt(1 / (1 + (x_fourier / cutoff) ** 50)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) print("y_fourier", len(y_fourier)) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals = np.abs(y_vals) if inspectPlots: plt.figure("Real Space") print(x_vals.size, y_vals.size) plt.plot(x_vals, y_vals, label="Smoothed Data") a = plt.legend() a.draggable(True) return np.column_stack((x_vals, y_vals)) def band_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) print("zero padding", zeroPadding) # This needs to be this way because truncation is bad and actually zero padding N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 ''' # Find the indices to remove the data refitRangeIdx = np.argwhere((x_fourier > band_start) & (x_fourier <= band_end)) refitRangeIdxNeg = np.argwhere((x_fourier < -band_start) & (x_fourier >= -band_end)) #print "x_fourier", x_fourier[795:804] #print "max(x_fourier)", max(x_fourier) #print "refitRangeIdxNeg", refitRangeIdxNeg[:-400] # Kill it all after the cutoff y_fourier[refitRangeIdx] = 0 y_fourier[refitRangeIdxNeg] = 0 # This section does a square filter on the remaining code. smoothIdx = np.argwhere((-band_start < x_fourier) & (x_fourier < band_start)) smoothr = -1 / band_start**2 * x_fourier[smoothIdx]**2 + 1 y_fourier[smoothIdx] *= smoothr ''' print(abs(y_fourier[-10:])) butterworth = 1 - np.sqrt(1 / (1 + (x_fourier / cutoff[0]) ** 50)) butterworth *= np.sqrt(1 / (1 + (x_fourier / cutoff[1]) ** 50)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) print("y_fourier", len(y_fourier)) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals = np.abs(y_vals) if inspectPlots: plt.figure("Real Space") print(x_vals.size, y_vals.size) plt.plot(x_vals, y_vals, label="Smoothed Data") a = plt.legend() a.draggable(True) return np.column_stack((x_vals, y_vals)) #################### # Complete functions #################### def proc_n_plotPMT(folder_path, plot=False, confirm_fits=False, save=None, verbose=False, laserline = True, **kwargs): """ This function will take a pmt object, process it completely. laserline - normallizes to the laser line so it's amplitude is 1 :rtype: list of HighSidebandPMT """ pmt_data = pmt_sorter(folder_path, plot_individual=plot) index = 0 for spectrum in pmt_data: spectrum.integrate_sidebands(verbose=verbose, **kwargs) if laserline: spectrum.laser_line(verbose=verbose, **kwargs) # This function is broken # because process sidebands can't handle the laser line #Not sure what the comment above is talking about. After looking carefully at how the program finds the laser line and #normallizes the rest of the PMT data, it looks like the .laser_line function is working as intended. # print spectrum.full_dict if plot: plt.figure('PMT data') for sb, elem in list(spectrum.sb_dict.items()): plt.errorbar(elem[:, 0], elem[:, 1], elem[:, 2], marker='o', label="{} {}".format(spectrum.parameters["series"],sb)) plt.figure('Sideband strengths') plt.yscale("log") plt.errorbar(spectrum.sb_results[:, 0], spectrum.sb_results[:, 3], spectrum.sb_results[:, 4], label=spectrum.parameters['series'], marker='o') if plot and confirm_fits: plt.figure('PMT confirm fits') for elem in list(spectrum.sb_dict.values()): plt.errorbar(elem[:, 0], elem[:, 1], elem[:, 2], marker='o') plt.errorbar(spectrum.sb_results[:, 1], spectrum.sb_results[:, 3], spectrum.sb_results[:, 4], label=spectrum.parameters['series'], marker='o') plt.ylim([-0.005, 0.025]) if type(save) is tuple: spectrum.save_processing(save[0], save[1], index=index) index += 1 elif isinstance(save, str): dirr = os.path.dirname(save) if os.path.dirname(save) else '.' # if you just pass a filename tos ave spectrum.save_processing(os.path.basename(save), dirr, index=index) index += 1 if plot: plt.legend() return pmt_data def proc_n_plotCCD(folder_path, offset=None, plot=False, confirm_fits=False, save=None, keep_empties = False, verbose=False, **kwargs): """ This function will take a list of ccd files and process it completely. save_name is a tuple (file_base, folder_path) keep_empties: If True, keep the HighSidebandCCD object in the list if no sidebands are found. Else, cut it off. The cutoff of 8 is too high, but I don't know what to change it to :rtype: list of HighSidebandCCD """ if isinstance(folder_path, list): file_list = folder_path else: # if verbose: # print "Looking in:", os.path.join(folder_path, '*seq_spectrum.txt') # file_list = glob.glob(os.path.join(folder_path, '*seq_spectrum.txt')) file_list = natural_glob(folder_path, '*seq_spectrum.txt') # if verbose: # print "found these files:", "\n".join([os.path.basename(ii) for ii in file_list]) raw_list = [] for fname in file_list: raw_list.append(HighSidebandCCD(fname, spectrometer_offset=offset)) index = 0 for spectrum in raw_list: try: spectrum.guess_sidebands(verbose=verbose, plot=plot) except RuntimeError: print("\n\n\nNo sidebands??\n\n") # No sidebands, say it's empty if not keep_empties: raw_list.pop(raw_list.index(spectrum)) continue try: spectrum.fit_sidebands(plot=plot, verbose=verbose) except RuntimeError: print("\n\n\nNo sidebands??\n\n") # No sidebands, say it's empty if not keep_empties: raw_list.pop(raw_list.index(spectrum)) continue if "calculated NIR freq (cm-1)" not in list(spectrum.parameters.keys()): spectrum.infer_frequencies() if plot: plt.figure('CCD data') plt.errorbar(spectrum.proc_data[:, 0], spectrum.proc_data[:, 1], spectrum.proc_data[:, 2], label=spectrum.parameters['series']) plt.legend() # plt.yscale('log') plt.figure('Sideband strengths') plt.errorbar(spectrum.sb_results[:, 1], spectrum.sb_results[:, 3], spectrum.sb_results[:, 4], label=spectrum.parameters['series'], marker='o') plt.legend() plt.yscale('log') if plot and confirm_fits: plt.figure('CCD confirm fits') plt.plot(spectrum.proc_data[:, 0], spectrum.proc_data[:, 1],# spectrum.proc_data[:, 2], label=spectrum.parameters['series']) plt.plot(spectrum.sb_results[:, 1], spectrum.sb_results[:, 3] / spectrum.sb_results[:, 5],# spectrum.sb_results[:, 4], label=spectrum.parameters['series'], marker='o') plt.legend() plt.ylim([-0.1, 1]) if type(save) is tuple: spectrum.save_processing(save[0], save[1], marker=spectrum.parameters["series"].replace( r"/", "p"), index=index) index += 1 elif isinstance(save, str): # print "DEBUG: trying to save CCD with ", os.path.dirname(save),'_at_', os.path.basename(save) spectrum.save_processing(os.path.basename(save), os.path.dirname(save), marker=spectrum.parameters["series"].replace( r"/", "p"), index=index) index += 1 return raw_list def create_full_spectra(folder_path, skipLaser = True, *args, **kwargs): """ Given the folder path of raw data (where the PMT data is held in the subfolder "PMT"), scale all the data to create a raw comb spectra. :param folder_path: :param args: :param kwargs: :return: """ output = np.empty((0,2)) # have proc_n_plot do all the integrating for the sbs pmt = proc_n_plotPMT(os.path.join(folder_path, "PMT")) ccd_file_list = glob.glob(os.path.join(folder_path, '*seq_spectrum.txt')) ccd_list = [HighSidebandCCD(fname) for fname in ccd_file_list] for pmtsb in sorted(pmt[0].sb_dict.keys()): if skipLaser and pmtsb == 0: continue data = pmt[0].sb_dict[pmtsb] try: print(pmtsb, pmt[0].full_dict[pmtsb]) except: continue output = np.row_stack((output, np.abs(data[:,[0,1]]))) output = np.row_stack((output, [np.nan, np.nan])) # insert the pmt so I can iterate over scaling consecutive pairs ccd_list.insert(0, pmt[0]) # make sure all things get scaled down by the factors before them runningRatio = 1 for idx, ccd in enumerate(ccd_list[1:]): ccd.guess_sidebands() ccd.fit_sidebands() ratio = [1, 1] stitch_hsg_dicts(ccd_list[idx], ccd, need_ratio = True, ratios=ratio) print("new ratio", ratio) runningRatio *= ratio[1] ccd.proc_data[:,1]*=runningRatio output = np.row_stack((output, np.abs(ccd.proc_data[:,[0,1]]))) output = np.row_stack((output, [np.nan, np.nan])) offsetEnergy = (output[:,0] - pmt[0].full_dict[0][0])*1e3 print(offsetEnergy.shape, output.shape) output = np.column_stack((output[:,0], offsetEnergy.T, output[:,1])) return output class Berry(object): """ w = [Theta, k, (k,n)] v = [Theta, k, (u1...u4,x,y,z), (uij)] du = [k, n, m, i] A = [Theta, k, n, m, i] dA = [k, n, m, i, j] = djAi O = [Theta, k, n, m, i, j] Phase = [Theta, n] """ def __init__(self, g1, g2, g3, steps, angSteps, below=True): """ The Berry Class is used for calculating the Berry physics from the defined parameters of the Luttinger Hamiltonian. Init will initialize the class and carry through values used throughout the processing :param self - the object to be used to calculate the Berry properties :param g1 - the Gamma1 Luttinger parameter :param g2 - the Gamma2 Luttinger parameter :param g3 - the Gamma3 Luttinger parameter """ # Qile's way of calculating the Kane gamma factors P = 10.493 #eV*A, Conduction band fit of y=p*x^2 a_bhor = 0.53 #A, Bohr Radius ryd = 13.6 #eV, Rydberg P_eff = (P/a_bhor)**2/ryd E_g = 1.506 #eV, Gap Energy # Kane Parameters g18 = g1 - P_eff/(3*E_g) g28 = g2 - P_eff/(6*E_g) g38 = g3 - P_eff/(6*E_g) self.g1 = g18 self.g2 = g28 self.g3 = g38 self.st = steps self.ang = angSteps self.below = below self.w = np.zeros((self.ang, self.st,5)) self.v = np.zeros((self.ang, self.st,7,4)) if below: self.A = np.zeros((self.ang,self.st,4,4,2)) self.O = np.zeros((self.ang,self.st,4,4,2,2)) else: self.A = np.zeros((self.ang,self.st,4,4,3)) self.O = np.zeros((self.ang,self.st,4,4,3,3)) def Luttinger(self,theta,BZfrac): ''' Calculates the Luttinger Hamiltonian based on the input parameters :theta: Sample orientation with respect to the [010] Axis :BZfrac: The fraction of the Brillouin Zone calculated ''' th = theta*pi/180 #radians BZfrac angIdx = np.int(theta*self.ang/360) # Spin Matrices Sx = np.array([[0,np.sqrt(3)/2, 0,0],[np.sqrt(3)/2,0,1,0], [0,1,0,np.sqrt(3)/2],[0,0,np.sqrt(3)/2,0]]) Sy = np.array([[0,np.sqrt(3)/(2*1j), 0,0],[-np.sqrt(3)/(2*1j),0,(1/1j),0], [0,-(1/1j),0,np.sqrt(3)/(2*1j)],[0,0,-np.sqrt(3)/(2*1j),0]]) Sz = np.array([[3/2,0,0,0],[0,1/2,0,0],[0,0,-1/2,0],[0,0,0,-3/2]]) # Pauli Matrices p0 = np.array([[1,0],[0,1]]) px = np.array([[0,1],[1,0]]) py = np.array([[0,-1j],[1j,0]]) pz = np.array([[1,0],[0,-1]]) # Fraction of Brilioun Zone Traversed kmax = BZfrac * 2*np.pi/(5.6325) hbar = 1 #1.054572 * 10**(-34) #m^2 kg/s hbarc = 0.197326 * 10**(4) #Angstrom eV eMass = 9.109383 #kg NIRWavelength = 8230 #Angstrom h = np.zeros((self.st,4,4)) i=0 if self.below: for k in np.arange(0,kmax,kmax/self.st): kx = k*np.cos(th) ky = k*np.sin(th) h[i,0:2,0:2] = np.array(-hbar**2/(2*eMass)*(self.g1*(kx**2+ky**2)*p0 - 2*self.g2*(np.sqrt(3)*(kx**2-ky**2)/2)*px + 2*np.sqrt(3)*self.g3*kx*ky*py + self.g2*(kx**2+ky**2))) h[i,2:4,2:4] = np.array(-hbar**2/(2*eMass)*(self.g1*(kx**2+ky**2)*p0 - self.g2*(np.sqrt(3)*(kx**2-ky**2))*px - 2*np.sqrt(3)*self.g3*kx*ky*py - self.g2*(kx**2+ky**2))) self.w[angIdx,i,1:5], self.v[angIdx,i,0:4,:] = np.linalg.eig(h[i,:,:]) self.w[angIdx,i,1:5] = np.absolute(self.w[angIdx,i,1:5]) self.w[angIdx,i,1:5] = np.sort(self.w[angIdx,i,1:5]) self.w[angIdx,i,0] = k self.v[angIdx,i,4,:] = kx self.v[angIdx,i,5,:] = ky self.v[angIdx,i,6,:] = 0 i = i+1 else: for k in np.arange(0,kmax, kmax/self.st): kx = k*np.cos(th) ky = k*np.sin(th) kz = (1/(2*np.pi*NIRWavelength))-(1/(2*np.pi*8225)) h[i,:,:] = (np.array(-hbar**2/(2*eMass)*((self.g1+5/2*self.g2)*k**2 - 2*g3*(kx*Sx+ky*Sy+kz*Sz)**2 + 2*(self.g3-self.g2)*(kx**2*Sx**2+ky**2*Sy**2+kz**2*Sz**2)))) self.w[angIdx,i,1:5], self.v[angIdx,i,0:4,:] = np.linalg.eig(h[i,:,:]) self.w[angIdx,i,1:5] = np.absolute(self.w[angIdx,i,1:5]) self.w[angIdx,i,1:5] = np.sort(self.w[angIdx,i,1:5]) self.w[angIdx,i,0] = k self.v[angIdx,i,4,:] = kx self.v[angIdx,i,5,:] = ky self.v[angIdx,i,6,:] = kz i = i+1 def LuttingerUbasis(self,theta,BZfrac): ''' Calculates the Luttinger Hamiltonian based on the input parameters in the Bloch basis :theta: Sample orientation with respect to the [010] Axis :BZfrac: The fraction of the Brillouin Zone calculated ''' th = theta*np.pi/180 #radians self.BZf = BZfrac angIdx = np.int(theta*self.ang/360) # Fraction of Brilioun Zone Traversed kmax = self.BZf * 2*np.pi/(5.6325*10**(-10)) hbar = 1.054572 * 10**(-34) #m^2 kg/s hbarc = 0.197326 * 10**(4) #Angstrom eV eMass = 9.109383 * 10**(-31)#kg NIRWavelength = 8230 #Angstrom h =
np.zeros((self.st,4,4))
numpy.zeros
# -*- coding: utf-8 -*- """ Master Thesis <NAME> Data File """ ############################################################################### ## IMPORT PACKAGES & SCRIPTS ## ############################################################################### ### PACKAGES ### import numpy as np import pandas as pd from scipy.stats import norm from scipy.linalg import block_diag import pickle as pkl import os ### SCRIPTS ### import param as pm import forecast as fcst ############################################################################### ## FUNCTIONS DEFINITIONS ## ############################################################################### ### EXPORT / IMPORT SOLUTIONS TO PKL FILE ### def sol_export(filename, data): rltDir = 'rlt/case%s_t%s_loadVar%s_pvVar%s_%s_cc%s_drcc%s_flx%s_%s_bat%s/'\ %(pm.N_BUS,pm.T,pm.FLGVAR_LOAD,pm.FLGVAR_PV,pm.FCSTCASE[0],\ pm.FLGCC, pm.FLGDRCC,pm.FLGSHIFT,pm.UNBALANCE,pm.FLGBAT) if os.path.exists(rltDir): output = open(rltDir + filename + ".pkl", 'wb') # create output file pkl.dump(data, output) # write data to output file output.close() # close output file else: os.mkdir(rltDir) # create new directory output = open(rltDir + filename + ".pkl", 'wb') # create output file pkl.dump(data, output) # write data to output file output.close() # close output file def sol_import(filename): rltDir = 'rlt/case%s_t%s_loadVar%s_pvVar%s_%s_cc%s_drcc%s_flx%s_%s_bat%s/'\ %(pm.N_BUS,pm.T,pm.FLGVAR_LOAD,pm.FLGVAR_PV,pm.FCSTCASE[0],\ pm.FLGCC, pm.FLGDRCC,pm.FLGSHIFT,pm.UNBALANCE,pm.FLGBAT) file = open(rltDir + filename + ".pkl", 'rb') # open results file tmp = pkl.load(file) # create arry from file file.close() # close file return tmp ### SYMMETRIC INPUT DATA FOR N PHASES ### def phase_multiplication(data): dim = len(data) # get dimension of input data phase = np.ones((pm.N_PH)) # array to multiply input with number of phases tmp = [] for i in range(dim): tmp = np.append(tmp,data[i]*phase, axis=0) return tmp ############################################################################### ## READ DATA FROM CSV FILES ## ############################################################################### def read_data(src): srcDir = 'src/case%s/'%pm.N_BUS return pd.read_csv(srcDir + src +"Data.csv", delimiter=',') busData = read_data('bus') branchData = read_data('branch') costData = read_data('cost') impData = read_data('imp') loadData = read_data('load') batData = read_data('bat') genData = read_data('gen') invData = read_data('inv') oltcData = read_data('oltc') ############################################################################### ## AUXILIARX PARAMETERS ## ############################################################################### n = len(busData) # number of nodes l = len(branchData) # number of branches loadCase = len(pm.LOADCASE) pvCase = len(pm.PVCASE) vBase = busData.values[:,1] # base value voltage [kV] zBase = (vBase*1e3)**2/(pm.S_BASE*1e6) # base value impedance [Ohm] iBase = pm.S_BASE*1e6/(vBase[1:]*1e3) # base value current [A] ############################################################################### ## GRID DATA ## ############################################################################### ### VOLTAGES ### class bus: # reference voltage at slack node magnitude vSlack = busData.values[0,4] # voltage phasors a = np.exp(1j*120*np.pi/180) # symmetrical components operator if pm.N_PH == 3: phasor_slack = np.array([1,a**2,a]) # slack voltage phasor phasor_rot = np.array([1,a,a**2]) # rotation phasor else: phasor_slack = np.array([1]) # slack voltage phasor phasor_rot = np.array([1]) # rotation phasor # slack voltage real & imag part vSlackRe = np.tile(vSlack*np.real(phasor_slack[0:pm.N_PH]),n) vSlackIm = np.tile(vSlack*np.imag(phasor_slack[0:pm.N_PH]),n) # rotation of voltage phasor real & imag part rotRe = np.tile(np.real(phasor_rot[0:pm.N_PH]),n) rotIm = np.tile(np.imag(phasor_rot[0:pm.N_PH]),n) # VUF vufMax = busData.values[:,6] # maximum vuf [-] # bounds vBus_ub = phase_multiplication(busData.values[:,3]) # upper bound vBus_lb = phase_multiplication(busData.values[:,2]) # lower bound ### BRANCHES ### class branch: # stacked impedance matrix def z_stack(config): zBr = np.zeros((l,pm.N_PH,pm.N_PH), dtype=complex) # pre-allocate length = branchData.values[:,5] # length of branch [km] data = (impData.values[:,1:].astype(float)) # impedance [Ohm/km] for k in range(l): idx = int(np.where(impData.values[:,0] == config[k])[0]) tmp = data[idx:idx+pm.N_PH,:]/zBase[k+1] # array with R & X for branch k [p.u.] zBr[k,:,:] = np.array([[tmp[i,j] + 1j*tmp[i,j+1] for j in range(0,2*pm.N_PH,2)]\ for i in range(pm.N_PH)])*length[k] # impedance return zBr fbus = branchData.values[:,2].astype(int) # from bus tbus = branchData.values[:,3].astype(int) # to bus zBrStacked = z_stack(branchData.values[:,1]) # stacked impedance matrix zBr = block_diag(*zBrStacked) # (block) diagonal matrix with impedances rBr = np.real(zBr) # diagonal matrix with resistances xBr = np.imag(zBr) # diagonal matrix with reactances # bounds iBr_ub = phase_multiplication(branchData.values[:,4]/iBase) # thermal limit [p.u.] ### SETS OF NODES ### class sets: bat = list(np.where(batData.values[:,1]>0,1,0)) # battery node flx = list(np.where(loadData.values[:,3]!=0,1,0)) # flexible loads flxPhase = list(phase_multiplication(flx).astype(int)) # extended for n phases ren = list(np.where(loadData.values[:,1]>0,1,0)) # renewable generators # list with location of sets def idx_list(data, rng): tmp = [i for i in range(rng) if data[i] == 1] return tmp idxRen = idx_list(phase_multiplication(ren), n*pm.N_PH) # set of PV Buses idxBat = idx_list(phase_multiplication(bat), n*pm.N_PH) # set of bat Buses idxFlx = idx_list(phase_multiplication(flx), n*pm.N_PH) # set of flexible loads Buses ### LOADS ### class load: # normalize load profiles & assign to node def load_profile(i): profile = pd.read_csv('src/load_profiles/Load_profile_%s.csv'%i) load_max = np.max(profile.values[:,1]) # maximum load # normalized load profile profile_norm = (profile.values[:,1]/load_max).astype(float) # discretized load profile into T steps nMeasure = int(24/pm.TIMESTEP) profile_disc = np.array([np.mean(profile_norm[j*int(pm.TIMESTEP*60):\ (j+1)*int(pm.TIMESTEP*60)])\ for j in range(nMeasure)]) ### TAKE VALUES FROM 12:00 +- T/2 ### t_middle = 1/pm.TIMESTEP*12 t_start = int(t_middle - pm.T/2) t_end = int(t_middle + pm.T/2) # export profile_load = profile_disc[t_start:t_end] return profile_load # index of load profile profile = loadData.values[:,5].astype(int) # peak load and power factor per node sPeak = loadData.values[:,1]/(pm.S_BASE*1e3) pf = loadData.values[:,2] # active & reactive power demand [p.u] pDem = np.zeros((n*pm.N_PH,pm.T,loadCase)) qDem = np.zeros((n*pm.N_PH,pm.T,loadCase)) for c in range(loadCase): for i in range(n): for j in range(pm.N_PH): if pm.FLGLOAD == 1: # active power demand pDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*pf[i]*\ load_profile(profile[i]) # reactive power demand qDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*np.sin(np.arccos(pf[i]))*\ load_profile(profile[i]) else: pDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*pf[i] qDem[i*pm.N_PH+j,:,c] = pm.LOADCASE[c]*pm.LOADSHARE[j]*\ sPeak[i]*np.sin(np.arccos(pf[i])) # bounds # max/min load shifting sShift_ub = pm.FLGSHIFT*phase_multiplication(sets.flx*loadData.values[:,4]) sShift_lb = pm.FLGSHIFT*phase_multiplication(sets.flx*loadData.values[:,3]) # load shedding pShed_ub = pm.FLGSHED*pDem qShed_ub = pm.FLGSHED*qDem ### BESS ### class bess: icBat = pm.FLGBAT*batData.values[:,1]/pm.S_BASE # installed capacity [p.u.] etaBat = batData.values[:,2] # efficiency socMin = batData.values[:,3] # soc min socMax = batData.values[:,4] # soc max socInit = batData.values[:,5] # initial soc e2p = batData.values[:,6] # energy-to-power ratio [MWh/MW] # bounds pCh_ub = pm.FLGBAT*(sets.bat*icBat/e2p) # battery charging pDis_ub = pm.FLGBAT*(sets.bat*icBat/e2p) # battery discharging eBat_ub = icBat*socMax # soc max eBat_lb = icBat*socMin # soc min ### GENERATORS ### class gen: ### IC PV EITHER FROM INPUT DATA OR FACTOR OF PEAK LOAD ### if pm.FLGPV == 0: # from input data - installed capacity [p.u.] icPV = [] for i in range(loadCase): for j in range(pvCase): icPV.append(pm.PVCASE[j]*genData.values[:,1]/pm.S_BASE) icPV = np.array(icPV).transpose() else: # dependent on load icPV = [] # installed capacity [p.u.] for i in range(loadCase): for j in range(pvCase): icPV.append(pm.PVCASE[j]*pm.LOADCASE[i]*load.sPeak) # create array from list icPV = np.array(icPV).transpose() pfMax = phase_multiplication(genData.values[:,2]) # maximum power factor cos(phi) pfMin = -phase_multiplication(genData.values[:,2]) # minimum power factor cos(phi) prMax = np.sqrt((1-pfMax**2)/pfMax**2) # maximum power ratio gamma prMin = -np.sqrt((1-np.square(pfMin))/np.square(pfMin)) # minimum power ratio gamma ### INVERTERS ### class inverter: def phase_selection(data,phase): dim = len(data) # get dimension of input data nPhase = np.ones((pm.N_PH)) # array to multiply input with number of phases tmp = [] for i in range(dim): if phase[i] == 3: tmp = np.append(tmp,data[i]*nPhase/pm.N_PH, axis=0) else: tmp = np.append(tmp,np.zeros((pm.N_PH)), axis=0) tmp[i*pm.N_PH + phase[i]] = data[i] return tmp phase_pv = invData.values[:,3].astype(int) # to which phases PV is connected to phase_bat = invData.values[:,4].astype(int) # to which phases bat is connected to # maximum renewable inverter capacity [p.u] capPV = [] for c in range(pvCase*loadCase): capPV.append(phase_selection(invData.values[:,1]*gen.icPV[:,c],phase_pv)) capPV = np.array(capPV).transpose() # maximum bat inverter capacity [p.u.] capBat = phase_selection(invData.values[:,2]*bess.icBat/bess.e2p,phase_bat) ### COSTS ### class cost: def cost_pu(data): # calculate costs in [euro/p.u.] and per timestep return data*pm.TIMESTEP*pm.S_BASE curt = cost_pu(phase_multiplication(costData.values[:,1])) # active power curtailment ren = cost_pu(phase_multiplication(costData.values[:,2])) # renewable energy source bat = cost_pu(costData.values[:,3]) # battery shed = cost_pu(phase_multiplication(costData.values[:,4])) # load shedding shift = cost_pu(phase_multiplication(costData.values[:,5])) # load shifting qSupport = cost_pu(phase_multiplication(costData.values[:,6])) # reactive power injection loss = cost_pu(phase_multiplication(costData.values[:-1,7])) # active power losses slackRev = cost_pu(costData.values[0,8]) # revenue for selling to upper level grid slackCost = cost_pu(costData.values[0,9]) # active power from upper level grid slackQ = cost_pu(costData.values[0,10]) # reactive power from upper level grid ### OLTC TRAFO ### class oltc: oltc_min = oltcData.values[:,1] # minimum value [p.u.] oltc_max = oltcData.values[:,2] # maximum value [p.u.] oltc_steps = oltcData.values[:,3] # number of steps [-] oltcSum = int(oltcData.values[:,4]) # max number of shifts per time horizon [-] symmetry = int(oltcData.values[:,5]) # symmetric = 1, asymmetric = 0 # voltage difference per shift [p.u.] dV = float((oltc_max - oltc_min)/oltc_steps) dVRe = dV*bus.vSlackRe # real part [p.u.] dVIm = dV*bus.vSlackIm # imag part [p.u.] # bound tauMax = int(pm.FLGOLTC*(oltc_steps/2)) tauMin = int(pm.FLGOLTC*(-oltc_steps/2)) ############################################################################### ## PV FORECAST ## ############################################################################### class pv: def pv_phase(data,phase): dim = len(data) # get dimension of input data nPhase = np.array(pm.PVSHARE) # array to multiply input with number of phases tmp = [] for i in range(dim): if phase[i] == 3: tmp = np.append(tmp,data[i]*nPhase, axis=0) else: tmp = np.append(tmp,np.zeros((pm.N_PH)), axis=0) tmp[i*pm.N_PH + phase[i]] = data[i] return tmp ### CHECK IF FORECAST FILE EXISTS ### fcstFile = 'src/fcst/forecastPV_v%s_%s_t%s.pkl'%(pm.V_FCST,pm.FCSTCASE[0],pm.T) if os.path.exists(fcstFile): ### READ FCST FILE ### file = open(fcstFile, 'rb') # open results file pvFcst = pkl.load(file) # create arry from file file.close() # close file else: ### RUN FORECAST ### print('Run forecasting script ...') pvFcst = fcst.pv_fcst() print('... done!') nSamples =
np.size(pvFcst[3],1)
numpy.size
import tensorflow as tf from sklearn.metrics import roc_curve, precision_recall_curve from tqdm import tqdm from utils.loss_utils import cross_entropy import os import numpy as np from utils.plot_utils import plot_, add_augment class BaseModel(object): def __init__(self, sess, conf): self.sess = sess self.conf = conf self.input_shape = [None, self.conf.height, self.conf.width, self.conf.channel] self.output_shape = [None, self.conf.num_cls] self.create_placeholders() def create_placeholders(self): with tf.name_scope('Input'): self.inputs_pl = tf.placeholder(tf.float32, self.input_shape, name='input') self.labels_pl = tf.placeholder(tf.int64, self.output_shape, name='annotation') self.keep_prob_pl = tf.placeholder(tf.float32) def loss_func(self): with tf.name_scope('Loss'): self.y_prob = tf.nn.softmax(self.logits, axis=-1) with tf.name_scope('cross_entropy'): loss = cross_entropy(self.labels_pl, self.logits) with tf.name_scope('total'): if self.conf.use_reg: with tf.name_scope('L2_loss'): l2_loss = tf.reduce_sum( self.conf.lmbda * tf.stack([tf.nn.l2_loss(v) for v in tf.get_collection('weights')])) self.total_loss = loss + l2_loss else: self.total_loss = loss self.mean_loss, self.mean_loss_op = tf.metrics.mean(self.total_loss) def accuracy_func(self): with tf.name_scope('Accuracy'): self.y_pred = tf.argmax(self.logits, axis=1, name='y_pred') self.y_prob = tf.nn.softmax(self.logits, axis=1) self.y_pred_ohe = tf.one_hot(self.y_pred, depth=self.conf.num_cls) correct_prediction = tf.equal(tf.argmax(self.labels_pl, axis=1), self.y_pred, name='correct_pred') accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy_op') self.mean_accuracy, self.mean_accuracy_op = tf.metrics.mean(accuracy) def configure_network(self): self.loss_func() self.accuracy_func() global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) learning_rate = tf.train.exponential_decay(self.conf.init_lr, global_step, decay_steps=2000, decay_rate=0.97, staircase=True) self.learning_rate = tf.maximum(learning_rate, self.conf.lr_min) with tf.name_scope('Optimizer'): optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.train_op = optimizer.minimize(self.total_loss, global_step=global_step) self.sess.run(tf.global_variables_initializer()) trainable_vars = tf.trainable_variables() self.saver = tf.train.Saver(var_list=trainable_vars, max_to_keep=1000) self.train_writer = tf.summary.FileWriter(self.conf.logdir + self.conf.run_name + '/train/', self.sess.graph) self.valid_writer = tf.summary.FileWriter(self.conf.logdir + self.conf.run_name + '/valid/') self.configure_summary() print('*' * 50) print('Total number of trainable parameters: {}'. format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) print('*' * 50) def configure_summary(self): summary_list = [tf.summary.scalar('learning_rate', self.learning_rate), tf.summary.scalar('loss', self.mean_loss), tf.summary.scalar('accuracy', self.mean_accuracy)] self.merged_summary = tf.summary.merge(summary_list) def save_summary(self, summary, step, mode): # print('----> Summarizing at step {}'.format(step)) if mode == 'train': self.train_writer.add_summary(summary, step) elif mode == 'valid': self.valid_writer.add_summary(summary, step) self.sess.run(tf.local_variables_initializer()) def train(self): self.sess.run(tf.local_variables_initializer()) if self.conf.reload_step > 0: self.reload(self.conf.reload_step) print('----> Continue Training from step #{}'.format(self.conf.reload_step)) self.best_validation_loss = input('Enter the approximate best validation loss you got last time') self.best_accuracy = input('Enter the approximate best validation accuracy (in range [0, 1])') else: self.best_validation_loss = 100 self.best_accuracy = 0 print('----> Start Training') if self.conf.data == 'mnist': from DataLoaders.mnist_loader import DataLoader elif self.conf.data == 'cifar': from DataLoaders.CIFARLoader import DataLoader else: print('wrong data name') self.data_reader = DataLoader(self.conf) self.data_reader.get_data(mode='train') self.data_reader.get_data(mode='valid') self.num_train_batch = self.data_reader.count_num_batch(self.conf.batch_size, mode='train') self.num_batch = self.data_reader.count_num_batch(self.conf.batch_size, mode='valid') for epoch in range(self.conf.max_epoch): self.data_reader.randomize() for train_step in range(self.num_train_batch): glob_step = epoch * self.num_train_batch + train_step start = train_step * self.conf.batch_size end = (train_step + 1) * self.conf.batch_size x_batch, y_batch = self.data_reader.next_batch(start, end, mode='train') feed_dict = {self.inputs_pl: x_batch, self.labels_pl: y_batch, self.keep_prob_pl: self.conf.keep_prob} if train_step % self.conf.SUMMARY_FREQ == 0 and train_step != 0: _, _, _, summary = self.sess.run([self.train_op, self.mean_loss_op, self.mean_accuracy_op, self.merged_summary], feed_dict=feed_dict) loss, acc = self.sess.run([self.mean_loss, self.mean_accuracy]) self.save_summary(summary, glob_step + self.conf.reload_step, mode='train') print('epoch {0}/{1}, step: {2:<6}, train_loss= {3:.4f}, train_acc={4:.01%}'. format(epoch, self.conf.max_epoch, glob_step, loss, acc)) else: self.sess.run([self.train_op, self.mean_loss_op, self.mean_accuracy_op], feed_dict=feed_dict) if glob_step % self.conf.VAL_FREQ == 0 and glob_step != 0: self.evaluate(train_step=glob_step, dataset='valid') def test(self, step_num, dataset='test'): self.sess.run(tf.local_variables_initializer()) print('loading the model.......') self.reload(step_num) if self.conf.data == 'mnist': from DataLoaders.mnist_loader import DataLoader elif self.conf.data == 'mnist_bg': from DataLoaders.bg_mnist_loader import DataLoader elif self.conf.data == 'cifar': from DataLoaders.CIFARLoader import DataLoader else: print('wrong data name') self.data_reader = DataLoader(self.conf) self.data_reader.get_data(mode=dataset) self.num_batch = self.data_reader.count_num_batch(self.conf.batch_size, mode=dataset) print('-' * 25 + 'Test' + '-' * 25) if not self.conf.bayes: self.evaluate(dataset=dataset, train_step=step_num) else: self.MC_evaluate(dataset=dataset, train_step=step_num) def save(self, step): print('----> Saving the model at step #{0}'.format(step)) checkpoint_path = os.path.join(self.conf.modeldir + self.conf.run_name, self.conf.model_name) self.saver.save(self.sess, checkpoint_path, global_step=step) def reload(self, step): checkpoint_path = os.path.join(self.conf.modeldir + self.conf.run_name, self.conf.model_name) model_path = checkpoint_path + '-' + str(step) if not os.path.exists(model_path + '.meta'): print('----> No such checkpoint found', model_path) return print('----> Restoring the model...') self.saver.restore(self.sess, model_path) print('----> Model successfully restored') def evaluate(self, dataset='valid', train_step=None): self.sess.run(tf.local_variables_initializer()) for step in range(self.num_batch): start = self.conf.val_batch_size * step end = self.conf.val_batch_size * (step + 1) data_x, data_y = self.data_reader.next_batch(start=start, end=end, mode=dataset) feed_dict = {self.inputs_pl: data_x, self.labels_pl: data_y, self.keep_prob_pl: 1} self.sess.run([self.mean_loss_op, self.mean_accuracy_op], feed_dict=feed_dict) loss, acc = self.sess.run([self.mean_loss, self.mean_accuracy]) if dataset == "valid": # save the summaries and improved model in validation mode print('-' * 30) print('valid_loss = {0:.4f}, val_acc = {1:.01%}'.format(loss, acc)) summary_valid = self.sess.run(self.merged_summary, feed_dict=feed_dict) self.save_summary(summary_valid, train_step, mode='valid') if loss < self.best_validation_loss: self.best_validation_loss = loss if acc > self.best_accuracy: self.best_accuracy = acc print('>>>>>>>> Both model validation loss and accuracy improved; saving the model......') else: print('>>>>>>>> model validation loss improved; saving the model......') self.save(train_step) elif acc > self.best_accuracy: self.best_accuracy = acc print('>>>>>>>> model accuracy improved; saving the model......') self.save(train_step) print('-' * 30) elif dataset == 'test': print('test_loss = {0:.4f}, test_acc = {1:.02%}'.format(loss, acc)) def MC_evaluate(self, dataset='test', train_step=None): num_rounds = 10 self.sess.run(tf.local_variables_initializer()) all_std, all_error = np.array([]), np.array([]) mean_tpr, std_tpr =
np.array([])
numpy.array
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for polynomial_tensor.py.""" from __future__ import absolute_import, division import unittest import copy import numpy from openfermion.ops import PolynomialTensor from openfermion.transforms import get_fermion_operator from openfermion.utils._slater_determinants_test import ( random_quadratic_hamiltonian) class PolynomialTensorTest(unittest.TestCase): def setUp(self): self.n_qubits = 2 self.constant = 23.0 one_body_a = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_a = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_a[0, 1] = 2 one_body_a[1, 0] = 3 two_body_a[0, 1, 0, 1] = 4 two_body_a[1, 1, 0, 0] = 5 self.one_body_a = one_body_a self.two_body_a = two_body_a self.polynomial_tensor_a = PolynomialTensor( {(): self.constant, (1, 0): one_body_a, (1, 1, 0, 0): two_body_a}) self.one_body_operand = numpy.zeros((self.n_qubits, self.n_qubits)) self.two_body_operand = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) self.one_body_operand[0, 1] = 6 self.one_body_operand[1, 0] = 7 self.two_body_operand[0, 1, 0, 1] = 8 self.two_body_operand[1, 1, 0, 0] = 9 self.polynomial_tensor_operand = PolynomialTensor( {(1, 0): self.one_body_operand, (0, 0, 1, 1): self.two_body_operand}) self.polynomial_tensor_a_with_zeros = PolynomialTensor( {(): self.constant, (1, 0): one_body_a, (1, 1, 0, 0): two_body_a, (1, 1, 0, 0, 0, 0): numpy.zeros([self.n_qubits] * 6)}) one_body_na = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_na = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_na[0, 1] = -2 one_body_na[1, 0] = -3 two_body_na[0, 1, 0, 1] = -4 two_body_na[1, 1, 0, 0] = -5 self.polynomial_tensor_na = PolynomialTensor( {(): -self.constant, (1, 0): one_body_na, (1, 1, 0, 0): two_body_na}) one_body_b = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_b = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_b[0, 1] = 1 one_body_b[1, 0] = 2 two_body_b[0, 1, 0, 1] = 3 two_body_b[1, 0, 0, 1] = 4 self.polynomial_tensor_b = PolynomialTensor( {(): self.constant, (1, 0): one_body_b, (1, 1, 0, 0): two_body_b}) one_body_ab = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_ab = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_ab[0, 1] = 3 one_body_ab[1, 0] = 5 two_body_ab[0, 1, 0, 1] = 7 two_body_ab[1, 0, 0, 1] = 4 two_body_ab[1, 1, 0, 0] = 5 self.polynomial_tensor_ab = PolynomialTensor( {(): 2.0 * self.constant, (1, 0): one_body_ab, (1, 1, 0, 0): two_body_ab}) constant_axb = self.constant * self.constant one_body_axb = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_axb = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_axb[0, 1] = 2 one_body_axb[1, 0] = 6 two_body_axb[0, 1, 0, 1] = 12 self.polynomial_tensor_axb = PolynomialTensor( {(): constant_axb, (1, 0): one_body_axb, (1, 1, 0, 0): two_body_axb}) self.n_qubits_plus_one = self.n_qubits + 1 one_body_c = numpy.zeros((self.n_qubits_plus_one, self.n_qubits_plus_one)) two_body_c = numpy.zeros((self.n_qubits_plus_one, self.n_qubits_plus_one, self.n_qubits_plus_one, self.n_qubits_plus_one)) one_body_c[0, 1] = 1 one_body_c[1, 0] = 2 two_body_c[0, 1, 0, 1] = 3 two_body_c[1, 0, 0, 1] = 4 self.polynomial_tensor_c = PolynomialTensor( {(): self.constant, (1, 0): one_body_c, (1, 1, 0, 0): two_body_c}) one_body_hole = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_hole = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_hole[0, 1] = 2 one_body_hole[1, 0] = 3 two_body_hole[0, 1, 0, 1] = 4 two_body_hole[1, 1, 0, 0] = 5 self.polynomial_tensor_hole = PolynomialTensor( {(): self.constant, (0, 1): one_body_hole, (0, 0, 1, 1): two_body_hole}) one_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits)) two_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits)) one_body_spinful[0, 1] = 2 one_body_spinful[1, 0] = 3 one_body_spinful[2, 3] = 6 one_body_spinful[3, 2] = 7 two_body_spinful[0, 1, 0, 1] = 4 two_body_spinful[1, 1, 0, 0] = 5 two_body_spinful[2, 1, 2, 3] = 8 two_body_spinful[3, 3, 2, 2] = 9 self.polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) def test_setitem_1body(self): expected_one_body_tensor = numpy.array([[0, 3], [2, 0]]) self.polynomial_tensor_a[(0, 1), (1, 0)] = 3 self.polynomial_tensor_a[(1, 1), (0, 0)] = 2 self.assertTrue(numpy.allclose( self.polynomial_tensor_a.n_body_tensors[(1, 0)], expected_one_body_tensor)) def test_getitem_1body(self): self.assertEqual(self.polynomial_tensor_c[(0, 1), (1, 0)], 1) self.assertEqual(self.polynomial_tensor_c[(1, 1), (0, 0)], 2) def test_setitem_2body(self): self.polynomial_tensor_a[(0, 1), (1, 1), (1, 0), (0, 0)] = 3 self.polynomial_tensor_a[(1, 1), (0, 1), (0, 0), (1, 0)] = 2 self.assertEqual( self.polynomial_tensor_a.n_body_tensors[ (1, 1, 0, 0)][0, 1, 1, 0], 3) self.assertEqual( self.polynomial_tensor_a.n_body_tensors[ (1, 1, 0, 0)][1, 0, 0, 1], 2) def test_getitem_2body(self): self.assertEqual( self.polynomial_tensor_c[(0, 1), (1, 1), (0, 0), (1, 0)], 3) self.assertEqual( self.polynomial_tensor_c[(1, 1), (0, 1), (0, 0), (1, 0)], 4) def test_invalid_getitem_indexing(self): with self.assertRaises(KeyError): self.polynomial_tensor_a[(0, 1), (1, 1), (0, 0)] def test_invalid_setitem_indexing(self): test_tensor = copy.deepcopy(self.polynomial_tensor_a) with self.assertRaises(KeyError): test_tensor[(0, 1), (1, 1), (0, 0)] = 5 def test_eq(self): self.assertEqual(self.polynomial_tensor_a, self.polynomial_tensor_a) self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_hole) self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_spinful) # OK to have different keys if arrays for differing keys are 0-arrays self.assertEqual(self.polynomial_tensor_a, self.polynomial_tensor_a_with_zeros) self.assertEqual(self.polynomial_tensor_a_with_zeros, self.polynomial_tensor_a) def test_ne(self): self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_b) def test_add(self): new_tensor = self.polynomial_tensor_a + self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_ab) def test_iadd(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor += self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_ab) def test_invalid_addend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a + 2 def test_invalid_tensor_shape_add(self): with self.assertRaises(TypeError): self.polynomial_tensor_a + self.polynomial_tensor_c def test_different_keys_add(self): result = self.polynomial_tensor_a + self.polynomial_tensor_operand expected = PolynomialTensor( {(): self.constant, (1, 0): numpy.add(self.one_body_a, self.one_body_operand), (1, 1, 0, 0): self.two_body_a, (0, 0, 1, 1): self.two_body_operand}) self.assertEqual(result, expected) def test_neg(self): self.assertEqual(-self.polynomial_tensor_a, self.polynomial_tensor_na) def test_sub(self): new_tensor = self.polynomial_tensor_ab - self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_a) def test_isub(self): new_tensor = copy.deepcopy(self.polynomial_tensor_ab) new_tensor -= self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_a) def test_invalid_subtrahend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a - 2 def test_invalid_tensor_shape_sub(self): with self.assertRaises(TypeError): self.polynomial_tensor_a - self.polynomial_tensor_c def test_different_keys_sub(self): result = self.polynomial_tensor_a - self.polynomial_tensor_operand expected = PolynomialTensor( {(): self.constant, (1, 0): numpy.subtract(self.one_body_a, self.one_body_operand), (1, 1, 0, 0): self.two_body_a, (0, 0, 1, 1): self.two_body_operand}) self.assertEqual(result, expected) def test_mul(self): new_tensor = self.polynomial_tensor_a * self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_axb) new_tensor_1 = self.polynomial_tensor_a * 2. new_tensor_2 = 2. * self.polynomial_tensor_a self.assertEqual(new_tensor_1, PolynomialTensor( {(): self.constant * 2., (1, 0): self.one_body_a * 2., (1, 1, 0, 0): self.two_body_a * 2.})) self.assertEqual(new_tensor_2, PolynomialTensor( {(): self.constant * 2., (1, 0): self.one_body_a * 2., (1, 1, 0, 0): self.two_body_a * 2.})) self.assertEqual(get_fermion_operator(new_tensor_1), get_fermion_operator(self.polynomial_tensor_a) * 2.) self.assertEqual(get_fermion_operator(new_tensor_2), get_fermion_operator(self.polynomial_tensor_a) * 2.) def test_imul(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor *= self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_axb) def test_invalid_multiplier(self): with self.assertRaises(TypeError): self.polynomial_tensor_a * 'a' def test_invalid_tensor_shape_mult(self): with self.assertRaises(TypeError): self.polynomial_tensor_a * self.polynomial_tensor_c def test_different_keys_mult(self): result = self.polynomial_tensor_a * self.polynomial_tensor_operand expected = PolynomialTensor( {(1, 0): numpy.multiply(self.one_body_a, self.one_body_operand)}) self.assertEqual(result, expected) def test_div(self): new_tensor = self.polynomial_tensor_a / 2. self.assertEqual(new_tensor, PolynomialTensor( {(): self.constant / 2., (1, 0): self.one_body_a / 2., (1, 1, 0, 0): self.two_body_a / 2.})) self.assertEqual(get_fermion_operator(new_tensor), get_fermion_operator(self.polynomial_tensor_a) / 2.) def test_idiv(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor /= 3. self.assertEqual(new_tensor, PolynomialTensor( {(): self.constant / 3., (1, 0): self.one_body_a / 3., (1, 1, 0, 0): self.two_body_a / 3.})) self.assertEqual(get_fermion_operator(new_tensor), get_fermion_operator(self.polynomial_tensor_a) / 3.) def test_invalid_dividend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a / 'a' def test_iter_and_str(self): one_body = numpy.zeros((self.n_qubits, self.n_qubits)) two_body = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body[0, 1] = 11.0 two_body[0, 1, 1, 0] = 22.0 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_str = ('() 23.0\n((0, 1), (1, 0)) 11.0\n' '((0, 1), (1, 1), (1, 0), (0, 0)) 22.0\n') self.assertEqual(str(polynomial_tensor), want_str) self.assertEqual(polynomial_tensor.__repr__(), want_str) def test_rotate_basis_identical(self): rotation_matrix_identical = numpy.zeros((self.n_qubits, self.n_qubits)) rotation_matrix_identical[0, 0] = 1 rotation_matrix_identical[1, 1] = 1 one_body = numpy.zeros((self.n_qubits, self.n_qubits)) two_body = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits)) two_body_spinful = numpy.zeros((2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits)) i = 0 j = 0 for p in range(self.n_qubits): for q in range(self.n_qubits): one_body[p, q] = i one_body_spinful[p, q] = i one_body_spinful[p + self.n_qubits, q + self.n_qubits] = i i = i + 1 for r in range(self.n_qubits): for s in range(self.n_qubits): two_body[p, q, r, s] = j two_body_spinful[p, q, r, s] = j two_body_spinful[p + self.n_qubits, q + self.n_qubits, r + self.n_qubits, s + self.n_qubits] = j j = j + 1 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) want_polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) polynomial_tensor.rotate_basis(rotation_matrix_identical) polynomial_tensor_spinful.rotate_basis(rotation_matrix_identical) self.assertEqual(polynomial_tensor, want_polynomial_tensor) self.assertEqual(polynomial_tensor_spinful, want_polynomial_tensor_spinful) def test_rotate_basis_reverse(self): rotation_matrix_reverse = numpy.zeros((self.n_qubits, self.n_qubits)) rotation_matrix_reverse[0, 1] = 1 rotation_matrix_reverse[1, 0] = 1 one_body = numpy.zeros((self.n_qubits, self.n_qubits)) two_body = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_reverse = numpy.zeros((self.n_qubits, self.n_qubits)) two_body_reverse = numpy.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) i = 0 j = 0 i_reverse = pow(self.n_qubits, 2) - 1 j_reverse = pow(self.n_qubits, 4) - 1 for p in range(self.n_qubits): for q in range(self.n_qubits): one_body[p, q] = i i = i + 1 one_body_reverse[p, q] = i_reverse i_reverse = i_reverse - 1 for r in range(self.n_qubits): for s in range(self.n_qubits): two_body[p, q, r, s] = j j = j + 1 two_body_reverse[p, q, r, s] = j_reverse j_reverse = j_reverse - 1 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body_reverse, (1, 1, 0, 0): two_body_reverse}) polynomial_tensor.rotate_basis(rotation_matrix_reverse) self.assertEqual(polynomial_tensor, want_polynomial_tensor) def test_rotate_basis_quadratic_hamiltonian_real(self): self.do_rotate_basis_quadratic_hamiltonian(True) def test_rotate_basis_quadratic_hamiltonian_complex(self): self.do_rotate_basis_quadratic_hamiltonian(False) def do_rotate_basis_quadratic_hamiltonian(self, real): """Test diagonalizing a quadratic Hamiltonian that conserves particle number.""" n_qubits = 5 # Initialize a particle-number-conserving quadratic Hamiltonian # and compute its orbital energies quad_ham = random_quadratic_hamiltonian(n_qubits, True, real=real) orbital_energies, constant = quad_ham.orbital_energies() # Rotate a basis where the Hamiltonian is diagonal diagonalizing_unitary = quad_ham.diagonalizing_bogoliubov_transform() quad_ham.rotate_basis(diagonalizing_unitary.T) # Check that the rotated Hamiltonian is diagonal with the correct # orbital energies D = numpy.zeros((n_qubits, n_qubits), dtype=complex) D[numpy.diag_indices(n_qubits)] = orbital_energies self.assertTrue(numpy.allclose(quad_ham.combined_hermitian_part, D)) # Check that the new Hamiltonian still conserves particle number self.assertTrue(quad_ham.conserves_particle_number) # Check that the orbital energies and constant are the same new_orbital_energies, new_constant = quad_ham.orbital_energies() self.assertTrue(numpy.allclose(orbital_energies, new_orbital_energies)) self.assertAlmostEqual(constant, new_constant) def test_rotate_basis_max_order(self): for order in [15, 16]: tensor, want_tensor = self.do_rotate_basis_high_order(order) self.assertEqual(tensor, want_tensor) # I originally wanted to test 25 and 26, but it turns out that # numpy.einsum complains "too many subscripts in einsum" before 26. for order in [27, 28]: with self.assertRaises(ValueError): tensor, want_tensor = self.do_rotate_basis_high_order(order) def do_rotate_basis_high_order(self, order): key = (1,) * (order // 2) + (0,) * ((order + 1) // 2) shape = (1,) * order num = numpy.random.rand() rotation = numpy.exp(numpy.random.rand() * numpy.pi * 2j) polynomial_tensor = PolynomialTensor({key: numpy.zeros(shape) + num}) # If order is odd, there are one more 0 than 1 in key if order % 2 == 1: num *= rotation want_polynomial_tensor = PolynomialTensor( {key: numpy.zeros(shape) + num}) polynomial_tensor.rotate_basis(
numpy.array([[rotation]])
numpy.array
import numpy as np from ..tools import * from ..thermodyn import * from scipy.interpolate import RegularGridInterpolator g = 9.80665 # (m/s2) class pressure_density_profile(object): def __init__(self,P=[],Z=[],rho=[],melt_fraction=[],dz=200): self.P = P # pressure (MPa) self.Z = Z # depth (km) self.rho = rho # density profile Kg/m3 self.melt_fraction = melt_fraction # percentage self.dz = dz # output sampling (m) def read_imposed_density_profile(layers,filename,printOut=True): P_rho_DepthProfile = pressure_density_profile() nlayers = len(layers) Column_thickness = sum([ layers[i].thickness for i in range(0,nlayers) ]) #Read file ------------------------- if (os.path.isfile(filename)): data = np.loadtxt(filename,dtype='float',delimiter=' ') else: print('Problem with unread file '+filename) quit() z_read = data[:,1] t_read = data[:,0] #Interpolate read values ----------- #Initialization dz = P_rho_DepthProfile.dz # resolution for calculations (m) i = 0 T = [] Z = [] k_arr = [] Tbasal = layers[nlayers-1].thermalBc.temp_bottom k = thermal_conductivity().get_value(depth=Column_thickness,layers=layers,temperature=Tbasal) T.append(Tbasal) k_arr.append(k) Z.append(Column_thickness) temp = Tbasal for zincr in np.arange(dz,Column_thickness+dz,dz): i = i + 1 z = Column_thickness - zincr k = thermal_conductivity().get_value(depth=z,layers=layers,temperature=temp) #print('{0:8.2f} {1:8.2f}'.format(z,z_read[len(z_read)-1])) if ( z > z_read[len(z_read)-1] ): temp = t_read[len(z_read)-1] else: temp = pos2value_1d(z_read,t_read,z) #print('{0:8.2f} {1:8.2f}'.format(z,temp)) k_arr.append(k) Z.append(z) T.append(temp) geotherm.T = np.asarray(T) geotherm.Z = np.asarray(Z) geotherm.k = np.asarray(k_arr) return geotherm def compute_pressure_density_profile(layers,geotherm,density_type=1,printOut=True,filename=None,drho=0,zdrho=[6500,125000],path=None): """ Compute the pressure profile based on properties given by the list of layers for a given temperature profile. Each "layer" is an object defined in core.py of geodyn1d """ P_rho_DepthProfile = pressure_density_profile() nlayers = len(layers) P = np.zeros_like(geotherm.T).tolist() rho = np.zeros_like(geotherm.T).tolist() melt_fraction = np.zeros_like(geotherm.T).tolist() T = geotherm.T.tolist() Z = geotherm.Z.tolist() nl = len(Z) #print('min {} max {} len {}'.format(min(Z),max(Z),len(Z))) #print('min {} max {} len {}'.format(min(T),max(T),len(T))) if filename: if (os.path.isfile(filename)): data = np.loadtxt(filename,dtype='float',delimiter=' ') else: print('Problem with unread file '+filename) quit() z_read = data[:,1] rho_read = data[:,0] #TODO melt_fraction_read = data[:,2] for ni in range(0,nl): z = Z[nl-ni-1] t = T[nl-ni-1] cumdepth = 0.0e0 for ilayer in range(0,nlayers): #cumdepth = cumdepth + layers[ilayer].thickness if (z<cumdepth+ layers[ilayer].thickness): break cumdepth = cumdepth + layers[ilayer].thickness if (ni==0): dz = 0.0e0 p = 0.0e0 if filename: rho_used = rho_read[0] melt_fraction_used = 0 #TODO melt_fraction_read[0] need to be added inside the file else: rho_used = density().get_value(ilayer=ilayer,depth=z,pressure=p,temp=t,layers=layers,path=path) melt_fraction_used = melt_fraction_obj().get_value(ilayer=ilayer,depth=z,pressure=p,temp=t,layers=layers,path=path) if (z>zdrho[0] and z<zdrho[1]): rho_used = rho_used + drho rho[nl-ni-1] = rho_used melt_fraction[nl-ni-1] = melt_fraction_used P[nl-ni-1] = p else: dz= (Z[nl-ni-1] - Z[nl-ni]) p = P[nl-ni] if filename: if ( z > z_read[len(z_read)-1] ): rho_used = rho_read[len(z_read)-1] else: rho_used = pos2value_1d(z_read,rho_read,z) melt_fraction_used = 0 #TODO melt_fraction_read need to be added inside the file else: rho_used = density().get_value(ilayer=ilayer,depth=z,pressure=p,temp=t,layers=layers,path=path) melt_fraction_used = melt_fraction_obj().get_value(ilayer=ilayer,depth=z,pressure=p,temp=t,layers=layers,path=path) if (z>zdrho[0] and z<zdrho[1]): rho_used = rho_used + drho rho[nl-ni-1] = rho_used melt_fraction[nl-ni-1] = melt_fraction_used p = rho[nl-ni-1] * g * dz P[nl-ni-1] = P[nl-ni] + p #print('{} {} {}'.format(Z[nl-ni-1],z, rho[nl-ni-1])) P_rho_DepthProfile.P = np.asarray(P) P_rho_DepthProfile.Z = np.asarray(Z) P_rho_DepthProfile.rho = np.asarray(rho) P_rho_DepthProfile.melt_fraction = np.asarray(melt_fraction) P_rho_DepthProfile.dz = dz return P_rho_DepthProfile #use_tidv triggers the use of thermally induced density variations #use_tidv = 0 means no thermal expansion #use_tidv = 1 means thermal expansion with only using coefficient thermal_expansion_i #use_tidv = 2 means temperature dependent thermal expansion linearly scaled from thermal_expansion_1_i to thermal_expansion_2_i # within the temperature range thermal_expansion_t1_i to thermal_expansion_t2_i # = 3 temperature and pressure dependent thermal expansion # = 4 NOT IMPLEMENTED constant thermal expansion and compressibility # = 5 NOT IMPLEMENTED temp dep. thermal expansion and compressibility # = 6 NOT IMPLEMENTED temp. and P. dep. thermal expansion and compressibility # = 7 DENSITY READ FROM TABLE # = 8 DELTARHO that apply on ref. density READ FROM TABLE and constant thermal expansion similar to case "1" # = 9 DELTARHO that apply on ref. density READ FROM TABLE and thermal expansion(T) similar to case "2" # = 10 DELTARHO that apply on ref. density READ FROM TABLE and thermal expansion(T,P) similar to case "3" class density(object): def get_value(self,ilayer,depth,pressure,temp,layers,path=None): """Dispatch method""" density_type=layers[ilayer].material.densityComposition.use_tidv method_name = 'density_type' + str(density_type) # Get the method from 'self'. Default to a lambda. method = getattr(self, method_name, 0) return method(ilayer,depth,pressure,temp,layers,path) def density_type0(self,ilayer,depth,pressure,temp,layers,path): # Density constant # defined by layer properties density = layers[ilayer].material.densityComposition.rho + layers[ilayer].material.densityComposition.deltarho return density def density_type1(self,ilayer,depth,pressure,temp,layers,path): # Density dependent of the thermal expansion only # defined by layer properties density0 = layers[ilayer].material.densityComposition.rho alpha = thermal_expansion().get_value(ilayer=ilayer,depth=depth,pressure=pressure,temp=temp,layers=layers,alpha_type=1) T0 = layers[ilayer].material.thermalProperties.T0 + 273 density = density0 * ( 1 - alpha*(temp-T0)) + layers[ilayer].material.densityComposition.deltarho #print('density {} density0 {} alpha {} temp {} T0 {} depth {}'.format(density,density0,alpha,temp,T0,depth)) return density def density_type2(self,ilayer,depth,pressure,temp,layers,path): # Density dependent of the thermal expansion and compressibility # defined by layer properties density0 = layers[ilayer].material.densityComposition.rho alpha1,alpha2,alphaT1,alphaT2 = thermal_expansion().get_value(ilayer=ilayer,depth=depth,pressure=pressure,temp=temp,layers=layers,alpha_type=2) T0 = layers[ilayer].material.thermalProperties.T0 + 273 alphaT1 = alphaT1 + 273 alphaT2 = alphaT2 + 273 a = (alpha2-alpha1)/(alphaT2-alphaT1) alpha = a*temp + alpha1 density = density0 * ( 1 - alpha*(temp-T0)) + layers[ilayer].material.densityComposition.deltarho return density def density_type7(self,ilayer,depth,pressure,temp,layers,path): # Density read in a table # defined by layer properties if layers[ilayer].material.densityComposition.perplex_name is None: print('You use use_tidv = 7 for this layer {} but perplex_name is None.'.format(ilayer)) raise TypeError else: perplex_name = layers[ilayer].material.densityComposition.perplex_name if ( not layers[ilayer].material.densityComposition.perplex ): layers[ilayer].material.densityComposition.perplex = read_binary_file_perplex(perplex_name,path) interp_method = 0 if (interp_method==0): pmax = np.max(layers[ilayer].material.densityComposition.perplex.P) tmax = np.max(layers[ilayer].material.densityComposition.perplex.T) if ( not layers[ilayer].f_interp): perplex_np = layers[ilayer].material.densityComposition.perplex.np perplex_nt = layers[ilayer].material.densityComposition.perplex.nt value = layers[ilayer].material.densityComposition.perplex.rho.reshape(perplex_np, perplex_nt) T = np.linspace(np.min(layers[ilayer].material.densityComposition.perplex.T), tmax, perplex_nt) P = np.linspace(np.min(layers[ilayer].material.densityComposition.perplex.P), pmax, perplex_np) layers[ilayer].f_interp = RegularGridInterpolator((np.array(P)/pmax,
np.array(T)
numpy.array
""" Module that provides classes for tree creation and handling. Trees are powerful structures to sort a huge amount of data and to speed up performing query requests on them significantly. """ from collections import Iterable import pandas as pd import numba import numpy as np from sklearn.neighbors import BallTree, KDTree __all__ = [ "IntervalTree", "RangeTree", ] class IntervalTreeNode: """Helper class for IntervalTree. """ def __init__(self, center_point, center, left, right): self.center_point = center_point self.center = np.asarray(center) self.left = left self.right = right class IntervalTree: """Tree to implement fast 1-dimensional interval searches. Based on the description in Wikipedia (https://en.wikipedia.org/wiki/Interval_tree#Centered_interval_tree) and the GitHub repository by tylerkahn (https://github.com/tylerkahn/intervaltree-python). Examples: Check 1000 intervals on 1000 other intervals: .. code-block:: python import numpy as np from typhon.trees import IntervalTree intervals = np.asarray([np.arange(1000)-0.5, np.arange(1000)+0.5]).T tree = IntervalTree(intervals) query_intervals = [[i-1, i+1] for i in range(1000)] results = tree.query(query_intervals) """ def __init__(self, intervals): """Creates an IntervalTree object. Args: intervals: A list or numpy.array containing the intervals (list of two numbers). """ if not isinstance(intervals, np.ndarray): intervals = np.asarray(intervals) # Check the intervals whether they are valid: self.left =
np.min(intervals)
numpy.min
__author__ = 'INVESTIGACION' import numpy as np from copy import deepcopy import math def getHeuristic(matrix, pesos): """ Vamos a utilizar Cj/Pj donde Pi se obtiene por el numero de filas que cubre la columna :param matrix: :param pesos: :return: """ lHeuristic = np.zeros((len(pesos),2)) # Dos columnas. La primera para indicar la columna la segunda para la Heuristica for i in range(0,len(pesos)): lHeuristic[i,0] = int(i) #print i,sum(matrix[:,i]), pesos[i], float(pesos[i]/sum(matrix[:,i])) lHeuristic[i,1] = float(pesos[i]/sum(matrix[:,i])) #lHeuristic[lHeuristic[:,1].argsort()] return lHeuristic[lHeuristic[:,1].argsort()] def getRowHeuristics(matrix): """ Para cada fila, calculamos como es cubierta y obtenermos 1/Cubrimiento. Mientras menos cubrimiento mas importante es :param matrix: :return: """ row, col = matrix.shape rHeuristic = np.zeros((row,2)) # Dos columnas. La primera para indicar la columna la segunda para la Heuristica for i in range(0,row): rHeuristic[i,0] = int(i) #print (i,sum(matrix[:,i]), pesos[i], float(pesos[i]/sum(matrix[:,i]))) rHeuristic[i,1] = 1/sum(matrix[i,:]) return rHeuristic[rHeuristic[:,1].argsort()] def getRowColumn(matrix): #Corresponde a un diccionario que tiene las columnas asociadas a una Fila nrow, ncol = matrix.shape dict = {} for i in range(0,nrow): list = [] for j in range(0,ncol): if matrix[i,j]==1: list.append(j) dict[i] = deepcopy(list) return dict def getColumnRow(matrix): #Corresponde a un diccionario que tiene las columnas asociadas a una Fila nrow, ncol = matrix.shape dictCol = {} for j in range(0,ncol): list = [] for i in range(0,nrow): if matrix[i,j]==1: list.append(i) dictCol[j] = deepcopy(list) return dictCol def getProposedRows(uRows,rHeuristic,lparam): """ :param uRows: Uncovered rows :param rHeuristic: Rows Heuristic :param lparam: Number of rows proposed :return: pRows proposed rows """ pRows = [] contador = 1 if len(uRows) < lparam: pRows = uRows else: while len(pRows) < lparam: if rHeuristic[len(rHeuristic)-contador,0] in uRows: pRows.append(rHeuristic[len(rHeuristic)-contador,0]) contador = contador + 1 if contador > len(rHeuristic): break return pRows def getProposedColumns(uColumns, cHeuristic,lparam): """ :param uRows: Uncovered rows :param rHeuristic: Rows Heuristic :param lparam: Number of rows proposed :return: pRows proposed rows """ pColumns = [] contador = 0 #print 'Cuantas columnas propuestas', len(uColumns) while len(pColumns) < lparam: #print uColumns if cHeuristic[contador,0] in uColumns: pColumns.append(cHeuristic[contador,0]) if contador == len(cHeuristic)-1: break contador = contador + 1 return pColumns def getProposedColumnsNew(uColumns, dictcHeuristics ,lparam): """ :param uRows: Uncovered rows :param rHeuristic: Rows Heuristic :param lparam: Number of rows proposed :return: pRows proposed rows """ pColumns = [] tColumns = np.zeros((len(uColumns),2)) contador = 0 #print 'Cuantas columnas propuestas', len(uColumns) for i in range(0,len(uColumns)): tColumns[i,0] = uColumns[i] tColumns[i,1] = dictcHeuristics[uColumns[i]] return tColumns[tColumns[:,1].argsort()][0:lparam,0] def getProposedColumnsDict(uColumns,dictcHeuristics,lparam): pColumns = [] tColumns = np.zeros((len(uColumns),2)) for i in range(0,len(uColumns)): tColumns[i,0] = uColumns[i] tColumns[i,1] = dictcHeuristics[uColumns[i]] tColumns = tColumns[tColumns[:,1].argsort()] largo = min(lparam, len(tColumns[:,0])) for i in range(0,largo): pColumns.append(tColumns[i,0]) return pColumns def getColumnsDict(cHeuristic): dictcHeuristics = {} for i in range(0,len(cHeuristic)): dictcHeuristics[cHeuristic[i,0]] = cHeuristic[i,1] return dictcHeuristics def diff(A,B): C = set(A) -set(B) return list(C) def Calcula_Measure_j(Option, Pesos,j, K_j): """ :param Option: Identify the Measure 0 Cost, 1 Normalize Cost, :param Pesos: Is a variable in the measure calculus :param Matrix: Column by row information :param j: Column used for the calculus :return: The measure """ if Option==0: Measure = Pesos[j] elif Option==1: Measure = Pesos[j]/K_j elif Option==2: Measure = (Pesos[j]/math.log(K_j,2)) return Measure def SeleccionaColumna(Matrix,S,cHeuristic): row, col = Matrix.shape columnTot = range(0,col) columnComplement = diff(columnTot,S) estado = 0 i = 0 while estado == 0: if cHeuristic[i,0] in columnComplement: column = cHeuristic[i,0] estado = 1 i = i + 1 return column def SeleccionaColumna1(S,cHeuristic): estado = 0 i = 0 while estado == 0: if cHeuristic[i,0] not in S: column = cHeuristic[i,0] estado = 1 i = i + 1 return column def SeleccionaColumna6(Pesos, Matrix, R,S): """ :param Pesos: Is a variable in the measure calculus :param Matrix: Column by row information :param R: Uncovered Row :param S: Column in solution """ NumberCalculus = 2 T = 1 # start choice Option1 = np.random.randint(0,9) #Option = np.random.randint(2) Option = 1 #Choice = np.random.randint(0,T) rows, cols = Matrix.shape compl = range(0,cols) columnComplement = list(set(compl)-set(S)) Matrix_F = Matrix[R,:] Matrix_F = Matrix_F[:,columnComplement] rowF, colF = Matrix_F.shape #print rowF, colF ColumnWeight = np.zeros((colF,NumberCalculus)) Cont = 0 for i in range(0,colF): ColumnWeight[Cont,0] = columnComplement[i] K_i = np.sum(Matrix_F[:,i]) if K_i > 0: ColumnWeight[Cont,1] = Calcula_Measure_j(Option,Pesos,columnComplement[i],K_i) else: ColumnWeight[Cont,1] = Pesos[columnComplement[i]]*100 Cont = Cont + 1 ColumnWeight = ColumnWeight[ColumnWeight[:,1].argsort()] # We need to get the S complement if Option1 == 0: #print tam, Option1, len(ColumnWeight) tam = min(len(ColumnWeight),10) #print 'El largo', len(ColumnWeight) if tam == 1: column = int(ColumnWeight[0,0]) else: column = int(ColumnWeight[np.random.randint(1,tam),0]) else: column = int(ColumnWeight[0,0]) #print 'La columna', column return column def SeleccionaColumnaNueva(Pesos, Matrix, pRows,pColumns): """ :param Pesos: Is a variable in the measure calculus :param Matrix: Column by row information :param R: Uncovered Row :param S: Column in solution """ NumberCalculus = 2 T = 1 # start choice Option = np.random.randint(2) #Choice = np.random.randint(0,T) row, col = Matrix.shape #print 'El largo de las columnas antes', len(pColumns) columnComplement = list(set(pColumns).intersection(range(0,col))) #print 'El largo de las columnas ', len(columnComplement), pColumns Matrix_F = Matrix[pRows,:] Matrix_F = Matrix_F[:,columnComplement] rowF, colF = Matrix_F.shape ColumnWeight = np.zeros((colF,NumberCalculus)) Cont = 0 for i in range(0,colF): ColumnWeight[Cont,0] = columnComplement[i] K_i = np.sum(Matrix_F[:,i]) if K_i > 0: ColumnWeight[Cont,1] = Calcula_Measure_j(Option,Pesos,columnComplement[i],K_i) else: ColumnWeight[Cont,1] = Pesos[columnComplement[i]]*100 Cont = Cont + 1 ColumnWeight = ColumnWeight[ColumnWeight[:,1].argsort()] # We need to get the S complement #tam = min(len(ColumnWeight)-1,9) Option1 =
np.random.randint(0,5)
numpy.random.randint
import os from typing import List import numpy as np from numba import njit, float64, int64 from scipy.integrate import quad import VLEBinaryDiagrams from EOSParametersBehavior.ParametersBehaviorInterface import ( BiBehavior, DeltaiBehavior, ThetaiBehavior, EpsiloniBehavior, ) from MixtureRules.MixtureRulesInterface import ( DeltaMixtureRuleBehavior, EpsilonMixtureRuleBehavior, MixtureRuleBehavior, ) from Models.LiquidModel import UNIFAC, has_unifac_in_db from Properties import DeltaProp, Props from compounds import MixtureProp from compounds import SubstanceProp from constants import R_IG, DBL_EPSILON from polyEqSolver import solve_cubic from units import conv_unit x_vec_for_plot = [ 0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.50, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1, ] calc_options = { "Bubble-point Pressure": "bubbleP", "Dew-point Pressure": "dewP", "Bubble-point Temperature": "bubbleT", "Dew-point Temperature": "dewT", "Flash": "flash", } class EOSMixture: """ Main class for modeling a system with multiple substances, using a cubic equation of state. This is the main class of the software. It's responsable for calculating all properties, and all the vapor-liquid equilibrium data. It uses a generalized cubic equation of state for all its calculations. """ def __init__(self, _subs: List[SubstanceProp], _k): self.substances = _subs self.k = _k self.eosname = "" self.mixRuleBehavior = MixtureRuleBehavior() self.thetaiBehavior = ThetaiBehavior() self.biBehavior = BiBehavior() # TODO remove deltai and epsiloni? self.deltaiBehavior = DeltaiBehavior() self.epsiloniBehavior = EpsiloniBehavior() self.deltaMixBehavior = DeltaMixtureRuleBehavior() self.epsilonMixBehavior = EpsilonMixtureRuleBehavior() self.n = len(self.substances) self.Vcs = np.zeros(self.n) self.Pcs = np.zeros(self.n) self.Tcs = np.zeros(self.n) self.omegas = np.zeros(self.n) self.subs_ids = self.getSubstancesIDs() self.vle_method = "phi-phi" self.has_UNIFAC = self.hasUNIFAC() if self.has_UNIFAC: self.unifac_model = UNIFAC(self.subs_ids) for i in range(self.n): self.Vcs[i] = self.substances[i].Vc self.Tcs[i] = self.substances[i].Tc self.Pcs[i] = self.substances[i].Pc self.omegas[i] = self.substances[i].omega def hasUNIFAC(self): if len(self.subs_ids) < 2: return False return has_unifac_in_db(self.subs_ids) def getZfromPT(self, P: float, T: float, y): b = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances) theta = self.mixRuleBehavior.thetam( y, T, self.thetaiBehavior, self.substances, self.k ) delta = self.deltaMixBehavior.deltam( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilon = self.epsilonMixBehavior.epsilonm( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) return _getZfromPT_helper(b, theta, delta, epsilon, T, P, R_IG) def getPfromTV(self, T: float, V: float, y) -> float: b = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances) theta = self.mixRuleBehavior.thetam( y, T, self.thetaiBehavior, self.substances, self.k ) delta = self.deltaMixBehavior.deltam( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilon = self.epsilonMixBehavior.epsilonm( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) p = R_IG * T / (V - b) - theta / (V * (V + delta) + epsilon) return p def getPhi_i(self, i: int, y, P: float, T: float, Z: float): bm = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances) thetam = self.mixRuleBehavior.thetam( y, T, self.thetaiBehavior, self.substances, self.k ) deltam = self.deltaMixBehavior.deltam( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilonm = self.epsilonMixBehavior.epsilonm( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) # derivatives diffthetam = self.mixRuleBehavior.diffThetam( i, y, T, self.thetaiBehavior, self.substances, self.k ) diffbm = self.mixRuleBehavior.diffBm(i, y, T, self.biBehavior, self.substances) diffdeltam = self.deltaMixBehavior.diffDeltam( i, y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) diffepsilonm = self.epsilonMixBehavior.diffEpsilonm( i, y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) return _getPhi_i_helper( P, T, Z, R_IG, bm, thetam, deltam, epsilonm, diffthetam, diffbm, diffdeltam, diffepsilonm, DBL_EPSILON, ) def getFugacity(self, y, _P: float, _T: float, _V: float, _Z: float) -> float: f = 0.0 for i in range(self.n): f += y[i] * self.getPhi_i(i, y, _P, _T, _Z) return f * _P def getAllProps( self, y, Tref: float, T: float, Pref: float, P: float ) -> (Props, Props): log = "" zs = self.getZfromPT(P, T, y) zliq, zvap = np.min(zs), np.max(zs) vliq, vvap = zliq * R_IG * T / P, zvap * R_IG * T / P MixSubs = MixtureProp(self.substances, y) avgMolWt = MixSubs.getMolWt() if avgMolWt: rholiq, rhovap = avgMolWt * 1e-3 / vliq, avgMolWt * 1e-3 / vvap else: rholiq, rhovap = 0, 0 if MixSubs.hasCp(): igprops = MixSubs.getIGProps(Tref, T, Pref, P) log += MixSubs.getCpLog(Tref, T) pliq, pvap = self.getCpHSGUA(y, Tref, T, Pref, P) else: igprops = 0 pliq, pvap = 0, 0 log += "Couldn't calculate properties: missing Cp paramaters" fl, fv = ( self.getFugacity(y, P, T, vliq, zliq), self.getFugacity(y, P, T, vvap, zvap), ) retPropsliq, retPropsvap = Props(), Props() retPropsliq.Z, retPropsvap.Z = zliq, zvap retPropsliq.V, retPropsvap.V = vliq, vvap retPropsliq.rho, retPropsvap.rho = rholiq, rhovap retPropsliq.P, retPropsvap.P = P, P retPropsliq.T, retPropsvap.T = T, T retPropsliq.Fugacity, retPropsvap.Fugacity = fl, fv retPropsliq.IGProps, retPropsvap.IGProps = igprops, igprops retPropsliq.Props, retPropsvap.Props = pliq, pvap retPropsliq.log, retPropsvap.log = log, log return retPropsliq, retPropsvap def getdZdT(self, P: float, T: float, y) -> [float, float]: h = 1e-5 z_plus_h = self.getZfromPT(P, T + h, y) z_minus_h = self.getZfromPT(P, T - h, y) zs = (z_plus_h - z_minus_h) / (2.0 * h) return np.min(zs),
np.max(zs)
numpy.max
""" VisionLearner can learn a full_state model from a dataset. The ImagePreprocessor needs to be applied to the dataset first. The networks are trained with generators for augmentation but the whole dataset gets loaded to RAM. If RAM is too small code needs to be adjusted to use just with generators (code example can be found in miscellaneous/visionlearning_first_approach.py). If modifications are done it is important to check if the normalization and channel order of the images is consistent through training and prediction! can be done with look_at_data() DataAugmentation parameters can be adjusted _get_data_generator() @Author: <NAME>, adapted by <NAME> """ import os import cv2 import torch import torch.nn as nn import numpy as np from torch.nn.parallel import DataParallel import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader, random_split from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from visiontostate.dataset import VisionToStateDataset from visiontostate.models import VisionToStateNet class VisionLearner: def __init__(self, dataID, shuffle, epochs, augmentation, batch_size, val_size, model_path_ext=None): my_path = os.path.abspath(os.path.dirname(__file__)) self.save_path = os.path.join(my_path, '../../data/visiontostate/') if model_path_ext is not None: self.save_path = os.path.join(self.save_path, model_path_ext) if not os.path.exists(self.save_path): os.makedirs(self.save_path, exist_ok=True) self.save_path += str(dataID).zfill(3) self.dataID = dataID self.val_size = val_size self.shuffle = shuffle self.augmentation = augmentation self.batch_size = batch_size self.epochs = epochs self.net = None def train(self, parallelize_data=False, load_model=None): print("Start training ...") # setup to run on gpu if torch.cuda.is_available(): print("Running on gpu ...") device = torch.device("cuda") else: device = torch.device("cpu") self.net = VisionToStateNet().to(device) if load_model is not None: print("Loading model...") self.net.load_state_dict(torch.load(self.save_path + '/' + load_model + ".pt")) run_id = 0 for (_, dirs, _) in os.walk(self.save_path + '/tb'): for dirname in dirs: if int(dirname) >= run_id: run_id = int(dirname) + 1 break writer = SummaryWriter(self.save_path + "/tb/" + str(run_id).zfill(3)) data_transform = transforms.Compose([ transforms.ToPILImage(), transforms.RandomAffine(1, translate=(0.01, 0.01), scale=(1, 1.02), shear=None, resample=False, fillcolor=(255, 255, 255)), transforms.ColorJitter(brightness=(0.9, 1.1), contrast=0, saturation=0, hue=0), transforms.ToTensor() ]) dataset = VisionToStateDataset(root_dir=self.save_path, transform=data_transform if self.augmentation else None, device=device) print("Loaded {} images for training".format(len(dataset))) val_samples = int(self.val_size * dataset.__len__()) train_samples = dataset.__len__() - val_samples [train_dataset, val_dataset] = random_split(dataset, [train_samples, val_samples]) train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=0) val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=0) criterion = nn.MSELoss() optimizer = optim.Adam(self.net.parameters(), lr=1e-3, amsgrad=True) # # Display some images # for i_batch, sample_batched in enumerate(val_loader): # for i in range(self.batch_size): # cv2.imshow('original', np.transpose(sample_batched['image'].cpu().numpy()[i], (1, 2, 0)) # .astype(np.float32)) # cv2.waitKey(0) # cv2.destroyAllWindows() for epoch in range(self.epochs): # loop over the dataset multiple times print("Epoch {} of {}".format(epoch + 1, self.epochs)) train_loss = 0.0 train_count = 0 val_loss = 0.0 val_count = 0 # train self.net.train() for i, data in tqdm(enumerate(train_loader), total=int(train_samples / self.batch_size) + 1): optimizer.zero_grad() image_batch = data['image'] label_batch = data['label'] outputs = self.net(image_batch) loss = criterion(outputs, label_batch) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() train_count += 1 writer.add_scalar('loss/train', train_loss / train_count, epoch) # save model torch.save(self.net.state_dict(), self.save_path + "/tb/" + str(run_id).zfill(3) + "/model_epoch{}.pt".format(epoch)) # validate alpha_error = None self.net.eval() with torch.no_grad(): for i, data in tqdm(enumerate(val_loader), total=int(val_samples / self.batch_size) + 1): image_batch = data['image'] label_batch = data['label'] outputs = self.net(image_batch) loss = criterion(outputs, label_batch) val_loss += loss.item() val_count += 1 # convergence criteria label_batch = label_batch.detach().cpu().numpy() outputs = outputs.detach().cpu().numpy() alpha = np.arctan2(label_batch[:, 3], label_batch[:, 2]) alpha_pred = np.arctan2(outputs[:, 3], outputs[:, 2]) combined = np.column_stack((alpha, -alpha_pred)) combined = combined[(np.abs(combined[:, 0]) < 10 / 180 * np.pi)] error = np.abs(np.sum(combined, axis=1)) if alpha_error is None: alpha_error = error else: alpha_error = np.concatenate((error, alpha_error), axis=0) writer.add_scalar('loss/val', val_loss / val_count, epoch) writer.add_scalar('loss/val_alpha_error', np.mean(alpha_error), epoch) print(alpha_error) print(
np.mean(alpha_error)
numpy.mean
# -*- coding: utf-8 -*- # # Helper functions for frontend test design # # The runner signatures take a callable, # the `method_call`, as 1st argument # # 3rd party imports import itertools import numpy as np from syncopy.shared.errors import SPYValueError, SPYTypeError # fix random generators
np.random.seed(40203)
numpy.random.seed
from __future__ import absolute_import, division, print_function, unicode_literals import argparse import logging import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd from torch.autograd import Variable import numpy as np from modules.gan import cond_Generator, cond_Critic, Classifier import glob import os import pickle import random import torch.nn.functional as F from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from func import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, BertConfig from func import GPT2LMHeadModel, GPT2Tokenizer, GPT2ForLatentConnector from func import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer from func import XLNetLMHeadModel, XLNetTokenizer from func import TransfoXLLMHeadModel, TransfoXLTokenizer from func import BertForLatentConnector, BertTokenizer from collections import defaultdict from utils import (TextDataset_Split, TextDataset_2Tokenizers, BucketingDataLoader, BucketingDataLoaderYelp) import pdb from modules.utils import (calc_blue_parallel_func, pad_seq, rollout, rollout_test) from transformers.modeling_utils import top_k_top_p_filtering MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig)), ()) logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) MODEL_CLASSES = { 'gpt2': (GPT2Config, GPT2ForLatentConnector, GPT2Tokenizer), 'bert': (BertConfig, BertForLatentConnector, BertTokenizer) } def load_and_cache_examples(args, tokenizer): if isinstance(tokenizer, list): dataset = TextDataset_2Tokenizers(tokenizer, args, args.train_data_file, block_size=args.block_size) else: dataset = TextDataset_Split(tokenizer, args, args.train_data_file, block_size=args.block_size) return dataset def build_dataload_and_cache_examples(args, tokenizer): if isinstance(tokenizer, list): args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) file_path=args.train_data_file dataloader = BucketingDataLoaderYelp(file_path, args.batch_size, args.max_seq_length, tokenizer, args, bucket=100, shuffle=True) else: pass return dataloader def compute_grad_penalty(critic, real_data, fake_data, label): # B = real_data.size(0) alpha = torch.FloatTensor(
np.random.random((B, 1))
numpy.random.random
from pipe import select, where import numpy as np import functools as ft with open("input4.txt") as f: lines = f.read() move = list(map(int,lines.split('\n\n')[0].split(","))) board = lines.split('\n\n')[1:] def string_to_matrix(m): if m[-1]=="\n": m=m[0:-1] m=np.asmatrix(m.replace("\n",";")) return(m) board=list(map(string_to_matrix,board)) state=[np.zeros((5,5),dtype=int) for i in range(0,len(board))] def check_bingo (m): m=
np.asarray(m)
numpy.asarray
"""Tool for generating random events on the sky.""" import argparse from configparser import ConfigParser import code import logging import numpy as np import pandas as pd max_iter_npoints = 1000000 min_iter_npoints = 100 info = logging.info def num_events(rate, volume, uptime, nyears): """Randomly determine a number of everts. Args: rate - events per Gpc^3 per year volume - detectable volume, in Gpc^3 uptime - fraction of detector uptime nyears - the number of years """ expected_events = rate*volume*uptime*nyears n_events = np.random.poisson(expected_events) return n_events def sample_sphere(n, truncate=True): """Randomly generate pointings on a sphere. Use a conceptually straightforward (but inefficient) way to generate random points on a sphere: generate random poinds in a cube, throw away points outside a sphere contained entirely in the cube, and project onto the sphere. Args: n - the number of points to generate truncate - if the algorithm ends up with more points than requested, return only the number requested, not all generated points. Returns: a pandas.DataFrame of the randomly generated points """ point_dfs = [] accumulated_samples = 0 while accumulated_samples < n: # (2*r)^3 / (4/3 pi r^3) = 6/pi iter_npoints = min(int(np.round((n-accumulated_samples)*6/np.pi)), max_iter_npoints) # do 3-sigma more iter_npoints = iter_npoints + np.int(3*np.sqrt(iter_npoints)) iter_npoints = max(iter_npoints, min_iter_npoints) x = np.random.uniform(-1, 1, iter_npoints) y = np.random.uniform(-1, 1, iter_npoints) z = np.random.uniform(-1, 1, iter_npoints) r = np.sqrt(x*x+y*y+z*z) in_sphere = r < 1.0 r = r[in_sphere] x = x[in_sphere]/r y = y[in_sphere]/r z = z[in_sphere]/r theta = np.arccos(z) phi = np.arctan2(y, x) ra = (
np.degrees(phi)
numpy.degrees
from keras.models import Sequential from keras.layers import Dense, Activation import numpy as np import copy class DestinationModel: def __init__(self, stop_connections, gamma=0.99): # Q with current weights self.model = self.get_network_structure() self.model.compile(optimizer='adam', loss='mse', lr=0.001) # Q with "frozen" weights self.target_network = self.get_network_structure() self.target_network.compile(optimizer='adam', loss='mse') # Set tau = 1 to use the model weights only self.update_target(tau=1) # City map self.connections = stop_connections # Discount parameter for RL self.gamma = gamma def update_target(self, tau=0.001): # Get weights from both networks model_weights = self.model.get_weights() target_network_weights = self.target_network.get_weights() # Take convex combination of the weights from both networks for i in range(len(target_network_weights)): target_network_weights[i] = tau * model_weights[i] + (1 - tau) * target_network_weights[i] # Set target network weights self.target_network.set_weights(target_network_weights) def get_network_structure(self): return Sequential([ Dense(200, input_dim=120 + 24), Activation('relu'), Dense(100), Activation('relu'), Dense(1), Activation('linear'), ]) def get_max_qscore(self, action_vec, next_state, use_target_network=False): possible_actions_id = self.connections[
np.where(action_vec == 1)
numpy.where
import os import numpy as np from array import array from sklearn.metrics import mean_absolute_error from skmultiflow.data import RegressionGenerator from skmultiflow.trees import HoeffdingTreeRegressor from skmultiflow.utils import calculate_object_size from difflib import SequenceMatcher def test_hoeffding_tree_regressor_mean(): stream = RegressionGenerator(n_samples=500, n_features=20, n_informative=15, random_state=1) learner = HoeffdingTreeRegressor(leaf_prediction='mean') cnt = 0 max_samples = 500 y_pred = array('d') y_true = array('d') wait_samples = 10 while cnt < max_samples: X, y = stream.next_sample() # Test every n samples if (cnt % wait_samples == 0) and (cnt != 0): y_pred.append(learner.predict(X)[0]) y_true.append(y[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = array('d', [102.38946041769101, 55.6584574987656, 5.746076599168373, 17.11797209372667, 2.566888222752787, 9.188247802192826, 17.87894804676911, 15.940629626883966, 8.981172175448485, 13.152624115190092, 11.106058099429399, 6.473195313058236, 4.723621479590173, 13.825568609556493, 8.698873073880696, 1.6452441811010252, 5.123496188584294, 6.34387187194982, 5.9977733790395105, 6.874251577667707, 4.605348088338317, 8.20112636572672, 9.032631648758098, 4.428189978974459, 4.249801041367518, 9.983272668044492, 12.859518508979734, 11.741395774380285, 11.230028410261868, 9.126921979081521, 9.132146661688296, 7.750655625124709, 6.445145118245414, 5.760928671876355, 4.041291302080659, 3.591837600560529, 0.7640424010500604, 0.1738639840537784, 2.2068337802212286, -81.05302946841077, 96.17757415335177, -77.35894903819677, 95.85568683733698, 99.1981674250886, 99.89327888035015, 101.66673013734784, -79.1904234513751, -80.42952143783687, 100.63954789983896]) assert np.allclose(y_pred, expected_predictions) error = mean_absolute_error(y_true, y_pred) expected_error = 143.11351404083086 assert np.isclose(error, expected_error) expected_info = "HoeffdingTreeRegressor(binary_split=False, grace_period=200, leaf_prediction='mean', " \ "learning_ratio_const=True, learning_ratio_decay=0.001, learning_ratio_perceptron=0.02, " \ "max_byte_size=33554432, memory_estimate_period=1000000, nb_threshold=0, no_preprune=False, " \ "nominal_attributes=None, random_state=None, remove_poor_atts=False, split_confidence=1e-07, " \ "stop_mem_management=False, tie_threshold=0.05)" info = " ".join([line.strip() for line in learner.get_info().split()]) assert info == expected_info assert isinstance(learner.get_model_description(), type('')) assert type(learner.predict(X)) == np.ndarray def test_hoeffding_tree_regressor_perceptron(): stream = RegressionGenerator(n_samples=500, n_features=20, n_informative=15, random_state=1) learner = HoeffdingTreeRegressor(leaf_prediction='perceptron', random_state=1) cnt = 0 max_samples = 500 y_pred = array('d') y_true = array('d') wait_samples = 10 while cnt < max_samples: X, y = stream.next_sample() # Test every n samples if (cnt % wait_samples == 0) and (cnt != 0): y_pred.append(learner.predict(X)[0]) y_true.append(y[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = array('d', [207.20901655684412, 106.30316877540555, 101.46950096324191, 114.38162776688861, 48.40271620592212, -79.94375846313639, -76.69182794940929, 88.38425569670662, -13.92372162581644, 3.0549887923350507, 55.36276732455883, 32.0512081208464, 17.54953203218902, -1.7305966738232161, 43.54548690756897, 8.502241407478213, -61.14739038895263, 50.528736810827745, 9.679668917948607, 89.93098085572623, 85.1994809437223, 1.8721866382932664, -7.1972581323107825, -45.86230662663542, 3.111671172363243, 57.921908276916646, 61.43400576850072, -16.61695641848216, -6.0769944259948065, 19.929266442289546, -60.972801351912224, -0.3342549973033524, -50.53334350658139, -14.885488543743078, -13.255920225124637, 28.909916365484275, -103.03499425386107, -36.44921969674884, -15.40018796932204, -84.98471039676006, 38.270205984888065, -62.97228157481581, -48.095864628804044, 95.5028130171316, 73.62390886812497, 152.7135140597221, -120.4662342226783, -77.68182541723442, 66.82059046110074]) assert
np.allclose(y_pred, expected_predictions)
numpy.allclose
import itertools import logging import os.path as osp import tempfile from collections import OrderedDict import mmcv import numpy as np import pycocotools from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class CocoDataset(CustomDataset): CLASSES = ('rumex with leaves', 'rumex with leaves IS', 'rumex stalks only', 'cluster of rumex', 'ignore', 'rumex_generated_med_conf', 'rumex_generated_2_med_conf', 'rumex_generated_high_conf', 'rumex_generated_2_high_conf') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ if not getattr(pycocotools, '__version__', '0') >= '12.0.2': raise AssertionError( 'Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] total_ann_ids = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) ann_ids = self.coco.get_ann_ids(img_ids=[i]) total_ann_ids.extend(ann_ids) assert len(set(total_ann_ids)) == len( total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes =
np.zeros((0, 4))
numpy.zeros
import numpy as np import RecSysFramework.Utils.compute_popularity as cp def round_all_digits(number, n_digits): return '{:.{prec}f}'.format(number, prec=n_digits) def get_results_latex_from_dict(d, n_digits=6): s = '' for cutoff in d.keys(): d_cutoff = d[cutoff] for metric_value in d_cutoff.values(): s += '& {} '.format(round(metric_value, n_digits)) return s def get_items_long_tail_short_head(urm_train, cut_perc=0.66): """return the items in the long tail and short head, given a URM train. items belonging to the long tail computed in this way: - items sorted by pop - do cum sum - take item i st cum sum is cut_perc*tot_interactions - items < i are long tail, short head otherwise Arguments: urm_train {csr_matrix} -- Returns: [(np array,np array)] -- index of items belonging respectively to long tail and short head """ item_pop_tuple_list = cp.compute_popularity_item(urm_train) items_idxs, interactions = zip(*item_pop_tuple_list) interactions_cumsum =
np.cumsum(interactions)
numpy.cumsum
import numpy as np from lib.h5dns_load_data import * def find_max_vapor(h5dns_path): # Load h5dns file vofFieldInfo = field4Dlow(h5dns_path) # Iterate thru all tsteps to find max vapor value max_val = 0 for tstep in range(vofFieldInfo.tres): # Get field of vapor (YV) data on this timestep u = vofFieldInfo.obtain3Dtimestep(tstep, "YV") # Get max value from field on this timestep tstep_max_val = np.max(u) # Check if greater than the previous max value if tstep_max_val > max_val: max_val = tstep_max_val # Close h5dns vofFieldInfo.close() return max_val def convyv2bvox(h5dns_path, output_path, tstep, vapor_min, vapor_max, fog_halved=False): # Load h5dns file vofFieldInfo = field4Dlow(h5dns_path) # Header of the BVOX file. This is how Blender knows data dimensions. header = np.array([vofFieldInfo.xres, vofFieldInfo.yres, vofFieldInfo.zres, 1]) # Get field of vapor (YV) data, normalized by max vapor value u = vofFieldInfo.obtain3Dtimestep(tstep, "YV")/vapor_max # TODO fix this comment No less-than-1 values into log - we want these to just evaluate to 0, so make them 1 u[u < 0] = 0 # Perform fog intensity calculation u = 1 -
np.log10(u)
numpy.log10
# Functions to load delay data produced by the raytracer import numpy as np from numpy import exp Planck_constant = 6.62606979e-34 light_speed = 299792458.0 def load_raw(fname): # Read numerical data raw_data = np.loadtxt(fname, skiprows=7) # Read metadata. Wavelength is converted from nanometers to meters for future computations. metadata = {} with open(fname, "r") as f: f.readline() metadata["wavelength"] = float(f.readline().split()[3]) * 1e-9 metadata["tmin"] = float(f.readline().split()[3]) metadata["tmax"] = float(f.readline().split()[3]) return raw_data, metadata def scale_data(raw_data, metadata, geometry): """Convert raw data to photon counts, given beam and detector properties.""" # Time delay axis in seconds X = np.linspace(metadata["tmin"], metadata["tmax"], len(raw_data)) / light_speed delta = X[1] - X[0] # Raw data has units of m^2 / steradian, disk-integrated brightness at given time delay # for 1 Watt / m^2 incident radiation, integrated over bin. data = raw_data.copy() # Dividing data by bin width, get m^2 / steradian / s. data /= delta # Incident flux in Joules per square meter beam_flux = geometry["beam_energy"] / geometry["beam_cross_section"] # Number of photons in one Joule of energy at this wavelength. photons_per_joule = metadata["wavelength"] / (Planck_constant * light_speed) # "Convolution" with incident flux. Data now in units of Watts / steradian. # The convolution is just a product with beam_flux * 1s because incident pulse is delta. data *= beam_flux # Multiply by detector solid angle (steradians). Data now in Watts. # This assumes the detector solid angle is so small, the flux is approx constant over it. data *= geometry["detector_solid_angle"] # Multiply by photon count at given wavelength. Converts data from Watts to photons / s. data *= photons_per_joule # Switch time units to nanoseconds data /= 1e9 # photons per nanosecond delta *= 1e9 # Nanoseconds return data, delta def get_X(data, metadata): return np.linspace(metadata["tmin"], 3*metadata["tmax"], len(data)) / light_speed * 1e9 class Distribution: def __init__(self, intensity, delta_t, tmin, noise): self.intensity = intensity self.delta = delta_t self.tmin = tmin self.tmax = tmin + intensity.size * delta_t self.noise = noise self.L = delta_t * sum(intensity) self.cdfC = 1 - exp(-noise * tmin) self.precompute_I() self.precompute_E() def precompute_I(self): N = self.intensity.size self.I = np.zeros(N+1) for n in range(1, N+1): self.I[n] = self.I[n-1] + self.delta * self.intensity[n-1] def precompute_E(self): N = self.intensity.size self.E = np.zeros(N+1) self.E[0] = 1 - exp(-self.noise * self.tmin) for k in range(1, N+1): tk0 = self.tmin + (k-1)*self.delta tk1 = self.tmin + k*self.delta Dk = self.noise + self.intensity[k-1] Bk = -self.I[k-1] + self.intensity[k-1] * tk0 integral = exp(Bk-Dk*tk0) - exp(Bk-Dk*tk1) self.E[k] = self.E[k-1] + integral def intensity_value(self, t): if t < 0 or t >= self.delta * len(self.intensity): return 0.0 i = int(t / self.delta) return self.intensity[i] def integrate_lambda(self, t): if t < self.tmin: return self.noise * t if t > self.tmax: return self.noise * t + self.L k = int((t - self.tmin) / self.delta) tk = self.tmin + k * self.delta return self.noise * t + self.I[k] + self.intensity[k] * (t - tk) def cdf(self, t): if t < self.tmin: return 1 - exp(-self.noise * t) if t > self.tmax: return self.E[-1] + (exp(-self.noise * self.tmax) - exp(-self.noise * t)) k = int((t - self.tmin) / self.delta) tk = self.tmin + k*self.delta D = self.noise + self.intensity[k] Ck = exp(-self.I[k] + self.intensity[k] * tk) return self.E[k] + Ck * (exp(-D*tk) - exp(-D*t)) def sample_one(self): U = np.random.rand() N = len(self.E) k = -100 if U < self.E[0]: k = -1 elif U > self.E[-1]: k = N-1 else: for i in range(N-1): if U > self.E[i] and U < self.E[i+1]: k = i break if k == -100: raise ValueError("CDF error: U = {}, E = {}".format(U, self.E)) if k == N-1: return -np.log(self.E[-1] + exp(-self.noise * self.tmax) - U) / self.noise if k == -1: return -np.log(1 - U) / self.noise tk = self.tmin + k*self.delta Dk = self.noise + self.intensity[k] Bk = -self.I[k] + self.intensity[k] * tk Ek = self.E[k] return -np.log(Ek + exp(Bk-Dk*tk) - U) / Dk + Bk/Dk def sample(self, N=1, limit=None): S = np.array([self.sample_one() for i in range(N)]) if not limit is None: return np.ma.masked_greater(S, limit) else: return
np.ma.masked_array(S)
numpy.ma.masked_array
from student_base import student_base import time import numpy class my_flight_controller(student_base): """ Student flight controller class. Students develop their code in this class. Parameters ---------- student_base : student_base Class defining functionality enabling base functionality Methods ------- student_run(self, telemetry: Dict, commands: Dict (optional)) Method that takes in telemetry and issues drone commands. """ def student_run(self, telemetry, commands): # The telemetry dictionary contains fields that describe the drone's position and flight state. # It updates continuously, so it can be polled for new information. # Use a time.sleep() between polls to keep the CPU load down and give the background communications # a chance to run. print("Printing telemetry") for i in range(4): print(telemetry) time.sleep(0.5) # Several commands are available to control the drone: # # self.arm() # self.disarm() # self.takeoff() # self.land() # self.goto(lat, lon, alt) # # Note that the commands return immediately, not when the drone # has actually reached the specified condition. print("Arming") self.arm() print("Taking off") homeLat = telemetry['latitude'] homeLon = telemetry['longitude'] self.takeoff() print("Waiting 6 seconds") time.sleep(6) # Get Water print("Get to water") goalLat = 42.3588 # water goalLon = -70.9898 goalAlt = 100 self.goto(goalLat, goalLon, goalAlt) err = numpy.linalg.norm([goalLat - telemetry['latitude'], goalLon - telemetry['longitude']]) tol = 0.0001 # Approximately 50 feet tolerance while err > tol: print('Aircraft is enroute to water') time.sleep(10) err = numpy.linalg.norm([goalLat - telemetry['latitude'], goalLon - telemetry['longitude']]) print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') print("Picking up water") water_start_time = time.time() while(time.time() - water_start_time < 10.0): print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') time.sleep(5) print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') # Get more Water print("Get to water") goalLat = 42.3588 # water goalLon = -70.9928 goalAlt = 100 self.goto(goalLat, goalLon, goalAlt) err = numpy.linalg.norm([goalLat - telemetry['latitude'], goalLon - telemetry['longitude']]) tol = 0.0001 # Approximately 50 feet tolerance while err > tol: print('Aircraft is enroute to water') print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') time.sleep(10) err = numpy.linalg.norm([goalLat - telemetry['latitude'], goalLon - telemetry['longitude']]) print("Picking up water") water_start_time = time.time() while(time.time() - water_start_time < 10.0): print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') #if telemetry['water_pct_remaining']>=90: # print("Water almost filled, go to fire") # break time.sleep(5) print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') # fire print("Go to fire") goalLat = 42.3595 # fire goalLon = -70.9924 goalAlt = 100 self.goto(goalLat, goalLon, goalAlt) err = numpy.linalg.norm([goalLat - telemetry['latitude'], goalLon - telemetry['longitude']]) tol = 0.0001 # Approximately 50 feet tolerance while err > tol: print('Aircraft is enroute to fire') print("Water level: " + str(round(telemetry['water_pct_remaining'], 2)) + '%') print("Fire remaining: " + str(round(telemetry['fires_pct_remaining'], 2)) + '%') time.sleep(10) err =
numpy.linalg.norm([goalLat - telemetry['latitude'], goalLon - telemetry['longitude']])
numpy.linalg.norm
from discord.ext import commands import discord import numpy as np import os import traceback from parse import parse client = discord.Client() bot = commands.Bot(command_prefix='/') token = os.environ['DISCORD_BOT_TOKEN'] # @bot.event # async def on_command_error(ctx, error): # orig_error = getattr(error, "original", error) # error_msg = ''.join(traceback.TracebackException.from_exception(orig_error).format()) # await ctx.send(error_msg) # @bot.command() # async def ping(ctx): # await ctx.send('pong') # @bot.command() # async def neko(ctx): # await ctx.send('nyan') def dice(dice_size): num = np.random.randint(1, int(dice_size + 1)) return num def simple_dice(dice_size, dice_num): dice_val = np.array([], dtype=np.int64) for i in range(dice_num): dice_val = np.append(dice_val, dice(dice_size)) #msg = 'dice: ' + str(np.sum(dice_val)) + ' = ' + str(dice_val) m = dice_val return m def CCB(m, a): if m <= (a/5): msg = 'dice: ' + str(np.sum(m)) + ' = ' + str(m) + ' <= ' + str(a) + ' Extreme!!!' elif (a/5) < m <= (a/2): msg = 'dice: ' + str(np.sum(m)) + ' = ' + str(m) + ' <= ' + str(a) + ' Hard!!' elif (a/2) < m <= a: msg = 'dice: ' + str(np.sum(m)) + ' = ' + str(m) + ' <= ' + str(a) + ' Success!' elif m > a: if a >= 50: if a < m <= 99: msg = 'dice: ' + str(np.sum(m)) + ' = ' + str(m) + ' > ' + str(a) + ' Failure.' elif m == 100: msg = 'dice: ' + str(
np.sum(m)
numpy.sum
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `pybravi` package.""" from pybravi.lattice import create_lattice_vector, create_lattice, radial_slicer from pybravi.lattice import rectangle_slicer from pybravi.lattice import _centroid, translation from pybravi.lattice import cells_function_factory import numpy as np def test_create_lattice_vector(): vec_a, vec_b = create_lattice_vector([10, 0], -120) assert not np.array_equal(vec_a, vec_b) rads = np.arccos(vec_a.dot(vec_b) / (np.linalg.norm(vec_a) * np.linalg.norm(vec_b))) expected_rads = np.radians(120) assert np.abs(rads - expected_rads) <= 0.001 def test_create_lattice(): vecs = create_lattice_vector([10, 0], -120) points = create_lattice((2, 2), vecs) print(points) # Everything should be roughly 10 from the origin for point in points: norm = np.linalg.norm(point - np.array([0, 0])) if norm != 0: assert np.abs(norm - 10 <= 0.001) def test_create_lattice_nonzero(): x_component = 1/np.tan(np.arcsin(1/10)) vecs = create_lattice_vector([x_component, 1], -120) print(vecs) points = create_lattice((2, 2), vecs) # Everything should be roughly 10 from the origin for point in points: norm = np.linalg.norm(point -
np.array([0, 0])
numpy.array
# This file is part of pyplink. # # The MIT License (MIT) # # Copyright (c) 2014 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import print_function import os import sys import stat import random import shutil import zipfile import platform import unittest from tempfile import mkdtemp from io import UnsupportedOperation from distutils.spawn import find_executable from subprocess import check_call, PIPE, CalledProcessError try: from itertools import zip_longest as zip except ImportError: from itertools import izip_longest as zip try: from urllib.request import urlretrieve except ImportError: from urllib import urlretrieve try: from unittest import mock except ImportError: import mock from pkg_resources import resource_filename import numpy as np import pandas as pd from six.moves import range from .. import pyplink def get_plink(tmp_dir): """Gets the Plink binary, if required.""" # Checking if Plink is in the path plink_path = "plink" if platform.system() == "Windows": plink_path += ".exe" if find_executable(plink_path) is None: print("Downloading Plink", file=sys.stderr) # The url for each platform url = ("http://statgen.org/wp-content/uploads/Softwares/" "plink-1.0.7/{filename}") # Getting the name of the file filename = "" if platform.system() == "Windows": filename = "plink-1.07-dos.zip" elif platform.system() == "Darwin": filename = "plink-1.07-mac-intel.zip" elif platform.system() == "Linux": if platform.architecture()[0].startswith("32"): filename = "plink-1.07-i686.zip" elif platform.architecture()[0].startswith("64"): filename = "plink-1.07-x86_64.zip" else: return None, "System not compatible for Plink" else: return None, "System not compatible for Plink" # Downloading Plink zip_path = os.path.join(tmp_dir, filename) try: urlretrieve( url.format(filename=filename), zip_path, ) except: return None, "Plink's URL is not available" # Unzipping Plink with zipfile.ZipFile(zip_path, "r") as z: z.extractall(tmp_dir) plink_path = os.path.join(tmp_dir, os.path.splitext(filename)[0], plink_path) if not os.path.isfile(plink_path): return None, "Cannot use Plink" # Making the script executable if platform.system() in {"Darwin", "Linux"}: os.chmod(plink_path, stat.S_IRWXU) # Testing Plink works try: check_call([ plink_path, "--noweb", "--help", "--out", os.path.join(tmp_dir, "execution_test") ], stdout=PIPE, stderr=PIPE) except CalledProcessError: return None, "Plink cannot be properly used" except IOError: return None, "Plink was not properly installed" return plink_path, "OK" class TestPyPlink(unittest.TestCase): @classmethod def setUpClass(cls): # Creating a temporary directory cls.tmp_dir = mkdtemp(prefix="pyplink_test_") # Getting the BED/BIM/FAM files cls.bed = resource_filename( __name__, os.path.join("data", "test_data.bed"), ) cls.bim = resource_filename( __name__, os.path.join("data", "test_data.bim"), ) cls.fam = resource_filename( __name__, os.path.join("data", "test_data.fam"), ) # Getting the prefix of the files cls.prefix = os.path.splitext(cls.bed)[0] # The list of markers cls.markers = ["rs10399749", "rs2949420", "rs2949421", "rs2691310", "rs4030303", "rs4030300", "rs3855952", "rs940550", "rs13328714", "rs11490937"] # The genotypes cls.genotypes = [[0, 0, 1], [0, 1, 0], [-1, -1, -1], [-1, -1, 1], [0, 0, 0], [0, 0, 0], [0, 1, 2], [0, 0, 0], [1, 0, 0], [0, 1, 0]] cls.acgt_genotypes = [["CC", "CC", "GC"], ["TT", "CT", "TT"], ["00", "00", "00"], ["00", "00", "AT"], ["GG", "GG", "GG"], ["CC", "CC", "CC"], ["AA", "GA", "GG"], ["TT", "TT", "TT"], ["GC", "CC", "CC"], ["GG", "AG", "GG"]] # Getting Plink cls.plink_path, cls.plink_message = get_plink(cls.tmp_dir) def setUp(self): # Reading the plink binary file self.pedfile = pyplink.PyPlink(self.prefix) @classmethod def tearDownClass(cls): # Cleaning the temporary directory shutil.rmtree(cls.tmp_dir) def tearDown(self): # Closing the PyPlink object self.pedfile.close() def test_pyplink_object_integrity(self): """Checks the integrity of the PyPlink object.""" # Checking the name of the BED file self.assertTrue(hasattr(self.pedfile, "bed_filename")) self.assertEqual(self.bed, self.pedfile.bed_filename) # Checking the name of the BIM file self.assertTrue(hasattr(self.pedfile, "bim_filename")) self.assertEqual(self.bim, self.pedfile.bim_filename) # Checking the BIM object self.assertTrue(hasattr(self.pedfile, "_bim")) self.assertTrue(isinstance(self.pedfile._bim, pd.DataFrame)) # Checking the name of the FAM file self.assertTrue(hasattr(self.pedfile, "fam_filename")) self.assertEqual(self.fam, self.pedfile.fam_filename) # Checking the FAM object self.assertTrue(hasattr(self.pedfile, "_fam")) self.assertTrue(isinstance(self.pedfile._fam, pd.DataFrame)) def test_pyplink_object_error(self): """Checks what happens when we play with the PyPlink object.""" # Changing the BIM to None ori = self.pedfile._bim self.pedfile._bim = None with self.assertRaises(RuntimeError) as cm: self.pedfile._read_bed() self.assertEqual("no BIM or FAM file were read", str(cm.exception)) self.pedfile._bim = ori # Changing the FAM to None ori = self.pedfile._fam self.pedfile._fam = None with self.assertRaises(RuntimeError) as cm: self.pedfile._read_bed() self.assertEqual("no BIM or FAM file were read", str(cm.exception)) self.pedfile._fam = ori def test_pyplink_bad_bed(self): """Checks what happens when we read a bad BED file.""" # The new file prefix new_prefix = os.path.join(self.tmp_dir, "bad_data") # Copying the FAM file new_fam = new_prefix + ".fam" with open(new_fam, "w") as o_file, open(self.fam, "r") as i_file: o_file.write(i_file.read()) # Copying the BIM file new_bim = new_prefix + ".bim" with open(new_bim, "w") as o_file, open(self.bim, "r") as i_file: o_file.write(i_file.read()) # Creating a new BED file with invalid number of bytes new_bed = new_prefix + ".bed" with open(new_bed, "wb") as o_file: o_file.write(bytearray([108, 27, 1, 1, 2, 3, 4])) # This should raise an exception with self.assertRaises(ValueError) as cm: pyplink.PyPlink(new_prefix) self.assertEqual("invalid number of entries: corrupted BED?", str(cm.exception)) # Creating a new BED file with invalid first byte new_bed = new_prefix + ".bed" with open(new_bed, "wb") as o_file: o_file.write(bytearray([107, 27, 1, 1, 2, 3, 4])) # This should raise an exception with self.assertRaises(ValueError) as cm: pyplink.PyPlink(new_prefix) self.assertEqual("not a valid BED file: {}".format(new_bed), str(cm.exception)) # Creating a new BED file with invalid second byte new_bed = new_prefix + ".bed" with open(new_bed, "wb") as o_file: o_file.write(bytearray([108, 28, 1, 1, 2, 3, 4])) # This should raise an exception with self.assertRaises(ValueError) as cm: pyplink.PyPlink(new_prefix) self.assertEqual("not a valid BED file: {}".format(new_bed), str(cm.exception)) # Creating a new BED file not in SNP-major format new_bed = new_prefix + ".bed" with open(new_bed, "wb") as o_file: o_file.write(bytearray([108, 27, 0, 1, 2, 3, 4])) # This should raise an exception with self.assertRaises(ValueError) as cm: pyplink.PyPlink(new_prefix) self.assertEqual( "not in SNP-major format (please recode): {}".format(new_bed), str(cm.exception), ) def test_missing_files(self): """Checks that an exception is raised when an input file is missing.""" # Creating dummy BED/BIM/FAM files prefix = os.path.join(self.tmp_dir, "test_missing") for extension in (".bed", ".bim", ".fam"): with open(prefix + extension, "w"): pass # Removing the files (one by one) and checking the exception is raised for extension in (".bed", ".bim", ".fam"): os.remove(prefix + extension) with self.assertRaises(IOError) as cm: pyplink.PyPlink(prefix) self.assertEqual("No such file: '{}'".format(prefix + extension), str(cm.exception)) with open(prefix + extension, "w"): pass def test_get_nb_markers(self): """Tests that the correct number of markers is returned.""" self.assertEqual(self.pedfile.get_nb_markers(), 10) def test_get_nb_markers_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.get_nb_markers() self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_get_nb_samples(self): """Tests that the correct number of samples is returned.""" self.assertEqual(self.pedfile.get_nb_samples(), 3) def test_get_nb_samples_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.get_nb_samples() self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_get_bim(self): """Tests the 'get_bim' function.""" # The original BIM file (with the 'i' column) ori_bim = self.pedfile._bim # The expected values chromosomes = [1, 2, 3, 4, 4, 5, 6, 6, 6, 8] positions = [45162, 45257, 45413, 46844, 72434, 72515, 77689, 78032, 81468, 222077] cms = [0, 1, 1, 2, 2, 3, 4, 4, 5, 6] a1s = ["G", "C", "0", "A", "0", "0", "G", "0", "G", "A"] a2s = ["C", "T", "0", "T", "G", "C", "A", "T", "C", "G"] # Getting the BIM file bim = self.pedfile.get_bim() # Checking the columns self.assertTrue( set(bim.columns.values) == {"chrom", "pos", "cm", "a1", "a2"} ) # Checking the indexes self.assertTrue(set(bim.index.values) == set(self.markers)) # Checking the values for the markers zipped = zip(self.markers, chromosomes, positions, cms, a1s, a2s) for marker, chrom, pos, cm, a1, a2 in zipped: self.assertEqual(chrom, bim.loc[marker, "chrom"]) self.assertEqual(pos, bim.loc[marker, "pos"]) self.assertEqual(cm, bim.loc[marker, "cm"]) self.assertEqual(a1, bim.loc[marker, "a1"]) self.assertEqual(a2, bim.loc[marker, "a2"]) # Comparing with the original values comparison = ori_bim.loc[:, ["chrom", "pos", "cm", "a1", "a2"]] == bim self.assertTrue(comparison.all().all()) # Testing that changing a values in the BIM, doesn't change the value # in the original BIM bim.loc["rs4030300", "chrom"] = 2 bim.loc["rs2949420", "cm"] = 0.1 comparison = ori_bim.loc[:, ["chrom", "pos", "cm", "a1", "a2"]] == bim self.assertFalse(comparison.all().chrom) self.assertFalse(comparison.all().cm) self.assertTrue(comparison.all()[["pos", "a1", "a2"]].all()) def test_get_bim_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.get_bim() self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_get_fam(self): """Tests the 'get_fam' function.""" # The original FAM file (with the 'byte' and 'bit' columns) ori_fam = self.pedfile._fam # The expected values fids = ["Sample_1", "Sample_2", "Sample_3"] iids = ["Sample_1", "Sample_2", "Sample_3"] fathers = ["0", "0", "Sample_1"] mothers = ["0", "0", "Sample_2"] genders = [1, 2, 2] status = [-9, -9, -9] # Getting the FAM file fam = self.pedfile.get_fam() # Checking the columns self.assertTrue( set(fam.columns.values) == {"fid", "iid", "father", "mother", "gender", "status"} ) # Checking the values zipped = zip(fids, iids, fathers, mothers, genders, status) for i, (fid, iid, father, mother, gender, s) in enumerate(zipped): self.assertEqual(fid, fam.loc[i, "fid"]) self.assertEqual(iid, fam.loc[i, "iid"]) self.assertEqual(father, fam.loc[i, "father"]) self.assertEqual(mother, fam.loc[i, "mother"]) self.assertEqual(gender, fam.loc[i, "gender"]) self.assertEqual(s, fam.loc[i, "status"]) # Comparing with the original values comparison = ori_fam.loc[:, ["fid", "iid", "father", "mother", "gender", "status"]] == fam self.assertTrue(comparison.all().all()) # Testing that changing a values in the FAM, doesn't change the value # in the original FAM fam.loc[2, "father"] = "0" fam.loc[0, "status"] = 2 comparison = ori_fam.loc[:, ["fid", "iid", "father", "mother", "gender", "status"]] == fam self.assertFalse(comparison.all().father) self.assertFalse(comparison.all().status) self.assertTrue( comparison.all()[["fid", "iid", "mother", "gender"]].all() ) def test_get_fam_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.get_fam() self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_generator(self): """Testing the class as a generator.""" # Zipping and checking zipped = zip( [i for i in zip(self.markers, self.genotypes)], self.pedfile, ) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # The generator should be empty remaining = [(marker, geno) for marker, geno in self.pedfile] self.assertEqual(0, len(remaining)) def test_generator_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: marker, genotypes = next(p) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_next(self): """Tests that an exception is raised when calling next in w mode.""" marker, genotypes = self.pedfile.next() # Comparing self.assertEqual(self.markers[0], marker) np.testing.assert_array_equal(self.genotypes[0], genotypes) def test_next_w_mode(self): """Tests that an exception is raised when calling next in w mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.next() self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_seek(self): """Testing the seeking (for the generator).""" for marker, geno in self.pedfile: pass # The generator should be empty remaining = [(marker, geno) for marker, geno in self.pedfile] self.assertEqual(0, len(remaining)) # Seeking at the second position zipped = zip( [i for i in zip(self.markers[1:], self.genotypes[1:])], self.pedfile, ) self.pedfile.seek(1) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Seeking at the fourth position zipped = zip( [i for i in zip(self.markers[3:], self.genotypes[3:])], self.pedfile, ) self.pedfile.seek(3) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Seeking at the tenth position zipped = zip( [i for i in zip(self.markers[9:], self.genotypes[9:])], self.pedfile, ) self.pedfile.seek(9) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Seeking at an invalid position with self.assertRaises(ValueError) as cm: self.pedfile.seek(-1) self.assertEqual("invalid position in BED: -1", str(cm.exception)) # Seeking at an invalid position with self.assertRaises(ValueError) as cm: self.pedfile.seek(100) self.assertEqual("invalid position in BED: 100", str(cm.exception)) # Seeking at an invalid position with self.assertRaises(ValueError) as cm: self.pedfile.seek(10) self.assertEqual("invalid position in BED: 10", str(cm.exception)) def test_seek_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.seek(100) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_iter_geno(self): """Tests the 'iter_geno' function.""" zipped = zip( [i for i in zip(self.markers, self.genotypes)], self.pedfile.iter_geno(), ) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) def test_iter_geno_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: marker, genotypes = next(p.iter_geno()) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_iter_acgt_geno(self): """Tests the 'iter_acgt_geno" function.""" zipped = zip( [i for i in zip(self.markers, self.acgt_genotypes)], self.pedfile.iter_acgt_geno(), ) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) def test_iter_acgt_geno_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: marker, genotypes = next(p.iter_acgt_geno()) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_iter_geno_marker(self): """Tests the 'iter_geno_marker' function.""" # Getting a subset of indexes indexes = random.sample(range(len(self.markers)), 4) # Getting the markers and genotypes markers = [self.markers[i] for i in indexes] genotypes = [self.genotypes[i] for i in indexes] # Zipping and comparing zipped = zip( [i for i in zip(markers, genotypes)], self.pedfile.iter_geno_marker(markers), ) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Testing a single marker index = random.randint(0, len(self.markers) - 1) e_marker = self.markers[index] e_geno = self.genotypes[index] for marker, geno in self.pedfile.iter_geno_marker(e_marker): self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Adding a marker that doesn't exist markers.extend(["unknown_1", "unknown_2"]) with self.assertRaises(ValueError) as cm: [i for i in self.pedfile.iter_geno_marker(markers)] self.assertEqual("unknown_1: marker not in BIM", str(cm.exception)) def test_iter_geno_marker_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: marker, genotypes = next(p.iter_geno_marker(["M1", "M2"])) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_iter_acgt_geno_marker(self): """Tests the 'iter_acgt_geno_marker' function.""" # Getting a subset of indexes indexes = random.sample(range(len(self.markers)), 4) # Getting the markers and genotypes markers = [self.markers[i] for i in indexes] genotypes = [self.acgt_genotypes[i] for i in indexes] # Zipping and comparing zipped = zip( [i for i in zip(markers, genotypes)], self.pedfile.iter_acgt_geno_marker(markers), ) for (e_marker, e_geno), (marker, geno) in zipped: self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Testing a single marker index = random.randint(0, len(self.markers) - 1) e_marker = self.markers[index] e_geno = self.acgt_genotypes[index] for marker, geno in self.pedfile.iter_acgt_geno_marker(e_marker): self.assertEqual(e_marker, marker) np.testing.assert_array_equal(e_geno, geno) # Adding a marker that doesn't exist markers.extend(["unknown_3", "unknown_4"]) with self.assertRaises(ValueError) as cm: [i for i in self.pedfile.iter_acgt_geno_marker(markers)] self.assertEqual("unknown_3: marker not in BIM", str(cm.exception)) def test_iter_acgt_geno_marker_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: marker, genotypes = next(p.iter_acgt_geno_marker(["M1", "M2"])) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_repr_r_mode(self): """Tests the object representation of the string (r mode).""" # Counting the number of samples nb_samples = None with open(self.fam, "r") as i_file: nb_samples = len(i_file.read().splitlines()) # Counting the number of markers nb_markers = None with open(self.bim, "r") as i_file: nb_markers = len(i_file.read().splitlines()) # Creating the expected string representation e_repr = "PyPlink({:,d} samples; {:,d} markers)".format(nb_samples, nb_markers) # Getting the observed string representation o_repr = str(self.pedfile) # Comparing self.assertEqual(e_repr, o_repr) def test_repr_w_mode(self): """Tests the object representation of the string (w mode).""" # The expected representation e_repr = 'PyPlink(mode="w")' # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_repr") with pyplink.PyPlink(prefix, "w") as pedfile: # Comparing the expected with the observed representation o_repr = str(pedfile) self.assertEqual(e_repr, o_repr) def test_get_geno_marker(self): """Tests the 'get_geno_marker' function.""" # Getting a random marker to test i = random.choice(range(len(self.markers))) marker = self.markers[i] e_geno = self.genotypes[i] # Getting the genotype o_geno = self.pedfile.get_geno_marker(marker) np.testing.assert_array_equal(o_geno, e_geno) # Asking for an unknown marker should raise an ValueError with self.assertRaises(ValueError) as cm: self.pedfile.get_geno_marker("dummy_marker") self.assertEqual( "dummy_marker: marker not in BIM", str(cm.exception), ) def test_get_geno_marker_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.get_geno_marker("M1") self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_get_iter_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: iter(p) self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_get_acgt_geno_marker(self): """Tests the 'get_acgt_geno_marker' function.""" # Getting a random marker to test i = random.choice(range(len(self.markers))) marker = self.markers[i] e_geno = self.acgt_genotypes[i] # Getting the genotype o_geno = self.pedfile.get_acgt_geno_marker(marker) np.testing.assert_array_equal(o_geno, e_geno) # Asking for an unknown marker should raise an ValueError with self.assertRaises(ValueError) as cm: self.pedfile.get_acgt_geno_marker("dummy_marker") self.assertEqual("dummy_marker: marker not in BIM", str(cm.exception)) def test_get_acgt_geno_marker_w_mode(self): """Tests that an exception is raised if in write mode.""" with self.assertRaises(UnsupportedOperation) as cm: # Creating the dummy PyPlink object prefix = os.path.join(self.tmp_dir, "test_error") with pyplink.PyPlink(prefix, "w") as p: p.get_acgt_geno_marker("M1") self.assertEqual("not available in 'w' mode", str(cm.exception)) def test_get_context_read_mode(self): """Tests the PyPlink object as context manager.""" with pyplink.PyPlink(self.prefix) as genotypes: self.assertEqual(3, len(genotypes.get_fam().head(n=3))) def test_invalid_mode(self): """Tests invalid mode when PyPlink as context manager.""" with self.assertRaises(ValueError) as cm: pyplink.PyPlink(self.prefix, "u") self.assertEqual("invalid mode: 'u'", str(cm.exception)) def test_write_binary(self): """Tests writing a Plink binary file.""" # The expected genotypes expected_genotypes = [ np.array([0, 0, 0, 1, 0, 1, 2], dtype=int), np.array([0, 0, 0, 0, -1, 0, 1], dtype=int), np.array([0, -1, -1, 2, 0, 0, 0], dtype=int), ] # The prefix test_prefix = os.path.join(self.tmp_dir, "test_write") # Writing the binary file with pyplink.PyPlink(test_prefix, "w") as pedfile: for genotypes in expected_genotypes: pedfile.write_genotypes(genotypes) # Checking the file exists self.assertTrue(os.path.isfile(test_prefix + ".bed")) # Writing the FAM file with open(test_prefix + ".fam", "w") as o_file: for i in range(7): print("f{}".format(i+1), "s{}".format(i+1), "0", "0", random.choice((1, 2)), "-9", sep=" ", file=o_file) # Writing the BIM file with open(test_prefix + ".bim", "w") as o_file: for i in range(3): print(i+1, "m{}".format(i+1), "0", i+1, "T", "A", sep="\t", file=o_file) # Reading the written binary file with pyplink.PyPlink(test_prefix) as pedfile: for i, (marker, genotypes) in enumerate(pedfile): self.assertEqual("m{}".format(i+1), marker)
np.testing.assert_array_equal(expected_genotypes[i], genotypes)
numpy.testing.assert_array_equal
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import loop_tool_py as lt import random import numpy as np import math import time def gen_pw_add(): ir = lt.IR() a = ir.create_var("a") r0 = ir.create_node("read", [], [a]) r1 = ir.create_node("read", [], [a]) add = ir.create_node("add", [r0, r1], [a]) w = ir.create_node("write", [add], [a]) ir.set_inputs([r0, r1]) ir.set_outputs([w]) return ir, a def gen_reduce_add(): ir = lt.IR() n = ir.create_var("N") r = ir.create_node("read", [], [n]) add = ir.create_node("add", [r], []) w = ir.create_node("write", [add], []) ir.set_inputs([r]) ir.set_outputs([w]) return ir, n def gen_mm(): ir = lt.IR() m = ir.create_var("m") n = ir.create_var("n") k = ir.create_var("k") r0 = ir.create_node("read", [], [m, k]) r1 = ir.create_node("read", [], [k, n]) mul = ir.create_node("mul", [r0, r1], [m, n, k]) add = ir.create_node("add", [mul], [m, n]) w = ir.create_node("write", [add], [m, n]) ir.set_inputs([r0, r1]) ir.set_outputs([w]) return ir, m, n, k def get_total_size(splits): running = 1 for split in splits[::-1]: running = split[0] * running + split[1] return running def do_split(splits, idx, new_size): inner = splits[idx + 1 :] inner_size = get_total_size(inner) assert new_size[1] < inner_size outer = splits[idx] outer_size = outer[0] * inner_size + outer[1] new_total = new_size[0] * inner_size + new_size[1] new_outer = (outer_size // new_total, outer_size % new_total) new_splits = splits[:idx] + [new_outer, new_size] + inner assert get_total_size(new_splits) == get_total_size(splits) return new_splits def rand_split(splits, attempts): for _ in range(attempts): idx = random.randint(0, len(splits) - 1) try: s = random.randint(2, int(math.sqrt(splits[idx][0]))) except: continue splits = do_split(splits, idx, (s, 0)) return splits def rand_sched(ir, size_map): # generate a random schedule for n in ir.nodes: vs = ir.all_vars(n) splits = {} for v in vs: v_splits = rand_split([(size_map[v], 0)], random.randint(1, 3)) assert get_total_size(v_splits) == size_map[v] splits[v] = zip([v for _ in v_splits], v_splits) order = [s for _, vs in splits.items() for s in vs] ir.set_order(n, order) return ir def test_rand_pw(size): ir, v = gen_pw_add() size_map = {} size_map[v] = size ir = rand_sched(ir, size_map) loop_tree = lt.LoopTree(ir) A = lt.Tensor(size) B = lt.Tensor(size) C = lt.Tensor(size) Ap =
np.random.randn(size)
numpy.random.randn
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 1 01:07:37 2019 @author: prasad """ import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.linear_model import Lasso from sklearn.metrics import accuracy_score def get_data(): test_data = pd.read_csv('./data/spam_polluted/test_feature.txt', sep=' ') test_label = pd.read_csv('./data/spam_polluted/test_label.txt', sep='\n') train_data = pd.read_csv('./data/spam_polluted/train_feature.txt', sep=' ') train_label = pd.read_csv('./data/spam_polluted/train_label.txt', sep='\n') # flatten labels test_label = test_label.values.flatten() train_label = train_label.values.flatten() return train_data, train_label, test_data, test_label def normalize(train_data, test_data): # combine test and train data for normalization data = np.concatenate([train_data, test_data]) # normalize # data = preprocessing.minmax_scale(data, feature_range=(0, 1)) std = preprocessing.StandardScaler() std.fit(data) std.transform(data) train_data = data[:len(train_data)] test_data = data[len(train_data):] return train_data, test_data def rounder(x, threshold): ''' Args x: exact prediction Returns label based on the threshold value ''' if x >= threshold: return 1 return 0 def train(train_data, train_labels, alpha=16): ''' Args train_data : normalized data for training learn_rate : learning rate for Gradient Descent max_iter : maximum number of iterations to run GD ''' model = Lasso(alpha=alpha) model = model.fit(train_data, train_labels) return model def thresholds_checker(m, train_data, train_labels): train_preds = m.predict(train_data) rounds =
np.vectorize(rounder)
numpy.vectorize
# lets get numpy import numpy as np from numpy import pi from numpy.fft import fft import matplotlib.pyplot as plt N = 1000 dt = 0.1 tmin = 0 tmax = N*dt t = np.arange( tmin , tmax , dt ) df = 1 fmin = - (N*df) / 2 fmax = (N*df) / 2 f = np.arange(fmin,fmax,df) A = np.sqrt(2) fc = 2/tmax for M in range(2): Phi =
np.random.random(t.size)
numpy.random.random
# -*- coding: utf-8 -*- # This file is part of pyChemEngg python package. # PyChemEngg: A python-based framework to promote problem solving and critical # thinking in chemical engineering. # Copyright (c) 2021 <NAME> <<EMAIL>> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Module to compute physical properties of water vapor. """ import numpy as np import os def _loadwater_data(): __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) water = [] file_to_open = "data_waterproperties.txt" with open(os.path.join(__location__, file_to_open),"r") as water_file: for line in water_file: water.append([float(eval(x)) if x != "nan" else np.nan for x in line.strip().split()]) water_file.close() water_data = np.array(water) return water_data def density(T=None): r""" Provides density of water vapor at a temperature T. Parameters ---------- T : `int or float` Temperature in 'Celsius' at which density is required. Returns ------- density : `int or float` Density (kg/m3) at temperature T . Notes ----- Look up table adapted from ref [1]. Linear interpolation is performed when the temperature lies between tabulated entries. Examples -------- First import the module **watervaporproperties**. >>> from pychemengg.physicalproperties import watervaporproperties as wvp >>> wvp.density(T=32.5) 0.03505 References ---------- [1] <NAME> and <NAME>, "Heat And Mass Transfer Fundamentals and Applications", 6th Edition. New York, McGraw Hill Education, 2020. """ water_data = _loadwater_data() return np.interp(T, water_data[:,0], water_data[:,3]) def viscosity(T=None): r""" Provides viscosity of water vapor at a temperature T. Parameters ---------- T : `int or float` Temperature in 'Celsius' at which viscosity is required. Returns ------- Viscosity: `int or float` Dynamic viscosity (kg/ms) at temperature T. Notes ----- Look up table adapted from ref [1]. Linear interpolation is performed when the temperature lies between tabulated entries. Examples -------- First import the module **watervaporproperties**. >>> from pychemengg.physicalproperties import watervaporproperties as wvp >>> wvp.viscosity(T=50) 1.0620000000000002e-05 References ---------- [1] <NAME> and <NAME>, "Heat And Mass Transfer Fundamentals and Applications", 6th Edition. New York, McGraw Hill Education, 2020. """ water_data = _loadwater_data() return np.interp(T, water_data[:,0], water_data[:,10]) def specificheat(T=None): r""" Provides specific heat of water vapor at a temperature T. Parameters ---------- T : `int or float` Temperature in 'Celsius' at which specific heat is required. Returns ------- specific heat : `int or float` Specific heat (J/kg K) at temperature T. Notes ----- Look up table adapted from ref [1]. Linear interpolation is performed when the temperature lies between tabulated entries. Examples -------- First import the module **watervaporproperties**. >>> from pychemengg.physicalproperties import watervaporproperties as wvp >>> wvp.specificheat(T=32.5) 1877.5 References ---------- [1] <NAME> and <NAME>, "Heat And Mass Transfer Fundamentals and Applications", 6th Edition. New York, McGraw Hill Education, 2020. """ water_data = _loadwater_data() return np.interp(T, water_data[:,0], water_data[:,6]) def thermalconductivity(T=None): r""" Provides thermal conductivity of water vapor at a temperature T. Parameters ---------- T : `int or float` Temperature in 'Celsius' at which thermal conductivity is required. Returns ------- Thermal conductivity : `int or float` Thermal conductivity (W/mK) at temperature T. Notes ----- Look up table adapted from ref [1]. Linear interpolation is performed when the temperature lies between tabulated entries. Examples -------- First import the module **watervaporproperties**. >>> from pychemengg.physicalproperties import watervaporproperties as wvp >>> wvp.thermalconductivity(T=42.5) 0.019799999999999998 References ---------- [1] <NAME> and <NAME>, "Heat And Mass Transfer Fundamentals and Applications", 6th Edition. New York, McGraw Hill Education, 2020. """ water_data = _loadwater_data() return np.interp(T, water_data[:,0], water_data[:,8]) def heatofcondensation(T=None): r""" Provides heat of condensation of water vapor at a temperature T. Parameters ---------- T : `int or float` Temperature in 'Celsius' at which heat of condensation is required. Returns ------- Heat of condensation : `int or float` Heat of condensation (J/kg) at temperature T. Notes ----- Look up table adapted from ref [1]. Linear interpolation is performed when the temperature lies between tabulated entries. Examples -------- First import the module **watervaporproperties**. >>> from pychemengg.physicalproperties import watervaporproperties as wvp >>> wvp.heatofcondensation(T=68) 2338800.0 References ---------- [1] <NAME> and <NAME>, "Heat And Mass Transfer Fundamentals and Applications", 6th Edition. New York, McGraw Hill Education, 2020. """ water_data = _loadwater_data() return
np.interp(T, water_data[:,0], water_data[:,4])
numpy.interp
# Food Bank Problem import sys import importlib import numpy as np from scipy.optimize import minimize import scipy # ## OPT - via Convex Programming # Calculates the optimal solution for the offline problem with convex programming def solve(W, n, k, budget, size): # Objective function in the nash social welfare # Note we take the negative one to turn it into a minimization problem def objective(x, w, n, k, size): X = np.reshape(x, (n,k)) W = np.reshape(w, (n, k)) value = np.zeros(n) for i in range(n): value[i] = np.log(np.dot(X[i,:], W[i,:])) return (-1) * np.dot(size, value) w = W.flatten() obj = lambda x: objective(x, w, n, k, size) # Ensures that the allocations are positive bds = scipy.optimize.Bounds([0 for _ in range(n*k)], [np.inf for _ in range(n*k)]) B = np.zeros((k, n*k)) for i in range(n): B[:,k*i:k*(i+1)] = size[i]*np.eye(k) # print(B) # Enforces the budget constraint constr = scipy.optimize.LinearConstraint(B, np.zeros(k), budget) x0 = np.zeros(n*k) # Initial solution starts out with equal allocation B / S index = 0 for i in range(n): for j in range(k): x0[index] = budget[j] / np.sum(size) index += 1 sol = minimize(obj, x0, bounds=bds, constraints = constr, tol = 10e-8) return sol.x, sol # Calculates the optimal solution for the offline problem with convex programming # Note that this program instead solves for the optimization problem in a different form, where now # the histogram is used directly in the original optimization problem instead of rewriting the problem # as maximizing over types. This was used for investigation, and not as a primary proposed heuristic in the paper. def solve_weights(weight_matrix, weight_distribution, n, k, budget, size): # Similar objective, but now multiplying by the probability agent i has type j def objective(x, weight_matrix, n, k, size, weight_distribution): num_types = weight_distribution.shape[1] X = np.reshape(x, (n,k)) value = np.zeros(n) for i in range(n): value[i] = np.sum([weight_distribution[i,j] * np.log(np.dot(X[i,:], weight_matrix[j,:])) for j in range(num_types)]) return (-1) * np.dot(size, value) obj = lambda x: objective(x, weight_matrix, n, k, size, weight_distribution) # Constraints are the same as before, along with initial solution bds = scipy.optimize.Bounds([0 for _ in range(n*k)], [np.inf for _ in range(n*k)]) B = np.zeros((k, n*k)) for i in range(n): B[:,k*i:k*(i+1)] = size[i]*np.eye(k) constr = scipy.optimize.LinearConstraint(B, np.zeros(k), budget) x0 = np.zeros(n*k) index = 0 for i in range(n): for j in range(k): x0[index] = budget[j] / np.sum(size) index += 1 sol = minimize(obj, x0, bounds=bds, constraints = constr, tol = 10e-8) return sol.x, sol # proportional solution, i.e. equal allocation B / S def proportional_alloc(n, k, budget, size): allocations = np.zeros((n,k)) for i in range(n): allocations[i, :] = budget / np.sum(size) return allocations # Calculates the offline optimal solution just utilizing the distribution and not adapting to realized types def offline_alloc(weight_matrix, weight_distribution, n, k, budget, size): allocations = np.zeros((n,k)) weight_dist = np.asarray([weight_distribution for i in range(n)]) alloc, _ = solve_weights(np.asarray(weight_matrix), np.asarray(weight_dist), n, k, budget, size) allocations = np.reshape(alloc, (n,k)) return allocations # Implements the ET - Online heuristic algorithm def et_online(expected_weights, observed_weights, n, k, budget, size): allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): if i == n-1: # Last agent gets the maximum of earlier allocations or the remaining budget allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] current_budget -= size[i] * allocations[i,:] else: cur_n = n - i # Solves the eisenbergt gale program with future weights taken to be their expectation weights = expected_weights[i:,:] weights[0, :] = observed_weights[i, :] alloc, _ = solve(weights, cur_n, k, current_budget, size[i:]) alloc = np.reshape(alloc, (cur_n, k)) allocations[i, :] = [max(0, min(alloc[0, j], current_budget[j] / size[i])) for j in range(k)] # solves the eisenberg gale current_budget -= size[i]*allocations[i, :] # reduces budget for next iteration return allocations # Implements the ET - Full heuristic algorithm def et_full(expected_weights, observed_weights, n, k, budget, size): allocations = np.zeros((n,k)) current_budget = np.copy(budget) weights = np.copy(expected_weights) for i in range(n): if i == n-1: allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] current_budget -= size[i] * allocations[i,:] else: weights[i, :] = observed_weights[i, :] # Replaces the weights with the observed one alloc, _ = solve(weights, n, k, budget, size) # Solves for the allocation, and makes it alloc = np.reshape(alloc, (n,k)) allocations[i, :] = [max(0, min(current_budget[j] / size[i], alloc[i,j])) for j in range(k)] current_budget -= size[i]*allocations[i,:] # Reduces the budget return allocations # Implements the Hope-Full heuristic algorithm def hope_full(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): size_factors = np.zeros(num_types) # Calculates the number of types and the N_\theta terms for m in range(n): if m <= i: size_factors[observed_types[m]] += size[m] elif m > i: size_factors += size[m] * weight_distribution obs_type = observed_types[i] alloc, _ = solve(weight_matrix, num_types, k, budget, size_factors) # Solves for the allocation alloc = np.reshape(alloc, (num_types, k)) allocations[i,:] = [max(0,min(current_budget[j] / size[i], alloc[obs_type, j])) for j in range(k)] current_budget -= size[i] * allocations[i,:] # Reduces budget return allocations # Implements the Hope-Online heuristic algorithm def hope_online(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): if i == n-1: allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] else: size_factors = np.zeros(num_types) for m in range(n): if m == i: size_factors[observed_types[m]] += size[m] elif m > i: size_factors += size[m] * weight_distribution obs_type = observed_types[i] alloc, _ = solve(weight_matrix, num_types, k, current_budget, size_factors) alloc = np.reshape(alloc, (num_types, k)) allocations[i,:] = [max(0, min(current_budget[j] / size[i], alloc[obs_type, j])) for j in range(k)] current_budget -= size[i] * allocations[i,:] return allocations # Implements the Hope-Full heuristic algorithm of a different form, by solving the original Eisenberg-Gale over agents # taking the expectation of the utility with the histogram on types. def hope_full_v2(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) weight_dist = np.asarray([weight_distribution for i in range(n)]) for i in range(n): weight_dist[i, :] = np.zeros(num_types) weight_dist[i, observed_types[i]] += 1 obs_type = observed_types[i] alloc, _ = solve_weights(weight_matrix, weight_dist, n, k, budget, size) alloc = np.reshape(alloc, (n,k)) allocations[i, :] = [max(0,min(current_budget[j] / size[i], alloc[i, j])) for j in range(k)] current_budget -= size[i] * allocations[i, :] return allocations # Similarly for the Hope-Online heuristic algorithm. def hope_online_v2(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) weight_dist = np.asarray([weight_distribution for i in range(n)]) for i in range(n): weight_dist[i, :] = np.zeros(num_types) weight_dist[i, observed_types[i]] += 1 cur_dist = weight_dist[i:, :] obs_type = observed_types[i] alloc, _ = solve_weights(weight_matrix, cur_dist, n-i, k, budget, size[i:]) alloc = np.reshape(alloc, (n-i,k)) allocations[i, :] = [max(0,min(current_budget[j] / size[i], alloc[0, j])) for j in range(k)] current_budget -= size[i] * allocations[i, :] return allocations ### FAIRNESS MEASURES! # Returns the amount of excress for each resource def excess(allocation, budget, size): true_alloc = np.zeros(allocation.shape[1]) for i in range(allocation.shape[0]): true_alloc += size[i] * allocation[i,:] return (1/allocation.shape[0])*(budget-true_alloc) # Calculates envy-ness for each agent def envy_utility(X, W): n = X.shape[0] envy = np.zeros(n) for i in range(n): u_i =
np.dot(X[i,:], W[i,:])
numpy.dot
#!/usr/bin/env python3 """ See freq_response.md for details """ from dataclasses import dataclass import fractions import math from typing import Iterable, Optional, Tuple, Union import numpy as np from analysis import linearity, time_domain_response from utils import utils from unit_test import unit_test from processor import ProcessorBase from generation import signal_generation PI = math.pi HALF_PI = 0.5 * math.pi TWOPI = 2.0 * math.pi SQRT2 = math.sqrt(2.0) INV_SQRT2 = 1.0 / SQRT2 # Square wave has THD+N of sqrt(pi^2 / 8 - 1) ~= 0.483 ~= -6.32 dB # https://en.wikipedia.org/wiki/Total_harmonic_distortion#Examples SQUARE_THDN = utils.to_dB(math.sqrt((math.pi ** 2.) / 8 - 1)) _unit_tests_short = [] _unit_tests_full = [] @dataclass class FreqResponse: freqs: np.ndarray sample_rate: float amplitude: Optional[float] = None # Amplitude frequency response was performed at (relevant for nonlinear systems) mag: Optional[np.ndarray] = None # Magnitude rms: Optional[np.ndarray] = None # RMS response (only relevant for nonlinear system) phase: Optional[np.ndarray] = None # Phase response, in radians group_delay: Optional[np.ndarray] = None thdn: Optional[np.ndarray] = None # THD + Noise (linear, not dB) def dft_num_samples( freq: Union[int, float], sample_rate: Union[int, float], min_num_samples=0, max_num_samples: Optional[int]=None, maximize=False, round_up=False, ) -> int: """ Determine optimum DFT size at a given frequency and sample rate, in order to get an exact number of cycles at the frequency, or as close as possible. :param freq: frequency, in whatever units you want (must be same units as sample rate) :param sample_rate: sample rate (in same units as freq) :param min_num_samples: Minimum number of samples; default 0 (i.e. no minimum). Actual practical minimum will always be at least 1 cycle :param max_num_samples: Maximum number of samples; default is sample_rate or period at frequency, whichever is larger Must be > (sample_rate/freq). Must be specified if maximize :param maximize: By default, will come up with the minimum possible number of samples that satisfies the criteria sequence; if maximize, will come up with the longest instead. Must explicitly specify max_num_samples if maximize :param round_up: if True, will always round up instead of rounding to nearest """ if maximize and not max_num_samples: raise ValueError('Must provide max_num_samples if setting maximize') period = sample_rate / freq if min_num_samples < 0: raise ValueError('min_num_samples must be > 0') elif not isinstance(min_num_samples, int): raise ValueError('min_num_samples must be integer') if max_num_samples is None: max_num_samples = int(math.ceil(max(sample_rate, period))) elif not isinstance(max_num_samples, int): raise ValueError('max_num_samples must be integer') elif max_num_samples <= 0: raise ValueError('max_num_samples (%g) must be > 0' % max_num_samples) elif max_num_samples <= min_num_samples: raise ValueError('max_num_samples (%g) must be > min_num_samples (%g)' % (max_num_samples, min_num_samples)) eps = 1e-12 min_num_cycles = max(min_num_samples / period, 1.) min_num_cycles_int = int(math.ceil(min_num_cycles - eps)) max_num_cycles = max_num_samples / period max_num_cycles_int = int(math.floor(max_num_cycles + eps)) if max_num_cycles_int < 1: assert max_num_samples < period raise ValueError('max_num_samples (%u) must be >= period (%g)' % (max_num_samples, period)) assert min_num_cycles_int * (period + eps) >= min_num_samples assert max_num_cycles_int * (period - eps) <= max_num_samples if max_num_cycles_int == min_num_cycles_int: # Special case: only 1 possible number of periods n_samples = max_num_cycles_int * period n_samples = int(math.ceil(n_samples) if round_up else round(n_samples)) assert min_num_samples <= n_samples <= max_num_samples return n_samples elif max_num_cycles_int < min_num_cycles_int: # TODO: come up with good error message for this raise ValueError('freq %g, SR %g, min_num_cycles %f -> %u, max_num_cycles %f -> %u' % ( freq, sample_rate, min_num_cycles, min_num_cycles_int, max_num_cycles, max_num_cycles_int )) assert max_num_samples >= period # Should be guaranteed by above conditions freq = utils.integerize_if_int(freq) sample_rate = utils.integerize_if_int(sample_rate) if isinstance(freq, int) and isinstance(sample_rate, int): period_as_fraction = fractions.Fraction(sample_rate, freq) else: period_as_fraction = fractions.Fraction.from_float(period) period_as_fraction = period_as_fraction.limit_denominator(max_denominator=max_num_cycles_int) n_samples_ideal = period * period_as_fraction.denominator assert utils.approx_equal(period_as_fraction.numerator, n_samples_ideal, eps=0.5) if maximize: if 2*n_samples_ideal <= max_num_samples: """ What's the largest integer we can multiply n_samples_ideal by to still be <= max_num_samples? n * k <= max k <= max / n k = floor(max / n) """ n_samples_ideal *= math.floor(max_num_samples / n_samples_ideal) elif n_samples_ideal < min_num_samples: """ What's the smallest integer we can multiply n_samples_ideal by to be >= min_num_samples? n * k >= min k >= min / n k = ceil(min / n) """ n_samples_ideal *= math.ceil(min_num_samples / n_samples_ideal) n_samples = int(math.ceil(n_samples_ideal) if round_up else round(n_samples_ideal)) if not (min_num_samples <= n_samples <= max_num_samples): raise AssertionError('Check n_samples (%i, from %g, fraction %s) in range (%i, %i) failed!' % ( n_samples, n_samples_ideal, period_as_fraction, min_num_samples, max_num_samples)) return n_samples def _test_dft_num_samples(): from unit_test.unit_test import test_equal, test_threw """ Perfect divisors """ # 1 kHz @ 96 kHz # 1 period = 96 samples test_equal(dft_num_samples(1000, 96000), 96) test_equal(dft_num_samples(1000, 96000.), 96) test_equal(dft_num_samples(1000., 96000), 96) test_equal(dft_num_samples(1000., 96000.), 96) test_equal(dft_num_samples(1000., 96000., min_num_samples=100), 192) test_equal(dft_num_samples(1000., 96000., min_num_samples=384), 384) test_equal(dft_num_samples(1000., 96000., max_num_samples=400, maximize=True), 384) test_equal(dft_num_samples(1000., 96000., min_num_samples=380, max_num_samples=400), 384) test_threw(dft_num_samples, 1000., 96000., min_num_samples=398, max_num_samples=400) # 3.125 (25/8) @ 96 kHz # 1 period = 30,720 samples test_equal(dft_num_samples(3.125, 96000.), 30720) """ Rational numbers """ # 10 kHz @ 96 kHz # 1 period = 9.6 samples (48/5) test_equal(dft_num_samples(10000, 96000), 48) test_equal(dft_num_samples(10000, 96000, maximize=True, max_num_samples=96000), 96000) # 1 kHz @ 44.1 kHz # 1 period = 44.1 samples (441/10) test_equal(dft_num_samples(1000, 44100), 441) test_equal(dft_num_samples(1000, 44100, maximize=True, max_num_samples=44100), 44100) # 440 Hz @ 44.1 kHz # 1 period = 100.2272727 samples (2205/22) test_equal(dft_num_samples(440, 44100), 2205) test_equal(dft_num_samples(440, 44100, maximize=True, max_num_samples=44100), 44100) test_equal(dft_num_samples(440, 44100, max_num_samples=102), 100) test_equal(dft_num_samples(440, 44100, max_num_samples=102, round_up=True), 101) test_equal(dft_num_samples(440, 44100, max_num_samples=510, maximize=True), 401) test_equal(dft_num_samples(440, 44100, max_num_samples=510, round_up=True, maximize=True), 401) # 100.125 Hz @ 96 kHz # 1 period = 958.80 samples (256000/267) test_equal(dft_num_samples(100.125, 96000, max_num_samples=1000000), 256000) test_equal(dft_num_samples(100.125, 96000, max_num_samples=1000000, maximize=True), 768000) test_equal(dft_num_samples(100.125, 96000), 92045) # 3010 Hz @ 96 kHz # 1 period = 31.89 samples (9600/301) test_equal(dft_num_samples(3010, 96000), 9600) test_equal(dft_num_samples(3010, 96000, maximize=True, max_num_samples=96000), 96000) # 1001 Hz @ 96 kHz (coprime) # 1 period = 95.904 samples (96000/1001) test_equal(dft_num_samples(1001, 96000), 96000) test_equal(dft_num_samples(1001, 96000, maximize=True, max_num_samples=96000), 96000) # 1000.1 Hz @ 96 kHz # 1 period = 95.99 samples (960,000/10,001) test_equal(dft_num_samples(1000.1, 96000), 59994) test_equal(dft_num_samples(1000.1, 96000, maximize=True, max_num_samples=96000), 59994) """ Irrational numbers """ # 1000*pi Hz @ 96 kHz # 1 period = 30.5577 samples test_equal(dft_num_samples(1000*PI, 96000), 30955) """ Rational numbers expressed as ratio of 2 irrational numbers """ test_equal(dft_num_samples(1000*PI, 96000*PI), 96) _unit_tests_short.append(_test_dft_num_samples) _unit_tests_full.append(_test_dft_num_samples) def _single_freq_dft( x: np.ndarray, cos_sig: np.ndarray, sin_sig: np.ndarray, freq: Union[int, float], sample_rate: Union[int, float], mag=False, phase=False, adjust_num_samp=False, normalize=False): # TODO: use Goertzel algo instead # FIXME: properly deal with boundary conditions - i.e. extra samples at end that don't fit into a complete cycle # adjust_num_samp should mostly deal with that if adjust_num_samp: n_samp = dft_num_samples(freq, sample_rate, min_num_samples=(len(x) // 2), max_num_samples=len(x), maximize=True) else: n_samp = len(x) dft_mult = cos_sig[:n_samp] - 1j * sin_sig[:n_samp] xs = x[:n_samp] * dft_mult xs = np.mean(xs) if normalize else sum(xs) if mag and phase: return np.abs(xs), np.angle(xs) elif mag: return np.abs(xs) elif phase: return np.angle(xs) else: return xs def single_freq_dft( x: np.ndarray, freq: float, sample_rate=1.0, mag=True, phase=True, adjust_num_samp=False, normalize=False): """ Perform DFT at a single arbitrary frequency :param x: :param freq: :param sample_rate: :param mag: return magnitude :param phase: return phase :param adjust_num_samp: if True, will not perform DFT on entire signal; rather, will find optimal number of samples to get as close to a zero-crossing as possible (though guaranteed to use at least half the samples). Recommend calling dft_num_samples to determine sample size instead, in order to get the optimal DFT size of the signal in the first place. :param normalize: divide by number of samples, i.e. return average power per sample instead of sum :return: (mag, phase) if mag and phase; magnitude if mag only; phase if phase only; complex result if neither """ cos_sig, sin_sig = signal_generation.gen_cos_sine(freq / sample_rate, len(x)) return _single_freq_dft( x, cos_sig, sin_sig, freq, sample_rate, mag=mag, phase=phase, adjust_num_samp=adjust_num_samp, normalize=normalize) def phase_to_group_delay(freqs: np.ndarray, phases_rad: np.ndarray, sample_rate: float) -> np.ndarray: phases_rad_unwrapped = np.unwrap(phases_rad) freqs_cycles_per_sample = freqs / sample_rate freqs_rads_per_sample = freqs_cycles_per_sample * TWOPI np_version = [int(n) for n in np.__version__.split('.')] if np_version[0] <= 1 and np_version[1] < 13: delay_samples = -np.gradient(phases_rad_unwrapped) / np.gradient(freqs_rads_per_sample) else: delay_samples = -np.gradient(phases_rad_unwrapped, freqs_rads_per_sample) delay_seconds = delay_samples / sample_rate return delay_seconds def get_ir_freq_response( ir: np.ndarray, freqs: Iterable, sample_rate, mag=True, phase=True, group_delay=True) -> FreqResponse: """ Calculate frequency response based on impulse response :param ir: Impulse response :param freqs: frequencies to get response at. More frequencies will also lead to more precise group delay :param sample_rate: sample rate, in Hz :param mag: if False, does not calculate nor return magnitude :param rms: if False, does not calculate nor return RMS magnitude :param phase: if False, does not calculate nor return phase :param group_delay: if False, does not calculate nor return group delay :return: frequency response of system """ if group_delay and not phase: raise ValueError('Must calculate phase to calculate group delay!') freqs = np.array(freqs) freq_resp = FreqResponse(freqs=freqs, sample_rate=sample_rate) if mag: freq_resp.mag = np.zeros(len(freqs)) if phase: freq_resp.phase = np.zeros(len(freqs)) for n, f_norm in enumerate(freqs / sample_rate): ret = single_freq_dft(ir, f_norm, mag=mag, phase=phase, adjust_num_samp=True) if mag: freq_resp.mag[n] = ret[0] if phase: freq_resp.phase[n] = ret[-1] if group_delay: freq_resp.group_delay = phase_to_group_delay(freqs, freq_resp.phase, sample_rate) if phase: freq_resp.phase = ((freq_resp.phase + PI) % TWOPI) - PI return freq_resp def _calc_thdn(y, f_norm, mag, phase, debug_assert=False): # Subtract fundamental from signal phase01 = np.mod(phase / TWOPI, 1.0) fundamental = signal_generation.gen_sine(f_norm, n_samp=len(y), start_phase=phase01) * mag if debug_assert: debug_mag, debug_phase = single_freq_dft(fundamental, f_norm, mag=True, phase=True, normalize=True, adjust_num_samp=False) assert utils.approx_equal(debug_mag, mag, eps=0.001) assert utils.approx_equal(debug_phase, phase, eps=0.01) thdn_sig = y - fundamental return utils.rms(thdn_sig) * SQRT2 / mag def get_discrete_sine_sweep_freq_response( system: ProcessorBase, freqs: Iterable, sample_rate, n_cycles=40.0, n_samp_min: Optional[int]=None, n_samp=None, amplitude=1.0, mag=True, rms=True, phase=True, group_delay=None, thdn=None) -> FreqResponse: """ Calculate frequency response by passing sine waves at various frequencies through system Unlike impulse response analysis, this will work for nonlinear systems as well (Of course, the definition of "frequency response" is ill-defined for a nonlinear system - see freq_response.md) :param system: Processor to process :param freqs: frequencies to get response at. More frequencies will also lead to more precise group delay :param sample_rate: sample rate, in Hz :param n_cycles: how many cycles of waveform to calculate over :param n_samp_min: if using n_cycles, minimum n_samp :param n_samp: how many samples to calculate over - overrides n_cycles :param amplitude: amplitude of sine wave to pass in :param mag: if False, does not calculate nor return magnitude :param rms: if False, does not calculate nor return RMS magnitude :param phase: if False, does not calculate nor return phase :param group_delay: if False, does not calculate nor return group delay; default true if phase, else false :param thdn: if False, does not calculate THD+Noise; default true if mag & phase, else false :return: frequency response of system. mag, phase, and group delay are based on measurement of output at only that frequency. RMS is based on entire signal. So you can get a proxy for "how nonlinear" the system is by comparing difference between mag & RMS (if linear, output would be a sine wave, so RMS would be 1/sqrt(2) of magnitude) """ if group_delay is None: group_delay = phase elif group_delay and not phase: raise ValueError('Must calculate phase to calculate group delay!') if thdn is None: thdn = mag and phase elif thdn and (not mag or not phase): raise ValueError('Must calculate magnitude/phase to calculate THD+N') freqs = np.array(freqs) freq_resp = FreqResponse(freqs=freqs, sample_rate=sample_rate) if mag: freq_resp.mag = np.zeros(len(freqs)) if rms: freq_resp.rms = np.zeros(len(freqs)) if phase: freq_resp.phase = np.zeros(len(freqs)) if thdn: freq_resp.thdn = np.zeros(len(freqs)) debug_use_dft_of_input = True # FIXME: false is broken for n, freq in enumerate(freqs): f_norm = freq / sample_rate period = sample_rate / freq if n_samp is None: max_num_samples = int(math.ceil(max(n_cycles * period, sample_rate))) #n_samp_this_freq = max(math.ceil(n_cycles / f_norm), n_samp_min) n_samp_this_freq = dft_num_samples( freq, sample_rate, min_num_samples=n_samp_min if (n_samp_min is not None) else 0, max_num_samples=max_num_samples) else: n_samp_this_freq = n_samp scaling = 2.0 / n_samp_this_freq # Input is actually double the number of samples, but for output we only take the 2nd half # TODO: be smarter about this, actually watch the output and wait for the system to hit steady-state # TODO: Can we reach steady-state faster if we ramp up the amplitude? # (This would avoid the sudden impulse in 2nd, 3rd, etc derivatives) x_cos_full, x_sin_full = signal_generation.gen_cos_sine(f_norm, 2 * n_samp_this_freq) x_cos = x_cos_full[n_samp_this_freq:] x_sin = x_sin_full[n_samp_this_freq:] x_cos_dft_mag = x_cos_dft_phase = x_sin_dft_mag = x_sin_dft_phase = None if debug_use_dft_of_input: x_cos_dft_mag, x_cos_dft_phase = _single_freq_dft(x_cos, x_cos, x_sin, freq, sample_rate, mag=True, phase=True, adjust_num_samp=False) x_sin_dft_mag, x_sin_dft_phase = _single_freq_dft(x_sin, x_cos, x_sin, freq, sample_rate, mag=True, phase=True, adjust_num_samp=False) x_rms = utils.rms(x_sin) if rms else None else: x_cos_dft_mag = 1.0 x_cos_dft_phase = HALF_PI x_sin_dft_mag = 1.0 x_sin_dft_phase = 0 x_rms = INV_SQRT2 # TODO: remove y_cos once we know we don't need it anymore system.reset() y_cos = system.process_vector(x_cos_full * amplitude)[n_samp_this_freq:] / amplitude system.reset() y_sin = system.process_vector(x_sin_full * amplitude)[n_samp_this_freq:] / amplitude # TODO: use this? the results look really good - in some cases they look even better than impulse response results # (That doesn't really make sense though - IR should be perfect for linear?) #mag_sin_cos = np.sqrt(np.square(y_sin) + np.square(y_cos)) if mag or phase: ret = _single_freq_dft(y_sin, x_cos, x_sin, freq, sample_rate, mag=mag, phase=phase, adjust_num_samp=False) if mag: freq_resp.mag[n] = ret[0] if (mag and phase) else ret if x_sin_dft_mag is not None: freq_resp.mag[n] /= x_sin_dft_mag else: freq_resp.mag[n] *= scaling if phase: # TODO: figure out if should use both sin & cos # TODO: use x_sin_dft_phase freq_resp.phase[n] = (ret[1] if (mag and phase) else ret) + HALF_PI if rms: freq_resp.rms[n] = utils.rms(y_sin) / x_rms if thdn: freq_resp.thdn[n] = _calc_thdn( y=y_sin, f_norm=f_norm, mag=freq_resp.mag[n], phase=freq_resp.phase[n]) if group_delay: freq_resp.group_delay = phase_to_group_delay(freqs, freq_resp.phase, sample_rate) if phase: freq_resp.phase = ((freq_resp.phase + PI) % TWOPI) - PI return freq_resp def _test_thdn(): pass # TODO #_unit_tests_short.append(_test_thdn) #_unit_tests_full.append(_test_thdn) def get_white_noise_response( system: ProcessorBase, freqs: Iterable, sample_rate, n_samp: int, amplitude=1.0, gaussian=True, mag=True, phase=True, group_delay=True, relative_to_input=True) -> FreqResponse: freqs = np.array(freqs) freq_resp = FreqResponse(freqs=freqs, sample_rate=sample_rate) if not (mag or phase): return freq_resp if mag: freq_resp.mag = np.zeros(len(freqs)) if phase: freq_resp.phase = np.zeros(len(freqs)) x = signal_generation.gen_noise(n_samp, gaussian=gaussian, amp=amplitude) y = system.process_vector(x) for n, freq in enumerate(freqs): kwargs = dict( freq=freq, sample_rate=sample_rate, mag=mag, phase=phase, adjust_num_samp=True, normalize=(not relative_to_input)) x_ret = single_freq_dft(x, **kwargs) y_ret = single_freq_dft(y, **kwargs) if mag and phase: x_mag, x_phase = x_ret y_mag, y_phase = y_ret elif mag: x_mag = x_ret y_mag = y_ret else: assert phase x_phase = x_ret y_phase = y_ret if mag: freq_resp.mag[n] = (y_mag / x_mag) if relative_to_input else y_mag if phase: freq_resp.phase[n] = y_phase - x_phase if group_delay: freq_resp.group_delay = phase_to_group_delay(freqs, freq_resp.phase, sample_rate) return freq_resp def _test_sine_vs_noise(long: bool): from filters import one_pole from filters import biquad from overdrive import overdrive from processor import GainWrapper, CascadedProcessors, GainProcessor from utils.utils import to_dB sample_rate = 96000 cutoff = 1000 Q = 2.0 wc = cutoff / sample_rate if long: n_samp_min = 4096 n_samp_noise = 4 * sample_rate eps_dB = 3 freqs = [ 10, 30, 100, 300, 1000, 3000, 10000, 20000, ] phase_eps = 0.1 delay_eps = 0.1 else: n_samp_min = 1024 n_samp_noise = sample_rate eps_dB = 6 freqs = [ 10, 100, 1000, 10000, 20000, ] phase_eps = 0.1 delay_eps = 0.1 processors = [ ("pass-through processor", CascadedProcessors([])), ("Basic one pole", one_pole.BasicOnePole(wc=wc)), ("Trapz one pole", one_pole.TrapzOnePole(wc=wc)), ("Basic one pole highpass", one_pole.BasicOnePoleHighpass(wc=wc)), ("Biquad, Q=%g" % Q, biquad.BiquadLowpass(wc=wc, Q=Q)), ("tanh overdrive", overdrive.TanhProcessor()), ("tanh overdrive, 20 dB gain", GainWrapper(overdrive.TanhProcessor(), 10.)), ("tanh overdrive, -20 dB gain", GainWrapper(overdrive.TanhProcessor(), 0.1)), ("Squarizer", overdrive.Squarizer()), ("Squarizer -20 dB", CascadedProcessors([overdrive.Squarizer(), GainProcessor(0.1)])), ("One pole then tanh", CascadedProcessors([one_pole.BasicOnePole(wc=wc), overdrive.TanhProcessor(gain=2)])), ("tanh then one pole", CascadedProcessors([overdrive.TanhProcessor(gain=2), one_pole.BasicOnePole(wc=wc)])), ("Biquad, Q=%g, then hard clip at 1.1" % Q, CascadedProcessors([biquad.BiquadLowpass(wc=wc, Q=Q), overdrive.Clipper(gain=1.0/1.1)])), ("Biquad, Q=%g, then hard clip at 1" % Q, CascadedProcessors([biquad.BiquadLowpass(wc=wc, Q=Q), overdrive.Clipper()])), ("Rossum 92 Nonlinear Biquad, Q=%g, gain 10" % Q, GainWrapper(biquad.Rossum92Biquad(wc=wc, Q=Q), 10.)), ] for name, processor in processors: sine_resp = get_discrete_sine_sweep_freq_response( processor, freqs, sample_rate=sample_rate, rms=False, thdn=False, n_samp_min=n_samp_min) noise_resp = get_white_noise_response(processor, freqs=freqs, sample_rate=sample_rate, n_samp=n_samp_noise) assert np.array_equal(sine_resp.freqs, freqs) assert np.array_equal(noise_resp.freqs, freqs) if False: print(sine_resp.mag) print(to_dB(sine_resp.mag)) print(noise_resp.mag) print(to_dB(noise_resp.mag)) print(sine_resp.phase) print(to_dB(sine_resp.phase)) print(noise_resp.phase) print(to_dB(noise_resp.phase)) print(sine_resp.group_delay) print(to_dB(sine_resp.group_delay)) print(noise_resp.group_delay) print(to_dB(noise_resp.group_delay)) unit_test.test_approx_equal(to_dB(sine_resp.mag), to_dB(noise_resp.mag), eps_abs=eps_dB) unit_test.test_approx_equal(sine_resp.phase, noise_resp.phase, eps_abs=phase_eps) unit_test.test_approx_equal(sine_resp.group_delay, noise_resp.group_delay, eps_abs=delay_eps) _unit_tests_short.append(lambda: _test_sine_vs_noise(False)) _unit_tests_full.append(lambda: _test_sine_vs_noise(True)) def check_linear_and_get_freq_resp( system: ProcessorBase, freqs: Iterable, sample_rate, n_samp: Optional[int]=None, n_cycles=40.0, n_samp_min: Optional[int]=None, amplitude=1.0, eps=0.00001, mag=True, rms=True, phase=True, group_delay=True) -> Tuple[bool, FreqResponse]: """ Check if system is linear and calculate frequency response If linear, impulse response will be used If nonlinear, sine sweep will be used Linearity check is done by testing if impulse response is equal to derivative of step response :param system: Processor to process :param freqs: frequencies to get response at. More frequencies will also lead to more precise group delay :param sample_rate: sample rate, in Hz :param n_cycles: how many cycles of waveform to calculate over (if using impulse response, IR length will be based on lowest of freqs) :param n_samp_min: if using n_cycles, minimum n_samp :param n_samp: how many samples to calculate over - overrides n_cycles :param amplitude: amplitude of IR/step/sine wave :param eps: epsilon value for IR/step comparison :param mag: if False, does not calculate nor return magnitude :param rms: if False, does not calculate nor return RMS magnitude :param phase: if False, does not calculate nor return phase :param group_delay: if False, does not calculate nor return group delay :return: Tuple (True if linear, frequency response of system) """ if n_samp is None: lowest_freq = min(freqs) highest_period = sample_rate / lowest_freq n_samp = highest_period * n_cycles linear = linearity.check_linear(system, n_samp=n_samp, amplitude=amplitude, eps=eps) if linear: freq_resp = get_ir_freq_response( ir, freqs, sample_rate, mag=mag, phase=phase, group_delay=group_delay) else: freq_resp = get_discrete_sine_sweep_freq_response( system, freqs, sample_rate, n_cycles=n_cycles, n_samp=n_samp, n_samp_min=n_samp_min, amplitude=amplitude, mag=mag, rms=rms, phase=phase, group_delay=group_delay) return linear, freq_resp def _test_dft_trivial(): """ Test DFT using the same cos/sin signal as the DFT uses """ sample_rates = [32000., 44100., 96000., 192000.] freqs = [ 100., 100.125, 107., 440., 500., 1000., 1001., 2050., 3000., 3010., 5000., 10000., 20000., 1000 * PI, ] for sample_rate in sample_rates: for freq in freqs: if (2 * freq) > sample_rate: continue f_norm = freq / sample_rate period = sample_rate / freq max_num_samples = int(math.ceil(max(period, sample_rate))) n_samp = dft_num_samples( freq, sample_rate, max_num_samples=max_num_samples) n_cycles = n_samp / period cycle_err = abs(n_cycles - round(n_cycles)) # TODO: tighten up maximum clip values here eps_rel = utils.clip(cycle_err, (1e-12, 1e-5)) eps_zero = utils.clip(10*cycle_err, (1e-11, 1e-3)) x_cos, x_sin = signal_generation.gen_cos_sine(f_norm, n_samp) dft_cos = _single_freq_dft( x_cos, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False) dft_sin = _single_freq_dft( x_sin, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False) unit_test.test_approx_equal(np.real(dft_cos), 0.5*n_samp, eps=eps_rel, rel=True) unit_test.test_approx_equal(np.imag(dft_cos), 0., eps=eps_zero) unit_test.test_approx_equal(np.real(dft_sin), 0., eps=eps_zero) unit_test.test_approx_equal(np.imag(dft_sin), -0.5*n_samp, eps=eps_rel, rel=True) _unit_tests_short.append(_test_dft_trivial) _unit_tests_full.append(_test_dft_trivial) def _test_dft_against_fft(long=True): """ Test single_freq_dft against numpy fft Note that this is only possible at frequencies that perfectly fit into n samples """ eps = 1e-6 mags_short = [1.0, eps, PI, 100.1] mags_full = [1.0, 0.125, 0.1, eps, PI, 100., 100.1, 100 + eps] phases_short = [0, 0.1, 0.125, 0.24, 0.25, 0.9] phases_full = [0, eps, 0.1, 0.124, 0.125, 0.126, 0.25, 0.24, 0.26, 0.25 - eps, 0.25 + eps, 0.5, 0.75, 0.9, 1 - eps] tests = [ dict( n_samples=512, bin_nums=[0, 1, 10, 11, 100, 255, 256], eps_abs=1e-9, eps_rel=1e-12, mags=mags_full, phases=phases_full, ), dict( n_samples=4096, bin_nums=[0, 1, 10, 11, 100, 512, 1024, 2047, 2048], eps_abs=1e-9, eps_rel=1e-9, mags=mags_full, phases=phases_full, ), dict( n_samples=65536, bin_nums=( [0, 1, 10, 11, 100, 512, 1024, 2047, 2048, 4096, 8191, 8192, 32767, 32768] if long else [0, 1, 10, 11, 100, 2048, 4096, 32767, 32768] ), eps_abs=1e-9, eps_rel=1e-8, mags=(mags_full if long else mags_short), phases=(phases_full if long else phases_short), ), ] for test in tests: eps_abs = test['eps_abs'] eps_rel = test['eps_rel'] n_samples = test['n_samples'] bin_nums = test['bin_nums'] mags = test['mags'] phases = test['phases'] for bin_num in bin_nums: for mag in mags: for phase in phases: unit_test.log('n_samples %u, bin_num %u, mag %g, ph %g' % (n_samples, bin_num, mag, phase)) f_norm = bin_num / n_samples sig = mag * signal_generation.gen_sine(f_norm, n_samp=n_samples, start_phase=phase) dft_sig = single_freq_dft( sig, f_norm, sample_rate=1.0, mag=False, phase=False, adjust_num_samp=False, normalize=False) fft_sig = np.fft.fft(sig) fft_at_bin = fft_sig[bin_num] unit_test.test_approx_equal( np.real(dft_sig), np.real(fft_at_bin), abs_rel=True, eps_abs=eps_abs, eps_rel=eps_rel) unit_test.test_approx_equal( np.imag(dft_sig), np.imag(fft_at_bin), abs_rel=True, eps_abs=eps_abs, eps_rel=eps_rel) unit_test.test_approx_equal( np.abs(dft_sig), np.abs(fft_at_bin), abs_rel=True, eps_abs=eps_abs, eps_rel=eps_rel ) _unit_tests_short.append(lambda: _test_dft_against_fft(long=False)) _unit_tests_full.append(lambda: _test_dft_against_fft(long=True)) def _test_dft_sine(long=True): """ Test single_freq_dft with sine waves at arbitrary frequency, phase, amplitude """ # Similar to both _test_dft_trivial and _test_dft_against_fft but covers some ground those don't # (arbitrary frequency) eps = 1e-6 sample_rate = 96000. mags_short = [1.0, eps, PI, 100.1] mags_full = [1.0, 0.125, 0.1, eps, PI, 100., 100.1, 100 + eps] phases_short = [0, 0.1, 0.125, 0.24, 0.25, 0.9] phases_full = [0, eps, 0.1, 0.124, 0.125, 0.126, 0.25, 0.24, 0.26, 0.25 - eps, 0.25 + eps, 0.5, 0.75, 0.9, 1 - eps] simple_freqs = [ 20., 100., 1000., 10000., 20000., 32000., ] complex_freqs = [ 440., 440. + 0.1*PI, 1234., 5927., PI*10000., ] freqs = [ 20., 100., 440., 440. + 0.1*PI, 1000., 1234., 5927., 10000., 20000., PI*10000., 32000., ] for freq in freqs: #eps_abs = test['eps_abs'] #eps_rel = test['eps_rel'] #n_samples = test['n_samples'] #bin_nums = test['bin_nums'] #mags = test['mags'] #phases = test['phases'] pass # TODO: like _test_dft_trivial() but with with non-trivial phase & magnitude #_unit_tests_short.append(lambda: _test_dft_sine(long=False)) # TODO: enable when ready #_unit_tests_full.append(lambda: _test_dft_sine(long=True)) # TODO: enable when ready def _do_detail(): from matplotlib import pyplot as plt sample_rate = 96000 n_samp = None n_samp_min = 4096 n_cycles = 128.0 n_samp_plot = 128 freqs = [100., 107., 500., 1000., 2050., 3000., 3010., 5000., 10000., 20000.] fig = plt.figure() print('%6s %6s %8s %8s %10s %10s %10s %10s %12s' % ( 'freq', 'phase', 'num samp', 'num cyc', 'real err', 'imag err', 'mag err', 'ph err', 'max rec err',)) for n, freq in enumerate(freqs): f_norm = freq / sample_rate period = sample_rate / freq if n_samp is None: max_num_samples = int(math.ceil(max(n_cycles * period, sample_rate))) n_samp_this_freq = dft_num_samples( freq, sample_rate, min_num_samples=n_samp_min, max_num_samples=max_num_samples) else: n_samp_this_freq = n_samp n_cycles_this_freq = n_samp_this_freq * f_norm x_cos, x_sin = signal_generation.gen_cos_sine(f_norm, n_samp_this_freq) #mag_sin, phase_sin = _single_freq_dft(x_sin, x_cos, x_sin, freq, sample_rate, mag=True, phase=True) dft_cos = _single_freq_dft( x_cos, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False) dft_sin = _single_freq_dft( x_sin, cos_sig=x_cos, sin_sig=x_sin, freq=freq, sample_rate=sample_rate, adjust_num_samp=False) dft_cos /= (0.5*n_samp_this_freq) dft_sin /= (0.5*n_samp_this_freq) mag_cos = np.abs(dft_cos) mag_sin = np.abs(dft_sin) phase_cos = np.angle(dft_cos) phase_sin = np.angle(dft_sin) # gen_sine takes phase 0-1, relative to sine (not cos) phase_cos_01 = np.mod((phase_cos / TWOPI) + 0.25, 1.0) phase_sin_01 = np.mod((phase_sin / TWOPI) + 0.25, 1.0) idx = np.arange(n_samp_plot) reconstructed_cos = signal_generation.gen_sine(f_norm, n_samp=n_samp_this_freq, start_phase=phase_cos_01) * mag_cos reconstructed_sin = signal_generation.gen_sine(f_norm, n_samp=n_samp_this_freq, start_phase=phase_sin_01) * mag_sin cos_real_err = np.real(dft_cos) - 1.0 cos_imag_err = np.imag(dft_cos) sin_real_err = np.real(dft_sin) sin_imag_err = np.imag(dft_sin) + 1.0 cos_mag_err = mag_cos - 1 sin_mag_err = mag_sin - 1 cos_phase_err = phase_cos sin_phase_err = phase_sin + HALF_PI cos_rec_err = reconstructed_cos - x_cos sin_rec_err = reconstructed_sin - x_sin plt.subplot(len(freqs), 2, 2*n+1) if n == 0: plt.title('cos') plt.plot(idx, x_cos[:n_samp_plot], label='input') plt.plot(idx, x_cos[:n_samp_plot], label='output') plt.plot(idx, reconstructed_cos[:n_samp_plot], label='reconstructed') plt.plot(idx, cos_rec_err[:n_samp_plot], label='reconst err' % np.amax(np.abs(cos_rec_err))) plt.grid() plt.legend() plt.ylabel('%g Hz' % freq) plt.subplot(len(freqs), 2, 2*n+2) if n == 0: plt.title('sin') plt.plot(idx, x_sin[:n_samp_plot], label='input') plt.plot(idx, x_sin[:n_samp_plot], label='output') plt.plot(idx, reconstructed_sin[:n_samp_plot], label='reconstructed') plt.plot(idx, sin_rec_err[:n_samp_plot], label='reconst err' % np.amax(np.abs(sin_rec_err))) plt.grid() plt.legend() print() print('%6g %6s %8g %8g %10.2e %10.2e %10.2e %10.2e %12.2e' % ( freq, 'cos', n_samp_this_freq, n_cycles_this_freq, cos_real_err, cos_imag_err, cos_mag_err, cos_phase_err, np.amax(
np.abs(cos_rec_err)
numpy.abs
# -*- coding: utf-8 -*- """ Created on Wed Jun 28 20:15:47 2020 @authors: <NAME>, omars """ #%% Libraries import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsRegressor from random import choices #%% Helper Functions def wmape(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred).astype('float') return sum((np.abs(y_true - y_pred)) * 100) / sum(y_true) def get_in_date_range(dataset, first_date = '2020-01-01', last_date = '2020-12-31', date_col='date'): return dataset.loc[(dataset[date_col].astype('datetime64') >=
np.datetime64(first_date)
numpy.datetime64
import os, random from os import path import numpy as np import mxnet as mx from mxnet import gluon, nd, gpu, autograd from mxnet.gluon import nn, rnn from sklearn import preprocessing """ Function for data preprocess """ def DLPreprocess(dt, cat_feature_list, numeric_feature_list): ### label encode of categorical features label_enc_list = [] for category_feature in cat_feature_list: label_enc = preprocessing.LabelEncoder() label_enc.fit(dt.loc[:, category_feature]) label_enc_list.append(label_enc) dt.loc[:, category_feature] = label_enc.transform(dt.loc[:, category_feature]) ### numeric feature normalization dt[numeric_feature_list] = preprocessing.scale(dt[numeric_feature_list]) return dt,label_enc_list """ Function for evaluation """ def smape(y_true, y_pred): denominator = (np.abs(y_true) + np.abs(y_pred)) diff = np.abs(y_true - y_pred) / denominator diff[denominator == 0] = 0.0 return 200 * np.mean(diff) def ND(y_pred, y_true): demoninator = np.sum(np.abs(y_true)) diff = np.sum(np.abs(y_true - y_pred)) return 1.0*diff/demoninator def rmsle(y_pred, y_true) : assert len(y_true) == len(y_pred) return np.sqrt(np.mean((np.log(1+y_pred) - np.log(1+y_true))**2)) def NRMSE(y_pred, y_true): assert len(y_pred) == len(y_true) denominator = np.mean(y_true) diff = np.sqrt(np.mean(((y_pred-y_true)**2))) return diff/denominator def rho_risk2(y_pred,y_true,rho): assert len(y_pred) == len(y_true) diff1 = (y_true-y_pred)*rho*(y_true>=y_pred) diff2 = (y_pred-y_true)*(1-rho)*(y_true<y_pred) denominator = np.sum(y_true) return 2*(np.sum(diff1)+np.sum(diff2))/denominator def rho_risk(y_pred,y_true,rho): assert len(y_pred) == len(y_true) diff = -np.sum(2*(y_pred-y_true)*(rho*(y_pred<=y_true)-(1-rho)*(y_pred>y_true))) denominator = np.sum(y_true) return diff/denominator def group_ND(y_pred, y_true, series_num):#The dimension of the y_pred 2590*24, the dimension of the y_true 2590*24""" assert y_pred.shape == y_true.shape group0 = np.array(range(series_num))*7 group1 = group0+1 group2 = group0+2 group3 = group0+3 group4 = group0+4 group5 = group0+5 group6 = group0+6 ND0 = ND(y_pred[group0],y_true[group0]) ND1 = ND(y_pred[group1],y_true[group1]) ND2 = ND(y_pred[group2],y_true[group2]) ND3 = ND(y_pred[group3],y_true[group3]) ND4 = ND(y_pred[group4],y_true[group4]) ND5 = ND(y_pred[group5],y_true[group5]) ND6 = ND(y_pred[group6],y_true[group6]) meanND = np.mean([ND0,ND1,ND2,ND3,ND4,ND5,ND6]) return meanND,ND0,ND1,ND2,ND3,ND4,ND5,ND6 def group_NRMSE(y_pred, y_true, series_num):#The dimension of the y_pred 2590*24, the dimension of the y_true 2590*24""" assert y_pred.shape == y_true.shape group0 = np.array(range(series_num))*7 group1 = group0+1 group2 = group0+2 group3 = group0+3 group4 = group0+4 group5 = group0+5 group6 = group0+6 NRMSE0 = NRMSE(y_pred[group0],y_true[group0]) NRMSE1 = NRMSE(y_pred[group1],y_true[group1]) NRMSE2 = NRMSE(y_pred[group2],y_true[group2]) NRMSE3 = NRMSE(y_pred[group3],y_true[group3]) NRMSE4 = NRMSE(y_pred[group4],y_true[group4]) NRMSE5 = NRMSE(y_pred[group5],y_true[group5]) NRMSE6 = NRMSE(y_pred[group6],y_true[group6]) meanNRMSE =
np.mean([NRMSE0,NRMSE1,NRMSE2,NRMSE3,NRMSE4,NRMSE5,NRMSE6])
numpy.mean
# this will be the main program for inspecting TESS light curves for stellar rotation # Import relevant modules #%matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt #import matplotlib.cm as cm #import matplotlib import matplotlib.gridspec as gridspec #from astropy.visualization import astropy_mpl_style from glob import glob from astropy.io import fits import warnings warnings.filterwarnings('ignore') #from astroquery.vizier import Vizier #from astropy.coordinates import SkyCoord #import astropy.units as u from astropy.timeseries import LombScargle import os import sys ############# If you move these programs you will need to update these directories and names ############# sys.path.append('/content/gdrive/My Drive/') from tess_check import myDir as myDir import time #################################################################################### # Load sheet def load_sheet(project_name): from google.colab import auth auth.authenticate_user() import gspread from oauth2client.client import GoogleCredentials gc = gspread.authorize(GoogleCredentials.get_application_default()) dir_project = myDir.project_dir(project_name) sheet_id_file = os.path.join(dir_project,f"{project_name}.txt") f = open(sheet_id_file,"r") doc_id = f.readline() f.close() sheet = gc.open_by_key(doc_id) return sheet def list_to_string(list,delim=' '): list_as_string = list[0] for i in range(len(list)-1): id = i+1 list_as_string += (delim + list[id]) return list_as_string # Auto run def tesscheck_auto(project_name, tess_cycle=1, redo=False): #cluster = 'ComaBer' user = 'Auto' target_table = get_prot_table('Auto',project_name) target_data_val = target_table.get_all_values() target_data = pd.DataFrame.from_records(target_data_val[1:],columns=target_data_val[0]) if tess_cycle == 1: cycle_sectors = ['1','2','3','4','5','6','7','8','9','10','11','12','13'] if tess_cycle == 2: cycle_sectors = ['14', '15', '16','17','18','19','20','21','22','23','24','25','26'] print('Assembling target list...') #star_list = stars_todo(target_table) star_list = stars_todo(target_data) number_stars = len(star_list) print(str(number_stars)+' stars to analyze') if number_stars == 0: print('no stars remaining.') else: for i in range(number_stars): if star_list[i][0] != 'n': star = make_star(target_data,star_list[i]) star = make_star(target_data,star_list[i]) print(str(i)+' '+star_list[i]) tstar = initiate_star(star,project_name,user=user) tstar['which_sectors'] = cycle_sectors display_tess_lite_v2(tstar, save = False, noplot = True) update_prot_table(target_table, tstar) return #################################################################################### # Main program def tesscheck_run_v1(): # Identify the user user = tess_user() # Load the Prot table prot_table = get_prot_table(user) # rows = prot_table.get_all_values() # print(rows) cluster = 'NGC_7092' file = glob('/content/gdrive/My Drive/Tables/'+cluster+'-Catalog.csv') clu = pd.read_csv(file[0]) gmag = clu['GMAG'] bprp = clu['BP_RP'] RA = clu['RA_ICRS'] Dec = clu['DE_ICRS'] # star = clu.iloc[121] star = clu.iloc[276] tstar = initiate_star(star,cluster,user=user) #display_tess_lite(tstar, save = True) display_tess_lite_v2(tstar, save = False, noplot = True) update_prot_table(prot_table, tstar, user) return tstar #################################################################################### # Identify the User def tess_user(project_name): #dir_project = project_dir(project_name) status = read_status(project_name) #file_status = glob(dir_project + 'Status.txt') #file_open = open(file_status[0], "r") #lines = file_open.readlines() #user_line = lines[8] users = status['Users'].split(' ') #users = users[1:-1] number_of_users = len(users) print('Which user? Press...') for i in range(number_of_users): print(' '+str(i+1)+' for '+users[i]) print(' '+str(i+2)+' for Other') # while loop # val = input("Enter number for your name: ") val = input() user = '' #user_found = 0 if val.isdigit() == False: print('No user selected.') user = 'None' return user else: # is the number in the range? if (float(val) > (number_of_users+1)) | (float(val) == 0): print('Out of bounds') user = 'Noone' return user if (float(val) <= (number_of_users)) & (float(val) != 0): id = int(val) user = users[id-1] print(user + ' is logged in.') add_user_to_sheet(project_name, user) return user if float(val) == (number_of_users+1): print('Other selected. Need to make sheet and update Status.txt') print('Other: What name?') other_name = input() other_name = other_name.replace(" ", "") other_name = other_name.lower() other_name = other_name.capitalize() #make_status(project_name, add_user=other_name, add_step = '', change_auto='', reset=False): user = other_name # prompt for it iu = np.where(np.array(users) == user) if np.size(iu) > 0: print('User already exists, logging in.') add_user_to_sheet(project_name, user) return user else: make_status(project_name, add_user=user, add_step = '', change_auto='', reset=False) add_user_to_sheet(project_name, user) print(user + ' profile is created and user is logged in.') return user #################################################################################### def get_prot_table(user,project_name): sheet_name = project_name from google.colab import auth auth.authenticate_user() import gspread from oauth2client.client import GoogleCredentials gc = gspread.authorize(GoogleCredentials.get_application_default()) # load the table worksheet = load_sheet(sheet_name) if user == 'Auto': table = worksheet.worksheet('Targets') else: table = worksheet.worksheet(user) return table #################################################################################### # Functions to locate a star's TESS data def find_ffi(star, cluster): # homedir = os.path.expanduser("~") dir_ffi = myDir.project_dir(cluster)+'FFI/' RA = str(star["RA_ICRS"])[:7] DE = str(star["DE_ICRS"])[:7] file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*/*.fits") if len(file_ffi) == 0: file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*.fits") return(file_ffi) def find_ffi_coord(ra, dec, cluster): dir_ffi = myDir.project_dir(cluster)+'FFI/' RA = str(ra)[:7] DE = str(dec)[:7] file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*/*.fits") if len(file_ffi) == 0: file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*.fits") return(file_ffi) def find_sap(star, cluster): dir_sap = myDir.project_dir(cluster)+'SAP/' if star["DR2NAME"][0] == 'G': star_name = star["DR2NAME"][9:] else: star_name = star["DR2NAME"] file_sap = glob(dir_sap + "*" + star_name + "*.csv") return(file_sap) def find_cpm(star, cluster): dir_cpm = myDir.project_dir(cluster)+'CPM/' if star["DR2NAME"][0] == 'G': star_name = star["DR2NAME"][9:] else: star_name = star["DR2NAME"] file_cpm = glob(dir_cpm + "*" + star_name + "*.csv") return(file_cpm) def load_cpm_fromfile(file): lc = pd.read_csv(file) return lc def load_cpm(star): lc = pd.read_csv(star['file_cpm'][0]) return lc def load_sap(star): lc = pd.read_csv(star['file_sap'][0]) return lc def load_ffi_fromfile(file): ffi_data = fits.open(file) images = ffi_data[1].data image = images[100]['Flux'] if np.max(image) == 0: image = images[500]['Flux'] return image def load_ffi(star): ffi_data = fits.open(star['file_ffi'][0]) images = ffi_data[1].data image = images[100]['Flux'] if np.max(image) == 0: image = images[500]['Flux'] return image def load_ffis(star): ffi_data = fits.open(star['file_ffi'][0]) images = ffi_data[1].data image = images['Flux'] return image #################################################################################### def make_star(target_data, dr2_now): star = {'DR2NAME': '', 'RA_ICRS': 0., 'DE_ICRS': 0., 'GMAG': 0., 'BP_RP': 0.} iloc = np.where(dr2_now == target_data['DR2Name']) id = iloc[0][0] star['DR2NAME'] = dr2_now star['RA_ICRS'] = target_data['RA'][id] star['DE_ICRS'] = target_data['Dec'][id] star['GMAG'] = target_data['Gmag'][id] star['BP_RP'] = target_data['BP_RP'][id] return star #################################################################################### def initiate_star(star, cluster, user='NONE', blank=False): star_data = {'User' : user, 'Source': '', 'RA':0.,'Dec':0., 'Gmag':0., 'gbr':0., #'Cluster':star['Cluster'], 'Cluster':cluster, # data files 'file_ffi':'', 'file_cpm':'', 'file_sap':'', 'file_cdips':'', 'exist_ffi': 0, 'exist_cpm':0, 'exist_cdips':0, 'exist_sap':0, 'SAP_line':False, 'number_sectors':0, 'which_sectors':[''], 'sector_list':[''], # lc arrays # LC option and Period results 'which_LC':'CPM', # default is CPM 'Prot_LS':0., 'is_it_double':0, # the Lomb-Scargle period and if it should be doubled 'Power_LS':0., # the Lomb-Scargle period and if it should be doubled 'Prot_final':0., 'Amplitude':0., 'Multi':0, # if it is multi, then set this to multi=1 'Flares':0, 'Notes':'', # anything noteworthy about this star? 'LC_Quality':1, # 1 = modulate, 0 is flat, -1 is garbage 'LC_Action':'', # # Plotting options 'x_min':0.0,'x_max':0.0, # time range 'y_min':0.0,'y_max':0.0, # flux range, will be calculated during first iteration, and then adjusted by user # LS options 'pmin':0.1,'pmax':30., # default period range for LS analysis 'pxlog':0 } if blank == True: return star_data star_data['Source'] = star["DR2NAME"] star_data['RA'] = star["RA_ICRS"] star_data['Dec'] = star["DE_ICRS"] star_data['Gmag'] = star["GMAG"] star_data['gbr'] = star["BP_RP"] # Once the blank data dictionary is created, test/load data into it exist = np.array([0,0,0,0]) file_ffi = find_ffi(star,cluster) file_cpm = find_cpm(star,cluster) file_sap = find_sap(star,cluster) file_cdips = '' #file_cdips = find_cdips(star) if len(file_ffi) > 0: exist[0] = 1 # star_data['ffi_image'] = load_ffi(file_ffi) star_data['file_ffi'] = file_ffi star_data['exist_ffi'] = 1 if len(file_cpm) > 0: exist[1] = 1 #lc_cpm = load_cpm(file_cpm) star_data['file_cpm'] = file_cpm star_data['exist_cpm'] = 1 if len(file_sap) > 0: exist[2] = 1 #lc_cpm = load_cpm(file_cpm) star_data['file_sap'] = file_sap star_data['exist_sap'] = 1 if len(file_cdips) > 0: exist[3] = 1 #lc_cdips = load_cdips(file_cdips) star_data['file_cdips'] = file_cdips star_data['exist_cdips'] = 1 if exist.sum() == 0: print('No data for this star') return star_data else: return star_data #################################################################################### # modified version of the display program. needs to be copied into tesscheck.py def display_tess_lite_v2(tstar,save = False,noplot = False): time_1 = time.time() # plotting defaults axis_fontsize = 16 import matplotlib.pylab as pylab params = {'axes.labelsize': 16,'axes.titlesize': 16,'xtick.labelsize': 14,'ytick.labelsize': 14} pylab.rcParams.update(params) #cpm data for star if tstar['exist_cpm'] == 0: return if tstar['which_LC'] == 'CPM': lc_cpm = load_cpm(tstar) # if tstar['which_sectors'] != 'All': # ifin = np.where((np.isfinite(lc_cpm['flux']) == True) & (lc_cpm['sector'] == int(tstar['which_sectors']))) # if np.size(ifin) == 0: # print('sector not available, reverting back to All') # ifin = np.where(np.isfinite(lc_cpm['flux']) == True) # tstar['which_sectors'] = 'All' time_all = lc_cpm['time'] flux_all = lc_cpm['flux'] sector_all = lc_cpm['sector'] lc_title = 'TESS Light Curve (Calibrated with Causal Pixel Modeling)' if tstar['which_LC'] == 'SAP': lc_sap = load_sap(tstar) time_all = lc_sap['time'] flux_all = lc_sap['flux'] flux_all /= np.nanmedian(flux_all) flux_all -= 1 sector_all = lc_sap['sector'] lc_title = 'TESS Light Curve (Extracted with Simple Aperture Photometry)' # what if we say just load the whle thing, whether SAP or CPM, then we handle the sectors... ifin = np.where(np.isfinite(flux_all)) #find infs unique_sectors = np.unique(sector_all).astype(int) #all the sectors for each data point from table unique_sectors = list(map(str,unique_sectors)) #unique instances # save into tstar['sector_list'] = unique_sectors #unique sectors saved as a list length_all = len(flux_all) use_these = np.zeros(length_all) length_which_sectors = len(tstar['which_sectors']) #tstars['which_sectors'] is blank until this runs once, if tstar['which_sectors'] != ['']: #skips this on first run when it's blank for index_sectors in range(length_which_sectors): id_sector_match = np.where((float(tstar['which_sectors'][index_sectors]) == sector_all) & (np.isfinite(flux_all) == True)) if len(id_sector_match[0]) > 0: use_these[id_sector_match[0]] = 1 ifin = np.where(use_these == 1) if len(ifin[0]) == 0: ifin = np.where(np.isfinite(flux_all) == True) print('all points ruled out, reverting to all points') use_these = np.zeros(length_all) use_these[ifin[0]] = 1 if float(tstar['y_max'])>0: # print('trimming') #ifin = np.where((flux>float(tstar['y_min'])) & (flux<float(tstar['y_max']))) iyra = np.where(abs(100*flux_all)>float(tstar['y_max'])) if len(iyra[0]) > 0: use_these[iyra[0]] = 0 if ((tstar['x_min'] != 0) | (tstar['x_max'] != 0)): ixra = np.where((time_all-min(time_all) < float(tstar['x_min'])) | (time_all-min(time_all) > float(tstar['x_max']))) if len(ixra[0]) > 0: use_these[ixra[0]] = 0 # ifin = np.where(np.isfinite(flux_all) == True) # use_these = np.zeros(length_all) # use_these[ifin[0]] = 1 iuse = np.where(use_these == 1) if len(iuse[0]) == 0: print('what happened?') times = time_all[iuse[0]] flux = flux_all[iuse[0]] sectors = sector_all[iuse[0]] sectors_used = np.unique(sectors).astype(int) sectors_used = list(map(str,sectors_used)) if (tstar['which_LC'] == 'SAP') & (tstar['SAP_line'] == True): slope, intercept = np.polyfit(times, flux, 1) sap_line = slope * times + intercept flux -= sap_line #Periodogram Setup Pmin = tstar['pmin'] Pmax = tstar['pmax'] Fmin = 1/Pmax Fmax = 1/Pmin # freq_cpm, pow_cpm = LombScargle(lc_cpm["time"], lc_cpm["flux"]).autopower(minimum_frequency=Fmin,maximum_frequency=Fmax) # naf= np.array(1/freq_cpm) # nap= np.array(pow_cpm) # maX = np.argmax(nap) # period = (naf[maX]) time_2 = time.time() periods_cpm = np.logspace(np.log10(Pmin),np.log10(Pmax),10000) freq_cpm = 1/periods_cpm pow_cpm = LombScargle(times, flux).power(freq_cpm) period = periods_cpm[np.argmax(pow_cpm)] tstar['Prot_LS'] = period tstar['Power_LS'] = np.max(pow_cpm) # Amplitude measurement perc05 = np.percentile(flux,5) perc95 = np.percentile(flux,95) amp = float(perc95-perc05) tstar['Amplitude'] = amp # check if double # read which_LC, then store in that period. # store these in star, update Prot_final mdub = float(1.0) if tstar['is_it_double'] == 1: mdub = float(2.0) period_final = float(tstar['Prot_LS']*mdub) tstar['Prot_final'] = period_final #Figure creation if noplot == False: panel = plt.figure(constrained_layout=True, figsize= (16,11)) gs = gridspec.GridSpec(100, 100) #cpm lightcurve # how many sectors? #all_sectors = lc_cpm['sector'].unique().astype(int) # unique_sectors = sector_all.unique().astype(int) # all_sectors = sectors # I'm pretty sure I reran CPM so that this isn't an issue anymore. Bad sectors arent in the CPM file. n_sec = len(sectors_used) # this should probably be number used n_all_sec = len(unique_sectors) tstar['number_sectors'] = n_sec primary_colors = ['b','r'] color_options = [] for icol in range(n_sec): color_options.append(primary_colors[icol%2]) n_obs = len(sectors) colors = np.repeat('r', n_obs) for i in range(n_sec): id = np.where(np.array(sectors) == float(sectors_used[i])) colors[id] = color_options[i] tmin = np.min(times) if noplot == False: cpmlight = panel.add_subplot(gs[0:40, 0:100]) cpmlight.set_title(lc_title) cpmlight.scatter(times-tmin,flux*100,c = colors,s=15) cpmlight.set_xlabel('Day of Observation') cpmlight.set_ylabel('Percent Change in Brightness') #find midpoint in time array to place amplitude amp_time = np.mean(times-tmin) #plot amplitude cpmlight.plot([amp_time,amp_time],[-amp*100/2,amp*100/2],c='purple') if float(tstar['y_max'])>0: cpmlight.set_ylim(float(tstar['y_min']),float(tstar['y_max'])) # if ((float(tstar['x_min']) != 0) | (float(tstar['x_max']) != 0)): # cpmlight.set_xlim(float(tstar['x_min'])-0.5,float(tstar['x_max'])+0.5) #Mark adding a text for each sector as it is plotted bot, top = cpmlight.get_ylim() #find the upper limit for us to put text for x in sectors.index: if x == sectors.index.min(): cpmlight.text(times[x]-tmin, top*.9, str(int(sectors[x]))) #put sector number for first sector cur_sector = sectors[x] else: if sectors[x]!=cur_sector: cpmlight.text(times[x]-tmin, top*.9, str(int(sectors[x]))) #put sector number for each subsequent sector cur_sector = sectors[x] # Phased light curve #cpm_phase = panel.add_subplot(gs[55:, :40]) if noplot == False: cpm_phase = panel.add_subplot(gs[55:, 65:]) cpm_phase.set_title('Phased Light Curve') cpm_phase.scatter(times%period_final,flux*100,c=colors,s=7) cpm_phase.set_xlabel('Day in Rotation Cycle') #cpm_phase.set_ylabel('Percent Change in Brightness') if float(tstar['y_max'])>0: cpm_phase.set_ylim(float(tstar['y_min']),float(tstar['y_max'])) #cpm periodogram if noplot == False: #cpmper = panel.add_subplot(gs[55:,32:60]) cpmper = panel.add_subplot(gs[55:,34:60]) cpmper.set_title('Periodogram') cpmper.plot(1/freq_cpm, pow_cpm, color = 'black') cpmper.set_xlabel('Period (days)') cpmper.set_ylabel('Power') if tstar['Power_LS']<0.1: cpmper.set_yscale('log') cpmper.set_ylim(0.001,1) if tstar['pxlog'] == 1: cpmper.set_xscale('log') # cpmper.plot([tstar['Prot_final'],tstar['Prot_final']],[0,1],c='red') cpmper.plot(tstar['Prot_final'],0.95,marker='v',markerfacecolor='red',markersize=20,markeredgecolor="black") # print(cpmlight.get_xlim()) # print('First panels: '+str(time.time()-time_3)) # First panels: 0.05 seconds #FFI image time_4 = time.time() if noplot == False: # if (tstar['which_sectors'] == 'All'): ffi_image = load_ffi_fromfile(tstar['file_ffi'][0]) if (n_all_sec > 1) & (ffi_test(ffi_image) == 0): print('switching sector') ffi_image = load_ffi_fromfile(tstar['file_ffi'][1]) if (tstar['which_sectors'] != 'All') & (np.size(tstar['file_ffi'])>1): if tstar['which_sectors'] == '15': ffi_image = load_ffi_fromfile(tstar['file_ffi'][0]) if tstar['which_sectors'] == '16': ffi_image = load_ffi_fromfile(tstar['file_ffi'][1]) ffimage = panel.add_subplot(gs[55:, 0:25]) ffimage.set_title('TESS Cutout Image') color_map = plt.cm.get_cmap('gray') reversed_color_map = color_map.reversed() ffi_mod = np.clip(ffi_image-np.min(ffi_image),0,1000) ffimage.imshow(ffi_mod,origin = 'lower',cmap=reversed_color_map) ffimage.plot([15,17],[20,20],color='red') ffimage.plot([23,25],[20,20],color='red') ffimage.plot([20,20],[15,17],color='red') ffimage.plot([20,20],[23,25],color='red') ffimage.set_xlabel('Pixels') ffimage.set_ylabel('Pixels') if save == True: # dir_panels = '/content/gdrive/My Drive/TESS/'+tstar['Cluster']+'/Panels/' #dir_panels = '/content/gdrive/My Drive/Plots/Panels_Final/' dir_panels = myDir.project_dir(tstar['Cluster'])+'Panels/' end = '-User='+tstar['User']+'.png' if tstar['Source'][0] == 'G': dr2 = tstar['Source'][9:] else: dr2 = tstar['Source'] file_save = dir_panels+'GaiaDR2_'+dr2+end panel.savefig(file_save, dpi=300, bbox_inches='tight', pad_inches=0.25, transparent=False) # print('Display time:' + str(time.time() - time_1)) return tstar #################################################################################### def update_prot_table(table, tstar): user = tstar['User'] # (1) where is the star in the table? cell = table.find(tstar['Source']) # print("Found something at R%sC%s" % (cell.row, cell.col)) row_number = cell.row if user == 'Auto': columns = ['Prot','Prot_LS', 'Power_LS', 'TESS_Data'] n_col = len(columns) cols = [] for column in columns: cell = table.find(column) cols.append(cell.col) cell_list = [table.cell(row_number,cols[0]),table.cell(row_number,cols[1]),table.cell(row_number,cols[2]),table.cell(row_number,cols[3])] cell_list[1].value = tstar['Prot_LS'] cell_list[2].value = tstar['Power_LS'] if (tstar['exist_ffi'] == 0) or (tstar['exist_cpm'] == 0): cell_list[0].value = '-1' cell_list[3].value = 'No' else: cell_list[0].value = '' cell_list[3].value = 'Yes' table.update_cells(cell_list) #added amplitude column, and sector_list if user != 'Auto': columns = ['Prot_Final','Prot_LS', 'Power_LS', 'Single_Double', 'Multi', 'Quality', 'LC_Source', 'Class', 'Notes', 'Amp','Sectors_Used','Flares'] n_col = len(columns) cols = [2,3,4,5,6,7,8,9,10,11,12,13] # for column in columns: # cell = table.find(column) # cols.append(cell.col) cell_range = 'B'+str(row_number)+':M'+str(row_number) cell_list = table.range(cell_range) if tstar['LC_Action'] == 'Publish': cell_list[0].value = tstar['Prot_final'] if tstar['LC_Action'] == 'Good': cell_list[0].value = tstar['Prot_final'] if tstar['LC_Action'] == 'Follow up': cell_list[0].value = -tstar['Prot_final'] if tstar['LC_Action'] == 'Flat': cell_list[0].value = 99 if tstar['LC_Action'] == 'Garbage': cell_list[0].value = -99 cell_list[1].value = tstar['Prot_LS'] cell_list[2].value = tstar['Power_LS'] cell_list[3].value = tstar['is_it_double'] cell_list[4].value = tstar['Multi'] cell_list[5].value = tstar['LC_Quality'] cell_list[6].value = tstar['which_LC'] cell_list[7].value = tstar['LC_Action'] cell_list[8].value = tstar['Notes'] cell_list[9].value = tstar['Amplitude'] cell_list[10].value = str(tstar['which_sectors']) cell_list[11].value = tstar['Flares'] table.update_cells(cell_list) #################################################################################### def stars_todo(table): n_stars = len(table) not_done = np.zeros(n_stars, dtype=int) for i in range(n_stars): if len(table['Prot_LS'][i]) == 0: not_done[i] = 1 ido = np.where(not_done == 1) dr2_list = table['DR2Name'].to_numpy() star_list = dr2_list[ido[0]] return star_list def stars_todo_split(table, user): n_stars = len(table) not_done = np.zeros(n_stars, dtype=int) for i in range(n_stars): if len(table['Prot_LS'][i]) == 0: not_done[i] = 1 ido = np.where(not_done == 1) list = ido[0] if user == 'Angeli': these = np.where(ido[0] < 202) list = ido[0][these] if user == 'Isabella': these = np.where((ido[0] > 191) & (ido[0] < 379)) list = ido[0][these] if user == 'Linus': these = np.where(ido[0] > 373) list = ido[0][these] dr2_list = table['DR2Name'].to_numpy() star_list = dr2_list[list] return star_list #################################################################################### def stars_nodata(): target_table = get_prot_table('Auto') target_data = target_table.get_all_records() dr2_list = target_table.col_values(1) dr2 = np.array(dr2_list[1:]) num = np.size(dr2) # load their table user_table = get_prot_table('Jason') # Identify columns # Locate Prot_LS column cell = user_table.find('Prot_LS') col_prot = cell.col # Locate Power LS column cell = user_table.find('Power_LS') col_pow = cell.col # Loop over targets for i in range(num): row_number = i+2 # Does target have TESS data, according to target table? val = target_data[i]['Prot_LS'] if val == 0: user_table.update_cell(row_number,col_prot,0) user_table.update_cell(row_number,col_pow,0) #################################################################################### def stars_nodata_new(Team): target_table = get_prot_table('Auto') target_data = target_table.get_all_records() dr2_list = target_table.col_values(1) dr2 = np.array(dr2_list[1:]) num = np.size(dr2) # load their table user_table = get_prot_table('Jason') # Identify columns # Locate Prot_LS column cell = user_table.find('Prot_LS') col_prot = cell.col # Locate Power LS column cell = user_table.find('Power_LS') col_pow = cell.col # Loop over targets for i in range(num): row_number = i+2 # Does target have TESS data, according to target table? val = target_data[i]['Prot_LS'] if val == 0: user_table.update_cell(row_number,col_prot,0) user_table.update_cell(row_number,col_pow,0) #################################################################################### def ffi_test(ffi): shape = np.shape(ffi) val = ffi[int(shape[0]/2),int(shape[1]/2)] if np.isfinite(val): good_or_bad = 1 else: good_or_bad = 0 return good_or_bad #################################################################################### def tess_inspect_not_working(tstar): import ipywidgets as widgets from ipywidgets import interactive from IPython.display import display import matplotlib.pylab as pylab lc_cpm = load_cpm(tstar) all_sectors = lc_cpm['sector'].unique().astype(int) sectors = sector.unique().astype(int) thing_widget = widgets.SelectMultiple( options=sectors, value=sectors, #rows=10, description='Sectors', disabled=False ) interactive_plot = interactive(idisplay_tess, thing=thing_widget,double=False) output = interactive_plot.children[-1] interactive_plot idisplay() return #################################################################################### #################################################################################### def update_panelname_v1(tstar, locate=False): import os from glob import glob dir_panels = '/content/gdrive/My Drive/Projects/'+tstar['Cluster']+'/Panels/' name = dir_panels + '*'+tstar['Source'][9:]+'*' file = glob(name) if locate == True: return np.size(file) else: end = '-User='+tstar['User']+'-Review='+tstar['LC_Action']+'.png' new_file = dir_panels + 'GaiaDR2_'+str(tstar["Source"])[9:]+end os.rename(file[0],new_file) def update_panelname(tstar, locate=False): import os from glob import glob dir_panels = myDir.project_dir(tstar['Cluster'])+'Panels/' if tstar['Source'][0] == 'G': dr2 = tstar['Source'][9:] else: dr2 = tstar['Source'] name = dir_panels + '*'+dr2+'*'+tstar['User']+'*' file = glob(name) if locate == True: return np.size(file) else: end = '-User='+tstar['User']+'-Review='+tstar['LC_Action']+'.png' new_file = dir_panels + 'GaiaDR2_'+dr2+end os.rename(file[0],new_file) ############################################################################# def prot_show_v1(project_name, user, gbr, clusters=False): # gbr = target_data['BP_RP'].to_numpy(dtype=float) fig1, ax1 = plt.subplots(figsize=(7,6)) ax1.tick_params(axis='both', which='major', labelsize=15) aw = 1.5 ax1.spines['top'].set_linewidth(aw) ax1.spines['left'].set_linewidth(aw) ax1.spines['right'].set_linewidth(aw) ax1.spines['bottom'].set_linewidth(aw) prot_table_now = get_prot_table(user,project_name) prot_data_val_now = prot_table_now.get_all_values() prot_data_now = pd.DataFrame.from_records(prot_data_val_now[1:],columns=prot_data_val_now[0]) pnow = prot_data_now['Prot_Final'].to_numpy() uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan')) prot_now = pnow[uu[0]] color = gbr[uu[0]].astype(float) ax1.set_xlim(0.4,2.5) ax1.set_xlabel('BP - RP (mag)',fontsize=20) ax1.set_ylim(0,20) ax1.set_ylabel('Rotation Period (days)',fontsize=20) if clusters == True: file = glob('/content/gdrive/My Drive/Tables/gyro_clusters_draft-2020April08.csv') clus = pd.read_csv(file[0]) indicesPl = np.where((clus["CLUSTER"] == "Pleiades") & (clus['BENCH'] == 1)) indicesPr = np.where((clus["CLUSTER"] == "Praesepe") & (clus['BENCH'] == 1)) #indicesNGC = np.where((Cluster == "NGC_6811") & (clus['BENCH'] == 1)) pleiades = clus.iloc[indicesPl] praesepe = clus.iloc[indicesPr] #NGC6811 = clus.iloc[indicesNGC] plt.plot(pleiades["BP_RP"]-0.415*0.12, pleiades["PROT"], markerfacecolor = 'blue', markeredgecolor='black', label = '120 Myr Pleiades',markersize=10,alpha=0.7,linestyle='',marker='.') plt.plot(praesepe["BP_RP"]-0.415*0.035, praesepe["PROT"], markerfacecolor = 'cyan', markeredgecolor='black', label = '670 Myr Praesepe',markersize=10,alpha=0.7,linestyle='',marker='.') ax1.plot(color, np.array(prot_now,dtype=float),markerfacecolor='red',markeredgecolor='black',marker='*',markersize=20,linestyle='') plt.show() def prot_show(project_name, user, gbr, clusters=False, pcut=0.0): # gbr = target_data['BP_RP'].to_numpy(dtype=float) fig1, ax1 = plt.subplots(figsize=(15,9)) ax1.tick_params(axis='both', which='major', labelsize=15) aw = 1.5 ax1.spines['top'].set_linewidth(aw) ax1.spines['left'].set_linewidth(aw) ax1.spines['right'].set_linewidth(aw) ax1.spines['bottom'].set_linewidth(aw) prot_table_now = get_prot_table(user,project_name) prot_data_val_now = prot_table_now.get_all_values() prot_data_now = pd.DataFrame.from_records(prot_data_val_now[1:],columns=prot_data_val_now[0]) pnow = prot_data_now['Prot_Final'].to_numpy() qnow = prot_data_now['Quality'].to_numpy() cnow = prot_data_now['Class'].to_numpy() uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan') & (qnow != '-1') & (cnow == 'Accept')) # uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan')) prot_now = pnow[uu[0]] color = gbr[uu[0]].astype(float) power_now = prot_data_now['Power_LS'].to_numpy() vv = np.where(power_now[uu[0]].astype(float)>pcut) ax1.set_xlim(0.4,3.5) ax1.set_xlabel('BP - RP (mag)',fontsize=20) ax1.set_ylim(0,25) ax1.set_ylabel('Rotation Period (days)',fontsize=20) if clusters == True: file = glob('/content/gdrive/My Drive/Tables/gyro_clusters_draft-2020April08.csv') clus = pd.read_csv(file[0]) indicesPl = np.where((clus["CLUSTER"] == "Pleiades") & (clus['BENCH'] == 1)) indicesPr = np.where((clus["CLUSTER"] == "Praesepe") & (clus['BENCH'] == 1)) #indicesNGC = np.where((Cluster == "NGC_6811") & (clus['BENCH'] == 1)) pleiades = clus.iloc[indicesPl] praesepe = clus.iloc[indicesPr] #NGC6811 = clus.iloc[indicesNGC] ax1.plot(pleiades["BP_RP"]-0.415*0.12, pleiades["PROT"], markerfacecolor = 'blue', markeredgecolor='black', label = '120 Myr Pleiades',markersize=10,alpha=0.7,linestyle='',marker='.') ax1.plot(praesepe["BP_RP"]-0.415*0.035, praesepe["PROT"], markerfacecolor = 'cyan', markeredgecolor='black', label = '670 Myr Praesepe',markersize=10,alpha=0.7,linestyle='',marker='.') ax1.plot(color[vv[0]], np.array(prot_now[vv[0]],dtype=float),markerfacecolor='red',markeredgecolor='black',marker='*',markersize=15,linestyle='') print(len(vv[0])) # ax1.scatter([1.2215], [11.6770],s=3000,c='green') # ax1.plot([1.2375,1.2375],[0,20],c='green') # ax1.plot([0.5,2.5],[11.677,11.677],c='green') plt.show() ############################################################################# def make_status(project_name, add_user='', add_step = '', change_auto='', reset=False): # directory dir_project = myDir.project_dir(project_name) # ensure the file doesnt already exist file_status = glob(dir_project + "Status.txt") new_file = 1 if (np.size(file_status) == 1) | (reset == False): bsize = os.path.getsize(file_status[0]) #size in bytes if bsize < 40: print('remove the file') os.remove(file_status[0]) else: new_file = 0 status = read_status(project_name) if (new_file == 1) | (reset == True): status = {'Project':project_name, 'Users':'Jason Team_Member', 'Steps':'Status_Initialized', 'Auto': 'No'} if len(add_user) > 0: status['Users'] += ' '+add_user if len(add_step) > 0: status['Steps'] += ' '+add_step if len(change_auto) > 0: status['Auto'] = change_auto lines = [] # 1: project title lines.append('Project: '+project_name+"\n") # 2: Users lines.append('Users: '+status['Users']+"\n") # 3: Steps lines.append('Steps: '+status['Steps']+"\n") # 4: Has tesscheck_auto been run? lines.append('tesscheck_auto: '+status['Auto']+"") # 5: Which sectors? # 6: Number of repeat sectors? # Create the file fo = open(dir_project + "Status.txt", "w") fo.writelines(lines) fo.close() ###################################### def read_status(project_name): dir_project = myDir.project_dir(project_name) # ensure the file doesnt already exist file_status = glob(dir_project + "Status.txt") if
np.size(file_status)
numpy.size
from __future__ import absolute_import, division import json import unittest import networkx as nx import numpy as np import pytest from davisinteractive.robot import InteractiveScribblesRobot from davisinteractive.utils.scribbles import annotated_frames, is_empty class TestInteractiveScribblesRobot(unittest.TestCase): def test_generate_scribble_mask_empty(self): empty_mask = np.zeros((100, 200), dtype=np.bool) robot = InteractiveScribblesRobot() skel = robot._generate_scribble_mask(empty_mask) assert skel.shape == empty_mask.shape assert np.all(skel == empty_mask) def test_generate_scribble_mask(self): empty_mask = np.zeros((100, 200), dtype=np.bool) squared_mask = empty_mask.copy() squared_mask[50:100, 100:150] = True robot = InteractiveScribblesRobot() skel_squared = robot._generate_scribble_mask(squared_mask) assert skel_squared.shape == empty_mask.shape assert np.sum(skel_squared) > 0 def test_mask2graph_empty(self): empty_mask = np.zeros((100, 200), dtype=np.bool) robot = InteractiveScribblesRobot() out = robot._mask2graph(empty_mask) assert out is None def test_mask2graph(self): empty_mask = np.zeros((100, 200), dtype=np.bool) squared_mask = empty_mask.copy() squared_mask[50:100, 100:150] = True robot = InteractiveScribblesRobot() out = robot._mask2graph(squared_mask) assert isinstance(out, tuple) assert len(out) == 2 G, T = out assert isinstance(G, nx.Graph) assert isinstance(T, np.ndarray) assert T.dtype == np.int assert len(G) == len(T) T_x, T_y = T.T assert T_x.min() >= 0 assert T_x.max() < 200 assert T_y.min() >= 0 assert T_y.max() < 100 def test_interaction_no_class(self): gt_empty = np.zeros((10, 300, 500), dtype=np.int) robot = InteractiveScribblesRobot() with pytest.raises(ValueError): robot.interact('test', gt_empty.copy(), gt_empty) def test_interaction_equal(self): nb_frames, h, w = 10, 300, 500 gt_empty = np.zeros((nb_frames, h, w), dtype=np.int) gt_empty[0, 100:200, 100:200] = 1 pred_empty = gt_empty.copy() robot = InteractiveScribblesRobot() scribble = robot.interact('test', pred_empty, gt_empty) assert is_empty(scribble) assert annotated_frames(scribble) == [] assert len(scribble['scribbles']) == nb_frames def test_interaction(self): nb_frames, h, w = 10, 300, 500 gt_empty = np.zeros((nb_frames, h, w), dtype=np.int) pred_empty = gt_empty.copy() gt_empty[5, 100:200, 100:200] = 1 robot = InteractiveScribblesRobot() scribble = robot.interact('test', pred_empty, gt_empty) assert not is_empty(scribble) assert annotated_frames(scribble) == [5] assert len(scribble['scribbles']) == nb_frames lines = scribble['scribbles'][5] for l in lines: assert l['object_id'] == 1 path = np.asarray(l['path']) x, y = path[:, 0], path[:, 1] assert np.all((x >= .2) & (x <= .4)) assert np.all((y >= 1 / 3) & (y <= 2 / 3)) def test_scribble_json_serializer(self): nb_frames, h, w = 10, 300, 500 gt_empty = np.zeros((nb_frames, h, w), dtype=np.int) pred_empty = gt_empty.copy() gt_empty[5, 100:200, 100:200] = 1 robot = InteractiveScribblesRobot() scribble = robot.interact('test', pred_empty, gt_empty) json.JSONEncoder().encode(scribble) def test_interaction_false_positive(self): nb_frames, h, w = 10, 300, 500 gt_empty = np.zeros((nb_frames, h, w), dtype=np.int) pred_empty = np.ones((nb_frames, h, w), dtype=np.int) gt_empty[5, 100:200, 100:200] = 1 robot = InteractiveScribblesRobot() scribble = robot.interact('test', pred_empty, gt_empty) assert not is_empty(scribble) assert annotated_frames(scribble) == [0] assert len(scribble['scribbles']) == nb_frames lines = scribble['scribbles'][0] assert lines for l in lines: assert l['object_id'] == 0 path = np.asarray(l['path']) x, y = path[:, 0], path[:, 1] assert np.all((x >= 0) & (x <= 1)) assert np.all((y >= 0) & (y <= 1)) def test_interaction_false_positive_single_frame(self): nb_frames, h, w = 1, 300, 500 gt_empty =
np.zeros((nb_frames, h, w), dtype=np.int)
numpy.zeros
import fnmatch import os import pprint import feather import numpy as np import pandas as pd import scipy.io as sio import pdb import matplotlib.pyplot as plt import seaborn as sns from copy import deepcopy class Node(): '''Simple Node class. Each instance contains a list of children and parents.''' def __init__(self,name,C_list=[],P_list=[]): self.name=name self.C_name_list = C_list[P_list==name] self.P_name = P_list[C_list==name] return def __repr__(self): #Invoked when printing a list of Node objects return self.name def __str__(self): #Invoked when printing a single Node object return self.name def __eq__(self,other): if isinstance(other, self.__class__): return self.name == other.name else: return False def children(self,C_list=[],P_list=[]): return [Node(n,C_list,P_list) for n in self.C_name_list] def get_valid_classifications(current_node_list,C_list,P_list,valid_classes): '''Recursively generates all possible classifications that are valid, based on the hierarchical tree defined by `C_list` and `P_list` \n `current_node_list` is a list of Node objects. It is initialized as a list with only the root Node.''' current_node_list.sort(key=lambda x: x.name) valid_classes.append(sorted([node.name for node in current_node_list])) for node in current_node_list: current_node_list_copy = current_node_list.copy() children_node_list = node.children(C_list=C_list,P_list=P_list) if len(children_node_list)>0: current_node_list_copy.remove(node) current_node_list_copy.extend(children_node_list) if sorted([node.name for node in current_node_list_copy]) not in valid_classes: valid_classes = get_valid_classifications(current_node_list_copy,C_list=C_list,P_list=P_list,valid_classes=valid_classes) return valid_classes class HTree(): '''Class to work with hierarchical tree .csv generated for the transcriptomic data. `htree_file` is full path to a .csv. The original .csv was generated from dend.RData, processed with `dend_functions.R` and `dend_parents.R` (Ref. Rohan/Zizhen)''' def __init__(self,htree_df=None,htree_file=None): #Load and rename columns from filename if htree_file is not None: htree_df = pd.read_csv(htree_file) htree_df = htree_df[['x', 'y', 'leaf', 'label', 'parent', 'col']] htree_df = htree_df.rename(columns={'label': 'child','leaf': 'isleaf'}) #Sanitize values htree_df['isleaf'].fillna(False,inplace=True) htree_df['y'].values[htree_df['isleaf'].values] = 0.0 htree_df['col'].fillna('#000000',inplace=True) htree_df['parent'].fillna('root',inplace=True) #Sorting for convenience htree_df = htree_df.sort_values(by=['y', 'x'], axis=0, ascending=[True, True]).copy(deep=True) htree_df = htree_df.reset_index(drop=True).copy(deep=True) #Set class attributes using dataframe columns for c in htree_df.columns: setattr(self, c, htree_df[c].values) return def obj2df(self): '''Convert HTree object to a pandas dataframe''' htree_df = pd.DataFrame({key:val for (key,val) in self.__dict__.items()}) return htree_df def df2obj(self,htree_df): '''Convert a valid pandas dataframe to a HTree object''' for key in htree_df.columns: setattr(self, key, htree_df[key].values) return def plot(self,figsize=(15,10),fontsize=10,skeletononly=False,skeletoncol='#BBBBBB',skeletonalpha=1.0,ls='-',txtleafonly=False,fig=None): if fig is None: fig = plt.figure(figsize=figsize) #Labels are shown only for children nodes if skeletononly==False: if txtleafonly==False: for i, label in enumerate(self.child): plt.text(self.x[i], self.y[i], label, color=self.col[i], horizontalalignment='center', verticalalignment='top', rotation=90, fontsize=fontsize) else: for i in np.flatnonzero(self.isleaf): label = self.child[i] plt.text(self.x[i], self.y[i], label, color=self.col[i], horizontalalignment='center', verticalalignment='top', rotation=90, fontsize=fontsize) for parent in np.unique(self.parent): #Get position of the parent node: p_ind = np.flatnonzero(self.child==parent) if p_ind.size==0: #Enters here for any root node p_ind = np.flatnonzero(self.parent==parent) xp = self.x[p_ind] yp = 1.1*np.max(self.y) else: xp = self.x[p_ind] yp = self.y[p_ind] all_c_inds = np.flatnonzero(np.isin(self.parent,parent)) for c_ind in all_c_inds: xc = self.x[c_ind] yc = self.y[c_ind] plt.plot([xc, xc], [yc, yp], color=skeletoncol,alpha=skeletonalpha,ls=ls,) plt.plot([xc, xp], [yp, yp], color=skeletoncol,alpha=skeletonalpha,ls=ls) if skeletononly==False: ax = plt.gca() ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim([np.min(self.x) - 1, np.max(self.x) + 1]) ax.set_ylim([np.min(self.y), 1.2*np.max(self.y)]) plt.tight_layout() fig.subplots_adjust(bottom=0.2) return def plotnodes(self,nodelist,fig=None): ind = np.isin(self.child,nodelist) plt.plot(self.x[ind], self.y[ind],'s',color='r') return def get_descendants(self,node:str,leafonly=False): '''Return a list consisting of all descendents for a given node. Given node is excluded.\n 'node' is of type str \n `leafonly=True` returns only leaf node descendants''' descendants = [] current_node = self.child[self.parent == node].tolist() descendants.extend(current_node) while current_node: parent = current_node.pop(0) next_node = self.child[self.parent == parent].tolist() current_node.extend(next_node) descendants.extend(next_node) if leafonly: descendants = list(set(descendants) & set(self.child[self.isleaf])) return descendants def get_all_descendants(self,leafonly=False): '''Return a dict consisting of node names as keys and, corresp. descendant list as values.\n `leafonly=True` returns only leaf node descendants''' descendant_dict = {} for key in np.unique(np.concatenate([self.child,self.parent])): descendant_dict[key]=self.get_descendants(node=key,leafonly=leafonly) return descendant_dict def get_ancestors(self,node,rootnode=None): '''Return a list consisting of all ancestors (till `rootnode` if provided) for a given node.''' ancestors = [] current_node = node while current_node: current_node = self.parent[self.child == current_node] ancestors.extend(current_node) if current_node==rootnode: current_node=[] return ancestors def get_mergeseq(self): '''Returns `ordered_merges` consisting of \n 1. list of children to merge \n 2. parent label to merge the children into \n 3. number of remaining nodes in the tree''' # Log changes for every merge step ordered_merge_parents = np.setdiff1d(self.parent,self.child[self.isleaf]) y = [] for label in ordered_merge_parents: if np.isin(label,self.child): y.extend(self.y[self.child==label]) else: y.extend([np.max(self.y)+0.1]) #Lowest value is merged first ind = np.argsort(y) ordered_merge_parents = ordered_merge_parents[ind].tolist() ordered_merges = [] while len(ordered_merge_parents) > 1: # Best merger based on sorted list parent = ordered_merge_parents.pop(0) children = self.child[self.parent == parent].tolist() ordered_merges.append([children, parent]) return ordered_merges def get_subtree(self, node): '''Return a subtree from the current tree''' subtree_node_list = self.get_descendants(node=node)+[node] if len(subtree_node_list)>1: subtree_df = self.obj2df() subtree_df = subtree_df[subtree_df['child'].isin(subtree_node_list)] else: print('Node not found in current tree') return HTree(htree_df=subtree_df) def update_layout(self): '''Update `x` positions of tree based on newly assigned leaf nodes. ''' #Update x position for leaf nodes to evenly distribute them. all_child = self.child[self.isleaf] all_child_x = self.x[self.isleaf] sortind = np.argsort(all_child_x) new_x = 0 for (this_child,this_x) in zip(all_child[sortind],all_child_x[sortind]): self.x[self.child==this_child]=new_x new_x = new_x+1 parents = self.child[~self.isleaf].tolist() for node in parents: descendant_leaf_nodes = self.get_descendants(node=node,leafonly=True) parent_ind =
np.isin(self.child,[node])
numpy.isin